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Exactly Solvable Models for Self-Assembly
ERIK EDLUND
Department of Energy and Environment, Chalmers University of Technology

Abstract
The field of self-assembly studies the spontaneous formation of order from pre-
existing components. It holds the promise of fabricating tomorrows materials
and devices not by traditional methods, but by designing building blocks that will
act as supramolecular “atoms” and form the desired structures without external
input.

Theoretical understanding in self-assembly has previously been achieved mainly
through approximative and simulation-based methods. In contrast, this thesis
shows that a range of many-particle models of interest in self-assembly can be
mapped onto exactly solvable models from statistical mechanics. For such mod-
els the behavior of interest, be it ground states or the full partition function, can
be obtained through analytical calculations, without approximations.

The thesis consists of an introductory text and seven appended research pa-
pers. It introduces two analytical tools for use in self-assembly.

First, the exactly solved spherical spin model is generalized to arbitrary isotropic
interactions, various geometries, and multiple particle types. The resulting mod-
els are shown to admit exact solutions for their ground states and these turn out
to predict pattern formation in corresponding systems. The theory is developed
in Papers I, II, and VI, and used in Paper VII to design patchy colloids for self-
assembly.

Second, an exact design method for lattice self-assembly is presented in Pa-
pers III-V. Given a target lattice structure, it produces an isotropic potential that
can be proven to have the desired lattice as its ground state. The method is used to
design potentials that in Monte Carlo simulations cause self-assembly into var-
ious two- and three-dimensional lattices. In Paper V a method for simplifying
designed potentials is discussed.

Keywords: Self-assembly, classical spin models, patterns, colloids, isotropic in-
teractions, patchy colloids
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Chapter 1
Introduction

What would be the optimal fabrication method? Why, the one where we don’t
need to fabricate at all. There would be no need to painstakingly fit together
delicate pieces just so, no need for carefully crafted tools nor arthritic artisans.
There would be a great deal less trouble and suffering in a world where building
blocks assembled as if by magic. This is the dream of directed self-assembly.

This dream is on its way to become reality thanks to our increasing ability to
design the interactions between various types of particles. For if we can fashion
parts in a way that only allows for a single configuration, then we can step back
and let thermal motion do the rest. They will wiggle around, stick together and
break loose, twist and turn, until they fit our scheme, and there the interactions
will lock them. By careful design we can get heat, this most useless form of
energy, to work for us rather than against us.

Why are we so preoccupied with structure anyway? Well, while the con-
stituents of matter are important for its properties, the arrangement of them is
crucial. Carbon in the form of diamonds is the hardest natural material, possible
to craft only using other diamonds, while in the form of graphite it easily peels
off sheets, allowing us to write with it. The difference between a boiled egg and a
raw one is only the folding of the proteins, rearranged after the heat breaks their
carefully configured non-covalent bonds.

Self-assembly promises to radically improve our control of the structure, and
therefore properties, of matter at the nanometer and micrometer scale. It truly is
the materials science of the future.

1
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1.1 Prediction and design

The central task in directed self-assembly is design: given some desired structure,
how do we design a system to organize into this structure? The straightforward
way to arrive at a solution is trial and error, picking some experimental system
one hopes has the target structure in its repertoire and varying parameters until
the goal is reached. However, this is of course a time-consuming way of working.

A way to reduce the time needed would be to use methods to predict the
behavior of the system without having to do the experiment. Such methods range
from simulations, allowing us to do the experiments in silico, to theory allowing
for direct calculations, with or without computer assistance. They allow us to
reduce the time needed for each cycle of trial and error from months to days,
minutes, or even fractions of seconds, allowing us to get real-time feedback on
our parameter guesses.

Even more desirable are direct design methods. They remove the need for er-
rors altogether by giving explicit recipes for constructing systems from descrip-
tions of target structures. Thus they embody an even deeper understanding of
their systems, where prediction of behavior becomes implicit.

This thesis is about these twin tasks of prediction and design.

1.2 Exactly solvable models

To predict the behavior of a system, we need a working model of its parts and their
governing rules, together with a way to analyze the model. Here we need to be
aware of the tension between the accuracy of the model and our ability to analyze
it. Do we choose a more accurate model, despite it being more complicated and
necessitating the use of approximate solutions or simulations? Or do we choose
a more tractable model, making the connection to the system of interest more
complicated instead?

The approach followed in this thesis is to study exactly solvable models, in
the sense of Baxter [1]. This means to choose models that are simple enough that
we don’t need approximations at all, allowing for exact solutions. Note that these
are exact but not necessarily rigorous; proper care with infinities and related joys
will not be taken here.

In statistical mechanics the usage of exactly solvable models is motivated by
universality, the observation that the behavior of systems close to phase tran-
sitions (i.e., the most interesting part) only depends on symmetries and not on
details. This means that once quantities such as critical exponents are known
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from an exactly solvable model, they have to be the same for all models and
experimental systems in the same universality class.

In our case, we will have no such general justification. Instead it is a prac-
tical question of showing that the exact solutions to our models can be fruitfully
connected to the systems we are really interested in.

In this context we should also note that the method described in Chapter 4 can
be used to design potentials that can be proven to have certain lattice structures as
ground states. These are thus exactly solvable models as well; they are important
as rigorously proving a certain structure is a ground state of a given potential is
normally very hard.

1.3 Isotropic interactions

The models considered in this thesis all have in common that their constituents
interact with general isotropic potentials. Here, general means that a solution
to the model should be able to handle any interaction we throw at it, potential
carries with it an assumption of pair-wise additivity, and isotropic means that the
interactions do not depend on orientations.

The fact that our prediction methods do not make any additional assumptions
on the interactions is a strength. For example, while many studies of spin mod-
els exhibiting striped morphologies exists, Paper I gives the first explanation for
general interactions, without depending on a specific one. On the other hand,
the assumption of general isotropic interactions being available is a weakness of
our direct design method as it typically results in very complex designs. We thus
spend parts of Papers III and V reintroducing constraints to simplify the interac-
tions and make experimental implementations more feasible.

Is the restriction to isotropic potentials a major one? Yes and no. The clas-
sical formulation of the fundamental forces of physics such as Newton’s law of
gravitation and Coulomb’s electrostatic interaction is indeed in terms of pair-wise
forces that only depend on the distances between bodies, not on orientation, and
one might expect that we should be able to build up macroscopic models using
nothing but such. There are two problems with this.

First, the world is not classical. When quantum mechanics is involved, things
become more complicated. Indeed, careful analysis show that even noble gases
break pair-wise additivity, exhibiting three-body Axilrod–Teller interactions [2]
from the third order expansion of the van der Waals interactions. Second, a
tractable description of any interesting system is necessarily coarse-grained, us-
ing as building blocks objects that are themselves composites. Interactions be-
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tween them are typically anisotropic; water molecules are not point particles.
On the other hand, we can often construct effective interactions between such

objects that are isotropic. For one thing, many colloidal particles of practical im-
portance are approximately spherical. Further, one can show that in any system
interacting with isotropic interactions on the micro-level, it is at least formally
possible to integrate out fast degrees of freedom to obtain an effective Hamilto-
nian which only involves slow degrees of freedom [3]. This is often used in soft
matter physics to either exactly or approximately calculate effective interactions,
a generally successful approach.

On the third hand (contrary to Truman’s wishes, a good scientist always has
a spare one), there certainly are cases where such descriptions are not practical
to construct or does not tell us what happens when parameters are varied. This is
certainly the case with the interactions between patchy colloids, an approach to
self-assembly where the anisotropy is crucial to the design. We will look closer
at these in Chapter 4.

1.4 Overview of the thesis

This thesis consists of an introductory text and seven reproduced papers. The
introductory remarks of the present chapter are followed by a selective review
of pattern formation and self-assembly, the sciences of prediction and design of
morphology. We then take a look at the exactly solvable spherical spin model,
describing how it has been studied earlier and discussing our contribution. The
fourth chapter describes two methods for designing self-assembling systems: one
based on the solution to the spherical model, used to design patchy colloids that
then assemble into various structures, and a direct method for self-assembling
lattices from isotropic potentials.

Chapter 5 gives an overview of the included papers briefly outlined here as
well. In Paper I we show how solutions to a generalization of the spherical spin
model can be used to explain the ubiquity of striped morphologies and to predict
their main feature, their wavelength. In Paper II we adapt the model to describe
finite aggregated clusters. This produces a limited alphabet of structures that ag-
gregating isotropic interactions tend to produce and predicts their wavelength as
well. Papers III and IV introduce our spectral method for designing isotropic
potentials for lattice self-assembly, assembling Kagome, snub square, and snub
hexagonal lattices, among others. Paper V describes a method for simplifying
such designed potentials, dramatically reducing the number of features and inter-
action lengths needed. In Paper VI we extend the spherical spin model to handle
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multiple particle types and spherical geometries. This is applied to a model pro-
posed as a way to self-assemble patchy colloids. Paper VII finishes by using said
extension for hierarchical self-assembly: therein we design potentials that cause
patches to form on spheres which in turn cause the spheres to self-assemble into
various structures.

The main text is concluded with a short summary and outlook in Chapter 6,
giving some speculative thoughts about what could and/or should be done in
various directions.
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Chapter 2
Pattern formation and self-assembly

“Form ever follows function,” cried Louis Sullivan’s credo [4]. It achieved its
impact precisely because the immediate causality runs in the opposite direction,
from form to function. Indeed, an object’s desired function determines its form
through the actions of a designer—be it a craftsman or natural selection—only to
the extent that the form facilitates this function.

The study of the appearance and properties of form in nature is the task of
the field of pattern formation. Its earliest steps was arguably taken in biology, but
today it talks a language inherited from condensed matter physics, a language of
instabilities, bifurcations, and spontaneous symmetry breaking. The field of self-
assembly, while speaking a different language, can be seen as an effort to use the
observations of pattern formation to bring form into being, often on scales or in
materials we cannot shape otherwise.

