

Information Flow in Databases for Free
Master’s Thesis in Computer Science & Engineering

DANIEL SCHOEPE

Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden 2014

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Daniel Schoepe

©Daniel Schoepe, April 2014

Examiner: Andrei Sabelfeld
Supervisor: Andrei Sabelfeld

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden April 2014

Abstract

The root cause for confidentiality and integrity attacks against computing systems is
insecure information flow. The complexity of modern systems poses a major challenge
to secure end-to-end information flow, ensuring that the insecurity of a single component
does not render the entire system insecure. While information flow in a variety of
languages and settings has been thoroughly studied in isolation, the problem of tracking
information across component boundaries has been largely out of reach of the work so
far. This is unsatisfactory because tracking information across component boundaries is
necessary for end-to-end security.

This work proposes a framework for uniform tracking of information flow through both
the application and the underlying database. Key enabler of the uniform treatment is
work by Cheney et al., presented at last year’s ICFP, which studies database manipu-
lation via an embedded language-integrated query language (with Microsoft’s LINQ on
the backend). Because both the host language and the embedded query languages are
both functional F#-like languages, we are able leverage information-flow enforcement for
functional languages to obtain information-flow control for databases“for free”, synergize
it with information-flow control for applications and thus guarantee end-to-end security.
We develop the formal results in the form of a security type system that includes a novel
treatment of algebraic data types and pattern matching, and establish its soundness.
On the practical side, we implement the framework and demonstrate its usefulness in a
case study with a realistic movie rental database.

Contents

Contents

1 Introduction 1
1.1 Securing Heterogeneous Systems . 1
1.2 Information-flow Control . 1
1.3 Programming Language Semantics . 3
1.4 Type Systems . 5
1.5 Database Integration . 6
1.6 Algebraic Data Types . 7
1.7 Contributions . 8

2 Framework 8
2.1 Language . 9
2.2 Operational Semantics . 11
2.3 Security Condition . 14
2.4 Type System . 16
2.5 Soundness Result . 17

3 Implementation 20

4 Algebraic Data Types 21

5 Case Study: Movie Rental Database 26
5.1 Basic Queries . 27
5.2 Algebraic Data Types . 29

6 Detailed soundness proof 32

7 Related Work 35

8 Conclusion 37

i

1 INTRODUCTION

1 Introduction

Increasingly, we trust interconnected software on desktops, laptops, tablets, and smart
phones to manipulate a wide range of sensitive information such as medical, commercial,
and location information. This trust can be justified only if the software is designed,
constructed, monitored, and audited to be robust and secure.

1.1 Securing Heterogeneous Systems

Heterogeneity is a major roadblock in the path of software security. Modern computing
systems are built with a large number of components, often run on different platforms
and written in multiple programming languages.

It is not surprising that systems often break at component boundaries. The OWASP
Top 10 project identifies the ten most critical web application security risks [OWA13].
The top of the list is dominated by attacks across component boundaries: injection
attacks (with SQL injection as the prime example) are number 1 on the list; cross-
site scripting attacks are number 3. In both, untrusted data bypasses inter-component
filtering, which leads executing malicious commands (commonly in SQL or JavaScript)
to compromise confidentiality and integrity.

In the face of complexity and heterogeneity of today’s systems, it is vital to ensure
end-to-end security [SRC84], overarching component boundaries.

1.2 Information-flow Control

The root cause for confidentiality and integrity attacks against computing systems is
insecure information flow. For confidentiality, this implies a possibility of leaking infor-
mation from sensitive sources to attacker-observable sinks. For integrity, this implies a
possibility of data from untrusted sources to compromise data on trusted sinks.

Since applications often legitimately require access to both confidential information
and the internet in order to perform their function, traditional access control mechanism
cannot provide the necessary granularity for ensuring that privacy expectations of users
are respected. As an example, consider a spreadsheet application that a user uses to
manage their finances. Such an application requires access to confidential data belonging
to the user, namely financial records, in order to perform its function. Moreover, the
spreadsheet application requires access to the internet to look up information such as
stock prices.

Another example of this is web applications; web applications are frequently built
using code coming from different sources in addition to ads with executable content.
While the application itself may come from a trusted source, included code in general
and ads in particular cannot necessarily be trusted. For smart phones and tablets there
are similar problems. In addition, in this setting the apps available from one of the many
app stores are published with little or no verification. This opens up an easy way to
inject malicious code onto such devices.

1

1.2 Information-flow Control 1 INTRODUCTION

Nevertheless, many seem to be inclined to trust such programs with access to our
sensitive information either directly or indirectly by allowing them to run on out devices.
The results are similar across all platforms: successful targeted attacks with malicious
code compromise sensitive information with direct negative effects on the users.

In this scenario traditional access control is of no use. The software must be granted
certain access and execution rights for proper functionality. Of equal importance to
access control is what the software does with its rights after permission has been granted.
To provide end-to-end security information flow security tracks any sensitive information
a program is given access to as it flows through the program during execution in order
to prevent the information from being divulged to unauthorized parties.

The relevant question is therefore not whether an application should be granted access
to data, but rather whether the information flow within the application conforms to the
user’s expectations. In the example of a spreadsheet application, the application should
not disclose financial information about the user to any server on the internet.

Noninterference One way to make this notion more precise is to require that private
inputs do not affect public outputs, i.e. confidential Information provided by a user
should not influence the part of the behavior of a program that is observable by an
attacker. Concretely, this could be the content of local files on a user’s computer being
transmitted over the internet to an untrusted server. If a user is unaware of this and
does not want this data to be transmitted, it presents a breach of the user’s privacy
expectations.

This notion was first formalized by Goguen and Meseguer [GM82b] under the name
non-inteference. This formalizes the aforementioned intuition in a language-agnostic
way. When considering a concrete language, we need to state this property in terms of
the semantics of the language under considerations. As mentioned, we follow standard
approaches in the case of functional languages, such as the one by Pottier et. al. [PS02].

Information-flow control mechanisms need to take into account both explicit and im-
plicit flows. The following informal examples will give an intuitive explanation of this
distinction. For simplicity we avoid giving formal meaning to the used pseudo-code and
noninterference notion. A precise definition for the developments in this work can be
found in Section 2.

An explicit flow leaks private information directly over a public channel. As an example
for an explicit flow, consider the following piece of pseudo-code:

secret = read_input(secret_channel)

send(public_channel, secret)

In this example we assume that read_input reads an input value from a channel given
as an argument and send sends out information over a channel given as the first argu-
ment. In this case, the outputs on public_channel (e.g. a connection to an untrusted
web server) directly depends on inputs on secret_channel (e.g. a private file on the
hard disk). Hence, noninterference is violated.

2

1.3 Programming Language Semantics 1 INTRODUCTION

An implicit flow leaks information through the control flow of a program, even when
the secret itself is not sent over a public channel. Consider the following example where
secret is assumed to be a confidential boolean value:

secret = read_input(secret_channel)

if secret

then send(public_channel, 1)

else send(public_channel, 0)

In this case, only constants are sent over a public channel, but the output on pub-

lic_channel still depends on secret inputs. Hence, this program also violates noninter-
ference.

In addition, another side of the increased use of personal electronics is data aggre-
gation. Our use of devices for, for instance, communication, documentation, recreation
and purchases leaves a digital trail with a potential monetary value. There is an ongoing
debate on the dangers of this data aggregation. Regardless, the functionality of many
services require some data to be retained, typically in some form of database, in order
to be accessed at some later point.

In order to successfully guarantee end-to-end security in this setting it is paramount
that the information-flow tracking crosses the boundary between the program itself and
external services, like databases. If this is not done, there is a risk that information can
be laundered. With this in mind and the ubiquity of aggregation of sensitive data in
online databases it is somewhat surprising that relatively little work has been done on
information flow security and databases.

Since the introduction of noninterference, a large, extensively surveyed [SM03b, Gue07,
HS11, Bie13], body of work has studied information-flow control. However, with a few
recent exceptions (discussed in Section 7), the problem of information flow for differ-
ent components has largely been explored in isolation. This is unsatisfactory because
tracking information across component boundaries is necessary for end-to-end security.

Motivated by the above, this work focuses on end-to-end information-flow control for
systems with database components.

1.3 Programming Language Semantics

The work presented here falls within the category of language-based security, meaning
that we try to enforce security properties by designing languages such that all programs
written in it are secure by construction. For such results to be reliable, it is paramount
that such security claims are proven to be true.

To achieve guarantees of this sort, it is necessary to specify precisely, using mathe-
matical concepts, how a program is evaluated. This makes the language amenable to
mathematical reasoning and hence allows to prove general statements about all programs
that can be written in the language.

There are three major approaches to specifying programming language semantics:
Operational semantics specify the meaning of programs by describing how a program
is evaluated to value. Denotational semantics directly assign a mathematical object to

3

1.3 Programming Language Semantics 1 INTRODUCTION

each program in a language. Axiomatic semantics specifies the laws of a programming
language in terms of what can be proven about programs. For more background on
programming language semantics and different styles of reasoning about them, the reader
is referred to [Pie02].

In this work we use operational semantics to reason about the language introduced
in Section 2. In particular, our semantics will be given as small-step semantics. This
means that the meaning of programs is described by how bigger terms are changed into
smaller terms in a step-by-step fashion. For example, in a language featuring addition
and multiplication, the evaluation of an expression like add(12,mult(5, add(7, 3))) can
be divided into the following steps:

add(12,mult(5, add(7, 3))) add(12,mult(5, 10)) add(12, 50) 62

Where is the relation that describes when one term evaluates to another. In this
example, the relation can be specified as an inductively defined set by the following rules:

value(a) value(b)

add(a,b) a+ b

value(a) b b′

add(a, b) a+ b′
a a′

add(a′, b)

value(a) value(b)

mult(a,b) a× b
value(a) b b′

mult(a, b) a+ b′
a a′

mult(a′, b)

value(a) denotes that a has been fully evaluated to an integer and is not a term such
as add(3, 5). Also note that add(a, b) (resp. mult(a,b)) is a syntactic term, while a + b
(resp. a× b) denotes ordinary mathematical addition (resp. multiplication). Moreover,
the above rules enforce that the first argument of an operation is evaluated before the
second. This is desirable in languages such as C, where expressions can have side effects,
making the order of evaluation relevant.

Evaluation contexts One common concept to simplify the construction of these rela-
tions is called evaluation contexts. Intuitively, evaluation contexts can be thought of as
“expressions with a hole in them”, which will then be substituted for another expression.

As an example, note that the previous example contains some amount of duplication
in the rules, since for both addition and multiplication, rules are need to allow eval-
uation “inside” expressions of the form add(a, b) or mult(a, b). This quickly becomes
cumbersome as the number of features in a language increases.

To alleviate this problem in this example, we define evaluation contexts as terms of
the following grammar:

E ::= • | add(E , a) | add(v, E) | mult(E , a) | mult(v, E)

• represents the “hole” in the expression and v must be a fully evaluated value whereas
a can be any expression. For an evaluation context E , we denote replacing • by some
term a with E [a].

4

1.4 Type Systems 1 INTRODUCTION

Using this construction we can then express the same semantics more concisely:

Add
value(a) value(b)

add(a,b) a+ b

Mult
value(a) value(b)

mult(a,b) a× b

Cxt
a a′

E [a] E [a′]

Using these rules, we can evaluate components of more complex expressions using the
third rule with a suitable evaluation context E .

