

Software Unit Test
Unit Risk Prioritization
Riskprioritering av units
Bachelor of Science Thesis

Erik Andersson

Simon Börjeson

Department of Signals and Systems S2

Division of control, automation and mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2014

Software Unit Test
Unit Risk Prioritization

Erik Andersson
Simon Börjeson

Department of Signals and Systems S2

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2014

Abstract
The upcoming version of the ISO standard 26262 requires all software to be unit tested
by the developers. The work is about improving Volvos current risk prioritization
method for software at a unit level.

As a result, Volvo has a new method to use when they perform risk analysis on units
from models in Simulink. The analysis consists of two major parts, the likelihood and
consequence. Both parts are dependent on a number of subcategories which is
visualized as a matrix. After the risk analysis, the unit receives a unit risk prioritization
score, which indicates how important it is to perform a unit test for this part of the
software. The score also determines how large coverage the test should have while
testing.

Another part of the work was to find a way to split models into smaller parts for unit
testing. When the software engineers split down the models to an understandable size of
a unit, the group found the cyclomatic complexity of the units were at a similar value.
This could be measured with MATLAB Verification and Validation toolbox.

The work does not consider what kind of unit test that should be preferred to different
parts of the software.

Keywords: Unit test, risk assessment, prioritization, MATLAB, Simulink.

Sammanfattning
Den kommande versionen av ISO standard 26262 kräver att all mjukvara ska testas på
modulnivå med ett så kallat unit-test. Arbetet handlar om att förbättra Volvos nuvarande
riskprioriteringsmetod för mjukvara på unit-nivå.

Som resultat har Volvo nu en mer omfattande metod att använda när de utför
riskanalyser på units från Simulinkmodeller. Analysen består av två stora delar,
sannolikheten för fel och konekvensen ett fel skulle kunna medföra. Båda delarna har
flertalet underkategorier och analysen visualiseras i en matris. Efter analysen fås ett
riskprioriteringsvärde, vilket avgör hur viktigt det är att utföra unit-test på mjukvaran.
Värdet avgör även hur stor del av koden som testet behöver täcka.

En annan del av arbetat handlar om att finna ett sätt för att dela modeller till mindre
enheter för unit-test. När mjukvareutvecklarna delade modellerna till lämplig storlek
upptäckte gruppen att enheterna hade liknande cyklomatisk komplexitet, vilket kan
mätas med MATLAB Verification and Validation toolbox.

Arbetet behandlar inte vilken typ av unit-test som är att föredra till olika delar av
mjukvaran.

Nyckelord: Unit-test, riskbedömning, prioritering, MATLAB, Simulink.

PREFACE
This thesis work was possible due to many great people taking their time to teach a
couple of rookie engineers about their areas of expertise. This bachelor thesis is the final
course of our education in mechatronics (180 credits) at Chalmers University of
Technology. The project has been conducted during October 2013 to February 2014 and
comprises 15 credits. It has been conducted at Volvo Group Trucks Technology (GTT)
in Gothenburg.

First we would like to thank our supervisors Andrea Holladay at GTT and Bertil
Thomas at Signals and Systems S2, and also our examiner Manne Stenberg at Signals
and Systems S2.

We would like to give special thanks to Mikael Thorvaldsson, for sharing his extensive
knowledge on testing and inspiring tips on how to learn more about testing. And also
special thanks Stefan Eisenberg, for helping us with daily questions and Matlab support.

Finally, we want to thank everyone who contributed with their time, opinions and
knowledge. Without input from those that does the real work, this thesis would not have
been possible. These people are:

Martin Wilhelmsson - Volvo GTT

Mattias Johansson - Volvo GTT

Ingemar Eckerström - Volvo GTT

Henrik Nilsson - Volvo GTT

And rest of the EATS-group.

Gothenburg Mars 2014

Erik Andersson & Simon Börjeson

Table of content

NOMENCLATURE .. 1

1 INTRODUCTION .. 2

1.1 BACKGROUND ... 2

1.2 PURPOSE .. 2

1.3 RESTRICTIONS .. 2

1.4 CLARIFICATION OF THE QUESTIONS ... 2

2 TECHNICAL BACKGROUND ... 3

2.1 SOFTWARE DESIGN .. 3

2.2 ISO 26262:2011 .. 3

2.3 UNIT TEST ... 3

2.4 RISK ASSESSMENT .. 4

2.5 UNIT TEST FRAMEWORK ... 4

2.6 CYCLOMATIC COMPLEXITY ... 4

2.7 COVERAGE .. 5

2.8 OLD RISK PRIORITIZATION METHOD ... 6

3 METHODOLOGY ... 8

3.1 TARGET .. 8

3.2 COLLECTION OF INFORMATION.. 8

3.3 TESTS ... 8

3.4 DEVELOPMENT OF RISK MATRIX .. 8

4 RESULTS ... 9

4.1 STUBS .. 9

4.2 SELECTING MODELS / INTERVIEWS .. 9

4.3 TESTING THE METHOD.. 10

4.4 NEW RISK PRIORITIZATION METHOD .. 10

4.5 CYCLOMATIC COMPLEXITY ... 12

4.6 ASIL ... 12

5 DISCUSSION ... 14

5.1 STUBS .. 14

5.2 SPLIT MODELS ... 14

5.3 EXISTING RISK PRIORITIZATION METHOD .. 14

5.4 NEW MATRIX ... 14

5.5 INTERVIEWS .. 15

5.6 PREVIOUS ERRORS .. 15

5.7 CYCLOMATIC COMPLEXITY ... 15

5.8 USING THE METHOD ... 16

6 CONCLUSION ... 17

6.1 FURTHER WORK .. 17

APPENDIX A - Old risk prioritization method

APPENDIX B – Testing old method

APPENDIX C – New risk prioritization matrix

APPENDIX D – ASIL analysis

APPENDIX E – Complexity test of safe and unsafe models

APPENDIX F – Complexity test of units

APPENDIX G – Interviews

APPENDIX H – Meeting notes, Unit selection meetings.

P a g e | 1

Nomenclature

ASIL – Automotive Safety Integrity Level is a risk classification in the ISO 26262.

CC – Cyclomatic complexity, a way to calculate the logical difficulty of the software.

Controllability – Ability to avoid a specified harm or damage through the timely reactions of the
persons involved, possibly with support from barriers.

EATS – Exhaust After Treatment System.

EATS Group – EATS Control, The division at Volvo - Powertrain Engineering - Control Systems
where this thesis work is written.

ECU – Electronic Control Unit, an embedded system with hardware and software which control
functional areas of a vehicle.

Error – Discrepancy between a computed, observed or measured value or condition, and the true,
specified or theoretically correct value or condition. An error can arise as a result of unforeseen
operating conditions or due to a fault.

Failure – The software cannot perform a function as required.

Exposure – State of being in an operational situation that can be hazardous if coincident with the
failure mode under analysis.

Fault – Some defect code such as incorrect data definition, caused by the programmer or design
weakness.

GTT – Group Trucks Technology, a department at Volvo Group there most of the technical
developments take place.

Harm – Physical injury or damage to the health of persons.

Hazard – Potential source of harm caused by a failure.

MIL – Model in the loop, referees to test at the model-level in Simulink.

Risk – Combination of the probability of occurrence of harm and the severity of that harm.

Barriers – External or internal measure to avoid undesirable consequences.

Severity – Estimate of the extent of harm to one or more individuals that can occur in a potentially
hazardous situation.

SIL – Software in the loop, referees to test the C-code compiled from a model in Simulink.

X-team – Cross functional team. Contains members with different areas of expertise.