I find it useful to think of pattern formation and self-assembly as twin fields
trying to understand and utilize form, respectively. The rest of this chapter gives
short introductions to the fields in more classical terms and finishes with a de-
scription intended to put the specific subjects of our work into context.

2.1 Pattern formation

Among nature’s most fascinating phenomena is the spontaneous formation of
structure. Water gathers into trickles, streams, and rivers, forming complex branch-
ing patterns; the wind creates ripples and dunes in sand, resembling waves; and of
course life is a matter of ever assembling building blocks into larger complexes.

7
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One might intuitively expect that the formation of complex patterns transpires
through complex processes. Especially in the case of patterns in biology, such
as the stripes of a zebra or the shape of a snails cone, it is tempting to invoke
evolution as an explanation for how this or that structure must be just so.

But it turns out that many simple processes exhibit complex patterns. This
shows that no such convoluted explanations are necessary. Further, these patterns
tend to follow a large but limited set of motifs, and these motifs are the same that
occur in more complex processes [5]. This suggests that there might be common
explanations for their existence. In biology such simple, physical explanations
are arguably underappreciated, in favor of evolutionary ones that only relocate
the question. As famously argued by Thompson [6], many features of the form of
organisms are nowhere to be found in their genes but within the laws of physics,
determining their growth processes.

Understanding such emergence of structure is the goal of the field of pattern
formation. In contrast with self-assembly, it focuses on explaining common or
universal patterns with simple models. It thus is the physics to self-assembly’s
more biological or engineering approach that focuses on designing special sys-
tems that exhibit non-typical patterns.

Pattern formation in equilibrium is commonly studied within condensed mat-
ter and statistical physics, while the majority of the phenomena studied within
the field of pattern formation proper occur out of equilibrium. However, the ap-
proaches have much in common, focusing on spontaneous breaking of spatial
symmetry.

The basic story, following Cross and Hohenberg [7], is that of growing insta-
bilities. In the beginning there is a spatially featureless system. A blank canvas of
disordered magnetic spins, a well-stirred soup of chemicals, or a homogeneous
electron gas. However, the rest of the world makes its presence known and small
perturbations from this perfect state occurs. These will die out for some values
of the system’s parameters—be they reaction rates, temperatures, or gradients—
leaving the system in a stable state. For other values the system will be unstable
and the perturbations will grow, breaking the symmetry and creating a pattern.

Somewhere in between these parameter values is the point, a bifurcation
point, where the homogeneous state first becomes unstable and the pattern stable.
Bifurcation theory forms the first half of the modern theory of pattern formation.
There is seldom only one stable pattern but several, one for each way of break-
ing the symmetry. This focus on symmetry naturally leads to group theory, the
second half of the theory. Combining them gives, among other things, the equiv-
ariant branching lemma [8, 9], which makes predictions about the symmetries of
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patterns given the symmetries of the bifurcations. Importantly, there is a limited
number of bifurcation classes, in part explaining why so disparate systems show
similar patterns.

There are complications, of course. The unsatisfying one is the fact that
bifurcation theory only applies close to the occurrence of the instability, while
the similarities between patterns persist far from it. No coherent story patching
this gap exists today. More constructive complications, of the job-creating kind,
results in for example patterns that can be modulated on long scales, studied as
Eckhaus, zigzag, cross-roll or Benjamin-Feir phase instabilities, among others.
These can all be studied using various tools, see [10] for an introduction.

2.1.1 Striped patterns in physics

In this thesis the pattern that mostly interests us is what is arguably the simplest
non-trivial pattern, the stripe. It is characterized by a single wavelength, with
which it varies periodically in one direction while being constant in other direc-
tions. It is of course of interest in biology, but many physical systems exhibit
stripes too. Interesting examples include lipid monolayers [11], adsorbates on
metals [12], and various magnetic fluids [13, 14]. Striped phases are also hypoth-
esized to play a role in the high-temperature superconductivity of transition-metal
oxides [15, 16].

These phenomena are well-studied, theoretically typically with spin models
involving a competition between short- and long-ranged interactions [17–21].
These interactions are quite specific with physically motivated choices for, e.g.,
the long range term (Coulomb, asymptotic dipole etc.) as well as the state space
(using Ising spin-1/2, spin-1 etc.). However, these specifics are unlikely to be
important for the good qualitative success of the models and conversely, as noted
by Zaanen in the context of Mott insulators [22], their success tells us very little
about the original systems’ underlying physics. Indeed, a universal phenomenon
cannot be used to distinguish between different models exhibiting it.

In this context the value of Paper I is clear: it gives a mechanism for how the
universality arises that is independent of specific interactions. Further, it gives a
simple method for deciding whether a set of interactions will give rise to stripes:
is the minimum of the energy spectrum an interior one or not? Using this method
makes results such as stripe formation from purely repulsive interactions [23]
unsurprising.
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2.2 Self-assembly

Self-assembly is a term that gets applied to a wide range of phenomena, some-
times so wide as to make it effectively meaningless. A common way of restrict-
ing it is to let it refer to the assembly of pre-existing components, interacting
through non-covalent bonds that form reversibly, into larger, more ordered struc-
tures. The components can be not only atoms or molecules, but nanostructures
and mesoscale particles as well.

A familiar example is protein folding [24]. Here the components are amino
acids, interacting with hydrogen bonds (for secondary structure) or any of a host
of weaker ones such as salt bridges, disulfide bonds, and hydrophobic effects (for
tertiary structure). By randomly reconfiguring, the protein tries out a long se-
quence of arrangements, tending to stay in those that minimize free energy. It
then ends up in the correct structure, though pushing temperatures outside the
intended ranges results in errors being made, possibly ending with denaturaliza-
tion.

Self-assembly is interesting for several reasons. It is a crucial concept for
understanding life, as most structure in cells are self-assembled, including mem-
branes from lipids and the aforementioned protein folding [25]. It is also the way
many inorganic structures form from molecules, such as molecular crystals [26,
27], liquid crystals [28] and semi-crystalline polymers [29]. Further, it general-
izes to larger scales where completely new material properties become available,
facilitating for example the design and creation of photonic materials [30]. Lastly,
self-assembly provides a method of manufacturing for length scales between the
molecular, where chemists can synthesize almost anything, and the microscopic,
which constitutes the lower limit for conventional robotics.

The field of self-assembly began within the context of organic chemistry,
studied as a molecular process. However, the interactions between molecules
are limited by their atom constituents. There is no way to tune the interactions
between say a pair of chlorine molecules, and replacing functional groups in
larger molecules may destroy the process altogether. Some degree of tunability is
possible for large molecules, where van der Waals, electrostatic, and hydrophobic
interactions, among others, may depend less drastically on the included atoms.
Still, the switch to supramolecular self-assembly has led to new tools becoming
available. For larger structures, from nanoscale and up, entirely new forces are
important. These include external electromagnetic fields, capillary and entropic
forces, as well as electrostatic and magnetic interactions, and have the important
feature of being much more tunable. Larger structures are also easier to study;
colloidal particles are easily discernible on micrographs and macroscopic objects
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can be observed with the naked eye.
A key principle of self-assembly is mobility, below the macroscale supplied

by Brownian motion. Anything on the mesoscale and smaller will be highly in-
fluenced by ever-present thermal noise at room temperature. This random motion
has the advantage of being free; no machines are needed to move components.
However, it also has the obvious disadvantage of being undirected. This necessi-
tates the reversibility stated in our definition, as otherwise the components would
stick randomly and form unordered aggregates (glasses, diffusion limited aggre-
gates) instead of self-assembling into the desired structures. The reversibility is
tightly connected to the focus on non-covalent bonds as thermal motion has to be
able to break them, giving us a preferred energy scale around the thermal one of
kBT .

Self-assembly is possible on the macroscopic scale as well [31]. However, as
the free Brownian motion is lacking, some method of propulsion is needed. This
can either be externally provided, an analog of Brownian motion achieved by for
example shaking the container, or internal, as is the case with robots such as the
swarm-bots [32].

Self-assembly, as a field, is rapidly growing with advances being made in both
synthesizing components and facilitating the assembly process. One successful
strategy is to mimic nature. Repetitive units of block-copolymers can fold into
complex three-dimensional structures, reminiscent of protein folding [33]. Sim-
ilar strategies have been used to self-assemble microelectronic devices [34, 35].
Given the success of such bioinspired methods, why not take it one step further?
Indeed, some of the most advanced methods of self-assembly use DNA directly.
Its ability to bind to specific strands can be used to build templates for other self-
assembly as well as components directly [36–38]. These are just a few examples
of the progress in recent years; for further reading see [39–44].
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Chapter 3
The spherical model with arbitrary

isotropic interactions

Papers I, II, and IV all try to predict what morphologies appear in systems with
isotropic interactions. This is done by first formulating a model of the system
in terms of some complicated spin or particle model and then showing how that
model can be simplified to produce a version of the spherical spin model. This
model, the topic of the present chapter, turns out to be exactly solvable: we
can, given the interactions, say exactly what morphologies appear as its ground
state(s). The task then becomes to connect these solutions back to the original
model.

This chapter starts with a short introduction to spin models. It then discusses
the spherical model at length, highlighting in what senses its different versions
are solvable. Following this are some examples of how continuous models are
used to approximate discrete ones, a fine old tradition into which our methods
fit. The chapter concludes with sections on the predictions of our model, the
generalization presented in Paper VI, and the simulations we use to test them.

3.1 Spin models

The original purpose of spin models was to model the ferromagnetic behavior of
some metals. All atoms have a magnetic moment referred to as spin. It is a quan-
tum effect but one may classically regard it as the result of the electrons, charged
particles, moving in circles around the core, thereby giving rise to a magnetic

13
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field. This field is very small and in a normal solid the different atoms have their
spin in different directions so no magnetism is observed macroscopically.

