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Positive ve
tor bundles in 
omplex and 
onvex geometryHossein Rau�Abstra
tThis thesis 
on
erns various aspe
ts of the geometry of holomorphi
 ve
tor bun-dles and their analyti
al theory whi
h all, vaguely speaking, are related to thenotion of positive 
urvature in general, and L2-methods for the ∂̄-equation inparti
ular. The thesis 
ontains four papers.In Paper I we introdu
e and study the notion of singular hermitian metri
son holomorphi
 ve
tor bundles. We de�ne what it means for su
h metri
s tobe positively 
urved in the sense of Gri�ths, and investigate the assumptionsneeded in order to de�ne the 
urvature tensor of su
h metri
s as 
urrents withmeasure 
oe�
ients. We also investigate the regularisation of su
h metri
s.In Paper II we prove the Nakano vanishing theorem with Hörmander L2-estimates on a 
ompa
t Kähler manifold using Siu's ∂∂̄-Bo
hner-Kodairamethod.We then introdu
e the singular hermitian metri
s and regularisation results ofPaper I, and use these to prove a Demailly-Nadel type of vanishing theorem forve
tor bundles over Riemann surfa
es.A fundamental tool in 
omplex geometry 
losely related to the notion ofpositivity is the Ohsawa-Takegoshi extension theorem. In Paper III the ∂∂̄-Bo
hner-Kodaira method is applied to extend this theorem from line bundlesto ve
tor bundles over 
ompa
t Kähler manifolds. Another way of obtaininga ve
tor bundle version of this theorem is to redu
e it to the line bundle set-ting through the useful algebrai
 geometri
 pro
edure of studying the proje
tivebundle asso
iated with the ve
tor bundle. In Paper III we also investigate therelationship between these two di�erent approa
hes.On a trivial line bundle, a positively 
urved metri
 is the 
omplex-analyti

ounterpart of a log 
on
ave fun
tion in the real-variable setting. In Paper IV weextend this link between 
omplex and 
onvex geometry to trivial ve
tor bundles.We de�ne two new notions of log 
on
avity for real, matrix-valued fun
tions,
orresponding to Gri�ths and Nakano positivity, and we prove a matrix-valuedPrékopa theorem.
Keywords: holomorphi
 ve
tor bundles, ∂̄-equation, L2-estimates, sin-gular hermitian metri
s, Gri�ths positivity, Nakano positivity, van-ishing theorems, Ohsawa-Takegoshi extension theorem, 
onvex geom-etry, Prékopa theorem
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Part IINTRODUCTION





Introdu
tion1. Complex analysisIn basi
, �rst year 
al
ulus 
ourses it is qui
kly re
ognized that one 
anobtain a great deal of information about a real fun
tion f : R → R, bystudying its derivative fun
tion, f ′. This fun
tion is de�ned at a point
x ∈ R through(1.1) f ′(x) := lim

h→0

f(x+ h) − f(x)

h
.Although the pre
ise mathemati
al de�nition of the limit in the right handside is the big "bugaboo" of these basi
 
al
ulus 
ourses, students are nev-ertheless qui
k to grasp the importan
e of di�erentiation. In later 
ourses,one then pro
eeds to de�ne integration (the "opposite" of di�erentiation)and also study the several variable analogues of these 
on
epts.In all of these 
ourses, it is of utmost importan
e that the fun
tionsdepend on real variables. In more mathemati
s oriented studies, one mightthen turn to the study of fun
tions that depend on one 
omplex variable,

z = x + iy ∈ C. Hen
e one 
onsiders fun
tions f : C → C and repla
e(1.1) with,(1.2) f ′(z) := lim
h→0

f(z + h) − f(z)

h
,where now h ∈ C. If this limit exists, one says that f is holomorphic at

z ∈ C. This inno
ent looking de�nition turns out to have quite amazingand far rea
hing 
onsequen
es that often stand in sharp 
ontrast to the
orresponding real-variable theory. For example we have the following"mira
ulous" fa
ts.1. Contour Integration: If f is holomorphi
 in a domain Ω ⊂ C, (i.e.an open and 
onne
ted set), then for appropriate 
losed paths γ in Ω,
∫

γ
f(z)dz = 0.2. Regularity: If f is holomorphi
, then f is in�nitely di�erentiable.3



Introdu
tion3. Analyti
 Continuation: If f and g are holomorphi
 fun
tions ina domain Ω ⊂ C, whi
h are equal in an arbitrarily small dis
 in Ω, then
f = g everywhere in Ω.These basi
 features of the one-variable theory are 
overed in standard
ourses that are sometimes studied in the very �rst years of an under-graduate program; (we re
ommend [SS℄ for a ni
e introdu
tion). However,even if one 
hooses to spe
ialize in mathemati
s, 
han
es are slim that oneever gets to hear anything about fun
tions that depend on several 
om-plex variables, f : C

n → C, at either the undergraduate or master's level.This latter subje
t is not at all as well-developed as the 
orrespondingreal-variable theory, and in fa
t, a more thorough understanding of 
om-plex analysis in several variables started to evolve in the se
ond half ofthe twentieth 
entury.This theory, on
e again, starts with the following very inno
ent-lookingde�nition.De�nition 1. Let Ω be a domain in C
n. A fun
tion f : Ω → C is saidto be holomorphic in Ω, if it is holomorphi
 in ea
h variable separately.We will denote the set of fun
tions that are holomorphi
 in Ω by O(Ω).Many of the basi
 one 
omplex variable properties, su
h as 2 and 3above, (and even 1 if properly interpreted), also hold in several 
omplexvariables. Many other, though, do not. A salient feature of the theory ofholomorphi
 fun
tions of several variables is that it is not similar to nei-ther the real variable nor the single 
omplex variable theory. Instead, it isan independent theory with tools and methods of its own, that neverthe-less overlaps with many other mathemati
al areas. One of the foundingfathers, Kiyoshi Oka, used Figure 1 below to illustrate this, ([O1℄).In this thesis, we are 
on
erned with the parts of the theory that fallinto the 'Geometry' and 'Mathemati
al Analysis' groups. Before we 
ango on to des
ribe this in more detail, we �rst need to introdu
e some ofthe main 
on
epts and ideas of modern di�erential geometry.2. Manifolds, di�erential forms and partitions of unityThe most fundamental obje
ts of study in modern geometry are man-ifolds. From "everyday life" we are familiar with 
urves and surfa
es,whi
h are one and two dimensional obje
ts in spa
e, R

3. The idea behindthe 
on
ept of a manifold is to generalize this to arbitrary dimensions.Thus, intuitively, a manifold is a k-dimensional "surfa
e" in R
n, where

k < n. 4
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Figure 1. Several variable 
omplex analysis from KiyoshiOka's perspe
tiveMore pre
isely, the 
hara
teristi
 property of 
urves and surfa
es thatone wants to generalize to these higher dimensional obje
ts, is that theyare "lo
ally �at". By this we mean that if we zoom in su�
iently mu
hon say a two dimensional surfa
e in R
3, it will look very mu
h like a pie
eof R

2. Hen
e a k-dimensional manifold M in R
n with k < n, is an obje
tthat lo
ally looks like R

k. Mathemati
ally we express this in the followingway.De�nition 2. A subset M of R
n is 
alled a k-dimensional manifold iffor every point x ∈M , there exists open sets U, V ⊂ R

n with x ∈ U , anda homeomorphism φ : U → V , (i.e. a bije
tive 
ontinuous map with a
ontinuous inverse), su
h that,
φ(U ∩M) = V ∩ (Rk × {0}) = {y ∈ V ; yk+1 = . . . = yn = 0}.Stri
tly speaking, the obje
ts that we have just de�ned are 
alled

embedded manifolds. The general de�nition is the following.De�nition 3. Let M be a topologi
al spa
e. We say that M is a (topo-logi
al) manifold of dimension k if it has the following properties:(i) M is a Hausdor� spa
e: for every pair of distin
t points p, q ∈ M ,5



Introdu
tionthere are disjoint open subsets U, V ⊂M su
h that p ∈ U and q ∈ V .(ii) M is se
ond 
ountable: there exists a 
ountable basis for the topologyof M .(iii) M is lo
ally Eu
lidean of dimension k: for every point p ∈ M thereexists an open set U ⊂ M with p ∈ U , an open set V ⊂ R
k, and ahomeomorphism φ : U → V .In the general de�nition, there is no mention of any ambient spa
e

R
n. When one thinks about manifolds, one 
ertainly imagines them to beembedded in some R

n, and a famous theorem of Hassler Whitney, [W2℄,shows that su
h an embedding always is possible. However, in pra
ti
e theambient 
oordinates and the ve
tor spa
e stru
ture of R
n are super�uousdata that often are not related to the relevant problems in any way.There are several di�erent types of manifolds. The ones that we havejust de�ned are the most general ones, 
alled topologi
al manifolds. In-tuitively, these are geometri
 obje
ts that are allowed to have edges, likefor example a square or a 
ube. If one is interested in studying manifoldswith the tools of 
al
ulus, like di�erentiation and integration, only smoothgeometri
 obje
ts, like for example the sphere, should be allowed. Thisleads to the 
on
ept of smooth manifolds.De�nition 4. A topologi
al manifold M of dimension k, is said to be asmooth manifold if there exists an open 
overing {Uα} of M , and homeo-morphisms φα : Uα → R

k for ea
h α, with the property that for any twoopen sets Uα, Uβ with Uα ∩ Uβ 6= ∅, the so 
alled transition fun
tion(2.1) φβ ◦ φ
−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)(whi
h hen
e is a mapping between two open sets in R

k), is smooth.On smooth manifolds it is possible to give meaning to and developthe 
on
epts and tools of 
al
ulus. If M and N are smooth manifolds,one 
an de�ne what it means for fun
tions f : M → R and F : M →
N to be smooth, and also how to di�erentiate and integrate on smoothmanifolds. As simple as this may sound, this is not an easy task at all,and in fa
t most (good) textbooks on the subje
t (like e.g. [L2℄) have tospend several hundred pages on motivating and developing these tools.The main di�
ulty stems from the fa
t that manifolds only lo
ally looklike R

k, where these 
on
epts are well-known. Hen
e, one has to �nd
onstru
tions that, (to a large extent), resemble say di�erentiation orintegration, yet are invariant under 
hanges of 
oordinates.For integration this leads to the 
on
ept of di�erential forms, whi
h areobje
ts that 
an be integrated in a 
oordinate invariant way. These play a6



Introdu
tionvery 
entral part in modern di�erential geometry, (as well as in algebrai
topology and algebrai
 geometry, see e.g. [BT℄ and [GH℄), and will bea very useful tool for us as well. However, we will not spend any timedeveloping this theory here, but will assume that the reader is familiarwith the basi
 parts, like e.g. exterior di�erentiation and wedge produ
ts.We re
ommend [L2℄ for a good introdu
tion to di�erential forms, as wellas the basi
 
on
epts and theorems of di�erential geometry; (see also [M℄for a ni
e exposition of the 
entral position o

upied by di�erential formsin modern geometry).We will in fa
t be interested in a more general type of di�erential forms
alled 
urrents. Integration of di�erential forms on smooth, (orientable),manifolds, 
orresponds to integration of fun
tions in ordinary 
al
ulus. Inthe same way, the 
on
ept of 
urrents are the manifold 
ounterpart of dis-tributions, or generalised fun
tions. Thus, a 
urrent is a linear fun
tionalon di�erential forms, (together with a weak 
ontinuity 
ondition), whi
hwe intuitively should think of as a "singular di�erential form". Currentswill be of great importan
e to us in Paper I.Several natural 
ounterparts for di�erentiation on smooth manifoldsexist as well. For us, the most important 
on
ept will be that of 
onne
-tions, whi
h we will return to in se
tion 7 below.Now from the de�nition of manifolds it is 
lear that tools whi
h makeit possible to pat
h together lo
al 
onstru
tions into global obje
ts are ofgreat value. One su
h te
hni
al tool whi
h is of utmost importan
e in thetheory of smooth manifolds are so 
alled partitions of unity, the existen
eand properties of whi
h are given in the following theorem, (see e.g. [L2℄,Theorem 2.25 for a proof).Theorem 2.1. Suppose that M is a smooth manifold and U = {Uα}α∈Ais any indexed open 
over of M . Then there exists a smooth partition ofunity subordinate to U , i.e. there exists an indexed family {ψα}α∈A ofsmooth fun
tions ψα : M → R with the following properties:(i) 0 ≤ ψα(x) ≤ 1 for all α ∈ A and all x ∈M .(ii) supp ψα ⊂ Uα for ea
h α ∈ A.(iii) The family of supports, {supp ψα}α∈A is lo
ally �nite.(iv) ∑

α∈A ψα(x) = 1 for all x ∈M .Here, 
ondition (iii) means that ea
h point in M has a neighborhoodthat interse
ts supp ψα for only �nitely many values of α. This in turnimplies that the sum in (iv) only has �nitely many non-zero terms in a7