One step in the evaluation of the example add(12,mult(5, add(7, 3))) can then be
performed by setting E = add(12,mult(5, •)) and then applying the rules as in the
following derivation:

Cxt

Add
value(7) value(3)

add(7, 3) 10

(add(12,mult(5, •)))[add(7, 3)] (add(12,mult(5, •)))[10]

Note that (add(12,mult(5, •)))[10] is by definition equal to add(12,mult(5, 10)) and
hence this step exactly matches the evaluation without evaluation contexts. Moreover,
due to the construction of evaluation contexts, this enforces the same evaluation order.

Following [CLW13], evaluation contexts are used in Section 2.1 to present the language
semantics in a more compact form.

1.4 Type Systems

Type systems present an established way to statically ensure the absence of some classes
of errors in programs. Simple examples include adding strings and integers or passing
more parameters to a function than the function expects. More concisely, Pierce [Pie02]
phrases the purpose of type systems as follows:

A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of
values they compute.

Benjamin Pierce, “Types for Programs and Proofs”, [Pie02]

Static type checking has been employed in practice in a variety of programming lan-
guages such as C, Java, or Haskell. In sufficiently expressive type systems, types can
even express arbitrary mathematical statements and type checking amounts to verifying
a proof of these statements, as shown by Curry and Howard [Cur34, How].

Type systems are usually specified as inductively defined relations between a typing
context, a term and a type. This is often written as Γ ` e : t, denoting that e has type
t in context Γ. A typing context usually assigns types to free variables that may occur

5

1.5 Database Integration 1 INTRODUCTION

in the expression e. Such variables are typically introduced by programs that define
functions which take arguments that then occur in the body of the program.

To illustrate this, the type system for the simple arithmetic example from the previous
section could include rules such as the following:

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 × e2 : int

These two rules state that if both operands of an addition (or multiplication) are
integers, then the resulting addition (or multiplication) will result in an integer as well.

A type-checker will then check that a program can be assigned a type using such
typing rules. If this is not possible (for example if the programmer tries to multiply a
string and a number), the program is rejected. Again we refer the reader to [Pie02] for
a more thorough introduction to type systems.

Security type systems While type systems were first thought of to provide an efficient
way of ensuring certain safety properties of programs, such as avoiding that the program
enters an undefined state during execution, they can also be used to ensure security
properties, such as noninterference.

Such approaches have been used in the context of functional languages, for example
by Pottier et. al. [PS02], but also for imperative settings (e.g. [MSS11, SM03b]).

One main advantage of using type systems to ensure that security properties hold, is
that they can often be implemented using traditional type checking techniques, increasing
confidence in the faithfulness of the implementation.

Our work follows Pottier et. al. [PS02] and similar approaches in the sense that
the type system ensures both, safety properties, such as only applying a function to
arguments of the correct type, as well as enforcing information-flow policies.

1.5 Database Integration

Programs commonly access databases via libraries that connect and interact with a
database. If we take SQL as an example, querying is typically done by constructing a
query string that is passed to the database as illustrated below.

let query = "SELECT Name FROM People";

let result = SqlCommand(query, db).execute();

While this is a powerful approach, it comes with inherent shortcomings. First, it offers
no support in the construction of queries. There is no guarantee that the string is a valid
SQL query or that the string has not been a result of an SQL injection. Second, the
returned information is by necessity encoded in a generic way, which makes it both inef-
ficient and error prone to work with. Instead, it is attractive to integrate database query
mechanisms into the language as facilitated, e.g, by Google’s Web Toolkit [GWT14],
Ruby on Rails [rub14], and Microsoft’s LINQ [LIN14].

6

1.6 Algebraic Data Types 1 INTRODUCTION

In a functional setting, an elegant approach to provide language-integrated query is
to use meta-programming based on quotations and antiquotations. This is the approach
taken by Cheney et al. [CLW13], presented at last year’s ICFP. The goal is to provide
access to SQL databases in F# (with Microsoft’s LINQ on the backend). F# provides
quotation via <@ @>, which creates a typed representation of a given F# expression
e. Assuming that e has type t, then <@ e @> is a value of type Expr〈t〉. Antiquotes
(%) provide a way to splice in other typed quoted values into other quoted expression.
This approach capitalizes on the flexible meta-programming capabilities of F# [Sym06].
With this framework we can express the above query in F# in the following way.

let query =

<@ for p in (% db).People do

yield p.Name

@>

let result = run query

The quoted expression is parsed by the F# runtime and the typed result is passed
to run for normalization and evaluation, which produces and performs the actual SQL
query. Note how antiquotation is used to splice in the database allowing the construction
of multiple queries using the same database connection.

1.6 Algebraic Data Types

A feature that is often provided by functional programming languages such as ML or
Haskell, is the ability to define new data types in programs, to allow the user to write
more high-level programs.

One particularly flexible method of supporting user-defined data types is known as
algebraic data types. An algebraic data type consists of one or more constructors, each
of which may take other values as arguments. Moreover, an algebraic data type can
depend on type variables that can occur in the type of arguments to a constructor. The
concept can be illustrated more clearly with a few simple examples.

For instance, algebraic data types allow the programmer to define his own boolean
data type consisting of the values True and False:

type Bool = True | False

A value of the newly defined type Bool can be either the constructor True or the
constructor False. However, algebraic data types are more general than simple enu-
merations. For example, a user could define his own list data type in the following
fashion:

type ’a MyList = Nil | Cons of (’a * ’a MyList)

In this example, the type MyList, taking a type variable ′a as an argument, represents
lists with elements of type ′a. For instance, int MyList would represent a list of integers.

7

1.7 Contributions 2 FRAMEWORK

Nil represents the empty list. Cons (x, xs) represents a list the first element of which
is x and the rest of the list consists of the list xs.

While algebraic data types are a well-known concept in functional programming, they
are rarely considered in the context of information flow. Section 4 presents a treatment
of algebraic data types in the context of information-flow control.

More detailed introductions to algebraic data types can be found in language docu-
mentation for languages that support them, for instance in an introduction to Haskell
by Hudak et. al. [HF92].

1.7 Contributions

The work by Cheney et al. is a key enabler for enforcing end-to-end security in a
uniform functional setting. Because both the host language and the embedded query
languages are both functional F#-like languages, we are able leverage information-flow
enforcement for functional languages to obtain information-flow control for databases
“for free”, synergize it with information-flow control for applications and thus guarantee
end-to-end security.

In a nutshell, the thesis contains the following contributions:
(i) We leverage homogeneous meta-programming to provide information-flow secu-

rity for a subset of F# including database access via the query processing facilities in
Microsoft LINQ, as it is expressed in F#.

(ii) We develop the formal results in the form of a security type system and show that
it enforces the security condition of noninterference [GM82a] (Section 2).

(iii) We present an implementation of the type checker and a translator from our
language to executable F# code (Section 3).

(iv) We develop a novel analysis to treat algebraic data types and pattern matching,
establish its soundness, and implement it as a part of our prototype (Section 4).

(v) We demonstrate the usefulness of our framework by a case study with a realistic
movie rental database (Section 5).

The full soundness proof and the code of the framework and case study are available
online1.

2 Framework

This section presents a simple functional language with support for product types,
records, lists, quoted expressions and antiquotations, the security type system, and shows
that the type system enforces information-flow security with respect to a small-step se-
mantics.

Recall that the fundamental idea is that, since the information-flow of the database
interaction is fully described in the quoted language, the type systems is able to enforce
information-flow security for the database interactions for free.

1http://schoepe.org/~daniel/selinq/

8

http://schoepe.org/~daniel/selinq/

2.1 Language 2 FRAMEWORK

2.1 Language

The language is based on the one used by Cheney et al. [CLW13] with the addition of
security levels to the type system.

Figure 1 shows the syntax of security levels, types, and terms. We write x to denote
a sequence of entities x. For example, f : t is a shorthand for a sequence f1 : t1, f2 :
t2, . . . , fn : tn of typings of record fields.

` ::= ‘L’ | ‘H’

b ::= ‘int’` | ‘string’` | ‘bool’`

t ::= b | t→ t| t ∗ t | {f : t} | (t list)` | Expr〈t〉

T ::= ({f : b}) list`

Γ,∆ ::= · | Γ, x : t

e ::= c | x | op(e) | fun(x)→ e | rec f(x)→ e | (e, e)
| fst e | snd e | {f = e} | e.f | yield e | []
| e @ e | for x in e do e | exists e | lift e | run e
| <@ e @> | (% e) | database(x) | if e then e

Figure 1: Syntax of language and types

We now give some intuition for the language constructs:
We assume that there is a predefined set of constants and operators that is built

into the language. These can include constants such as integers and booleans, and
operators such as addition and multiplication of integers, comparison operations, or
string concatenation. Expressions of the form op(e) denote applying such a built-in
operator op to a sequence of arguments e.

Expressions of the form fun(x)→ e allow constructing a function taking an argument
named x with function body e, where x may occur free in e. Functions with multiple
arguments are constructed by using fun repeatedly. For example, a function taking
arguments x and y and returning their sum, can be expressed by fun(x) → fun(y) →
x + y. rec f(x) → e defines a recursive function f , taking an argument x. In contrast
to fun expressions, the name of function (i.e. f) that is being constructed can occur in
the body e.

(e1, e2) denotes a tuple consisting of expressions e1 and e2, while fst e and snd e allow
deconstructing tuples to retrieve their components.

Records contain named fields f1, . . . , fn and are constructed by assigning expressions
e1, . . . , en to the fields, i.e. by writing {f1 = e1, . . . , fn = en}. Fields can be accessed by
their name f , using expressions of the form e.f .

Lists are constructed using [], yield, and union, where [] denotes the empty list,

9

2.1 Language 2 FRAMEWORK

yield e constructs a singleton list containing only the expression e and e1 @ e2 con-
catenates lists e1 and e2. exists e evaluates to true if and only if the expression e
does not evaluate to the empty list and can be used to check if the result of a query is
empty. Similarly, if e1 then e2 evaluates to e2 if e1 evaluates to true and to [] otherwise.
for x in e1 do e2 is used to express list comprehensions where x is bound successively to
elements in e1 when evaluating e2. The results of evaluating e2 are then concatenated.

run e denotes running a quoted expression e. This usually involves generating an SQL
query based on the quoted term. e1 @ e2 denotes concatenation of e1 and e2. Section 2.2
provides further details. <@ e @> denotes a quoted expression e. The language allows only
closed quoted terms, since this simplifies the semantics of the language and is still able
to express all the desired concepts. Quoted functions can be expressed by abstracting
in the quoted term as opposed to abstracting on the level of the host language. (% e)

denotes an antiquotation of the expression e, and allows splicing of quoted expressions
into quoted expressions in a type-safe way. E.g. the following two programs yield the
same result:

let x = <@ 5 @>

let y = <@ fun z -> 7 + z * (%x) @>

// yields the same result:

let y = <@ fun z -> 7 + z * 5 @>

Security type language The security type language is defined by annotating a standard
type language for a functional fragment with quotations with security levels `. Without
loss of generality the security levels are taken from the two-element security lattice
consisting of a level L for non-confidential information and a level H for confidential
information. Information-flow integrity policies can be expressed dually [BRS10]. The
types are split into base types (b), which can occur as types of columns in tables (T),
and general types (t) which include function types, lists, and quoted expressions.

