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On the Asymptotic Performance of Bit-Wise
Decoders for Coded Modulation

Mikhail lvanov, Alex Alvarado,Member, IEEE, Fredrik BrannstromMember, |IEEE, and Erik Agrell, Senior
Member, |EEE

Abstract—Two decoder structures for coded modulation over n X
the Gaussian channel are studied: the maximum likelihood dp bs Z @)
symbol-wise decoder, and the (suboptimal) bit-wise decodbased W g
on the bit-interleaved coded modulation paradigm. We consier C m b | £ T N\NY
a 16-ary quadrature amplitude constellation labeled with aGray Z 8 d_/
labeling. It is shown that the asymptotic loss in terms of paiwise O ol @ oL
error probability, for any two codewords caused by the bit-wise >{ m O
decoder, is bounded by 1.25 dB. The analysis also shows théiet ENC ¢ < F”)

asymptotic loss is zero for a wide range of linear codes, inatling
all rate-1/2 convolutional codes.

i ; ; ; Fig. 1. Block diagram of the analyzed CM system. The CM encode
Index Terms—Additive white Gaussian noise, Gray code, ® y is used at the transmitter. At the receiver, two decodingritlyns are

pairwise error.pmbablmy’ C_Od?d .mOdUIatl.On‘ bit-interl ‘?a"ed considered: the ML symbol-wise decoder S-DEC or a subopthitavise
coded modulation, logarithmic likelihood ratio, pulse-anplitude  jocoder B-DEC.

modulation.

. INTRODUCTION AND MOTIVATION surprisingly, the results in [8] show that the performanée o

ODED MODULATION (CM) is a concatenation of & bit-wise dgcoder for an optimized _convolutional en_codgr
C multilevel modulation and a channel code. One popul§Pnected directly to the modulator with a Gray labeling is
coded modulation scheme was proposed and analyzed in ymptotically equivalent to the performance _of_an optediz
[2], where convolutional codes (CCs) were used. Due to t M system. As [9] _reveals_, these two optimized systems
trellis structure of the resulting codes, such systems altect use the same transmitters, i.e., the symbol sequences going
trellis-coded modulation (TCM). The TCM decoder finds thito the channel are the same, even though they use different

codewords at minimum Euclidean distance by exploiting tfgPnvolutional encoders and binary labelings. _
trellis structure of the code, e.g., by using a symbol-based!" this paper, we generalize the results in [7], [8] by studyi

Viterbi algorithm. Around the same time, multilevel codingh® @symptotic difference between symbol-wise and biewis
(MLC) was presented in [3], where the main idea was lecoders for CM systems with arbitrary binary linear encsde
use different binary codes for different bit positions o th W& considerl6-ary quadrature amplitude modulation (QAM)

constellation points and multiple decoders at the receiver With @ Gray labeling over the AWGN channel. The main result

Bit-interleaved coded modulation (BICM) is another ap(_)f the paper consists in showing that for any two codewords,

proach for CM. BICM was initially proposed in [4] and latert"€ Pairwise error probability (PEP) loss caused by the bit-

studied in [5], [6]. In BICM, the encoder and the modulato¥iS€ decoder is bounded Hy25 dB. We also prove that for
are separated by a bit-level interleaver. At the receivee,si @ Wide range of linear codes, the asymptotic loss caused by
a suboptimal bit-wise decoder is used, which operates on i Pit-wise decoder is zero.
L-values provided by the demapper.
It has recently been shown in [7] (see also [8]) that removing Il. SYSTEM MODEL
the interleaver may improve the performance of BICM over th& Coded Modulation Encoder
additive white Gaussian noise (AWGN) channel. SomeWhatThroughout the paper, boldface letters denote vectors or
This research was supported by the Swedish Research Co8meden, mamces and capital letters denote _random Va_'r|aples' Tetodc b
under Grant No. 2011-5950, in part by the Ericssons Reseaodndation, diagram of the analyzed system is shown in Fig. 1. A CM

Sweden, under Grant No. 556016-0680, and in part by the Earog£ommu- encoder (ENC) carries out a one-to-one mapplng from an
nitys Seventh’'s Framework Programme (FP7/2007-2013) rugdnt agree-

ment No. 271986. The calculations were performed on ressyscovided by information vector ofK" bits ¢ = [C[l]v Tt C[KH € {Ov 1}K
the Swedish National Infrastructure for Computing (SNICC&SE. to a vector ofN symbolsz = [z[1],...,z[N]]. Each symbol
M. Ivanov, F. Brannstrom, and E. Agrell are with the Dept.Signals i drawn from a discrete constellatiofi = {s81,.--,8Mm}

and Systems, Chalmers Univ. of Technology, SE-41296 Gbtirgn Sweden . T o '