Introdu
tionneighborhood of ea
h point, so there will not be any problems related to
onvergen
e.Thus, a partition of unity is a family of smooth fun
tions of 
ompa
tsupport, that are used to form global obje
t from lo
al ones. For examplethis is pre
isely how one de�nes integrals of di�erential forms. Unfor-tunately, due to analyti
 
ontinuation this passage from lo
al to globalis not available in the holomorphi
 setting. We will soon dis
uss this indetail, but �rst we will introdu
e 
omplex manifolds, whi
h are our maingeometri
 obje
ts of interest.3. Complex manifolds and the additive Cousin problemThe subje
t of this thesis is 
omplex geometry. Hen
e, we are not re-ally interested in smooth manifolds, but rather a more restri
tive 
lassof manifolds 
alled 
omplex manifolds. These are de�ned in exa
tly thesame way as smooth manifolds, (De�nition 4), ex
ept that one requiresthe 
harts φα to take values in C
k instead of R

k. One also requires thetransition fun
tions (2.1) to be holomorphi
, and not just smooth.Sin
e 
omplex manifolds are geometri
 obje
ts that lo
ally look like
C
k, they are always even-dimensional. Furthermore, one 
an prove thatthey always are orientable, i.e. have a well-de�ned inside and outside.For 
omplex manifolds of dimension one, (i.e. "genuine" surfa
es as theylo
ally look like C ≃ R

2), one 
an show that orientability is su�
ient.This means that all orientable, smooth manifolds of (real) dimension two,
an be given a 
omplex stru
ture.In higher dimensions, however, this is no longer true. In fa
t, despitethe similar looking de�nitions, the world of smooth and 
omplex manifoldsare very di�erent. For example, as we have already mentioned, for smoothmanifolds we have the Whitney embedding theorem, whi
h states that anysmooth manifold M , 
an be smoothly embedded in R
n, for some n ∈ N.In stark 
ontrast to this, it is not very di�
ult to show that the only
ompa
t 
omplex manifolds that 
an be holomorphi
ally embedded intosome C

n, are points.At the end of the previous se
tion, we introdu
ed partitions of unityand des
ribed them as an important tool in going from lo
al to global.We also mentioned that, due to analyti
 
ontinuity, this tool unfortunatelyis missing in the 
omplex analyti
 setting. It is important to point outthat this does not just relate to 
omplex manifolds; pat
hing togetherlo
al obje
ts into global ones in a holomorphi
 way is a highly non-trivialproblem already for domains in C
n. We will now des
ribe this in greater8



Introdu
tiondetail and in order to keep things as simple as possible, we will only treat
C
n for quite some time.Two famous lo
al to global results from one variable 
omplex analysisare the Weierstrass produ
t theorem, and the Mittag-Le�er theorem, (seee.g. [A℄). Attempts to generalize these, (espe
ially the latter), to several
omplex variables, histori
ally turned out to be very important for thedevelopment of the �eld. The natural several variable generalization ofboth these theorems is the following de
omposition problem.Additive Cousin Problem: Let Ω be an open set in C

n. Suppose that
{Uj}

∞
j=1 is an open 
overing of Ω, and that for any j, k ≥ 1, fun
tions

gjk ∈ O(Uj ∩ Uk) are given, with(3.1) gjk + gkl + glj = 0 on Uj ∩ Uk ∩ Ul,whenever Uj ∩ Uk ∩ Ul 6= ∅.Find fun
tions gj ∈ O(Uj), su
h that gj − gk = gjk on Uj ∩ Uk.To see how this de
omposition problem is related to lo
al to globalproblems, let us see how we 
an use it to obtain a several 
omplex variableversion of the Mittag-Le�er problem. The formulation of this problem isthe following.Mittag-Leffler Problem: Let Ω be an open set in C
n. Supposethat {Uj}

∞
j=1 is an open 
overing of Ω. For ea
h j ≥ 1, let mj denote ameromorphi
 fun
tion on Uj , (i.e. a quotient of holomorphi
 fun
tions),and assume that these "mat
h up", in the sense that mj −mk =: gjk isholomorphi
 on Uj ∩ Uk, whenever this set is non-empty.Find a global meromorphi
 fun
tion m on Ω, su
h that m − mj ∈

O(Uj) for all j ≥ 1, (hen
e the "singularities", or the prin
ipal parts of
m and mj are the same).The Mittag-Le�er problem is an immediate 
onsequen
e of the Cousinproblem. Namely, as gjk := mj −mk ∈ O(Uj ∩ Uk) 
learly satisfy (3.1),the Cousin problem yields holomorphi
 fun
tions gj ∈ O(Uj), su
h that
mj −mk = gj − gk, or equivalently,

mj − gj = mk − gk on Uj ∩ Uk.Thus, we get a globally well-de�ned meromorphi
 fun
tion m on Ω, with
m−mj ∈ O(Uj), by setting m := mj − gj on Uj .The several variable generalization of the Weierstrass produ
t theoremalso follows from the (multipli
ative) Cousin problem, but the argumentis more involved, (see e.g. [R℄). 9



Introdu
tionHistori
ally, the Cousin problem was solved on 
ertain domains Ω ⊂
C
n, 
alled domains of holomorphy, in a spe
ta
ular way by the Japanesemathemati
ian Kiyoshi Oka, in 1936, (see [R℄ for a ni
e survey of the earlydevelopments of several variable 
omplex analysis). This important anddi�
ult a
hievement was later simpli�ed and expanded by Henri Cartanduring the 1940's and 1950's, using methods of sheaf 
ohomology theory.Beginning in the 1960's, other analyti
al ways to form global holomorphi
obje
ts out of lo
al ones were dis
overed. Before we 
an start des
ribingthese however, we �rst need to introdu
e the key di�erential operator of
omplex analysis. 4. The ∂̄-operatorIn the �rst se
tion, we de�ned holomorphi
ity of a single variable fun
tion

f : C → C, as being 
omplex di�erentiable. If we regard f as a real-valuedmapping instead, i.e.
f(x, y) = u(x, y) + iv(x, y),for some real-valued fun
tions u, v : R

2 → R, one 
an show that the holo-morphi
ity of f is equivalent to the following system of partial di�erentialequations, know as the Cau
hy-Riemann equations,
{

u′x = v′y,
u′y = −v′x.The idea behind the ∂̄-operator 
omes from yet another reformulation ofthe holomorphi
ity 
ondition.It is a 
onsequen
e of the Cau
hy integral formula that holomorphi
fun
tions always 
an be expanded in power-series. Hen
e, we 
an expand

f in a Taylor-series about a point z0 = x0 + iy0,
f(z) = f(z0) + f ′x(z0)(x− x0) + f ′y(z0)(y − y0) + o(|z − z0|).If we repla
e x and y by(4.1) {

x = z+z̄
2 ,

y = z−z̄
2i ,i.e. make the 
hange of variables

{

z = x+ iy,
z̄ = x− iy,then this be
omes,

f(z) = f(z0) +
∂f

∂z
(z0)(z − z0) +

∂f

∂z̄
(z0)(z̄ − z̄0) + o(|z − z0|),10
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tionwhere,
∂f

∂z
=

1

2

(

∂f

∂x
− i

∂f

∂y

) and ∂f

∂z̄
=

1

2

(

∂f

∂x
+ i

∂f

∂y

)

.Writing f = u+ iv, we get that
∂f

∂z̄
=

1

2

(

∂u

∂x
−
∂v

∂y

)

−
i

2

(

∂u

∂y
+
∂v

∂x

)

.Hen
e, using the Cau
hy-Riemann equations, we see that in this formu-lation, f is holomorphi
 if and only if
∂f

∂z̄
= 0,i.e. the power-series expansion of f does not 
ontain any powers of z̄.In the several variable setting, we 
an in the same way set,

∂

∂zj
=

1

2

(

∂

∂xj
− i

∂

∂yj

) and ∂

∂z̄j
=

1

2

(

∂

∂xj
+ i

∂

∂yj

)

,for j = 1, . . . , n. Then a several variable fun
tion f : C
n → C will beholomorphi
 if and only if,(4.2) ∂f

∂z̄j
= 0 for all j = 1, . . . , n.Using the language of di�erential forms, it is in fa
t possible to expressthese 
onditions in an even more 
ompressed form.The exterior di�erentiation operator, d, applied to a fun
tion f : C

n ≃
R

2n → C, yields
df =

n
∑

j=1

(

∂f

∂xj
dxj +

∂f

∂yj
dyj

)

.Making the 
hange of variables (4.1) again, and setting
{

dzj = dxj + idyj ,
dz̄j = dxj − idyj ,this transforms into,

df =
n

∑

j=1

(

∂f

∂zj
dzj +

∂f

∂z̄j
dz̄j

)

.Hen
e, for fun
tions on C
n, we 
an de�ne two operators, ∂ and ∂̄, bysetting,

∂f =
n

∑

j=1

∂f

∂zj
dzj and ∂̄f =

n
∑

j=1

∂f

∂z̄j
dz̄j ,11



Introdu
tionthereby splitting exterior di�erentiation into two parts, d = ∂ + ∂̄. Com-paring the de�ntion of ∂̄ with (4.2), we see that a several variable fun
tion
f : C

n → C is holomorphi
, if and only if,
∂̄f = 0.Just as with exterior di�erentiation, it is possible to extend ∂ and ∂̄ toa
t on di�erential forms of higher degree. A di�erential form α, of degree

p+ q, whi
h is of the form,
α =

∑

|I|=p,|J |=q

αI,JdzI ∧ dz̄J ,where I = (i1, . . . , ip), J = (j1, . . . , jq) are multiindi
es with integer 
om-ponents, |I|, |J | stand for the number of 
omponents, and
dzI = dzi1 ∧ . . . ∧ dzip and dz̄J = dz̄j1 ∧ . . . ∧ dz̄jq ,is said to be of bidegree (p, q). For these, we set

∂α :=

n
∑

j=1

∑

|I|=p,|J |=q

∂αI,J
∂zj

dzj ∧ dzI ∧ dz̄J ,and,
∂̄α :=

n
∑

j=1

∑

|I|=p,|J |=q

∂αI,J
∂z̄j

dz̄j ∧ dzI ∧ dz̄J .Sin
e d2 = 0, it then follows that ∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂.Now for lo
al to global problems, su
h as the additive Cousin problemof the previous se
tion, it turns our that the inhomogenous ∂̄-problem isof great interest.Inhomogenous ∂̄-problem: Let Ω be a domain in C
n, and let f be a(0,1)-form on Ω, with ∂̄f = 0. Find a fun
tion u : Ω → C, su
h that(4.3) ∂̄u = f.Sin
e ∂̄2 = 0, the 
ondition ∂̄f = 0 is ne
essary for the solvability ofthis equation. If

f =
n

∑

j=1

fjdzj ,then ∂̄f = 0 means that,(4.4) ∂fj
∂z̄k

=
∂fk
∂z̄j

for all j, k = 1, . . . , n.12



Introdu
tionHen
e, (4.3) is a 
ompressed way of saying: Given an n-tuple of fun
tions
{fj}

n
j=1 on Ω su
h that (4.4) holds, �nd a fun
tion u : Ω → C, su
h that

∂u

∂z̄j
= fj for j = 1, . . . , n.And so for n ≥ 2, the inhomogenous ∂̄-equation is an over-determinedsystem of �rst order, linear, partial di�erential equations.It turns out that the ne
essary 
ondition, ∂̄f = 0, is su�
ient for theexisten
e of local solutions to (4.3). This is the famous Grothendie
k-Dolbeault lemma, (see e.g. [H4℄, Proposition 1.3.8). The existen
e of

global solutions is, however, a mu
h more di�
ult problem, 
losely relatedto the domain Ω. In fa
t, we have the following theorem.Theorem 4.1. The existen
e of global solutions to the inhomogenous ∂̄-equation on a domain Ω ⊂ C
n, is equivalent to the solvability of the addi-tive Cousin problem on Ω.Proof. The easy dire
tion here is if we assume known that the Cousinproblem is solvable on Ω. Then, as ∂̄u = f is known to have lo
al so-lutions, there exists an open 
overing {Uj}

∞
j=1 of Ω, and 
orrespondingfun
tions uj , su
h that

∂̄uj = f on Uj for any j.Now let gjk := uj−uk ∈ O(Uj∩Uk). Then, by the solvability of the Cousinproblem, there exists fun
tions gj ∈ O(Uj), su
h that, gjk = gj − gk, orequivalently
uj − gj = uk − gk whenever Uj ∩ Uk 6= ∅.Thus, setting u := uj − gj on Uj , yields a well-de�ned global fun
tion on

Ω, with
∂̄u = ∂̄uj − ∂̄gj = f.Conversely, assume that the inhomogenous ∂̄-equation is (globally)solvable on Ω. Assume that {Uj}

