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Positive vector bundles in complex and convex geometry
Hossein Raufi

Abstract

This thesis concerns various aspects of the geometry of holomorphic vector bun-
dles and their analytical theory which all, vaguely speaking, are related to the
notion of positive curvature in general, and L?-methods for the J-equation in
particular. The thesis contains four papers.

In Paper I we introduce and study the notion of singular hermitian metrics
on holomorphic vector bundles. We define what it means for such metrics to
be positively curved in the sense of Griffiths, and investigate the assumptions
needed in order to define the curvature tensor of such metrics as currents with
measure coefficients. We also investigate the regularisation of such metrics.

In Paper II we prove the Nakano vanishing theorem with Hérmander L2-
estimates on a compact Kiihler manifold using Siu’s 90-Bochner-Kodaira method.
We then introduce the singular hermitian metrics and regularisation results of
Paper I, and use these to prove a Demailly-Nadel type of vanishing theorem for
vector bundles over Riemann surfaces.

A fundamental tool in complex geometry closely related to the notion of
positivity is the Ohsawa-Takegoshi extension theorem. In Paper III the 90-
Bochner-Kodaira method is applied to extend this theorem from line bundles
to vector bundles over compact Kahler manifolds. Another way of obtaining
a vector bundle version of this theorem is to reduce it to the line bundle set-
ting through the useful algebraic geometric procedure of studying the projective
bundle associated with the vector bundle. In Paper III we also investigate the
relationship between these two different approaches.

On a trivial line bundle, a positively curved metric is the complex-analytic
counterpart of a log concave function in the real-variable setting. In Paper IV we
extend this link between complex and convex geometry to trivial vector bundles.
We define two new notions of log concavity for real, matrix-valued functions,
corresponding to Griffiths and Nakano positivity, and we prove a matrix-valued
Prékopa theorem.

Keywords: holomorphic vector bundles, 0-equation, L?-estimates, sin-
gular hermitian metrics, Griffiths positivity, Nakano positivity, van-
ishing theorems, Ohsawa-Takegoshi extension theorem, convex geom-
etry, Prékopa theorem






Preface

This thesis consists of the following papers.

> Hossein Raufi,
“Singular hermitian metrics on holomorphic vec-
tor bundles”,
preprint

> Hossein Raufi,
“The Nakano vanishing theorem and a vanishing
theorem of Demailly-Nadel type for holomorphic
vector bundles”,
preprint

> Hossein Raufi,
“An extension theorem of Ohsawa-Takegoshi type
for sections of a vector bundle”,
preprint

> Hossein Raufi,
“Log concavity for matriz-valued functions and a
matriz-valued Prékopa theorem?”,
preprint
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Introduction

1. Complex analysis

In basic, first year calculus courses it is quickly recognized that one can
obtain a great deal of information about a real function f : R — R, by
studying its deriwative function, f’. This function is defined at a point

x € R through
oy i 4 R) = f(2)
(1.1) fx) = }LE% o .

Although the precise mathematical definition of the limit in the right hand
side is the big "bugaboo" of these basic calculus courses, students are nev-
ertheless quick to grasp the importance of differentiation. In later courses,
one then proceeds to define integration (the "opposite" of differentiation)
and also study the several variable analogues of these concepts.

In all of these courses, it is of utmost importance that the functions
depend on real variables. In more mathematics oriented studies, one might
then turn to the study of functions that depend on one complex variable,
z = x + iy € C. Hence one considers functions f : C — C and replace
(1.1) with,

fz+h) - f(2)

h )
where now h € C. If this limit exists, one says that f is holomorphic at
z € C. This innocent looking definition turns out to have quite amazing
and far reaching consequences that often stand in sharp contrast to the
corresponding real-variable theory. For example we have the following
"miraculous" facts.

(12) 7'(2) = lim

1. CONTOUR INTEGRATION: If f is holomorphic in a domain Q C C, (i.e
an open and connected set), then for appropriate closed paths v in Q

/f

2. REGULARITY: If f is holomorphic, then f is infinitely differentiable.
3
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3. ANALYTIC CONTINUATION: If f and g are holomorphic functions in
a domain 2 C C, which are equal in an arbitrarily small disc in €2, then
f = g everywhere in €.

These basic features of the one-variable theory are covered in standard
courses that are sometimes studied in the very first years of an under-
graduate program; (we recommend [SS] for a nice introduction). However,
even if one chooses to specialize in mathematics, chances are slim that one
ever gets to hear anything about functions that depend on several com-
plex variables, f : C" — C, at either the undergraduate or master’s level.
This latter subject is not at all as well-developed as the corresponding
real-variable theory, and in fact, a more thorough understanding of com-
plex analysis in several variables started to evolve in the second half of
the twentieth century.

This theory, once again, starts with the following very innocent-looking
definition.

Definition 1. Let 2 be a domain in C". A function f :  — C is said
to be holomorphic in €, if it is holomorphic in each variable separately.
We will denote the set of functions that are holomorphic in © by O().

Many of the basic one complex variable properties, such as 2 and 3
above, (and even 1 if properly interpreted), also hold in several complex
variables. Many other, though, do not. A salient feature of the theory of
holomorphic functions of several variables is that it is not similar to nei-
ther the real variable nor the single complex variable theory. Instead, it is
an independent theory with tools and methods of its own, that neverthe-
less overlaps with many other mathematical areas. One of the founding
fathers, Kiyoshi Oka, used Figure 1 below to illustrate this, (JO1]).

In this thesis, we are concerned with the parts of the theory that fall
into the 'Geometry’ and ’Mathematical Analysis’ groups. Before we can
go on to describe this in more detail, we first need to introduce some of
the main concepts and ideas of modern differential geometry.

2. Manifolds, differential forms and partitions of unity

The most fundamental objects of study in modern geometry are man-
ifolds. From "everyday life" we are familiar with curves and surfaces,
which are one and two dimensional objects in space, R®. The idea behind
the concept of a manifold is to generalize this to arbitrary dimensions.
Thus, intuitively, a manifold is a k-dimensional "surface" in R"™, where
k <n.

4
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One Variable

Number Theory Complex Analysis

and Algebra

Several Variable

Several Variable
Complex Analysis

Complex Analysis

Mathematical Mathematical
Physics Analysis

FI1GURE 1. Several variable complex analysis from Kiyoshi
Oka’s perspective

More precisely, the characteristic property of curves and surfaces that

one wants to generalize to these higher dimensional objects, is that they
are "locally flat". By this we mean that if we zoom in sufficiently much
on say a two dimensional surface in R3, it will look very much like a piece
of R?. Hence a k-dimensional manifold M in R™ with k& < n, is an object
that locally looks like R*. Mathematically we express this in the following
way.
Definition 2. A subset M of R" is called a k-dimensional manifold if
for every point x € M, there exists open sets U,V C R" with x € U, and
a homeomorphism ¢ : U — V, (i.e. a bijective continuous map with a
continuous inverse), such that,

PUNM)=VNRF x{0})={yecV;y 1 =... =y =0}.
Strictly speaking, the objects that we have just defined are called
embedded manifolds. The general definition is the following.

Definition 3. Let M be a topological space. We say that M is a (topo-
logical) manifold of dimension k if it has the following properties:

(i) M is a Hausdorff space: for every pair of distinct points p,q € M,
5
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there are disjoint open subsets U,V C M such that p € U and ¢ € V.

(ii) M is second countable: there exists a countable basis for the topology
of M.

(iii) M is locally Euclidean of dimension k: for every point p € M there
exists an open set U C M with p € U, an open set V C RF and a
homeomorphism ¢ : U — V.

In the general definition, there is no mention of any ambient space
R™. When one thinks about manifolds, one certainly imagines them to be
embedded in some R", and a famous theorem of Hassler Whitney, [W2],
shows that such an embedding always is possible. However, in practice the
ambient coordinates and the vector space structure of R"™ are superfluous
data that often are not related to the relevant problems in any way.

There are several different types of manifolds. The ones that we have
just defined are the most general ones, called topological manifolds. In-
tuitively, these are geometric objects that are allowed to have edges, like
for example a square or a cube. If one is interested in studying manifolds
with the tools of calculus, like differentiation and integration, only smooth
geometric objects, like for example the sphere, should be allowed. This
leads to the concept of smooth manifolds.

Definition 4. A topological manifold M of dimension k, is said to be a
smooth manifold if there exists an open covering {U,} of M, and homeo-
morphisms ¢, : U, — R* for each «, with the property that for any two
open sets Uy, Ug with Uy, NUg # 0, the so called transition function

(2'1) ¢5O¢c_yl : ¢a(UamUﬁ) - ¢ﬁ(UamUﬁ)

(which hence is a mapping between two open sets in R¥), is smooth.

On smooth manifolds it is possible to give meaning to and develop
the concepts and tools of calculus. If M and N are smooth manifolds,
one can define what it means for functions f : M — R and F' : M —
N to be smooth, and also how to differentiate and integrate on smooth
manifolds. As simple as this may sound, this is not an easy task at all,
and in fact most (good) textbooks on the subject (like e.g. [L2]) have to
spend several hundred pages on motivating and developing these tools.
The main difficulty stems from the fact that manifolds only locally look
like R*, where these concepts are well-known. Hence, one has to find
constructions that, (to a large extent), resemble say differentiation or
integration, yet are invariant under changes of coordinates.

For integration this leads to the concept of differential forms, which are
objects that can be integrated in a coordinate invariant way. These play a

6
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very central part in modern differential geometry, (as well as in algebraic
topology and algebraic geometry, see e.g. [BT| and |[GH]), and will be
a very useful tool for us as well. However, we will not spend any time
developing this theory here, but will assume that the reader is familiar
with the basic parts, like e.g. exterior differentiation and wedge products.
We recommend [L2]| for a good introduction to differential forms, as well
as the basic concepts and theorems of differential geometry; (see also [M]|
for a nice exposition of the central position occupied by differential forms
in modern geometry).

We will in fact be interested in a more general type of differential forms
called currents. Integration of differential forms on smooth, (orientable),
manifolds, corresponds to integration of functions in ordinary calculus. In
the same way, the concept of currents are the manifold counterpart of dis-
tributions, or generalised functions. Thus, a current is a linear functional
on differential forms, (together with a weak continuity condition), which
we intuitively should think of as a "singular differential form". Currents
will be of great importance to us in Paper L.

Several natural counterparts for differentiation on smooth manifolds
exist as well. For us, the most important concept will be that of connec-
tions, which we will return to in section 7 below.

Now from the definition of manifolds it is clear that tools which make
it possible to patch together local constructions into global objects are of
great value. One such technical tool which is of utmost importance in the
theory of smooth manifolds are so called partitions of unity, the existence
and properties of which are given in the following theorem, (see e.g. [L2],
Theorem 2.25 for a proof).