(e-mail: {mikhail.ivanov,fredrik.brannstrom,agr¢@chalmers.se). |.e.,_ z[k] € S an_d k =1,...,N, where M = 2™ and
A. Alvarado is with the Dept. of Engineering, University ob@bridge, m iS a positive integer. All vectorse form a CM code

Cambridge CB2 1PZ, United Kingdom (email: alex.alvaradeg@iorg). X C SN, where |X| — 92K js the number of possible

Copyright ©2013 IEEE. Personal use of this material is permitted. How- . . . .
ever, permission to use this material for any other purpasest be obtained information vectors. The CM encoder is defined as the functio

from the IEEE by sending a request to pubs-permissions @iege ®y : {0,1}€ — X with the corresponding inverse function
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' & — {0,1}%. Assuming all information vectors to be GRAY LABETS?(;E ||=OR4-PAM

equally likely, the average energy per symbol can be expdess

askE, = N~'1275 % . |lz||* and the average energy per bit Labeling q

E, =K !NE,. GL, [0,1,3,2]
As all symbolss; can be uniquely identified by length- GL, 0,2,3,1]

m binary labels, any CM encoder described above can be GLj [1,0,2,3]

represented as a concatenation of two blocks, as shown GLy [2,0,1,3]

in Fig. 1. The modulator (MOD) carries out a one-to-one

mapping fromm bits to one of theM constellation points.

The modulator is defined as the functidy : {0,1}"* — S tothe codet’. The number of labelings is therefore reduced to
with the corresponding inverse functi(simg1 : S = {0,1}™.  12. Four of them are Gray labelings, which are listed in Table

We represent a binary labeling by a vectoe [q1,...,q9nm], In this paper, only Gray labelings are considered.
whereg; is the integer representation of thebits mapped to  The most popular Gray labeling is GLoften referred to as
the symbols;, with the most significant bit to the left. the binary reflected Gray code (BRGC) [14]-[16]. All these

A binary encoder (B-ENC) provides the modulator withabelings give the same uncoded bit error rate and BICM
bits to produce a vector of symbads The B-ENC mapsK  generalized mutual information [17] for the AWGN channel,

incoming bitsc into mN coded bitsb = [b[1],...,b[N]], thus, they are usually said to be equivalent [15]. However, i
where blk] = [bi[k],...,bn[k]] = ®5'(z[k]) € {0,1} this paper, we consider them separately, as all these haseli
andk = 1,...,N. All vectors b form a binary code B ¢ produce different CM codes when used with a given binary

{0,1}™N, where|B| = |X| = 2K. The B-ENC is defined codeB. The difference between the labelings will be evident
as the function®s : {0,1}* — B with the corresponding later on in Sec. IV.
inverse functiontbg1 : B — {0,1}¥. Throughout the paper, In this paper, we study two different decoders for the CM
we assume3 to be a binarnflinear code. encoder in Fig. 1, which we describe below.
The described CM encoder in Fig. 1 generalizes the pro-
posed coding schemes in [2]-[4]. Indeed, it corresponds g0 gymhol-Wse Decoder
TCM if the B-ENC is a terminated convolutional encoder. If
the B-ENC is a bank ofn parallel encoders, the describe%
encoder represents an MLC encoder. Finally, it corresptmds
BICM if the.B—EN.C includes an ipterleayer. . & — ait (argmin{DX(w)}) ’
When using binary phase-shift keying, the function of
the modulator is trivial, and analyzing the CM code is
equivalent to analyzing a corresponding binary cédeThis,
however, is not the case when multilevel modulation is use — [¥[1],..., Y[N]]. Assuming the codeword: € X

In this paper, we study d46-QAM constellation labeled : . : A
ith a Grav code. which is used in manv wireless standarls transmitted, an error occurs if there is a codewsdrd=
w y code, which IS used | ywl ‘fsm,...,ae[zv]] € X, such thatD¥(z) > D¥(&). The

. . X
see, e.g,, [10, Fig. 18-10], [11, Table 7.1.3-1], [12, Fig].1 obability of such an event is called the PEP and can be
This modulation format can be viewed as a direct product § lculated as

two Gray labeled4-ary pulse amplitude modulation (PAM)
constellations [13], and therefore, only the constituefMAM PEPY (z, %) = Pr{AY (x,%) < 0}, (3)

constellation needs to be considered. This constellation i . . .
defined asS — {—3d, —d, d, 3d}, whered is a normalization NerePr{ } stands for probability and* (z, &) = D¥(&) -
factor ands; < ss41 o D% (x). For future use, we express® (x, ) as

We consider a real discrete-time memoryless AWGN chan- v N N
nel, i.e., given the channel input, the channel output is AY(x, &) = 4d Y A* (alk], 2[K]), (4)
Y = z+Z, whereZ is a zero-mean Gaussian random variable k=1
with varianceo? = N, /2. The conditional probability density where

The symbol-wise decoder (S-DEC) shown in Fig. 1 per-
rms maximum likelihood (ML) decoding by computing

2
reX

where DY (z) = S, (Y[k] — x[k])®. In other words, the
-DEC searches for the closest codeword to the observation

function (PDF) of the channel output is —ATED2 — — k)2
xr) = 2022 . 1 ~ ~
leX(y| ) ,—27T0'2Ze 1) _ x[k];dx[k]y[/{] N x2[k]4_dx2[k] )

A Gaussian distribution with mean valye and variancer>
is denoted byV (i, 0?), i.e., Y ~ N (z,0%).

