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On the Asymptotic Performance of Bit-Wise
Decoders for Coded Modulation

Mikhail Ivanov, Alex Alvarado,Member, IEEE, Fredrik Brännström,Member, IEEE, and Erik Agrell,Senior
Member, IEEE

Abstract—Two decoder structures for coded modulation over
the Gaussian channel are studied: the maximum likelihood
symbol-wise decoder, and the (suboptimal) bit-wise decoder based
on the bit-interleaved coded modulation paradigm. We consider
a 16-ary quadrature amplitude constellation labeled with aGray
labeling. It is shown that the asymptotic loss in terms of pairwise
error probability, for any two codewords caused by the bit-wise
decoder, is bounded by 1.25 dB. The analysis also shows that the
asymptotic loss is zero for a wide range of linear codes, including
all rate-1/2 convolutional codes.

Index Terms—Additive white Gaussian noise, Gray code,
pairwise error probability, coded modulation, bit-interl eaved
coded modulation, logarithmic likelihood ratio, pulse-amplitude
modulation.

I. I NTRODUCTION AND MOTIVATION

CODED MODULATION (CM) is a concatenation of
multilevel modulation and a channel code. One popular

coded modulation scheme was proposed and analyzed in [1],
[2], where convolutional codes (CCs) were used. Due to the
trellis structure of the resulting codes, such systems are called
trellis-coded modulation (TCM). The TCM decoder finds the
codewords at minimum Euclidean distance by exploiting the
trellis structure of the code, e.g., by using a symbol-based
Viterbi algorithm. Around the same time, multilevel coding
(MLC) was presented in [3], where the main idea was to
use different binary codes for different bit positions of the
constellation points and multiple decoders at the receiver.

Bit-interleaved coded modulation (BICM) is another ap-
proach for CM. BICM was initially proposed in [4] and later
studied in [5], [6]. In BICM, the encoder and the modulator
are separated by a bit-level interleaver. At the receiver side,
a suboptimal bit-wise decoder is used, which operates on the
L-values provided by the demapper.

It has recently been shown in [7] (see also [8]) that removing
the interleaver may improve the performance of BICM over the
additive white Gaussian noise (AWGN) channel. Somewhat
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Fig. 1. Block diagram of the analyzed CM system. The CM encoder
ΦX is used at the transmitter. At the receiver, two decoding algorithms are
considered: the ML symbol-wise decoder S-DEC or a suboptimal bit-wise
decoder B-DEC.

surprisingly, the results in [8] show that the performance of
a bit-wise decoder for an optimized convolutional encoder
connected directly to the modulator with a Gray labeling is
asymptotically equivalent to the performance of an optimized
TCM system. As [9] reveals, these two optimized systems
use the same transmitters, i.e., the symbol sequences going
into the channel are the same, even though they use different
convolutional encoders and binary labelings.

In this paper, we generalize the results in [7], [8] by studying
the asymptotic difference between symbol-wise and bit-wise
decoders for CM systems with arbitrary binary linear encoders.
We consider16-ary quadrature amplitude modulation (QAM)
with a Gray labeling over the AWGN channel. The main result
of the paper consists in showing that for any two codewords,
the pairwise error probability (PEP) loss caused by the bit-
wise decoder is bounded by1.25 dB. We also prove that for
a wide range of linear codes, the asymptotic loss caused by
the bit-wise decoder is zero.

II. SYSTEM MODEL

A. Coded Modulation Encoder

Throughout the paper, boldface letters denote vectors or
matrices and capital letters denote random variables. The block
diagram of the analyzed system is shown in Fig. 1. A CM
encoder (ENC) carries out a one-to-one mapping from an
information vector ofK bits c = [c[1], . . . , c[K]] ∈ {0, 1}K

to a vector ofN symbolsx = [x[1], . . . , x[N ]]. Each symbol
is drawn from a discrete constellationS = {s1, . . . , sM},
i.e., x[k] ∈ S and k = 1, . . . , N , where M = 2m and
m is a positive integer. All vectorsx form a CM code
X ⊂ SN , where |X | = 2K is the number of possible
information vectors. The CM encoder is defined as the function
ΦX : {0, 1}K → X with the corresponding inverse function
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Φ−1
X : X → {0, 1}K. Assuming all information vectors to be

equally likely, the average energy per symbol can be expressed
asEs = N−12−K

∑

x∈X ‖x‖2 and the average energy per bit
Eb = K−1NEs.

As all symbolssi can be uniquely identified by length-
m binary labels, any CM encoder described above can be
represented as a concatenation of two blocks, as shown
in Fig. 1. The modulator (MOD) carries out a one-to-one
mapping fromm bits to one of theM constellation points.
The modulator is defined as the functionΦS : {0, 1}m → S
with the corresponding inverse functionΦ−1

S : S → {0, 1}m.
We represent a binary labeling by a vectorq = [q1, . . . , qM ],
whereqi is the integer representation of them bits mapped to
the symbolsi, with the most significant bit to the left.