∞
j=1 is an open 
overing of Ω, and thatfun
tions gjk ∈ O(Uj ∩Uk) are given, whi
h satisfy the 
o
y
le 
ondition,

gjk + gkl + glj = 0 on Uj ∩ Uk ∩ Ul 6= ∅.We want to �nd gj ∈ O(Uj), su
h that gj − gk = gjk on Uj ∩ Uk.For this, we start by 
onstru
ting smooth solutions to the Cousinproblem. Let {φj}
∞
j=1 be a partition of unity subordinate to {Uj}

∞
j=1,(Theorem 2.1). Set

hj :=
∞

∑

k=1

φkgjk on Uj .13



Introdu
tionBy the properties of partitions of unity, for any z ∈ Uj , this sum 
ontainsonly a �nite number of terms, so we do not have any 
onvergen
e problems.Then hj is well-de�ned and smooth on Uj . Furthermore, using the 
o
y
le
ondition, we get that on Uj ∩ Uk,
hj − hk =

∞
∑

l=1

φl(glj − glk) = gjk

∞
∑

l=1

φl = gjk.Thus, {hj}∞j=1 yield a smooth solution to the Cousin problem.Sin
e every gjk is holomorphi
, we have that
∂̄hj − ∂̄hk = ∂̄gjk = 0 on Uj ∩ Uk.Hen
e, we get a well-de�ned (0,1)-form, f , on Ω, by setting f := ∂̄hj on

Uj . By 
onstru
tion, ∂̄f = 0. The global solvability of the ∂̄-equation nowimplies that there exists a global fun
tion, u : Ω → C, su
h that ∂̄u = fon Ω. Set gj := hj − u on Uj . Then,
∂̄gj = ∂̄hj − ∂̄u = ∂̄hj − f = 0,so that gj ∈ O(Uj) for all j, and furthermore,

gj − gk = (hj − u) − (hk − u) = hj − hk = gjk on Uj ∩ Uk.Thus {gj}∞j=1 solves the Cousin problem. �Hen
e, returning to the dis
ussion of the previous se
tion, instead ofatta
king the Cousin problem with the methods of sheaf 
ohomology the-ory, one 
an study the existen
e of global solutions to the inhomogenous
∂̄-equation, using methods from the theory of partial di�erential equa-tions. This approa
h, whi
h be
ame popular in the 1960's, turned out tobe very fruitful, in parti
ular after the work of Lars Hörmander. We willnow spend quite some time explaining some of the basi
 
omponents ofthis theory, whi
h plays a very 
entral part in this thesis.5. L2-theory for the ∂̄-equationUsing Hilbert spa
e methods, Hörmander ([H1℄,[H2℄), in 1965 showed thatnot only is it possible to solve ∂̄u = f on 
ertain domains Ω ⊂ C

n, butalso provided very useful estimates for the solutions. These estimates havesin
e then be
ome an indispensible tool for the 
onstru
tion of globalholomorphi
 fun
tions with spe
i�ed properties. To illustrate the mainideas more 
learly, we begin by studying the one-variable version of thistheorem.Let Ω be any domain in C, and let f : Ω → C be any lo
ally integrablefun
tion, (as we are in C, we 
an without loss of generality inter
hange14
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tion(0,1)-forms with fun
tions). In this setting, the inhomogenous ∂̄-equationtranslates into �nding a fun
tion u : Ω → C, su
h that(5.1) ∂u

∂z̄
= f on Ωin the sense of distributions.The "usual" Hilbert spa
e approa
h to linear partial di�erential equa-tions now is to make a weak reformulation of this equation, make somesuitable estimates and �nally, after having made some assumption aboutthe regularity of f , dedu
e that a solution exists by invoking the Rieszrepresentation theorem.In our 
ase, this would translate into multiplying our equation with the
omplex 
onjugate of a test fun
tion α ∈ C∞

c (Ω), and apply integrationby parts to arrive at,
−

∫

Ω
u
∂α

∂z
=

∫

Ω
fᾱ.Then we would try to estimate the right hand side.Hörmander showed that this approa
h 
an be made su

essful, andalso produ
e ni
e estimates for the solution, if we introdu
e weighted L2inner produ
ts instead.Let φ ∈ C2(Ω) be a real-valued fun
tion and introdu
e the weighteds
alar produ
t

〈f, g〉φ :=

∫

Ω
fḡe−φ.With respe
t to this s
alar produ
t, the weak formulation of (5.1) be-
omes,(5.2) ∫

Ω
u∂̄∗φαe

−φ =

∫

Ω
fᾱe−φ,where

∂̄∗φα := −eφ
∂

∂z

(

αe−φ
)is the formal adjoint of the ∂̄-operator. We then have the following propo-sition.Proposition 5.1. Let Ω ⊂ C be any domain, and let

L2(e−φ) := {g ∈ L2
loc(Ω) ;

∫

Ω
|g|2e−φ <∞}.15



Introdu
tionThen, for any f ∈ L2(e−φ), there exists a solution u : Ω → C to theinhomogenous ∂̄-equation (5.1) satisfying,(5.3) ∫

Ω
|u|2e−φ ≤

∫

Ω
|f |2e−φ,if and only if(5.4) ∣

∣

∣

∫

Ω
fᾱe−φ

∣

∣

∣

2
≤

∫

Ω
|f |2e−φ

∫

Ω
|∂̄∗φα|

2e−φholds for all α ∈ C2
c (Ω).Proof. One dire
tion is immediate: If u is a solution to (5.1) satisfying(5.3), then (5.4) follows at on
e by applying the Cau
hy-S
hwarz inequal-ity to (5.2).Now suppose that (5.4) holds for all α ∈ C2

c (Ω), and let E ⊂ L2(e−φ)be the subspa
e,
E := {∂̄∗φα;α ∈ C2

c (Ω)}.De�ne the anti-linear fun
tional L : E → C as,
L(∂̄∗φα) :=

∫

Ω
fᾱe−φ.Then, (5.4) says that L is well-de�ned and of norm not ex
eeding,(5.5) ∫

Ω
|f |2e−φ.The Hahn-Bana
h extension theorem 
an now be used to extend L toan anti-linear fun
tional on all of L2(e−φ), with the same norm. By theRiesz representation theorem, there exists some element u ∈ L2(e−φ),with norm less than or equal to (5.5), su
h that

L(g) =

∫

Ω
uḡe−φ,for all g ∈ L2(e−φ). Choosing g = ∂̄∗φα yields,

∫

Ω
u∂̄∗φαe

−φ =

∫

Ω
fᾱe−φ,so u solves the inhomogenous ∂̄-equation (5.1). �Hen
e, we have redu
ed the existen
e of solutions to (5.1), to provingthe inequality (5.4). The next step is to rewrite this inequality a bit16
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tionfurther. Assume that ψ : Ω → R is a stri
tly positive fun
tion. Then,with the same reasoning we get that there exists a solution to (5.1) with
∫

Ω
|u|2e−φ ≤

∫

Ω

|f |2

ψ
e−φ,if and only if,(5.6) ∫

Ω
ψ|α|2e−φ ≤

∫

Ω
|∂̄∗φα|

2e−φ,for all α ∈ C2
c (Ω).The reason for this reformulation is that there exists a spe
ial 
hoi
eof ψ, for whi
h (5.6) always holds, for any domain in C. Namely,

ψ =
∂2φ

∂z∂z̄
=: ∆φ.(This is the reason for requiring that φ ∈ C2(Ω).)Proposition 5.2. Let Ω ⊂ C be any domain, and let φ ∈ C2(Ω). Then,for any α ∈ C2

c (Ω),
∫

Ω
∆φ|α|2e−φ +

∫

Ω

∣

∣

∂α

∂z̄

∣

∣

2
e−φ =

∫

Ω
|∂̄∗φα|

2e−φ.Proof. By integration by parts
∫

Ω
|∂̄∗φα|

2e−φ = −

∫

Ω
∂̄∗φα

∂

∂z̄
(ᾱe−φ) =

∫

Ω

( ∂

∂z̄
∂̄∗φα

)

ᾱe−φ.Also, by de�nition,̄
∂∗φα = −eφ

∂

∂z

(

αe−φ
)

= −
∂α

∂z
+ α

∂φ

∂z
,and so,

∂

∂z̄
∂̄∗φα = −

∂2α

∂z̄∂z
+
∂α

∂z̄

∂φ

∂z
+

∂2φ

∂z̄∂z
α = ∂̄∗φ

(∂α

∂z̄

)

+ (∆φ)α.Hen
e,
∫

Ω
|∂̄∗φα|

2e−φ =

∫

Ω
∂̄∗φ

(∂α

∂z̄

)

ᾱe−φ +

∫

Ω
∆φ|α|2e−φ =

=

∫

Ω

∣

∣

∣

∂α

∂z̄

∣

∣

∣

2
e−φ +

∫

Ω
∆φ|α|2e−φ,where we have just used that ∂̄∗φ is the adjoint of ∂

∂z̄ with respe
t to thes
alar produ
t de�ned by φ. �17



Introdu
tionAltogether, we have proved the following one-dimensional version ofHörmander's theorem.Theorem 5.3. Let Ω ⊂ C be any domain, and let φ ∈ C2(Ω) be anyfun
tion with ∆φ > 0. Then, for any f ∈ L2
loc(Ω), there exists a solution

u to the inhomogenous ∂̄-equation,
∂u

∂z̄
= f on Ω,with,

∫

Ω
|u|2e−φ ≤

∫

Ω

|f |2

∆φ
e−φ.Let us qui
kly re
apitulate what we have done so far. We started o�with the additive Cousin problem for domains Ω in C

n, i.e. the problemof pat
hing together lo
al holomorphi
 fun
tions in a holomorphi
 way.We then reformulated this problem into the problem of �nding globalsolutions to the inhomogenous ∂̄-equation on Ω. And now, we have justshown that for domains in C, this equation is always globally solvable,and there exists good estimates for the solutions as well.The natural question to pose now is whether it is possible to pro
eedwith this analyti
 approa
h in higher dimensions? Before we 
an startanswering this, we need to introdu
e some new notation, sin
e we 
an nolonger inter
hange fun
tions and (0,1)-forms.Let f and α be (0,1)-forms on Ω ⊂ C
n,

f =
n

∑

j=1

fjdz̄j , α =
n

∑

j=1

αjdz̄j ,let φ ∈ C2(Ω), and de�ne a s
alar produ
t with respe
t to φ, through
〈f, α〉φ :=

n
∑

j=1

∫

Ω
fjαje

−φ.One 
an 
he
k that the formal adjoint of the ∂̄-operator, (whi
h now takes(0,1)-forms to fun
tions), with respe
t to this s
alar produ
t be
omes,
∂̄∗φα := −eφ

n
∑

j=1

∂

∂zj

(

αje
−φ

)

.With this notation, the weighted dual formulation of the inhomogenous
∂̄-equation,

∂̄u = f on Ω,18



Introdu
tionbe
omes: Find u : Ω → C, su
h that
∫

Ω
u∂̄∗φαe

−φ =
n

∑

j=1

∫

Ω
fjᾱje

−φ,for all α ∈ C2
(0,1)(Ω), where
C2

(0,1)(Ω) :=
{

α =
n

∑

j=1

αjdz̄j ; αj ∈ C2
c (Ω)

}

.If we repla
e L2(e−φ) with,
L2

(0,1)(e
−φ) :=

{

f =
n

∑

j=1

fjdz̄j ;
n

∑

j=1

∫

Ω
|fj |

2e−φ <∞
}

,in Proposition 5.1, then a 
areful study of the proof reveals that thisresult holds, basi
ally un
hanged, in this several variable setting as well.However, this is not as good news as one might think at �rst. In fa
t, inseveral variables, it is impossible to prove that(5.7) ∣

∣〈f, α〉φ
∣

∣

2
≤

(

n
∑

j=1

∫

Ω
|fj |

2e−φ
)

∫

Ω
|∂̄∗φα|

2e−φ,for all α ∈ C2
(0,1)(Ω). If we 
ould prove this, then we would have shownthat there exists a solution to ∂̄u = f , without using the 
ompatibility
ondition ∂̄f = 0. Hen
e, we need some way of taking this extra informa-tion into 
onsideration as well. For this, we �rst need to introdu
e somenotation from the theory of Hilbert spa
es.Let T denote the operator ∂̄ but with the spe
i�ed domain,
Dom(T ) := {u ∈ L2(e−φ) ; ∂̄u ∈ L2

(0,1)(e
−φ)}.Furthermore, let T ∗ denote the adjoint operator, whi
h is ∂̄∗φ but with thespe
i�ed domain,

Dom(T ∗) : = {v ∈ L2
(0,1)(e

−φ) ; u ∈ Dom(T ) 7→ 〈∂̄u, v〉φ is abounded linear fun
tional}.The following proposition is the several variable analogue of, (the rewrit-ten form of), Proposition 5.1, (see [B3℄, Proposition 1.3.2 for a proof).Proposition 5.4. Let Ω be a domain in C
n, and let ψ : Ω → C

r×r be a
ontinuous fun
tion whose value at any point z ∈ Ω is a stri
tly positivede�nite, and uniformly bounded hermitian matrix ψ(z) = (ψjk(z))1≤j,k≤n.19