It is well known that there aré! = 24 labelings for4-PAM. .
Due to the symmetry of the constellation and the channéi, Bit-\Mse Decoder
the labelingsq = [¢1, g2, g3, q4] andq’ = [q4, g3, g2, ¢1] will The bit-wise decoder (B-DEC) shown in Fig. 1 oper-
produce equivalent CM codé$ andX” for any binary cod#3, ates on the bit reliability metrics provided by a demapper
i.e., if a codewordr belongs to the cod&’, then—x belongs (DEM). The demapper acts independently of the B-DEC and

is called a symbol metric difference (SMD).
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TABLE II
calculates a vectol. = [L[1],...,L[N]], where L[k] =  pistrisution PARAMETERS(1, 02) FOR THESMD (5) OF THE S-DEC.
[Li[k], ..., Ln|k]] are the logarithmic-likelihood ratios (L- CIRCLES, STARS, AND DIAMONDS SHOW THE ERROR VECTORe EQUAL TO
values). We use the so-called max-log approximation [4, [0,1], [1,1], AND [1,0], RESPECTIVELY FORGL3.
eq. (3.2)], [5, eq. (2.15)], [17, eq. (12)] for the calcubati _
of the L-values, i.e., sk NIk | 51 52 53 54
1 51 — (17 1)0 (474)* (95 9)<>
Li[k] = — {min (Y[k] = s)? — min (Y[k] —5)2} (6) 52 Ly°] = [ (@LD° ] 4,4
J 20% s€Sj0 SES; 1 53 (47 4)* (17 1)0 — (1’ 1)0
with j = 1,...,m, where S;,, C S is the subset of 84 9.9° ] @449 | @1 ] -
constellation points whose labels have the value {0,1}
in the jth bit position. TABLE Il
The calculated L-values are passed to the B-DEC Whi@.‘STRIBUTION PARAMETERS(1, 02) FOR THESMD (10)OF THEB-DEC.
. ! IRCLES, STARS, AND DIAMONDS SHOW THE ERROR VECTORe EQUAL TO
uses the decoding rule [5, Sec. 2.2], [17, eq. (13)] [0,1], [1,1], AND [1,0], RESPECTIVELY FORGL3.
ChB = @gl (argmax{DB(b)}) , @) x[k] \&[k] S1 S9 S3 S4
v 51 - (G @ [B1°
where DB(b) = (2b — 1)LT = S~ (2b[k] — 1)L k] and 59 LD° | = [ (@,10° | 447
()T denotes transposition. S3 (4,4)* | (1,1)° - (1,1)°
The PEP for the B-DEC is given by Sa (3,1)° | (4,4)* | (1,1)° -
PEP3(b,b) = Pr{AP(b,b) < 0}, (8)

where AB(b,b) £ DB(b) — DB(b) is the difference between | emma 1: For 4-PAM with any labeling, the SMDs in (5)
the metrics for the transmitted codewdrdind the competing divided by 4d are distributed as

codewordb € B. Since the mapping betweénandx is one-

to-one, with a slight abuse of notatio? (b, b) can be written A* (z[k], 2[K]) ~ N (ud, o?0%), (11)
as a function of codewords and z instead, i.e., where (i, 02) are shown in Table II.
2 X Proof: Since the SMDs in (5) are linear functions of the
AP(z, &) = 2—2 > AB(a[k], &[k]), (9) observationY [k], the SMDs follow a Gaussian distribution.
k=1 Whenz[k] = s; andi[k] = s;, the mean value of the SMD is
where the SMD in this case is p=(4d*)"1(2(si — s5)si + (57 — 57)) = (4d®) " (55 — 55)*.