In some metals, iron being the most prominent example, the spins can align
and give rise to a macroscopic ferromagnetic behavior. The basic observation that
a model of magnetism must answer is the following: as temperature rises, the
magnetization decreases and then abruptly disappears at the Curie temperature
TC.

To study this behavior Ising [45] used a very simplified model in which classi-
cal spins sit on a lattice (similarly to how atoms in a metal sit at specific locations
in the crystal) and can only point up or down (instead of any direction in space).
These spins are taken to interact only with their nearest neighbors and it costs
energy to anti-align with them. The Hamiltonian of the model is thus

H = � Â
<i, j>

sis j with si 2 {�1,1} (3.1)

where < i, j > denotes the sum over nearest neighbors.
The ground state of this model is clearly ferromagnetic with all spins aligned,

while at high temperatures—with a lot of thermal energy available—the spins
point in random directions. The question is when and how the transition between
these states occurs. In one dimension the model has zero magnetization for all
T > 0. Ising threw up his hands and left physics, conjecturing that the model
lacked a proper critical temperature in all dimensions. However, years later On-
sager solved the two dimensional case in a tour de force and showed that it does
have a non-zero critical temperature Tc = 2/ log(1 +

p
2). It also turns out to

capture a lot of the interesting critical behavior of magnets.
In crystals with strong anisotropies, restricting the spins to lie in one direc-

tion, this description is adequate. In general in our three dimensional world, one
should consider so called Heisenberg spins, which classically lie on the surface
of a sphere. If one’s system of choice has anisotropies in only one direction, one
get the XY-model with spins on a circle. These are all instances of O(n) models,
named after their symmetry groups. The spherical model can be regarded as such
a model in the limit where n goes to infinity [46].

Spin models were created as models of ferromagnetism but their use has by
no means been limited to that [47]. The Ising model in a field can be shown to be
equivalent to a lattice gas. Further, by changing the interactions from aligning to
anti-aligning, achieved through a change of sign in Eq. (3.1), the models become
antiferromagnetic, especially interesting on lattices with triangular geometry as
their inherent frustration give rise to complicated behavior. By combining the
Ising ferromagnetic Hamiltonian with an anti-aligning long range interaction, the
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models can be used to study the formation and melting of striped morphologies.
In spin glasses, used to model disordered systems, the possibly non-local interac-
tions are taken to be fixed but randomly chosen from some ensemble.

These generalizations are especially interesting to us as the strength of our
approach is its ability to handle general interactions, as long as they are isotropic.
Thus it does not apply to spin glasses where the interactions vary randomly, but
it works surprisingly well for the stripe models, as seen in Paper I. Note that the
cases we consider are intermediate between the original Ising model, where the
ground state is trivial, and the spin glass models, where determining the ground
state is an NP-complete problem. For models with isotropic but non-trivial inter-
actions, the ground states are just complicated enough to be determinable but still
interesting.

3.2 The spherical model

The spherical model is a somewhat different spin model, in that the spins take any
real value, si 2 R, with the normalization Âi s2

i = N. This normalization gives an
expected squared value of 1 for the spins, comparable to the Ising model, but
through one global constraint instead of N local ones. This makes it a great deal
easier to work with and the original spherical model, with nearest neighbor in-
teractions, is exactly solvable in the sense that one can calculate the partition
function exactly [48]. This means that one can obtain its behavior for any tem-
perature.

We will follow Berlin and Kac [48] in regarding the spherical model as an ap-
proximation to the Ising model. As such, it is unphysical in that the normalization
effectively couples all spins, thus involving infinite interactions, despite making
perfect sense mathematically as a relaxation of a constraint in an optimization
problem. However, there is another class of spin models, the n-vector model,
with only nearest neighbor interactions of which the spherical model is a limiting
case [46]. The spherical model is thus considered a physically acceptable model
of critical behavior.

In our work we have considered generalizations of the original model, with
arbitrary isotropic interactions. It has real-valued spins si situated at positions ri
on some lattice and interacting with potential V (r). The Hamiltonian is then on
the form

H = Â
i j

Vi jsis j (3.2)

where Vi j = V (|~ri �~r j|) is a matrix describing the interactions.
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a b c d

Figure 3.1: Translationally invariant ground states of the spherical model. Due to the
independence of phase, in two dimensions there is a continuous degeneracy, ranging
from checkerboard patterns to stripes (a–c). For states with different wavenumbers in the
different directions, linear combinations can be used to construct complex morphologies
(d). This degeneracy is broken when going to discrete spin models, and only the striped
states remains.

has the same energy as (±k1,±k2) as well as (±k2,±k1). The Fourier modes
of all these are eigenstates, as well as linear combinations of them, illustrated in
Fig. 3.1. In the continuous limit we also have a degeneracy with respect to any
changes to k that leave its norm unchanged. This latter degeneracy is a natural
result of the rotational invariance of the system. However, taking linear combi-
nations of solutions can lead to some very complicated ground states, resulting
in an embarrassment of riches not observed in other spin models. In Paper I
we show that these unwanted degeneracies are naturally broken when going to
discrete models, leaving only the simplest, striped states.

If the translational invariance of the system is broken, spontaneously or ex-
plicitly by for example introduction of a nucleation point, the natural geometry
changes from Cartesian to cylindrical (assuming a two-dimensional system).1
Consequently the eigenfunctions change from the Fourier harmonics to cylindri-
cal harmonics, i.e., Bessel functions with angular modulations Jω(2πkr)cos (ωθ).
These can be used to describe finite aggregates. Such arise from potentials that
in spin systems result in ferromagnetic states, but in particle systems with a finite
number of particles the result is a concentration of the particles to a finite region,
an aggregate, breaking the translational symmetry. Aggregating potentials can
be identified in the spectrum view by their global energy minimum at k = 0 (see
Fig.3.5).

The cylindrical solutions also contain degeneracies, here in ω as the energy
only depend on k. Some examples are shown in Fig. 3.2. In this case the embar-

1The results carry through in higher dimensions as well, with spherical geometry and harmonics
in three dimensions.

Figure 3.1: Ground states of the generalized spherical model on the Z2-lattice. Due to
the independence of phase, in two dimensions there is a continuous degeneracy, ranging
from checkerboard patterns to stripes (a–c). For states with different wavenumbers in the
different directions, linear combinations can be used to construct complex morphologies
(d). This degeneracy is broken when going to discrete spin models, and only the striped
states remains.

While it is still unclear whether this generalization admits to an exact solution
for the full partition function, it turns out to be possible to find its ground state(s)
exactly, without making assumptions on the interactions. As we show in Papers I
and II, the matrix Vi j is diagonalized by the eigenfunctions of the Laplacian.

In Paper I we consider the Z2-lattice (the square lattice in two dimensions),
in which case the eigenfunctions are the Fourier modes. To find the ground state,
we thus have to find the Fourier mode with the lowest energy. The easiest way
in practice to do this is to take the Fourier transform of the potential, giving the
energy spectrum for the given interactions, E~k = F [V (r)], and then identifying
the lowest point kmin. This gives us the ground state of that potential as the Fourier
mode with wavenumber kmin.

The minimum is in general degenerate; in two dimensions~k = (k1,k2) has the
same energy as (±k1,±k2) as well as (±k2,±k1). The Fourier modes of all these
are eigenstates, as well as linear combinations of them, illustrated in Figure 3.1.
In the continuous limit we also have a degeneracy with respect to any changes
to ~k that leave its norm unchanged. This latter degeneracy is a natural result
of the rotational invariance of the system. However, taking linear combinations
of solutions can lead to some very complicated ground states, resulting in an
embarrassment of riches not observed in other spin models. In Paper I we show
that these unwanted degeneracies are naturally broken when going to discrete
models, leaving only the simplest, striped states.

The above solution goes through in other geometries as well. In Paper II we
study solutions to the same Hamiltonian in cylindrical coordinates. This model
can be used to study systems with broken translational invariance, where there is a
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a b c d

Figure 3.2: Rotationally invariant ground states of the spherical model, relevant for
aggregating systems. All the displayed states (with ω 2 {0,3,4,6} (a)–(d), respectively)
exists and are degenerate regardless of interactions, as well as states with other ω and
linear combinations of the same. The ω-degeneracy persists when going to discrete
systems but the relevant linear combinations get fixed.

rassment persists; we cannot find reasons to prefer any values of ω above others.
However, as shown in Paper II, this degeneracy is real; simulations of discrete
models have a weak tendency to select for certain low values of ω but switch
between them even for a single set of interactions as the density is varied.

3.3 On connecting continuous and discrete models

While the spherical model, viewed as the limiting case of the O(n)-models [82],
is a physically acceptable model of critical behavior, in general the discrete Ising
models are much more interesting. In our work we consider the goal to be the
ground state of such a model (or its lattice gas equivalent) and the spherical model
as a tool for obtaining it. One way of making the connection precise is given in
Paper II by considering the Ising spins as continuous variables in the spherical
vein with constraints ∑i smi = N 8m. We then get the spherical model by relaxing
all but the first two constraints.

This practice—of using continuous models to find solutions to discrete ones—
is one that pops up in various places in the literature. It is a way of relaxing con-
straints, which in its most general form is well-known within optimization theory
as penalty methods. There, a variable that in the original problem is restricted to
some subset I of R is allowed to vary outside of its bounds, but with a cost that is
slowly raised in the course of the optimization to finally arrive at a solution inside
the feasible set [85].

Finding the ground state of the Ising model is basically a combinatorial prob-
lem; finding the one of the 2N possible configurations with lowest energy. Re-

Figure 3.2: Rotationally invariant ground states of the spherical model, relevant for
aggregating systems. All the displayed states (with w 2 {0,3,4,6} (a)–(d), respectively)
exist and are degenerate regardless of interactions, as well as states with other w and
linear combinations of the same. The w-degeneracy persists when going to discrete
systems but the relevant linear combinations get fixed.

natural center of the system. In this geometry the eigenfunctions change from the
Fourier harmonics to cylindrical harmonics, i.e., Bessel functions with angular
modulations J

w

(2pkr)cos(wq). These can be used to describe finite aggregates.
Such arise from potentials that in spin systems result in ferromagnetic states, but
in particle systems with a finite number of particles the result is a concentration of
the particles to a finite region, an aggregate, breaking the translational symmetry.
Aggregating potentials can be identified in the spectrum view by their global
energy minimum at k = 0.

