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Abstract 
The upcoming version of the ISO standard 26262 requires all software to be unit tested 
by the developers. The work is about improving Volvos current risk prioritization 
method for software at a unit level. 

As a result, Volvo has a new method to use when they perform risk analysis on units 
from models in Simulink. The analysis consists of two major parts, the likelihood and 
consequence. Both parts are dependent on a number of subcategories which is 
visualized as a matrix. After the risk analysis, the unit receives a unit risk prioritization 
score, which indicates how important it is to perform a unit test for this part of the 
software. The score also determines how large coverage the test should have while 
testing. 

Another part of the work was to find a way to split models into smaller parts for unit 
testing. When the software engineers split down the models to an understandable size of 
a unit, the group found the cyclomatic complexity of the units were at a similar value.  
This could be measured with MATLAB Verification and Validation toolbox. 

The work does not consider what kind of unit test that should be preferred to different 
parts of the software. 

Keywords: Unit test, risk assessment, prioritization, MATLAB, Simulink. 

 

 
  



  



 
Sammanfattning 
Den kommande versionen av ISO standard 26262 kräver att all mjukvara ska testas på 
modulnivå med ett så kallat unit-test. Arbetet handlar om att förbättra Volvos nuvarande 
riskprioriteringsmetod för mjukvara på unit-nivå. 

Som resultat har Volvo nu en mer omfattande metod att använda när de utför 
riskanalyser på units från Simulinkmodeller. Analysen består av två stora delar, 
sannolikheten för fel och konekvensen ett fel skulle kunna medföra. Båda delarna har 
flertalet underkategorier och analysen visualiseras i en matris. Efter analysen fås ett 
riskprioriteringsvärde, vilket avgör hur viktigt det är att utföra unit-test på mjukvaran. 
Värdet avgör även hur stor del av koden som testet behöver täcka. 

En annan del av arbetat handlar om att finna ett sätt för att dela modeller till mindre 
enheter för unit-test. När mjukvareutvecklarna delade modellerna till lämplig storlek 
upptäckte gruppen att enheterna hade liknande cyklomatisk komplexitet, vilket kan 
mätas med MATLAB Verification and Validation toolbox. 

Arbetet behandlar inte vilken typ av unit-test som är att föredra till olika delar av 
mjukvaran. 

Nyckelord: Unit-test, riskbedömning, prioritering, MATLAB, Simulink. 
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Nomenclature 

ASIL – Automotive Safety Integrity Level is a risk classification in the ISO 26262. 

CC – Cyclomatic complexity, a way to calculate the logical difficulty of the software. 

Controllability – Ability to avoid a specified harm or damage through the timely reactions of the 
persons involved, possibly with support from barriers. 

EATS – Exhaust After Treatment System. 

EATS Group – EATS Control, The division at Volvo - Powertrain Engineering - Control Systems 
where this thesis work is written. 

ECU – Electronic Control Unit, an embedded system with hardware and software which control 
functional areas of a vehicle. 

Error – Discrepancy between a computed, observed or measured value or condition, and the true, 
specified or theoretically correct value or condition. An error can arise as a result of unforeseen 
operating conditions or due to a fault. 

Failure – The software cannot perform a function as required. 

Exposure – State of being in an operational situation that can be hazardous if coincident with the 
failure mode under analysis. 

Fault – Some defect code such as incorrect data definition, caused by the programmer or design 
weakness. 

GTT – Group Trucks Technology, a department at Volvo Group there most of the technical 
developments take place. 

Harm – Physical injury or damage to the health of persons. 

Hazard – Potential source of harm caused by a failure. 

MIL – Model in the loop, referees to test at the model-level in Simulink. 

Risk – Combination of the probability of occurrence of harm and the severity of that harm. 

Barriers – External or internal measure to avoid undesirable consequences. 

Severity – Estimate of the extent of harm to one or more individuals that can occur in a potentially 
hazardous situation. 

SIL – Software in the loop, referees to test the C-code compiled from a model in Simulink. 

X-team – Cross functional team. Contains members with different areas of expertise. 
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1 INTRODUCTION 

1.1 Background 
Control Systems Technology at Volvo GTT Powertrain Engineering (hereinafter abbreviated as 
Volvo GTT-PE) has recently started working with agile methodology, where X-teams (Cross 
functional team) testing of their own code are an important part. This, together with the new version 
of ISO 26262 that will apply to heavy duty vehicle, will make it necessary to implement 
standardized unit test on all software development.  

The main development tool for software functions at Volvo is MATLAB. At this moment, 
MATLAB is missing software to perform unit test at Simulink models inside the Simulink 
environment. Because of this Volvo developed their own framework to construct unit test of 
Simulink models. This framework is able to divide a big model into smaller pieces, “units”, by 
extracting user defined subsystems. Currently, there are no guidelines on how to choose an 
appropriate size of unit. 

There are also a substantial number of models, and it’s not possible to implement unit test on all 
models at once since the work to create these tests would take a great deal of time from 
development. 

1.2 Purpose 

The work is about developing guidelines on how to prioritize the various Simulink models available 
at Volvo for unit test. Due to the time consuming work of creating a unit test, all units need to be 
prioritized. This is done with risk assessment methodology. These guidelines should be able to help 
a software engineer to decide how important it is that he creates a unit test for the unit he is 
currently working on. The group will also examine if it is possible to find guidelines about how to 
divide models into appropriate sized units for testing. 

1.3 Restrictions 

There are several different methods of creating unit tests, with different software. The group will 
not research which one of these is better or worse. The group will focus on the risk assessment of 
units. The group is going to work closely with the EATS group and their X-teams, so all Simulink 
models that the group will investigate are owned by the EATS group.  

1.4 Clarification of the questions 

• What characteristics of a model are important from a risk-based perspective? 

• What types of changes in a model can lead to increased risk or devastating consequences? 

• Is it possible to find clear patterns in large models that provide suggestions for boundaries for 
splitting the model into smaller "units" for the test?  
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2 Technical Background  

2.1 Software design 

The software for the after-treatment system at Volvo GTT-PE is constructed with Simulink. 
Simulink is a MATLAB based block diagram environment for multidomain simulation and model-
based design (MathWorks, 2014). The models are then converted to C-code for use inside the 
vehicles embedded system. The conversion is made with TargetLink, a Simulink plugin/blockset 
that generates C-code straight from the Simulink model (dSPACE, 2014). 

2.2 ISO 26262:2011 

According to ISO 26262 (functional safety for road vehicles standard) some requirements must be 
achieved for an acceptable level of code safety (International Organization for Standardization, 
2011). Today it only affect passenger cars with a maximum weight of 3 500 kg, but the upcoming 
ISO standard is also going to include trucks and other vehicles. By following 26262, the vehicles 
software quality will be assured. At software level, the main points are standardised variable names, 
modular code and early testing. 

Every part of the code that affects safety has to be risk analysed and placed in an ASIL class 
(Appendix D). The safety requirements are then defined by the four ASIL classes, A-D, where A is 
the least critical and D is the most critical. Parts of the code that are not classified as being in the A 
– D range are put in the QM category. The QM category has no safety requirements. The class 
depends on the severity of the hazard, how often it will be exposed and how well the driver can 
control the vehicle to avoid any harm during a hazard.  

2.3 Unit Test 

A unit is the smallest testable part of the software. In regular software code this would be a function 
or class (Xie, et al., 2007). At model-level it is harder to define what a unit is. When doing unit 
testing, the tester creates test cases for each part of the unit. The goal of each test case is to show 
that each part is working as intended. A collection of test cases for a unit is called a test suite, a test 
suite shows that the unit is working as intended. 