N ) ) The variance can be calculated @ = (4d*)~'(s; — s;)%.
AP (x[k), 2[k]) £ £ (@5 (x[k]) — D5'(2[k]))L[k]". (10) Substituting values of; ands; gives the parameters shown

d
. in Table Il. O
The B-DEC described above corresponds to the standaque note that the results in Lemma 1 are valid for any

(noniterative) BICM decoder. We refrain from using this regm labeling, not only Gray labelings.

as the interleaver might or might not be included in the > ith Grav labeli he distrib
transmitter. Moreover, if there is an interleaver, we assum Lemma 2. For 4-PAM with any Gray labeling, the distribu-

it to be part of the B-ENC. tion of the SMDs in (10) can be approximated as

The performance of the B-DEC is highly dependent on the AB(z[k], #[k]) ~ N (ud, 0%0%), (12)
distributions of the L-values. Since the distribution oé th- ) _
values may depend on whether zero or one was transmittéf€re (1, 0°) are shown in Table IIl. _ o
symmetrization techniques are usually used in order to sim- Proof: Since the L-value in (6) is a piece-wise linear
plify the analysis. In [6, Sec. IV], a time-varying labelingfunction of the observation, the distribution of the L-valis a
was proposed in order to symmetrize the channel. The saft@erposition of piece-wise Gaussian distributions, wittan
effect can be achieved by using a random scrambler as in f#\d variance defined by the linear pieces and the transmitted
Sec. 4.1] or [8, Sec. II]. This allows to simplify the analybly Symbol. In[18, Sec. 5], [19, Sec. llI-C], it has been showat th
assuming that the all-zero codeword is transmitted. Howev@t high signal-to-noise ratios (SNR), measuredFagN, or
the symmetrization makes the comparison of the two decodéns/No, the so-called zero-crossing (ZcMod) approximation of
unfair and we do not include a scrambler in our analysi§uch a PDF gives good results in terms of coded bit-error rate

hence, we consider all possib|e pairs of codewords Wh@.ER) and mutual information. The results shown in Table I
analyzing codes. are obtained from [8, Table 1] by scaling the SMDs b¥.

The distributions are independent of a particular Grayllabe
. SYMBOL VS. BIT DECODER and depend only on th_e cor_npared_ symbols: The tightness of
o the ZcMod approximation will be discussed in Sec. IlI-Cl
A. Distribution of the SMDs Comparing Tables Il and lll, we note that the tables are
To compare the PEP for the S-DEC in (3) and the Bdentical, except for the corner entries in gray. We will use
DEC in (8), we analyze the distributions of the SMDs in (5his simple observation in the following section to bound th
and (10). loss incurred by the B-DEC when compared to the S-DEC.
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B. Pairwise Error Probability Analysis 10 g0 -

T = [s3, s3] 1

In this section, we study the asymptotic performance of tt . !
T = [s1,s1

S-DEC and the B-DEC. Throughout the section, we usg Gl

for illustration, i.e., symbolsy, £k = 1,...,4 are labeled with 157
[0, 1], [0,0], [1,0], and[1, 1], respectively. All discussions and , r= [51, 54, 2]
derivations below apply directly to Gl.and also to Gk and T = [sa,52,51]
GL, if the labels[1,0] and [0, 1] are swapped. _4
x = [s1, 84, 83, s2]

Examining Tables Il and Ill, we see that, in many case & = [s4, 53, 52, 51]

the distribution of the SMDs depends on the binary vect
e 2 o5l (z[k]) @ ®5(2[k]) € {0,1}2, where® denotes 10
modulo-2 addition. Wher = [0, 0], the distributions are not
defined (main diagonal of the tables). Fer= [1,1], the 6 ‘ ‘ ‘
distribution parameters argt,4) (marked with stars in the -2 0 2 4 6 8
tables) and foe = [0, 1], the distribution parameters afg, 1) d/oz [dB]
(marked with circles). However, the distribution paramefer _ _ . .

. . . . ig. 2. The PEP for three different pairs of codewotdsand &. Solid
e = [1,0] are different (marked with diamonds in the tablesgnd dashed lines represent analytical PEP in (14) for th&6-Bnd the B-
When the compared symbols asg and s3, the distribution DEC, resp. Filled and empty markers show simulation regaft¢he S-DEC
parameters arél, 1), whereas the distribution parameters a d the B-DEC, resp. The dotted line shows the exact PEP éoBtDEC
(9,9) and(3,1) for the S-DEC and the B-DEC, respectively,see Sec. I-C).
when the compared symbols areands, (gray entries of the
tables). ;Ne USQM[OJ],_UFM]) for entrigs marked with CQircIes, for the S-DEC or
(u[171],a[171]) for entries marked with starsiu( o), 07| o)

~ 1.25 dB

1,0 c - eMe
for white entries marked with diamonds, al(le,o—Ef)[ ar]1d aB(x, &) = — (i — pno))  Dece Vet (16)
(us, o) for gray entries marked with diamonds for the S- \/wc(azzs - 0’?1,0]) + Dees WeTe
DEC and the B-DEC, respectively. for the B-DEC.
We define the set of possible non-zero vecteras £ = Fig. 2 shows the analytical and the simulated PEP for the S-
{[0,1],[1,0],[1,1]}. For two codewords: and: and fore ¢ DEC and the B-DEC as functions df o for three different
£, we definew,(z, &) as pairs of codewords: and . We note thatd?/o% is propor-