The cylindrical solutions also contain degeneracies, here in w as the energy
only depend on k. Some examples are shown in Figure 3.2. In this case the
embarrassment persists; we cannot find reasons to prefer any values of w above
others. However, as shown in Paper II, this degeneracy is real; simulations of
discrete models have a weak tendency to select for certain low values of w but
switch between them even for a single set of interactions as the density is varied.

Lastly, in Paper VI we consider solutions on the surfaces of spheres. Here the
eigenfunctions of the Laplacian are the spherical harmonics Y m

l . These are again
degenerate, here in m (see Fig 3.3), but for the same reasons as for the Z2 lattice
the degeneracy is broken in discrete models, resulting in striped or spotted states
depending on stoichiometry.

3.3 On connecting continuous and discrete models

While the spherical model is interesting in its own right as an exactly solvable
model, in our work we are more interested in the discrete Ising spin and related
particle models. The goal is then the ground state of such a model and the spher-
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Figure 3.3: Ground states of the spherical spin model on the surface of a sphere. Shown
is the real part of spherical harmonics with l = 5 and m 2 {�5,�4, . . . ,5} as deviations
from a spherical surface.

ical model a tool for obtaining it. One way of making the connection precise is
given in Paper II by considering the Ising spins as continuous variables in the
spherical vein with constraints Âi sm

i = N 8m. We then get the spherical model by
relaxing all but the first two constraints.

This practice—of using continuous models to find solutions to discrete ones—
is one that pops up in various places in the literature. It is a way of relaxing con-
straints, which in its most general form is well-known within optimization theory
as penalty methods. There, a variable that in the original problem is restricted to
some subset I of R is allowed to vary outside of its bounds, but with a cost that is
slowly raised in the course of the optimization to finally arrive at a solution inside
the feasible set [49].

Finding the ground state of the Ising model is basically a combinatorial prob-
lem; finding the configuration(s) lowest energy out of the 2N possible ones. Re-
laxing a combinatorial problem into a convex one is another instantiation of the
general strategy, used for example to recover spike trains [50, 51] and sparse
images from a few Fourier modes [52] by minimizing l1-norm.

For nearest neighbor ferromagnetic interactions the Ising ground state prob-
lem is trivial; for a general spin glass with Hamiltonian

H = Â
i j

Ji jsis j,

without restrictions on Ji j, it is an NP-complete problem in the non-planar case [53].
Using eigenvector analysis in the same vein as ours, Aspvall and Gilbert studied
graph coloring [54], a similar problem. Partitioning networks into modules with
minimal intra-connectivity is, in the base case of two modules, isomorphic to the
spin glass problem and has also been handled using this strategy [55, 56]. The
reason such simple methods often work is that NP-completeness is a worst case
statement, while in the vast majority of situations the average case is much nicer.
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a b c d

Figure 3.3: For the aggregating solutions, it is not obvious what base to use and linear
combinations of Bessel harmonics may be in some senses simpler than pure ones. For
ω = 6 (a), a mixing (c) with the corresponding ω = 0 state results, after mapping (b and
d respectively), in a particle state with a larger fraction of the interactions occurring at
the dominating length scale (illustrated in red) due to the extra cluster in the center.

Bessel harmonics are for some ω simpler in the sense that they are to a higher
degree dominated by a single distance. Figure 3.3 illustrates the idea.

To explore the results of mapping the spherical states to particle states, we
instead turn to numerics. The mapping contains a free parameter c; all states
larger than c is mapped to 1 and the rest to 0, with c implicitly defining the
density of the resulting particle system. We sweep this and the other parameters
of the solutions and compute the energy of the resulting particle states for a large
number of random potentials. This allows us to observe which states tend to be
favored in general. The result is a morphological alphabet (Fig. 3.4): a large but
limited set of states with much stronger signals than the rest. This alphabet is our
main prediction for aggregating particle systems. Notably, it contains versions of
most discrete rotational symmetries, though some are more common than others,
indicating that the ω-degeneracy persists.

Figure 3.4: For the aggregating solutions, it is not obvious what base to use and linear
combinations of Bessel harmonics may be in some senses simpler than pure ones. For
w = 6 (a), a mixing (c) with the corresponding w = 0 state results, after mapping (b and
d respectively), in a particle state with a larger fraction of the interactions occurring at
the dominating length scale (illustrated in red) due to the extra cluster in the center.

3.4 Predictions for the discrete models

The solution of the spherical model shows us that the only effect of the inter-
actions is to set the length scale of the morphology, by defining a wavenumber
kmin through the energy spectrum. All other features are degenerate and has to
be determined, if at all possible, from the ways in which our system of interest
departs from the model.

So what do we expect to happen to our exact solutions for the spherical model
when we go to the arguably more interesting discrete ones? First of all, as alluded
to earlier, we expect a great deal of degeneracy to be broken. The continuous
model allows for smoothly varying states. Discrete models lack this possibility,
introducing sharp interfaces.

For an Ising spin-1/2 model the state corresponding to a certain continuous
solution is obtained by simply mapping positive states to +1 and negative to
�1. This will always increase the energy and the increase will be largest at the
interfaces, where the departure from the original state is largest. This makes us
conclude that the states with minimal interfaces will be the ones observed for
each degenerate set. These are the striped ones.

Turning to aggregating particle systems, the situation is more complicated.
We still expect simple states to be preferred, but a way of making that notion
exact has so far eluded us. Indeed, it is not obvious what constitutes a simple
state here as simple surface minimization does not work. Linear combinations of
Bessel harmonics are for some w simpler in the sense that they are to a higher
degree dominated by a single distance. Figure 3.4 illustrates the idea.

To explore the results of mapping the spherical states to particle states, we in-
stead turn to numerics. The mapping contains a free parameter c; all states larger
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than c is mapped to 1 and the rest to 0, with c implicitly defining the density of
the resulting particle system. We sweep this and the other parameters of the so-
lutions and compute the energy of the resulting particle states for a large number
of random potentials. This allows us to observe which states tend to be favored
in general. The result is a morphological alphabet (Figure 3.5): a large but lim-
ited set of states with much stronger signals than the rest. This alphabet is our
main prediction for aggregating particle systems. Notably, it contains versions of
most discrete rotational symmetries, though some are more common than others,
indicating that the w-degeneracy persists.
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3.5 Generalizing to multiple particle types

In Paper VI we generalize the spherical model to be able to predict the behavior
of systems with multiple particle types. This is a separate question from that of
the geometry; in the paper we study spherical geometries but here we will use the
language of flat space for simplicity.

The discrete particle system we would like to study has Hamiltonian

H =
K

Â
ab

N

Â
i j

Pia V ab

i j P jb , (3.3)

where K is the number of particle types. Here we have one interaction potential
V ab for each pair of particle types a and b , and the state is now described by a
matrix Pia that takes the value 1 if site i has a particle of type a , and 0 otherwise.
The relaxation into the spherical model then lets P take any values under only
the constraint Âia |Pia |2 = N.

The solution of this model goes in two steps. First we follow the same pro-
cedure as before, allowing us to diagonalize the interaction matrices V ab inde-
pendently, giving us pair-wise spectra that only take into account the interaction
between two particle types at a time. From these we construct a set of small
matrices Lk

ab

, where k now label the matrices according to which wavenumber
they correspond to. These are K ⇥K-matrices and thus simple to diagonalize, for
three particle types it is possible to do exactly but in practice it is simpler to do
numerically. This diagonalization gives us a new spectrum, with K branches, but
also a set of eigenvectors, one for each point in this spectrum (Figure 3.6).

The construction of the ground states of the model involves both the eigenval-
ues and the eigenvectors. As before, the length scale of the ground state is given
by the wavenumber of the lowest point in the spectrum. The eigenvector corre-
sponding to this point gives us weights and phases for the different particle types.
For example, if we have three particle types and get a minimum with an eigen-
vector (

p
2,�

p
2,0)/2 the ground state has Fourier modes of particles of type 1

and 2 out of phase and no contribution from type 3. In other words, we construct
the columns of P by taking Fourier modes of wavenumber kmin multiplied by the
elements of these small eigenvectors.

To map these solutions to predictions for the discrete Hamiltonian is a bit
more complicated as well. In essence, this is because each branch of the spectrum
only describes how one group of particle types varies in relation to the rest (or
no variation in the case of eigenvectors with the same sign on every element).
It turns out that to get good predictions, we must look at the minima of several
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Figure 3.6: (a) Spectrum of the spherical spin model for three particle types on the
surface of a sphere. Minima of the relevant branches are illustrated with spherical har-
monics. (b) Combining these spherical harmonics gives a prediction for the particle
system. (c) The predictions match the results of Monte Carlo annealing well when done
with the same interactions as those used to calculate the spectrum.

branches. For example, Figure 3.6 shows a spectrum where the global minimum
only tells us that the blue particles separate from the rest, and we have to look
at the minimum of the next branch to see what happens in the other domain. In
this way, the predictions for systems with multiple particle types typically have
several length scales, one for each involved minimum.

3.6 Monte Carlo simulations

The main value of the work presented in this thesis lies in its theoretical nature.
The field of self-assembly abounds with experimental and simulation based work,
but theoretical results are much more far between. The proof of the pudding is in
the eating and theoretical work needs to be relevant to be interesting. While the
ultimate arbiter of science is experiment, the first testing grounds for theories are
provided by computer simulations of less simplified models.