A binary encoder (B-ENC) provides the modulator with
bits to produce a vector of symbolsx. The B-ENC mapsK
incoming bitsc into mN coded bitsb = [b[1], . . . , b[N ]],
where b[k] = [b1[k], . . . , bm[k]] = Φ−1

S (x[k]) ∈ {0, 1}m

and k = 1, . . . , N . All vectors b form a binary code B ⊂
{0, 1}mN , where |B| = |X | = 2K . The B-ENC is defined
as the functionΦB : {0, 1}K → B with the corresponding
inverse functionΦ−1

B : B → {0, 1}K. Throughout the paper,
we assumeB to be a binarylinear code.

The described CM encoder in Fig. 1 generalizes the pro-
posed coding schemes in [2]–[4]. Indeed, it corresponds to
TCM if the B-ENC is a terminated convolutional encoder. If
the B-ENC is a bank ofm parallel encoders, the described
encoder represents an MLC encoder. Finally, it correspondsto
BICM if the B-ENC includes an interleaver.

When using binary phase-shift keying, the function of
the modulator is trivial, and analyzing the CM codeX is
equivalent to analyzing a corresponding binary codeB. This,
however, is not the case when multilevel modulation is used.

In this paper, we study a16-QAM constellation labeled
with a Gray code, which is used in many wireless standards,
see, e.g., [10, Fig. 18-10], [11, Table 7.1.3-1], [12, Fig. 15].
This modulation format can be viewed as a direct product of
two Gray labeled4-ary pulse amplitude modulation (PAM)
constellations [13], and therefore, only the constituent4-PAM
constellation needs to be considered. This constellation is
defined asS = {−3d,−d, d, 3d}, whered is a normalization
factor andsi < si+1.

We consider a real discrete-time memoryless AWGN chan-
nel, i.e., given the channel inputx, the channel output is
Y = x+Z, whereZ is a zero-mean Gaussian random variable
with varianceσ2

Z = N0/2. The conditional probability density
function (PDF) of the channel output is

pY |X(y|x) =
1

√

2πσ2
Z

e
− (y−x)2

2σ2
Z . (1)

A Gaussian distribution with mean valueµ and varianceσ2

is denoted byN (µ, σ2), i.e.,Y ∼ N (x, σ2
Z ).

It is well known that there are4! = 24 labelings for4-PAM.
Due to the symmetry of the constellation and the channel,
the labelingsq = [q1, q2, q3, q4] and q′ = [q4, q3, q2, q1] will
produce equivalent CM codesX andX ′ for any binary codeB,
i.e., if a codewordx belongs to the codeX , then−x belongs

TABLE I
GRAY LABELINGS FOR4-PAM

Labeling q

GL1 [0, 1, 3, 2]
GL2 [0, 2, 3, 1]
GL3 [1, 0, 2, 3]
GL4 [2, 0, 1, 3]

to the codeX ′. The number of labelings is therefore reduced to
12. Four of them are Gray labelings, which are listed in TableI.
In this paper, only Gray labelings are considered.

The most popular Gray labeling is GL1, often referred to as
the binary reflected Gray code (BRGC) [14]–[16]. All these
labelings give the same uncoded bit error rate and BICM
generalized mutual information [17] for the AWGN channel,
thus, they are usually said to be equivalent [15]. However, in
this paper, we consider them separately, as all these labelings
produce different CM codes when used with a given binary
codeB. The difference between the labelings will be evident
later on in Sec. IV.

In this paper, we study two different decoders for the CM
encoder in Fig. 1, which we describe below.

B. Symbol-Wise Decoder

The symbol-wise decoder (S-DEC) shown in Fig. 1 per-
forms maximum likelihood (ML) decoding by computing

ĈX = Φ−1
X

(

argmin
x∈X

{

DX (x)
}

)

, (2)

whereDX (x) =
∑N

k=1 (Y [k]− x[k])2. In other words, the
S-DEC searches for the closest codeword to the observation
Y = [Y [1], . . . , Y [N ]]. Assuming the codewordx ∈ X
is transmitted, an error occurs if there is a codewordx̂ =
[x̂[1], . . . , x̂[N ]] ∈ X , such thatDX (x) > DX (x̂). The
probability of such an event is called the PEP and can be
calculated as

PEPX (x, x̂) = Pr{∆X (x, x̂) < 0}, (3)

wherePr{·} stands for probability and∆X (x, x̂) , DX (x̂)−
DX (x). For future use, we express∆X (x, x̂) as

∆X (x, x̂) = 4d

N
∑

k=1

ΛX (x[k], x̂[k]), (4)

where

ΛX (x[k], x̂[k]) ,
(Y [k]− x̂[k])

2 − (Y [k]− x[k])
2

4d

=
x[k]− x̂[k]

2d
Y [k] +

x̂2[k]− x2[k]

4d
(5)

is called a symbol metric difference (SMD).