As is common in this setting, we consider a database to be a collection of tables.
Each table consists of at least one named column. Novel to our setting are security
annotations on columns: each column has a fixed type which is also annotated with a
security level. The security levels on types for database columns express which columns
contain confidential data and which columns do not.

To express security policies for databases, each database is given a type signature.
Such a type signature describes tables as lists of records. Each record field corresponds
to a column in the sense that the field name matches the name of the column in the
database. A column is specified as confidential or public by using a suitable type for the
corresponding field in the record. The ordering of elements in a list used to represent
table contents is irrelevant.

To illustrate the addition of security levels to the type system in the case of databases,
consider the example by Cheney et al. [CLW13] involving a database of people and
couples, PeopleDB. In this scenario, we assume that the names of people are confidential,
while the age is not, which leads to the following type for PeopleDB.

10

2.2 Operational Semantics 2 FRAMEWORK

PeopleDB :

{ People :

{ Id : int^L; Name : string^H; Age : int^L } list^L

; Couples : { Him : int^L ; Her : int^L } list^L }

Now consider the situation where we want to query the database for couples where
the woman is older than her partner. This can be done by iterating once over all couples
in the database and then iterating twice over all people in the database. For each couple
and pair of persons, one then checks if they are part of the couple that is being considered
and checks if the woman is older than the man. If that is the case, the name of the woman
along with the age difference is returned as part of the result, which is a list of records
consisting of a name and the age difference.

let db = <@ database "PeopleDB" @>

type ResultType = {name : string^H ; diff : int^L}

let differences : Expr < ResultType list ^ L > =

<@ for c in (% db).Couples do

for w in (% db).People do

for m in (% db).People do

if (c.Her = w.Id) && (c.Him = m.Id) &&

(w.Age > m.Age) then

yield ({ name = w.Name; diff = w.Age - m.Age })

@>

let main = run differences

As can be seen in the above program the information-flow policy for this program is
specified by giving a type annotation to the quoted expression that generates the query,
i.e. a type annotation for differences. In particular, the name components of the
result are typed as confidential, while the age differences are public. This matches the
policy specified for the database contents, in which the names of people are confidential
while their ages are not. The type system ensures that the result type of differences

is in fact compatible with the policy specified for the database. Changing the security
annotation of the name field from secret to public as follows results in a type error.

// No longer well-typed:

type ResultType = {name : string^L ; diff : int^L}

2.2 Operational Semantics

We denote evaluation of an expression e using database data in Ω to another expression
e′ by e −→Ω e′. Ω is a function that maps database names to the actual content of
the database it refers to, and δ is a mapping that maps operators to their correspond-
ing semantics, for example mapping an addition operator in the language to ordinary
mathematical addition.

11

2.2 Operational Semantics 2 FRAMEWORK

V ::= c | fun(x)→ e | rec f(x)→ e | (V, V) | {f = V }
| yield V @ . . . @ yield V | <@ Q @>

Q ::= c | op(Q) | lift Q | x | fun(x)→ Q | Q Q | (Q,Q)
| {f = Q} | Q.f | yield Q | [] | Q @ Q | for x in Q do Q
| exists Q | if Q then Q | database(db)

E ::= • | [] | op(V , E ,M) | lift E | E e | V E | (E , e) | (V, E)
| {f = V , f ′ = E , f = e} | E .f | yield E | E @ e | V @ E
| for x in E do e | exists E | if E then e | run E
| <@ Q[(% E)] @>

Q ::= • | [] | op(Q,Q, e) | fun(x)→ Q | lift Q | Q e | V Q
| (Q, e) | (Q,Q) | {f = Q, f ′ = Q, f = e} | Q.f
| yield Q | Q @ e | V @ Q | for x in Q do e | for x in Q do Q
| exists Q | if Q then e | if Q then Q | run Q

Figure 2: Values and evaluation contexts

We assume that Ω is consistent with the typing for databases given in Σ: for each
database db, Ω(db) is assumed to be a value of type Σ(db).

The evaluation rules in Figures 2, 3, 4, and 5 follow [CLW13]. Let −→∗Ω be the
reflexive-transitive closure of −→Ω. Evaluation and normalization of the quoted language
is denoted by evalΩ(norm(e)). This evaluation entails generating database queries that
can be executed by actual database servers. In particular, higher-order features such
as nested records or function applications need to be evaluated to obtain computations
that can be expressed in SQL. Figure 6 shows the syntax. We define evalΩ(e) = v if
e −→∗Ω v, where v is a value; similarly we define norm(e) = v if e ∗ e′ and e′ ↪→∗ v.

Details and properties of this evaluation can be found in [CLW13].
The semantics is call-by-value with left-to-right evaluation of terms. This is formalized

using evaluation contexts E . Quotation contexts Q are used to ensure that there are no
antiquotations left of the hole.

We denote substitution of free occurrences of a variable x in expression e with another
expression e′ by e[x 7→ e′].

12

2.2 Operational Semantics 2 FRAMEWORK

op(V) −→ δ(op, V)

(fun(x)→ N) V −→ N [x 7→ V]

(rec f(x)→ N) V −→M [f 7→ rec f(x)→ N, x 7→ V]

fst (V1, V2) −→ V1

snd (V1, V2) −→ V2

{f = V }.fi −→ Vi

if true then M −→M

if false then M −→ []

for x in yield V do M −→M [x 7→ V]

for x in [] do N −→ []

for x in L @ M do N −→ (for x in L do N) @ (for x in M do N)

exists [] −→ false

exists [V] −→ true, |V | > 0

run Q −→ eval(norm(Q))

lift c −→ <@ c @>

<@ Q[(% <@ Q @>)] @> −→ <@ Q[Q] @>

M −→ N

E [M] −→ E [N]

Figure 3: Evaluation rules for host language

(fun(x)→ R) Q R[x 7→ Q]

{f = Q}.fi Qi

for x in yield Q do R R[x 7→ Q]

for y in (for x in P do Q) do R for x in P do (for y in Q do R)

for x in (if P then Q) do R if P then (for x in Q do R)

for x in [] do N []

for x in (P @ Q) do R

(for x in P do R) @ (for x in Q do R)

if true then Q Q

if false then Q []

Figure 4: Symbolic reduction phase

13

2.3 Security Condition 2 FRAMEWORK

for x in P do (Q @ R) ↪→
(for x in P do Q) @ (for x in P do R)

for x in P do [] ↪→ []

if P then (Q @ R) ↪→ (if P then Q) @ (if P then R)

if P then [] ↪→ []

if P then (if Q then R) ↪→ if P && Q then R

if P then (for x in Q do R) ↪→ for x in Q do (if P then R)

Figure 5: Ad-hoc reduction phase

S ::= [] | X | X @ X

X ::= database(db) | yield Y | if Z then yield Y
| for x in database(db).f do X

Y ::= x | {f = Z}

Z ::= c | x.f | op(X) | exists S

Figure 6: Normalized terms

2.3 Security Condition

The goal of the type system is to enforce a notion of noninterference for functional lan-
guages. Noninterference formalizes a notion of computational independence between se-
crets and non-secrets, guaranteeing that no information about the former can be inferred
from the latter. More precisely, this is expressed as the preservation of an equivalence
relation under pairwise execution; given two inputs that are equal in the components
that are visible to an attacker, evaluation should result in two output values that also
coincide in the components that can be observed by the attacker.

To that end this section introduces a notion of low-equivalence denoted by ∼ that
demands that parts of values with types that are annotated with L are equal, while
placing no demands on the secret counterparts. More formally, we introduce a family of
equivalence relations on values parametrized by types.

Definition 1 (∼t). The family of equivalence relations ∼t is defined inductively by the
rules in Figure 7.

When the type is evident from the context, we omit the subscript on ∼. Moreover,
we also write ∼ when referring to sequences of values. Base types are compared using
ordinary equality if the values are considered public. In the case of function types

14

2.3 Security Condition 2 FRAMEWORK

` = L⇒ k = k′

k ∼int` k
′

` = L⇒ k = k′

k ∼string` k′
` = L⇒ k = k′

k ∼bool` k
′

∀v1, v2, v
′
1, v
′
2,Ω1,Ω2.(Ω1 ∼Σ Ω2 ∧ v1 ∼t v2∧

e1[x 7→ v1] −→∗Ω1
v′1 ∧ e2[x 7→ v2] −→∗Ω2

v′2)⇒
v′1 ∼t′ v′2

fun(x)→ e1 ∼t→t′ fun(x)→ e2

∀v1, v2, v
′
1, v
′
2,Ω1,Ω2.

Ω1 ∼Σ Ω2 ∧ v1 ∼t v2∧
e1[f 7→ rec f(x)→ e1, x 7→ v1] −→∗Ω1

v′1∧
e2[f 7→ rec f(x)→ e2, x 7→ v2] −→∗Ω2

v′2 ⇒
v′1 ∼t′ v′2

rec f(x)→ e1 ∼t→t′ rec f(x)→ e2

v1 ∼t1 v′1 v2 ∼t2 v′2
(v1, v2) ∼t1∗t2 (v′1, v

′
2)

v ∼t w
{f = v} ∼{f :t} {f = w}

` = L⇒ (|[v]| = |[w]| ∧ v ∼t w)

[v] ∼(t list)` [w]

∀Ω1,Ω2.Ω1 ∼ Ω2 ⇒
evalΩ1(norm(e1)) ∼t evalΩ2(norm(e2))

e1 ∼Expr〈t〉 e2

Figure 7: Introduction rules for ∼t

and quoted expressions, ∼t corresponds to a notion of noninterference for the presented
language.

Records are related by ∼ if they contain the same fields, and each field’s contents
are also related by ∼. Two lists are required to have the same length if the list type is
annotated with L, but their contents may differ based on the element type.

To illustrate this, consider two lists of integers l1 = yield 1 @ [] and l2 = yield 2 @ [].
If the lists are typed with the type t = (intH list)L, the length of the list is considered
public, while the contents are confidential. If in contrast the type is t′ = (intL list)L,
neither the contents nor the length of the list is confidential. Hence l1 ∼t l2 holds while
l1 ∼t′ l2 does not.

Let Ω be a mapping from database names to database contents. We define low-
equivalence for database mappings structurally in the following way.

Definition 2 (∼Σ). Ω1 ∼Σ Ω2 holds if and only if for all databases db it holds that
Ω1(db) ∼Σ(db) Ω2(db)

With this we are ready to define the top-level notion of security, based on the base-
line policy of noninterference [GM82a]. Since the family of low-equivalence relations is

15

2.4 Type System 2 FRAMEWORK

parametrized by types the definition is done with respect to the initial database type
and the final result type.

Definition 3 (NI (e1,e2)Σ,t). Two expressions e1 and e2 are noninterfering with respect
to the database type Σ and the exit type t if for all Ω1, Ω2, v1 and v2 such that Ω1 ∼Σ Ω2,
and ei −→∗Ωi

vi for i ∈ {1,2} it holds that

v1 ∼t v2

In particular for any given closed expression e, NI (e,e)Σ,t should be read as e is secure
with respect to the security policy expresses by Σ and t, i.e., no secret parts of the
database as defined by Σ are able to influence the public parts of the returned value as
defined by t.

As common [Sys, MZZ+01, Sim03] in this setting, noninterference is termination-
insensitive [VSI96, SM03b] in the sense that leaks via the observation of (non)termination
are ignored.