In our work we use simple (Markov chain) Monte Carlo simulations. The ba-
sic premise is to start from some initial state and then do random alterations to this
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state. These alterations are usually local1 and consist of, for example, spin flips in
an Ising model or a move of a single particle in a particle simulation. If a move re-
sults in a reduced energy of the system, it is accepted unconditionally. If it instead
would increase the energy, it can nevertheless be accepted; it is with a probability
that decays exponentially in the energy required, p µ e�DE/kBT . This simple rule,
known as Metropolis–Hastings’, ensures that in the long run the states visited are
sampled in proportion to their contribution to the thermodynamics of the simu-
lated model. Of course, the long run can get long indeed, especially if your task
is to estimate noisy order parameters in a system with meta-stable states.

Thankfully, we do not have to suffer this as we mostly are interested in ground
states. On the other hand, these have their own issues. Real proof that a certain
state is the ground state of your potential of choice is generally not available
and you have to settle for the “beyond reasonable doubt” kind. This is usually
obtained by multiple runs of simulated annealing where the above Monte Carlo
algorithm is run while slowly lowering the temperature. This can be combined
with comparisons to energy calculations for one or more hypothesized perfect
patterns or lattice structures, as applicable.

In the papers we use these methods to test the predictions of the spherical
model. We find remarkably good agreement, considering the simplicity of the
model. In general, the length scale determined by the energy spectrum predicts
the length scales of the simulated morphologies well. We have not made exten-
sive numerical tests, but in Paper II we show the results for a typical potential.2

The measured k agrees to within a couple of percent with its predicted value,
which is within the uncertainty of the measurement. However, the errors do have
a bias, suggesting more analysis might be fruitful.

For the stripes similar results hold, with the caveat that the lattice spacing
has to be scaled relative to the potential so that the resulting stripes do not span
too many lattice sites laterally. With increasing stripe width the underestimation
increases and the asymptotic scaling is wrong. For example, a scaling analysis
of the potential used in [20] shows our predicted scaling to be linear while the
correct one is exponential.

Regarding the other features of the morphology, we do indeed observe stripes,
and only stripes, in the spin models. This is also consistent with the existing liter-
ature, for the different specific interactions considered. For the aggregating parti-
cle systems the predictions also play out well, with almost total overlap between

1Though global moves, such as flipping large clusters of spins or moving whole collections of
particles, can often greatly speed up convergence.

2The potential is chosen for its diversity of morphologies, not for goodness of fit.
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Figure 3.5: Predicting the transition from disks at the macroscale to more complex mor-
phologies at the mesoscale. (Left) Aggregating potentials have their global minimum at
k = 0, so at large particle numbers their preferred morphology is a disk. However, if the
particle number decreases below some critical point Nc there is no longer enough particle
to occupy such a state and more complex morphologies appear. This point can be predicted
as the number corresponding to a k = k0 such that E(k0) = E(κ), where κ is the location
of the interior minimum of the energy spectrum. (Right) Results of particle simulations to
determine Nc (adjusted for packing fraction f ) for potentials with various k0. The red line
is the parameter free prediction. (Inset) Examples of randomly generated potentials used.

For the stripes similar results hold, with the caveat that the lattice spacing has to
be scaled relative to the potential so that the resulting stripes do not span too many
lattice sites laterally. With increasing stripe width the underestimate increases and
the asymptotic scaling is wrong. For example, a scaling analysis of the poten-
tial used in [48] shows the predicted scaling to be linear while the correct one is
exponential.

Regarding the other features of the morphology, we do indeed observe stripes
and only stripes in the spin models. For the aggregating particle systems the predic-
tions also play out well, with almost total overlap between the predicted alphabet
and the observed morphologies.

Paper III presents an additional result, a phase diagram showing the particle
numbers at which the complex morphologies appear, as opposed to the simpler
disks common at large particle numbers. This can be viewed as another, implicit
test of the length scale predictions. Figure 3.5 demonstrates the prediction and its
fit with our data.

The predicted ω-degeneracy play out in a surprising way. It would not be
convincing if all we could say was that we cannot find a feature of the potentials
that predicts ω . However, fixing the potential and simulating systems with different
particle numbers shows switching back and forth between different values of ω .
This shows that the breaking of the degeneracy is a complicated matter, one we
cannot hope to disentangle with such a simple model.

Figure 3.7: Predicting the transition from disks at the macroscale to more complex mor-
phologies at the mesoscale. (Left) Aggregating potentials have their global minimum at
k = 0, so at large particle numbers their preferred morphology is a disk. However, if
the particle number decreases below some critical point Nc there is no longer enough
particles to occupy such a state and more complex morphologies appear. This point can
be predicted as the number corresponding to a k = k0 such that E(k0) = E(k), where k

is the location of the interior minimum of the energy spectrum. (Right) Results of particle
simulations to determine Nc (adjusted for packing fraction f ) for potentials with various
k0. The red line is the parameter free prediction. (Inset) Examples of randomly generated
potentials used.

the predicted alphabet and the observed morphologies.
Paper II presents an additional result, a phase diagram showing the particle

numbers at which the complex morphologies appear, as opposed to the simpler
disks common at large particle numbers. Figure 3.7 demonstrates the prediction
and its fit with our data. This serves as another demonstration of the strength
of the spectral view for these systems. It also constitutes an implicit test of the
length scale predictions.

The predicted w-degeneracy plays out in a surprising way. It would not be
convincing if all we could say was that we cannot find a feature of the potentials
that predicts w . However, fixing the potential and simulating systems with differ-
ent particle numbers shows a switching back and forth between different values
of w . This shows that the breaking of the degeneracy is a complicated matter,
one we cannot hope to disentangle with such a simple model.

In Paper VI we construct a simplified model of alkanethiol-on-gold systems.
These are experimental systems involving gold nano-particles coated with hy-
drocarbon chains that form patterns due to competition between phase separating
and mixing interactions. This model has many transitions between different pat-
terns, and these turn out to be reflected in the energy spectra allowing us to predict
them.
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Interestingly enough there are several ways this happens. The simplest is that
the minima moves and thus changes wavenumber. There are also times when
there is a change in which branch has the global minimum. In one example this
gives a change from a state dominated by a blue domain with red-yellow stripes
on the other side to a state dominated by red spots with a blue-yellow phase-
separation between the spots (see Figure 4b and c in Paper VI).

Lastly, the sign structure of the eigenvector of a branch minimum involved in
the solution can change. Most dramatically the global minimum can change into
an unphysical state which does not describe variation at all, with all elements of
the eigenvector having the same sign. We then have to use another minimum to
get enough variations to predict a full state. While one might suspect that this is
an artifact of the method and expect that the predictions would be unreliable in
such cases, the simulations show that the predictions are correct.



Chapter 4
Designing interactions for

self-assembly

Broken symmetry is one of the central concepts of modern physics and a fruitful
one for understanding the appearance of non-trivial morphologies in systems with
isotropic initial conditions. In the previous chapters we have seen many examples
of this, in the appearance of a macroscopic magnetization in the Ising model,
in the growth of Fourier modes in pattern formation, and the breaking of the
degeneracy of the ground state of the spherical model.

However, as Anderson put it, “[a]t some point we have to stop talking about
decreasing symmetry and start calling it increasing complexity” [57]. This chap-
ter crosses this line. We now turn from the prediction of patterns that typically
appear in different systems toward the design of very special systems with much
more complex morphology. We will look at two different approaches to design,
one explorative that uses the prediction methods of the previous chapter and one
direct that in its purest form gives a potential fulfilling the desiderata without
parameter tuning.

The task of design is in essence a search problem: find a description which we
can follow to construct a desired structure. The point of directed self-assembly
is to move as much as possible of this construction into the design, simplifying
the former at the cost of the latter. Design methods, as any methods for solving
search problems, exist on a scale. On one end there is the absence of method,
trying solutions purely at random. At the other are ideal methods that require no
intelligent input and minimal calculations. In between we have a sliding scale of
heuristics, semi-automated methods, and simulation based approaches.
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In the next section we will look at a method that combines heuristics, some
hand tuning, and the prediction methods of the previous chapter. The heuristics
give us desired patterns on spheres, which if we can achieve them in colloidal sys-
tems would cause self-assembly into target structures. These patterns could self-
assemble themselves if their constituents have interactions whose spectra have
certain properties. We then use our prediction method to allow us to tune param-
eters in our model until the desired spectral properties are achieved.

We then look at a direct design method for lattice structures. Given the target
structure, it specifies an energy spectrum and inverts it to produce an isotropic
potential whose ground state is that target. This is a much faster method than the
previous one, but the power comes at the price of experimental realizability: the
potentials produced are much too complicated to implement in the experimental
systems we have today and probably in the foreseeable future. We thus spend the
last section discussing methods for simplifying the designed potentials.

4.1 Designing self-assembly of and with patchy colloids

Patchy colloids are colloidal particles (10nm-1µm sized) with patches that give
them directional interactions. This makes them resemble atoms, leading to talk
about creating a colloidal chemistry, but with much higher theoretical freedom
in designing the interactions; in principle a higher diversity in form should be
possible, and we should for example be able to turn interactions on and off by
changing properties such as salinity of the surrounding solution. However, while
many methods for fabricating patchy colloids exist, it is still hard to do so in
sufficient quantities for self-assembly, and more complex patch arrangements are
just beginning to come within reach. Thus so far only relatively simple structures,
using cleverly designed simple patchy colloids, have been self-assembled.

As an example, consider the self-assembling Kagome lattice design by Granick
and coworkers [58]. By creating caps of gold with glancing angle deposition on
latex particles and then coating them with alkanethiols, they create particles with
an attractive patch on each pole. The scheme is chosen to create caps of a partic-
ular size. This causes the favored arrangement of the particle to be triplets with
inward facing caps, and, as this configuration is characteristic of the Kagome
lattice, causes self-assembly into this two-dimensional structure after sedimenta-
tion. Note that the naive patch arrangement for Kagome assembly would be one
with a patch in the direction of each neighbor.