C. Bit-Wise Decoder

The bit-wise decoder (B-DEC) shown in Fig. 1 oper-
ates on the bit reliability metrics provided by a demapper
(DEM). The demapper acts independently of the B-DEC and
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calculates a vectorL = [L[1], . . . ,L[N ]], where L[k] =
[L1[k], . . . , Lm[k]] are the logarithmic-likelihood ratios (L-
values). We use the so-called max-log approximation [4,
eq. (3.2)], [5, eq. (2.15)], [17, eq. (12)] for the calculation
of the L-values, i.e.,

Lj [k] =
1

2σ2
Z

[

min
s∈Sj,0

(Y [k]− s)2 − min
s∈Sj,1

(Y [k]− s)2
]

(6)

with j = 1, . . . ,m, where Sj,u ⊂ S is the subset of
constellation points whose labels have the valueu ∈ {0, 1}
in the jth bit position.

The calculated L-values are passed to the B-DEC, which
uses the decoding rule [5, Sec. 2.2], [17, eq. (13)]

ĈB = Φ−1
B

(

argmax
b∈B

{

DB(b)
}

)

, (7)

whereDB(b) = (2b − 1)LT =
∑N

k=1(2b[k] − 1)LT[k] and
(·)T denotes transposition.

The PEP for the B-DEC is given by

PEPB(b, b̂) = Pr{∆B(b, b̂) < 0}, (8)

where∆B(b, b̂) , DB(b)−DB(b̂) is the difference between
the metrics for the transmitted codewordb and the competing
codeword̂b ∈ B. Since the mapping betweenb andx is one-
to-one, with a slight abuse of notation,∆B(b, b̂) can be written
as a function of codewordsx and x̂ instead, i.e.,

∆B(x, x̂) =
σ2
Z

2d

N
∑

k=1

ΛB(x[k], x̂[k]), (9)

where the SMD in this case is

ΛB(x[k], x̂[k]) ,
σ2
Z

d
(Φ−1

S (x[k])− Φ−1
S (x̂[k]))L[k]T. (10)

The B-DEC described above corresponds to the standard
(noniterative) BICM decoder. We refrain from using this name,
as the interleaver might or might not be included in the
transmitter. Moreover, if there is an interleaver, we assume
it to be part of the B-ENC.

The performance of the B-DEC is highly dependent on the
distributions of the L-values. Since the distribution of the L-
values may depend on whether zero or one was transmitted,
symmetrization techniques are usually used in order to sim-
plify the analysis. In [6, Sec. IV], a time-varying labeling
was proposed in order to symmetrize the channel. The same
effect can be achieved by using a random scrambler as in [5,
Sec. 4.1] or [8, Sec. II]. This allows to simplify the analysis by
assuming that the all-zero codeword is transmitted. However,
the symmetrization makes the comparison of the two decoders
unfair and we do not include a scrambler in our analysis,
hence, we consider all possible pairs of codewords when
analyzing codes.

III. SYMBOL VS . BIT DECODER

A. Distribution of the SMDs

To compare the PEP for the S-DEC in (3) and the B-
DEC in (8), we analyze the distributions of the SMDs in (5)
and (10).

TABLE II
DISTRIBUTION PARAMETERS(µ, σ2) FOR THESMD (5) OF THE S-DEC.

CIRCLES, STARS, AND DIAMONDS SHOW THE ERROR VECTORe EQUAL TO
[0, 1], [1, 1], AND [1, 0], RESPECTIVELY, FOR GL3.

x[k] x̂[k] s1 s2 s3 s4
s1 – (1, 1)◦ (4, 4)⋆ (9, 9)⋄

s2 (1, 1)◦ – (1, 1)⋄ (4, 4)⋆

s3 (4, 4)⋆ (1, 1)⋄ – (1, 1)◦

s4 (9, 9)⋄ (4, 4)⋆ (1, 1)◦ –

TABLE III
DISTRIBUTION PARAMETERS(µ, σ2) FOR THESMD (10)OF THE B-DEC.
CIRCLES, STARS, AND DIAMONDS SHOW THE ERROR VECTORe EQUAL TO

[0, 1], [1, 1], AND [1, 0], RESPECTIVELY, FOR GL3.

x[k] x̂[k] s1 s2 s3 s4
s1 – (1, 1)◦ (4, 4)⋆ (3, 1)⋄

s2 (1, 1)◦ – (1, 1)⋄ (4, 4)⋆

s3 (4, 4)⋆ (1, 1)⋄ – (1, 1)◦

s4 (3, 1)⋄ (4, 4)⋆ (1, 1)◦ –

Lemma 1: For 4-PAM with any labeling, the SMDs in (5)
divided by4d are distributed as

ΛX (x[k], x̂[k]) ∼ N (µd, σ2σ2
Z), (11)

where(µ, σ2) are shown in Table II.
Proof: Since the SMDs in (5) are linear functions of the

observationY [k], the SMDs follow a Gaussian distribution.
Whenx[k] = si andx̂[k] = sj , the mean value of the SMD is
µ = (4d2)−1(2(si − sj)si + (s2j − s2i )) = (4d2)−1(si − sj)

2.
The variance can be calculated asσ2 = (4d2)−1(si − sj)

2.
Substituting values ofsi and sj gives the parameters shown
in Table II.

We note that the results in Lemma 1 are valid for any
labeling, not only Gray labelings.