2.4 Type System

Figure 8 presents the typing rules for the host language. Typing judgments are of the
form Γ ` e : t where Γ is a typing context mapping variables to types, e is an expression,
and t is a type. It denotes that expression e has type t in context Γ.

Figure 9 presents the typing rules for the quoted language. Typing judgments in the
quoted language have the form Γ; ∆ ` e : t, where Γ is the typing context for the host
language and ∆ is the typing context for the quoted language.

Most types contain a level annotation ` that denotes whether or not the “structure”
of the value is confidential. In the case of base types such int or string, this means that
their values are confidential or not. In the case of (t list)`, the level ` indicates whether
or not the length of the list is confidential. If ` = H, the entire list value is considered
a secret, but if the ` = L, the length of the list may be disclosed to a public observer.
However, the elements of the list may or may not be confidential depending on the level
of the elements given by the type t.

Record types, functions, and quoted expression types do not carry an explicit level
annotation, since their security level is contained in sub-components of the type.

In the case of records, it suffices to annotate the type of each field, since the structure
of a record cannot be modified dynamically. The confidentiality of a function is contained
in the level annotation on the result type. The intuition is that, in the absence of side
effects, the only way for a function to disclose information is via its result. For types
for quoted expressions, i.e. types of the form Expr〈t〉, the level annotation is already
contained in t.

We assume that types for operators, constants, and databases are given by the mapping
Σ. Moreover, we also assume that each query only uses a single database.

The typing rules for expressions in the host language and expressions in the quoted
language are nearly identical with a few exceptions:

16

2.5 Soundness Result 2 FRAMEWORK

� Recursion is only allowed in the host language.

� Quotations are only allowed in the host language.

� Expressions of the form database(x) are only allowed in the quoted language.

� Antiquotations are only allowed in the quoted language.

When lists are constructed using yield and [] they can be assigned an arbitrary level.
union expressions reveal information about the structure of both lists and hence their
security levels are combined in the result type. Similarly, exists only reveals information
about the structure of the list, but nothing about the contents. Therefore, the security
level of list contents is discarded and only the security level of the list itself is present in
the result type.

Note that the rule Quote ensures that its arguments are typed in an empty context
for quoted expressions. This expresses that only closed quoted terms are allowed in this
language. Running a quoted expression e of type Expr〈t〉 using run e results in an
expression of type t (rule Run).

Expressions of the form database(db) get their type from the mapping Σ. The rule
Antiquote allows to reference entities defined in the host language from within a quoted
expression. The argument of an antiquotation must itself be a quoted expression.

The rules Sub and SubQ allow raising the security level of an expression. ` ≤ `′ holds
if and only if ` = L ∨ ` = `′ = H.

To illustrate the type system further, we explain the typing rule For rule in greater
detail. Recall that for expressions are used to denote list comprehensions. The typing
rule assigns the resulting list the join of the security level of both sub-expressions. The
following two examples demonstrate why this is required.

Consider the following program that uses a for expression to leak the structure of the
list xs. We assume xs to have type (t list)` for some type t and level `.

for x in xs do yield 1

Since the resulting list will have the same length as xs, the level of the result type
must be at least `. Moreover, the structure of the list produced for each element of xs is
also revealed in the result. Assume that ys has type (t′ list)` and consider the program:

for x in yield 1 do ys

Since this program evaluates to ys, the resulting type must also have at least level `′.
Hence, the typing rule requires the result type to be (t′ list)`t`

′
.

2.5 Soundness Result

As explained above, the soundness result is stated in terms of noninterference, i.e., as
the preservation of a low-equivalence relation under pairwise execution. If we start out

17

2.5 Soundness Result 2 FRAMEWORK

Const
Σ(c) = t

Γ ` c : t`

Var
x : t ∈ Γ

Γ ` x : t

Lift
Γ ` e : t

Γ ` lift e : Expr〈t〉

Fun
Γ, x : t ` e : t′

Γ ` fun(x)→ e : (t→ t′)

Rec
Γ, x : t, f : t→ t′ ` e : t′

Γ ` rec f(x)→ e : t→ t′

Apply
Γ ` e1 : t→ t′ Γ ` e2 : t

Γ ` e1 e2 : t′

Op

Σ(op) = t→ t Γ ` e : t`

Γ ` op(e) : t
⊔
`i

Pair
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 ∗ t2

Fst
Γ ` e : t1 ∗ t2
Γ ` fst e : t1

Snd
Γ ` e : t1 ∗ t2
Γ ` snd e : t2

Record
Γ `M : t

Γ ` {f = M} : {f : t}

Project
Γ ` L : {f : t}
Γ ` L.fi : ti

Yield
Γ `M : t

Γ ` yield M : (t list)`

Nil

Γ ` [] : (t list)`

Union

Γ `M : (t list)` Γ ` N : (t list)`
′

Γ ` N @ M : (t list)`t`
′

For

Γ `M : (t list)` Γ, x : t ` N : (t′ list)`
′

Γ ` for x in M do N : (t′ list)`t`
′

Exists
Γ `M : (t list)`

Γ ` exists M : bool`

If

Γ ` L : bool` Γ `M : (t list)`
′

Γ ` if L then M : (t list)`t`
′

Run
Γ `M : Expr〈t〉

Γ ` run M : t

Quote

Γ; · `M : t

Γ ` <@ M @> : Expr〈t〉

Sub
` ≤ `′ Γ `M : t`

Γ `M : t`
′

Figure 8: Type system for host language

in any two low-equivalent environments then the result of running a well-typed program
will be low-equivalent with respect to the type of the program.

Assuming that the typing of the execution environment corresponds to the capabilities
of the attacker, noninterference guarantees that all information readable by the attacker

18

2.5 Soundness Result 2 FRAMEWORK

ConstQ

Σ(c) = t

Γ; ∆ ` c : t`

FunQ

Γ; ∆, x : t ` e : t′

Γ; ∆ ` fun(x)→ e : t→ t′

VarQ

x : t ∈ ∆

Γ; ∆ ` x : t

ApplyQ

Γ; ∆ ` e1 : t→ t′ Γ; ∆ ` e2 : t

Γ; ∆ ` e1 e2 : t′

OpQ

Σ(op) = t→ t Γ; ∆ `M : t`

Γ; ∆ ` op(M) : t
⊔
`i

PairQ

Γ; ∆ ` e1 : t1 Γ; ∆ ` e2 : t2

Γ; ∆ ` (e1, e2) : t1 ∗ t2

FstQ

Γ; ∆ ` e : t1 ∗ t2
Γ; ∆ ` fst e : t1

SndQ

Γ; ∆ ` e : t1 ∗ t2
Γ; ∆ ` snd e : t2

RecordQ

Γ; ∆ `M : t

Γ; ∆ ` {f = M} : {f : t}

ProjectQ

Γ; ∆ ` L : {f : t}
Γ; ∆ ` L.fi : ti

YieldQ

Γ; ∆ `M : t

Γ; ∆ ` yield M : (t list)`

NilQ

Γ; ∆ ` [] : (t list)`

ExistsQ

Γ; ∆ `M : (t list)`

Γ; ∆ ` exists M : bool`

IfQ

Γ; ∆ ` L : bool` Γ; ∆ `M : (t list)`
′

Γ; ∆ ` if L then M : (t list)`t`
′

UnionQ

Γ; ∆ `M : (t list)` Γ; ∆ ` N : (t list)`
′

Γ; ∆ ` N @ M : (t list)`t`
′

ForQ

Γ; ∆ `M : (t list)` Γ; ∆, x : t ` N : (t′ list)`
′

Γ; ∆ ` for x in M do N : (t′ list)`t`
′

SubQ

` ≤ `′ Γ; ∆ `M : t`

Γ; ∆ `M : t`
′

DatabaseQ

Σ(db) = {f : t}
Γ; ∆ ` database(db) : {f : t}

Antiquote

Γ ` e : Expr〈t〉
Γ; ∆ ` (% e) : t

Figure 9: Typing rules for quoted language

is independent of confidential information. To make the connection between the database
policy Σ and the type system explicit we write Σ ` e : t even though Σ was kept implicit
in the type rules in Figures 8 and 9.

19

3 IMPLEMENTATION

Theorem 1 (Typing soundness). If Ω1 ∼Σ Ω2 and Σ ` e : t, then NI (e,e)Σ,t.

Proof of theorem 1. Immediate from Lemma 1 by expanding the definition of NI since
e is a closed term.

The main generalization necessary for proving this statement consists of quantifying
over arbitrary contexts to yield a sufficiently strong induction hypothesis.

Lemma 1 (Typing soundness (generalized)). If x : t ` e : t, e[x 7→ v1] −→∗Ω1
v′1,

e[x 7→ v2] −→∗Ω2
v′2, Ω1 ∼Σ Ω2 and v1 ∼ v2, then v′1 ∼t v′2.

The proof of this lemma is presented in Section 6.

3 Implementation

Since F# contains an abundance of features not relevant to the current development
we implement a type inference algorithm and compiler for the language presented in
Section 2, rather than attempting to enrich the F# implementation with security types.
Our implementation compiles programs in this language to executable F# code. Given
that the presented language is a subset of F#, the compilation consists mainly of re-
moving level annotations in types in the program and establishing a connection to the
database server.

This allows reusing the F# infrastructure for language-integrated query, as well as the
improvements to this mechanism [CLW13].

The type inference algorithm proceeds by generating constraints between types of
occurring expressions. The algorithm attempts to resolve these constraints using unifi-
cation [DM82]. To allow writing flexible programs, the implementation supports poly-
morphism for both levels and types. To illustrate the compilation, consider the output
of the compiler for the example from Section 2.1 that queries the database for couples
where the woman is older than the man.

// import statements omitted

[<Literal>]

let ConnectionString_PeopleDB =

"Data Source=.\MyInstance;Initial "\

"Catalog=PeopleDB;Integrated Security=SSPI";;

type dbSchema_PeopleDB =

SqlDataConnection<ConnectionString_PeopleDB>;;

let db_PeopleDB = dbSchema_PeopleDB.GetDataContext();;

let db = <@ db_PeopleDB @> ;;

type ResultType = {name : string; diff : int; } ;;

let differences : Expr<ResultType IQueryable> =

<@ query { for c in (%db).Couples do

for w in (%db).People do

for m in (%db).People do

if (c.Her = w.Id) &&

20

4 ALGEBRAIC DATA TYPES

(c.Him = m.Id) &&

(w.Age > m.Age) then

yield { name = w.Name

; diff = w.Age - m.Age } }

@> ;;

let main = PLinq.Query.qquery

{ for x in (%differences) do yield x }

main

The above code example first imports all necessary libraries as well as the implementa-
tion of the supplementary concepts [CLW13]. The subsequent part handles establishing a
connection to the database server running on the same machine. The compiler generates
a separate connection to the server for each database that is used by the program. Type
synonyms and function definitions are compiled in a straight-forward way. The main
difference is that all security levels have been removed from any types in the program.

For technical reasons, F# does not support query generation for quoted list expressions
and therefore the compiler translates occurrences of the list type to IQueryable instead.
Moreover, we translate expressions of the form run e into calls to a function qquery from
the implementation accompanying [CLW13]. This function takes a quoted expression,
translates it into an SQL query, executes it and then returns the results.

Since our approach is purely static, and all security type information is erased during
compilation, performance is unaffected, compared to ordinary F# code. Additionally, by
reusing the results from Cheney et al. [CLW13], we are able to benefit from the optimiza-
tions to F#’s LINQ mechanism presented there. Cheney et al. include a performance
evaluation that is also valid for this implementation.