P a g e | 2

1 INTRODUCTION

1.1 Background
Control Systems Technology at Volvo GTT Powertrain Engineering (hereinafter abbreviated as
Volvo GTT-PE) has recently started working with agile methodology, where X-teams (Cross
functional team) testing of their own code are an important part. This, together with the new version
of ISO 26262 that will apply to heavy duty vehicle, will make it necessary to implement
standardized unit test on all software development.

The main development tool for software functions at Volvo is MATLAB. At this moment,
MATLAB is missing software to perform unit test at Simulink models inside the Simulink
environment. Because of this Volvo developed their own framework to construct unit test of
Simulink models. This framework is able to divide a big model into smaller pieces, “units”, by
extracting user defined subsystems. Currently, there are no guidelines on how to choose an
appropriate size of unit.

There are also a substantial number of models, and it’s not possible to implement unit test on all
models at once since the work to create these tests would take a great deal of time from
development.

1.2 Purpose

The work is about developing guidelines on how to prioritize the various Simulink models available
at Volvo for unit test. Due to the time consuming work of creating a unit test, all units need to be
prioritized. This is done with risk assessment methodology. These guidelines should be able to help
a software engineer to decide how important it is that he creates a unit test for the unit he is
currently working on. The group will also examine if it is possible to find guidelines about how to
divide models into appropriate sized units for testing.

1.3 Restrictions

There are several different methods of creating unit tests, with different software. The group will
not research which one of these is better or worse. The group will focus on the risk assessment of
units. The group is going to work closely with the EATS group and their X-teams, so all Simulink
models that the group will investigate are owned by the EATS group.

1.4 Clarification of the questions

• What characteristics of a model are important from a risk-based perspective?

• What types of changes in a model can lead to increased risk or devastating consequences?

• Is it possible to find clear patterns in large models that provide suggestions for boundaries for
splitting the model into smaller "units" for the test?

P a g e | 3

2 Technical Background

2.1 Software design

The software for the after-treatment system at Volvo GTT-PE is constructed with Simulink.
Simulink is a MATLAB based block diagram environment for multidomain simulation and model-
based design (MathWorks, 2014). The models are then converted to C-code for use inside the
vehicles embedded system. The conversion is made with TargetLink, a Simulink plugin/blockset
that generates C-code straight from the Simulink model (dSPACE, 2014).

2.2 ISO 26262:2011

According to ISO 26262 (functional safety for road vehicles standard) some requirements must be
achieved for an acceptable level of code safety (International Organization for Standardization,
2011). Today it only affect passenger cars with a maximum weight of 3 500 kg, but the upcoming
ISO standard is also going to include trucks and other vehicles. By following 26262, the vehicles
software quality will be assured. At software level, the main points are standardised variable names,
modular code and early testing.

Every part of the code that affects safety has to be risk analysed and placed in an ASIL class
(Appendix D). The safety requirements are then defined by the four ASIL classes, A-D, where A is
the least critical and D is the most critical. Parts of the code that are not classified as being in the A
– D range are put in the QM category. The QM category has no safety requirements. The class
depends on the severity of the hazard, how often it will be exposed and how well the driver can
control the vehicle to avoid any harm during a hazard.

2.3 Unit Test

A unit is the smallest testable part of the software. In regular software code this would be a function
or class (Xie, et al., 2007). At model-level it is harder to define what a unit is. When doing unit
testing, the tester creates test cases for each part of the unit. The goal of each test case is to show
that each part is working as intended. A collection of test cases for a unit is called a test suite, a test
suite shows that the unit is working as intended.

The tester needs to define the appropriate size of a unit, the only criteria is the functionality should
be very clear to understand (International Organization for Standardization, 2011). The tester
creates test cases by providing specific input and expected output of the unit. When a whole test
suite is finished, it’s possible to have it run automatically every time the code is built. Common
practice is to have each case marked as green if it passes, red if it did not get the expected result and
yellow if the test was not run.

This allows a developer to check if anything has broken while doing changes to a unit that already
has an existing test suite. Unit testing also provides a living documentation of the software, since
each test case has a small description of the functionality it is testing, a new developer could easily
understand how the code works by running through some old test cases. Other benefits of unit
testing are the ability to discover faults early in the development cycle and enhanced understanding
of the code for the developer. The one big drawback with unit testing is the time it takes to create
unit tests for all parts of the code if the software is really big and no previous unit tests exists.

P a g e | 4

2.4 Risk Assessment

Risk assessment is the combination of risk analysis and risk evaluation (Rausand, 2011). Risk
analysis is a proactive investigation to identify hazards and estimate risk to individuals, property
and the environment. This is done by systematic use of the available information of the process that
is being analyzed. Risk evaluation is the judgment on the tolerability of risk with the basis in the
risk analysis.

The risk assessment used in this thesis work uses a simple comparison between the possible
consequences of failing code and the corresponding likelihood that the consequences will occur.
These factors are added together in a diagram to give each possible part of the software a risk value.
This value is later used to evaluate the need of unit testing for each part.

2.5 Unit test framework

Volvo is currently developing a framework to unit test models in MATLAB Simulink. The goal is
to have a framework that works with both Model-in-the-Loop (MIL) and Software-in-the-Loop
(SIL). This framework will work as a complement or replacement to the existing test methods. It is
able to handle extraction of subsystems, create stubs and create a harness around the unit to control
the input to the unit with the help of a signalbuilder-block. The user will define test cases by
creating blocks that compares the outputs of the unit to predefined signals. It will then measure the
coverage of the test by using the MATLAB toolbox; Verification and Validation. The finished test
cases should be able to run automatically.

2.6 Cyclomatic Complexity

One way to estimate the probability of failure in a part of the software, like a function or class, is to
measure the cyclomatic complexity (CC). Cyclomatic complexity is a value of how complex the
function is (McCabe, 1976). A CC value of 1 means the function is very simple and just contains a
few, if any, branches. A value of 100 means that there is a lot of different paths through the
function.

This measurement was developed by Tomas J McCabe in 1976. MATLAB has a built in tool to
measure cyclomatic complexity in the Verification and Validation toolbox for Simulink. CC is
measured for a complete model, including the subsystems within the model. The version of
McCabes formula that MATLAB uses is (MathWorks, 2013):

MATLAB Cyclomatic Complexity.
N = Number of Decision points.
On= Numbers of outcomes for n:th decision point.
c = cyclomatic complexity.
Also adds 1 for each atomic subsystem and
stateflow chart.

P a g e | 5

Figure 1 Cyclomatic Complexity examples, MathWorks formula

2.7 Coverage

According to ISO 26262, unit test should cover different parts of the software depending on the
ASIL classification (International Organization for Standardization, 2011). The following coverage
is recommended, but can be replaced with equivalent coverage (Hayhurst, et al., 2001).

 Statement coverage – Percentage of statements within the software that have been executed
 Branch coverage – Every outcome should been tested, both true and false in an if-statement
 MC/DC coverage – Requires every condition to independently show it affects the outcome,

and should have taken all possible outcomes

With Simulink verification and validation toolbox, the following coverage is possible to measure in
Simulink models (MathWorks, 2013):

 Condition coverage – Requires all possible in-port conditions
Example, both Signal 1 and Signal 2 have to be both true and false

 Decision coverage – The test has to cover all possible outcomes
Example, the switch should have been both true and false

 MC/DC coverage – See above
Example, Signal 1 and Signal 2 have to be both true and false but not at the same time, the
switch should have given both Constant A and Constant B

FOR – IF

IF – ELSE

P a g e | 6

Figure 2 An if-statement built into Simulink

When running tests in MIL there is no way to analyse statement coverage, since Simulink does not
support that type of coverage measurement. It should be replaced with a condition or decision
coverage which requires more test cases to receive full coverage, but is supported in Simulink. The
replacement is based on the assumption that all statement is executed with full condition or decision
coverage (Cornett, 1996). The reason for not having statement coverage in a model environment is
because it’s impossible to measure statement coverage on a model, it only works on lines of code.