Introdu
tionIf, for any α ∈ Dom(T ∗) ∩Ker(∂̄) it holds that,
n

∑

j,k=1

∫

Ω
ψjkαjᾱke

−φ ≤

∫

Ω
|∂̄∗φα|

2e−φ,then, for any f ∈ L2
(0,1)(e

−φ) with ∂̄f = 0, there exists a solution to
∂̄u = f satisfying,

∫

Ω
|u|2e−φ ≤

n
∑

j,k=1

∫

Ω
ψ−1
jk fj f̄ke

−φ.Comparing this with Propostion 5.1, we see that the main di�eren
e,whi
h re�e
ts the ne
essary 
ondition ∂̄f = 0 in several variables, is the
lass of test fun
tions.Although we have 
hosen not to in
lude it, the proof of this proposi-tion is not overly di�
ult. Instead, the main di�
ulty lies in �nding theappropriate several variable analogue of Proposition 5.2. We now turn tostudying this in greater detail.First o�, 
onsider the matrix-valued fun
tion ψ. It turns out that theappropriate 
hoi
e is,(5.8) ψjk =
∂2φ

∂zj∂z̄k
,whi
h 
learly is 
onsistent with Proposition 5.1. Furthermore, the severalvariable 
ounterpart of ∆φ > 0, is requiring the Hessian (5.8) to be stri
tlypositive de�nite.Fun
tions de�ned on domains in C

n, with positive de�nite 
omplexHessians of this type, are 
alled plurisubharmoni
 fun
tions. These fun
-tions are the 
omplex-variable analogues of 
onvex fun
tions in real anal-ysis, and just as for 
onvex fun
tions, there exists several alternative def-initions of plurisubharmoni
ity that do not require the fun
tions to betwi
e di�erentiable. One de�nition that bears a striking resemblan
e tothe de�nition of 
onvex fun
tions, as well as explains the name, is thefollowing.De�nition 5. (i) Let Ω ⊂ C be a domain, and let u : Ω → [−∞,∞) bean upper semi
ontinuous fun
tion. Then u is 
alled subharmonic if, forevery 
ompa
t subset K ⊂ Ω, and every 
ontinuous fun
tion h : K → Rwhi
h is harmoni
 on the interior of K, the inequality u ≤ h is valid in
K, if it holds on ∂K.(ii) Let Ω ⊂ C

n be a domain, and let u : Ω → [−∞,∞) be an upper semi-
ontinuous fun
tion. Then u is 
alled plurisubharmonic if its restri
tion20



Introdu
tionto every 
omplex line in Ω is subharmoni
, i.e. for arbitrary z, w ∈ C
n,the fun
tion

τ 7→ u(z + τw),is subharmoni
 in the open subset of C where it is de�ned.The 
omplex-analyti
 
ounterpart of 
onvex sets in R
n, is the notionof pseudo-
onvexity.De�nition 6. A domain Ω in C

n is 
alled pseudo-
onvex if there existsa 
ontinuous, plurisubharmoni
 fun
tion ψ de�ned in Ω, whi
h tends toin�nity at the boundary; (su
h a ψ is 
alled an exhaustion fun
tion for
Ω). The study of plurisubharmoni
 fun
tions and pseudo-
onvexity are ex-tremely important and key parts of several 
omplex variable theory. Wewill, however, not treat this theory in any great detail. For the inter-ested reader we re
ommend the ni
e survey [K1℄, as well as the standardtreatises [H3℄ and [K2℄.One intuitive way of regarding pseudo-
onvex sets is that they are thedomains in C

n that behave most similar to domains in C; ("things work asusual"). The 
lassi
al example of this is the Hartogs' extension theoremand domains of holomorphy, (on
e again, see [R℄). Another example is thatpseudo-
onvexity is a su�
ient 
ondition for the several variable versionof Proposition 5.2 to hold.Proposition 5.5. Let Ω be a pseudo-
onvex domain in C
n, and let φ ∈

C2(Ω). Then, for any α ∈ C2
(0,1)(Ω) ∩Dom(T ∗),

n
∑

j,k=1

∫

Ω

∂2φ

∂zj∂z̄k
αjᾱke

−φ ≤

∫

Ω
|∂̄∗φα|

2e−φ +
1

2

∫

Ω
|∂̄α|2e−φ,where,

|∂̄α|2 =
∑

j<k

∣

∣

∣

∂αj
∂z̄k

−
∂αk
∂z̄j

∣

∣

∣

2
.See e.g. [B3℄, Theorem 1.4.2 for a proof.Hen
e, we get that for a pseudo-
onvex domain Ω in C

n,
n

∑

j,k=1

∫

Ω

∂2φ

∂zj∂z̄k
αjᾱke

−φ ≤

∫

Ω
|∂̄∗φα|

2e−φ,for any α ∈ C2
(0,1)(Ω) ∩ Dom(T ∗) ∩ Ker(∂̄). Assume that φ ∈ C2(Ω) isstri
tly plurisubharmoni
, i.e. the 
omplex Hessian of φ is stri
tly positivede�nite. If we 
ompare this with the setting of Proposition 5.4, we see21



Introdu
tionthat the only di�eren
e is the extra requirement of smoothness up to theboundary, α ∈ C2
(0,1)(Ω). This extra requirement 
an be removed throughapproximations, but doing so is highly non-trivial.On
e this, far from obvious step, has been taken we arrive at thefollowing theorem, ([H1,H2,H3℄).Theorem 5.6. Let Ω be a pseudo
onvex domain in C

n, let φ ∈ C2(Ω) bea stri
tly plurisubharmoni
 fun
tion, and let f ∈ L2
(0,1)(e

−φ). If ∂̄f = 0,(in the sense of distributions), then there exists a global solution, u, to theinhomogenous ∂̄-equation ∂̄u = f . Furthermore, this solution satis�es theestimate,(5.9) ∫

Ω
|u|2e−φ ≤

n
∑

j,k=1

∫

Ω
φjkfj f̄ke

−φ,provided that the left hand side is �nite, where φjk denotes the inversematrix of the 
omplex Hessian of φ.This is (one version of) the Hörmander theorem for the inhomogenous
∂̄-equation in C

n. Apart from the relation to lo
al to global phenomenadis
ussed so far, this theorem is an extremely useful tool for 
onstru
tingholomorphi
 fun
tions with spe
i�ed properties. In the words of FeodorNazarov ([N3℄)This amazing theorem has be
ome the main tool for 
onstru
ting analyti
fun
tions in C
n with good growth/de
ay estimates. It has essentially wipedout all previous ad ho
 pro
edures based on power series, Cau
hy integralsand su
h.The philosophy behind these 
onstru
tions is that through the funda-mental estimate (5.9), the sought after properties of a holomorphi
 fun
-tion 
an be redu
ed to the 
onstru
tion of a spe
i�
 plurisubharmoni
weight fun
tion φ, whi
h is a mu
h less rigid obje
t than holomorphi
fun
tions. The analyti
 proof of the Kodaira embedding theorem at theend of se
tion 8 below is a ni
e illustration of this.Now as we have tried to point out throughout this se
tion, the proofof the Hörmander theorem has two main parts:(i) Redu
ing the existen
e of solutions to an inequality.(ii) Finding 
onditions whi
h ensure that this inequality holds.We will now turn to the study of inhomogenous ∂̄-equations on 
om-plex manifolds, where the Hörmander estimates are an important tool inthe analyti
 study of 
omplex geometry. For 
omplex manifolds, just as22
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tionfor domains in C
n, the di�
ult part is step (ii). The �rst part of Paper IIis devoted to illustrating a new method, whi
h we believe is simpler thanthe traditional methods, for the establishment of this step.6. Holomorphi
 ve
tor bundles - MotivationA general strategy in order to understand the geometry of a 
omplexmanifold X, is to study:(i) Holomorphi
 maps from other 
omplex manifolds into X.(ii) Holomorphi
 maps from X into other, (easier), 
omplex manifolds.(iii) Holomorphi
 ve
tor bundles on X.(We will explain what (iii) means shortly.) As we will soon see, these areall 
losely related.In (i), one is parti
ularly interested in investigating the 
omplex sub-manifolds, or more generally the analyti
 subvarieties, of X. These arede�ned in the following way.De�nition 7. Let X be a 
omplex manifold. An analyti
 subvarietyof X is a 
losed subset Y ⊂ X, su
h that for any point x ∈ X, thereexists an open neighborhood U ⊂ X 
ontaining x, su
h that Y ∩ U isthe zero set of �nitely many holomorphi
 fun
tions on U , i.e. there exists

f1, . . . , fk ∈ O(U) with,
Y ∩ U = {f1 = . . . = fk = 0} ∩ U.An analyti
 subvariety is not always a submanifold, sin
e it 
an havesingularities. For example, the union of the two 
oordinate axes in C

2 
anbe written as {z1z2 = 0}, so it is an analyti
 subvariety with a singularityat the origin. However, one 
an show that for any analyti
 subvariety
Y , the set of regular points Yreg := Y \ Ysing is a non-empty 
omplexsubmanifold of X.We will need the following standard notions from the theory of analyti
subvarieties.De�nition 8. Let X be a 
omplex manifold, and let Y ⊂ X be ananalyti
 subvariety.
• We say that Y is irreducible if it 
annot be written as the union Y =
Y1 ∪ Y2 of two proper analyti
 subvarieties Yi ⊂ Y .
• If Y is irredu
ible, then the dimension of Y is de�ned as the dimensionof the manifold of its regular points, dim(Y ) :=dim(Yreg).
• Y is said to be an analyti
 hypersurface of X, if it has 
odimensionone, i.e. dim(Y ) = dim(X) − 1. 23
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tionVarieties and hypersurfa
es, (not ne
essarily analyti
 ones), are themain obje
ts of investigation in algebrai
 geometry. Many deep and in-genious tools have been developed for their study, (see e.g. [SKKT℄ for ani
e introdu
tion). From our point of view, however, analyti
 subvarietiesare mainly interesting be
ause of their 
lose 
onne
tion to (iii) above.The basi
 de�nition of ve
tor bundles is the following.De�nition 9. Suppose X is a 
omplex manifold. A holomorphi
 ve
torbundle of rank r over X is a 
omplex manifold E, together with a surje
tiveholomorphi
 map, π : E → X, satisfying the following 
onditions:I. For ea
h x ∈ X, the set Ex := π−1(x), 
alled the �ber over x, has thestru
ture of an r-dimensional 
omplex ve
tor spa
e.II. For ea
h x ∈ X, there exists a neighborhood U ⊂ X of x, and abiholomorphism Φ : π−1(U) → U × C
r, su
h that π|U = π1 ◦ Φ, where

π1 is proje
tion on the �rst fa
tor. Furthermore, for any y ∈ U , therestri
tion Φ|Ey
: Ey → {y} × C

r is a C-linear isomorphism. The pair
(U,Φ) is 
alled a lo
al trivialization of E over U.A holomorphi
 ve
tor bundle of rank 1 is 
alled a holomorphi
 linebundle.The main example, and motivation, for ve
tor bundles is the so 
alledtangent bundle of a manifold. The intuition behind this 
onstru
tion isto think of the manifold as a submanifold of C

n. At ea
h point of themanifold we then have a tangent spa
e, and the idea is to glue all of thesetogether so that the resulting geometri
 obje
t also is a manifold. Gener-alising this 
onstru
tion, making it independent of the ambient spa
e and
oordinates, has led to the abstra
t de�nition above; for ea
h x ∈ X, the�ber Ex represents the tangent spa
e at x.As ve
tor bundles are, possibly twisted, disjoint unions of ve
torspa
es, there is a meta-theorem to the e�e
t that any 
anoni
al 
onstru
-tion in linear algebra gives rise to a geometri
 version for ve
tor bundles.Thus, it is possible to 
onstru
t the dual, tensor produ
t, dire
t sum, et
.of ve
tor bundles.Now ve
tor bundles are one of the main building blo
ks of moderngeometry. Considering that the tangent bundle of a manifold, by 
on-stru
tion, 
ontains a lot of interesting geometri
 information about themanifold, this is perhaps not so surprising. For us, holomorphi
 ve
torbundles, and their ri
h theory, are the main obje
ts of study. Unfortu-nately, this ri
hness also makes it very di�
ult to give a self-
ontainedintrodu
tion. In this se
tion we will give a rather detailed motivation fortheir study by des
ribing their relation to analyti
 varieties. After this,24



Introdu
tionwe will re
apitulate some basi
 
on
epts and theory in the next se
tion,but this will be done hastily and mainly to establish the notation and our
onventions. We re
ommend [W1℄, [H4℄, and [K3℄ among many others forthe uninitiated reader.We have the following simple 
onsequen
e of De�nition 9, ([L2℄, Lemma5.4).Lemma 6.1. Let E → X be a rank r holomorphi
 ve
tor bundle overa 
omplex manifold X. Whenever (Uα,Φα) and (Uβ ,Φβ) are two lo
altrivializations of E that overlap, the 
omposite map Φβ ◦Φ−1
α from (Uα ∩