The tester needs to define the appropriate size of a unit, the only criteria is the functionality should 
be very clear to understand (International Organization for Standardization, 2011). The tester 
creates test cases by providing specific input and expected output of the unit. When a whole test 
suite is finished, it’s possible to have it run automatically every time the code is built. Common 
practice is to have each case marked as green if it passes, red if it did not get the expected result and 
yellow if the test was not run.  

This allows a developer to check if anything has broken while doing changes to a unit that already 
has an existing test suite. Unit testing also provides a living documentation of the software, since 
each test case has a small description of the functionality it is testing, a new developer could easily 
understand how the code works by running through some old test cases. Other benefits of unit 
testing are the ability to discover faults early in the development cycle and enhanced understanding 
of the code for the developer. The one big drawback with unit testing is the time it takes to create 
unit tests for all parts of the code if the software is really big and no previous unit tests exists. 
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2.4 Risk Assessment 

Risk assessment is the combination of risk analysis and risk evaluation (Rausand, 2011). Risk 
analysis is a proactive investigation to identify hazards and estimate risk to individuals, property 
and the environment. This is done by systematic use of the available information of the process that 
is being analyzed. Risk evaluation is the judgment on the tolerability of risk with the basis in the 
risk analysis. 

The risk assessment used in this thesis work uses a simple comparison between the possible 
consequences of failing code and the corresponding likelihood that the consequences will occur. 
These factors are added together in a diagram to give each possible part of the software a risk value. 
This value is later used to evaluate the need of unit testing for each part. 

2.5 Unit test framework 

Volvo is currently developing a framework to unit test models in MATLAB Simulink. The goal is 
to have a framework that works with both Model-in-the-Loop (MIL) and Software-in-the-Loop 
(SIL). This framework will work as a complement or replacement to the existing test methods. It is 
able to handle extraction of subsystems, create stubs and create a harness around the unit to control 
the input to the unit with the help of a signalbuilder-block. The user will define test cases by 
creating blocks that compares the outputs of the unit to predefined signals. It will then measure the 
coverage of the test by using the MATLAB toolbox; Verification and Validation. The finished test 
cases should be able to run automatically. 

2.6 Cyclomatic Complexity 

One way to estimate the probability of failure in a part of the software, like a function or class, is to 
measure the cyclomatic complexity (CC). Cyclomatic complexity is a value of how complex the 
function is (McCabe, 1976). A CC value of 1 means the function is very simple and just contains a 
few, if any, branches. A value of 100 means that there is a lot of different paths through the 
function. 

This measurement was developed by Tomas J McCabe in 1976. MATLAB has a built in tool to 
measure cyclomatic complexity in the Verification and Validation toolbox for Simulink. CC is 
measured for a complete model, including the subsystems within the model. The version of 
McCabes formula that MATLAB uses is (MathWorks, 2013):   

 

 
 

 

 
MATLAB Cyclomatic Complexity.  
N = Number of Decision points. 
On= Numbers of outcomes for n:th decision point. 
c = cyclomatic complexity. 
Also adds 1 for each atomic subsystem and 
stateflow chart. 



 

 

P a g e  | 5 

 

 
Figure 1 Cyclomatic Complexity examples, MathWorks formula 

2.7 Coverage  

According to ISO 26262, unit test should cover different parts of the software depending on the 
ASIL classification (International Organization for Standardization, 2011). The following coverage 
is recommended, but can be replaced with equivalent coverage (Hayhurst, et al., 2001). 

 Statement coverage – Percentage of statements within the software that have been executed 
 Branch coverage – Every outcome should been tested, both true and false in an if-statement 
 MC/DC coverage – Requires every condition to independently show it affects the outcome, 

and should have taken all possible outcomes 

With Simulink verification and validation toolbox, the following coverage is possible to measure in 
Simulink models (MathWorks, 2013): 

 Condition coverage – Requires all possible in-port conditions 
Example, both Signal 1 and Signal 2 have to be both true and false 

 Decision coverage – The test has to cover all possible outcomes 
Example, the switch should have been both true and false 

 MC/DC coverage – See above 
Example, Signal 1 and Signal 2 have to be both true and false but not at the same time, the 
switch should have given both Constant A and Constant B 

 

FOR – IF  

 

IF – ELSE  
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Figure 2 An if-statement built into Simulink 

When running tests in MIL there is no way to analyse statement coverage, since Simulink does not 
support that type of coverage measurement. It should be replaced with a condition or decision 
coverage which requires more test cases to receive full coverage, but is supported in Simulink. The 
replacement is based on the assumption that all statement is executed with full condition or decision 
coverage (Cornett, 1996). The reason for not having statement coverage in a model environment is 
because it’s impossible to measure statement coverage on a model, it only works on lines of code. 

Branch coverage is very similar to decision coverage but not completely. According to ISTQB 
Foundation it is possible to use decision coverage instead of branch coverage (Graham, et al., 
2007). They do not give exactly the same result, but they are closely related to each other. 

The conclusion is that all recommended coverage methods in ASIL, except MC/DC, need to be 
replaced with equal or better methods in Matlab in order to work. 

2.8 Old risk prioritization method 

There is an existing risk prioritization method, which was developed as a test. In this method most 
criticality consequence is given a criticality rating between 1 (low) to 4 (catastrophic). The other 
decisive part of the function is the likelihood. A selection of likelihood attributes is listed and the 
likelihood rating is an approximately decided average value between 1 (low) to 3 (high). After these 
parameters are determined, the criticality is multiplied with the likelihood and becomes the unit risk 
priority value, CxL. The units will have a final risk rating between 1 to 12, indicating the priority to 
unit test. 
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Figure 3 The old risk prioritization method 

All results is stored in an Excel-file, the file contains information about the unit; names and 
description. Information from the risk analyse is stored as well, like; criticality rating, likelihood 
rating, CxL and comments about the analyse from the tester. A code coverage target (CCT) will be 
calculated from the CxL value and this decides how thoroughly the unit should be tested. 
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3 Methodology 

3.1 Target 

The target of the thesis work was to answer the questions stated in chapter 1.4. To be able to fully 
understand the challenges of creating a good risk prioritization method at Volvo GTT-PE, deeper 
knowledge was needed. Both in the usage of the test framework Volvo GTT-PE has developed and 
in basic risk assessment theories.  

To find a pattern that decided where to split large model into smaller units, the group researched if 
there was a way to get a characteristic of a model similar to size or complexity. The most used 
method to measure complexity of software is cyclomatic complexity (McCabe, 1976), something 
that the Verification and Validation toolbox from Matlab supports. Since that toolbox is used in 
Volvo GTT-PEs test framework, it was ideal for the purpose of deciding how to split large models. 

3.2 Collection of information 

The main part of information for the thesis work came from interviews (Appendix E) and meetings 
with the software engineers in the EATS Group. The topics of the interviews were about different 
testing methods, what type of Simulink models they worked with and what type of faults that were 
common. The meetings were about unit extraction and testing the early risk assessment method, 
meeting notes can be found in appendix G. The opinions from these meetings were valuable 
information to continue work of developing the risk matrix. 

The same engineers that attended the meetings were the early risk assessment method was tested, 
were later interviewed to get feedback on the new risk matrix. This lead to further changes in the 
descriptions of different levels of likelihood and consequence. 

Another source of good information was the ISO standard 26262. This allowed to group to adapt 
the new method to the standards recommendations. 