N tional to the SNR. Solid and dashed lines represent analytic

AN -1 —1,4 _ PEP in (14) for the S-DEC and the B-DEC, respectively. For
we(@,) = > 1{25(alk]) © 25' @k =}, (13) the codewordse = [s3, s3] and & = [sy,s1] (circles), the
] o ) __dashed line coincides with the solid line. Filled markersree
wherel{-} is the indicator fun(Et|on. In other wordsie(z, ) gent simulation results for the S-DEC and are exactly on fop o
|s_t1he numbeilot pairgz[k], 2[k]) in = and & such that {he corresponding solid lines. Empty markers show simurati
O (z[k]) © @5 (2[k]) = e. In addition, we definev.(z, &)  regylts for the B-DEC. Empty squares and diamond agree well
as the number of pair¢z[k], z[k]) in = and & such that i, the analytically predicted PEP; however, empty ciscle
(w[k], 2[K]) = (s1,54) OF (z[k], Z[K]) = (54, 51), .8, we(®,Z)  geyiate significantly from the analytical prediction (whits
is the number otorner entries (gray entries in Tables Il andyaced on the ZcMod approximation). We note that instead,

). Clearly, wyy o (2, &) > we(a,2), as the former includes omny circles agree well with the dotted line, which is biefl
pairs of symbols counted in the latter. To simplify the niotiat §iscussed in the next section.

the arguments o (x, &) andw,.(z, &) are omitted when the
arguments are clearly stated in the text.

k=1

C. Zero-Crossing Approximation

From Lemmas 1 and 2, it follows that the SMDs are The SMD in (10) is a linear combination of L-values which

independent Gaussian random variables. Using the intestlugiepends on the compared symbols and their binary labels. For
notation, the PEP for the S-DEC and the B-DEC in (3) and (kample, ifz[k] = s3 and 2[k] = s; and GL; is used, the

can therefore be expressed as SMD s given byAB(z[k], &[k]) = Z (L1 [k] — La[k]). Since
L . d the L-valuesL;[k] and Ly[k] are piece-wise linear functions
PEP(z, %) = Q (a(m’m);> ’ 19 of the observatiory'[k] [19, Fig. 3], so is the SMD. Thus, its

. . . .__exact distribution is a superposition of piece-wise Garssi
\év_htereQ(-) S the C?;:ussmn Q-function and the Iqorm"’ll'zeﬁjnctions. Let\ be the realization of the random variable
istancea(z, &) is either AB(z[k], #[k]) for a given channel realizatioki [k] = 3. The
solid line in Fig. 3 shows the SMD as a function of the channel
realizationy and the dash-dotted line shows the distribution

of the observatiort’[k] given the transmitted symba}; for

we(px — N[l,O]) + Zeeg We e

Y@, 2) =
\/wc(cri - 0[21,0]) +2ees We0Z

a

(15)
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PEP ratio

1 I I I I
-10 -5 0 5 10 15 20

d/oz [dB]

Fig. 3. The SMDAB(s3,s1) as a function of the observatiop (solid Fig. 5. The ratio between the exact PEP (obtained numerjcafiing the
line) and the ZcMod approximation of the SMD (dashed ling) do= 1. exact PDF of the SMDs and the PEP predicted by the ZcMod appetion
The dash-dotted line shows the distributipg| x (y|s3) (not to scale) for for the codewordse = [s3, s3] and& = [s1, s1] (circles in Fig. 2).

d/oz = —5 dB.

in (9) is a sum of two SMDs with the distributions in Fig. 4.
When calculating the PEP, a convolution of these PDFs needs
to be calculated. The peculiarity of these SMDs, whers
transmitted ands; is a competitor, is that the exact PDFs
contain a Dirac delta function. When two such PDFs are
convolved, the resulting PEP is not well approximated by the
4 ZcMod approximation. The exact PEP calculated numerically
using the exact PDF is shown with a dotted line in Fig. 2 and,
as expected, it coincides with the simulations for the B-DEC
(empty circles).

To study the asymptotic tightness of the ZcMod approxima-
Fig. 4. Distribution of the SMDAB(s3, s1) for d/oz = —5 dB. The solid tion, we show in Fig. 5 the ratio between the exact PEP and the
line is the exact PDF and the dashed line shows the appreedhRDF using approximated PEP. This figure shows that for moderate SNR,
the ZcMod approximation. . . .

the ZcMod approximation underestimates the PEP. However,
the approximation is tight whewd/oz — oo. This result
was also verified analytically by considering upper and lowe
%ounds on the exact PEP. Analogous results were obtained for
other pairs of codewords. A behavior similar to what is shown
in Fig. 5 will be observed later on in Sec. IV-C.