Uβ) × C
r to itself, will be of the form,

Φβ ◦ Φ−1
α (x, z) = (x, ταβ(x)z),where ταβ is a holomorphi
 map ταβ : Uα ∩ Uβ → GL(r,C), 
alled thetransition fun
tion from Φα to Φβ.It follows immediately from the de�nition of transition fun
tions thatthey have the following 
o
y
le property: Whenever there are three over-lapping lo
al trivializations, we have that(6.1) ταβ(x)τβγ(x) = ταγ(x) for all x ∈ Uα ∩ Uβ ∩ Uγ ,where the juxtaposition on the left hand side denotes matrix multipli
a-tion.It turns out, rather surprisingly, that the transition fun
tions 
ontainall the information about the ve
tor bundle. This remarkable feature isthe key property for the link between holomorphi
 ve
tor bundles andanalyti
 subvarieties alluded to above.Proposition 6.2. Let X be a 
omplex manifold. Suppose we are givenan open 
over {Uα}α∈A of X, and for ea
h α, β ∈ A with Uα ∩ Uβ 6= ∅,a holomorphi
 map ταβ : Uα ∩ Uβ → GL(r,C), satisfying the 
o
y
le
ondition (6.1) above. Then there is a rank r holomorphi
 ve
tor bundle

E → X, with lo
al trivializations (Uα,Φα), whose transition fun
tions arethe given maps ταβ.See e.g. [W1℄, Chapter 1.2 for a proof.Hen
e, a set of transition fun
tions is all we need to get a ve
torbundle. This 
an be used to 
reate a line bundle from a hypersurfa
e
Y ⊂ X in the following way: By de�nition, there exists open sets Uα ⊂ X
overing Y , and holomorphi
 fun
tions fα ∈ O(Uα) with Y ∩Uα = {fα =
0}∩Uα. The idea is to de�ne the transition fun
tions for a line bundle as(6.2) ταβ :=

fα
fβ
,25



Introdu
tionwhenever Uα and Uβ overlap. These will 
ertainly satisfy the 
o
y
le 
on-dition (6.1), but unfortunately, this is not enough. The problem is thatwe do not know the vanishing order of the lo
al holomorphi
 fun
tions,and so the ταβ :s 
ould vanish or blow up on Y . This leads to the notionof e�e
tive divisors. Intuitively, these are hypersurfa
es, every bran
h,(i.e. irredu
ible 
omponent), of whi
h are endowed with a non-negativemultipli
ity. Lo
ally then, an e�e
tive divisor D is the zero lo
us of holo-morphi
 fun
tions f ∈ O(Uα) whi
h vanish to the given multipli
ity onevery bran
h of D.If we form the transition fun
tions (6.2) for e�e
tive divisors, theywill now be holomorphi
 and non-vanishing on Uα ∩ Uβ . By Proposition6.2 they form the transition fun
tions of a line bundle. Thus, instead ofstudying the hypersurfa
es of a 
omplex manifold X, we 
an study linebundles on X. From an analyti
al viewpoint, line bundles turn out to beeasier to work with.For example, if X is a compact 
omplex manifold, then by the max-imum prin
iple any holomorphi
 fun
tion f : X → C is 
onstant. Nowsuppose that π : L → X is a holomorphi
 line bundle and study holo-morphi
 maps from subsets U ⊂ X to L satisfying π ◦ f = IdU , 
alledlo
al holomorphi
 se
tions to L. If L is trivial, i.e. L = X × C, the set ofglobal holomorphi
 se
tions to L are in one-to-one 
orresponden
e withthe set of holomorphi
 fun
tions on X. The point here is of 
ourse that if
X is 
ompa
t, there might exist non-trivial holomorphi
 line bundles on
X, having non-
onstant global holomorphi
 se
tions, whi
h one 
an applythe tools of analysis to.7. Holomorphi
 ve
tor bundles - The settingJust as in the line bundle setting, se
tions of a holomorphi
 ve
tor bundle,
π : E → X are de�ned as maps from subsets U ⊂ X to E, f : U → E,satisfying π ◦ f = IdU . We denote the set of smooth se
tions of E by
C∞(X,E), and the set of holomorphi
 se
tions by O(X,E).As se
tions of ve
tor bundles 
orrespond to fun
tions on the manifold,we want to be able to apply the tools of analysis to their study. We willnow qui
kly re
all the most important of these tools and notions from thetheory of ve
tor bundles.Assume that rankCE = r. A lo
al frame for E is an ordered r-tuple oflo
al se
tions (ei) = (e1, . . . , er) over U , with the property that for ea
h
x ∈ U , the r-tuple (e1(x), . . . , er(x)) forms a basis for the �ber Ex.We have already introdu
ed di�erential forms, whi
h are nothing butse
tions to exterior powers of the 
otangent bundle, the dual of the tangent26
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tionbundle. For a ve
tor bundle E → X, we 
an form se
tions of the bundle
ΛT ∗X⊗E. We 
all these di�erential forms on X with values in E. Lo
ally,su
h a se
tion is just a linear 
ombination of tensor produ
ts of di�erentialforms and se
tions of E. For p ≥ 1 we let C∞

p (X,E) denote the set ofsmooth di�erential p-forms with values in E.A hermitian metri
, h, on a ve
tor bundle E → X is a positive de�nitehermitian inner produ
t, (·, ·)h(x), on ea
h �ber Ex that varies smoothlywith x. More expli
itly, given two se
tions s, t the fun
tion (s, t)h on X issmooth. Lo
ally in a neighborhood U of a point x ∈ X we 
an identify sand t with ve
tors of fun
tions on U and h with a matrix-valued fun
tionon U so that
(s, t)h = t∗hswhere t∗ is the transpose 
onjugate of t and juxtaposition denotes matrixmultipli
ation.As soon as we have a metri
 on a ve
tor bundle, we also get a well-de�ned bilinear map, {·, ·}, for di�erential forms on X with values in E.Namely by letting {α⊗s, β⊗t} := α∧ β̄ (s, t)h for forms α, β and se
tions

s, t, and then extend to arbitrary forms with values in E by linearity.A connection D on E is a C-linear mappingD : C∞(X,E) → C∞
1 (X,E)satisfying the Leibniz rule

D(fs) = df ⊗ s+ fDsfor any smooth map f ∈ C∞(X) and se
tion s ∈ C∞(X,E). Hen
ea 
onne
tion is a �rst order di�erential operator that allows us to takedire
tional derivatives of se
tions. Lo
ally, if we regard a se
tion s as ave
tor of fun
tions we have that
Ds = ds+ θswhere θ is a matrix of one-forms.On a holomorphi
 ve
tor bundle with a hermitian metri
 h, there ex-ists a spe
ial 
onne
tion D 
alled the Chern 
onne
tion whi
h re�e
ts thegeometri
 and holomorphi
 stru
ture of the ve
tor bundle. This 
onne
-tion is 
hara
terized by:(i) Compatibility with h

d(s, t)h = {Ds, t}h + {s,Dt}h.(ii) In the de
omposition of D into (1,0) and (0,1) parts, D = D′ +D′′,the (0,1) part D′′ equals ∂̄.One 
an show that the Chern 
onne
tion is unique and that lo
ally the
onne
tion matrix θ is a matrix of (1,0)-forms given by θ = h−1∂h.27
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tionGiven a 
onne
tion D we 
an extend it to C∞
p (X,E) for p ≥ 1 by theLeibniz rule

D(α ∧ s) = dα ∧ s+ (−1)kα ∧Dswhere α is a k-form on X and s is a smooth se
tion of E. We use thisto de�ne the curvature Θ asso
iated with a 
onne
tion D through Θs :=
D2s. We then have
Θ(fs) = D(df ⊗ s+ fDs) = d2f ⊗ s− df ⊗Ds+ df ⊗Ds+ fΘs = fΘsfor f ∈ C∞(X), s ∈ C∞(X,E) so Θ is a form-valued endomorphism of
E, i.e. lo
ally just a matrix of two-forms.For a hermitian holomorphi
 ve
tor bundle (E, h), we 
all the 
urva-ture asso
iated with the Chern 
onne
tion the 
urvature of E and one 
anshow that in this 
ase

Θ = ∂̄θ = ∂̄(h−1∂h).Hen
e, if we let {dzj}nj=1 be a basis for the holomorphi
 
otangent spa
eof X, the 
urvature 
an lo
ally be represented as a matrix of (1,1)-formswhi
h we 
an write either as
Θ =

n
∑

j,k=1

Θjkdzj ∧ dz̄k,where Θjk are lo
al r × r matrix-valued fun
tions, or as
Θ =

∑

1≤j,k≤n
1≤µ,λ≤r

cjkµλdzj ∧ dz̄k ⊗ e∗µ ⊗ eλ,where cjkµλ are lo
al fun
tions, {eµ}rµ=1 is a lo
al frame for E, and {e∗µ}
r
µ=1is the 
orresponding dual 
oframe.In Riemannian geometry one studies the geometry of a manifold M ,through the geometry of its tangent bundle, TM . A Riemannian metri
on M is a s
alar produ
t on ea
h tangent spa
e that varies smoothly withrespe
t to the base point. Just as for holomorphi
 ve
tor bundles, givena Riemannian metri
 there exists a 
anoni
al 
hoi
e of 
onne
tion, theLevi-Civita 
onne
tion, ∇, that re�e
ts the geometry of M .Suppose now that M = X is a 
omplex manifold with a hermitianmetri
 g. By de�nition, this means that for ea
h x ∈ X, g(x) is a hermitians
alar produ
t on the 
omplex tangent spa
e T 1,0

x X. This means that if
z = (z1, . . . , zn) are lo
al 
oordinates near x, g 
an be written as(7.1) g =

n
∑

j,k=1

gjkdzj ⊗ dz̄k.28



Introdu
tionIf v is a holomorphi
 ve
tor �eld on X,
v =

n
∑

j=1

vj
∂

∂zj
,we 
an hen
e de�ne the norm of v as,

‖v‖2
g =

n
∑

j,k=1

gjkvj v̄k.It turns out, however, to be mu
h more 
onvenient to work with theimaginary part of g, instead of the metri
 itself. This two-form, ω, is
alled the Kähler form of g, and if g is given in lo
al 
oordinates as in(7.1), then it is not di�
ult to show that(7.2) ω = i
n

∑

j,k=1

gjkdzj ∧ dz̄k.One example of the way things are simpli�ed by working with ω in-stead of g, is the relation between ω and the volume form. By de�nition,a volume form is a di�erential form of maximal degree that 
an be writtenas,
dVω = inξ1 ∧ ξ̄1 ∧ . . . ∧ ξn ∧ ξ̄nwhenever ξ = (ξ1, . . . , ξn) is an orthonormal basis for the holomorphi

otangent spa
e. This is a well-de�ned global form, (any other orthonor-mal basis is related to ξ via a unitary linear transformation), and it 
analso be expressed as

dVω = ωn/n!,in terms of the Kähler form
ω = i

n
∑

j,k=1

gjkdzj ∧ dz̄k = i

n
∑

j=1

ξj ∧ ξ̄j .This, in turn, 
an be utilized to introdu
e a 
onvenient formalism for
omputing the norms of forms. We will do this in the setting of di�erentialforms with values in a ve
tor bundle over a 
ompa
t 
omplex manifold.Thus, let (E, h) → (X,ω) be a holomorphi
 ve
tor bundle over a
ompa
t 
omplex manifold. Let α be an E-valued form of bidegree (p, 0).We de�ne the norm of α with respe
t to the metri
s h and ω through(7.3) ‖α‖2dVω = cp{α, α}h ∧ ωn−p29
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tionwhere ωn−p := ωn−p/(n − p)!, and cp := ip
2 is a unimodular 
onstant
hosen so that the right hand side is positive. One 
an show that if {ξj}are orthonormal 
oordinates at a point and

α =
∑

|I|=p

αIξIwhere {αI} are se
tions of E, then
‖α‖2 =

∑

|I|=p

‖αI‖
2
h.We also use (7.3) to de�ne the norm of E-valued forms of bidegree (0, q).In parti
ular then ‖α‖ = ‖ᾱ‖.Using this de�nition one 
an now pro
eed to show that it is possibleto de�ne the norm of an E-valued form η of arbitrary bidegree in su
h away that if

η =
∑

ηIJξI ∧ ξ̄Jin terms of an orthonormal basis at a point, then
‖η‖2 =

∑

‖ηIJ‖
2
h.This norm 
an then be polarized yielding an inner produ
t for E-valuedforms of arbitrary bidegree. Hen
e if µ is another form with values in E,whi
h is of the same bidegree as η, then