Theorem 2.1. Suppose that M is a smooth manifold and U = {Uy}aca
18 any indezed open cover of M. Then there exists a smooth partition of
unity subordinate to U, i.e. there exists an indexed family {1o}aca of
smooth functions 1, : M — R with the following properties:

(i) 0 < ¢o(x) <1 foralla € A and all x € M.
(i) supp 1o C Uy for each o € A.
(iii) The family of supports, {supp Vo }aca is locally finite.

(iv) D oen Yalx) =1 for all x € M.

Here, condition (iii) means that each point in M has a neighborhood
that intersects supp 9, for only finitely many values of a. This in turn
implies that the sum in (iv) only has finitely many non-zero terms in a
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neighborhood of each point, so there will not be any problems related to
convergence.

Thus, a partition of unity is a family of smooth functions of compact
support, that are used to form global object from local ones. For example
this is precisely how one defines integrals of differential forms. Unfor-
tunately, due to analytic continuation this passage from local to global
is not available in the holomorphic setting. We will soon discuss this in
detail, but first we will introduce complex manifolds, which are our main
geometric objects of interest.

3. Complex manifolds and the additive Cousin problem

The subject of this thesis is complex geometry. Hence, we are not re-
ally interested in smooth manifolds, but rather a more restrictive class
of manifolds called complexr manifolds. These are defined in exactly the
same way as smooth manifolds, (Definition 4), except that one requires
the charts ¢, to take values in C* instead of R¥. One also requires the
transition functions (2.1) to be holomorphic, and not just smooth.

Since complex manifolds are geometric objects that locally look like
C*, they are always even-dimensional. Furthermore, one can prove that
they always are orientable, i.e. have a well-defined inside and outside.
For complex manifolds of dimension one, (i.e. "genuine" surfaces as they
locally look like C ~ R?), one can show that orientability is sufficient.
This means that all orientable, smooth manifolds of (real) dimension two,
can be given a complex structure.

In higher dimensions, however, this is no longer true. In fact, despite
the similar looking definitions, the world of smooth and complex manifolds
are very different. For example, as we have already mentioned, for smooth
manifolds we have the Whitney embedding theorem, which states that any
smooth manifold M, can be smoothly embedded in R", for some n € N.
In stark contrast to this, it is not very difficult to show that the only
compact complex manifolds that can be holomorphically embedded into
some C™, are points.

At the end of the previous section, we introduced partitions of unity
and described them as an important tool in going from local to global.
We also mentioned that, due to analytic continuity, this tool unfortunately
is missing in the complex analytic setting. It is important to point out
that this does not just relate to complex manifolds; patching together
local objects into global ones in a holomorphic way is a highly non-trivial
problem already for domains in C™. We will now describe this in greater

8
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detail and in order to keep things as simple as possible, we will only treat
C" for quite some time.

Two famous local to global results from one variable complex analysis
are the Weierstrass product theorem, and the Mittag-Leffler theorem, (see
e.g. |A]). Attempts to generalize these, (especially the latter), to several
complex variables, historically turned out to be very important for the
development of the field. The natural several variable generalization of
both these theorems is the following decomposition problem.

ADDITIVE COUSIN PROBLEM: Let €2 be an open set in C™. Suppose that
{Uj};‘;l is an open covering of ), and that for any j,k > 1, functions
gjx € O(U; N Uy) are given, with

(3.1) 9ik + gkl + 91; =0 on U;NU,NU,

whenever U; N U, N U; # 0.
Find functions g; € O(Uj), such that g; — gr = g;x on U; N Uj.

To see how this decomposition problem is related to local to global
problems, let us see how we can use it to obtain a several complex variable
version of the Mittag-Leffler problem. The formulation of this problem is
the following.

MITTAG-LEFFLER PROBLEM: Let ) be an open set in C". Suppose
that {U;}52, is an open covering of 2. For each j > 1, let m; denote a
meromorphic function on Uj, (i.e. a quotient of holomorphic functions),
and assume that these "match up", in the sense that m; —my =: g is
holomorphic on U; N Uy, whenever this set is non-empty.

Find a global meromorphic function m on €2, such that m —m; €
O(Ujy) for all j > 1, (hence the "singularities", or the principal parts of
m and m; are the same).

The Mittag-Leffler problem is an immediate consequence of the Cousin
problem. Namely, as g;, := mj — my, € O(U; N Uy) clearly satisfy (3.1),
the Cousin problem yields holomorphic functions g; € O(Uj), such that
m; —my = g; — gk, or equivalently,

m; — gj = Mk — gk on UjﬂUk.

Thus, we get a globally well-defined meromorphic function m on €2, with
m —mj; € O(Uj), by setting m := m; — g; on Uj.
The several variable generalization of the Weierstrass product theorem

also follows from the (multiplicative) Cousin problem, but the argument
is more involved, (see e.g. |R]).

9
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Historically, the Cousin problem was solved on certain domains ) C
C", called domains of holomorphy, in a spectacular way by the Japanese
mathematician Kiyoshi Oka, in 1936, (see [R] for a nice survey of the early
developments of several variable complex analysis). This important and
difficult achievement was later simplified and expanded by Henri Cartan
during the 1940’s and 1950’s, using methods of sheaf cohomology theory.
Beginning in the 1960’s, other analytical ways to form global holomorphic
objects out of local ones were discovered. Before we can start describing
these however, we first need to introduce the key differential operator of
complex analysis.

4. The O-operator

In the first section, we defined holomorphicity of a single variable function
f:C — C, as being complex differentiable. If we regard f as a real-valued
mapping instead, i.e.

f(z,y) = u(z,y) +iv(z,y),

for some real-valued functions u,v : R?> — R, one can show that the holo-
morphicity of f is equivalent to the following system of partial differential
equations, know as the Cauchy-Riemann equations,

ul, = vy,

Uy = —vy,.
The idea behind the d-operator comes from yet another reformulation of
the holomorphicity condition.

It is a consequence of the Cauchy integral formula that holomorphic

functions always can be expanded in power-series. Hence, we can expand
f in a Taylor-series about a point zg = xg + iy,

f(2) = f(20) + f2(20)(z — x0) + f(20)(y — vo) + o]z — 20]).
If we replace x and y by

_ 2tz
(4.1) { ve oy

|

Y= =5
i.e. make the change of variables
z =z 41y,
zZ=x—1y,

then this becomes,

£(2) = (o) + 5L ()= = 20) + S (20)(z — 70) + o(]= )
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where,

IR YL R TORE)
0z 2\0x Oy 0z 2\ox  oy)

Writing f = u + iv, we get that

of _1fou_ov\ ifou 0w
0z  2\0xz Oy 2\ 0y Ox)’

Hence, using the Cauchy-Riemann equations, we see that in this formu-

lation, f is holomorphic if and only if

of

0z

i.e. the power-series expansion of f does not contain any powers of Z.
In the several variable setting, we can in the same way set,

o (o oy .. 9 1o .o
8zj_2 Ox;j 0y; 82j_2 Ox;j 0y '

0,

for j = 1,...,n. Then a several variable function f : C" — C will be
holomorphic if and only if,
(4.2) of =0 forall j=1,...,n.

95
Using the language of differential forms, it is in fact possible to express

these conditions in an even more compressed form.
The exterior differentiation operator, d, applied to a function f : C" ~

R?" — C, yields
"/ Of of )
daf = ——dz; + ——dy; ).
f ]Z; <a$3 J 8yj Yi

Making the change of variables (4.1) again, and setting

de = d.’Ej + idyj,
dz; = dx; —idyj,

this transforms into,
~ (Of of
df = —dz; + ——dz; |.
/ ;(3% SR ZJ)

Hence, for functions on C", we can define two operators, d and 0, by
setting,

N TIR I
Bf_;azjdz] and 8f_;azjdz],

11
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thereby splitting exterior differentiation into two parts, d = 9 + 0. Com-
paring the defintion of 0 with (4.2), we see that a several variable function
f:C" — C is holomorphic, if and only if,
of =0.
Just as with exterior differentiation, it is possible to extend d and 0 to

act on differential forms of higher degree. A differential form «, of degree
p + g, which is of the form,

o = Z OéLJdZ]/\dZJ,
[T|=p,|J|=q

where I = (i1,...,4p), J = (j1,...,Jq) are multiindices with integer com-
ponents, |I|, |J| stand for the number of components, and

dZ[:dZil/\.../\dZip and dZ]:dijl/\.../\dijq,
is said to be of bidegree (p,q). For these, we set

- 0
o 1= Z Z gl"]dz'j ANdzr Ndzg,

; 2
J=1|I|=p,|J]=¢q

and,

n
dov = Z_: 3 aaéf"dzj Adzr A dzy.
J=1I=p,|J|=q
Since d? = 0, it then follows that 9% = 9?> = 0 and 90 = —00.
Now for local to global problems, such as the additive Cousin problem
of the previous section, it turns our that the inhomogenous d-problem is
of great interest.

INHOMOGENOUS 5—PRQBLEM: Let 2 be a domain in C", and let f be a
(0,1)-form on Q, with 0f = 0. Find a function u : Q — C, such that

(4.3) ou=f.

Since 92 = 0, the condition df = 0 is necessary for the solvability of
this equation. If

f=>_ fidz,
j=1

then 0f = 0 means that,

of;  Ofk .
4.4 = =225 forall jk=1,....n.
(4.4) 95~ 0% or all j, N}

12
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Hence, (4.3) is a compressed way of saying: Given an n-tuple of functions
{fi}j=1 on € such that (4.4) holds, find a function u : @ — C, such that

ou
82j N
And so for n > 2, the inhomogenous d-equation is an over-determined
system of first order, linear, partial differential equations.
It turns out that the necessary condition, df = 0, is sufficient for the
existence of local solutions to (4.3). This is the famous Grothendieck-
Dolbeault lemma, (see e.g. |H4|, Proposition 1.3.8). The existence of

global solutions is, however, a much more difficult problem, closely related
to the domain €. In fact, we have the following theorem.

fij forj=1,...,n.

Theorem 4.1. The ezistence of global solutions to the inhomogenous O-
equation on a domain 2 C C", s equivalent to the solvability of the addi-
tive Cousin problem on ).