Branch coverage is very similar to decision coverage but not completely. According to ISTQB
Foundation it is possible to use decision coverage instead of branch coverage (Graham, et al.,
2007). They do not give exactly the same result, but they are closely related to each other.

The conclusion is that all recommended coverage methods in ASIL, except MC/DC, need to be
replaced with equal or better methods in Matlab in order to work.

2.8 Old risk prioritization method

There is an existing risk prioritization method, which was developed as a test. In this method most
criticality consequence is given a criticality rating between 1 (low) to 4 (catastrophic). The other
decisive part of the function is the likelihood. A selection of likelihood attributes is listed and the
likelihood rating is an approximately decided average value between 1 (low) to 3 (high). After these
parameters are determined, the criticality is multiplied with the likelihood and becomes the unit risk
priority value, CxL. The units will have a final risk rating between 1 to 12, indicating the priority to
unit test.

P a g e | 7

Figure 3 The old risk prioritization method

All results is stored in an Excel-file, the file contains information about the unit; names and
description. Information from the risk analyse is stored as well, like; criticality rating, likelihood
rating, CxL and comments about the analyse from the tester. A code coverage target (CCT) will be
calculated from the CxL value and this decides how thoroughly the unit should be tested.

P a g e | 8

3 Methodology

3.1 Target

The target of the thesis work was to answer the questions stated in chapter 1.4. To be able to fully
understand the challenges of creating a good risk prioritization method at Volvo GTT-PE, deeper
knowledge was needed. Both in the usage of the test framework Volvo GTT-PE has developed and
in basic risk assessment theories.

To find a pattern that decided where to split large model into smaller units, the group researched if
there was a way to get a characteristic of a model similar to size or complexity. The most used
method to measure complexity of software is cyclomatic complexity (McCabe, 1976), something
that the Verification and Validation toolbox from Matlab supports. Since that toolbox is used in
Volvo GTT-PEs test framework, it was ideal for the purpose of deciding how to split large models.

3.2 Collection of information

The main part of information for the thesis work came from interviews (Appendix E) and meetings
with the software engineers in the EATS Group. The topics of the interviews were about different
testing methods, what type of Simulink models they worked with and what type of faults that were
common. The meetings were about unit extraction and testing the early risk assessment method,
meeting notes can be found in appendix G. The opinions from these meetings were valuable
information to continue work of developing the risk matrix.

The same engineers that attended the meetings were the early risk assessment method was tested,
were later interviewed to get feedback on the new risk matrix. This lead to further changes in the
descriptions of different levels of likelihood and consequence.

Another source of good information was the ISO standard 26262. This allowed to group to adapt
the new method to the standards recommendations.

3.3 Tests

Tests with CC measurement tool were done on the units that the software engineers chosen during
the unit extraction meetings. These were simple tests with the goal to see if a common denominator
could be found in CC value. These were done with small string of code that toggled several
parameters that were necessary for the CC tool to work properly.

3.4 Development of risk matrix

The risk matrix was based on the consequence – likelihood comparison that was already used by the
old method. There is several other methods for conducting risk assessment (Rausand, 2011), these
were not researched since this method was already in place.

The matrix has been in constant development during the thesis work with input from different
stakeholders. The goal has always been to both have a working matrix that is easy to understand and
still captures most of the different situations that affects the risk assessment. It has been adapted to
be used together with the ASIL-classification from ISO standard 26262. This was done since the
ASIL-standard was found to better handle the risk regarding the safety aspect.

P a g e | 9

4 Results

4.1 Stubs

The group wrote a program in MATLAB with m-code to manipulate Simulink models. The stub
function was created to enable control of the output-signals from any block in Simulink. The
program looks in an excel-file for all blocks that will be stubbed and search the model for these
blocks. The previous blocks is deleted and all out-ports is replaced with blocks who is controlled by
a signal builder in the harness. All previous in-ports can be analysed in the harness outside the
model.

Figure 4 A block in Simulink before the stub Figure 5 A stubbed block in Simulink

Since multiple blocks can be stubbed at the same time, some logical problems are involved. It is
unnecessary to stub a block that exists within a subfunction that also will be stubbed. If two blocks
who will be stubbed is connected between out-port and another stub in-port, their connection must
be excluded during the creation of the stub. It is unnecessary to control a signal that not will do
anything.

Figure 6 If both subsystems will be stubbed, it is unnecessary to control the out-port from the first stub.

A problem with the program is to set the correct data type to new in and out-ports. This makes it
difficult to run SIL-tests. The unit test development team found a solution by tracing the source and
destination of the in- and out-ports, and use the same data type.

4.2 Selecting models / Interviews

Short interviews were held with some of the software engineers in the EATS group. The goal with
the interviews was to learn how the engineers approached testing today, what they think is common
problems and errors, which models they think is safe and which is complex and problematic. A
complete list of all questions and answers can found in Appendix G. The answers were later used as
a basis for model selection toward complexity tests and to get better understanding of the
characteristics of models from the developer’s view.

P a g e | 10

4.3 Testing the method

A small test group of six persons were convened to try out the old test method and find what could
be improved. The group split the models into units, in this method a unit was described as a
subfunction where the tester thought the functions and risks were very clear. Later, these units were
used to test cyclomatic complexity (4.5). Afterwards the risk prioritization method was applied to
the units. The results from this could be found in Appendix B. During these meetings it was
discussed if a later test could make unit test less important. While the prioritization a few different
decision factors were discovered that impacts the likelihood of a fault:

 Proven in use, old functional code is considered very stable and safe as long as no changes
are made

 Knowledge about the code, how well the engineer knows the code he is working with
 Confidence in the code, have it been several old errors in the code
 How many Dataset parameters there is, they can, in some cases, have big impact on different

functionalities in the code

4.4 New risk prioritization method

With a risk prioritization it will be possible to decide which is the most critical unit and has the
highest priority to unit test. The new prioritization method is based on the former one, but with
some improvement. Just as the earlier method there are two major parts, likelihood and
consequences.

In the consequence section all possible hazards is analysed. The worst possible consequence caused
by the software is ranked 1 to 5. Some standard consequences are listed in the method, but if the
tester could think of something more severe they should use that instead. Possible consequences:

 Performance - Any possible error who might affect the performance of the operation
 Legal - If a fault might lead to legal violation

Consequences 1 2 3 4 5

Performance

No error messages.
Driver does not
notice.
No reduction to
performance.

Possible error
message.
Driver does not need
to react to fault.
Minor, unnoticeable
reduction of
performance.

Error message.
Driver needs to act
upon fault.
Noticeable
reduction of
performance.

Driver needs to seek
help with fault
immediately.
Severe reduction of
performance.
Risk of operation
failure.

Driver must stop
immediately.
Engine performance
is reduced close to 0.
Operation failure.
Risk of damage to
machinery.

Legal

No code faults that
could affect legal
violation

Code fault could lead
to legal violation at a
later stage.
Barriers in code are
preventing legal
violation.

Error in code would
lead to legal
violation.
Barriers in code are
preventing legal
violation.

Not applicable Code failure leads to
legal violation.
Barriers in code to
prevent legal
violation might fail.

Figure 7 The matrix shows the guidelines for the consequence analysis, also shown in Appendix C

Several properties affect the probability of a fault to exist in the code. The more likely the code is to
include faults the more likely is it for a devastating consequence to occur. In this method the tester
should make an estimated average value from all likely parameters. Following parameters all affects
the likelihood of a fault. In some software is it possible for more parameters to affect the likelihood.
If the tester knows something which affects the likelihood, it should also be considered.