A proposed method for creating patches on colloids is to self-assemble the de-
sired pattern itself. This has been done for simple striped patterns in alkanethiol-
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Directed self-assembly of a colloidal kagome lattice
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A challenging goal in materials chemistry and physics is sponta-
neously to form intended superstructures from designed building
blocks. In fields such as crystal engineering1 and the design of porous
materials2–4, this typically involves building blocks of organic mol-
ecules, sometimes operating together with metallic ions or clusters.
The translation of such ideas to nanoparticles and colloidal-sized
building blocks would potentially open doors to new materials and
new properties5–7, but the pathways to achieve this goal are still
undetermined. Here we show how colloidal spheres can be induced
to self-assemble into a complex predetermined colloidal crystal—in
this case a colloidal kagome lattice8–12—through decoration of their
surfaces with a simple pattern of hydrophobic domains. The build-
ing blocks are simple micrometre-sized spheres with interactions
(electrostatic repulsion in the middle, hydrophobic attraction at
the poles, which we call ‘triblock Janus’) that are also simple, but
the self-assembly of the spheres into an open kagome structure con-
trasts with previously known close-packed periodic arrangements of
spheres13–15. This open network is of interest for several theoretical
reasons8–10. With a view to possible enhanced functionality, the
resulting lattice structure possesses two families of pores, one that
is hydrophobic on the rims of the pores and another that is hydro-
philic. This strategy of ‘convergent’ self-assembly from easily fabri-
cated16 colloidal building blocks encodes the target supracolloidal
architecture, not in localized attractive spots but instead in large
redundantly attractive regions, and can be extended to form other
supracolloidal networks.

Colloidal crystals are important for their proposed applications in
photonics, biomaterials, catalytic supports and lightweight structural
materials. They also serve as model systems in which to study the phase
behaviour and crystallization kinetics of atomic and molecular crys-
tals13–15. Usually composed of hard spheres that are homogeneous
in surface functionality, their spontaneous formation is mostly
induced by the minimization of entropy, which results in a limited
selection of attainable close-packed crystal types13–15. More complex
crystals assembled from similarly homogeneous spheres have been
constructed in binary colloidal17 and template-assisted systems18. To
achieve programmable formation of crystals, building blocks with
designed specific surface functionalities such as DNA linkers19,20 and
attractive ‘patches’5–7,21,22 have been proposed, but these approaches
pose synthetic challenges and can be difficult to generalize. For
example, the kagome lattice (see Fig. 1), which is of theoretical interest
for mathematical reasons8 as well as its relevance to mechanical
stability of an isostatic lattice9 and frustration in magnetic materials10,
is composed of interlaced triangles whose vertices have four contacting
neighbours. To construct it by direct assembly would require colloids
with four unevenly distributed patches on their equators to line up
precisely with their counterparts on neighbouring spheres (see
Supplementary Fig. 1a) but methods to obtain the desired colloids
are not immediately accessible.

Accordingly, we chose the kagome lattice as our target colloidal
crystal, and produce it using the following alternative strategy. To
reduce the need to start with a specific pattern of attractive spots on
each building block, we designed a building block with the orthogonal

attributes of minimal surface design combined with self-adjusted coor-
dination number. This simplifies the original four-patch decoration
scheme into one with two patches at opposite poles, each of which
subtends an angle in the plane large enough to allow coordination with
two nearest neighbours (see Supplementary Fig. 1b). This has the
advantage that established synthetic methods16 can be used to decorate
spherical particles with two hydrophobic poles of tunable area, sepa-
rated by an electrically charged middle band. Because each of the
hemispheres is chemically ‘Janus’ (two-sided)23 with the same middle
band, we refer to these as ‘triblock Janus’.

This motif causes neighbouring particles to attract at their poles in a
geometricalarrangementlimitedbytheirsize,whileavoidingenergetically
unfavourable contacts between the charged middle bands. After over-
night sedimentation, the density mismatch between our gold-plated
polystyrene particles and the water in which they are suspended con-
centrates the particles into a quasi-two-dimensional system. Our syn-
thetic scheme produces elongated caps (see Supplementary Fig. 2), which
further facilitates assembly into two-dimensional networks because it
allows two nearest neighbours only when the long patch axes of neigh-
bouring particles are parallel. Ordering is then switched on at will by
adding salt (3.5 mM NaCl in these experiments) to these spheres in
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Figure 1 | Colloidal kagome lattice after equilibration. a, Triblock Janus
spheres hydrophobic on the poles (black, with an opening angle of 65u) and
charged in the equator section (white), are allowed to sediment in deionized
water. Then NaCl is added to screen electrostatic repulsion, allowing self-
assembly by short-range hydrophobic attraction. b, Fluorescence image of a
colloidal kagome lattice (main image) and its fast Fourier transform image
(bottom right). Scale bar is 4mm. The top panel in c shows an enlarged view of
the dashed white rectangle in b. Dotted red lines in c highlight two staggered
triangles. The bottom panel in c shows a schematic illustration of particle
orientations.
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Figure 4.1: Self-assembly of a colloidal Kagome lattice. Latex particles with hydropho-
bic patches form triplets that arrange into the Kagome structure under sedimentation.
Copyright NPG. Reproduced with permission from [58].

coated gold nanoparticles, and in Paper VI we used a model of this system as our
test case for our prediction method. In Paper VII we use this method to design
systems exhibiting hierarchical self-assembly, where the first the building blocks
self-assemble and then those building blocks assemble into the desired macro
structure.

We assume that if we can create a patch structure within the alkanethiol-on-
gold model we can then make one or more of the particle types attractive. The
design process thus consists of choosing a patch structure that causes assembly
into the target structure, finding a way to implement it on the surface of a sphere
using spherical harmonics, and then tuning the parameters in the alkanethiol-on-
gold model until a spectrum with the correct branch minima is achieved.

For a simple example, consider the task of assembling a diamond lattice. A
sufficient patch structure would be one with four patches equally separated on
the sphere, analog to the bonds of the carbon atom in a real diamond. As the
simplest pattern exhibited by the l = 3 spherical harmonic is such a pattern (given
a limited stoichiometry to result in patches rather than stripes), we just need to
find parameters of the model that gives an energy spectrum with a minimum at
this point. By choosing the stoichiometry we can then make sure we get patches
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of a size that gives reasonable flexibility in the bond formation (Figure 2a in
Paper VII).

More complex structures requires more complicated constructions. For ex-
ample, the 90� separation between patches needed to assemble cubes does corre-
spond to the l = 4 spherical harmonic, but this would give a cubic lattice. If we
want cubes, we need to make sure no patches form on the backs of the colloids.
Here the solution involves three particle types and three minima in the spectrum,
the extra type forming a domain on the back to restrict the area available to the
rest (Figure 5a in Paper VII).

4.2 A direct design method for lattice self-assembly

There exists several schemes for designing isotropic potentials that have specific
lattice structures as their ground state [59, 60]. These typically take some family
of potentials, an initial guess based on the different nearest neighbor distances
of the target lattice, and proceed to optimize the interactions according to some
criterion to try and achieve the correct structure. Through such schemes several
isotropic potentials with low-coordinated lattice structures have been reported,
e.g., square, honeycomb, simple cubic and diamond lattices [61–63]. One of the
strengths of this approach is that other properties can be optimized for as well,
such as the target being ground state over as large a density range as possible [64].
These methods, however, tend to be somewhat unwieldy, requiring Monte Carlo
simulations of the designed system for each step in the optimization process.
Indeed, all the lattices mentioned above are fairly simple compared to what is
possible.

The key property of lattices is periodicity. Thus it is natural to study them in
reciprocal space. Indeed, many first courses in solid state physics begins with a
thorough primer on various reciprocal space concepts.1 Despite this, methods for
designing interaction potentials V (r) for lattice self-assembly have so far worked
in real space.

We focus instead on designing an energy spectrum E(k) that is then, through
a simple Fourier transform, turned into a potential. If we describe a configuration
as a sum of delta functions r(r) = Âi d (r� ri), we can write the energy as

E =
Z

drdr0V (|r� r0|)r(r)r(r0) =
Z

dkbV (k)|r̂(k)|2 (4.1)

1Whether this is a good order for teaching the actual physics is less clear; for a counterexample
see the excellent Ashcroft/Mermin [65].
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where r̂(k) is related to the structure factor of the configuration and bV (k) is the
energy spectrum, that is the Fourier transform of the potential.

The key idea is to match local minima of E(k) to the magnitudes of the dom-
inating wavevectors of the lattice’s power spectrum. From Eq. (4.1) we see that if
we construct bV (k) such that it is strictly positive everywhere except at the points
where r̂(k) of the target lattice is non-zero and zero at such points, the energy
of the target lattice will be zero and any structure which has contributions from
other k will have a non-zero energy. This means that the target will be a ground
state, and places strong restrictions on what any competing ground state could
look like.

For complex lattices there generally are such competing lattices. For exam-
ple, the structure factor of the Kagome lattice studied in Paper III (Figure 1) has
the same support as that of the closely packed lattice, meaning that this first con-
struction normally would cause collapse into the latter, rather than self-assembly
into the target Kagome lattice. However, even though the support may be the
same different lattices have different magnitudes of the structure factor. Thus we
complete the method with a small perturbation at one or more points, letting the
spectrum become negative at the points where the structure factor is maximal for
the target. This turns out to solve the problem.

Note that from our construction we can prove that the target is indeed a
ground state. This is interesting in light of the fact that it is normally very hard
to determine rigorously the ground state of a given potential as the differences
in energies between competing structures are very small compared to the total
energies involved. Indeed, the exact nature of the ground state of even the simple
Lennard–Jones potential is not rigorously known [66]. Somewhat counterintu-
itively, with our method in the toolbox it is easier to construct a potential with a
specific lattice as a ground state than to identify the ground states of even very
simple potentials.