Proof. The easy direction here is if we assume known that the Cousin
problem is solvable on €. Then, as du = f is known to have local so-
lutions, there exists an open covering {U;}32; of {2, and corresponding

functions u;, such that
Ouj = f on Uj for any j.
Now let g1, := uj—uy € O(U;jNUy). Then, by the solvability of the Cousin
problem, there exists functions g; € O(U;), such that, g;r = g; — gk, or
equivalently
uj — gj =up — g~ whenever U; N Uy, # 0.
Thus, setting u := u; — g; on Uj, yields a well-defined global function on
Q, with - - B
8u = B’LL]' — 8gj = f

Conversely, assume that the inhomogenous d-equation is (globally)
solvable on Q. Assume that {U;}32, is an open covering of (2, and that
functions g; € O(U; NUy) are given, which satisfy the cocycle condition,

ik + 9 +g; =0 onU;NU,NU #0.

We want to find g; € O(Uj), such that g; — gr = g;x on U; NUj.

For this, we start by constructing smooth solutions to the Cousin
problem. Let {¢;}32; be a partition of unity subordinate to {U;}32,,
(Theorem 2.1). Set

hj = Z¢k9jk on Uj.
k=1

13
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By the properties of partitions of unity, for any z € U}, this sum contains
only a finite number of terms, so we do not have any convergence problems.
Then h; is well-defined and smooth on U;. Furthermore, using the cocycle
condition, we get that on U; N Uy,

hj —hy = Z@(Qlj — Gik) = Yjk Z &1 = Gjk-
=1 =1

Thus, {h;}32, yield a smooth solution to the Cousin problem.
Since every g, is holomorphic, we have that

éhj—éhk:(iq]'k:() on UjﬂUk.

Hence, we get a well-defined (0,1)-form, f, on Q, by setting f := dh; on
U;. By construction, Jf = 0. The global solvability of the J-equation now
implies that there exists a global function, v : Q — C, such that Ju = f
on 2. Set gj := hj —u on Uj;. Then,

dgj = Ohj —du=0hj — f =0,
so that g; € O(Uj) for all j, and furthermore,
9 — gk = (hj —u) = (hy —u) =hj —hp =gjr  on U;NUj.
Thus {g;}32; solves the Cousin problem. U

Hence, returning to the discussion of the previous section, instead of
attacking the Cousin problem with the methods of sheaf cohomology the-
ory, one can study the existence of global solutions to the inhomogenous
0-equation, using methods from the theory of partial differential equa-
tions. This approach, which became popular in the 1960’s, turned out to
be very fruitful, in particular after the work of Lars Hormander. We will
now spend quite some time explaining some of the basic components of
this theory, which plays a very central part in this thesis.

5. L’-theory for the 0-equation

Using Hilbert space methods, Héormander ([H1|,[H2]), in 1965 showed that
not only is it possible to solve du = f on certain domains Q C C”, but
also provided very useful estimates for the solutions. These estimates have
since then become an indispensible tool for the construction of global
holomorphic functions with specified properties. To illustrate the main
ideas more clearly, we begin by studying the one-variable version of this
theorem.

Let 2 be any domain in C, and let f : 2 — C be any locally integrable
function, (as we are in C, we can without loss of generality interchange
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(0,1)-forms with functions). In this setting, the inhomogenous J-equation
translates into finding a function u : Q — C, such that

ou

(5.1) ==

f onQ
in the sense of distributions.

The "usual" Hilbert space approach to linear partial differential equa-
tions now is to make a weak reformulation of this equation, make some
suitable estimates and finally, after having made some assumption about
the regularity of f, deduce that a solution exists by invoking the Riesz
representation theorem.

In our case, this would translate into multiplying our equation with the
complex conjugate of a test function a € C2°(£2), and apply integration

by parts to arrive at,
Ja _
— [ u— = Q.
o 0z /Qf

Then we would try to estimate the right hand side.

Hormander showed that this approach can be made successful, and
also produce nice estimates for the solution, if we introduce weighted L?
inner products instead.

Let ¢ € C%(Q) be a real-valued function and introduce the weighted
scalar product

f. 0o = /Q fge?.

With respect to this scalar product, the weak formulation of (5.1) be-
comes,

(5.2) /uaj;@ed’:/fae‘b,
Q Q

where

- 0
x . _ 0 —¢
8¢a = —¢ 5 (ae )

is the formal adjoint of the d-operator. We then have the following propo-
sition.

Proposition 5.1. Let 2 C C be any domain, and let

L) = {g € 2,(Q) ; / gl2e™% < oo}
(9]
15
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Then, for any f € L?(e™?), there exists a solution u : Q — C to the
inhomogenous 0-equation (5.1) satisfying,

(5.9 [upee < [ 1pe.
Q Q
if and only if

2 _
(5.4) ‘/fde‘¢‘ g/|f|26—¢/ a)2e
Q Q Q
holds for all a € C2(2).

Proof. One direction is immediate: If u is a solution to (5.1) satisfying
(5.3), then (5.4) follows at once by applying the Cauchy-Schwarz inequal-
ity to (5.2).

Now suppose that (5.4) holds for all o € C2(Q2), and let E C L?(e™?)
be the subspace,

E:={0ja;a € C2(Q)}.

Define the anti-linear functional L : £ — C as,
L(9ja) := / fae™?.
Q

Then, (5.4) says that L is well-defined and of norm not exceeding,

(5.5) /Q PP,

The Hahn-Banach extension theorem can now be used to extend L to
an anti-linear functional on all of L?(e~?), with the same norm. By the
Riesz representation theorem, there exists some element u € L?(e™?),
with norm less than or equal to (5.5), such that

L(g) = /Qufze‘(f’,

for all g € L?(e~?). Choosing g = 5204 yields,

/ué;k)ae_d’:/f@e_d’,
Q Q

so u solves the inhomogenous J-equation (5.1). O

Hence, we have reduced the existence of solutions to (5.1), to proving
the inequality (5.4). The next step is to rewrite this inequality a bit

16
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further. Assume that ¢ :  — R is a strictly positive function. Then,
with the same reasoning we get that there exists a solution to (5.1) with

/ |’LL’2 —¢ < ’f|2 ’
if and only if,

(5.6) [ vlapee < [ jaape.
Q Q

for all a € C2(1Q).
The reason for this reformulation is that there exists a special choice
of v, for which (5.6) always holds, for any domain in C. Namely,

0%
v= 020z = Ad.

(This is the reason for requiring that ¢ € C%(Q).)

Proposition 5.2. Let Q C C be any domain, and let ¢ € C*(Q). Then,
for any o € C?(2),

[ adtapee s [P0 = [ oape

Proof. By integration by parts

_ 0 O =
/|8¢a|2 /8¢aaz(ae ‘b):/Q(aza(ba)ae ¢,

Also, by definition,

5 0 _ (oo’ ¢
K ‘ 0z (ae ) 0z ta 0z’
and so,
0 2a da do a2¢ da
8za¢’ 020z * oz 0z 0z + 828z a¢’(3 ) (Ag)a.
Hence,

= o
x 12 —¢ _ * — 2 —¢ _
/Q\a(z,oz\ e /Qﬁ(ﬁ(az)ae +/QA¢|04] e
2
= [152[e+ [ avlape.
oloz Q

where we have just used that 5;; is the adjoint of % with respect to the
scalar product defined by ¢. O

17
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Altogether, we have proved the following one-dimensional version of
Hoérmander’s theorem.

Theorem 5.3. Let Q C C be any domain, and let ¢ € C%(Q) be any
function with A¢ > 0. Then, for any f € L} (), there ezists a solution
u to the inhomogenous 0-equation,

ou
5%'—-f

/‘|2—¢< |f|¢

Let us quickly recapitulate what we have done so far. We started off
with the additive Cousin problem for domains €2 in C", i.e. the problem
of patching together local holomorphic functions in a holomorphic way.
We then reformulated this problem into the problem of finding global
solutions to the inhomogenous d-equation on Q. And now, we have just
shown that for domains in C, this equation is always globally solvable,
and there exists good estimates for the solutions as well.

The natural question to pose now is whether it is possible to proceed
with this analytic approach in higher dimensions? Before we can start
answering this, we need to introduce some new notation, since we can no
longer interchange functions and (0,1)-forms.

Let f and « be (0,1)-forms on 2 C C™,

f= ijdfj , o= Zajdij,
j=1 j=1

let ¢ € C?(€2), and define a scalar product with respect to ¢, through

<f, Oé>¢) = ;/ﬂfjaje‘z’

on §Q,

with,

One can check that the formal adjoint of the d-operator, (which now takes
(0,1)-forms to functions), with respect to this scalar product becomes,

5:;(1 = —¢e? Z 0,2]

With this notation, the weighted dual formulation of the inhomogenous
O-equation,
Ou=f onQ,

18
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becomes: Find u : £ — C, such that

/ué?;‘)ae Z/ fjaje” ,

for all « € C(O 1)(Q), where

0(20’1)(9) = {oz = Zajdzj ;o € CCQ(Q)}

J=1

If we replace L?(e~?) with,

Lip1)(e7?) = {f =D fid% ; Z/ fil%e? < oo},
j=1 j=17%

in Proposition 5.1, then a careful study of the proof reveals that this
result holds, basically unchanged, in this several variable setting as well.
However, this is not as good news as one might think at first. In fact, in
several variables, it is impossible to prove that

6.7 ranel < (3 [ le?) [ igare,
j=1

for all o € C(o 1)(Q). If we could prove this, then we would have shown

that there exists a solution to Ju = f, without using the compatibility
condition df = 0. Hence, we need some way of taking this extra informa-
tion into consideration as well. For this, we first need to introduce some
notation from the theory of Hilbert spaces.

Let T denote the operator d but with the specified domain,

Dom(T) == {u € L*(e™?); duc L%Ojl)(e_‘b)}.

Furthermore, let T denote the adjoint operator, which is 5;'; but with the
specified domain,
Dom(T*): = {v € L(o (e e™?) 5 u € Dom(T) +— (Du,v)4 is a
bounded linear functional}.
The following proposition is the several variable analogue of, (the rewrit-
ten form of), Proposition 5.1, (see [B3], Proposition 1.3.2 for a proof).

Proposition 5.4. Let Q be a domain in C", and let ¢ : Q@ — C™" be a
continuous function whose value at any point z € § is a strictly positive
definite, and uniformly bounded hermitian matriz (2) = (Vjr(2))1<jk<n-
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If, for any a € Dom(T™*) N Ker(0) it holds that,

n
Z /¢jk0<jak6¢§/\a$a\26¢a
Q )

j?kzl
t_hen, for any f € L%()’l)(e*d)) with Of = 0, there exists a solution to
ou = f satisfying,

n
JNRSED S R T
Q Pytpde

Comparing this with Propostion 5.1, we see that the main difference,
which reflects the necessary condition df = 0 in several variables, is the
class of test functions.

Although we have chosen not to include it, the proof of this proposi-
tion is not overly difficult. Instead, the main difficulty lies in finding the
appropriate several variable analogue of Proposition 5.2. We now turn to
studying this in greater detail.