Lemma 2: For 4-PAM with any Gray labeling, the distribu-
tion of the SMDs in (10) can be approximated as

ΛB(x[k], x̂[k]) ∼ N (µd, σ2σ2
Z), (12)

where(µ, σ2) are shown in Table III.
Proof: Since the L-value in (6) is a piece-wise linear

function of the observation, the distribution of the L-value is a
superposition of piece-wise Gaussian distributions, withmean
and variance defined by the linear pieces and the transmitted
symbol. In [18, Sec. 5], [19, Sec. III-C], it has been shown that
at high signal-to-noise ratios (SNR), measured asEs/N0 or
Eb/N0, the so-called zero-crossing (ZcMod) approximation of
such a PDF gives good results in terms of coded bit-error rate
(BER) and mutual information. The results shown in Table III
are obtained from [8, Table II] by scaling the SMDs byσ2

Z .
The distributions are independent of a particular Gray labeling
and depend only on the compared symbols. The tightness of
the ZcMod approximation will be discussed in Sec. III-C.

Comparing Tables II and III, we note that the tables are
identical, except for the corner entries in gray. We will use
this simple observation in the following section to bound the
loss incurred by the B-DEC when compared to the S-DEC.
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B. Pairwise Error Probability Analysis

In this section, we study the asymptotic performance of the
S-DEC and the B-DEC. Throughout the section, we use GL3

for illustration, i.e., symbolssk, k = 1, . . . , 4 are labeled with
[0, 1], [0, 0], [1, 0], and[1, 1], respectively. All discussions and
derivations below apply directly to GL1, and also to GL2 and
GL4 if the labels[1, 0] and [0, 1] are swapped.

Examining Tables II and III, we see that, in many cases,
the distribution of the SMDs depends on the binary vector
e , Φ−1

S (x[k]) ⊕ Φ−1
S (x̂[k]) ∈ {0, 1}2, where⊕ denotes

modulo-2 addition. Whene = [0, 0], the distributions are not
defined (main diagonal of the tables). Fore = [1, 1], the
distribution parameters are(4, 4) (marked with stars in the
tables) and fore = [0, 1], the distribution parameters are(1, 1)
(marked with circles). However, the distribution parameters for
e = [1, 0] are different (marked with diamonds in the tables).
When the compared symbols ares2 and s3, the distribution
parameters are(1, 1), whereas the distribution parameters are
(9, 9) and (3, 1) for the S-DEC and the B-DEC, respectively,
when the compared symbols ares1 ands4 (gray entries of the
tables). We use(µ[0,1], σ

2
[0,1]) for entries marked with circles,

(µ[1,1], σ
2
[1,1]) for entries marked with stars,(µ[1,0], σ

2
[1,0])

for white entries marked with diamonds, and(µX , σ2
X ) and

(µB, σ2
B) for gray entries marked with diamonds for the S-

DEC and the B-DEC, respectively.

We define the set of possible non-zero vectorse as E =
{[0, 1], [1, 0], [1, 1]}. For two codewordsx and x̂ and fore ∈
E , we definewe(x, x̂) as

we(x, x̂) =

N
∑

k=1

I
{

Φ−1
S (x[k]) ⊕ Φ−1

S (x̂[k]) = e
}

, (13)

whereI{·} is the indicator function. In other words,we(x, x̂)
is the number of pairs(x[k], x̂[k]) in x and x̂ such that
Φ−1

S (x[k])⊕Φ−1
S (x̂[k]) = e. In addition, we definewc(x, x̂)

as the number of pairs(x[k], x̂[k]) in x and x̂ such that
(x[k], x̂[k]) = (s1, s4) or (x[k], x̂[k]) = (s4, s1), i.e.,wc(x, x̂)
is the number ofcorner entries (gray entries in Tables II and
III). Clearly, w[1,0](x, x̂) ≥ wc(x, x̂), as the former includes
pairs of symbols counted in the latter. To simplify the notation,
the arguments ofwe(x, x̂) andwc(x, x̂) are omitted when the
arguments are clearly stated in the text.

From Lemmas 1 and 2, it follows that the SMDs are
independent Gaussian random variables. Using the introduced
notation, the PEP for the S-DEC and the B-DEC in (3) and (8)
can therefore be expressed as

PEP(x, x̂) = Q

(

a(x, x̂)
d

σZ

)

, (14)

whereQ(·) is the Gaussian Q-function and the normalized
distancea(x, x̂) is either

aX (x, x̂) =
wc(µX − µ[1,0]) +

∑

e∈E weµe
√

wc(σ2
X − σ2

[1,0]) +
∑

e∈E weσ2
e

(15)
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≈ 1.25 dB
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Fig. 2. The PEP for three different pairs of codewordsx and x̂. Solid
and dashed lines represent analytical PEP in (14) for the S-DEC and the B-
DEC, resp. Filled and empty markers show simulation resultsfor the S-DEC
and the B-DEC, resp. The dotted line shows the exact PEP for the B-DEC
(see Sec. III-C).

for the S-DEC or

aB(x, x̂) =
wc(µB − µ[1,0]) +

∑

e∈E weµe
√

wc(σ2
B − σ2

[1,0]) +
∑

e∈E weσ2
e

(16)

for the B-DEC.
Fig. 2 shows the analytical and the simulated PEP for the S-

DEC and the B-DEC as functions ofd/σZ for three different
pairs of codewordsx and x̂. We note thatd2/σ2