4.3 Simplifying designed potentials

Although matching wavevectors leads to methods fulfilling the requirement of
producing potentials that cause self-assembly of desired lattices, naive versions
horribly fail another reasonable requirement: we want the produced potentials to
be simple enough to possibly realize in an experiment. While it is hard to say
what are the exact capabilities today and where they will be in the near future, it
is part of due diligence as a designer of self-assembly potentials to simplify them
at least as much as is easily achievable.
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There are two obvious directions from which to approach this problem, the
experimental and the theoretical. Starting from a specific experimental setting,
we might try and identify the interactions we have at our disposal, look at their
spectra and try to combine them into one that fulfills the prescriptions. As com-
bining spectra is a linear operation, optimizing in such a setting is perfectly feasi-
ble and the main problem lies in identifying the interactions, as well as assuring
that they are sufficiently varied for us to reach our target.

The alternative is to begin on the theoretical side. Starting with the compli-
cated designed potential, we might try to simplify it into something more feasible.
Without reference to a specific experimental system it is hard to determine what
is a complex potential, but in general we might expect potentials with fewer fea-
tures and shorter range to be easier to implement. We thus focus on smoothing
and screening potentials.

With screening we mean a transformation V (r) ! x (r)V (r) such that x (r) is
some positive decaying function. We can see that such a transformation corre-
spond to a convolution of the spectrum F [x (r)V (r)] =

R
dk0

x̂ (|k � k0|)bV (|k|).
The uncertainty relation for Fourier transforms then lets us place constraints on
the simultaneous localization of x and x̂ :

Var[x 2]Var[x̂ 2] � 1
4p

2 .

Var[x 2] is here the amount of screening performed by x and Var[x̂ 2] should be
interpreted as the loss of distinction the same screening costs. In other words, this
places restrictions on the amount of screening we can achieve without destroying
the properties of the potential in reciprocal space that we designed for in the
first place. As the lower bound is achieved for Gaussians, we thus propose to
use the equivalent of a Gaussian screening, namely heat kernel smoothing in
reciprocal space: bV

t

(k) =
R

dk0e�|k�k0|2/t bV (|k0|), where t describes the degree
of smoothing. This was for screening in real space; an equivalent derivation leads
us to use Gaussian screening in reciprocal space to achieve smoother potentials.
Figure 2 of Paper V gives nice demonstrations of the simplifications possible.



Chapter 5
Paper overview

Reading a body of work is much easier with a roadmap. This chapter gives an
overview of the papers contained in this thesis, with an emphasis on the connec-
tions and similarities between the papers.

In Papers I, II, and IV we study morphologies that arise from isotropic poten-
tials in various geometries. They all build on the same idea, that we can formu-
late the problem of predicting the morphology as a question about the low-energy
states for some spin model. This spin model can then be approximated with one
with relaxed constraints, giving the spherical spin model. We show that we can
solve for the ground state of the spherical model for arbitrary potentials. The
different papers then explore the implications in various geometries and, in Pa-
per VI, for several particle types, and show that the approximation works very
well for predicting the morphologies of the original systems.

Papers III-V concern the design of potentials to cause self-assembly into spe-
cific morphologies. Paper III describes and Papers IV and V extends a method
for designing potentials for targeted assembly of crystal structures (lattices). The
method works in reciprocal space, utilizing the fact that lattices are most simply
described there.

Paper I: Universality of Striped Morphologies

Paper I tries to explain the ubiquitousness of stripe morphologies. In a sense, the
reason is simple: a stripe is simply the least complicated way in which transla-
tional invariance can be broken and thus typical for systems where this occurs.

33



34 CHAPTER 5. PAPER OVERVIEW

On the other hand, seeing how this occurs in an exactly solvable model is instruc-
tive; it forces us to make this vague reasoning exact and demonstrates subtleties.

The main theoretical result of the first paper is thus the exact solution for the
ground state of the spherical model. This result is something we stumbled over
while studying spin glasses and the paper was originally intended to be a short
detour, a detour which grew into this thesis.

The basis for the result is that, for any isotropic interaction, the spherical
model is diagonalized by the Fourier modes if periodic boundary conditions are
used. This can be proved in several ways, e.g. by using the translational invari-
ance or considering the interaction matrix as a circulant matrix [67]. In this paper
we prove that any pair of such interaction matrices commute and note that the
Laplacian is such a matrix, with the Fourier modes as its eigenvectors. For a
different perspective, in Paper II we note that any isotropic interaction matrix
can be built up by linear combinations of different powers of the Laplacian, thus
showing they have eigenvectors coinciding with the generating Laplace operator.

The ground state of the spherical model with a given interaction potential
is then given by the Fourier modes corresponding to the minimum of the en-
ergy spectrum of the same potential. The spectrum can be simply calculated as
the Fourier transform of the potential and only depends on the magnitude of the
wavevector. This latter fact leads to degeneracy of the ground state with checker-
boards, stripes, and linear combinations of the two as well as more complicated
states all having the same energy.

In Paper I we then connect this result to the behavior of Ising spin models with
general isotropic interactions (in two dimensions for concreteness). The mapping
from the continuous spins of the spherical model to the discrete Ising spins is non-
linear and we show that this resolve the above mentioned embarrassment of riches
and singles out striped states as the ground states. Monte Carlo simulations show
that this prediction is indeed correct for any potential we test which has an interior
minimum in the energy spectrum. If the minimum lies at k = 0, we effectively
have an infinite stripe width, corresponding to a ferromagnetic state.

The location of the minimum predicts the width of the stripes and the simu-
lations bears out this prediction. One point worth noting, not central to and thus
not present in the paper due to space limitations, is that the prediction works best
when the stripe width is not too large compared to the lattice spacing. This can be
understood by comparing the shapes of a sine wave (the solution in the spherical
model) and a step function (the shape of the stripes in the Ising spin models).
One should thus be careful in trying to predict the scaling of the stripe width with
respect to parameters in the potential if the predictions grow too much.
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Paper II: Novel Self-Assembled Morphologies from Isotropic Interac-
tions

In this paper we turn our attention to a subtlety of the solution in Paper I:
the eigenfunctions of the Laplacian, which we showed determines the ground
state of the models of interest, depend on the boundary conditions. With periodic
boundary conditions comes the translationally invariant Fourier modes; when we
instead consider functions decaying to zero at infinity the translational invariance
is spontaneously broken and we get localized solutions of Bessel or spherical
harmonics type.

Paper II explores the implications of this result for aggregating systems in
two dimensions; that is, systems of particles that for low temperatures tend to
gather into a cluster. The theory turns out to work very well. Looking at the
energy spectrum of a potential we can predict whether it will aggregate or not,
the length scale of the aggregate as well as a transition from a disk at high particle
numbers to more complex Bessel morphologies at lower particle numbers. These
morphologies are well described by the localized eigenfunctions of the Laplacian,
on the form J

w

(2pkr)cos(wq) with k 2 R, w 2 {0,2,3, ...}.

One simple sufficient condition for an aggregating potential is that its spec-
trum has a global minimum at k = 0. This would mean a ferromagnetic ground
state in a spin model and for a finite number of particles it means that they cluster
into a disk of as small radius as possible. However, if the spectrum has an inte-
rior local minimum as well, more interesting things can happen. As low k means
large disks, the actual spectrum accessible to the system is limited from below
by the particle number. Thus, for small particle numbers the k = 0 minimum is
inaccessible and the interior minimum k governs the behavior instead. In the in-
termediate regime when the particles are too few for a large disk but too many for
a k-sized one, instead Bessel functions of higher order arise as they allow more
particles for a given k .

This line of reasoning allows us to predict at what number of particles a given
potential will exhibit these more complex morphologies from its energy spec-
trum. It may also be the key to understanding why these morphologies have not
been previously observed, neither in experiments nor in simulations, to the best
of our knowledge. Most of the potentials we study in Paper II are medium range;
they have non-trivial structure on length scales considerably larger than the size
of the particles. This is not common in systems usually studied, but is probably
achievable in colloidal science today.
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Paper III: Designing Isotropic Interactions for Self-Assembly of Com-
plex Lattices

In the first two papers we focused on the energy spectra corresponding to differ-
ent interaction potentials as they determine the behavior of the spherical model.
This focus on spectra lead us to the realization that designing potentials for self-
assembly of lattice structures, while not connected to the spherical model, should
be done in momentum space as the translational invariance is most easily rep-
resented there. Work in this direction lead to Paper III, which presents such a
spectral method.

The main ideas of the method is simple. First a target lattice structure is cho-
sen and its Fourier spectrum is identified. One then designs an energy spectrum
with minima at the points corresponding to maxima of the lattice Fourier spec-
trum. Lastly the energy spectrum is transformed into a potential by the inverse
Fourier transform. This potential can then be used in, for example, Monte Carlo
simulations to self-assemble the desired lattice structure. This allows us to design
potentials that cause self-assembly into the Kagome lattice and a truncated square
tiling.

There are of course a lot of subtleties swept under the rug in this descrip-
tion. Most important is the design of the spectrum: the mentioned constraints
leaves a lot of degrees of freedom for this design. To achieve a spectrum with a
corresponding potential that is not too complicated is highly non-trivial. In Pa-
per III we do some ad hoc simplifications while a more systematic method had to
wait for Paper V, but the seeds in the form of the realization that smoothing and
screening are the correct operations is here.

Paper IV: Chiral Surfaces Self-Assembling from Isotropic Interac-
tions

The goal of self-assembly is to not only construct form, but form with specific
function. In Paper IV we use the design method of Paper III to design interaction
that cause self-assembly into lattices with chiral structure.

A chiral structure is one which exists in two forms which are related through
a mirror symmetry, but not through rotations. Our hands are one example, and
has given the term its name (from ceir , Greek for hand).

The self-assembly of chiral lattices is interesting from a physics perspective
as an example of spontaneous symmetry breaking of mirror symmetry. However,
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Figure 5.1: (Left) Thalidomide, a chiral molecule. (Right) The snub hexagonal lattice,
a two-dimensional lattice with chiral super-cells.

the practical importance is found within chemistry, where methods for producing
a specific enantiomer (specific “handedness”) is vital for some pharmaceutical
compounds. The most well-known example is thalidomide (see Figure 5.1) which
has one enantiomer which is a sedative and one that causes birth defects if taken
by the mother during pregnancy.