First off, consider the matrix-valued function 4. It turns out that the
appropriate choice is,

_ 9%

N 8zj82k’

which clearly is consistent with Proposition 5.1. Furthermore, the several
variable counterpart of A¢ > 0, is requiring the Hessian (5.8) to be strictly
positive definite.

Functions defined on domains in C", with positive definite complex
Hessians of this type, are called plurisubharmonic functions. These func-
tions are the complex-variable analogues of convex functions in real anal-
ysis, and just as for convex functions, there exists several alternative def-
initions of plurisubharmonicity that do not require the functions to be
twice differentiable. One definition that bears a striking resemblance to
the definition of convex functions, as well as explains the name, is the
following.

Definition 5. (i) Let © C C be a domain, and let u :  — [—00,00) be
an upper semicontinuous function. Then u is called subharmonic if, for
every compact subset K C 2, and every continuous function h : K — R

which is harmonic on the interior of K. the inequality v < h is valid in
K, if it holds on 0K.

(5.8) Yik

(ii) Let © € C™ be a domain, and let u :  — [—00,00) be an upper semi-
continuous function. Then wu is called plurisubharmonic if its restriction
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to every complex line in € is subharmonic, i.e. for arbitrary z,w € C",
the function

T = u(z + Tw),
is subharmonic in the open subset of C where it is defined.

The complex-analytic counterpart of convex sets in R", is the notion
of pseudo-convexity.

Definition 6. A domain € in C" is called pseudo-convez if there exists
a continuous, plurisubharmonic function ¢ defined in €2, which tends to
infinity at the boundary; (such a 1 is called an ezhaustion function for

The study of plurisubharmonic functions and pseudo-convexity are ex-
tremely important and key parts of several complex variable theory. We
will, however, not treat this theory in any great detail. For the inter-
ested reader we recommend the nice survey [K1], as well as the standard
treatises [H3| and [K2.

One intuitive way of regarding pseudo-convex sets is that they are the
domains in C" that behave most similar to domains in C; ("things work as
usual"). The classical example of this is the Hartogs’ extension theorem
and domains of holomorphy, (once again, see [R]). Another example is that
pseudo-convexity is a sufficient condition for the several variable version
of Proposition 5.2 to hold.

Proposition 5.5. Let 2 be a pseudo-conver domain in C™, and let ¢ €

C?(2). Then, for any o € C(20,1)(§) N Dom(T™),

- 92¢ _ 1 [ -
Z/ - ajake¢g/\a;a\2e¢+/ Ba)?e?,
k=1 Q 82"82k O 2 Q

where,
- Oda;  Oay, |2
’801‘2 = g ’7,] - | -
i<k 6zk 8zj

See e.g. |B3|, Theorem 1.4.2 for a proof.
Hence, we get that for a pseudo-convex domain €2 in C",

n

9? =
Z/ ¢_ ajaked’g/ |8:;(,¥|267¢,
Jh=1 QaZ‘azk Q

for any o € 0(20 1)(5) N Dom(T*) N Ker(d). Assume that ¢ € C%(Q) is
strictly plurisubharmonic, i.e. the complex Hessian of ¢ is strictly positive

definite. If we compare this with the setting of Proposition 5.4, we see

21




INTRODUCTION

that the only difference is the extra requirement of smoothness up to the
boundary, a € 0(20,1)(6)' This extra requirement can be removed through
approximations, but doing so is highly non-trivial.

Once this, far from obvious step, has been taken we arrive at the

following theorem, ([H1,H2,H3|).

Theorem 5.6. Let Q) be a pseudoconver domain in C", let ¢ € C’f(ﬂ) be
a strictly plurisubharmonic function, and let f € L%O’l)(e_‘b). If 0f =0,
(in the sense of distributions), then there evists a global solution, u, to the
inhomogenous 0-equation Ou = f. Furthermore, this solution satisfies the
estimate,

(5.9) JICRED Sy T

J:k=1

provided that the left hand side is finite, where ¢’F denotes the inverse
matriz of the complex Hessian of ¢.

This is (one version of) the Hormander theorem for the inhomogenous
O-equation in C"™. Apart from the relation to local to global phenomena
discussed so far, this theorem is an extremely useful tool for constructing
holomorphic functions with specified properties. In the words of Feodor
Nazarov ([N3])

This amazing theorem has become the main tool for constructing analytic
functions in C™ with good growth/decay estimates. It has essentially wiped
out all previous ad hoc procedures based on power series, Cauchy integrals
and such.

The philosophy behind these constructions is that through the funda-
mental estimate (5.9), the sought after properties of a holomorphic func-
tion can be reduced to the construction of a specific plurisubharmonic
weight function ¢, which is a much less rigid object than holomorphic
functions. The analytic proof of the Kodaira embedding theorem at the
end of section 8 below is a nice illustration of this.

Now as we have tried to point out throughout this section, the proof
of the Hormander theorem has two main parts:

(i) Reducing the existence of solutions to an inequality.
(ii) Finding conditions which ensure that this inequality holds.

We will now turn to the study of inhomogenous J-equations on com-
plex manifolds, where the Hérmander estimates are an important tool in
the analytic study of complex geometry. For complex manifolds, just as
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for domains in C", the difficult part is step (ii). The first part of Paper II
is devoted to illustrating a new method, which we believe is simpler than
the traditional methods, for the establishment of this step.

6. Holomorphic vector bundles - Motivation

A general strategy in order to understand the geometry of a complex
manifold X is to study:

(i) Holomorphic maps from other complex manifolds into X.
(ii) Holomorphic maps from X into other, (easier), complex manifolds.

(iii) Holomorphic vector bundles on X.

(We will explain what (iii) means shortly.) As we will soon see, these are
all closely related.

In (i), one is particularly interested in investigating the complex sub-
manifolds, or more generally the analytic subvarieties, of X. These are
defined in the following way.

Definition 7. Let X be a complex manifold. An analytic subvariety
of X is a closed subset Y C X, such that for any point x € X, there
exists an open neighborhood U C X containing x, such that Y N U is
the zero set of finitely many holomorphic functions on U, i.e. there exists
fiy-ooy fr € O(U) with,

YNU={fi=...=fr=0}NnU.

An analytic subvariety is not always a submanifold, since it can have
singularities. For example, the union of the two coordinate axes in C? can
be written as {z122 = 0}, so it is an analytic subvariety with a singularity
at the origin. However, one can show that for any analytic subvariety
Y, the set of regular points Y¢y := Y \ Yiing is a non-empty complex
submanifold of X.

We will need the following standard notions from the theory of analytic
subvarieties.

Definition 8. Let X be a complex manifold, and let ¥ C X be an
analytic subvariety.

e We say that Y is irreducible if it cannot be written as the union Y =
Y1 UYs of two proper analytic subvarieties Y; C Y.

e If Y is irreducible, then the dimension of Y is defined as the dimension
of the manifold of its regular points, dim(Y") :=dim(Y7.4).

e Y is said to be an analytic hypersurface of X, if it has codimension
one, i.e. dim(Y) = dim(X) — 1.
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Varieties and hypersurfaces, (not necessarily analytic ones), are the
main objects of investigation in algebraic geometry. Many deep and in-
genious tools have been developed for their study, (see e.g. [SKKT] for a
nice introduction). From our point of view, however, analytic subvarieties
are mainly interesting because of their close connection to (iii) above.

The basic definition of vector bundles is the following.

Definition 9. Suppose X is a complex manifold. A holomorphic vector
bundle of rank r over X is a complex manifold F, together with a surjective
holomorphic map, 7 : E — X, satisfying the following conditions:

I. For each = € X, the set E, := 7~ 1(x), called the fiber over z, has the
structure of an r-dimensional complex vector space.

IT. For each x € X, there exists a neighborhood U C X of z, and a
biholomorphism ® : 7=1(U) — U x C", such that 7|y = 7 o ®, where
7 is projection on the first factor. Furthermore, for any y € U, the
restriction ®|g, : By — {y} x C" is a C-linear isomorphism. The pair
(U, @) is called a local trivialization of E over U.

A holomorphic vector bundle of rank 1 is called a holomorphic line
bundle.

The main example, and motivation, for vector bundles is the so called
tangent bundle of a manifold. The intuition behind this construction is
to think of the manifold as a submanifold of C". At each point of the
manifold we then have a tangent space, and the idea is to glue all of these
together so that the resulting geometric object also is a manifold. Gener-
alising this construction, making it independent of the ambient space and
coordinates, has led to the abstract definition above; for each x € X, the
fiber E, represents the tangent space at x.

As vector bundles are, possibly twisted, disjoint unions of vector
spaces, there is a meta-theorem to the effect that any canonical construc-
tion in linear algebra gives rise to a geometric version for vector bundles.
Thus, it is possible to construct the dual, tensor product, direct sum, etc.
of vector bundles.

Now vector bundles are one of the main building blocks of modern
geometry. Considering that the tangent bundle of a manifold, by con-
struction, contains a lot of interesting geometric information about the
manifold, this is perhaps not so surprising. For us, holomorphic vector
bundles, and their rich theory, are the main objects of study. Unfortu-
nately, this richness also makes it very difficult to give a self-contained
introduction. In this section we will give a rather detailed motivation for
their study by describing their relation to analytic varieties. After this,
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we will recapitulate some basic concepts and theory in the next section,
but this will be done hastily and mainly to establish the notation and our
conventions. We recommend [W1|, [H4|, and [K3| among many others for
the uninitiated reader.

We have the following simple consequence of Definition 9, ([L2], Lemma
5.4).
Lemma 6.1. Let E — X be a rank r holomorphic vector bundle over
a complex manifold X. Whenever (Uy, ®o) and (Ug, ®g) are two local
trivializations of E that overlap, the composite map ®g o @;1 from (Uy N
Ug) x C" to itself, will be of the form,

Pgo0 @;1(33, z) = (z,70p5(x)2),

where Tog is a holomorphic map 145 : Uy N Ug — GL(r,C), called the
transition function from ®, to ®g.

It follows immediately from the definition of transition functions that
they have the following cocycle property: Whenever there are three over-
lapping local trivializations, we have that

(6.1) Ta(2)T3y(2) = Tay(x) forall z € Uy, NUzNU,,

where the juxtaposition on the left hand side denotes matrix multiplica-
tion.

It turns out, rather surprisingly, that the transition functions contain
all the information about the vector bundle. This remarkable feature is
the key property for the link between holomorphic vector bundles and
analytic subvarieties alluded to above.

Proposition 6.2. Let X be a complex manifold. Suppose we are given
an open cover {Uataca of X, and for each o, 5 € A with Uy, NUg # 0,
a holomorphic map 1,3 : Uy N Uz — GL(r,C), satisfying the cocycle
condition (6.1) above. Then there is a rank r holomorphic vector bundle
E — X, with local trivializations (U, @), whose transition functions are
the given maps T,3.