P a g e | 11

 Error prone - A unit with a lot of previous errors, is more likely to include an error again
 Code confidence - This category includes two parts. The tester specifies how much code

knowledge he or she has and how large amount of the code is changed
 Proven in use - Based on analysis of field data from use of a unit indicates it is unlikely to

include faults
 Dataset parameters - Dataset-parameters makes the software complex and likely to include

rarely run software, with a large number of path it is likely not every combination have been
tested

 Value of development test - Does not really affect the probability of a fault, is affected of the
necessity to perform a unit test. The value of an early development test increases if the
possible fault will be found at a late stage in the development

 Complexity - A complex unit may be hard to understand, therefore the unit´s cyclomatic
complexity affects the likelihood of a fault

Likelihood Error prone Code
confidence Proven in use Dataset parameters Other Verification Complexity

1

Error unlikely
to occur.
Fool proof
design.

Stable and well
known code.
Very small
change in code.

Used by costumer
for long time (>1
year).
Proven in use.
Old code. Well
tested with this
configuration.

Code is not affected
by dataset-
parameters.

Fault is easy found with
code review

5

2

Small
probability of
error occurring.
Well known
and used code
design.

Stable and well
known code.
Moderate
change in code.

Out in production
for some time (<1
year).
Well tested code
with this
configuration.
In use.

A few dataset-
parameters exist in
the code.

Expected and
unexpected behaviour
is easily detected by
other documented tests.
Low cost (time and
money) to correct.

10

3

Moderate
probability of
errors
occurring.
Model has had
previous errors
recently.

Minor
unknown code.
Large change
to code.

Tested code.
Unit test exists for
previous versions
of code.
Not proven in use.

Multiple dataset-
parameters.
 A single togglable
function.

Expected and
unexpected behaviour
is most likely to be
detected by other
documented tests. Low
cost (time and many) to
correct.

20

4

High
probability of
errors to occur.
Previous,
repeated errors.

Unknown
code.
Small or
moderate
change of code.

Fairly new code.
Tested by
developer.
Not in production.

Togglable functions
in code that could
affect other
functions.
High number of
dataset-parameters.

Expected and
unexpected behaviour
are most likely to be
detected by other
verification activities or
a detected fault is
expensive (time and
money) to correct.

50

5

Code has had
recent, severe
errors.
Very high
probability of
errors to occur.

Mostly
unknown code.
Large changes
to code.

New code.
No unit test exists.

Several togglable
functions that could
affect several other
functions.
Many different and
complex dataset-
parameters.

Expected and
unexpected behaviour
are not likely to be
detected by other
verification activities or
a detected fault is
expensive (time and
money) to correct.

100

Figure 8 The matrix shows guidelines for the likelihood analysis, also shown in Appendix C

P a g e | 12

The result from the risk analyses is stored in an Excel-file together with info about the analyses. The
file contains information about the unit name and description. From the risk analyse is criticality
rating, likelihood rating, risk and comments from the tester about the analyse stored. From the risk
matrix a Code Coverage Target (CCT) will be calculated, according to the formula below, and set a
target for how thoroughly the unit has to be tested. If there is an ASIL-class will the CCT
automatically be set to 100% and the risk will not be below 4.0.

4.5 Cyclomatic Complexity

To test the cylcomatic complexity measurement built in to the Verification and Validation tool, a
number of different models in the ECU and AMS were chosen. Some of these were described in the
interviews as “safe” or “unsafe”, models that the team felt were either very simple and fault free or
complex and error prone. The group also picked some models at random from the library to get a
bigger test group.

After creating a small program to configure the models so that the complexity measurement tool
would work, the CC was measured across the whole model test group (Appendix E). The results
were the two “safe” models had a CC value below 50. The seven models which the team described
as “unsafe” all had a CC value above 230. The four random chosen had a CC value between 24 and
212.

To find what an appropriate size of a unit was, the results from the test of the old matrix was used
(4.3). These units was picked as reasonable size of a unit by the test group and, in Appendix F, the
Cyclomatic Complexity tool have measured all those units who was picked out during the test of the
old matrix. All units except two have a CC value below 20 and these two could not be divided into
smaller subfunctions.

4.6 ASIL

According to the ISO 26262 all models need to be ASIL-classed. The ASIL-level will determine
what type of coverage measurements the unit tests should have for all units within the model. The
analysis to decide the ASIL is done according to the ISO standard, there a matrix is used, Appendix
D. Three different parameters affects the ASIL-class, all considering the vehicle’s safety, is given a
value between 0-4.

 Severity - How severe any possible accident will be to any involved human
 Exposure - The time a hazard would be exposed during a fault
 Controllability - The ability of the driver to avoid a hazard

To assure the quality of an ASIL classed model the CCT (code coverage target) should be close to
100%. Models with ASIL QM are not safety concern and should have a CCT between 60% and
100% depending on the risk rating (1-5). If the wanted CCT is not achieved, the tester has to leave
an explanation in the comment field in “Unit list”. The ASIL classed models have at least 4 as risk
prioritization.

P a g e | 13

Different ASIL-levels requires different code coverage. Following requirements is according to the
ISO 26262 with coverage technics who can be measured with MATLAB Simulink Verification and
Validation toolbox. The coverage is a recommended coverage and should be achieved unless the
tester has a good reason to not fulfil the target.

 ASIL QM - CCT% from "Unit list" Condition or Decision coverage.
 ASIL A - 100% Condition or Decision coverage
 ASIL B - 100% Decision coverage
 ASIL C - 100% Decision coverage
 ASIL D - 100% MC/DC coverage

P a g e | 14

5 Discussion

5.1 Stubs

Writing a function to stub blocks was a really good way to learn about the test framework. The
group had a really thoroughgoing knowledge about the framework after the programming task.
Unfortunately it was a bit more complex than expected, so it took a couple more weeks than
planned to accomplish.

5.2 Split models

In the results 4.5 Cyclomatic Complexity it was found out all the units has a CC of about 20. This
can be used to semi-automatic divide models into units. The developer have to run a script in
MATLAB to check the complexity in different submodels and thereafter manually check all
submodels around 20 to determine if it is reasonable to make it a unit.

5.3 Existing risk prioritization method

In the old method consequence could be ranked between 1 to 4 and the probability between 1 to 3.
This low range gives all the units quite similar risk rating. By using 1 to 5 instead would make the
units more separated.

The consequence and likelihood was multiplied in the old method, to create a risk score (1-12). It is
unnatural to have 12 as the highest value, it could create problems when a new person take a look at
the unit prioritization list. A problem with multiplication is the incomplete scale. It is impossible to
achieve prime numbers such as 5, 7 and 11. Or any other number there the invalid prime number is
a factor, like 10.

The existing method is also missing clear guidelines, for example some clarification about the
difference between moderate and critical, catastrophic. All testers need to have the same opinion
about what is a catastrophic attribute for a vehicle.

5.4 New matrix

The new developed method is quite similar to the existing one, but with some improvement. One
graphical difference is the matrix, which is a common tool and is easy for many people to
understand. In the matrix the tester can find some guidelines about what specifies the different
levels of consequence and likelihood.

The risk prioritization value is the average value between consequence and likelihood. There is a bit
different in the prioritization between multiplication and average value, as could be seen in the two
matrixes below. The risk is increasing exponentially with multiplication but with average value the
increase is linear. An effect of this is units who have a either a high likelihood or consequence
appear to be less risky than a unit with medium likelihood and consequence, if multiplication is
used.

P a g e | 15

 1 2 3 4 5 1 2 3 4 5
1 1 2 3 4 5 1 1 1,5 2 2,5 3
2 2 4 6 8 10 2 1,5 2 2,5 3 3,5
3 3 6 9 12 15 3 2 2,5 3 3,5 4
4 4 8 12 16 20 4 2,5 3 3,5 4 4,5
5 5 10 15 20 25 5 3 3,5 4 4,5 5

Figure 9 Shows the risk achieved with multiplication and average value

The old method was missing clear guidelines, in the new matrix there are descriptions to all the
different consequence and likelihood ratings. It will make the testers conclusions more equal, and
give them the same acceptance about what is devastating and what is safe. The risk analysis will be
independent on which tester who makes the analysis.