The code for the implementation is available online at the URL given in Section 1.

4 Algebraic Data Types

We extend the language presented so far with algebraic data types and information-flow
control for them. Algebraic data types allow for the definition of new data types by
composing existing data types. An algebraic data type consists of one or more construc-
tors that can contain another type as their argument, including recursive occurrences of
the defined data type. Pattern-matching is used deconstruct values in an algebraic data
type by matching against the different constructors and parameters. The data contained
in the parameters of a value in the data type can be extracted by giving a variable in
the pattern.

Syntax Without loss of generality, consider an algebraic data type T with type argu-
ment α. Constructors C1, . . . , Cl have the form Ci of ti where ti is the argument to
the constructor. Constructors with no arguments can be considered to take a value of
unit type as an argument. For clarity, we only match on the outermost constructor of
a single expression at a time. To track information flow, a security level annotation is
then added to the type T .

21

4 ALGEBRAIC DATA TYPES

The following terms are added to the syntax of expression in the language:

e ::= . . . | Ci e | match e with C1 x1 → e1 ; . . . ; Cl xl → el

Semantics The semantics is extended with the following rules for evaluation of con-
structors and pattern matching. The set of values, evaluation, and quotation contexts
is also expanded as shown below:

(match Ci v with | C1 x1 → e1 | . . . | Cl xl → el) −→ ei[xi 7→ v]

E ::= . . . | C1 E | . . . | Cl E
| match E with C1 x→ e; . . . ; Cl x→ e

Q ::= . . . | C1 Q | . . . | Cl Q
| match Q with C1 x→ e; . . . ; Cl x→ e

V ::= . . . | Ci V

These rules correspond to the usual semantics of algebraic data types in other func-
tional languages. Constructors with values as arguments are themselves values and
cannot be evaluated further. If a constructor argument is not a value, it is evaluated.
match expressions evaluate the expression that is being matched on first, and then
evaluate the appropriate branch while binding the argument to the constructor to a
name.

Type system To support algebraic data types in the type system, we use two rule
schemas which generate several typing rules for each algebraic data type in the program.
For each algebraic data type with l constructors, one rule for match expressions is added
and l typing rules for the constructors.

The rule schema for constructors takes into account that type arguments to construc-
tors might contain the type that is being defined. In that case their level annotations
need to be combined to keep the structure of the value confidential. T ` ∈ ti holds for all
components of ti of the for α T `.

In the case of match expressions, the structure of the algebraic data type is used
to decide which branch to evaluate. To track this flow of information, the type of the
branches needs to be upgraded to the level annotation of the algebraic data type. For
this, we define an upgrade function upgrade(t, `) which denotes upgrading the type t to
have at least level ` in its outermost components. Figure 10 shows the rule schemas for
algebraic data types.

22

4 ALGEBRAIC DATA TYPES

Constr
e : ti

Γ ` Ci e : T
⊔

T`∈ti
`

Match
Γ ` e : (α T)` ∀1 ≤ i ≤ l.Γ, xi : ti ` ei : t

Γ ` (match e with | C1 x1 → e1 | . . . | Cl xl → el) : upgrade(t, `)

Figure 10: Typing rule schemas for algebraic data types

Definition 4 (Upgrade function). upgrade(t, `) is defined by recursion on the structure
of t.

upgrade(int`, `′) = int`t`
′

upgrade(bool`, `′) = bool`t`
′

upgrade(string`, `′) = string`t`
′

upgrade(t→ t′, `′) = t→ upgrade(t′, `′)

upgrade(t1 ∗ t2, `′) = upgrade(t1, `
′) ∗ upgrade(t2, `′)

upgrade({f : t}, `′) = {f : upgrade(t, `′)}

upgrade((t list)`, `′) = (t list)`t`
′

upgrade(Expr〈t〉, `′) = Expr〈upgrade(t, `′)〉

upgrade((α T)`, `′) = (α T)`t`
′

To be able to extend the soundness result for the type system to algebraic data types,
the family of equivalence relations ∼ also needs to be extended for each algebraic data
type. In doing so, we follow the intuition given for ∼ in the base language. The level
annotation ` on (α T)` corresponds to the confidentiality of the structure of the type,
i.e. which constructor a value is built with. If ` is high, we consider the entire value,
including components, to be confidential.

It should be pointed out that the rule schemas assume that the defined algebraic data
types are well-formed, i.e.

� Recursive occurrences of the defined type must have the same type argument α.

� The only type variables that can occur in arguments to constructors must be type
variables in α.

Soundness The low-equivalence relation is extended to the values of algebraic data
types. As for the built-in list data type, if ` = L, arguments to constructors may or may
not be confidential, depending on their level annotations.

23

4 ALGEBRAIC DATA TYPES

` = L⇒ (i = j ∧ v1 ∼ti v2)

Ci v1 ∼α T ` Cj v2

We prove the same soundness theorem as for the base language in this extended setting.

Theorem 2. If ` e : t, Ω1 ∼Σ Ω2, e −→∗Ω1
v1 and e −→∗Ω2

v2, then v1 ∼t v2.

Proof. Extension of proof for Lemma 1 for the new typing rules that are induced by
algebraic data types.

Note that while the theorem statement is the same, the set of types and expressions
is now larger due to algebraic data types.

Example: lists One common use for algebraic data types is to define recursive struc-
tures such as list. To demonstrate that our extension is capable of support such use
cases, consider the following user-defined list data type:

type ’a MyList =

| Nil

| Cons of (’a, ’a MyList)

Instantiating the above rule schemas for the user-defined list type MyList yields the
following three type rules; two for the constructors, and one for pattern matching.

Γ ` Nil : ′a MyList`
Γ ` e1 : ′a Γ ` e2 : ′a MyList`

Γ ` Cons (e1, e2) : ′a MyList`

Γ ` e : ′a MyList` Γ ` e1 : t Γ, x : (′a, ′a MyList`) ` e2 : t

Γ `match e with | Nil→ e1 | Cons x→ e2 : upgrade(t,`)

The generated rules match the intuitions given for the rest of the type system. Since
match expressions reveal information about the results of the branches (which have
type t) as well as the structure of the list (i.e. level `) that the expression matches on,
the level of the resulting list is upgrade(t, `). Moreover, the type system allows us to
define corresponding functions for the yield, exists, @, and for constructs that are built
into the language. The inferred type of each definition is given as a comment. Since
the implementation sometimes generates extraneous type variables in inferred types that
have no effect on generality, we give slightly simplified but equivalent types here.

// t → (t MyList)`

let yield’ =

fun x -> Cons (x, Nil)

// (t MyList)` → bool`

24

4 ALGEBRAIC DATA TYPES

let exists’ = fun xs -> match xs with

| Nil -> False

| Cons xs’ -> True

// (t MyList)` → (t MyList)` → (t MyList)`

let rec union’ = fun xs -> fun ys -> match xs with

| Nil -> ys

| Cons xs’ -> Cons (fst xs’, union’ (snd xs’) ys)

// (t1 MyList)`1 → (t1 → (t2 MyList)`1t`2)
// → (t2 MyList)`1t`2

let rec for’ =

fun xs -> fun f -> match xs with

| Nil -> Nil

| Cons xs’ -> union’ (f (fst xs’))

(for’ (snd xs’) f)

Note that the types of these functions correspond roughly to the typing rules given for
the built-in constructs. However, in the case of union’ and for’, the type is slightly more
restrictive than the typing rule, due to the way recursion is type-checked. However, these
restrictions only affect the type of arguments and may only require lifting an argument
expression to a higher security level.

Example: trees To further illustrate algebraic data types in the context of information
flow, we discuss another common use, namely tree structures. We define an algebraic
data type for binary trees:

type ’a BinTree =

| Leaf

| Node of ((’a BinTree * ’a) * ’a BinTree)

In the same manner as for the user-defined list type, this will result in one rule for
match expressions and two rules for the constructors:

Γ ` Leaf : (′a BinTree)`
Γ ` e : (((′a BinTree)`1 ∗ ′a) ∗ (′a BinTree)`2)

Γ ` Node e : (′a BinTree)`1t`2

Γ ` e : (′a BinTree)`1t`2

Γ ` e1 : t Γ, x : (((′a BinTree)`1 ∗ ′a) ∗ (′a BinTree)`2) ` e2 : t

Γ `match e with | Leaf→ e1 | Node x→ e2 : upgrade(t,`1 t `2)

The two typing rules for the constructors ensure that confidentiality of the tree struc-
ture is propagated correctly from the subtrees that are passed to the Node constructor.
This construction is analogous to typing rules for lists in that the structure of the tree
might be public while the tree elements might be confidential.

25

5 CASE STUDY: MOVIE RENTAL DATABASE

To illustrate the last point, consider a tree where the structure of the tree is not
confidential while its elements are secrets:

let privTree =

Node ((Leaf, (5 : int^H)),

Node ((Leaf, (6 : int^H)), Leaf))

Since only the content at the leaves is considered private, counting the number of
leaves of this tree can be typed with L:

let rec countLeaves =

fun t -> match t with

| Leaf -> 1

| Node x -> countLeaves (fst (fst x)) +

1 +

countLeaves (snd x)

let result : int^L = countLeaves privTree

In contrast, trying to add all the integers in this tree and annotating the result with
a low type will not type-check, since the computation involves more than merely the
structure of the tree:

let rec sumElements =

fun t -> match t with

| Leaf -> 1

| Node x -> sumElements (fst (fst x)) +

snd (fst x) +

sumElements (snd x)

// this is not well-typed:

let result’ : int^L = sumElements privTree

5 Case Study: Movie Rental Database

In this section we exemplify the type system on a realistic example, a database to
keep track of customer records by a movie rental chain, depicted in Figure 11. The
example data and database schema [ren14] are courtesy of postgresqltutorial.com2.
The database contains information about approx. 16000 rentals, 600 customers, and
1000 movies.

We first introduce a security policy for the database and consider various interesting
queries that can be performed. Using the same setting, we illustrate the use of algebraic
data types.

2Permission has been granted to use the E-R diagram as well as the database in this work.

26

postgresqltutorial.com

5.1 Basic Queries 5 CASE STUDY: MOVIE RENTAL DATABASE

5.1 Basic Queries

The database keeps track of various information related to the movie rentals. Each rental
is associated with a film, a customer, and a payment. The payments contain payment
information and identifies the staff and the customer involved in the transaction. For
both staff and customers address information is stored.

Figure 11: E-R diagram of movie rental database

A reasonable security policy for such a database is to consider the names and exact
addresses of customers and staff as confidential, while the rest of the data is considered
public. In particular, the city of customers and the payment information are not con-
sidered confidential. The former is not a problem unless the city uniquely identifies a
person and the latter does not contain any sensitive information. This security policy
allows for querying the database for various interesting statistical information without
disclosing confidential information about the customers.