Z is propor-
tional to the SNR. Solid and dashed lines represent analytical
PEP in (14) for the S-DEC and the B-DEC, respectively. For
the codewordsx = [s3, s3] and x̂ = [s1, s1] (circles), the
dashed line coincides with the solid line. Filled markers repre-
sent simulation results for the S-DEC and are exactly on top of
the corresponding solid lines. Empty markers show simulation
results for the B-DEC. Empty squares and diamond agree well
with the analytically predicted PEP; however, empty circles
deviate significantly from the analytical prediction (which is
based on the ZcMod approximation). We note that instead,
empty circles agree well with the dotted line, which is briefly
discussed in the next section.

C. Zero-Crossing Approximation

The SMD in (10) is a linear combination of L-values which
depends on the compared symbols and their binary labels. For
example, ifx[k] = s3 and x̂[k] = s1 and GL3 is used, the
SMD is given byΛB(x[k], x̂[k]) = σ2

Z

d (L1[k]− L2[k]). Since
the L-valuesL1[k] andL2[k] are piece-wise linear functions
of the observationY [k] [19, Fig. 3], so is the SMD. Thus, its
exact distribution is a superposition of piece-wise Gaussian
functions. Letλ be the realization of the random variable
ΛB(x[k], x̂[k]) for a given channel realizationY [k] = y. The
solid line in Fig. 3 shows the SMD as a function of the channel
realizationy and the dash-dotted line shows the distribution
of the observationY [k] given the transmitted symbols3 for
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Fig. 3. The SMDΛB(s3, s1) as a function of the observationy (solid
line) and the ZcMod approximation of the SMD (dashed line) for d = 1.
The dash-dotted line shows the distributionpY |X(y|s3) (not to scale) for
d/σZ = −5 dB.
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Fig. 4. Distribution of the SMDΛB(s3, s1) for d/σZ = −5 dB. The solid
line is the exact PDF and the dashed line shows the approximated PDF using
the ZcMod approximation.

d/σ = −5 dB. The corresponding exact distribution of the
SMD pΛB(s3,s1)(λ) is shown in Fig. 4 with a solid line and
contains a delta function with amplitudeA = 1− 2Q (d/σZ)
due to the horizontal piece of the SMD function in Fig. 3.

The exact PDF is difficult to analyze and approximations
are usually used. The ZcMod approximation approximates the
SMD with a straight line. The line is chosen so that the
exact PDF of the SMD is accurately approximated around
λ = 0. Therefore the line is chosen as a tangent to the
SMD function at λ = 0, i.e., at the zero-crossing. If the
SMD function has multiple zero-crossings, then the zero-
crossing closest to the transmitted symbol is used. The ZcMod
approximation of the SMDΛB(s3, s1) is shown with a dashed
line in Fig. 3 and it results in a Gaussian distribution shown
with a dashed line in Fig. 4. As can be seen from Fig. 4,
the ZcMod approximation approximates well the exact PDF
aroundλ = 0, which makes the ZcMod approximation suitable
for the analysis.

Although the ZcMod approximation has been shown to
be good in terms of coded bit-error rate (BER) and mutual
information [18, Sec. 5], [19, Sec. III-C], a rigorous proofof its
tightness is still missing. This is mainly because such a proof
would require to consider all possible pairs of codewords. In
the following, we show that the approximation is asymptot-
ically tight for the codewordsx = [s3, s3] and x̂ = [s1, s1]
(circles in Fig. 2).

For the codewordsx = [s3, s3] and x̂ = [s1, s1], ∆B(x, x̂)
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Fig. 5. The ratio between the exact PEP (obtained numerically) using the
exact PDF of the SMDs and the PEP predicted by the ZcMod approximation
for the codewordsx = [s3, s3] and x̂ = [s1, s1] (circles in Fig. 2).

in (9) is a sum of two SMDs with the distributions in Fig. 4.
When calculating the PEP, a convolution of these PDFs needs
to be calculated. The peculiarity of these SMDs, whens3 is
transmitted ands1 is a competitor, is that the exact PDFs
contain a Dirac delta function. When two such PDFs are
convolved, the resulting PEP is not well approximated by the
ZcMod approximation. The exact PEP calculated numerically
using the exact PDF is shown with a dotted line in Fig. 2 and,
as expected, it coincides with the simulations for the B-DEC
(empty circles).

To study the asymptotic tightness of the ZcMod approxima-
tion, we show in Fig. 5 the ratio between the exact PEP and the
approximated PEP. This figure shows that for moderate SNR,
the ZcMod approximation underestimates the PEP. However,
the approximation is tight whend/σZ → ∞. This result
was also verified analytically by considering upper and lower
bounds on the exact PEP. Analogous results were obtained for
other pairs of codewords. A behavior similar to what is shown
in Fig. 5 will be observed later on in Sec. IV-C.