PAB(s3.51) ()‘)

d/oc = —5 dB. The corresponding exact distribution of th

SMD p,5es5.51)(A) is shown in Fig. 4 with a solid line and

contains a delta function with amplitudé= 1 — 2Q (d/oz)

due to the horizontal piece of the SMD function in Fig. 3.
The exact PDF is difficult to analyze and approximatio . L

are usually used. The ZcMod approximation approximates thé A_wmpto'uc Palrwise Loss ) )

SMD with a straight line. The line is chosen so that the USing (14) and (15)—(16), we define the asymptotic loss

exact PDF of the SMD is accurately approximated arouyhend/oz — oc) caused by the B-DEC (compared to the

A = 0. Therefore the line is chosen as a tangent to teDEC) for any two pairs of codewordsand as

SMD function atA = 0, i.e., at the zero-crossing. If the A a® (x, )

SMD function has multiple zero-crossings, then the zero- L(z, ) = 20log;, (m)- 17)

crossing closest to the transmitted symbol is used. The ZcMo ’

approximation of the SMD\B (s, s1) is shown with a dashed 1€ foIIOV\{ing theorem gives a bound on (17).
line in Fig. 3 and it results in a Gaussian distribution shown Theorem 1. For 4-PAM with any Gray labelingl.(z, &) <

with a dashed line in Fig. 4. As can be seen from Fig. 4;25 dB for any two codewords: andz.

the ZcMod approximation approximates well the exact PDF  Froof: Substituting the values in Tables Il and lII
around\ = 0, which makes the ZcMod approximation suitabld© (15)-(16), the normalized distances can be expressed a

for the analysis. at(z, %) = /B + 8w, (18)
Although the ZcMod approximation has been shown to as(m &) 25—1/2(54_210) (19)

be good in terms of coded bit-error rate (BER) and mutual

information [18, Sec. 5], [19, Sec. llI-C], a rigorous pradffts where

tightness is still missing. This is mainly because such @fro 8= Z Welle = Z Weo2. (20)
would require to consider all possible pairs of codewords. | e e

the following, we show that the approximation is asymptotrhe |oss in (17) is then given by

ically tight for the codewordse = [s3, s3] and & = [s1, s1]

(circles in Fig. 2). L(zx, &) = 20log,, (M> : (21)

For the codewords: = [s3, s3] and& = [s1, s1], AP (z, %) B+ 2w,
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The argument of the logarithm in (21) is a positive functidn o Theorem 2: For 4-PAM with GL3 or GL, and any linear
B andw, with a single maximum af = 4w,.. The maximum code, the lost.(B) = 0.
value islg, which givesL(z, &) < 1.25 dB. O Proof: Consider the G}. labeling. Letx and z be two
From the proof of Theorem 1 it follows that the loss iglifferent codewords of the cod& with corresponding binary
zero if w, = 0 and it achieves its maximum i in (20) codewordsb,b € B, such thatw.(x, &) # 0. For any linear
is equal todw.. Using Tables Il and Ill, it is easy to showcodeb’ = bab = [0,...,0] andb = bab are also codewords
that the latter condition is fulfilled for the pair of codewlsr of 3 with correspondinge’, @’ € X. As b’ & b =—ba b, we
@ = [s1, 54, 53, S2] ANAT = [s4, 53, 52, 51], and the asymptotic conclude thatv (x/, &) = we(x, &), Ve € £. From Tables I
loss is1.25 dB, as illustrated by the simulation and analyticand 11, it is clear thatv. (', &) = 0, asa’ = [s2, 2. . ., sa].

results (squares) in Fig. 2. Using (18) and the assumption that(x, &) # 0, we conclude
that for the S-DEC
IV. AsYMPTOTICLOSS FORCODES a® (2, &) = /B + 8w. > /B = a¥(z', &).

When all the codewords of a code are considered (e.g.,,in. . -
a union bound-type of expression [20, Ch. 4]), only the pair%nSlng (19) we show, in a similar way, that for the B-DEC
of codewords at minimum distance will define the high-SNR a5 (x, &) = 7V/2(8 + 2w.) > /B = d®(2', &).
performance. Since there is no scrambler in the system, the ;o R
analysis cannot be based on the assumption that the all-zerd’e showed thati(a', %) < a(x, &) for both the §'DEC
codeword is transmitted, i.e., all pairs of codewords need ?nd the B-DEC. Hence, for any two codewoulandz with

~ H /e
be considered. Hence, the asymptotic loss for a given ﬁ)déf’f(”’f’ ) # O; tp/ere always exist th other codewordsand
has to be defined as 2’ with w.(2’, ") = 0 at a smaller distance. The latter means