See e.g. [W1], Chapter 1.2 for a proof.

Hence, a set of transition functions is all we need to get a vector
bundle. This can be used to create a line bundle from a hypersurface
Y C X in the following way: By definition, there exists open sets U, C X
covering Y, and holomorphic functions f, € O(U,) with Y NU, = {fo =
0} NU,. The idea is to define the transition functions for a line bundle as

(6.2) TaB i= f—ﬁ,
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whenever U, and Ug overlap. These will certainly satisfy the cocycle con-
dition (6.1), but unfortunately, this is not enough. The problem is that
we do not know the vanishing order of the local holomorphic functions,
and so the 7,4:s could vanish or blow up on Y. This leads to the notion
of effective divisors. Intuitively, these are hypersurfaces, every branch,
(i.e. irreducible component), of which are endowed with a non-negative
multiplicity. Locally then, an effective divisor D is the zero locus of holo-
morphic functions f € O(U,) which vanish to the given multiplicity on
every branch of D.

If we form the transition functions (6.2) for effective divisors, they
will now be holomorphic and non-vanishing on U, N Ug. By Proposition
6.2 they form the transition functions of a line bundle. Thus, instead of
studying the hypersurfaces of a complex manifold X, we can study line
bundles on X. From an analytical viewpoint, line bundles turn out to be
easier to work with.

For example, if X is a compact complex manifold, then by the max-
imum principle any holomorphic function f : X — C is constant. Now
suppose that 7 : L. — X is a holomorphic line bundle and study holo-
morphic maps from subsets U C X to L satisfying m o f = Idy, called
local holomorphic sections to L. If L is trivial, i.e. L = X x C, the set of
global holomorphic sections to L are in one-to-one correspondence with
the set of holomorphic functions on X. The point here is of course that if
X is compact, there might exist non-trivial holomorphic line bundles on
X, having non-constant global holomorphic sections, which one can apply
the tools of analysis to.

7. Holomorphic vector bundles - The setting

Just as in the line bundle setting, sections of a holomorphic vector bundle,
m: E — X are defined as maps from subsets U C X to F, f : U — FE,
satisfying m o f = Idy. We denote the set of smooth sections of E by
C*(X, E), and the set of holomorphic sections by O(X, E).

As sections of vector bundles correspond to functions on the manifold,
we want to be able to apply the tools of analysis to their study. We will
now quickly recall the most important of these tools and notions from the
theory of vector bundles.

Assume that rankc E = r. A local frame for E is an ordered r-tuple of
local sections (e;) = (eq,...,e,) over U, with the property that for each
x € U, the r-tuple (e1(x),..., e (x)) forms a basis for the fiber E,.

We have already introduced differential forms, which are nothing but
sections to exterior powers of the cotangent bundle, the dual of the tangent
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bundle. For a vector bundle £ — X, we can form sections of the bundle
AT*X @ FE. We call these differential forms on X with values in E. Locally,
such a section is just a linear combination of tensor products of differential
forms and sections of E. For p > 1 we let C;°(X, E) denote the set of
smooth differential p-forms with values in E.

A hermitian metric, h, on a vector bundle F — X is a positive definite
hermitian inner product, (-, )p(), on each fiber E, that varies smoothly
with 2. More explicitly, given two sections s, ¢ the function (s,t), on X is
smooth. Locally in a neighborhood U of a point z € X we can identify s
and t with vectors of functions on U and h with a matrix-valued function
on U so that

(s,t)p, =t hs
where t* is the transpose conjugate of ¢ and juxtaposition denotes matrix
multiplication.

As soon as we have a metric on a vector bundle, we also get a well-
defined bilinear map, {-,-}, for differential forms on X with values in E.
Namely by letting {a®s, 3@t} := aAB (s,t);, for forms a, 3 and sections
s,t, and then extend to arbitrary forms with values in F by linearity.

A connection D on E is a C-linear mapping D : C* (X, FE) — C{°(X, E)
satisfying the Leibniz rule

D(fs) =df @ s+ fDs

for any smooth map f € C°(X) and section s € C*(X,E). Hence
a connection is a first order differential operator that allows us to take
directional derivatives of sections. Locally, if we regard a section s as a
vector of functions we have that

Ds =ds+0s

where 6 is a matrix of one-forms.

On a holomorphic vector bundle with a hermitian metric A, there ex-
ists a special connection D called the Chern connection which reflects the
geometric and holomorphic structure of the vector bundle. This connec-
tion is characterized by:

(1) Compatibility with A

d('S? t)h = {DS> t}h + {Sv Dt}h
(ii) In the decomposition of D into (1,0) and (0,1) parts, D = D" + D",
the (0,1) part D" equals 0.

One can show that the Chern connection is unique and that locally the
connection matrix 6 is a matrix of (1,0)-forms given by § = h=10h.
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Given a connection D we can extend it to C°(X, E) for p > 1 by the
Leibniz rule
D(aAs)=daAs+(—1)Fa A Ds
where « is a k-form on X and s is a smooth section of E. We use this

to define the curvature © associated with a connection D through ©s :=
D?s. We then have

O(fs)=D(df @ s+ fDs) = d*f ® s — df ® Ds + df @ Ds + fOs = fOs

for f € C®(X), s € C®(X,FE) so O is a form-valued endomorphism of
E i.e. locally just a matrix of two-forms.

For a hermitian holomorphic vector bundle (E, k), we call the curva-
ture associated with the Chern connection the curvature of F and one can
show that in this case

© =00 = d(h~'on).

Hence, if we let {dz; }?:1 be a basis for the holomorphic cotangent space

of X, the curvature can locally be represented as a matrix of (1,1)-forms
which we can write either as

n
0= > Odz Adz,
j.k=1

where © . are local r x r matrix-valued functions, or as

e = Z Cjku)\dzj A dzZi ® 6:1 & e,
1<j,k<n
1<, <r
where ¢k, are local functions, {e, };,_; is alocal frame for £, and {e},}},_,
is the corresponding dual coframe.

In Riemannian geometry one studies the geometry of a manifold M,
through the geometry of its tangent bundle, 7M. A Riemannian metric
on M is a scalar product on each tangent space that varies smoothly with
respect to the base point. Just as for holomorphic vector bundles, given
a Riemannian metric there exists a canonical choice of connection, the
Levi-Civita connection, V, that reflects the geometry of M.

Suppose now that M = X is a complex manifold with a hermitian
metric g. By definition, this means that for each x € X, g(z) is a hermitian

scalar product on the complex tangent space Tg} X This means that if

z = (z1,...,2y) are local coordinates near x, g can be written as
n
(7.1) g= Z gjkdz; @ dzy.
7,k=1

28



INTRODUCTION

If v is a holomorphic vector field on X,
n
0
V=2 tig,
j=1 J
we can hence define the norm of v as,

n
HUHZ = Z 9jk V5 V-

Jk=1

It turns out, however, to be much more convenient to work with the
imaginary part of g, instead of the metric itself. This two-form, w, is
called the Kahler form of g, and if g is given in local coordinates as in
(7.1), then it is not difficult to show that

(7.2 w=1 gikdzj N dZy.
kA2
Jk=1

One example of the way things are simplified by working with w in-
stead of g, is the relation between w and the volume form. By definition,
a volume form is a differential form of maximal degree that can be written
as,

AV, =i"6iNELN ... NEQNEp

whenever £ = (§1,...,&,) is an orthonormal basis for the holomorphic
cotangent space. This is a well-defined global form, (any other orthonor-
mal basis is related to £ via a unitary linear transformation), and it can
also be expressed as

dV, = w"/nl,

in terms of the Kahler form

w=1 Z gjkdzj/\dzk:iszj/\fj.

J,k=1 7=1

This, in turn, can be utilized to introduce a convenient formalism for
computing the norms of forms. We will do this in the setting of differential
forms with values in a vector bundle over a compact complex manifold.

Thus, let (E,h) — (X,w) be a holomorphic vector bundle over a
compact complex manifold. Let o be an E-valued form of bidegree (p,0).
We define the norm of o with respect to the metrics h and w through

(7.3) lal|?dV, = cp{a, aln Awn_p
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where wy,—p = W"7P/(n — p)!, and ¢, = #” is a unimodular constant
chosen so that the right hand side is positive. One can show that if {;}
are orthonormal coordinates at a point and

a = Z arér

[I|=p

where {ay} are sections of E, then

lall* = > lleul3.

|1|=p

We also use (7.3) to define the norm of E-valued forms of bidegree (0, ).
In particular then ||« = ||&]|.

Using this definition one can now proceed to show that it is possible
to define the norm of an E-valued form 7 of arbitrary bidegree in such a
way that if

n=> nkr A

in terms of an orthonormal basis at a point, then

Inll* = lInzsl7.

This norm can then be polarized yielding an inner product for F-valued
forms of arbitrary bidegree. Hence if p is another form with values in F,
which is of the same bidegree as 7, then

(n,p) = Z(WJaMIJ)h

if we express 17 and p in terms of an orthonormal basis as above.

Integrating these norms over X with respect to the volume form, one
can hence extend the Hilbert space formalism of section 5 to vector bundle
valued differential forms on complex manifolds. But before we can turn
to the study of the inhomogenous d-equation on complex manifolds, we
need to introduce the concept of Kahler manifolds.

We say that g is a Kdhler metric, and that X is a Kahler manifold, if
the two-form w is closed, dw = 0.

Ké&hler manifolds are very important in complex geometry. There are
conceptual and computational reasons for this.

First off, given a metric g, we have seen that there are two canonical
connections on the holomorphic tangent bundle associated with g:

(i) The Chern connection, Dy, induced by the holomorphic structure on
X.

(ii)The Levi-Civita connection, Vg, induced by the Riemannian structure
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on X.
We then have the following result, (see e.g. [B3], Proposition 3.4.2):

Proposition 7.1. Let g be a hermitian metric on a complex manifold
X. Let D, be the Chern connection, and V, the Levi-Civita connection,
induced by g. If (X, g) is a Kdhler manifold, then D, = V.

Secondly, computations in local coordinates are usually greatly sim-
plified if one is able to use normal coordinates. These are local coordinates
at a point x € X in which the metric g, resembles the euclidean metric to
first order. More precisely,

ik = Ok,
and,

dgjk =0
at .

It is an immediate consequence of (7.2) that if we can choose normal
coordinates at any point, then dw = 0, so the metric must be Kéahler. To a
large extent, the computational advantage of Kéhler manifolds stems from
the fact that the converse of this also holds, (see e.g. [H4], Proposition
1.3.12).