Consider, for instance, the following example, which collects all rental ids for a given
city.

let db = <@ database "Rentals" @>

27

5.1 Basic Queries 5 CASE STUDY: MOVIE RENTAL DATABASE

let findCityId =

<@ fun city -> for c in (%db).City do

if c.City1 = city then

yield c.City_id @>

let cityRentals : Expr<string^L -> int^L list^L> =

<@ fun city -> for cid in (%findCityId) city do

for r in (%db).Rental do

for cu in (%db).Customer do

for a in (%db).Address do

if a.City_id = cid &&

cu.Address_id = a.Address_id &&

r.Customer_id = cu.Customer_id

then yield r.Rental_id @>

First in the example is the function findCityId that collects the city ids for a city
of a given name. This function is used in cityRentals to look for rentals by customers
living in that city. Note that while customer data is used, the type system ensures that
only non-sensitive data affects the computation of the result. The rental ids can easily be
used to produce interesting statistics about the relative popularity of films for different
cities.

In contrast, trying to find all customers who rented a particular movie forces the result
to be secret, since the names of the customers are confidential. Thus, the following
program is rejected by the type checker:

let rentalsForMovieTitle =

<@ fun title -> for f in (%db).Film do

for r in (%db).Rental do

for i in (%db).Inventory do

if f.Title = title &&

r.Inventory_id = i.Inventory_id &&

i.Film_id = f.Film_id

then yield r @>

let customersWhoRented

: Expr< string^L -> string^L list^L > =

<@ fun title ->

for r in (%rentalsForMovieTitle) title do

for c in (%db).Customer do

if c.Customer_id = r.Customer_id

then yield c.Last_name @>

The reason for the rightful type error is that first and last names of customers are typed
as stringH while the function customersWhoRented attempts to return a list containing
elements of type stringL. Changing the security annotation to reflect this makes the
type system accept the program.

More complicated queries can be handled with the same ease as the simpler examples

28

5.2 Algebraic Data Types 5 CASE STUDY: MOVIE RENTAL DATABASE

above. Consider, for instance, the following query that finds all movies that were rented
at least twice by the same customer:

let moviesRentedTwice : Expr< int^L list^L > =

<@ for r1 in (%db).Rental do

for r2 in (%db).Rental do

for i in (%db).Inventory do

for f in (%db).Film do

for c in (%db).Customer do

if not (r1.Rental_id = r2.Rental_id) &&

r1.Inventory_id = i.Inventory_id &&

r2.Inventory_id = i.Inventory_id &&

i.Film_id = f.Film_id &&

r1.Customer_id = c.Customer_id &&

r2.Customer_id = c.Customer_id

then yield f.Film_id @>

Thus, the above examples illustrate the power of the method clearly. By giving a
security policy for the contents of the database we are able to track information flow
in advanced queries in term of the information flow of the quoted language. Not only
does this allow us to establish security information flow in programs that interact with
databases, it does so in a way that is intuitively rather simple to understand; an ad-
ditional benefit of expressing the database interaction in a homogeneous way is that it
makes the information flow in the interaction more immediate.

5.2 Algebraic Data Types

To demonstrate the usefulness of information-flow tracking for algebraic data types dis-
cussed in Section 4 in a more practical setting, we will now consider an example demon-
strating information-flow tracking from values stored in the database in conjunction with
user-defined algebraic data types.

One plausible scenario for the use of such a database is to aggregate some information
about the customer in order to make predictions about which movies he might watch
next. For instance, one might want to determine a user’s favorite category along with
the movies he watched in that category. To that end, we can introduce the following
algebraic data type that encodes a category along with a list of movie ids. (We only
consider two categories for simplicity.):

type Category =

| Action of (int^L list^L)

| Scifi of (int^L list^L) ;;

Moreover, this information might be part of a larger record that stores information
about a customer, where some information might be confidential and should not be
used when the program output might be observed by the attacker. As an example, we
consider a program that produces records of the following form:

29

5.2 Algebraic Data Types 5 CASE STUDY: MOVIE RENTAL DATABASE

type UserInfo =

{ uid : int^L

; firstName : string^H

; lastName : string^H

; favoriteCategory : Category^L

} ;;

With this type, information about the favorite movie genre of a user can be used for
prediction purposes, while the actual name of the customer cannot be retrieved without
the resulting program being typed as H.

The following code produces a list of categories along with movie ids that a user,
identified by their id, has rented:

let filmsByCustomer =

<@ fun uid ->

for r in (%db).Rental do

for i in (%db).Inventory do

for f in (%db).Film do

if r.Customer_id = uid &&

r.Inventory_id = i.Inventory_id &&

i.Film_id = f.Film_id

then yield f.Film_id @> ;;

let filmCategories =

<@ fun fid ->

for c in (%db).Category do

for cf in (%db).Film_category do

if cf.Film_id = fid &&

cf.Category_id = c.Category_id

then yield c.Name @> ;;

let userMovieInfo =

<@ fun uid ->

for fid in (%filmsByCustomer) uid do

for cname in (%filmCategories) fid do

yield { catname = cname ; fid = fid } @> ;;

Since it is not possible to generate values of user-defined algebraic data types from
within a query, we first need to produce a record that contains the list of categories and
movie ids returned by userMovieInfo.

let compileStats : Expr< UserInfo list^L > =

<@ for cust in (%db).Customer do

yield { uid = cust.Customer_id

; firstName = cust.First_name

; lastName = cust.Last_name

; movieCategories =

(%userMovieInfo) cust.Customer_id } @>

30

5.2 Algebraic Data Types 5 CASE STUDY: MOVIE RENTAL DATABASE

To turn the information in the movieCategories field into an element of the defined
algebraic data type, the following code counts the given list of movie data and then
produces a value of type Category depending on which category occurs more often.
(This is intentionally not written in a functional style to avoid having to introduce
many additional auxiliary functions commonly found in functional languages.) The code
then constructs a new record with the movieCategories replaced by the users favorite
category.

Note that this computation now takes place in the host language, and security levels
from the query result are propagated to these functions.

let updateCount =

fun minfo -> fun statsrec ->

{ actionMovies =

if’ (minfo.catname = "action")

(yield minfo.fid) [] @

statsrec.actionMovies

; scifiMovies =

if’ (minfo.catname = "scifi")

(yield minfo.fid) [] @

statsrec.scifiMovies }

let emptyCounts = { actionMovies = [] ; scifiMovies = [] }

let countCategories =

fun catList -> fold catList updateCount emptyCounts

let favoriteUserCategory =

fun minfos ->

let statsrec = countCategories minfos

in (if’ (length statsrec.actionMovies >

length statsrec.scifiMovies)

(Action (statsrec.actionMovies))

(Scifi (statsrec.scifiMovies)))

let stats = map (fun x ->

{ uid = x.uid

; firstName = x.firstName

; lastName = x.lastName

; favoriteCategory =

favoriteUserCategory (x.movieCategories) })

(run compileStats)

let getCategories : Category^L list^L =

map (fun x -> favoriteUserCategory

(x.movieCategories))

(run compileStats)

The type system then correctly infers that the computation of the category does in

31

6 DETAILED SOUNDNESS PROOF

fact not depend on confidential information about the user, while the name and email
fields of the resulting records do.

Moreover, attempting to find the favorite category of one particular user, identified by
name, and typing the result with L will be prevented by the type checker. Concretely,
an example such as the following, will be rejected by the type checker:

let attack : Category^L list^L =

for x in getCategories do

if x.firstName = "John" && x.lastName = "Doe"

then yield x.favoriteCategory

6 Detailed soundness proof

This section presents a proof of Lemma 1 as well as its extension to algebraic data types.
Before proving Lemma 1, several auxiliary developments are needed.

Lemma 2. Whenever ` v1, v2 : t` and ` v1, v2 : t`
′

where ` ≤ `′, and v1 ∼t` v2, then
v1 ∼t`′ v2.

Proof. By induction over the structure of t.
If ` = `′, there is nothing to show, so the only case that needs to be considered is ` = L

and `′ = H.
Base types: Immediate from ∼tH for base types, which always holds.
Function types, pair types, record types, Expr〈t〉: These types are not of the form t`,

so there is nothing to prove.
List types: Since ∼(t list)H always holds, the statement follows immediately.

Assumption 1. We assume that all built-in operators preserve ∼:

∀op, v1, v2.v1 ∼ v2 ⇒ δ(op, v1) ∼t δ(op, v2)

Lemma 3. For all types t, we have that v1 ∼upgrade(t,H) v2 for all values v1, v2 : t.

Proof. The proof proceeds by induction over the type t:
Base types: Follows immediately from definition, since the resulting level annotation

on the type will be H (e.g. intH) and values of base types are always related by ∼ if the
level annotation is H.

Function types: Follows immediately from the definition of ∼ for function types and
induction hypothesis for result type.

Record types: By induction hypothesis we have that all fields of both records v1 and
v2 are related by ∼. Then the conclusion follows by definition of ∼ for record types.

Pair types: Analogous to case for records.
List types: Immediate from definition of ∼ for lists, as upgrade((t list)`, H) = (t list)H,

and v1 ∼(t list)H v2 always holds.
Quoted expression type: By induction hypothesis for t.

32

6 DETAILED SOUNDNESS PROOF

We can now prove Lemma 1. For clarity, we repeat the lemma statement here:

Lemma (Typing soundness (generalized)). If x : t ` e : t, e[x 7→ v1] −→∗Ω1
v′1, e[x 7→

v2] −→∗Ω2
v′2, Ω1 ∼Σ Ω2 and v1 ∼ v2, then v′1 ∼t v′2.

Proof. Let v1 ∼ v2 and Ω1 ∼Σ Ω2 and e1[x 7→ v1] −→∗Ω1
v′1 and e2[x 7→ v2] −→∗Ω2

v′2. We
now have to prove that v′1 ∼t′ v′2:

We proceed by mutual induction on the typing derivation for the host and quoted
language, where the proposition to prove for the quoted language is:

If Γ;x : t ` e : t, evalΩ1(norm(e[x 7→ v1])) = v′1, evalΩ2(norm(e[x 7→ v2])) = v′2,
Ω1 ∼Σ Ω2 and v1 ∼ v2, then v′1 ∼t v′2.

Case Const, e = c:
Constants are values and don’t contain free variables or use databases. Therefore

we have that v′1 = v′2 = c and therefore v′1 ∼Σ(t) v
′
2, since equal values are always

low-equivalent.
Case Var, e = y:
Since e is well typed, y occurs in the typing context x : t. Hence, y will be replaced

with values v1,i (resp. v2,i) from v1 (resp. v2), for some i. Since we assume v1 ∼ v2, we
also have that v′1 = v1,i ∼ v2,i = v′2, as desired.

Case Fun, e = fun(y)→ e′ : (t→ t′`)`:
First note that in this case e is a value, so v′1 = v′2 = e. By induction hypothesis we

have that whenever e′[x 7→ vi]→Ωi v
′
i (for some i = 1,2 and some vi, v

′
i), then v′1 ∼t′ v′2.

Hence the conclusion follows by the definition of ∼ for function types.
Case Rec, e = rec y(e′)→: (t→ t′`)`:
Analogous to case for Fun, except that the induction hypothesis is applied with a

context that also includes y.
Case Apply, e = f e′ : t`:
By the premises of Apply we have that e′ : t′ and f : (t′ → t). By induction hypothesis

we have that e′[x 7→ v1] and e′[x 7→ v2] evaluate to values related by ∼t′ . Also, by
induction hypothesis we have that f [x 7→ v1] and f [x 7→ v2] evaluate to functions related
by ∼. Hence by the definition of ∼ for functions, we conclude that if (f e′)[x 7→ vi]→∗Ωi

v′i
(for i = 1,2), then v′1 ∼t` v′2.