If a unit get a high risk prioritization score it is possible the whole model has an ASIL class. All
units with an ASIL class get a risk prioritization score of at least 4, according to Appendix D. The
risk score is the highest value from either the ASIL analysis or the regular risk prioritization. High
ASIL classed units will get a higher priority than the QM classed units. If a unit´s regular risk
rating is higher, the regular risk prioritization should be used. The ASIL classed models is more
important to test because they control safety regarding software.

5.5 Interviews

The questions asked during the interviews were formed in a way to get some models considered
“safe” and some “unsafe”. The interviews were restricted to three persons in the EATS group, all
persons in different teams to cover all models in the EATS group. After the specified models were
compared it was clear that the large models were considered unsafe. After some research a tool to
measure the complexity was found in MATLAB Verification and Validation toolbox. This function
was implemented in a program and also showed all “unsafe” models were complex and all models
with a low complexity were considering “safe”. Two of the models have a complexity more than
twice compared to the other unsafe models. Both these models are built as a stateflow and it is
possible that a higher complexity could be acceptable for stateflow charts.

5.6 Previous errors

A set of models were checked for previous errors in Serena. The aim was to find out where the error
would be found and what was typical for this type of error. Even if the error descriptions are very
detailed, it was unfortunately not possible to decide with our experience within different tests.

5.7 Cyclomatic Complexity

The tool used to get the complexity values is complicated and very much “under the hood”. If this is
to be fully understood, so that one can be completely sure about getting correct data, it would be
good for the user to get some education from MathWorks on the functionality of the tool.

There is also not possible to use this tool on extracted subsystems or stubbed systems, since this
will affect the overall complexity value. Different number of in- and out-ports will make the result a
bit different.

P a g e | 16

The most interesting part is that when asked to pick out units, the software engineers was very
consistent in that almost all units had the same level of cyclomatic complexity. This indicates that
cyclomatic complexity is a good way to decide appropriate size of a unit with a few exceptions. One
problem is that when you chose a “depth” in the model to divide into units, you will get some units
that are above or below a value that is meaningful to do testing on.

5.8 Using the method

To use the method there are three steps.

1. Conduct ASIL analysis
2. Conduct Risk Assessment

2.1 Maximum Consequence
2.2 Average Likelihood

3. Take Maximum value of Risk Assessment and ASIL Risk Value.
First an ASIL analysis must be conducted to the model according to Appendix D. As example can
the code decrease the engine speed, but is unlikely it would give the engine an incorrect speed and
if it would it could be avoid by releasing the gas. This would give us S3, E2 and C1. That is an
ASIL QM with an ASIL risk value of 1.

Then the ASIL class is determined the risk assessment should take place, Appendix C. The
maximum consequence could be severe reduction of performance (4). The tester should then decide
however the code reliable, if there are a lot of previous errors, how large change is, if the code has
been proven in use and if the code includes rare run software. And figure out in what else test the
error would be found. And finally measure the complexity with the MATLAB tool. The average of
these parameters would give us the unit’s likelihood score, as example 2. The Risk assessment
value would then be (4+2)/2=3.

The maximum value between the ASIL risk value(1) and the risk assessment value(3) becomes the
units risk prioritization value, as in this example would be 3.

P a g e | 17

6 Conclusion

Volvo is currently missing a good method to risk prioritize units. With the new developed risk
prioritization method it is possible to rank the criticality to different Simulink units. The
characteristics of the risk for a unit are the likelihood for a fault to exist and the worst possible
consequences any fault could bring. There are many different properties affecting the likelihood of
a fault to exist in the code. The average value of following parameters is controlling the likelihood:

 Earlier error prone code.
 The tester’s knowledge about the code.
 Size of the change in the code.
 If the code have been proven in use.
 If a lot of dataset parameters is used.
 The value of a unit test, however a later test will find any possible faults and how expensive

it will be to correct at a later stage.
 The complexity of the unit.

The other main part affecting the risk of a unit is the possible consequence if it is a fault in the code.
The worst possible of following parameters is determining the consequence:

 A failure could affect the performance of the vehicle's efficiency.
 However a fault may lead to any safety related harm.
 If a fault may lead to any legal violation.

It would be possible to develop a program to risk prioritize. But to get a good prioritization as
possible the developer expertise has to be considered. This gives the developer who has been
worked with the model, controllability to the outcome of the risk prioritization.

Some types of changes in a model lead to increased risk, recent code change leads to a higher risk.
A large change in the code increases the risk of a fault to exist in the code, if the change is done in
software there the tester has a lack of knowledge it will lead to an improved risk. If new parameters
are added in the code they might affect the worst consequence and give the unit a higher risk.

To find guidelines for dividing models into units the group recommends that CC is used. It was
found that almost all units with good functions to test was subfunctions with a complexity close to
20 (Appendix F). Some units had a CC above 20 because they do not include any subfunctions, so
they could not be split into smaller units, these could be both time consuming and difficult to test.
And units with a CC value below 5 is sometimes so simple that a test will not give the tester any
meaningful information. Therefore, if a tester find units with very low or very high CC values, the
tester should either change the depth of were units is chosen in a model, or evaluate if a subsystem
is to complex.

6.1 Further work

The next step to move forward is to learn the group how to split units and risk prioritize, so the
prioritization can begin. To improve the method in further work, there are some parts there a closer
look would be recommended. Check the size of units build as state flow, is the cyclomatic
complexity value to high or is a state flow easier to understand and does the high complexity affects
the understanding of a state flow.

P a g e | 18

Extremely complex models they should be investigated to increase the readability. It is possible to
decrease the complexity by changing the programing logic. I is also possible there is dead code
included. Another option is to divide the models into a couple smaller models to increase the
understanding of the models.

The current program to measure cyclomatic complexity would need some improvement to make it
easier to use. The current version was only developed to see if complexity was something to
consider while risk prioritizing and when the program runs it shows a lot of warning texts which
should be removed.

In Serena it is possible to check for old errors, a next step would be to analyse these errors and
categorize them in different groups. For example if it possible to find the error with unit test, and
what coverage type would be required to find it.

P a g e | 19

References
Bach, J., 2013. Agile Software Testing. [Online]
Available at: http://www.youtube.com/watch?v=SAhJf36_u5U
[Accessed 12 February 2014].

Cornett, S., 1996. Code Coverage Analysis. [Online]
Available at: http://www.bullseye.com/coverage.html
[Accessed 12 Februray 2014].

Dabney, J. & Harman, T. L., 2004. Mastering Simulink. Upper Saddle River, NJ: Prentice Hall.

dSPACE, 2014. TargetLink Automatic production code generator. [Online]
Available at: http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
[Accessed 18 Februari 2014].

Graham, D., Veenendaal, E. V., Evans, I. & Black, R., 2007. Foundations of Software Testing:
ISTQB Certification. London: Thomson Learning.

Hayhurst, K., Veerhusen, D., Chilenski, J. & Rierson, L., 2001. A Practical Tutorial on Modified
Condition/Decision Coverage. [Online]
Available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf
[Accessed 12 February 2014].

International Organization for Standardization, 2011. ISO 26262:2011 Road vehicles – Functional
safety, s.l.: s.n.

Kaner, C., 2010. BBST Foundations. [Online]
Available at: http://www.youtube.com/watch?v=2g4EqP57l7I&list=PL1C98945CECC21E22

MathWorks, 2013. Types of Model Coverage. [Online]
Available at: http://www.mathworks.se/help/slvnv/ug/types-of-model-coverage.html
[Accessed 18 Februari 2014].