Proposition 7.2. Let g be a Kdihler metric. For each x € X, there are
local holomorphic coordinates near x that are normal in x.

8. L?-methods for the J-equation on compact Kihler manifolds

With the concepts and formalism of the previous section at our disposal,
we can now formulate the compact Kéhler generalisation of Theorem 5.6
on the global solvability of the inhomogenous J-equation together with
Hoérmander’s L2-estimates.

Theorem 8.1. Let (X,w) be a compact Kihler manifold, and let (L, h) be
a holomorphic line bundle over X. Assume that the metric h has strictly
positive curvature,

(8.1) i0 > ew,

for some & > 0.
For any 0-closed (n, q)-form f with values in L and g > 1, there exists
an (n,q — 1)-form w with values in L, such that

ou = f,

and

1
(8.2) / lul2dv, < - / T
X €q Jx
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(Apart from the L2-estimates (8.2), this is the famous Kodaira van-
ishing theorem, [K4]|.)

To see that this theorem is the compact Kéahler version of Theorem
5.6, note that on a line bundle L — X, a metric h is locally just a
strictly positive function. Hence we can write it as h = e~ ¥ for some
smooth, real-valued, function ¢, (strictly speaking, ¢ is not a function
but rather a collection of smooth real-valued local functions, related in a
consistent way on overlaps; we will return to this shortly), so norms of
L-valued differential forms correspond to weighted L?-norms in C*. We
will emphasize this by writing the norm of a section as ||ul|?> = |u|?e~%,
from now on.

Furthermore, in C™ a sufficient condition for the global solvability of
the inhomogenous O-equation was for the domain to be pseoduconvex.
This meant that there existed a plurisubharmonic exhaustion or weight
function . Formally, in our setting, this corresponds to,

0 < i00¢p = i0dloge ¥ = id(h~10h) = i0O,

i.e. the existence of a strictly positively curved metric on L.

We mentioned earlier that by the Whitney embedding theorem, any
smooth manifold can be smoothly embedded in R™ for some m € N. We
also noted that the situation is very different in the complex setting, as the
only compact complex manifolds that can be holomorphically embedded
into some C™, are points. It is then quite natural to ask: Is there any
similar embedding theorem for compact complex manifolds?

The answer is provided by the celebrated Kodaira embedding theorem,

[K5].
Theorem 8.2. Let X be a compact complex manifold. There exists a
positive line bundle over X, (i.e. a line bundle carrying a strictly positively
curved metric), if and only if X can be holomorphically embedded into
complex projective space P™, for some m € N,

This deep and important theorem nicely illustrates how closely inter-
twined the three general strategies to understand the geometry of mani-
folds, mentioned at the beginning of section 6, are. In order to study the
subvarieties of a compact complex manifold X, one was led to introduce
holomorphic line bundles, and using these in turn, one can decide if X in
fact is a submanifold of complex projective space, the simplest and most
fundamental compact complex manifold.

Kodaira’s original proof for the theorem relies heavily on, and was the
main motivation for, his vanishing theorem. The argument is quite in-
volved and algebraic, using blow-ups and sheaf cohomology theory, (|K5|;

32



INTRODUCTION

see also [W1]| Chapter 6). Using a more general form of the L2-estimates,
(which of course did not exist at the time Kodaira proved the theorem),
an analytic proof of the theorem can be given. In order to formulate these,
we first need to introduce singular metrics on line bundles.

Up until now, a hermitian metric h = e~% on a line bundle L — X, has
been a smooth mapping from the base manifold to the space of strictly
positive hermitian norms on the fiber. This means that given an open
cover {U;} of X, ¢ is given by a collection of smooth, real-valued functions
{¢j}, subordinate to {U;}, such that

@; — pr = log |k on U; NU; # 0,
where {7;;} are the transition functions of L. (An immediate consequence
of this is that if ¢ is a metric and x is a global function on X, then ¢+ x
is also a metric.)

As the 7jj;:s are holomorphic and non-vanishing, log | 7| will be pluri-
harmonic, and so
00p; = 00y on Uj N Uy # 0.
Hence, for smooth local representatives, ¢;, the curvature form
O = 90y = 00y;,
is a globally defined (1, 1)-form, although ¢; is just locally defined.

A singular metric ¢ on L is defined in the same way, but without
requiring the ¢;:s to be smooth. Instead one requires ¢; € LllOC(X) and
so the curvature form, 00y, is well-defined in the sense of currents.

Singular hermitian metrics on holomorphic line bundles were intro-
duced by Demailly in [D3|, and ever since then they have been a funda-
mental tool in interpreting notions of complex algebraic geometry analyt-
ically.

It is possible to prove the existence of solutions to the inhomogenous
O-equation with L2-estimates, in the setting of singular metrics. This is
the content of the Demailly-Nadel vanishing theorem, [D2,N1|. Demailly
showed this in a very general context, (namely for complex manifolds car-
rying some complete Kéhler metric), but we will just need it for projective
manifolds. These are compact Kéahler manifolds on which it is known to
exist some line bundle carrying a positively curved, smooth metric. (The
terminology is explained by the Kodaira embedding theorem which im-
plies that these manifolds can be seen as submanifolds of projective space.)
We then have the following theorem.

Theorem 8.3. Let (X,w) be a projective manifold. Let L be a holomor-
phic line bundle over X having a, possibly singular, metric h = e~% whose
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curvature satisfies,
(8.3) i00p > ew,

for some e > 0.
For any 0-closed (n, q)-form f with values in L and q > 1, there exists
an (n,q — 1)-form u, with values in L, such that

gu:f,

and

1
(8.4) / lu2e=?dV, < — / |fI2e”?dV,,
X €q Jx

provided that the right hand side is finite.

Here, the curvature assumption (8.3) is in the sense of currents, (it
basically just means that the local representatives of ¢ can be chosen to
be strictly plurisubharmonic).

An important difference compared to Theorem 8.1, is the very last
proviso. The finiteness of the L?-norm with respect to a singular metric,
implies that f must vanish on the non-integrability locus of e™%. In par-
ticular, if ¢ = log|s|?, for some holomorphic function s, this means that
f must vanish on the zero locus of s. Through the L%-estimates (8.4),
this in turn implies that 4 must vanish on the zero locus of s too. This
observation is originally due to Bombieri, [B6], and is extremely useful for
constructing global holomorphic functions with specific zero sets.

A nice illustration of this technique is the analytic proof of the Kodaira
embedding theorem mentioned previously. We end this section with a
rough sketch of the difficult direction of the proof.

Given a projective manifold X, we want to construct a holomorphic
mapping K : X — PV for some N € N, which is an embedding. This
means that K is injective, and has an injective differential d/C. We will
only discuss the injectivity of K.

Let L — X be a line bundle and let E denote the space of global
holomorphic sections of L, (which we will assume to be non-empty). Fur-
thermore, let sp,..., sy be a basis for E, (one can show that E is finite-
dimensional by using the Montel theorem).

We claim that there exists a line bundle L such that

K(z) :=[so(z),...,sn(z)],

is the sought for embedding. Although it might look strange at first
sight, the right hand side is well-defined. What we mean is simply the
values of the s;j:s with respect to some local trivialisation of L. If we
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change to another trivialisation, all the sections get multiplied with the
same quantity, so we will still get the same point in PV. Hence K is
well-defined and clearly holomorphic.

The main step in proving the injectivity of /C, is to show that for any
two points a,b € X, a # b, we can construct a global holomorphic section
s to L, such that s(a) # 0 and s(b) = 0. We will now outline how Theorem
8.3 can be used to achieve this.

As X is projective, there exists a holomorphic line bundle F¥ — X
with a smooth metric ¢, which is strictly positively curved,

i00¢ > cw,

for some € > 0. Assume that dim¢cX = n, identify a neighborhood of a
with C”, and set

Va(2) = xa(2)log |z — a|*,
where x, is a cut-off function with y, = 1 close to a. v, is a locally
integrable function on X, and one can show that,

1001, > —Cw,

for some constant C, which is independent of a if X is compact.
For k € N,

k¢ +vq

will then define a singular metric on kF := F®F (the k times tensor
product of F), and

i00(k¢ + 1) > (ke — C)w > w,

for large enough k.

As a first step we will use this metric in Theorem 8.3 to construct a
global, d-closed (n,0)-form, u with values in kF', and u(a) # 0.

Choose local coordinates (z1, ..., z,) in a neighborhood of @, let x be a
cut-off function with y = 1 near the origin, and let uj,. := dz1 A ... Adzy,.
Define a smooth (n,0)-form § with values in kF' locally through, § :=
XUjoe. Then,

f =05 = 5)( A Uoc,
will be a smooth, O-closed (n,1)-form with values in kF. Also, the L%
norm of f with respect to the metric k¢ + 1, will be finite, as f vanishes
on the non-integrability locus of e~ ¥e. Hence, Theorem 8.3 can be applied
to produce a kF-valued (n,0)-form v, with dv = f and

/’,U|26—(k¢+wa)de§/ ‘f|2€—(k¢+’¢a)de‘
X X
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Since f is smooth, it follows from regularity theory for the d-operator
that v is smooth as well. Furthermore, as the L?-norm of v is finite with
respect to k¢ + 1), this implies that v(a) = 0.

Thus,

uU:=85—0v

is a O-closed, (n,0)-form with values in kF and u(a) # 0.

Differential forms of bidegree (n,0) with values in kF', are just sections
of kFF ® Kx, where Kx is the canonical bundle of X. If we repeat the
above argument but with kF replaced by kF @ K%, (i.e. take the tensor
product with the dual bundle of Kx), we get a global holomorphic section
u to kF with u(a) # 0.

Finally, we can make sure that u(a) # 0, and u(b) = 0, by repeating
this last argument once again, but this time with,

f = XUjoc,

where ¥y = 1 in a neighborhood of a, but ¥ = 0 in a neighborhood of b.
Also, we add the function

Ub(2) = xlog|z — b|*",

to the metric.

Returning to the beginning of the proof and the mapping K, we see
that by choosing the line bundle L as kF', and using the technique sketched
above for large enough k, we can construct a global holomorphic section s
with s(a) # 0 and s(b) = 0. As {sj}ﬁvzo form a basis for the set of global

holomorphic sections, s can be written as

N
s = E CjSj,
J=0

. AN
for some functions {c;};_,. Hence,

N N
Z ¢jsj(a) #0, and Z ¢;sj(b) =0,
=0 =0

and so,

K(a) =[so(a) :...:sn(a)] # [s0(b) :...:sn(b)] = K(b).
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9. Positivity concepts and L?-theory for vector bundles

In the previous section we introduced L2-theory for the inhomogenous
0-equation for line bundle valued differential forms. We now turn to the
extension of these results to vector bundles.