3.3 Tests 

Tests with CC measurement tool were done on the units that the software engineers chosen during 
the unit extraction meetings. These were simple tests with the goal to see if a common denominator 
could be found in CC value. These were done with small string of code that toggled several 
parameters that were necessary for the CC tool to work properly.  

3.4 Development of risk matrix 

The risk matrix was based on the consequence – likelihood comparison that was already used by the 
old method. There is several other methods for conducting risk assessment (Rausand, 2011), these 
were not researched since this method was already in place.  

The matrix has been in constant development during the thesis work with input from different 
stakeholders. The goal has always been to both have a working matrix that is easy to understand and 
still captures most of the different situations that affects the risk assessment. It has been adapted to 
be used together with the ASIL-classification from ISO standard 26262. This was done since the 
ASIL-standard was found to better handle the risk regarding the safety aspect. 
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4 Results 

4.1 Stubs 

The group wrote a program in MATLAB with m-code to manipulate Simulink models. The stub 
function was created to enable control of the output-signals from any block in Simulink. The 
program looks in an excel-file for all blocks that will be stubbed and search the model for these 
blocks. The previous blocks is deleted and all out-ports is replaced with blocks who is controlled by 
a signal builder in the harness. All previous in-ports can be analysed in the harness outside the 
model. 

            
Figure 4 A block in Simulink before the stub  Figure 5 A stubbed block in Simulink 

Since multiple blocks can be stubbed at the same time, some logical problems are involved. It is 
unnecessary to stub a block that exists within a subfunction that also will be stubbed. If two blocks 
who will be stubbed is connected between out-port and another stub in-port, their connection must 
be excluded during the creation of the stub.  It is unnecessary to control a signal that not will do 
anything. 

 
Figure 6 If both subsystems will be stubbed, it is unnecessary to control the out-port from the first stub. 

A problem with the program is to set the correct data type to new in and out-ports. This makes it 
difficult to run SIL-tests. The unit test development team found a solution by tracing the source and 
destination of the in- and out-ports, and use the same data type. 

 

4.2 Selecting models / Interviews 

Short interviews were held with some of the software engineers in the EATS group. The goal with 
the interviews was to learn how the engineers approached testing today, what they think is common 
problems and errors, which models they think is safe and which is complex and problematic. A 
complete list of all questions and answers can found in Appendix G. The answers were later used as 
a basis for model selection toward complexity tests and to get better understanding of the 
characteristics of models from the developer’s view. 
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4.3 Testing the method 

A small test group of six persons were convened to try out the old test method and find what could 
be improved. The group split the models into units, in this method a unit was described as a 
subfunction where the tester thought the functions and risks were very clear. Later, these units were 
used to test cyclomatic complexity (4.5). Afterwards the risk prioritization method was applied to 
the units. The results from this could be found in Appendix B. During these meetings it was 
discussed if a later test could make unit test less important. While the prioritization a few different 
decision factors were discovered that impacts the likelihood of a fault: 

 Proven in use, old functional code is considered very stable and safe as long as no changes 
are made 

 Knowledge about the code, how well the engineer knows the code he is working with 
 Confidence in the code, have it been several old errors in the code 
 How many Dataset parameters there is, they can, in some cases, have big impact on different 

functionalities in the code 

 

4.4 New risk prioritization method 

With a risk prioritization it will be possible to decide which is the most critical unit and has the 
highest priority to unit test. The new prioritization method is based on the former one, but with 
some improvement. Just as the earlier method there are two major parts, likelihood and 
consequences. 

In the consequence section all possible hazards is analysed. The worst possible consequence caused 
by the software is ranked 1 to 5. Some standard consequences are listed in the method, but if the 
tester could think of something more severe they should use that instead. Possible consequences: 

 Performance - Any possible error who might affect the performance of the operation 
 Legal - If a fault might lead to legal violation 

Consequences 1 2 3 4 5 

Performance 

No error messages. 
Driver does not 
notice. 
No reduction to 
performance. 

Possible error 
message. 
Driver does not need 
to react to fault. 
Minor, unnoticeable 
reduction of 
performance. 

Error message. 
Driver needs to act 
upon fault. 
Noticeable 
reduction of 
performance. 

Driver needs to seek 
help with fault 
immediately. 
Severe reduction of 
performance. 
Risk of operation 
failure. 

Driver must stop 
immediately. 
Engine performance 
is reduced close to 0. 
Operation failure. 
Risk of damage to 
machinery. 

Legal 

No code faults that 
could affect legal 
violation 

Code fault could lead 
to legal violation at a 
later stage.  
Barriers in code are 
preventing legal 
violation. 

Error in code would 
lead to legal 
violation. 
Barriers in code are 
preventing legal 
violation. 

Not applicable Code failure leads to 
legal violation. 
Barriers in code to 
prevent legal 
violation might fail. 

Figure 7 The matrix shows the guidelines for the consequence analysis, also shown in Appendix C 

Several properties affect the probability of a fault to exist in the code. The more likely the code is to 
include faults the more likely is it for a devastating consequence to occur. In this method the tester 
should make an estimated average value from all likely parameters. Following parameters all affects 
the likelihood of a fault. In some software is it possible for more parameters to affect the likelihood. 
If the tester knows something which affects the likelihood, it should also be considered. 
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 Error prone - A unit with a lot of previous errors, is more likely to include an error again 
 Code confidence - This category includes two parts. The tester specifies how much code 

knowledge he or she has and how large amount of the code is changed 
 Proven in use - Based on analysis of field data from use of a unit indicates it is unlikely to 

include faults 
 Dataset parameters - Dataset-parameters makes the software complex and likely to include 

rarely run software, with a large number of path it is likely not every combination have been 
tested 

 Value of development test - Does not really affect the probability of a fault, is affected of the 
necessity to perform a unit test. The value of an early development test increases if the 
possible fault will be found at a late stage in the development 

 Complexity - A complex unit may be hard to understand, therefore the unit´s cyclomatic 
complexity affects the likelihood of a fault 

Likelihood Error prone Code 
confidence Proven in use Dataset parameters Other Verification Complexity 

1 

Error unlikely 
to occur. 
Fool proof 
design. 

Stable and well 
known code. 
Very small 
change in code. 

Used by costumer 
for long time (>1 
year). 
Proven in use. 
Old code. Well 
tested with this 
configuration. 

Code is not affected 
by dataset-
parameters. 

Fault is easy found with 
code review 

5 

2 

Small 
probability of 
error occurring. 
Well known 
and used code 
design. 

Stable and well 
known code. 
Moderate 
change in code. 

Out in production 
for some time (<1 
year). 
Well tested code 
with this 
configuration. 
In use. 

A few dataset-
parameters exist in 
the code. 

Expected and 
unexpected behaviour 
is easily detected by 
other documented tests. 
Low cost (time and 
money) to correct. 

10 

3 

Moderate 
probability of 
errors 
occurring. 
Model has had 
previous errors 
recently. 

Minor 
unknown code. 
Large change 
to code. 

Tested code. 
Unit test exists for 
previous versions 
of code. 
Not proven in use. 

Multiple dataset-
parameters. 
 A single togglable 
function. 

Expected and 
unexpected behaviour 
is most likely to be 
detected by other 
documented tests. Low 
cost (time and many) to 
correct. 

20 

4 

High 
probability of 
errors to occur.  
Previous, 
repeated errors. 

Unknown 
code. 
Small or 
moderate 
change of code. 

Fairly new code. 
Tested by 
developer. 
Not in production. 