MathWorks, 2014. Simulink Simulation and Model-Based Design. [Online]
Available at: http://www.mathworks.se/products/matlab/
[Accessed 18 Februari 2014].

McCabe, T. J., 1976. A Complexity Measure. IEEE Transactions on software engineering, pp. 308-
320.

Rausand, M., 2011. Risk Assessment: Theory, Methods, and Applications. Hoboken, New Jersey:
John Wiley & Sons, Inc..

Stürmer, I., Stamatov, S. & Eisemann, U., 2009. Automated Checking of MISRA TargetLink and
AUTOSAR Guidelines. SAE International Journal of Passenger Cars - Electronic and Electrical
Systems, 10, p. 68.

Xie, T., Taneja, K., Kale, S. & Marinov, D., 2007. Towards a Framework for Differential Unit
Testing of Object-Oriented Programs, North Carolina;Illinois : North Carolina State University;
University of Illinois at Urbana-Champaign.

Page 1 of 2

APPENDIX A – Old risk prioritization method

Table used by the automatic formulas
0 - 0%

1 Disregard 0%
2 Disregard 0%
3 Low 60%
4 Low 60%
5 Low 60%
6 Meduim 80%
7 Meduim 80%
8 Meduim 80%
9 High 100%
10 High 100%
11 High 100%
12 High 100%

• Performance/
Operations

• Safety/Legal

• Cost/Schedule
• other

Criticality
attributes

Max rating on
any attribute:

1. Low
2. Moderate
3. Critical
4. Catastrophic

• Complexity/
Knowledge

• Prior verification
• Change impact

• Error prone
• Many parameters

Likelihood
attributes

Average rating on
relevant attributes:

1. Low
2. Moderate
3. High

Criticality
X

Likelihood

CxL P CCT
1-2 Disregard
3-5 Low 60%
6-8 Medium 80%
9-12 High 100%

CCT = Code Coverage target
P = Relative Test Priority

Page 2 of 2

APPENDIX A (continued) – Old risk prioritization method

Unit ID Baseline Model Subfunction Unit functional
description C L Risk Prioity CCT Consequence assumption Likelyhood

assumption
Comment

X.SF10 14A23 X SF10 1 1 1 Disregard 0% The code is not used

X.SF20 14A23 X SF20

3 1 3 Low 60%

 Simple. Not changed.
Proven in use.

Can be covered by
code review

X.SF301 14A23 X SF301

3 2 6 Meduim 80%

 Vital parts are proven
in use.

Focus unit test on parts
not covered by normal
usage

X.SF302 14A23 X SF302

3 2 6 Meduim 80%

 Proven in use

Page 1 of 2

APPENDIX B – Testing old method
Unit ID Baselin

e
Model Subfunction Unit functional

description
C L Ris

k
Prioity CCT Consequence assumption Likelihood assumption Comment

X. 14A23 X The code is not
used

X.SF10 14A23 X SF10 1 1 1 Wait 0% The code is not
used

X.SF20 14A23 X SF20

3 1 3 Low 60%

 Simple. Not changed.
Proven in use.

Can be covered by
code review

X.SF301 14A23 X SF301

3 2 6 Meduim 80%

 Vital parts are proven in
use.

Focus unit test on
parts not covered
by normal usage

X.SF302 14A23 X SF302

3 2 6 Meduim 80%

 Proven in use

X.SF303 14A23 X SF303

3 2 6 Meduim 80%

X.SF304 14A23 X SF304 3 2 6 Meduim 80%
X.SF305 14A23 X SF305

3 3 9 High 100%
 More complex.

Subjected to change.

X.SF306 14A23 X SF306 3 2 6 Meduim 80% Proven in use. Well used
by many projects.

X.SF307 14A23 X SF307 3 1 3 Low 60% Simple. Proven in use.
Well used. Maybe 3->2.

X.SF308 14A23 X SF308

3 2 6 Meduim 80%

X.SF32 14A23 X SF32

3 1 3 Low 60%

 Simple. Code not
changed. Mapping
functionality well used.
Calibration dependent.

Page 2 of 2

APPENDIX B (continued) – Testing old method

X.SF33 14A23 X SF33
3 1 3 Low 60%

X.SF34 14A23 X SF34 3 2 6 Meduim 80% More complex.
X.SF35 14A23 X SF35

3 2 6 Meduim 80%
 Well used. Any override

problem is verified by
later tests.

X.SF36 14A23 X SF36 1 1 1 Wait 0% Not used.

X.SF37 14A23 X SF37

3 1 3 Low 60%

 Proven in use. Not
complex.

Y. 14A23 Y

Y.SF10 Y SF10
3 1 3 Low 60%

 Not complex. Proven in
use. No calibration.

Can be covered by
code review

Y.SF20 Y SF20
3 1 3 Low 60%

 Not complex. Proven in
use. No calibration.

Y.SF30 Y SF30

3 2 6 Meduim 80%

 Combines several units.
The added logic is
limited.

A future change
impact will
benefit from unit
test on this unit.

Y.SF301 Y SF301 3 1 3 Low 60% Not complex. Proven in
use. No calibration.

Y.SF302 Y SF302 3 1 3 Low 60% Not complex. Proven in
use. No calibration.

Y.SF303 Y SF303 3 1 3 Low 60% Not complex. Proven in
use. No calibration.

Y.SF304 Y SF304 3 1 3 Low 60% Not complex. Proven in
use. No calibration.

Y.SF305 Y SF305 3 1 3 Low 60% Not complex. Proven in
use. No calibration.

Y.SF306 Y SF306 3 2 6 Meduim 80% Proven in use. No
calibration.

Page 1 of 4

APPENDIX C – New risk prioritization matrix

Consequences 1 2 3 4 5

Performance

No error messages.
Driver does not
notice.
No reduction to
performance.

Possible error message.
Driver does not need to react
to fault.
Minor, unnoticeable
reduction of performance.

Error message.
Driver needs to act upon
fault.
Noticeable reduction of
performance.

Driver needs to seek help
with fault immediately.
Severe reduction of
performance.
Risk of operation failure.

Driver must stop
immediately.
Engine performance is
reduced close to 0.
Operation failure.
Risk of damage to
machinery.

Legal

No code faults that
could affect legal
violation

Code fault could lead to
legal violation at a later
stage.
Barriers in code are
preventing legal violation.

Error in code would lead
to legal violation.
Barriers in code are
preventing legal
violation.

 Not applicable Code failure leads to
legal violation.
Barriers in code to
prevent legal violation
might fail.

Page 2 of 4

APPENDIX C (continued) – New risk prioritization matrix

Likelihood Error prone Code confidence Proven in use Dataset parameters Value of development
test Complexity

1

Error unlikely to
occur.
Fool proof design.

Stable and well
known code.
Very small
change in code.

Used by costumer for
long time (>1 year).
Proven in use.
Old code.

Code is not affected by
dataset-parameters.

Error is easy found with
code review, but time
consuming to find with
other tests.

5

2

Small probability
of error occurring.
Well known and
used code design.

Stable and well
known code.
Moderate change
in code.

Out in production for
some time (<1 year).
Well tested code.
In use.

A few dataset-parameters
exist in the code.

Failures are normally
discovered in office test
rig. (Mini-rig)

10

3

Moderate
probability of
errors occurring.
Model has had
previous errors
recently.

Minor unknown
code.
Large change to
code.

Tested code.
Unit test exists for
previous versions of
code.
Not proven in use.

Multiple dataset-
parameters.
 A single togglable
function.

A certain likelihood of
discovery with Unit test.
Fault might be found in
engine room.