Given a hermitian, holomorphic vector bundle (F, h) over a complex
manifold X, we have already defined the curvature tensor © of h in section
7. For Theorem 8.1 hold, the existence of a strictly positively curved
metric on the line bundle is crucial. Hence the first thing we need to
consider in the vector bundle setting is what it should mean for © to be
positive.

Let {dz;}7_; denote an orthonormal basis for the holomorphic cotan-
gent bundle of X, at some fixed point. Then, if rankc E = r, the curvature
tensor is of the form,

n
O = Z @jkdzj A dzg,
jk=1
where {©;}7,_, are r X r matrix-valued functions on X.

In the line bundle setting, » = 1, and so the ©;;:s are just scalar-
valued functions. Hence the natural definition of positivity for © is to
define it as the positivity of the real (1,1)-form i©; (the 7 is needed since
dz N dz = —2idx A\ dy).

For matrix-valued coefficients, however, there exists no similar ’canon-
ical” way of defining the positivity of ©. Over time, two different, but
equally important notions of positivity for vector bundles have evolved:
Positivity in the sense of Griffiths, and positivity in the sense of Nakano.

Definition 10. Let (E,h) — X, and © be as above.

(i) We say that © is strictly positively curved in the sense of Griffiths,
if for any (smooth) section s of E, and any n-tuple of complex numbers

{v; }?:1
n

(9.1) Z Ojks, S LVilk > €lls ||hZ|U]|2

Ji.k=1 Jj=1
for some € > 0.

(ii) We say that © is strictly positively curved in the sense of Nakano, if
for any n-tuple of sections {s;}]_; of E,

n

(9.2) > (Ogksjis), = e > lsilz,

Jik=1 j=1
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for some ¢ > 0.
Semi-positivity, semi-negativity and strict negativity are defined similarly.

It follows immediately from the definitions that when » = 1, both
these notions coincide and reduce to the positivity condition in the line
bundle setting. Other immediate consequences of the definitions are that
Griffiths and Nakano positivity also coincide when n = 1, i.e. for vector
bundles over Riemann surfaces, and that being positively curved in the
sense of Nakano implies being positively curved in the sense of Griffiths;
just choose s; = sv; in (9.2). The converse property, however, does not
hold in general (see e.g. [D1] Chapter VII, Example 6.8, or Example 4 in
Paper 1IV).

Positivity in the sense of Griffiths is closely connected to, and stems
from, a common algebro-geometric procedure of reducing vector bundles
to line bundles. For a vector bundle £ — X this is achieved through
the study of the so called Serre line bundle Op(g)(1) over the projective
bundle P(E) — X, associated to E.

These concepts can be constructed in an abstract, global way, (see e.g.
[L1], Appendix A), but in order to present the ideas as, (in our view), con-
cretely as possible, we will only discuss the local setting here. Hence let F
denote an arbitrary complex vector bundle over X with rankcE = r, and
let E* denote the dual bundle. We can define a fiber bundle 7 : P(E) — X
by defining each fiber through P(E), := P(E?), the projectivization of an
r-dimensional vector space. Locally, for an open set U C X, we have that
E*‘U ~ U x C" and then IP(E)‘U ~ U x P!, Furthermore the pullback
bundle 7* E* — P(FE) will then locally be given by

TI'*E*‘U ~UxP 1 xC"
and so we can define the tautological line subbundle Op(g)(—1) of 7 E*
as

Op(p) (=), = {(z, [w], 2) ; 2 € [w]}.

The Serre line bundle Op(gy(1) is then defined as the dual of Op(g)(—1).
The notation is justified by the fact that fiberwise this is nothing but the
usual line bundle O(1) over P". Thus we have that the global holomorphic
sections of Op E)(l) over any fiber are in one-to-one correspondence with
the linear forms on E, i.e. with the elements of E,; (this is the reason
for projectivizing E* instead of E).

Suppose now that the vector bundle F is equipped with a hermitian
metric h. Then the Serre line bundle Op(gy(1) will inherit a corresponding
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metric 7*h. One can show that positivity in the sense of Griffiths is
equivalent to 7*h being positively curved in the line bundle sense, (|G]).

Remark 1. Tt might very well happen that Opgy(1) can be equipped
with a positively curved metric that does not stem from a metric on E
to begin with. The Griffiths conjecture, (|G]), says that E then can be
equipped with a Griffiths positive metric. This has been shown to be true
on Riemann surfaces by Umemura [U], and Campana and Flenner [CF],
but the general case is still unresolved.

The following useful and important properties hold in the Griffiths
context.

Proposition 9.1. Let (E,h) — X be a hermitian, holomorphic vector
bundle over a complex manifold X.

(i) ©" is Griffiths positive if and only if the dual metric h™' on E* is
negatively curved in the sense of Griffiths.

(ii) ©" is Griffiths negative if and only if for any holomorphic section u
to F,

log [|ull7,
18 plurisubharmonic.

We will prove (i) in the setting of real metrics in Paper IV, (Propo-
sition 2.1; see e.g. |B2] section 2 for a complex proof), and (ii) will be
discussed in Paper I. Both these properties are of fundamental importance
in the latter paper.

Now, in contrast to the algebro-geometric origins of Griffiths posi-
tivity, curvature in the sense of Nakano is an analytic concept directly
connected to the existence of solutions to the inhomogenous 0-equation,
for form-valued sections of vector bundles. Namely, if one reworks the
proof of Theorem 8.1 in the vector bundle setting, strict Nakano positiv-
ity will be the necessary replacement of the positivity condition (8.1). In
fact, we have the following vector-bundle version of Theorem 8.1.

Theorem 9.2. Let (X,w) be a compact Kahler manifold, and let (E,h) be
a hermitian, holomorphic vector bundle over X. Assume that the metric
h s strictly positively curved in the sense of Nakano,

(9.3) i© >Nak. ew @ I,

Jor some € > 0.
For any 0-closed (n, q)-form f with values in E and q > 1, there exists
an (n,q — 1)-form u with values in E, such that

ou = 1,
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and
1
(0.4) / ul?av, < - / 1112V
X €q Jx

Apart from the L2-estimates, Theorem 9.2 is known as the Nakano
vanishing theorem, [N2|. In the first part of Paper II we show that this
theorem can be proven using the d9-Bochner-Kodaira method, introduced
by Siu in [S|, which we believe to be much simpler than the traditional
proofs.

Being so closely related to the inhomogenous d-equation, Nakano pos-
itivity is of fundamental importance for the analytical study of holomor-
phic vector bundles. Unfortunately, it is difficult to obtain an intuitive
understanding of this concept, and in contrast to the Griffiths setting,
there are not many nice functorial properties. For example, the dual of a
Nakano positive vector bundle, in general, is not Nakano negative.

We have already noted that Nakano positivity implies Griffiths pos-
itivity. In the other direction we have the following important theorem
due to Demailly and Skoda, (|[DS]; see also Paper IV, Theorem 2.2).

Theorem 9.3. Let (E,h) — X be a hermitian, holomorphic vector bun-
dle over a complexr manifold X. If h is positively curved in the sense of
Griffiths, then hdet h is positively curved in the sense of Nakano.

10. Summary of papers
We end the introduction with a brief summary of the papers.

10.1. Paper I: Singular hermitian metrics on holomorphic vector
bundles. In section 8 we introduced singular metrics on holomorphic line
bundles and the Demailly-Nadel vanishing theorem, and identified these as
fundamental tools in the analytic study of complex geometry. In Paper I,
we wanted to investigate whether anything similar existed for holomorphic
vector bundles.

Up until now, a hermitian metric i on a holomorphic vector bundle
E — X has been a positive definite hermitian inner product (-, -);L($) on
each fiber F,, that varies smoothly with . Assume now that we drop
the smoothness assumption and introduce singular hermitian metrics on
holomorphic vector bundles, as just measurable maps from the base space
to the space of positive definite hermitian forms on the fiber. What can
be said about these?

Let h denote such a singular metric. In the line bundle setting, h is
locally just a function, and so the connection matrix and the curvature can

be written as # = h™'0h = dlogh and © = 90 = 001og h. Hence, all that
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is needed for these concepts to be well-defined in the sense of currents is
that logh € Llloc. In the vector bundle setting, h is matrix-valued, which
makes the situation much more complicated.

Now although we can not define the curvature tensor of h immediately,
we can nevertheless still define what it means for a singular hermitian met-
ric to be positively and negatively curved in the sense of Griffiths. This
is due to the equivalent characterisation of Griffiths negativity of Propo-
sition 9.1 (ii), which does not require any regularity from h, and property
(1). It turns out that this definition of Griffiths curvature rules out most of
the possible pathological examples of singular hermitian metrics, (Paper
I, Proposition 1.1).

The main question that we wanted to investigate in Paper I was:

Given a singular hermitian metric h on a holomorphic vector bundle
E — X with rankcE > 2, where h is curved in the sense of Griffiths
as in Proposition 9.1, is it possible to define 0, and in particular ©, in a
meaningful way; for example as currents with measure coefficients?

In Paper I, Proposition 1.2, the current dh is shown to be locally
L%-valued and 6 := h™10h an a.e. welldefined matrix of (1,0)-forms.

For the curvature, however, the situation turns out to be more in-
volved. In Paper I, Theorem 1.3, we give a simple example which shows
that © := 9(h~'0h) can not be defined everywhere as a current with
measure coefficients. Thus Griffiths curvature in the sense of Proposition
9.1, is not enough to define the curvature in general.

In the example of Theorem 1.3, the set of points that cause problems
is the singular locus, {det h = 0}, of the metric. Hence, the natural thing
to investigate next is if it is possible to define the curvature outside of
this set; (it is an immediate consequence of Paper I, Proposition 1.2, (ii)
that the singular locus has Lebesgue measure zero). In Paper I, Theorem
1.4, we show that it is indeed possible to define the curvature as a current
with measure coefficients outside of the singular locus.

In particular, it is now possible to define what it means for a singular
hermitian metric to be strictly positively curved in the sense of Griffiths
and Nakano, outside of the singular locus. Since the curvature assump-
tions needed in order to solve the inhomogenous 0-equation with Hérman-
der’s L?-estimates, only depend on the absolutely continuous part of the
curvature, the first ingredient needed in order to prove Demailly-Nadel
type of vanishing theorems on vector bundles, can hence be achieved.
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The second ingredient that is needed are regularisation results; it is of
utmost importance to be able to approximate the strictly positively curved
singular metric with a sequence of smooth metrics, while keeping the strict
positivity. We end Paper I with showing that such regularisations are
possible for strictly Griffiths positive and negative, and Nakano negative
singular hermitian metrics. We discuss these approximation results and
the resulting vanishing theorem in the summary of Paper II.