Togglable functions 
in code that could 
affect other 
functions. 
High number of 
dataset-parameters. 

Expected and 
unexpected behaviour 
are most likely to be 
detected by other 
verification activities or 
a detected fault is 
expensive (time and 
money) to correct. 

50 

5 

Code has had 
recent, severe 
errors. 
Very high 
probability of 
errors to occur. 

Mostly 
unknown code. 
Large changes 
to code. 

New code. 
No unit test exists. 

Several togglable 
functions that could 
affect several other 
functions.  
Many different and 
complex dataset-
parameters. 

Expected and 
unexpected behaviour 
are not likely to be 
detected by other 
verification activities or 
a detected fault is 
expensive (time and 
money) to correct. 

100 

Figure 8 The matrix shows guidelines for the likelihood analysis, also shown in Appendix C 
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The result from the risk analyses is stored in an Excel-file together with info about the analyses. The 
file contains information about the unit name and description. From the risk analyse is criticality 
rating, likelihood rating, risk and comments from the tester about the analyse stored. From the risk 
matrix a Code Coverage Target (CCT) will be calculated, according to the formula below, and set a 
target for how thoroughly the unit has to be tested. If there is an ASIL-class will the CCT 
automatically be set to 100% and the risk will not be below 4.0. 

  

 

4.5 Cyclomatic Complexity 

To test the cylcomatic complexity measurement built in to the Verification and Validation tool, a 
number of different models in the ECU and AMS were chosen. Some of these were described in the 
interviews as “safe” or “unsafe”, models that the team felt were either very simple and fault free or 
complex and error prone. The group also picked some models at random from the library to get a 
bigger test group. 

After creating a small program to configure the models so that the complexity measurement tool 
would work, the CC was measured across the whole model test group (Appendix E).  The results 
were the two “safe” models had a CC value below 50. The seven models which the team described 
as “unsafe” all had a CC value above 230. The four random chosen had a CC value between 24 and 
212.  

To find what an appropriate size of a unit was, the results from the test of the old matrix was used 
(4.3). These units was picked as reasonable size of a unit by the test group and, in Appendix F, the 
Cyclomatic Complexity tool have measured all those units who was picked out during the test of the 
old matrix. All units except two have a CC value below 20 and these two could not be divided into 
smaller subfunctions. 

 

4.6 ASIL 

According to the ISO 26262 all models need to be ASIL-classed. The ASIL-level will determine 
what type of coverage measurements the unit tests should have for all units within the model. The 
analysis to decide the ASIL is done according to the ISO standard, there a matrix is used, Appendix 
D. Three different parameters affects the ASIL-class, all considering the vehicle’s safety, is given a 
value between 0-4. 

 Severity - How severe any possible accident will be to any involved human 
 Exposure - The time a hazard would be exposed during a fault 
 Controllability - The ability of the driver to avoid a hazard 

To assure the quality of an ASIL classed model the CCT (code coverage target) should be close to 
100%. Models with ASIL QM are not safety concern and should have a CCT between 60% and 
100% depending on the risk rating (1-5). If the wanted CCT is not achieved, the tester has to leave 
an explanation in the comment field in “Unit list”. The ASIL classed models have at least 4 as risk 
prioritization. 
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Different ASIL-levels requires different code coverage. Following requirements is according to the 
ISO 26262 with coverage technics who can be measured with MATLAB Simulink Verification and 
Validation toolbox. The coverage is a recommended coverage and should be achieved unless the 
tester has a good reason to not fulfil the target. 

 ASIL QM - CCT% from "Unit list" Condition or Decision coverage. 
 ASIL A - 100% Condition or Decision coverage 
 ASIL B - 100% Decision coverage 
 ASIL C - 100% Decision coverage 
 ASIL D - 100% MC/DC coverage 
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5 Discussion 

5.1 Stubs 

Writing a function to stub blocks was a really good way to learn about the test framework. The 
group had a really thoroughgoing knowledge about the framework after the programming task. 
Unfortunately it was a bit more complex than expected, so it took a couple more weeks than 
planned to accomplish.  

5.2 Split models 

In the results 4.5 Cyclomatic Complexity it was found out all the units has a CC of about 20. This 
can be used to semi-automatic divide models into units. The developer have to run a script in 
MATLAB to check the complexity in different submodels and thereafter manually check all 
submodels around 20 to determine if  it is reasonable to make it a unit. 

5.3 Existing risk prioritization method 

In the old method consequence could be ranked between 1 to 4 and the probability between 1 to 3. 
This low range gives all the units quite similar risk rating. By using 1 to 5 instead would make the 
units more separated.  

The consequence and likelihood was multiplied in the old method, to create a risk score (1-12). It is 
unnatural to have 12 as the highest value, it could create problems when a new person take a look at 
the unit prioritization list. A problem with multiplication is the incomplete scale. It is impossible to 
achieve prime numbers such as 5, 7 and 11. Or any other number there the invalid prime number is 
a factor, like 10. 

The existing method is also missing clear guidelines, for example some clarification about the 
difference between moderate and critical, catastrophic. All testers need to have the same opinion 
about what is a catastrophic attribute for a vehicle. 

5.4 New matrix 

The new developed method is quite similar to the existing one, but with some improvement. One 
graphical difference is the matrix, which is a common tool and is easy for many people to 
understand. In the matrix the tester can find some guidelines about what specifies the different 
levels of consequence and likelihood. 

The risk prioritization value is the average value between consequence and likelihood. There is a bit 
different in the prioritization between multiplication and average value, as could be seen in the two 
matrixes below. The risk is increasing exponentially with multiplication but with average value the 
increase is linear. An effect of this is units who have a either a high likelihood or consequence 
appear to be less risky than a unit with medium likelihood and consequence, if multiplication is 
used. 
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  1 2 3 4 5   1 2 3 4 5 
1 1 2 3 4 5 1 1 1,5 2 2,5 3 
2 2 4 6 8 10 2 1,5 2 2,5 3 3,5 
3 3 6 9 12 15 3 2 2,5 3 3,5 4 
4 4 8 12 16 20 4 2,5 3 3,5 4 4,5 
5 5 10 15 20 25 5 3 3,5 4 4,5 5 

Figure 9 Shows the risk achieved with multiplication and average value 

 

The old method was missing clear guidelines, in the new matrix there are descriptions to all the 
different consequence and likelihood ratings. It will make the testers conclusions more equal, and 
give them the same acceptance about what is devastating and what is safe. The risk analysis will be 
independent on which tester who makes the analysis.   

If a unit get a high risk prioritization score it is possible the whole model has an ASIL class. All 
units with an ASIL class get a risk prioritization score of at least 4, according to Appendix D. The 
risk score is the highest value from either the ASIL analysis or the regular risk prioritization. High 
ASIL classed units will get a higher priority than the QM classed units.  If a unit´s regular risk 
rating is higher, the regular risk prioritization should be used. The ASIL classed models is more 
important to test because they control safety regarding software. 

5.5 Interviews 

The questions asked during the interviews were formed in a way to get some models considered 
“safe” and some “unsafe”. The interviews were restricted to three persons in the EATS group, all 
persons in different teams to cover all models in the EATS group. After the specified models were 
compared it was clear that the large models were considered unsafe. After some research a tool to 
measure the complexity was found in MATLAB Verification and Validation toolbox. This function 
was implemented in a program and also showed all “unsafe” models were complex and all models 
with a low complexity were considering “safe”. Two of the models have a complexity more than 
twice compared to the other unsafe models. Both these models are built as a stateflow and it is 
possible that a higher complexity could be acceptable for stateflow charts.  