Case Op, e = op(M) : t′`
′
:

In this case we have Σ(op) = t → t′ and Γ `M : t` with `′ =
⊔
`i. By induction

hypothesis we get that all arguments evaluate to values related by ∼. Then the statement
follows using Assumption 1.

Case Pair, e = (e1, e2) : t1 ∗ t2:
By induction hypothesis we have that if e1[x 7→ vi] −→Ωi v

′
i for i = 1,2 and v1 ∼ v2,

then v′1 ∼t1 v′2 and analogously for e2[x 7→ vi] −→∗Ωi
w′i. In that case, we have that

e[x 7→ vi] −→∗Ωi
(v′i, w

′
i). By definition of ∼t1∗t2 it follows from v′1 ∼t1 v′2 and w′1 ∼t2 w′2,

that (v′1, w
′
1) ∼t1∗t2 (v′2, w

′
2) as desired.

Case Fst, e = fst e′ : t′1 where x : t ` e′ : t′1 ∗ t′2:
By induction hypothesis , if e′[x 7→ vi] −→∗Ωi

v′i, then v′i = (w′i, z
′
i) (for i = 1,2) and

(w′1, z
′
1) ∼t′1∗t′2 (w′2, z

′
2). By definition of ∼t′1∗t′2 , this entails that w′1 ∼t′1 w

′
2, which are

the evaluation results for e[x 7→ vi].

33

6 DETAILED SOUNDNESS PROOF

Case Snd, e = snd e′ : t′2 where x : t ` e′ : t′1 ∗ t′2:
Analogous to case Fst.
Case Record, e = {f = M}:
By induction hypothesis we have that for every Mi in M , it holds that if Mi[x 7→

vj] −→∗Ωj
v′j (for j = 1,2), then v′1 ∼ v′2. Since ∼ for record types relates records with

the same fields containing related values, this concludes the case.
Case Project, e = e′.f :
By induction hypothesis , if e′[x 7→ wi] −→∗Ωi

w′i (for i = 1,2), then w′1 ∼ w′2. Since e′

is typed as a record, we have that the fields of w′1 and w′2 are related by ∼. Since f is
one of those fields, the results of evaluating e[x 7→ vi] for i = 1,2 are also related by ∼,
concluding the case.

Case Yield, e = yield e′ : (t′ list)` and e′ : t:
By induction hypothesis we have that e′[x 7→ vi] −→∗Ωi

v′i ⇒ v′1 ∼t′ v′2 (for i = 1,2.
Hence the desired conclusion follows by the definition of ∼(t′ list)` : If ` = H, there is
nothing to prove. Otherwise, the lists contain one element each and their elements are
related by ∼.

Case Nil, e = []: Immediate.
Case Union, e = M@N : (t′ list)`t`

′
where M : (t′ list)` and N : (t′ list)`

′
:

By induction hypothesis we get that M [x 7→ vi] −→∗Ωi
v′i ⇒ v′1 ∼t′ list v

′
2 and N [x 7→

vi] −→∗Ωi
v′i ⇒ v′i for i = 1, 2 and any v′i. If either ` = H or `′ = H, there is nothing to

show, since in this case ` t `′ = H.
If `, `′ = L, we have that the resulting lists for both M and N must have the same

lengths and the elements are related by ∼t. Hence, the concatenation of these lists is
related by ∼(t′ list)`t`′ .

Case For, e = for y in M do N : (t′ list)`t`
′

where M : (t′′ list)` and N : (t′ list)`
′
:

Again we only need to consider ` = L ∧ `′ = L, since the goal is trivial otherwise.
By induction hypothesis we have that M [x 7→ vi] −→∗Ωi

v′i ⇒ v′1 ∼(t′′ list)` v
′
2. Since

e evaluates to a value, we have M [x 7→ vi] −→∗Ωi
wi for some w1, w2, where |w1| = |w2|

since ` = L.
We then show the main goal by induction over the structure of w1 and w2:
Case w1 = w2 = []: The conclusion follows immediately, since the entire for-expression

then evaluates to [] regardless of N .
Case w1 = [w′1] and w2 = [w′2]: In this case, e evaluates to the result of N [x 7→ vi][y 7→

w′i] for i = 1,2.
By the induction hypothesis we also obtain that whenever N [x 7→ vi][y 7→ w′i]→∗Ωi

v′i,
then v′1 ∼(t′ list)`′ v

′
2, which concludes this case.

Case w1 = w′1 @ w′′1 and w2 = w′2 @ w′′2 : Follows by induction hypotheses for the two
sub-lists.

Case Exists, e = exists M : bool` where M : (t list)`: If ` = H, we are done.
Otherwise we have from the induction hypothesis that M [x 7→ vi] −→∗Ωi

v′i ⇒ v′1 ∼(t list)`

v2. Hence, the resulting lists must have the same number of elements, which entails the
same result for the entire expression.

Case If, e = if M then N : (t′ list`t`
′
) where M : (t′′ list)`) and N : (t′ list)`

′
:

34

7 RELATED WORK

By induction hypothesis we have that M [x 7→ vi] −→∗Ωi
v′i ⇒ v′1 ∼(t′′ list)` v

′
2. Again,

the goal is trivial if ` = H or `′ = H.
Otherwise, we have evaluating M [x 7→ vi] results in the same boolean for i = 1,2, and

hence we know from the induction hypothesis that evaluation of N [x 7→ vi] also yields
related results.

Case Run, e = run e′ : t where e′ : Expr〈t〉: Follows by induction hypothesis for the
quoted language.

Case Lift, e = lift e′: Immediate for the induction hypothesis for e′.
Case Sub, ` ≤ `′: See lemma 2.
The cases for the typing rules for the same constructs in the quoted language, are

practically identical to the previous cases. We now prove the cases specific to the type
system for the quoted language:

Case Antiquote, e = (% e′): Follows trivially from induction hypothesis .
Case Database, e = database(db): Follows from the assumption that Ω1 ∼Σ Ω2,

since evaluation of e results in Ωi(db) for i = 1,2.

Extension to algebraic data types: We now prove the cases for algebraic data types
in the language. Again we assume that the algebraic data type is of the form α T =
C1 t1| . . . |Cl tl with α being a (possibly empty) product of type variables, which can
occur in t1, . . . , tl.

Case Constr, e = Ci e
′ where e : α T

⊔
T`∈ti

`
:

Let `′ =
⊔
T `∈ti `. If `′ = H, there is nothing to prove.

Let `′ = L. According to the semantics for constructor applications, we have that
v′1 = Ci v

′′
1 and v′2 = Ci v

′′
2 , where e′[x 7→ vi] −→∗Ωi

v′′i . By the induction hypothesis for
the typing derivation of e′ we have that v′′1 ∼ti v′′2 . By definition of ∼ for constructors,
this entails that v′1 ∼ v′2.

Case Match, e = match e′ with Ci xi → ei:
Let x : t ` e : t′`t`

′
, x : t ` ei : t′`

′
for i = 1, . . . , l, and e′ : α T `. If ` = H, we

conclude with Lemma 3. If ` = L and e′[x 7→ vj] −→∗Ωi
v′′j for j = 1,2, then by induction

hypothesis for the typing derivation of e′ and definition of ∼ for constructors, we have
that v′′j = Ck v

′′′
j for some k where 1 ≤ k ≤ l. Therefore, the same branch ek will be

executed for e[x 7→ v1] and e[x 7→ v2]. By induction hypothesis for the typing derivation
of ek, we have again that if ek[x 7→ vj] −→∗Ωi

w′j , then w′1 ∼t′`′ w
′
2, which concludes this

case, as e[x 7→ xj] −→∗Ωi
w′j .

7 Related Work

Until recently, little work has been on bridging information-flow controls for applica-
tions [SM03b, Gue07, HS11, Bie13] and databases they manipulate. While mainstream
database management systems such as PostgreSQL [Pos14], SQLSever [SQL14], and
MySQL [MyS14] include protection mechanisms at the level of table and columns, as is,
these mechanisms are decoupled from applications.

35

7 RELATED WORK

Below, we focus on the work that shares our motivation of integrating the security
mechanisms of the application and database, with the goal of tracking information flow.

WebSSARI by Huang et al. [HYH+04] is a tool that combines static analysis with
instrumented runtime checks. The focus is on PHP applications that interact with an
SQL database. The system succeeds at discovering a number vulnerabilities in PHP
applications. Given its complexity, its soundness is only considered informally.

Li and Zdancewic [LZ05b] present an imperative security-typed language suitable for
web scripting and a general architecture that includes a data storage, access control,
and presentation layers. The focus is on suitable labels for confidentiality and integrity
policies as well as the possibilities of safe label downgrading [SS09]. No soundness results
for the type system are reported.

A line of work has originated from, or influenced by, from Links by Cooper et al. [CLWY06],
a strongly-typed multi-tier functional language for the web. Links supports higher-order
queries. On the other hand, Links comes with a non-standard database backend, making
its interoperability non-trivial.

DIFCA-J by Yoshihama et al. [YYW+07] is an architecture for dynamic information-
flow tracking in Java. The architecture covers database queries as performed by Java
programs via Java DataBase Connectivity (JDBC) APIs.

Baltopoulos and Gordon [BG09] study secure compilation by augmenting the Links
compiler with encryption and authentication of data stored on the client. Source-level
reasoning is formalized by a type-and-effect system for a concurrent λ-calculus. Refine-
ment types are used to guarantee that integrity properties of source code are preserved
by compilation.

SELinks by Corcoran et al. [CSH09] also builds on Links. With the Fable type system
by Swamy et al. [SCH08] at the core, the authors study the propagation of labels, as
described by user-defined functions, through database queries. Fable’s flexibility accom-
modates a variety of policies, including dynamic information-flow control, provenance,
and general safety policies based on security automata.

DBTaint by Davis and Chen [DC10] shows how to enhance database data types with
one-bit taint information and instantiate with two example languages in the web context:
Perl and Java.

Chlipala’s UrFlow [Chl10] offers a static information-flow analysis as part of the
Ur/Web domain-specific language for the development of web applications. Policies
can be defined in terms of SQL queries. User-dependent policies are expressed in terms
of the users’ runtime knowledge.

Caires et al. [CPS+11] are interested in type-based access control in data-centric sys-
tems. They apply refinement types to express permission-based security, including cases
when policies dynamically depend on the state of the database. This line of work leads to
information-flow analysis by Lourenço and Caires [LC13]. This analysis is presented as
a type system with value-indexed security labels for λ-calculus with data manipulation
primitives. The type system is shown to enforce noninterference.

Hails by Giffin et al. [GLS+12] is a web framework for building web applications
with mandatory access control. Hails supports a number of independently such useful

36

8 CONCLUSION

design pattern as privilege separation, trustworthy user input, partial Lourenço and
Caires [LC13] update, delete, and privilege delegation.

IFDB by Schultz and Liskov [SL13] proposes a database management system with
decentralized information-flow control. IFDB is implemented by modifying PostgreSQL
as well as modifying application environments in PHP and Python. The underlying
model is the Query by Label model that provides abstractions for managing information
flows in a relational database. This powerful model includes confidentiality and integrity
labels, and models decentralization and declassification.

LabelFlow by Chinis et al. [CPIA13] dynamically tracks information flow in PHP. It is
designed to deal with legacy applications, and so it transparently extends the underlying
database schema to associate information-flow labels with every row.