In Paper IV we design two chiral lattices, one simple composed of scalene
triangles and one more complex (Figure 5.1), where the chirality comes from the
mismatch between the symmetry of basis and lattice. We also study the phase
diagram for the latter, varying the temperature and the strength of a perturbation
parameter used in the construction. It turns out to be fairly complex with several
different phases. We hypothesize that this is a general feature of systems designed
with our method, as it selects for a set of features with different strengths, and
varying parameters will change which of those features are displayed.

Paper V: Using the Uncertainty Principle to Design Simple Interac-
tions for Targeted Self-Assembly

The results of Papers III and IV are interesting from a theoretical point of
view, showing the existence of isotropic potentials that cause self-assembly into
specific lattices. Some of these models are also worthy of study in their own
right. For example, the assembly process of the second chiral lattice of Paper IV
could give insight into the formation of chiral domains, a practical problem for
any fabrication of chiral crystal structures.

However, the potentials constructed in Papers III and IV are too complicated
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to implement in experiment. In Paper V we therefore turn our attention to the
problem of simplifying designed potentials.

To be completely certain what is complicated to implement in a given exper-
imental setting requires full knowledge of said setting. However, some general
features of potentials can be expected to be problematic in generic cases, such as
potentials with many extremal points and long ranges. We thus focus on screen-
ing and smoothing as methods to simplify the designed potentials.

The main observation of Paper V is that the uncertainty relation places bounds
on the simultaneous localization of the potential in real and reciprocal space. If
we want to shorten the interaction range in real space, we cannot avoid a smooth-
ing in reciprocal space. As our design method selects features in reciprocal space,
we want to minimize this effect. We show that this prescribes the usage of Gaus-
sian screening and smoothing.

We apply these results to the Kagome lattice studied in Paper III. There we did
some unsystematic simplifications and managed to reduce the complexity from
the naive implementation of the design method. However, we show that with
the Gaussian screening and smoothing we can simplify the potential much fur-
ther without losing its ability to self-assembly the target lattice.We design simple
potentials that cause self-assembly into diamond lattices, interesting for its op-
tical band-gap when implemented in colloids, and a disordered structure with
suppressed diffraction in a given frequency range.

Paper VI: Predicting Self-Assembled Patterns on Spheres with Mul-
ticomponent Coatings

In this paper we generalize the approach of Papers I and II to spherical geome-
tries1 and, more importantly, multiple particle types. We also take a step closer
towards experiment, working with a potential that is modeled on the alkanethiol-
on-gold system.

Until now we have only considered systems with a single particle type (in the
case of the striped patterns in binary space filling systems we can regard one of
the types to be vacuum without loss of generality). Thus we have only handled a
single potential, but here we need to be able to do more as with n particle types,
there are

�n
2
�

unique potentials.

1Note and take care to avoid the possibility of confusing the word spherical when applied to the
geometry and in the name of the spherical spin model.
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It is still possible to diagonalize the Hamiltonian for the spherical spin model
with multiple particle types. The diagonalization is mathematically the same as
for the solution for the sound waves in atomic chains with multiple atoms in
the basis. In both calculations a number of branches in the spectrum (phonon
spectrum for the sound waves) appear as a result of the differences between the
particle types breaking a degeneracy.

The structure of the diagonalization is the same regardless of geometry; as in
Paper II, the spherical geometry enters through the eigenfunction, here as spher-
ical harmonics. The ground state of the spherical spin model can thus be deter-
mined as being linear combinations of spherical harmonics with orbital number l
determined by the minimum of the energy spectrum.

While the diagonalization of the spherical model is a fairly simple exten-
sion of the previous work, the mapping to discrete particle systems is a bit more
involved. It turns out that each of the branches in the spectrum describes a par-
tition of the particle types into two groups and how these groups vary relative
to each other. For example, the spectrum corresponding to the system shown in
Figure 3.6 has one branch whose minimum describes the phase separation of the
blue particles and one that describes the stripe pattern between the red and yellow
particles.

To test the predictions of our method, we formulated a simplified model of the
alkanethiol-on-gold systems studied by Stellaci’s and Glotzer’s groups, among
others. These consist of spherical gold nanoparticles covered with several types
of hydrocarbon chains anchored with sulfur heads. The interactions of the chains
cause them to form patterns in the shape of various combinations of stripes and
spots. Our model captures most of this behavior (as shown in the supplementary
material of Paper VI), and we thus use it as a test case for our method. The
method turns out to describe both the morphologies and transitions between them
in Monte Carlo simulations of this alkanethiol model.

Paper VII: A Design Path for Hierarchical Self-Assembly of Patchy
Colloids

In the last paper we tie together the prediction methods with the idea of de-
signing self-assembling systems. This is a direct continuation of Paper VI in
that we use its form of the prediction method and our model system builds on
the alkanethiol-on-gold model formulated there. In this paper we show that if we
have a model for the interactions between the constituents of a coating on a sphere
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and we can make a given type attractive, we can hierarchically self-assemble a
range of structures.

The design proceeds as follows. First a structure is chosen; in the paper we
do diamond and cubic lattices, spherical vesicles of different sizes, strings and
sheets, as well as isolated cubes. Then a patch arrangement that should cause
assembly into these is chosen by positing attractive patches in positions corre-
sponding to the neighbors in the finished structure. Next the arrangement has
to be achieved in spherical harmonics; this can be guided by expanding the de-
sired pattern with the spherical harmonics as the basis. Lastly, parameters for
the alkanethiol-on-gold model that give a spectrum with minima at the correct
harmonics have to be found and a stoichiometry chosen. This last step involves
a bit of hand tuning, which is helped by a fast implementation of the prediction
method as the spectrum can be recalculated almost in real time. The design is then
tested by doing Monte Carlo simulations, first of the alkanethiol-on-gold method
to check that the correct patch arrangement appears and then of a collection of
colloids with those patches to determine the final structure.

Compared to the direct design method of Papers III-V, the setting proposed
in Paper VII is much closer to experimental realizability. While Paper V goes
a long way towards simplifying the designed potentials, there is still missing a
model of a specific experimental system and the work of matching parameters of
the latter with the design. The alkanethiol-on-gold system might not be what is
eventually used, but the design path presented here would work with any system
with a reasonable range of patterns, as the stripes and spots are universal in the
sense of Paper I.



Chapter 6
Summary and outlook

In this thesis we have seen how exactly solvable models can be applied to various
problems in self-assembly. By generalizing the exactly solvable spherical spin
model to arbitrary isotropic interactions we have been able to predict morpholo-
gies appearing in a range of systems. By designing energy spectra and inverting
them we have been able to construct interactions whose ground states are exactly
some desired lattice.

A lesson from the use of exact solutions in statistical mechanics is that “quan-
tities and functions, introduced primarily as mathematical devices, almost invari-
ably acquire a fundamental physical meaning.” [68] For example, the Lagrange
multiplier b that occurs in thermodynamical calculations turns out to be nothing
less than the (inverse) temperature, b = 1/kBT . In this thesis we have seen this
in the solution to the spherical model in cylindrical geometries, where we saw no
way to lift the w-degeneracy and this turned out to persist in the particle simula-
tions, showing that the degeneracy is indeed fundamental. Relatedly, in applying
the solution to the multiple particle types generalization of the spherical spin
model we saw that the branch structure reflected the morphology of the particle
systems, and that when small quantitative changes caused qualitative changes of
this structure that corresponded to phase transitions in the particle system.

Fruitful studies always point out new directions for research, and to whatever
extent the reverse holds this thesis would seem a success. Some possibilities that
immediately suggest themselves follow.

The solutions to the various generalizations of the spherical spin model pre-
sented here all concern ground states only. For the original, nearest neighbor ver-
sion of the model an exact solution for the complete partition function is known.
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Such a solution might well be obtainable for some or all of our generalizations as
well, possibly with restrictions on the interactions.

As alluded to in Chapter 4, while the design method of Papers III-V have
already given results of theoretical interest, there is still the question of whether
it is possible to use them to design experimental systems directly. Here identifi-
cation of a system for which effective interactions is known and sufficiently rich
is needed, or construction of such an effective description. Further, exploration
of the idea of using optimization in reciprocal space to restrict the method to a
given collection of potentials is needed from the theory side.

The prediction methods of Papers I, II, and VI tell us about what morpholo-
gies typically appear in different types of systems with isotropic interactions,
while Papers III-V show one way to design specific interactions to achieve de-
sired morphologies. This suggests a third line of inquiry, regarding the range of
possible structures. Are there morphologies such that no isotropic potentials can
be designed to have them as (unique or degenerate) ground states? This question
is intimately connected to the question of degeneracy of the pair correlation func-
tion; if two structures has the same pair correlation function g(r), then they will
have the same energy for all isotropic potentials and one would need anisotropies
(or possibly entropic factors at non-zero temperature) to select for either of them.
The unstated assumption in large parts of the literature seems to be that these de-
generacies are rare and special cases, but this is far from proven and an important
open question. Classes of degenerate processes [69] and structures [70, 71] are
known but whether they present important limitations is less clear; practical re-
sults of image reconstruction methods suggests most structures are fully specified
at least by the correlation function g(r) (up to rotations and reflections), see for
example [72]. Ideally we would want to have probabilistic statements of the type
possible for reconstruction from sparse Fourier signals [52].

The final question, the challenge this thesis presents to the self-assembly
community, is whether other exact methods and models can be adapted to our
problems. Perhaps results from spin glass theory have bearing on questions re-
garding formation and solution of defects in systems undergoing self-assembly.
Can methods from computer science be used to prove possibilities and limita-
tions? The nascent field of algorithmic self-assembly suggests so [73].

All in all, theoretical understanding of self-assembly is in its infancy and
much remains to be done.
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