5.6 Previous errors 

A set of models were checked for previous errors in Serena. The aim was to find out where the error 
would be found and what was typical for this type of error. Even if the error descriptions are very 
detailed, it was unfortunately not possible to decide with our experience within different tests.  

5.7 Cyclomatic Complexity 

The tool used to get the complexity values is complicated and very much “under the hood”. If this is 
to be fully understood, so that one can be completely sure about getting correct data, it would be 
good for the user to get some education from MathWorks on the functionality of the tool. 

There is also not possible to use this tool on extracted subsystems or stubbed systems, since this 
will affect the overall complexity value. Different number of in- and out-ports will make the result a 
bit different. 
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The most interesting part is that when asked to pick out units, the software engineers was very 
consistent in that almost all units had the same level of cyclomatic complexity. This indicates that 
cyclomatic complexity is a good way to decide appropriate size of a unit with a few exceptions. One 
problem is that when you chose a “depth” in the model to divide into units, you will get some units 
that are above or below a value that is meaningful to do testing on.  

5.8 Using the method 

To use the method there are three steps.  

1. Conduct ASIL analysis 
2. Conduct Risk Assessment 

2.1 Maximum Consequence 
2.2 Average Likelihood 

3. Take Maximum value of Risk Assessment and ASIL Risk Value. 
First an ASIL analysis must be conducted to the model according to Appendix D. As example can 
the code decrease the engine speed, but is unlikely it would give the engine an incorrect speed and 
if it would it could be avoid by releasing the gas. This would give us S3, E2 and C1. That is an 
ASIL QM with an ASIL risk value of 1.  

Then the ASIL class is determined the risk assessment should take place, Appendix C. The 
maximum consequence could be severe reduction of performance (4). The tester should then decide 
however the code reliable, if there are a lot of previous errors, how large change is, if the code has 
been proven in use and if the code includes rare run software. And figure out in what else test the 
error would be found. And finally measure the complexity with the MATLAB tool. The average of 
these parameters would give us the unit’s likelihood score, as example 2. The Risk assessment 
value would then be (4+2)/2=3. 

The maximum value between the ASIL risk value(1) and the risk assessment value(3) becomes the 
units risk prioritization value, as in this example would be 3. 
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6 Conclusion 

Volvo is currently missing a good method to risk prioritize units. With the new developed risk 
prioritization method it is possible to rank the criticality to different Simulink units. The 
characteristics of the risk for a unit are the likelihood for a fault to exist and the worst possible 
consequences any fault could bring. There are many different properties affecting the likelihood of 
a fault to exist in the code. The average value of following parameters is controlling the likelihood: 

 Earlier error prone code. 
 The tester’s knowledge about the code. 
 Size of the change in the code. 
 If the code have been proven in use. 
 If a lot of dataset parameters is used. 
 The value of a unit test, however a later test will find any possible faults and how expensive 

it will be to correct at a later stage. 
 The complexity of the unit. 

The other main part affecting the risk of a unit is the possible consequence if it is a fault in the code. 
The worst possible of following parameters is determining the consequence:  

 A failure could affect the performance of the vehicle's efficiency. 
 However a fault may lead to any safety related harm. 
 If a fault may lead to any legal violation. 

It would be possible to develop a program to risk prioritize. But to get a good prioritization as 
possible the developer expertise has to be considered. This gives the developer who has been 
worked with the model, controllability to the outcome of the risk prioritization.  

Some types of changes in a model lead to increased risk, recent code change leads to a higher risk. 
A large change in the code increases the risk of a fault to exist in the code, if the change is done in 
software there the tester has a lack of knowledge it will lead to an improved risk. If new parameters 
are added in the code they might affect the worst consequence and give the unit a higher risk.  

To find guidelines for dividing models into units the group recommends that CC is used. It was 
found that almost all units with good functions to test was subfunctions with a complexity close to 
20 (Appendix F). Some units had a CC above 20 because they do not include any subfunctions, so 
they could not be split into smaller units, these could be both time consuming and difficult to test. 
And units with a CC value below 5 is sometimes so simple that a test will not give the tester any 
meaningful information. Therefore, if a tester find units with very low or very high CC values, the 
tester should either change the depth of were units is chosen in a model, or evaluate if a subsystem 
is to complex. 

6.1 Further work 

The next step to move forward is to learn the group how to split units and risk prioritize, so the 
prioritization can begin. To improve the method in further work, there are some parts there a closer 
look would be recommended. Check the size of units build as state flow, is the cyclomatic 
complexity value to high or is a state flow easier to understand and does the high complexity affects 
the understanding of a state flow.  
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Extremely complex models they should be investigated to increase the readability. It is possible to 
decrease the complexity by changing the programing logic. I is also possible there is dead code 
included. Another option is to divide the models into a couple smaller models to increase the 
understanding of the models. 

The current program to measure cyclomatic complexity would need some improvement to make it 
easier to use. The current version was only developed to see if complexity was something to 
consider while risk prioritizing and when the program runs it shows a lot of warning texts which 
should be removed. 

In Serena it is possible to check for old errors, a next step would be to analyse these errors and 
categorize them in different groups. For example if it possible to find the error with unit test, and 
what coverage type would be required to find it.  
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APPENDIX A – Old risk prioritization method 

 
 

 

 

 

 

 

 

 

   

 
 
 
 
 
 

Table used by the automatic formulas 
0 - 0%   

 

1 Disregard 0%   
2 Disregard 0%   
3 Low 60%   
4 Low 60%   
5 Low 60%   
6 Meduim 80%   
7 Meduim 80%   
8 Meduim 80%   
9 High 100%   
10 High 100%   
11 High 100%   
12 High 100%   

 

• Performance/ 
Operations 

• Safety/Legal 

• Cost/Schedule 
• other 

Criticality 
attributes 

Max rating on 
any attribute: 

1. Low 
2. Moderate 
3. Critical 
4. Catastrophic 

• Complexity/ 
Knowledge 

• Prior verification 
• Change impact 

• Error prone 
• Many parameters 

Likelihood 
attributes 

Average rating on 
relevant attributes: 

1. Low 
2. Moderate 
3. High 

Criticality 
X 

Likelihood 

CxL P CCT 
1-2 Disregard  
3-5 Low 60% 
6-8 Medium 80% 
9-12 High 100% 
 
CCT = Code Coverage target 
P = Relative Test Priority 
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APPENDIX A (continued) – Old risk prioritization method 

Unit ID Baseline Model Subfunction Unit functional 
description C L Risk Prioity CCT Consequence assumption Likelyhood 

assumption 
Comment 

X.SF10 14A23 X SF10  1 1 1 Disregard 0%   The  code is not used 

X.SF20 14A23 X SF20  

3 1 3 Low 60% 

 Simple. Not changed. 
Proven in use. 

Can be covered by 
code review 

X.SF301 14A23 X SF301  

3 2 6 Meduim 80% 

 Vital parts are proven 
in use. 

Focus unit test on parts 
not covered by normal 
usage 

X.SF302 14A23 X SF302  

3 2 6 Meduim 80% 

 Proven in use  
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APPENDIX B – Testing old method 
Unit ID Baselin

e 
Model Subfunction Unit functional 

description 
C L Ris

k 
Prioity CCT Consequence assumption Likelihood assumption Comment 

X. 14A23 X                   The  code is not 
used 

X.SF10 14A23 X SF10  1 1 1 Wait 0%   The  code is not 
used 

X.SF20 14A23 X SF20  

3 1 3 Low 60% 

 Simple. Not changed. 
Proven in use. 