) Y that w.(x,&) = 0 for any pair of codewords and & at
L(B) 2 201og,, <m1.nfc#5: a”(z, m)> . (22) minimum distance, and hence, the loss in (22) is zero. Simila
ming.q o (z, &) reasoning directly applies to GL This completes the proof.
In this section, we study the asymptotic loss in (22). We first U

consider an arbitrary linear code and then discuss a platicu Remark 1: In other words, the proof of Theorem 2 shows
case of rate-/2 CCs. that for4-PAM with GL3 or GL4 and a linear code, among all

pairs of codewordg # & at minimum distance, there is one
pair such that one of the codewords corresponds to the @ll-ze

A. Any Linear Code binary codeword. For this case, the minimum distance aizalys
The next corollary is a straightforward implication of Thecan assume that the all-zero codeword was transmitted.
orem 1. The peculiar property of GL.and GL, is that the all-zero

Corollary 1: For 4-PAM with any Gray labeling and any label is assigned to one of the innermost constellationtppin

linear code)(B) < 1.25 dB. There exist CM codes for which Which guarantees that = [s2, s,...,s2] € X. This is not
this bound is exact. the case for the GLand Gl labelings, where the all-zero

Proof: Let codewordsz;,z; € X minimize the de- label is assigned to one of the outermost symbols. However,
nominator of (22), i.e.a®(x;, ;) = ming,s a®(x,&). The for these labelings it is still possible to define a family otles

asymptotic |OSS for the Code can then be Written as f:])r Wh|Ch the |OSS iS a|SO Zero. Th|S iS done in the fO”OWing
. . theorem.
_ ming s a” (z, &) Theorem 3: For 4-PAM with GL;, the lossL(B) = 0 if the
L(B) = 201log;, 5 _ .
ab(xi, x;) linear code3 contains a codewort” = [b"[1],...,b"[N]] €
<901 a”¥(z;, z;) B, such thath}[k] = 1, Vk. Similarly, for 4-PAM with GL.,
=080 Bz xy) ) L(B) =0 if b’ € B andb{[k] =1, Vk.

which proves the first part. To prove the second part, we, Proof: First, we assume that Glis used and a codeword

: : . , such that)[k] = 1, V&, belongs to the codB. Let z and
give an example of such a code. Consider a linear code . . )
consisting of two codeword$: — [0, 0, 0,0, 0,0, 0, 0] x be codewords of the cod& with corresponding binary

1 — s Uy Uy Uy Uy Uy Uy

andby = [1,0,0,1,0,1,1, 1] used with4-PAM and GL. codewordsb, b € B, such thatw.(x,&) # 0. For a linear

This corresponds to a CM code with two codeworels = code,b’ = b&bdb” andb = babab” are also codewords
[s1, 51, 81, s1] @andxa = [s4, s2, s2, s3]. From Tables Il and of B with correspondingy’, &’ € . From Tables Il and Iil,

11, it follows that for these two codewords = 4w.. Hence, It Is clef;\r thath(wl’ml) = 0, asz’ = [2[1],... ,.x’[].V]].,

L(B) = L(z1,s) = 1.25 dB. o Wherea'[k] € {s2,s3}, Vk. The rest of thei proof is similar
Even though linear codes with nonzero asymptotic Ioig the pr_oof O.f Theorem 2. Swapping the first and the second

exist, they are not very common due to their special strectu It positions in Gl;, we can analogously prove the second

i.e., the closest paths should consist of a special Com'b'rnatStatement for Gb. -

of symbols. In what follows, we show that for some labelings )

and a wide range of linear codes, = 0 for the codewords at B- Rate-1/2 Convolutional Codes

minimum distance, and therefore, the asymptotic loss ir) (22 Bringing together the results for different labelings (dhe

is zero. rems 2 and 3), the conclusion is as follows.
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. . TABLE IV

Corollary 2: For 4-PAM with any Gray labelingl.(8) = 0 GENERATOR POLYNOMIALS FOR RATE1/2 CCS THAT GIVE OPTIMAL
if the linear codeB contains codewords’, b € B, such that TCM ENCODERS FORI-PAM WITH THE BRGC
Bk = 1, Vk andbY'[k] = 1, V k.

Many codes satisfy the conditions in Corollary 2, for v G v G
instance, all extended Hamming codes, all Reed-Muller sode 1] 32 | 5] [55 51]
all extended BCH codes, and all extended Golay codes. All 2| [7,5] | 6| [107, 135]
these codes include the all-one codeword. The codes are 3| [13,17] | 7| (313,235
extended as they should be of an even length to match the 4| [23,33] | 8 | [677, 515

constellation. For such codes, all the four Gray labelings a

equivalent, in the sense that for a given binary code they

produce fourdifferent CM codes, with thesame minimum be a CM code obtained by the CC with generator matrix

distance for both the S-DEC and the B-DEC. Gsp(D) = [91(D), g2(D)] and4-PAM with the SP labeling
Rated/2 CCs are of particular interest, as they allow afiven by gsp = [0,1,2,3]. The same CM codet’ can be

easy implementation of the ML decoder based on the Vite@ptained byGercc(D) = [91(D), 91(D) + g2(D)] and 4-

algorithm. In the following theorem, we show that all rate PAM with GL;. We use this to obtain codes for the optimal bit-