(η, µ) =
∑

(ηIJ , µIJ)hif we express η and µ in terms of an orthonormal basis as above.Integrating these norms over X with respe
t to the volume form, one
an hen
e extend the Hilbert spa
e formalism of se
tion 5 to ve
tor bundlevalued di�erential forms on 
omplex manifolds. But before we 
an turnto the study of the inhomogenous ∂̄-equation on 
omplex manifolds, weneed to introdu
e the 
on
ept of Kähler manifolds.We say that g is a Kähler metri
, and that X is a Kähler manifold, ifthe two-form ω is 
losed, dω = 0.Kähler manifolds are very important in 
omplex geometry. There are
on
eptual and 
omputational reasons for this.First o�, given a metri
 g, we have seen that there are two 
anoni
al
onne
tions on the holomorphi
 tangent bundle asso
iated with g:(i) The Chern 
onne
tion, Dg, indu
ed by the holomorphi
 stru
ture on
X.(ii)The Levi-Civita 
onne
tion, ∇g, indu
ed by the Riemannian stru
ture30
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tionon X.We then have the following result, (see e.g. [B3℄, Proposition 3.4.2):Proposition 7.1. Let g be a hermitian metri
 on a 
omplex manifold
X. Let Dg be the Chern 
onne
tion, and ∇g the Levi-Civita 
onne
tion,indu
ed by g. If (X, g) is a Kähler manifold, then Dg = ∇g.Se
ondly, 
omputations in lo
al 
oordinates are usually greatly sim-pli�ed if one is able to use normal 
oordinates. These are lo
al 
oordinatesat a point x ∈ X in whi
h the metri
 g, resembles the eu
lidean metri
 to�rst order. More pre
isely,

gjk = δjk,and,
dgjk = 0at x.It is an immediate 
onsequen
e of (7.2) that if we 
an 
hoose normal
oordinates at any point, then dω = 0, so the metri
 must be Kähler. To alarge extent, the 
omputational advantage of Kähler manifolds stems fromthe fa
t that the 
onverse of this also holds, (see e.g. [H4℄, Proposition1.3.12).Proposition 7.2. Let g be a Kähler metri
. For ea
h x ∈ X, there arelo
al holomorphi
 
oordinates near x that are normal in x.8. L2-methods for the ∂̄-equation on 
ompa
t Kähler manifoldsWith the 
on
epts and formalism of the previous se
tion at our disposal,we 
an now formulate the 
ompa
t Kähler generalisation of Theorem 5.6on the global solvability of the inhomogenous ∂̄-equation together withHörmander's L2-estimates.Theorem 8.1. Let (X,ω) be a 
ompa
t Kähler manifold, and let (L, h) bea holomorphi
 line bundle over X. Assume that the metri
 h has stri
tlypositive 
urvature,(8.1) iΘ ≥ εω,for some ε > 0.For any ∂̄-
losed (n, q)-form f with values in L and q ≥ 1, there existsan (n, q − 1)-form u with values in L, su
h that
∂̄u = f,and(8.2) ∫

X
‖u‖2dVω ≤

1

εq

∫

X
‖f‖2dVω.31



Introdu
tion(Apart from the L2-estimates (8.2), this is the famous Kodaira van-ishing theorem, [K4℄.)To see that this theorem is the 
ompa
t Kähler version of Theorem5.6, note that on a line bundle L → X, a metri
 h is lo
ally just astri
tly positive fun
tion. Hen
e we 
an write it as h = e−ϕ for somesmooth, real-valued, fun
tion ϕ, (stri
tly speaking, ϕ is not a fun
tionbut rather a 
olle
tion of smooth real-valued lo
al fun
tions, related in a
onsistent way on overlaps; we will return to this shortly), so norms of
L-valued di�erential forms 
orrespond to weighted L2-norms in C

n. Wewill emphasize this by writing the norm of a se
tion as ‖u‖2 = |u|2e−ϕ,from now on.Furthermore, in C
n a su�
ient 
ondition for the global solvability ofthe inhomogenous ∂̄-equation was for the domain to be pseodu
onvex.This meant that there existed a plurisubharmoni
 exhaustion or weightfun
tion ϕ. Formally, in our setting, this 
orresponds to,

0 < i∂∂̄ϕ = i∂̄∂ log e−ϕ = i∂̄(h−1∂h) = iΘ,i.e. the existen
e of a stri
tly positively 
urved metri
 on L.We mentioned earlier that by the Whitney embedding theorem, anysmooth manifold 
an be smoothly embedded in R
m for some m ∈ N. Wealso noted that the situation is very di�erent in the 
omplex setting, as theonly 
ompa
t 
omplex manifolds that 
an be holomorphi
ally embeddedinto some C

m, are points. It is then quite natural to ask: Is there anysimilar embedding theorem for 
ompa
t 
omplex manifolds?The answer is provided by the 
elebrated Kodaira embedding theorem,[K5℄.Theorem 8.2. Let X be a 
ompa
t 
omplex manifold. There exists apositive line bundle over X, (i.e. a line bundle 
arrying a stri
tly positively
urved metri
), if and only if X 
an be holomorphi
ally embedded into
omplex proje
tive spa
e P
m, for some m ∈ N.This deep and important theorem ni
ely illustrates how 
losely inter-twined the three general strategies to understand the geometry of mani-folds, mentioned at the beginning of se
tion 6, are. In order to study thesubvarieties of a 
ompa
t 
omplex manifold X, one was led to introdu
eholomorphi
 line bundles, and using these in turn, one 
an de
ide if X infa
t is a submanifold of 
omplex proje
tive spa
e, the simplest and mostfundamental 
ompa
t 
omplex manifold.Kodaira's original proof for the theorem relies heavily on, and was themain motivation for, his vanishing theorem. The argument is quite in-volved and algebrai
, using blow-ups and sheaf 
ohomology theory, ([K5℄;32
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tionsee also [W1℄ Chapter 6). Using a more general form of the L2-estimates,(whi
h of 
ourse did not exist at the time Kodaira proved the theorem),an analyti
 proof of the theorem 
an be given. In order to formulate these,we �rst need to introdu
e singular metri
s on line bundles.Up until now, a hermitian metri
 h = e−ϕ on a line bundle L→ X, hasbeen a smooth mapping from the base manifold to the spa
e of stri
tlypositive hermitian norms on the �ber. This means that given an open
over {Uj} ofX, ϕ is given by a 
olle
tion of smooth, real-valued fun
tions
{ϕj}, subordinate to {Uj}, su
h that

ϕj − ϕk = log |τjk|
2 on Uj ∩ Uk 6= ∅,where {τjk} are the transition fun
tions of L. (An immediate 
onsequen
eof this is that if ϕ is a metri
 and χ is a global fun
tion on X, then ϕ+χis also a metri
.)As the τjk:s are holomorphi
 and non-vanishing, log |τjk|

2 will be pluri-harmoni
, and so
∂∂̄ϕj = ∂∂̄ϕk on Uj ∩ Uk 6= ∅.Hen
e, for smooth lo
al representatives, ϕj , the 
urvature form

Θ = ∂∂̄ϕ := ∂∂̄ϕj ,is a globally de�ned (1, 1)-form, although ϕj is just lo
ally de�ned.A singular metri
 ϕ on L is de�ned in the same way, but withoutrequiring the ϕj :s to be smooth. Instead one requires ϕj ∈ L1
loc(X) andso the 
urvature form, ∂∂̄ϕ, is well-de�ned in the sense of 
urrents.Singular hermitian metri
s on holomorphi
 line bundles were intro-du
ed by Demailly in [D3℄, and ever sin
e then they have been a funda-mental tool in interpreting notions of 
omplex algebrai
 geometry analyt-i
ally.It is possible to prove the existen
e of solutions to the inhomogenous

∂̄-equation with L2-estimates, in the setting of singular metri
s. This isthe 
ontent of the Demailly-Nadel vanishing theorem, [D2,N1℄. Demaillyshowed this in a very general 
ontext, (namely for 
omplex manifolds 
ar-rying some 
omplete Kähler metri
), but we will just need it for projectivemanifolds. These are 
ompa
t Kähler manifolds on whi
h it is known toexist some line bundle 
arrying a positively 
urved, smooth metri
. (Theterminology is explained by the Kodaira embedding theorem whi
h im-plies that these manifolds 
an be seen as submanifolds of proje
tive spa
e.)We then have the following theorem.Theorem 8.3. Let (X,ω) be a proje
tive manifold. Let L be a holomor-phi
 line bundle over X having a, possibly singular, metri
 h = e−ϕ whose33
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urvature satis�es,(8.3) i∂∂̄ϕ ≥ εω,for some ε > 0.For any ∂̄-
losed (n, q)-form f with values in L and q ≥ 1, there existsan (n, q − 1)-form u, with values in L, su
h that
∂̄u = f,and(8.4) ∫

X
|u|2e−ϕdVω ≤

1

εq

∫

X
|f |2e−ϕdVω,provided that the right hand side is �nite.Here, the 
urvature assumption (8.3) is in the sense of 
urrents, (itbasi
ally just means that the lo
al representatives of ϕ 
an be 
hosen tobe stri
tly plurisubharmoni
).An important di�eren
e 
ompared to Theorem 8.1, is the very lastproviso. The �niteness of the L2-norm with respe
t to a singular metri
,implies that f must vanish on the non-integrability lo
us of e−ϕ. In par-ti
ular, if ϕ = log |s|2, for some holomorphi
 fun
tion s, this means that

f must vanish on the zero lo
us of s. Through the L2-estimates (8.4),this in turn implies that u must vanish on the zero lo
us of s too. Thisobservation is originally due to Bombieri, [B6℄, and is extremely useful for
onstru
ting global holomorphi
 fun
tions with spe
i�
 zero sets.A ni
e illustration of this te
hnique is the analyti
 proof of the Kodairaembedding theorem mentioned previously. We end this se
tion with arough sket
h of the di�
ult dire
tion of the proof.Given a proje
tive manifold X, we want to 
onstru
t a holomorphi
mapping K : X → P
N for some N ∈ N, whi
h is an embedding. Thismeans that K is inje
tive, and has an inje
tive di�erential dK. We willonly dis
uss the inje
tivity of K.Let L → X be a line bundle and let E denote the spa
e of globalholomorphi
 se
tions of L, (whi
h we will assume to be non-empty). Fur-thermore, let s0, . . . , sN be a basis for E, (one 
an show that E is �nite-dimensional by using the Montel theorem).We 
laim that there exists a line bundle L su
h that
K(x) := [s0(x), . . . , sN (x)],is the sought for embedding. Although it might look strange at �rstsight, the right hand side is well-de�ned. What we mean is simply thevalues of the sj :s with respe
t to some lo
al trivialisation of L. If we34
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hange to another trivialisation, all the se
tions get multiplied with thesame quantity, so we will still get the same point in P
N . Hen
e K iswell-de�ned and 
learly holomorphi
.The main step in proving the inje
tivity of K, is to show that for anytwo points a, b ∈ X, a 6= b, we 
an 
onstru
t a global holomorphi
 se
tion

s to L, su
h that s(a) 6= 0 and s(b) = 0. We will now outline how Theorem8.3 
an be used to a
hieve this.As X is proje
tive, there exists a holomorphi
 line bundle F → Xwith a smooth metri
 φ, whi
h is stri
tly positively 
urved,
i∂∂̄φ ≥ εω,for some ε > 0. Assume that dimCX = n, identify a neighborhood of awith C

n, and set
ψa(z) := χa(z) log |z − a|2n,where χa is a 
ut-o� fun
tion with χa ≡ 1 
lose to a. ψa is a lo
allyintegrable fun
tion on X, and one 
an show that,

i∂∂̄ψa ≥ −Cω,for some 
onstant C, whi
h is independent of a if X is 
ompa
t.For k ∈ N,
kφ+ ψawill then de�ne a singular metri
 on kF := F⊗k, (the k times tensorprodu
t of F ), and

i∂∂̄(kφ+ ψa) ≥ (kε− C)ω ≥ ω,for large enough k.As a �rst step we will use this metri
 in Theorem 8.3 to 
onstru
t aglobal, ∂̄-
losed (n, 0)-form, u with values in kF , and u(a) 6= 0.Choose lo
al 
oordinates (z1, . . . , zn) in a neighborhood of a, let χ be a
ut-o� fun
tion with χ ≡ 1 near the origin, and let uloc := dz1 ∧ . . .∧ dzn.De�ne a smooth (n, 0)-form s̃ with values in kF lo
ally through, s̃ :=
χuloc. Then,

f = ∂̄s̃ = ∂̄χ ∧ uloc,will be a smooth, ∂̄-
losed (n, 1)-form with values in kF . Also, the L2-norm of f with respe
t to the metri
 kφ+ ψa will be �nite, as f vanisheson the non-integrability lo
us of e−ψa . Hen
e, Theorem 8.3 
an be appliedto produ
e a kF -valued (n, 0)-form v, with ∂̄v = f and
∫