Can be covered by 
code review 

X.SF301 14A23 X SF301  

3 2 6 Meduim 80% 

 Vital parts are proven in 
use. 

Focus unit test on 
parts not covered 
by normal usage 

X.SF302 14A23 X SF302  

3 2 6 Meduim 80% 

 Proven in use  

X.SF303 14A23 X SF303  

3 2 6 Meduim 80% 

   

X.SF304 14A23 X SF304  3 2 6 Meduim 80%    
X.SF305 14A23 X SF305  

3 3 9 High 100% 
 More complex. 

Subjected to change. 
 

X.SF306 14A23 X SF306  3 2 6 Meduim 80%  Proven in use. Well used 
by many projects. 

 

X.SF307 14A23 X SF307  3 1 3 Low 60%  Simple. Proven in use. 
Well used. Maybe 3->2. 

 

X.SF308 14A23 X SF308  

3 2 6 Meduim 80% 

   

X.SF32 14A23 X SF32  

3 1 3 Low 60% 

 Simple. Code not 
changed. Mapping 
functionality well used. 
Calibration dependent.  
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APPENDIX B (continued) – Testing old method 

X.SF33 14A23 X SF33  
3 1 3 Low 60% 

   

X.SF34 14A23 X SF34  3 2 6 Meduim 80%  More complex.   
X.SF35 14A23 X SF35  

3 2 6 Meduim 80% 
 Well used. Any override 

problem is verified by 
later tests.  

 

X.SF36 14A23 X SF36  1 1 1 Wait 0%   Not used.  

X.SF37 14A23 X SF37  

3 1 3 Low 60% 

 Proven in use. Not 
complex. 

 

Y. 14A23 Y    

          

      

Y.SF10  Y SF10  
3 1 3 Low 60% 

 Not complex. Proven in 
use. No calibration. 

Can be covered by 
code review 

Y.SF20  Y SF20  
3 1 3 Low 60% 

 Not complex. Proven in 
use. No calibration. 

 

Y.SF30  Y SF30  

3 2 6 Meduim 80% 

 Combines several units. 
The added logic is 
limited.  

A future change 
impact will 
benefit from unit 
test on this unit. 

Y.SF301  Y SF301  3 1 3 Low 60%  Not complex. Proven in 
use. No calibration. 

 

Y.SF302  Y SF302  3 1 3 Low 60%  Not complex. Proven in 
use. No calibration. 

 

Y.SF303  Y SF303  3 1 3 Low 60%  Not complex. Proven in 
use. No calibration. 

 

Y.SF304  Y SF304  3 1 3 Low 60%  Not complex. Proven in 
use. No calibration. 

 

Y.SF305  Y SF305  3 1 3 Low 60%  Not complex. Proven in 
use. No calibration. 

 

Y.SF306  Y SF306  3 2 6 Meduim 80%  Proven in use. No 
calibration. 
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APPENDIX C – New risk prioritization matrix 

Consequences 1 2 3 4 5 

Performance 

No error messages. 
Driver does not 
notice. 
No reduction to 
performance. 

Possible error message. 
Driver does not need to react 
to fault. 
Minor, unnoticeable 
reduction of performance. 

Error message. 
Driver needs to act upon 
fault. 
Noticeable reduction of 
performance. 

Driver needs to seek help 
with fault immediately. 
Severe reduction of 
performance. 
Risk of operation failure. 

Driver must stop 
immediately. 
Engine performance is 
reduced close to 0. 
Operation failure. 
Risk of damage to 
machinery. 

Legal 

No code faults that 
could affect legal 
violation 

Code fault could lead to 
legal violation at a later 
stage.  
Barriers in code are 
preventing legal violation. 

Error in code would lead 
to legal violation. 
Barriers in code are 
preventing legal 
violation. 

 Not applicable Code failure leads to 
legal violation. 
Barriers in code to 
prevent legal violation 
might fail. 
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APPENDIX C (continued) – New risk prioritization matrix 

Likelihood Error prone Code confidence Proven in use Dataset parameters Value of development 
test Complexity 

1 

Error unlikely to 
occur. 
Fool proof design. 

Stable and well 
known code. 
Very small 
change in code. 

Used by costumer for 
long time (>1 year). 
Proven in use. 
Old code. 

Code is not affected by 
dataset-parameters. 

Error is easy found with 
code review, but time 
consuming to find with 
other tests. 

5 

2 

Small probability 
of error occurring. 
Well known and 
used code design. 

Stable and well 
known code. 
Moderate change 
in code. 

Out in production for 
some time (<1 year). 
Well tested code. 
In use. 

A few dataset-parameters 
exist in the code. 

Failures are normally 
discovered in office test 
rig. (Mini-rig) 

10 

3 

Moderate 
probability of 
errors occurring. 
Model has had 
previous errors 
recently. 

Minor unknown 
code. 
Large change to 
code. 

Tested code. 
Unit test exists for 
previous versions of 
code. 
Not proven in use. 

Multiple dataset-
parameters. 
 A single togglable 
function. 

A certain likelihood of 
discovery with Unit test.  
Fault might be found in 
engine room.  

20 

4 

High probability of 
errors to occur.  
Previous, repeated 
errors. 

Unknown code. 
Small or 
moderate change 
of code. 

Fairly new code. 
Tested by developer. 
Not in production. 

Togglable functions in 
code that could affect 
other functions. 
High number of dataset-
parameters. 

Failures in code are not 
very likely to be 
discovered at later stages 
of development. 
Expensive to test at later 
stages, e.g. Vehicle test. 
Low frequency faults. 

50 

5 

Code has had 
recent, severe 
errors. 
Very high 
probability of 
errors to occur. 

Mostly unknown 
code. 
Large changes to 
code. 

New code. 
No unit test exists. 

Several togglable 
functions that could 
affect several other 
functions.  
Many different and 
complex dataset-
parameters. 

Not at all likely that the 
failure will be discovered 
in another test. 
Hard to test later, might be 
found in extensive vehicle 
testing. 

100 
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APPENDIX C (continued) – New risk prioritization matrix 
Consequences 1 2 3 4 5 

1. Conduct ASIL analysis 
 
2.Conduct Risk Assessment 
  2.1 Maximum Consequence 
  2.2 Average Likelihood 
 
3. Take Maximum value of Risk Assessment 
and ASIL Risk Value. 

Performance 

No effect Possible error 
message. 
Driver does not 
need to react to 
fault. 
Minor, 
unnoticeable 
reduction of 
performance. 

Error message. 
Driver needs 
to act upon 
fault. 
Noticeable 
reduction of 
performance. 

Driver needs to 
seek help with 
fault 
immediately. 
Severe reduction 
of performance. 
Risk of operation 
failure. 

Driver must stop 
immediately. 
Engine 
performance is 
reduced close to 0. 
Operation failure. 
Risk of damage to 
machinery. 

Legal 

Not legal 
violation 

Code fault could 
lead to legal 
violation at a 
later stage.  
Barriers in code 
are preventing 
legal violation. 

Error in code 
would lead to 
legal violation. 
Barriers in 
code are 
preventing 
legal violation. 

 Not applicable Code failure leads 
to legal violation. 
Barriers in code to 
prevent legal 
violation might fail. 

   

Likelihood Error prone Code 
confidence Proven in use Dataset parameters Other Verification Complexity Consequences 1 2 3 4 5 

Likelihood   MAXIMUM 

1 

Error unlikely to 
occur. 
Fool proof design. 