20

4

High probability of
errors to occur.
Previous, repeated
errors.

Unknown code.
Small or
moderate change
of code.

Fairly new code.
Tested by developer.
Not in production.

Togglable functions in
code that could affect
other functions.
High number of dataset-
parameters.

Failures in code are not
very likely to be
discovered at later stages
of development.
Expensive to test at later
stages, e.g. Vehicle test.
Low frequency faults.

50

5

Code has had
recent, severe
errors.
Very high
probability of
errors to occur.

Mostly unknown
code.
Large changes to
code.

New code.
No unit test exists.

Several togglable
functions that could
affect several other
functions.
Many different and
complex dataset-
parameters.

Not at all likely that the
failure will be discovered
in another test.
Hard to test later, might be
found in extensive vehicle
testing.

100

Page 3 of 4

APPENDIX C (continued) – New risk prioritization matrix
Consequences 1 2 3 4 5

1. Conduct ASIL analysis

2.Conduct Risk Assessment
 2.1 Maximum Consequence
 2.2 Average Likelihood

3. Take Maximum value of Risk Assessment
and ASIL Risk Value.

Performance

No effect Possible error
message.
Driver does not
need to react to
fault.
Minor,
unnoticeable
reduction of
performance.

Error message.
Driver needs
to act upon
fault.
Noticeable
reduction of
performance.

Driver needs to
seek help with
fault
immediately.
Severe reduction
of performance.
Risk of operation
failure.

Driver must stop
immediately.
Engine
performance is
reduced close to 0.
Operation failure.
Risk of damage to
machinery.

Legal

Not legal
violation

Code fault could
lead to legal
violation at a
later stage.
Barriers in code
are preventing
legal violation.

Error in code
would lead to
legal violation.
Barriers in
code are
preventing
legal violation.

 Not applicable Code failure leads
to legal violation.
Barriers in code to
prevent legal
violation might fail.

Likelihood Error prone Code
confidence Proven in use Dataset parameters Other Verification Complexity Consequences 1 2 3 4 5

Likelihood MAXIMUM

1

Error unlikely to
occur.
Fool proof design.

Stable and well
known code.
Very small
change in
code.

Used by costumer for
long time (>1 year).
Proven in use.
Old code. Well tested
with this
configuration.

Code is not affected
by dataset-parameters.

Fault is easy found with code
review

5

1

A
V

E
R

A
G

E

1 1.5 2 2.5 3

2

Small probability
of error occurring.
Well known and
used code design.

Stable and well
known code.
Moderate
change in
code.

Out in production for
some time (<1 year).
Well tested code with
this configuration.
In use.

A few dataset-
parameters exist in the
code.

Expected and unexpected
behaviour is easily detected
by other documented tests.
Low cost (time and money)
to correct.

10

2 1.5 2 2.5 3 3.5

3

Moderate
probability of
errors occurring.
Model has had
previous errors
recently.

Minor
unknown code.
Large change
to code.

Tested code.
Unit test exists for
previous versions of
code.
Not proven in use.

Multiple dataset-
parameters.
 A single togglable
function.

Expected and unexpected
behaviour is most likely to be
detected by other documented
tests. Low cost (time and
money) to correct.

20

3 2 2.5 3 3.5 4

4

High probability of
errors to occur.
Previous, repeated
errors.

Unknown
code.
Small or
moderate
change of
code.

Fairly new code.
Tested by developer.
Not in production.

Togglable functions in
code that could affect
other functions.
High number of
dataset-parameters.

Expected and unexpected
behaviour are most likely to
be detected by other
verification activities or a
detected fault is expensive
(time and money) to correct.

50

4 2.5 3 3.5 4 4.5

5

Code has had
recent, severe
errors.
Very high
probability of
errors to occur.

Mostly
unknown code.
Large changes
to code.

New code.
No unit test exists.

Several togglable
functions that could
affect several other
functions.
Many different and
complex dataset-
parameters.

Expected and unexpected
behaviour are not likely to be
detected by other verification
activities or a detected fault is
expensive (time and money)
to correct.

100

5 3 3.5 4 4.5 5

Page 4 of 4

APPENDIX C (continued) – New risk prioritization matrix

Unit ID Baseline Model Subfunction Unit
functional
description

Complexity C L Risk CCT ASIL Consequence assumption Likelihood
assumption

Comment

X. 14A23 X

 The code is not used

X.SF10 14A23 X SF10 3
1 1 1 60%

 The code is not used

X.SF20 14A23 X SF20 1
3 1 2 70%

 Simple. Not
changed. Proven
in use.

Can be covered by code
review

X.SF301 14A23 X SF301 7
3 2 2,5 75%

 Vital parts are
proven in use.

Focus unit test on parts
not covered by normal
usage

X.SF302 14A23 X SF302 19
3 2 2,5 75%

 Proven in use

Page 1 of 1

APPENDIX D – ASIL analysis

0 1 2 3 4

Severity (S)

No injuries. Light and moderate
injuries.

Severe injuries,
possibly life-threating,
survival probable.

Life-threating
injuries (survival
uncertain) or fatal
injuries.

Exposure (E)

 Very low probability. Low probability of
hazard.
<1% of average
operating time.

Medium probability
of hazard.
1%-10% of average
operating time.

High probability
of hazard.
>10%of
operating time.

Controllability
(C)

Controllabl
e in general.

Simply controllable.
99% or more of other
traffic participants are
usually able to avoid a
specific harm.

Normally controllable.
90% or more of all
drivers or other traffic
participants are usually
able to avoid a specific
harm.

Difficult to control or
uncontrollable.
Less than 90% or
more of all drivers or
other traffic
participants are
usually able to avoid
a specific harm.

C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

ASIL QM A B C D

Coverage

CCT% from "Unit list"
Condition or Decision coverage

100% Condition or
Decision coverage

100% Decision
coverage

100% Decision
coverage

100% MC/DC
coverage

Risk value 1 4 4 4.5 5

Page 1 of 1

APPENDIX E – Complexity test of safe and unsafe models

Unsafe Complexity
X 232
X 299
X 54 Allowed to control engine functions
X 300
X 759
X 869
X 244

Safe
X 28
X 49

Random unknow
X 99
X 212
X 142
X 24

Page 1 of 2

APPENDIX F – Complexity test of units

Unit ID Complexity
X.SF10 3
X.SF20 1
X.SF301 7
X.SF302 19
X.SF303 43
X.SF304 15
X.SF305 106
X.SF306 8
X.SF307 0
X.SF308 10
X.SF32 0
X.SF33 0
X.SF34 8
X.SF35 16
X.SF36 0
X.SF37 3
X.SF30
Y.SF10 0
Y.SF20 2
Y.SF30 0(28)
Y.SF301 0
Y.SF302 1
Y.SF303 3
Y.SF304 4
Y.SF305 4
Y.SF306 16
Y.SF31 22(44)
Y.SF313 22
Y.SF32 22
Y.SF40 8
Y.SF41 9
Z.SF10 3
Z.SF11 0
Z.SF20 7
Z.SF30 4
Z.SF31 4
W.SF10 6
W.SF20 16
W.SF30 9
W.SF40 0
V.SF100 8
V.SF101 28(47)
V.SF1013 19
V.SF102 14
V.SF110 3
V.SF111 2
V.SF112 4
V.SF113 4
V.SF114 4
V.SF115 4
V.SF116 4

Page 2 of 2

APPENDIX F (continued) – Complexity test of units

Unit ID Complexity
V.SF117 4
V.SF301 23
V.SF302 16
V.SF303 13(29)
V.SF3031 6
V.SF3035 10
V.SF304 27
V.SF305 30
V.SF306 12
V.SF310 6(21)
V.SF3101 15
V.SF311 11
V.SF312 12
V.SF313 13
V.SF314 1
V.SF32 5
U.SF11 0
U.SF12 10
U.SF30 44
Q.SF211 8
Q.SF212 9
Q.SF213 21
Q.SF214 12
Q.SF215 3
Q.SF216 4
Q.SF217 11
Q.SF218 20
Q.SF23 1
Q.SF31 25
Q.SF32 26
Q.SF41 13
Q.SF42 8
Q.SF43 7
Q.SF44 10
Q.SF45 10(23)
Q.SF451 13
Q.SF46 10
Q.SF47 2
Q.SF48 4
T.SF10 0
T.SF11 2
T.SF12 10
T.SF13 3
T.SF30 32

Page 1 of 3

APPENDIX G – Interviews

Interview with Ingemar Eckerström
Questions:
Models

 From a security perspective, which of the models that the group is responsible for, do you
consider to be especially important to test thoroughly?