X
|v|2e−(kφ+ψa)dVω ≤

∫

X
|f |2e−(kφ+ψa)dVω.35
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tionSin
e f is smooth, it follows from regularity theory for the ∂̄-operatorthat v is smooth as well. Furthermore, as the L2-norm of v is �nite withrespe
t to kφ+ ψa, this implies that v(a) = 0.Thus,
u := s̃− vis a ∂̄-
losed, (n, 0)-form with values in kF and u(a) 6= 0.Di�erential forms of bidegree (n, 0) with values in kF , are just se
tionsof kF ⊗ KX , where KX is the 
anoni
al bundle of X. If we repeat theabove argument but with kF repla
ed by kF ⊗K∗

X , (i.e. take the tensorprodu
t with the dual bundle of KX), we get a global holomorphi
 se
tion
u to kF with u(a) 6= 0.Finally, we 
an make sure that u(a) 6= 0, and u(b) = 0, by repeatingthis last argument on
e again, but this time with,

f = χ̃uloc,where χ̃ ≡ 1 in a neighborhood of a, but χ̃ ≡ 0 in a neighborhood of b.Also, we add the fun
tion
ψb(z) := χ log |z − b|2n,to the metri
.Returning to the beginning of the proof and the mapping K, we seethat by 
hoosing the line bundle L as kF , and using the te
hnique sket
hedabove for large enough k, we 
an 
onstru
t a global holomorphi
 se
tion swith s(a) 6= 0 and s(b) = 0. As {sj}Nj=0 form a basis for the set of globalholomorphi
 se
tions, s 
an be written as

s =
N

∑

j=0

cjsj ,for some fun
tions {cj}Nj=0. Hen
e,
N

∑

j=0

cjsj(a) 6= 0, and N
∑

j=0

cjsj(b) = 0,and so,
K(a) = [s0(a) : . . . : sN (a)] 6= [s0(b) : . . . : sN (b)] = K(b).36
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tion9. Positivity 
on
epts and L2-theory for ve
tor bundlesIn the previous se
tion we introdu
ed L2-theory for the inhomogenous
∂̄-equation for line bundle valued di�erential forms. We now turn to theextension of these results to ve
tor bundles.Given a hermitian, holomorphi
 ve
tor bundle (E, h) over a 
omplexmanifold X, we have already de�ned the 
urvature tensor Θ of h in se
tion7. For Theorem 8.1 hold, the existen
e of a stri
tly positively 
urvedmetri
 on the line bundle is 
ru
ial. Hen
e the �rst thing we need to
onsider in the ve
tor bundle setting is what it should mean for Θ to bepositive.Let {dzj}nj=1 denote an orthonormal basis for the holomorphi
 
otan-gent bundle of X, at some �xed point. Then, if rankCE = r, the 
urvaturetensor is of the form,

Θ =
n

∑

j,k=1

Θjkdzj ∧ dz̄k,where {Θjk}
n
j,k=1 are r × r matrix-valued fun
tions on X.In the line bundle setting, r = 1, and so the Θjk:s are just s
alar-valued fun
tions. Hen
e the natural de�nition of positivity for Θ is tode�ne it as the positivity of the real (1, 1)-form iΘ; (the i is needed sin
e

dz ∧ dz̄ = −2idx ∧ dy).For matrix-valued 
oe�
ients, however, there exists no similar '
anon-i
al' way of de�ning the positivity of Θ. Over time, two di�erent, butequally important notions of positivity for ve
tor bundles have evolved:Positivity in the sense of Gri�ths, and positivity in the sense of Nakano.De�nition 10. Let (E, h) → X, and Θ be as above.(i) We say that Θ is stri
tly positively 
urved in the sense of Gri�ths,if for any (smooth) se
tion s of E, and any n-tuple of 
omplex numbers
{vj}

n
j=1(9.1) n

∑

j,k=1

(

Θjks, s
)

h
vj v̄k ≥ ε‖s‖2

h

n
∑

j=1

|vj |
2,for some ε > 0.(ii) We say that Θ is stri
tly positively 
urved in the sense of Nakano, iffor any n-tuple of se
tions {sj}nj=1 of E,(9.2) n

∑

j,k=1

(

Θjksj , sk
)

h
≥ ε

n
∑

j=1

‖sj‖
2
h,37
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tionfor some ε > 0.Semi-positivity, semi-negativity and stri
t negativity are de�ned similarly.It follows immediately from the de�nitions that when r = 1, boththese notions 
oin
ide and redu
e to the positivity 
ondition in the linebundle setting. Other immediate 
onsequen
es of the de�nitions are thatGri�ths and Nakano positivity also 
oin
ide when n = 1, i.e. for ve
torbundles over Riemann surfa
es, and that being positively 
urved in thesense of Nakano implies being positively 
urved in the sense of Gri�ths;just 
hoose sj = svj in (9.2). The 
onverse property, however, does nothold in general (see e.g. [D1℄ Chapter VII, Example 6.8, or Example 4 inPaper IV).Positivity in the sense of Gri�ths is 
losely 
onne
ted to, and stemsfrom, a 
ommon algebro-geometri
 pro
edure of redu
ing ve
tor bundlesto line bundles. For a ve
tor bundle E → X this is a
hieved throughthe study of the so 
alled Serre line bundle OP(E)(1) over the proje
tivebundle P(E) → X, asso
iated to E.These 
on
epts 
an be 
onstru
ted in an abstra
t, global way, (see e.g.[L1℄, Appendix A), but in order to present the ideas as, (in our view), 
on-
retely as possible, we will only dis
uss the lo
al setting here. Hen
e let Edenote an arbitrary 
omplex ve
tor bundle over X with rankCE = r, andlet E∗ denote the dual bundle. We 
an de�ne a �ber bundle π : P(E) → Xby de�ning ea
h �ber through P(E)x := P(E∗
x), the proje
tivization of an

r-dimensional ve
tor spa
e. Lo
ally, for an open set U ⊂ X, we have that
E∗

∣

∣

U
≃ U × C

r and then P(E)
∣

∣

U
≃ U × P

r−1. Furthermore the pullba
kbundle π∗E∗ → P(E) will then lo
ally be given by
π∗E∗

∣

∣

U
≃ U × P

r−1 × C
rand so we 
an de�ne the tautologi
al line subbundle OP(E)(−1) of π∗E∗as

OP(E)(−1)
∣

∣

U
:= {(x, [w], z) ; z ∈ [w]}.The Serre line bundle OP(E)(1) is then de�ned as the dual of OP(E)(−1).The notation is justi�ed by the fa
t that �berwise this is nothing but theusual line bundle O(1) over P

r. Thus we have that the global holomorphi
se
tions of OP(E)(1) over any �ber are in one-to-one 
orresponden
e withthe linear forms on E∗
x, i.e. with the elements of Ex; (this is the reasonfor proje
tivizing E∗ instead of E).Suppose now that the ve
tor bundle E is equipped with a hermitianmetri
 h. Then the Serre line bundle OP(E)(1) will inherit a 
orresponding38
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tionmetri
 π∗h. One 
an show that positivity in the sense of Gri�ths isequivalent to π∗h being positively 
urved in the line bundle sense, ([G℄).Remark 1. It might very well happen that OP(E)(1) 
an be equippedwith a positively 
urved metri
 that does not stem from a metri
 on Eto begin with. The Gri�ths 
onje
ture, ([G℄), says that E then 
an beequipped with a Gri�ths positive metri
. This has been shown to be trueon Riemann surfa
es by Umemura [U℄, and Campana and Flenner [CF℄,but the general 
ase is still unresolved.The following useful and important properties hold in the Gri�ths
ontext.Proposition 9.1. Let (E, h) → X be a hermitian, holomorphi
 ve
torbundle over a 
omplex manifold X.(i) Θh is Gri�ths positive if and only if the dual metri
 h−1 on E∗ isnegatively 
urved in the sense of Gri�ths.(ii) Θh is Gri�ths negative if and only if for any holomorphi
 se
tion uto E,
log ‖u‖2

h,is plurisubharmoni
.We will prove (i) in the setting of real metri
s in Paper IV, (Propo-sition 2.1; see e.g. [B2℄ se
tion 2 for a 
omplex proof), and (ii) will bedis
ussed in Paper I. Both these properties are of fundamental importan
ein the latter paper.Now, in 
ontrast to the algebro-geometri
 origins of Gri�ths posi-tivity, 
urvature in the sense of Nakano is an analyti
 
on
ept dire
tly
onne
ted to the existen
e of solutions to the inhomogenous ∂̄-equation,for form-valued se
tions of ve
tor bundles. Namely, if one reworks theproof of Theorem 8.1 in the ve
tor bundle setting, stri
t Nakano positiv-ity will be the ne
essary repla
ement of the positivity 
ondition (8.1). Infa
t, we have the following ve
tor-bundle version of Theorem 8.1.Theorem 9.2. Let (X,ω) be a 
ompa
t Kähler manifold, and let (E, h) bea hermitian, holomorphi
 ve
tor bundle over X. Assume that the metri

h is stri
tly positively 
urved in the sense of Nakano,(9.3) iΘ ≥Nak. εω ⊗ I,for some ε > 0.For any ∂̄-
losed (n, q)-form f with values in E and q ≥ 1, there existsan (n, q − 1)-form u with values in E, su
h that

∂̄u = f,39
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tionand(9.4) ∫

X
‖u‖2dVω ≤

1

εq

∫

X
‖f‖2dVω.Apart from the L2-estimates, Theorem 9.2 is known as the Nakanovanishing theorem, [N2℄. In the �rst part of Paper II we show that thistheorem 
an be proven using the ∂∂̄-Bo
hner-Kodaira method, introdu
edby Siu in [S℄, whi
h we believe to be mu
h simpler than the traditionalproofs.Being so 
losely related to the inhomogenous ∂̄-equation, Nakano pos-itivity is of fundamental importan
e for the analyti
al study of holomor-phi
 ve
tor bundles. Unfortunately, it is di�
ult to obtain an intuitiveunderstanding of this 
on
ept, and in 
ontrast to the Gri�ths setting,there are not many ni
e fun
torial properties. For example, the dual of aNakano positive ve
tor bundle, in general, is not Nakano negative.We have already noted that Nakano positivity implies Gri�ths pos-itivity. In the other dire
tion we have the following important theoremdue to Demailly and Skoda, ([DS℄; see also Paper IV, Theorem 2.2).Theorem 9.3. Let (E, h) → X be a hermitian, holomorphi
 ve
tor bun-dle over a 
omplex manifold X. If h is positively 
urved in the sense ofGri�ths, then hdeth is positively 
urved in the sense of Nakano.10. Summary of papersWe end the introdu
tion with a brief summary of the papers.10.1. Paper I: Singular hermitian metri
s on holomorphi
 ve
torbundles. In se
tion 8 we introdu
ed singular metri
s on holomorphi
 linebundles and the Demailly-Nadel vanishing theorem, and identi�ed these asfundamental tools in the analyti
 study of 
omplex geometry. In Paper I,we wanted to investigate whether anything similar existed for holomorphi
ve
tor bundles.Up until now, a hermitian metri
 h̃ on a holomorphi
 ve
tor bundle

E → X has been a positive de�nite hermitian inner produ
t (·, ·)h̃(x) onea
h �ber Ex, that varies smoothly with x. Assume now that we dropthe smoothness assumption and introdu
e singular hermitian metri
s onholomorphi
 ve
tor bundles, as just measurable maps from the base spa
eto the spa
e of positive de�nite hermitian forms on the �ber. What 
anbe said about these?Let h denote su
h a singular metri
. In the line bundle setting, h islo
ally just a fun
tion, and so the 
onne
tion matrix and the 
urvature 
anbe written as θ = h−1∂h = ∂ log h and Θ = ∂̄θ = ∂̄∂ log h. Hen
e, all that40



Introdu
tionis needed for these 
on
epts to be well-de�ned in the sense of 
urrents isthat log h ∈ L1
loc. In the ve
tor bundle setting, h is matrix-valued, whi
hmakes the situation mu
h more 
ompli
ated.Now although we 
an not de�ne the 
urvature tensor of h immediately,we 
an nevertheless still de�ne what it means for a singular hermitian met-ri
 to be positively and negatively 
urved in the sense of Gri�ths. Thisis due to the equivalent 
hara
terisation of Gri�ths negativity of Propo-sition 9.1 (ii), whi
h does not require any regularity from h, and property(i). It turns out that this de�nition of Gri�ths 
urvature rules out most ofthe possible pathologi
al examples of singular hermitian metri
s, (PaperI, Proposition 1.1).The main question that we wanted to investigate in Paper I was:Given a singular hermitian metri
 h on a holomorphi
 ve
tor bundle