Stable and well 
known code. 
Very small 
change in 
code. 

Used by costumer for 
long time (>1 year). 
Proven in use. 
Old code. Well tested 
with this 
configuration. 

Code is not affected 
by dataset-parameters. 

Fault is easy found with code 
review 

5 

1 

A
V

E
R

A
G

E
 

1 1.5 2 2.5 3 

2 

Small probability 
of error occurring. 
Well known and 
used code design. 

Stable and well 
known code. 
Moderate 
change in 
code. 

Out in production for 
some time (<1 year). 
Well tested code with 
this configuration. 
In use. 

A few dataset-
parameters exist in the 
code. 

Expected and unexpected 
behaviour is easily detected 
by other documented tests. 
Low cost (time and money) 
to correct. 

10 

2 1.5 2 2.5 3 3.5 

3 

Moderate 
probability of 
errors occurring. 
Model has had 
previous errors 
recently. 

Minor 
unknown code. 
Large change 
to code. 

Tested code. 
Unit test exists for 
previous versions of 
code. 
Not proven in use. 

Multiple dataset-
parameters. 
 A single togglable 
function. 

Expected and unexpected 
behaviour is most likely to be 
detected by other documented 
tests. Low cost (time and 
money) to correct. 

20 

3 2 2.5 3 3.5 4 

4 

High probability of 
errors to occur.  
Previous, repeated 
errors. 

Unknown 
code. 
Small or 
moderate 
change of 
code. 

Fairly new code. 
Tested by developer. 
Not in production. 

Togglable functions in 
code that could affect 
other functions. 
High number of 
dataset-parameters. 

Expected and unexpected 
behaviour are most likely to 
be detected by other 
verification activities or a 
detected fault is expensive 
(time and money) to correct. 

50 

4 2.5 3 3.5 4 4.5 

5 

Code has had 
recent, severe 
errors. 
Very high 
probability of 
errors to occur. 

Mostly 
unknown code. 
Large changes 
to code. 

New code. 
No unit test exists. 

Several togglable 
functions that could 
affect several other 
functions.  
Many different and 
complex dataset-
parameters. 

Expected and unexpected 
behaviour are not likely to be 
detected by other verification 
activities or a detected fault is 
expensive (time and money) 
to correct. 

100 

5 3 3.5 4 4.5 5 
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APPENDIX C (continued) – New risk prioritization matrix 

Unit ID Baseline Model Subfunction Unit 
functional 
description 

Complexity C L Risk CCT ASIL Consequence assumption Likelihood 
assumption 

Comment 

X. 14A23 X       
          

    The  code is not used 

X.SF10 14A23 X SF10  3 
1 1 1 60%  

  The  code is not used 

X.SF20 14A23 X SF20  1 
3 1 2 70%  

 Simple. Not 
changed. Proven 
in use. 

Can be covered by code 
review 

X.SF301 14A23 X SF301  7 
3 2 2,5 75%  

 Vital parts are 
proven in use. 

Focus unit test on parts 
not covered by normal 
usage 

X.SF302 14A23 X SF302  19 
3 2 2,5 75%  

 Proven in use  
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APPENDIX D – ASIL analysis 

0 1 2 3 4 

Severity (S) 

No injuries. Light and moderate 
injuries. 

Severe injuries, 
possibly life-threating, 
survival probable. 

Life-threating 
injuries (survival 
uncertain) or fatal 
injuries.   

Exposure (E) 

  Very low probability. Low probability of 
hazard. 
<1% of average 
operating time. 

Medium probability 
of hazard. 
1%-10% of average 
operating time. 

High probability 
of hazard. 
>10%of 
operating time. 

Controllability 
(C) 

Controllabl
e in general. 

Simply controllable. 
99% or more of other 
traffic participants are 
usually able to avoid a 
specific harm. 

Normally controllable. 
90% or more of all 
drivers or other traffic 
participants are usually 
able to avoid a specific 
harm. 

Difficult to control or 
uncontrollable. 
Less than 90% or 
more of all drivers or 
other traffic 
participants are 
usually able to avoid 
a specific harm. 

  

 

C1 C2 C3 

S1 

E1 QM QM QM 
E2 QM QM QM 
E3 QM QM A 
E4 QM A B 

S2 

E1 QM QM QM 
E2 QM QM A 
E3 QM A B 
E4 A B C 

S3 

E1 QM QM A 
E2 QM A B 
E3 A B C 
E4 B C D 

 
 

ASIL QM A B C D 

Coverage 

CCT% from "Unit list" 
Condition or Decision coverage 

100% Condition or 
Decision coverage 

100% Decision 
coverage 

100% Decision 
coverage 

100% MC/DC 
coverage 

Risk value 1 4 4 4.5 5 
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APPENDIX E – Complexity test of safe and unsafe models 

Unsafe Complexity 
X 232 
X 299 
X 54 Allowed to control engine functions 
X 300 
X 759 
X 869 
X 244 

Safe 
X 28 
X 49 

Random unknow  
X 99 
X 212 
X 142 
X 24 
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APPENDIX F – Complexity test of units 

Unit ID Complexity 
X.SF10 3 
X.SF20 1 
X.SF301 7 
X.SF302 19 
X.SF303 43 
X.SF304 15 
X.SF305 106 
X.SF306 8 
X.SF307 0 
X.SF308 10 
X.SF32 0 
X.SF33 0 
X.SF34 8 
X.SF35 16 
X.SF36 0 
X.SF37 3 
X.SF30  
Y.SF10 0 
Y.SF20 2 
Y.SF30 0(28) 
Y.SF301 0 
Y.SF302 1 
Y.SF303 3 
Y.SF304 4 
Y.SF305 4 
Y.SF306 16 
Y.SF31 22(44) 
Y.SF313 22 
Y.SF32 22 
Y.SF40 8 
Y.SF41 9 
Z.SF10 3 
Z.SF11 0 
Z.SF20 7 
Z.SF30 4 
Z.SF31 4 
W.SF10 6 
W.SF20 16 
W.SF30 9 
W.SF40 0 
V.SF100 8 
V.SF101 28(47) 
V.SF1013 19 
V.SF102 14 
V.SF110 3 
V.SF111 2 
V.SF112 4 
V.SF113 4 
V.SF114 4 
V.SF115 4 
V.SF116 4 
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APPENDIX F (continued) – Complexity test of units 

Unit ID Complexity 
V.SF117 4 
V.SF301 23 
V.SF302 16 
V.SF303 13(29) 
V.SF3031 6 
V.SF3035 10 
V.SF304 27 
V.SF305 30 
V.SF306 12 
V.SF310 6(21) 
V.SF3101 15 
V.SF311 11 
V.SF312 12 
V.SF313 13 
V.SF314 1 
V.SF32 5 
U.SF11 0 
U.SF12 10 
U.SF30 44 
Q.SF211 8 
Q.SF212 9 
Q.SF213 21 
Q.SF214 12 
Q.SF215 3 
Q.SF216 4 
Q.SF217 11 
Q.SF218 20 
Q.SF23 1 
Q.SF31 25 
Q.SF32 26 
Q.SF41 13 
Q.SF42 8 
Q.SF43 7 
Q.SF44 10 
Q.SF45 10(23) 
Q.SF451 13 
Q.SF46 10 
Q.SF47 2 
Q.SF48 4 
T.SF10 0 
T.SF11 2 
T.SF12 10 
T.SF13 3 
T.SF30 32 
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APPENDIX G – Interviews 

Interview with Ingemar Eckerström 
Questions: 
Models 

 From a security perspective, which of the models that the group is responsible for, do you 
consider to be especially important to test thoroughly? 