CCs also give a zero asymptotic loss. wise schemes, shown in Table IV, from codes for the optimal
Theorem 4: For 4-PAM with any Gray labeling and any TCM schemes presented in [9, Table Ill]. From now on, we
rated /2 CC, L(B) = 0. use octal representation for the generator polynomials and

Proof: Any rated/2 CC B can be generated by a generomit the argumenD of the generator matrix. For memories
ator matrix G(D) = [g1(D), g2(D)] [21, Ch. 4.2], where ¥ = 2,3,4,6,7, the codes in Table IV coincide with the codes
91(D) and g,(D) are nonzero generator polynomials ovelf [8, Table Il]] (v = 1,8 are not reported). For some there
the binary field. We assume that; (D) defines odd bits May be several encoders with identical performance, which
of codewordsb; [k], and g»(D) defines even bit$,[k]. Any €xplains the different codes for= 5.
generator matrixG(D) can be put in a systematic form Fig. 6 shows the S-DEC and the B-DEC performance for
Geys(D) = [1, g2(D)/g1(D)]. Thus, an all-one input will CCs with memories = 2, 4, 6, 8 in Table IV. As pre_d|cted
produce a codeword where every odd bit is one, &, such by the results in Sec. Ill-D, the B-DEC gives rise to a
thatb/[k] = 1, Vk. Analogously, any generator matr&(D) higher _probablllty of error at moderate SNRs (the loss is
can be put in the fornG.,, (D) = [g1(D)/g2(D), 1], which approximately0.2 dB). The gap betvyeen the B-DE_C qnd the
means that an all-one input produces a codeword where ever{?EC decreases when the SNR increases, which is clearly
even bit is one, i.e.b”, such thath}'[k] = 1, Vk. The three S€€n from the curves marked with circles. As Fig. 5 suggests,
generator matrice§/(D), Gyys(D), andG,, (D) generate the the gap between _the decoders is expected to be nt_agligible at
same code, i.e., any ralg2 CC B satisfies the conditions of ¢/0z ~ 15 dB. This corresponds t&5/No ~ 11 dB, which is
Corollary 2. This completes the proof. 7 beyond our simulation capabilities. To support the fact tha

Remark 2: Using a similar argument to the proof of The-9ap does indeed disappear at high SNR, in Fig. 7 we show

orem 2, we can show that for codes satisfying conditioigtios between the BER curves. As we can see, the curves
in Corollary 2, w.(x,&) = 0 not only for codewords at Pehave similarly to the curve in Fig. 5, which confirms the

minimum distance but also for the first eight terms in th@Symptotic equivalence of the two decoders. At high SNR, the
distance spectrum. We therefore conclude that the boui@lios in Fig. 7 can be interpreted as the loss in the prefact
developed in [8] is, in fact, a TCM union bound (at least fopf the Q-function corresponding to the PEP for the codewords

the first 8 terms) obtained from the spectrum dfi@ary code. at minimum distance. Numerical analysis for different pair
of codewords, similar to the one in Sec. IlI-C, shows that at

asymptotically high SNR, the ratios in Fig. 7 in fact converg

to one, similarly to the ratio in Fig. 5, i.e., the loss in the
In this section, we show how optimal bit-wise schemes cajte-factor disappears.

be found for ratet/2 CCs. One approach is presented in [8],

where a search over all feedforward encoders was performed. V. CONCLUSIONS
The alternative approach we use here is to exploit the emcode
equivalence shown in [9], which states that for CCs, diffiere

C. Application: Optimal Bit-Wise Schemes

In this paper, we compared the ML symbol-wise decoder

and a suboptimal bit-wise decoder based on max-log L-values

labelings can be grouped into classes that result in the s Svas shown that asymptotically, the loss caused by the
CM codeX. In other words, the same CM code can be se of the suboptimal bit-wise decoder is bounded, and in

obtained by any labeling wi.thin a class used_ together Withany cases equal to zero. The bit-wise decoder studied in
a properly modified convolutional encoder. This allows us It%is paper corresponds to the bit-interleaved coded médula

use the results reported in [9] with the set-partitionin@XS paradigm and is widely used in many wireless communication

labeling [2]. e .
. . . standards. The results in this paper can be seen as a thabreti
For many constellations, includingPAM, the SP and Gray justification for its use.

labelings belong to the same class [9, Theorem 3]. Xet The analysis presented in this paper considered-@AM

1we assume that any CC is realizable (see [21, Ch. 4.2]) and that ConSte.”ation Iabe_led with any Gray Iabqling. By means of
gi(D)#0fori=1,2. numerical simulations, we have also studied two-dimeraion
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