The SLam calculus by Heintze and Riecke [HR98] pioneers information-flow control in
a functional setting. The security type system treats a simple language with first-class
functions, based on the λ-calculus. This is the first illustration of how noninterference
can be enforced in the functional setting. Our security type system adopts as the starting
point the security type system by Pottier and Simonet [PS02], which they have developed
for a core of ML, and which serves as the base for the Flow Caml tool [Sim03]. Compared
to that work, our system includes the formalization and implementation of algebraic data
types and pattern matching. Experiments with Flow Caml indicate support for algebraic
data types but without evidence of soundness [PS02].

The tools like SIF [CVM07], SWIFT [CLM+09], and Fabric [LGV+09] allow the pro-
grammer to enforce powerful policies for confidentiality and integrity in web applications.
The programmer labels data resources in the source program with fine-grained policies
using Jif [MZZ+01], an extension of Java with security types. The source program is
compiled against these policies into a web application where the policies are tracked by
a combination of compile-time and run-time enforcement. The ability to enforce fine-
grained policies is an attractive feature. At the same time, SIF and SWIFT do not
provide database support. Fabric supports persistent storage while leaving interoper-
ability with databases for future work.

A final note on related work is that care has to be taken when setting security poli-
cies for sensitive databases. Narayanan and Shmatikov’s widely publicized work [NS08]
demonstrates how to de-anonymize data from Netflix’ database (where names were
“anonymized” by replacing them with random numbers) using publicly available external
information from sources as the Internet Movie Database [imd14].

8 Conclusion

We have presented a uniform security framework for information-flow control in a func-
tional language with language-integrated queries (with Microsoft’s LINQ on the back-
end). Because both the host language and the embedded query languages are both
functional F#-like languages, we are able leverage information-flow enforcement for func-
tional languages to obtain information-flow control for databases “for free”, synergize it
with information-flow control for applications and thus guarantee end-to-end security.

37

References References

We have developed a security type system with a novel treatment of algebraic data
types and pattern matching, and established its soundness. We have implemented the
framework and demonstrated its usefulness in a case study with a realistic movie rental
database.

A natural direction for future work includes support of declassification [SS09] policies.
This will enable more fine-grained labels and richer scenarios with intended information
release. The functional setting allows for particularly smooth integration of policies of
what [SS01, LZ05a, LZ05b] is released, where we can express aggregates through escape
hatches [SM03a], as represented by functions with no side effects. We believe that
enriching the model with these policies will also open up for direct connections to the
database inference [DF02] problem, much studied in the area of databases.

Acknowledgments

Thanks are due to Phil Wadler whose talk on language-integrated queries at Chalmers
was an excellent inspiration for this work.

References

[BG09] Ioannis G. Baltopoulos and Andrew D. Gordon. Secure compilation of a multi-tier
web language. In TLDI, pages 27–38, 2009.

[Bie13] Nataliia Bielova. Survey on JavaScript security policies and their enforcement mech-
anisms in a web browser. J. Log. Algebr. Program., pages 243–262, 2013.

[BRS10] Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Unifying Facets of Infor-
mation Integrity. In ICISS, pages 48–65, 2010.

[Chl10] Adam Chlipala. Static Checking of Dynamically-Varying Security Policies in
Database-Backed Applications. In OSDI, pages 105–118, 2010.

[CLM+09] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and
Xin Zheng. Building secure web applications with automatic partitioning. Commun.
ACM, 52(2):79–87, 2009.

[CLW13] James Cheney, Sam Lindley, and Philip Wadler. A practical theory of language-
integrated query. In ICFP, pages 403–416. ACM, 2013.

[CLWY06] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web Program-
ming Without Tiers. In FMCO, pages 266–296, 2006.

[CPIA13] Georgios Chinis, Polyvios Pratikakis, Sotiris Ioannidis, and Elias Athanasopoulos.
Practical information flow for legacy web applications. In ICOOOLPS, pages 17–28,
2013.

[CPS+11] Lúıs Caires, Jorge A. Pérez, João Costa Seco, Hugo Torres Vieira, and Lúcio Ferrão.
Type-Based Access Control in Data-Centric Systems. In ESOP, pages 136–155, 2011.

38

References References

[CSH09] Brian J. Corcoran, Nikhil Swamy, and Michael W. Hicks. Cross-tier, label-based
security enforcement for web applications. In SIGMOD Conference, pages 269–282,
2009.

[Cur34] H. Curry. Functionality in combinatorial logic. In Proceedings of National Academy
of Sciences, volume 20, pages 584–590, 1934.

[CVM07] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing Confidentiality and Integrity
in Web Applications. In Proc. USENIX Security Symposium, pages 1–16, August
2007.

[DC10] Benjamin Davis and Hao Chen. DBTaint: Cross-application Information Flow Track-
ing via Databases. In WebApps, pages 12–12. USENIX Association, 2010.

[DF02] Josep Domingo-Ferrer, editor. Inference Control in Statistical Databases, From The-
ory to Practice, volume 2316 of LNCS. Springer, 2002.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
POPL, pages 207–212. ACM, 1982.

[GLS+12] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C.
Mitchell, and Alejandro Russo. Hails: Protecting Data Privacy in Untrusted Web
Applications. In OSDI, pages 47–60, 2012.

[GM82a] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc. IEEE
SP, pages 11–20, April 1982.

[GM82b] Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In
IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[Gue07] G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow Anal-
yses. PhD thesis, Kansas State University, 2007.

[GWT14] Google Web Toolkit. http://www.gwtproject.org/, 2014. Accessed: 2014-02-20.

[HF92] Paul Hudak and Joseph H. Fasel. A Gentle Introduction to Haskell. SIGPLAN
Notices, 27(5):1–, 1992.

[How] William Howard. The formulae-as-types notion of construction. pages 479–490.

[HR98] Nevin Heintze and Jon G. Riecke. The SLam Calculus: Programming with Secrecy
and Integrity. In POPL, pages 365–377, 1998.

[HS11] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control. Proc.
of the 2011 Marktoberdorf Summer School. IOS Press, 2011.

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-
Yen Kuo. Securing web application code by static analysis and runtime protection.
In WWW, pages 40–52, 2004.

[imd14] Internet Movie Database. http://www.imdb.com/, 2014. Accessed: 2014-02-20.

[LC13] Lúısa Lourenço and Lúıs Caires. Information Flow Analysis for Valued-Indexed Data
Security Compartments. In TGC, 2013.

39

http://www.gwtproject.org/
http://www.imdb.com/

References References

[LGV+09] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers.
Fabric: a platform for secure distributed computation and storage. In SOSP, pages
321–334, 2009.

[LIN14] LINQ (Language-Integrated Query). http://msdn.microsoft.com/en-us/

library/bb397926.aspx, 2014. Accessed: 2014-02-20.

[LZ05a] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference. In
POPL, pages 158–170, 2005.

[LZ05b] Peng Li and Steve Zdancewic. Practical Information-flow Control in Web-Based
Information Systems. In CSFW, 2005.

[MSS11] Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions and Guarantees
for Compositional Noninterference. In CSF, pages 218–232. IEEE Computer Society,
2011.

[MyS14] Privileges Provided by MySQL. https://dev.mysql.com/doc/refman/5.1/en/

privileges-provided.html, 2014. Accessed: 2014-02-20.

[MZZ+01] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java Infor-
mation Flow. Software release. Located at http://www.cs.cornell.edu/jif, July
2001.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust De-anonymization of Large Sparse
Datasets. In IEEE Symp. on Security and Privacy, 2008.

[OWA13] OWASP Top 10: Ten Most Critical Web Application Security Risks. https://www.
owasp.org/index.php/Top_10_2013-Top_10/, 2013. Accessed: 2014-02-20.

[Pie02] Benjamin Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,
2002.

[Pos14] Database Roles and Privileges. http://www.postgresql.org/docs/9.0/static/

user-manag.html, 2014. Accessed: 2014-02-20.

[PS02] François Pottier and Vincent Simonet. Information flow inference for ML. In POPL,
pages 319–330. ACM, 2002.

[ren14] PostgreSQL sample database. http://www.postgresqltutorial.com/

postgresql-sample-database/, 2014. Accessed: 2014-02-20.

[rub14] Ruby on Rails. http://rubyonrails.org/, 2014. Accessed: 2014-02-20.

[SCH08] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A Language for Enforc-
ing User-defined Security Policies. In IEEE Symp. on Security and Privacy, 2008.

[Sim03] Vincent Simonet. The Flow Caml system. Software release. Located at http://

cristal.inria.fr/~simonet/soft/flowcaml, 2003.

[SL13] David A. Schultz and Barbara Liskov. IFDB: decentralized information flow control
for databases. In EuroSys, pages 43–56, 2013.

40

http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
https://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html
https://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html
http://www.cs.cornell.edu/jif
https://www.owasp.org/index.php/Top_10_2013-Top_10/
https://www.owasp.org/index.php/Top_10_2013-Top_10/
http://www.postgresql.org/docs/9.0/static/user-manag.html
http://www.postgresql.org/docs/9.0/static/user-manag.html
http://www.postgresqltutorial.com/postgresql-sample-database/
http://www.postgresqltutorial.com/postgresql-sample-database/
http://rubyonrails.org/
http://cristal.inria.fr/~simonet/soft/flowcaml
http://cristal.inria.fr/~simonet/soft/flowcaml

References References

[SM03a] A. Sabelfeld and A. C. Myers. A Model for Delimited Information Release. In ISSS,
volume 3233 of LNCS, pages 174–191, 2003.

[SM03b] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, pages 5–19, 2003.

[SQL14] Authorization and Permissions in SQL Server. http://msdn.microsoft.com/en-

us/library/bb669084(v=vs.110).aspx, 2014. Accessed: 2014-02-20.

[SRC84] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-To-End Arguments in
System Design. ACM Trans. Comput. Syst., pages 277–288, 1984.

[SS01] A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Sequential
Programs. Higher Order and Symbolic Computation, 14(1):59–91, March 2001.

[SS09] A. Sabelfeld and D. Sands. Declassification: Dimensions and Principles. J. Computer
Security, 17(5):517–548, January 2009.

[Sym06] Don Syme. Leveraging .NET Meta-programming Components from F#: Integrated
Queries and Interoperable Heterogeneous Execution. In Workshop on ML, pages
43–54. ACM, 2006.

[Sys] Praxis High Integrity Systems. SPARKAda Examinar. Software release. http:

//www.praxis-his.com/sparkada/.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow Analysis.
J. Computer Security, 4(3):167–187, 1996.

[YYW+07] Sachiko Yoshihama, Takeo Yoshizawa, Yuji Watanabe, Michiharu Kudo, and Kazuko
Oyanagi. Dynamic Information Flow Control Architecture for Web Applications. In
ESORICS, pages 267–282, 2007.

41

http://msdn.microsoft.com/en-us/library/bb669084(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/bb669084(v=vs.110).aspx
http://www.praxis-his.com/sparkada/
http://www.praxis-his.com/sparkada/

	Introduction
	Securing Heterogeneous Systems
	Information-flow Control
	Programming Language Semantics
	Type Systems
	Database Integration
	Algebraic Data Types
	Contributions

	Framework
	Language
	Operational Semantics
	Security Condition
	Type System
	Soundness Result

	Implementation
	Algebraic Data Types
	Case Study: Movie Rental Database
	Basic Queries
	Algebraic Data Types

	Detailed soundness proof
	Related Work
	Conclusion