D. Asymptotic Pairwise Loss

Using (14) and (15)–(16), we define the asymptotic loss
(whend/σZ → ∞) caused by the B-DEC (compared to the
S-DEC) for any two pairs of codewordsx and x̂ as

L(x, x̂) , 20 log10

(

aX (x, x̂)

aB(x, x̂)

)

. (17)

The following theorem gives a bound on (17).
Theorem 1: For 4-PAM with any Gray labeling,L(x, x̂) ≤

1.25 dB for any two codewordsx and x̂.
Proof: Substituting the values in Tables II and III

into (15)–(16), the normalized distances can be expressed as

aX (x, x̂) =
√

β + 8wc, (18)

aB(x, x̂) = β−1/2(β + 2wc), (19)

where
β =

∑

e

weµe =
∑

e

weσ
2
e. (20)

The loss in (17) is then given by

L(x, x̂) = 20 log10

(

√

β(β + 8wc)

β + 2wc

)

. (21)
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The argument of the logarithm in (21) is a positive function of
β andwc with a single maximum atβ = 4wc. The maximum
value is 2√

3
, which givesL(x, x̂) ≤ 1.25 dB.

From the proof of Theorem 1 it follows that the loss is
zero if wc = 0 and it achieves its maximum ifβ in (20)
is equal to4wc. Using Tables II and III, it is easy to show
that the latter condition is fulfilled for the pair of codewords
x = [s1, s4, s3, s2] andx̂ = [s4, s3, s2, s1], and the asymptotic
loss is1.25 dB, as illustrated by the simulation and analytical
results (squares) in Fig. 2.

IV. A SYMPTOTIC LOSS FORCODES

When all the codewords of a code are considered (e.g., in
a union bound-type of expression [20, Ch. 4]), only the pairs
of codewords at minimum distance will define the high-SNR
performance. Since there is no scrambler in the system, the
analysis cannot be based on the assumption that the all-zero
codeword is transmitted, i.e., all pairs of codewords need to
be considered. Hence, the asymptotic loss for a given codeB
has to be defined as

L(B) , 20 log10

(

minx 6=x̂ aX (x, x̂)

minx 6=x̂ aB(x, x̂)

)

. (22)

In this section, we study the asymptotic loss in (22). We first
consider an arbitrary linear code and then discuss a particular
case of rate-1/2 CCs.

A. Any Linear Code

The next corollary is a straightforward implication of The-
orem 1.

Corollary 1: For 4-PAM with any Gray labeling and any
linear code,L(B) ≤ 1.25 dB. There exist CM codes for which
this bound is exact.

Proof: Let codewordsxi,xj ∈ X minimize the de-
nominator of (22), i.e.,aB(xi,xj) = minx 6=x̂ aB(x, x̂). The
asymptotic loss for the code can then be written as

L(B) = 20 log10

(

minx 6=x̂ aX (x, x̂)

aB(xi,xj)

)

≤ 20 log10

(

aX (xi,xj)

aB(xi,xj)

)

,

which proves the first part. To prove the second part, we
give an example of such a code. Consider a linear code
consisting of two codewordsb1 = [0, 0, 0, 0, 0, 0, 0, 0]
and b2 = [1, 0, 0, 1, 0, 1, 1, 1] used with4-PAM and GL1.
This corresponds to a CM code with two codewordsx1 =
[s1, s1, s1, s1] andx2 = [s4, s2, s2, s3]. From Tables II and
III, it follows that for these two codewordsβ = 4wc. Hence,
L(B) = L(x1,x2) = 1.25 dB.

Even though linear codes with nonzero asymptotic loss
exist, they are not very common due to their special structure,
i.e., the closest paths should consist of a special combination
of symbols. In what follows, we show that for some labelings
and a wide range of linear codes,wc = 0 for the codewords at
minimum distance, and therefore, the asymptotic loss in (22)
is zero.

Theorem 2: For 4-PAM with GL3 or GL4 and any linear
code, the lossL(B) = 0.

Proof: Consider the GL3 labeling. Letx and x̂ be two
different codewords of the codeX with corresponding binary
codewordsb, b̂ ∈ B, such thatwc(x, x̂) 6= 0. For any linear
code,b′ = b⊕b = [0, . . . , 0] andb̂

′
= b̂⊕b are also codewords

of B with correspondingx′, x̂′ ∈ X . As b′ ⊕ b̂
′
= b⊕ b̂, we

conclude thatwe(x
′, x̂′) = we(x, x̂), ∀e ∈ E . From Tables II

and III, it is clear thatwc(x
′, x̂′) = 0, asx′ = [s2, s2 . . . , s2].

Using (18) and the assumption thatwc(x, x̂) 6= 0, we conclude
that for the S-DEC

aX (x, x̂) =
√

β + 8wc >
√

β = aX (x′, x̂′).

Using (19) we show, in a similar way, that for the B-DEC

aB(x, x̂) = β−1/2(β + 2wc) >
√

β = aB(x′, x̂′).