 Are there any "safe" models? Models that you have a good knowledge of and rarely have
problems with.

 Do you have any models that are complex and difficult to grasp?
 Are there any models that historically have had a lot of problems?

Bugs and Errors

 Is it usual that some bugs in the models are recurring? What kind of bugs?
 Are there any types of mistakes that "newbies" often makes when working with the models?
 Have you had any serious / dangerous bugs or errors? How did you find and fixed them?
 Are there any other issues you would like to be able to test for, that you can’t test at the

moment?

Unsafe models? Safe models? Common bugs?
Arbetar I X mappen. X Ofta svårt att avgöra innan

testning av fel om det beror på:
X Hårdvara
X Diagnostik funktioner eller
 Dåliga sensorer

Testing ideas Common errors, severe faults etc
Som ny är de lätt att missa några saker: Allvarliga fel är om man råkar fylla katalysatorn

med urea, annars inget speciellt.
Korrekt användande av xml.
Diagnostik kedjan
Förstå sig på den stora statemaskinen.

Tester som skulle kunna hjälpa är
regressionstester av statemaskinen.

Page 2 of 3

APPENDIX G (continued) – Interviews

Interview with Henrik Nilsson
Questions:
Models

 From a security perspective, which of the models that the group is responsible for, do you
consider to be especially important to test thoroughly?

 Are there any "safe" models? Models that you have a good knowledge of and rarely have
problems with.

 Do you have any models that are complex and difficult to grasp?
 Are there any models that historically have had a lot of problems?

Bugs and Errors

 Is it usual that some bugs in the models are recurring? What kind of bugs?
 Are there any types of mistakes that "newbies" often makes when working with the models?
 Have you had any serious / dangerous bugs or errors? How did you find and fixed them?
 Are there any other issues you would like to be able to test for, that you can’t test at the

moment?

Unsafe models? Safe models? Common bugs?
X Samma som nämnts av Martin.
X Typfel mm.
Ofta är det vanligare att
hårdvaran felar istället för
mjukvaran.

Flesta modeller är någorlunda
säkra, mycket
diagnosfunktioner som funkat
länge.

Andra missar är mer runt att
man inte förstått
kravet/beskrivningen.

Testing ideas Common errors, severe faults etc
Mycket miljöberoende testing är beroende av
input från sensorerna.

Lätt att göra misstag vi beskrivning av funktioner
som ny. Att förstå beskrivningar.

Datasatser kan störa mycket. Lätt att missförstå info om emmissioner.
Testa med data från vagn, motorrum eller
liknande är bra!

Illa om det flera system missar, leder till
överhettning.

En brödbacks rigg med mer möjlighet att ange
givarsignaler, motormoment och
avgassmassflöde hade varit bra.

Bra att kunna ta data direkt från tex motorum
och stoppa in i matlab, men detta går ej just
nu på något enkelt sätt.

(Till befintlig funktion ”SB_Signal_Loader”):
Kanske också ska ha möjlighet att välja ett visst
intervall i mitten av en signal.

Page 3 of 3

APPENDIX G (continued) – Interviews

Interview with Martin Wilhelmsson, Questions:

Models

 From a security perspective, which of the models that the group is responsible for, do you
consider to be especially important to test thoroughly?

 Are there any "safe" models? Models that you have a good knowledge of and rarely have
problems with.

 Do you have any models that are complex and difficult to grasp?
 Are there any models that historically have had a lot of problems?

Bugs and Errors
 Is it usual that some bugs in the models are recurring? What kind of bugs?
 Are there any types of mistakes that "newbies" often makes when working with the models?
 Have you had any serious / dangerous bugs or errors? How did you find and fixed them?
 Are there any other issues you would like to be able to test for, that you can’t test at the

moment?
Unsafe models? Safe models? Common bugs?
Hög konsekvens kan
regenererings ”kedjan” ha.
Kolla bla på:

X De flesta ”vanligare” buggar
orsakas av okunskap från
nybörjare.

 -X (ca 3 år gammal funktion) Detta då designprocessen är
svår, samt även reviewen.

 -X Exempel på fel:
 Fel datatyp, tex: Bool/Float
 Insignaler i fel ”ordning”,

skillnad mellan targetlink
modellen och rapsody modellen.

X är också en modell som kan
ha allvarliga konsekvenser, då
den har tillåtelse att styra
vissa motorfunktioner.

Många modeller är idag mer
säkra, då mycket arbete gjorts
med att bygga stabilare och
bättre modeller.

Skalnings misstag, för hög
nogrannhet som i längden gör att
minnet ”tar slut” efter en tid och
orsakar konstiga, exponensiella
hopp.

Testing ideas Common errors, severe faults etc
Viktiga tester: Regressions tester för att skydda
mot nybörjarmisstag och stressade ändringar.

Tid att lära upp en ny på funktionsdesign: Några
månader ett halvår beroende på arbetstakt.

Detta då mycket kod finns i flera upplagor över
många projekt, och vissa ändringar kanske
funkar i ett projekt men inte i ett annat.

Saker som kan orsaka allvarligare fel är: hög
personalomsättning, väldigt hög
arbetsbelastning.

 Måste få utrymme att göra fel(Nybörjare).
Andra eftersökta verktyg är ett grafiskt
compareverktyg för targetlink.

Tidigare upptäckta fel är billigare fel.

Vecu är bra för regressiontestning (Egentligen
ett ”Checking” vertyg, kräver god kunskap om
modellen av testaren)

Allvarligare fel är tex: switch som ska skicka ut
float skickar en bool. Fel som gör de svårt för
andra typer av testning.

Simulink unit test bra för utforskande testning,
testning som kräver att saker ska snurra i cycler
mm.

Många av felen kan gå långt upp i kedjan, men
typ aldrig ut i kundens vagn. Upptäcks i
motorrum mm.

Page 1 of 1

APPENDIX H – Meeting notes, unit selection meeting

Sammanfattning, Möten. Unit urval.

2013-11-22

2013-11-17

2014-01-08

Deltagare: Mikael Thorvaldsson, Stefan Eisenberg, Martin Willhelmsson, Mattias Johansson,
Christer Beskow (Närvarande: 22 november), Simon Börjesson, Erik Andersson.

Områden som påverkar sannolikhet för konsekvens att inträffa:

 Proven In Use
o Om koden är gammal och välprövad är den säker
o Ny och kompliserad kod eller lite äldre men okänd kod är en risk faktor

 Hur bra man kan sin kod påverkar bedömningen, är du säker på att den inte brukar
krångla så sätter man lägre risk

 Hur bra förtroende man har för koden (Har den haft problem tidigare? Är de lösta?)
 Dataset parametrar kan göra det svårt att bedöma risken. Ska man bedöma från

utgångspunkten att han som sätter datasattsen kommer göra ett perfekt eller dåligt
jobb?

 Det finns redan vissa typer av test som fångar kända fel. Men ligger de rätt i
processen?