 Are there any "safe" models? Models that you have a good knowledge of and rarely have 
problems with. 

 Do you have any models that are complex and difficult to grasp? 
 Are there any models that historically have had a lot of problems? 

 
Bugs and Errors 

 Is it usual that some bugs in the models are recurring? What kind of bugs? 
 Are there any types of mistakes that "newbies" often makes when working with the models? 
 Have you had any serious / dangerous bugs or errors? How did you find and fixed them? 
 Are there any other issues you would like to be able to test for, that you can’t test at the 

moment? 
 
 
Unsafe models? Safe models? Common bugs? 
Arbetar I X mappen. X Ofta svårt att avgöra innan 

testning av fel om det beror på: 
X  Hårdvara 
X  Diagnostik funktioner eller 
  Dåliga sensorer 
   
   
   
   
   
   
 
Testing ideas Common errors, severe faults etc 
Som ny är de lätt att missa några saker: Allvarliga fel är om man råkar fylla katalysatorn 

med urea, annars inget speciellt. 
Korrekt användande av xml.  
Diagnostik kedjan  
Förstå sig på den stora statemaskinen.  
  
Tester som skulle kunna hjälpa är 
regressionstester av statemaskinen. 
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APPENDIX G (continued) – Interviews 

Interview with Henrik Nilsson 
Questions: 
Models 

 From a security perspective, which of the models that the group is responsible for, do you 
consider to be especially important to test thoroughly? 

 Are there any "safe" models? Models that you have a good knowledge of and rarely have 
problems with. 

 Do you have any models that are complex and difficult to grasp? 
 Are there any models that historically have had a lot of problems? 

 
Bugs and Errors 

 Is it usual that some bugs in the models are recurring? What kind of bugs? 
 Are there any types of mistakes that "newbies" often makes when working with the models? 
 Have you had any serious / dangerous bugs or errors? How did you find and fixed them? 
 Are there any other issues you would like to be able to test for, that you can’t test at the 

moment? 
 
 
Unsafe models? Safe models? Common bugs? 
X  Samma som nämnts av Martin. 
X  Typfel mm. 
Ofta är det vanligare att 
hårdvaran felar istället för 
mjukvaran. 

Flesta modeller är någorlunda 
säkra, mycket 
diagnosfunktioner som funkat 
länge. 

Andra missar är mer runt att 
man inte förstått 
kravet/beskrivningen. 

   
   
   
 
Testing ideas Common errors, severe faults etc 
Mycket miljöberoende testing är beroende av 
input från sensorerna. 

Lätt att göra misstag vi beskrivning av funktioner 
som ny. Att förstå beskrivningar. 

Datasatser kan störa mycket. Lätt att missförstå info om emmissioner. 
Testa med data från vagn, motorrum eller 
liknande är bra! 

Illa om det flera system missar, leder till 
överhettning. 

En brödbacks rigg med mer möjlighet att ange 
givarsignaler, motormoment och 
avgassmassflöde hade varit bra. 

 

Bra att kunna ta data direkt från tex motorum 
och stoppa in i matlab, men detta går ej just 
nu på något enkelt sätt. 

(Till befintlig funktion ”SB_Signal_Loader”): 
Kanske också ska ha möjlighet att välja ett visst 
intervall i mitten av en signal. 
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APPENDIX G (continued) – Interviews 

Interview with Martin Wilhelmsson, Questions: 

Models 

 From a security perspective, which of the models that the group is responsible for, do you 
consider to be especially important to test thoroughly? 

 Are there any "safe" models? Models that you have a good knowledge of and rarely have 
problems with. 

 Do you have any models that are complex and difficult to grasp? 
 Are there any models that historically have had a lot of problems? 

Bugs and Errors 
 Is it usual that some bugs in the models are recurring? What kind of bugs? 
 Are there any types of mistakes that "newbies" often makes when working with the models? 
 Have you had any serious / dangerous bugs or errors? How did you find and fixed them? 
 Are there any other issues you would like to be able to test for, that you can’t test at the 

moment? 
Unsafe models? Safe models? Common bugs? 
Hög konsekvens kan 
regenererings ”kedjan” ha. 
Kolla bla på: 

X De flesta ”vanligare” buggar 
orsakas av okunskap från 
nybörjare. 

  -X (ca 3 år gammal funktion)  Detta då designprocessen är 
svår, samt även reviewen. 

  -X  Exempel på fel: 
  Fel datatyp, tex: Bool/Float 
  Insignaler i fel ”ordning”, 

skillnad mellan targetlink 
modellen och rapsody modellen. 

X är också en modell som kan 
ha allvarliga konsekvenser, då 
den har tillåtelse att styra 
vissa motorfunktioner. 

Många modeller är idag mer 
säkra, då mycket arbete gjorts 
med att bygga stabilare och 
bättre modeller. 

Skalnings misstag, för hög 
nogrannhet som i längden gör att 
minnet ”tar slut” efter en tid och 
orsakar konstiga, exponensiella 
hopp. 

 
Testing ideas Common errors, severe faults etc 
Viktiga tester: Regressions tester för att skydda 
mot nybörjarmisstag och stressade ändringar. 

Tid att lära upp en ny på funktionsdesign: Några 
månader  ett halvår beroende på arbetstakt. 

Detta då mycket kod finns i flera upplagor över 
många projekt, och vissa ändringar kanske 
funkar i ett projekt men inte i ett annat. 

Saker som kan orsaka allvarligare fel är: hög 
personalomsättning, väldigt hög 
arbetsbelastning. 

 Måste få utrymme att göra fel(Nybörjare). 
Andra eftersökta verktyg är ett grafiskt 
compareverktyg för targetlink. 

Tidigare upptäckta fel är billigare fel. 

Vecu är bra för regressiontestning (Egentligen 
ett ”Checking” vertyg, kräver god kunskap om 
modellen av testaren) 

Allvarligare fel är tex: switch som ska skicka ut 
float skickar en bool. Fel som gör de svårt för 
andra typer av testning. 

Simulink unit test bra för utforskande testning, 
testning som kräver att saker ska snurra i cycler 
mm. 

Många av felen kan gå långt upp i kedjan, men 
typ aldrig ut i kundens vagn. Upptäcks i 
motorrum mm. 
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APPENDIX H – Meeting notes, unit selection meeting 

Sammanfattning, Möten. Unit urval.  

2013-11-22 

2013-11-17  

2014-01-08 

Deltagare: Mikael Thorvaldsson, Stefan Eisenberg, Martin Willhelmsson, Mattias Johansson, 
Christer Beskow (Närvarande: 22 november), Simon Börjesson, Erik Andersson. 

 

Områden som påverkar sannolikhet för konsekvens att inträffa: 

 Proven In Use 
o Om koden är gammal och välprövad är den säker 
o Ny och kompliserad kod eller lite äldre men okänd kod är en risk faktor 

 Hur bra man kan sin kod påverkar bedömningen, är du säker på att den inte brukar 
krångla så sätter man lägre risk 

 Hur bra förtroende man har för koden (Har den haft problem tidigare? Är de lösta?) 
 Dataset parametrar kan göra det svårt att bedöma risken. Ska man bedöma från 

utgångspunkten att han som sätter datasattsen kommer göra ett perfekt eller dåligt 
jobb? 

 Det finns redan vissa typer av test som fångar kända fel. Men ligger de rätt i 
processen? 
 

 

 