We showed thata(x′, x̂′) < a(x, x̂) for both the S-DEC
and the B-DEC. Hence, for any two codewordsx andx̂ with
wc(x, x̂) 6= 0, there always exist two other codewordsx′ and
x̂
′ with wc(x

′, x̂′) = 0 at a smaller distance. The latter means
that wc(x, x̂) = 0 for any pair of codewordsx and x̂ at
minimum distance, and hence, the loss in (22) is zero. Similar
reasoning directly applies to GL4. This completes the proof.

Remark 1: In other words, the proof of Theorem 2 shows
that for4-PAM with GL3 or GL4 and a linear code, among all
pairs of codewordsx 6= x̂ at minimum distance, there is one
pair such that one of the codewords corresponds to the all-zero
binary codeword. For this case, the minimum distance analysis
can assume that the all-zero codeword was transmitted.

The peculiar property of GL3 and GL4 is that the all-zero
label is assigned to one of the innermost constellation points,
which guarantees thatx = [s2, s2, . . . , s2] ∈ X . This is not
the case for the GL1 and GL2 labelings, where the all-zero
label is assigned to one of the outermost symbols. However,
for these labelings it is still possible to define a family of codes
for which the loss is also zero. This is done in the following
theorem.

Theorem 3: For 4-PAM with GL1, the lossL(B) = 0 if the
linear codeB contains a codewordb′′ = [b′′[1], . . . , b′′[N ]] ∈
B, such thatb′′2 [k] = 1, ∀k. Similarly, for 4-PAM with GL2,
L(B) = 0 if b

′′ ∈ B andb′′1 [k] = 1, ∀k.
Proof: First, we assume that GL1 is used and a codeword

b′′, such thatb′′2 [k] = 1, ∀k, belongs to the codeB. Let x and
x̂ be codewords of the codeX with corresponding binary
codewordsb, b̂ ∈ B, such thatwc(x, x̂) 6= 0. For a linear
code,b′ = b⊕b⊕b′′ and b̂

′
= b̂⊕b⊕b′′ are also codewords

of B with correspondingx′, x̂′ ∈ X . From Tables II and III,
it is clear thatwc(x

′, x̂′) = 0, as x′ = [x′[1], . . . , x′[N ]],
wherex′[k] ∈ {s2, s3}, ∀k. The rest of the proof is similar
to the proof of Theorem 2. Swapping the first and the second
bit positions in GL1, we can analogously prove the second
statement for GL2.

B. Rate-1/2 Convolutional Codes

Bringing together the results for different labelings (Theo-
rems 2 and 3), the conclusion is as follows.
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Corollary 2: For 4-PAM with any Gray labeling,L(B) = 0
if the linear codeB contains codewordsb′′, b′′′ ∈ B, such that
b′′1 [k] = 1, ∀k andb′′′2 [k] = 1, ∀ k.

Many codes satisfy the conditions in Corollary 2, for
instance, all extended Hamming codes, all Reed-Muller codes,
all extended BCH codes, and all extended Golay codes. All
these codes include the all-one codeword. The codes are
extended as they should be of an even length to match the
constellation. For such codes, all the four Gray labelings are
equivalent, in the sense that for a given binary code they
produce fourdifferent CM codes, with thesame minimum
distance for both the S-DEC and the B-DEC.

Rate-1/2 CCs are of particular interest, as they allow an
easy implementation of the ML decoder based on the Viterbi
algorithm. In the following theorem, we show that all rate-1/2
CCs also give a zero asymptotic loss.

Theorem 4: For 4-PAM with any Gray labeling and any
rate-1/2 CC, L(B) = 0.

Proof: Any rate-1/2 CC B can be generated by a gener-
ator matrix G(D) = [g1(D), g2(D)] [21, Ch. 4.2], where
g1(D) and g2(D) are nonzero generator polynomials over
the binary field1. We assume thatg1(D) defines odd bits
of codewordsb1[k], and g2(D) defines even bitsb2[k]. Any
generator matrixG(D) can be put in a systematic form
Gsys(D) = [1, g2(D)/g1(D)]. Thus, an all-one input will
produce a codeword where every odd bit is one, i.e.,b′′, such
that b′′1 [k] = 1, ∀k. Analogously, any generator matrixG(D)
can be put in the formG′

sys(D) = [g1(D)/g2(D), 1], which
means that an all-one input produces a codeword where every
even bit is one, i.e.,b′′′, such thatb′′′2 [k] = 1, ∀k. The three
generator matricesG(D), Gsys(D), andG′

sys(D) generate the
same code, i.e., any rate-1/2 CC B satisfies the conditions of
Corollary 2. This completes the proof.

Remark 2: Using a similar argument to the proof of The-
orem 2, we can show that for codes satisfying conditions
in Corollary 2, wc(x, x̂) = 0 not only for codewords at
minimum distance but also for the first eight terms in the
distance spectrum. We therefore conclude that the bound
developed in [8] is, in fact, a TCM union bound (at least for
the first 8 terms) obtained from the spectrum of abinary code.

C. Application: Optimal Bit-Wise Schemes

In this section, we show how optimal bit-wise schemes can
be found for rate-1/2 CCs. One approach is presented in [8],
where a search over all feedforward encoders was performed.
The alternative approach we use here is to exploit the encoder
equivalence shown in [9], which states that for CCs, different
labelings can be grouped into classes that result in the same
CM codeX . In other words, the same CM codeX can be
obtained by any labeling within a class used together with
a properly modified convolutional encoder. This allows us to
use the results reported in [9] with the set-partitioning (SP)
labeling [2].