10.2. Paper II: The Nakano vanishing theorem and a vanishing
theorem of Demailly-Nadel type for holomorphic vector bundles.
As mentioned in the introduction, the first part of Paper II is devoted to
proving the Nakano vanishing theorem with Hérmader type L?-estimates,
(Theorem 9.2), using Siu’s so called d9-Bochner-Kodaira method, ([S]).

In Riemannian geometry the basic idea behind the Bochner method
is (very vaguely) to calculate the Laplacian of the norm of forms. Then
one can draw conclusions about the geometry by carefully analyzing the
resulting expression and putting restrictions on the curvature of the met-
ric. The straightforward adaptation of this method in our complex setting
would then be to calculate and analyze

(10.1) Alla®

where « is an FE-valued, (n,p)-form. However, it turns out that this
approach will not work out well and so the historical approach to the
vanishing theorem has been through the Kihler identities.

What Siu demonstrates in [S], (among other things), is that if the
metric is dually, negatively curved in the sense of Nakano, an approach
that is very similar to the classical Bochner method can be applied. The
main idea is to let the E-valued (0, ¢)-form « remain form-valued, replace
A by i00 and calculate

i00cg{a,a} A" 1 /(n — g —1)!

instead of (10.1).

In [B1] Berndtsson shows that in the line bundle case, this method
can be applied directly, without resorting to dual bundles, and he also
derives the Hormander L2-estimates. Here the situation is slightly more
involved. Let (L, ¢) be a positively curved line bundle over X and let
a be an (n,p)-form with values in L. It turns out that the appropriate
counterpart of (10.1) in this case is

100¢n—pYo N Yo AP 1e ™/ (p — 1)
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where 7,, (up to a constant), is the Hodge-* of «, i.e. an L-valued (n —
p,0)-form such that
a =y, AwP/pl.

The first aim of Paper II is to show that this latter approach works
almost without change for forms with values in a vector bundle, thereby
proving Theorem 9.2.

In the second part of Paper II, we return to the singular hermit-
ian metrics of Paper I. As mentioned previously, in order to extend the
Demailly-Nadel vanishing theorem to vector bundles, we need to define
what it means for the singular hermitian metric to be strictly positively
curved in the sense of Nakano, (at least a.e. with respect to Lebesgue
measure), and we must also be able to approximate the metric with a
sequence of smooth metrics, while keeping the strict positivity.

In Paper I we show that it is possible to obtain a regularising sequence
when the metric is strictly negatively curved in the sense of Griffiths,
(Paper I, Proposition 6.1). Through duality, (Proposition 9.1, (i)), it
then follows that this can be obtained in the strictly Griffiths positive
case as well. In Paper I we also prove a similar approximation result for
singular hermitian metrics that are strictly negatively curved in the sense
of Nakano, (Paper I, Proposition 1.6). However, as the dual of a Nakano
negative metric, in general is not Nakano positive, the same trick can not
be applied here.

Both regularisation results of Paper I are based on alternative charac-
terisations of Griffiths and Nakano negativity in terms of some plurisub-
harmonic function. For Nakano positive metrics, such an alternative char-
acterisation does not exist and so some other approach to regularisation
is needed. Unfortunately, despite many efforts, we have so far failed to
find any succeful way to achieve this.

When n =1, i.e. for vector bundles over Riemann surfaces, the con-
cepts of Griffiths and Nakano positivity coincide. Hence, using the reg-
ularisation result of Paper I, in the second part of Paper II we prove a
Demailly-Nadel type of vanishing theorem for holomorphic vector bundles
over Riemann surfaces, (Paper II, Theorem 1.2).

10.3. Paper III: Extensions of Ohsawa-Takegoshi type for sec-
tions of a vector bundle. The extension theorem of Ohsawa and Takegoshi,
which first appeared in [OT], is a very useful tool in complex analysis, with

a lot of applications. This theorem has many different variants, one of the
most basic being the so called adjunction version. This version states the
following.
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Let X be a compact Ké&hler manifold and let S be a smooth hyper-
surface in X. S then defines a line bundle on X, which we will denote by
(S) and which has a global holomorphic section s such that S = s71(0).
Also let L be a complex line bundle over all of X. Assume that the line
bundles L and (S) have smooth metrics ¢ and 1) respectively, satisfying
the curvature assumptions

(10.2) i00¢ > 0,
and
(10.3) i00¢ > 6100,

for some & > 0. Assume furthermore that s is normalized so that
s]2e™% < e 10,

Finally let u be a global holomorphic section of Kg + L|g.
Then there exists a global holomorphic section U of Kx + (S) + L
such that
U=dsAu

on S and such that U satsfies the estimate
/ cp U N Ue 9~Y < C’/ Cp—1u A e~ ?
X S

for some constant C', where we use the shorthand notation ¢, := P

Hence, we see that just as in Hérmander’s theorem on the solvability
of the inhomogenous d-equation, (Theorem 8.1), the Ohsawa-Takegoshi
extension theorem consists of two parts: One which states that an ex-
tension is possible, and a second part which gives an L2-estimate for the
extension. Just as with Hormander’s theorem it is mainly this estimate,
(with a completely universal constant), that makes the theorem so useful,
(see e.g. |D1|, Chapter VIII for some applications).

There are many different ways of proving this extension theorem, but
basically all of them are rather involved. The approach that we are in-
terested in is the one introduced by Berndtsson in [B4|, where he shows
that finding an extension with L2-estimates is equivalent to solving the
inhomogenous O-equation,

ov =uA[S],
where [S] is the current of integration on S. What makes the analysis
involved in this proof, is that the right hand side no longer is an L?2-
valued differential form, but a current. In [B1|, Lecture 6, it is shown that
a modified version of the d0-Bochner-Kodaira method can be applied.
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Having studied the 9-Bochner-Kodaira method extensively in Paper
II, our main goal in Paper III is to use it to prove a vector bundle version
of the extension theorem. This is achieved in Paper III, Theorem 1.1 and
1.2, and the proof of these theorems constitute the main part of the paper.

After the publication of [OT], Ohsawa extended the theorem in differ-
ent directions in a long series of papers. In one of these papers, [02], he
obtains a result which shares some similarities to our extension theorems,
although the formulation is quite different from ours, (|O2] Theorem 4).
We believe that our compact Kéahler setting is slightly more general, as
|O2] Theorem 4 only treats complex manifolds that become Stein after re-
moving a closed subset. The main difference, however, lies in our methods
of proof. We consider our adaptation of the 9-Bochner-Kodaira method
to the vector bundle setting to be our main originality. Furthermore,
Guan and Zhou have recently proven a much more general version of the
extension theorem, and also managed to determine the optimal constant
in the L%-estimate, ([GZ], Theorem 2.1).

Now in section 9 we introduced the so called Serre line bundle Op(g) (1)
over the projective bundle P(F), associated with a given vector bundle
FE — X. We also showed that this line bundle, in some sense, contains
all the information about F. Hence, a common method when one wants
to generalize a result that is already known for line bundles to vector
bundles, is to study Opgy(1) — P(E), instead of E — X. This can be
done for the Ohsawa-Takegoshi extension theorem as well.

This approach is interesting in our case since it turns out that the cur-
vature assumptions needed for our vector bundle versions of the extension
theorem, (i.e. the vector bundle replacements of (10.2)-(10.3)), require
positivity in the sense of Nakano, which is a very strong requirement.
Thus, it is natural to inquire about the relation between our vector bun-
dle assumptions, and the curvature assumptions in the Serre line bundle
setting.

In the last part of Paper III, we show that the curvature assump-
tions in the Serre line bundle setting, imply the vector bundle conditions.
Hence, although being curved in the sense of Nakano is a strong condition
to impose on a metric, the conditions that arise when one reduces the
problem to line bundles are in fact even stronger. A key ingredient in
proving these implications is Theorem 9.3 by Demailly and Skoda.

10.4. Paper IV: Log concavity for matrix-valued functions and a
matrix-valued Prékopa theorem. When we introduced plurisubhar-
monic functions in section 5, we mentioned that they are the complex-
analytic counterparts of convex functions in real analysis. Using this
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analogy, it is not too difficult to show that a positively curved metric on
a trivial line bundle, is nothing but the complex version of a log concave
function.

In Paper IV we turn this analogy around and extend it to trivial
vector bundles, i.e. we introduce two new ’convexity’ notions for real,
matrix-valued functions, corresponding to Griffiths and Nakano positivity
in the complex-analytic setting. We call these being log concave in the
sense of Griffiths and Nakano. In the first part of the paper we study
some examples and investigate the fundamental properties of these new
concepts; (these turn out to be very similar to the basic complex properties
introduced in section 9).

For log concave functions an important result that is closely related to
the Brunn-Minkowski inequality is the following theorem due to Prékopa,
(IP)).

Theorem 10.1. Let ¢ : Ri" X R — R be conver and define ¢ : R™ — R
through

P _ / =2t g (y).

Then ¢ 1s convex.

Just as for the Brunn-Minkowski inequality, Prékopa’s theorem can be
proven in many different ways, each pointing towards various directions
of generalisations. One of these proofs, due to Brascamp and Lieb [BL],
is based on a weighted Poincaré inequality, which in fact turns out to be a
real variable version of the Hormander L?-estimates for the inhomogenous
O-equation, (see e.g. [B1], section 1.3). Hence, it is quite natural to ask if
there exist any corresponding complex variants of the Prékopa theorem.

This question has been extensively studied in recent years, mainly by
Berndtsson, who in a series of papers has obtained complex analytic coun-
terparts of the Prékopa theorem, with gradually increasing generality. In
their most general form, these are theorems on the curvature properties of
certain infinite rank holomorphic vector bundles associated with holomor-
phic fibrations, ([B2]|, Theorem 1.1 and 1.2). We will not describe these
results and their relation to the Brunn-Minkowski and Prékopa theorem
here, but refer the reader to [B5], sections 2 and 3.

Now after we introduce the notions of Griffiths and Nakano log con-
cavity for matrix-valued functions in the first part of Paper IV, we proceed
to show a matrix-valued Prékopa theorem in the second part, (Paper IV,
Theorem 1.2). The main idea behind the proof of this theorem is to gen-
eralize one of the above mentioned complex-analytic Prékopa theorems
of Berndtsson, (Paper IV, Theorem 1.5), and then recast this theorem in
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the real variable setting. This latter reformulation is achieved through a
weighted, vector-valued Paley-Wiener type of theorem, (Paper IV, The-
orem 1.4), and the proof of this theorem and Paper IV, Theorem 1.5,
constitutes the main bulk of the second part of Paper IV.
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