For many constellations, including4-PAM, the SP and Gray
labelings belong to the same class [9, Theorem 3]. LetX

1We assume that any CC is realizable (see [21, Ch. 4.2]) and such that
gi(D) 6= 0 for i = 1, 2.

TABLE IV
GENERATOR POLYNOMIALS FOR RATE-1/2 CCS THAT GIVE OPTIMAL

TCM ENCODERS FOR4-PAM WITH THE BRGC

ν G ν G

1 [3, 2] 5 [55, 51]
2 [7, 5] 6 [107, 135]
3 [13, 17] 7 [313, 235]
4 [23, 33] 8 [677, 515]

be a CM code obtained by the CC with generator matrix
GSP(D) = [g1(D), g2(D)] and4-PAM with the SP labeling
given by qSP = [0, 1, 2, 3]. The same CM codeX can be
obtained byGBRGC(D) = [g1(D), g1(D) + g2(D)] and 4-
PAM with GL1. We use this to obtain codes for the optimal bit-
wise schemes, shown in Table IV, from codes for the optimal
TCM schemes presented in [9, Table III]. From now on, we
use octal representation for the generator polynomials and
omit the argumentD of the generator matrix. For memories
ν = 2, 3, 4, 6, 7, the codes in Table IV coincide with the codes
in [8, Table III] (ν = 1, 8 are not reported). For someν, there
may be several encoders with identical performance, which
explains the different codes forν = 5.

Fig. 6 shows the S-DEC and the B-DEC performance for
CCs with memoriesν = 2, 4, 6, 8 in Table IV. As predicted
by the results in Sec. III-D, the B-DEC gives rise to a
higher probability of error at moderate SNRs (the loss is
approximately0.2 dB). The gap between the B-DEC and the
S-DEC decreases when the SNR increases, which is clearly
seen from the curves marked with circles. As Fig. 5 suggests,
the gap between the decoders is expected to be negligible at
d/σZ ≈ 15 dB. This corresponds toEs/N0 ≈ 11 dB, which is
beyond our simulation capabilities. To support the fact that the
gap does indeed disappear at high SNR, in Fig. 7 we show
ratios between the BER curves. As we can see, the curves
behave similarly to the curve in Fig. 5, which confirms the
asymptotic equivalence of the two decoders. At high SNR, the
ratios in Fig. 7 can be interpreted as the loss in the pre-factor
of the Q-function corresponding to the PEP for the codewords
at minimum distance. Numerical analysis for different pairs
of codewords, similar to the one in Sec. III-C, shows that at
asymptotically high SNR, the ratios in Fig. 7 in fact converge
to one, similarly to the ratio in Fig. 5, i.e., the loss in the
pre-factor disappears.

V. CONCLUSIONS

In this paper, we compared the ML symbol-wise decoder
and a suboptimal bit-wise decoder based on max-log L-values.
It was shown that asymptotically, the loss caused by the
use of the suboptimal bit-wise decoder is bounded, and in
many cases equal to zero. The bit-wise decoder studied in
this paper corresponds to the bit-interleaved coded modulation
paradigm and is widely used in many wireless communication
standards. The results in this paper can be seen as a theoretical
justification for its use.

The analysis presented in this paper considered a16-QAM
constellation labeled with any Gray labeling. By means of
numerical simulations, we have also studied two-dimensional
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Fig. 6. BER simulation results for rate-1/2 CCs in Table IV over the AWGN
channel. the S-DEC and the B-DEC are shown with solid and dashed lines,
respectively.
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Fig. 7. Ratios between the BER curves for the B-DEC and the S-DEC
in Fig. 6.

modulations such as 8-PSK and 64-QAM (not included in
the paper). The results in this case also suggest that the
asymptotic loss between symbol-wise and bit-wise decoders
may be bounded. A rigorous analysis of these and other
multilevel modulations is left for future investigation.
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Electrónica) from Universidad Técnica Federico Santa Marı́a, Valparaı́so,
Chile, in 2003 and 2005, respectively. He obtained the degree of Licentiate
of Engineering (Teknologie Licentiatexamen) in 2008 and his PhD degree in
2011, both of them from Chalmers University of Technology, Gothenburg,
Sweden.

From 2011 to 2012, he was a Newton International Fellow at theUniversity
of Cambridge, United Kingdom, funded by The British Academyand The
Royal Society. He is currently a Marie Curie Intra-EuropeanFellow at the
same institution. His general research interests are in theareas of digital
communications, coding, and information theory, and in particular, in the
design of coded modulation systems.



IEEE TRANSACTIONS ON INFORMATION THEORY 9

Dr. Alvarado was a holder of the Merit Scholarship Program for Foreign
Students, granted by the Ministère de l’Éducation, du Loisir et du Sports du
Québec. He is a recipient of the IEEE 2013 Communication Theory Workshop
(CTW) Best Poster Award.
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