E → X with rankCE ≥ 2, where h is 
urved in the sense of Gri�thsas in Proposition 9.1, is it possible to de�ne θ, and in parti
ular Θ, in ameaningful way; for example as 
urrents with measure 
oe�
ients?In Paper I, Proposition 1.2, the 
urrent ∂h is shown to be lo
ally
L2-valued and θ := h−1∂h an a.e. wellde�ned matrix of (1, 0)-forms.For the 
urvature, however, the situation turns out to be more in-volved. In Paper I, Theorem 1.3, we give a simple example whi
h showsthat Θ := ∂̄(h−1∂h) 
an not be de�ned everywhere as a 
urrent withmeasure 
oe�
ients. Thus Gri�ths 
urvature in the sense of Proposition9.1, is not enough to de�ne the 
urvature in general.In the example of Theorem 1.3, the set of points that 
ause problemsis the singular lo
us, {deth = 0}, of the metri
. Hen
e, the natural thingto investigate next is if it is possible to de�ne the 
urvature outside ofthis set; (it is an immediate 
onsequen
e of Paper I, Proposition 1.2, (ii)that the singular lo
us has Lebesgue measure zero). In Paper I, Theorem1.4, we show that it is indeed possible to de�ne the 
urvature as a 
urrentwith measure 
oe�
ients outside of the singular lo
us.In parti
ular, it is now possible to de�ne what it means for a singularhermitian metri
 to be strictly positively 
urved in the sense of Gri�thsand Nakano, outside of the singular lo
us. Sin
e the 
urvature assump-tions needed in order to solve the inhomogenous ∂̄-equation with Hörman-der's L2-estimates, only depend on the absolutely 
ontinuous part of the
urvature, the �rst ingredient needed in order to prove Demailly-Nadeltype of vanishing theorems on ve
tor bundles, 
an hen
e be a
hieved.41
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tionThe se
ond ingredient that is needed are regularisation results; it is ofutmost importan
e to be able to approximate the stri
tly positively 
urvedsingular metri
 with a sequen
e of smooth metri
s, while keeping the stri
tpositivity. We end Paper I with showing that su
h regularisations arepossible for stri
tly Gri�ths positive and negative, and Nakano negativesingular hermitian metri
s. We dis
uss these approximation results andthe resulting vanishing theorem in the summary of Paper II.10.2. Paper II: The Nakano vanishing theorem and a vanishingtheorem of Demailly-Nadel type for holomorphi
 ve
tor bundles.As mentioned in the introdu
tion, the �rst part of Paper II is devoted toproving the Nakano vanishing theorem with Hörmader type L2-estimates,(Theorem 9.2), using Siu's so 
alled ∂∂̄-Bo
hner-Kodaira method, ([S℄).In Riemannian geometry the basi
 idea behind the Bo
hner methodis (very vaguely) to 
al
ulate the Lapla
ian of the norm of forms. Thenone 
an draw 
on
lusions about the geometry by 
arefully analyzing theresulting expression and putting restri
tions on the 
urvature of the met-ri
. The straightforward adaptation of this method in our 
omplex settingwould then be to 
al
ulate and analyze(10.1) ∆‖α‖2where α is an E-valued, (n, p)-form. However, it turns out that thisapproa
h will not work out well and so the histori
al approa
h to thevanishing theorem has been through the Kähler identities.What Siu demonstrates in [S℄, (among other things), is that if themetri
 is dually, negatively 
urved in the sense of Nakano, an approa
hthat is very similar to the 
lassi
al Bo
hner method 
an be applied. Themain idea is to let the E-valued (0, q)-form α remain form-valued, repla
e
∆ by i∂∂̄ and 
al
ulate

i∂∂̄cq{α, α} ∧ ω
n−q−1/(n− q − 1)!instead of (10.1).In [B1℄ Berndtsson shows that in the line bundle 
ase, this method
an be applied dire
tly, without resorting to dual bundles, and he alsoderives the Hörmander L2-estimates. Here the situation is slightly moreinvolved. Let (L, φ) be a positively 
urved line bundle over X and let

α be an (n, p)-form with values in L. It turns out that the appropriate
ounterpart of (10.1) in this 
ase is
i∂∂̄cn−pγα ∧ γα ∧ ωp−1e−φ/(p− 1)!42
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tionwhere γα, (up to a 
onstant), is the Hodge-∗ of α, i.e. an L-valued (n −
p, 0)-form su
h that

α = γα ∧ ωp/p!.The �rst aim of Paper II is to show that this latter approa
h worksalmost without 
hange for forms with values in a ve
tor bundle, therebyproving Theorem 9.2.In the se
ond part of Paper II, we return to the singular hermit-ian metri
s of Paper I. As mentioned previously, in order to extend theDemailly-Nadel vanishing theorem to ve
tor bundles, we need to de�newhat it means for the singular hermitian metri
 to be stri
tly positively
urved in the sense of Nakano, (at least a.e. with respe
t to Lebesguemeasure), and we must also be able to approximate the metri
 with asequen
e of smooth metri
s, while keeping the stri
t positivity.In Paper I we show that it is possible to obtain a regularising sequen
ewhen the metri
 is stri
tly negatively 
urved in the sense of Gri�ths,(Paper I, Proposition 6.1). Through duality, (Proposition 9.1, (i)), itthen follows that this 
an be obtained in the stri
tly Gri�ths positive
ase as well. In Paper I we also prove a similar approximation result forsingular hermitian metri
s that are stri
tly negatively 
urved in the senseof Nakano, (Paper I, Proposition 1.6). However, as the dual of a Nakanonegative metri
, in general is not Nakano positive, the same tri
k 
an notbe applied here.Both regularisation results of Paper I are based on alternative 
hara
-terisations of Gri�ths and Nakano negativity in terms of some plurisub-harmoni
 fun
tion. For Nakano positive metri
s, su
h an alternative 
har-a
terisation does not exist and so some other approa
h to regularisationis needed. Unfortunately, despite many e�orts, we have so far failed to�nd any su

eful way to a
hieve this.When n = 1, i.e. for ve
tor bundles over Riemann surfa
es, the 
on-
epts of Gri�ths and Nakano positivity 
oin
ide. Hen
e, using the reg-ularisation result of Paper I, in the se
ond part of Paper II we prove aDemailly-Nadel type of vanishing theorem for holomorphi
 ve
tor bundlesover Riemann surfa
es, (Paper II, Theorem 1.2).10.3. Paper III: Extensions of Ohsawa-Takegoshi type for se
-tions of a ve
tor bundle. The extension theorem of Ohsawa and Takegoshi,whi
h �rst appeared in [OT℄, is a very useful tool in 
omplex analysis, witha lot of appli
ations. This theorem has many di�erent variants, one of themost basi
 being the so 
alled adjun
tion version. This version states thefollowing. 43



Introdu
tionLet X be a 
ompa
t Kähler manifold and let S be a smooth hyper-surfa
e in X. S then de�nes a line bundle on X, whi
h we will denote by
(S) and whi
h has a global holomorphi
 se
tion s su
h that S = s−1(0).Also let L be a 
omplex line bundle over all of X. Assume that the linebundles L and (S) have smooth metri
s φ and ψ respe
tively, satisfyingthe 
urvature assumptions(10.2) i∂∂̄φ ≥ 0,and(10.3) i∂∂̄φ ≥ δi∂∂̄ψ,for some δ > 0. Assume furthermore that s is normalized so that

|s|2e−ψ ≤ e−1/δ.Finally let u be a global holomorphi
 se
tion of KS + L|S .Then there exists a global holomorphi
 se
tion U of KX + (S) + Lsu
h that
U = ds ∧ uon S and su
h that U sats�es the estimate

∫

X
cnU ∧ Ūe−φ−ψ ≤ C

∫

S
cn−1u ∧ ūe−φfor some 
onstant C, where we use the shorthand notation cp := ip

2 .Hen
e, we see that just as in Hörmander's theorem on the solvabilityof the inhomogenous ∂̄-equation, (Theorem 8.1), the Ohsawa-Takegoshiextension theorem 
onsists of two parts: One whi
h states that an ex-tension is possible, and a se
ond part whi
h gives an L2-estimate for theextension. Just as with Hörmander's theorem it is mainly this estimate,(with a 
ompletely universal 
onstant), that makes the theorem so useful;(see e.g. [D1℄, Chapter VIII for some appli
ations).There are many di�erent ways of proving this extension theorem, butbasi
ally all of them are rather involved. The approa
h that we are in-terested in is the one introdu
ed by Berndtsson in [B4℄, where he showsthat �nding an extension with L2-estimates is equivalent to solving theinhomogenous ∂̄-equation,
∂̄v = u ∧ [S],where [S] is the 
urrent of integration on S. What makes the analysisinvolved in this proof, is that the right hand side no longer is an L2-valued di�erential form, but a 
urrent. In [B1℄, Le
ture 6, it is shown thata modi�ed version of the ∂∂̄-Bo
hner-Kodaira method 
an be applied.44



Introdu
tionHaving studied the ∂∂̄-Bo
hner-Kodaira method extensively in PaperII, our main goal in Paper III is to use it to prove a ve
tor bundle versionof the extension theorem. This is a
hieved in Paper III, Theorem 1.1 and1.2, and the proof of these theorems 
onstitute the main part of the paper.After the publi
ation of [OT℄, Ohsawa extended the theorem in di�er-ent dire
tions in a long series of papers. In one of these papers, [O2℄, heobtains a result whi
h shares some similarities to our extension theorems,although the formulation is quite di�erent from ours, ([O2℄ Theorem 4).We believe that our 
ompa
t Kähler setting is slightly more general, as[O2℄ Theorem 4 only treats 
omplex manifolds that be
ome Stein after re-moving a 
losed subset. The main di�eren
e, however, lies in our methodsof proof. We 
onsider our adaptation of the ∂∂̄-Bo
hner-Kodaira methodto the ve
tor bundle setting to be our main originality. Furthermore,Guan and Zhou have re
ently proven a mu
h more general version of theextension theorem, and also managed to determine the optimal 
onstantin the L2-estimate, ([GZ℄, Theorem 2.1).Now in se
tion 9 we introdu
ed the so 
alled Serre line bundle OP(E)(1)over the proje
tive bundle P(E), asso
iated with a given ve
tor bundle
E → X. We also showed that this line bundle, in some sense, 
ontainsall the information about E. Hen
e, a 
ommon method when one wantsto generalize a result that is already known for line bundles to ve
torbundles, is to study OP(E)(1) → P(E), instead of E → X. This 
an bedone for the Ohsawa-Takegoshi extension theorem as well.This approa
h is interesting in our 
ase sin
e it turns out that the 
ur-vature assumptions needed for our ve
tor bundle versions of the extensiontheorem, (i.e. the ve
tor bundle repla
ements of (10.2)-(10.3)), requirepositivity in the sense of Nakano, whi
h is a very strong requirement.Thus, it is natural to inquire about the relation between our ve
tor bun-dle assumptions, and the 
urvature assumptions in the Serre line bundlesetting.In the last part of Paper III, we show that the 
urvature assump-tions in the Serre line bundle setting, imply the ve
tor bundle 
onditions.Hen
e, although being 
urved in the sense of Nakano is a strong 
onditionto impose on a metri
, the 
onditions that arise when one redu
es theproblem to line bundles are in fa
t even stronger. A key ingredient inproving these impli
ations is Theorem 9.3 by Demailly and Skoda.10.4. Paper IV: Log 
on
avity for matrix-valued fun
tions and amatrix-valued Prékopa theorem. When we introdu
ed plurisubhar-moni
 fun
tions in se
tion 5, we mentioned that they are the 
omplex-analyti
 
ounterparts of 
onvex fun
tions in real analysis. Using this45



Introdu
tionanalogy, it is not too di�
ult to show that a positively 
urved metri
 ona trivial line bundle, is nothing but the 
omplex version of a log 
on
avefun
tion.In Paper IV we turn this analogy around and extend it to trivialve
tor bundles, i.e. we introdu
e two new '
onvexity' notions for real,matrix-valued fun
tions, 
orresponding to Gri�ths and Nakano positivityin the 
omplex-analyti
 setting. We 
all these being log 
on
ave in thesense of Gri�ths and Nakano. In the �rst part of the paper we studysome examples and investigate the fundamental properties of these new
on
epts; (these turn out to be very similar to the basi
 
omplex propertiesintrodu
ed in se
tion 9).For log 
on
ave fun
tions an important result that is 
losely related tothe Brunn-Minkowski inequality is the following theorem due to Prékopa,([P℄).Theorem 10.1. Let ϕ : R
m
t ×R

n
y → R be 
onvex and de�ne ϕ̃ : R

m → Rthrough
e−ϕ̃(t) =

∫

Rn

e−ϕ(t,y)dV (y).Then ϕ̃ is 
onvex.Just as for the Brunn-Minkowski inequality, Prékopa's theorem 
an beproven in many di�erent ways, ea
h pointing towards various dire
tionsof generalisations. One of these proofs, due to Bras
amp and Lieb [BL℄,is based on a weighted Poin
aré inequality, whi
h in fa
t turns out to be areal variable version of the Hörmander L2-estimates for the inhomogenous
∂̄-equation, (see e.g. [B1℄, se
tion 1.3). Hen
e, it is quite natural to ask ifthere exist any 
orresponding 
omplex variants of the Prékopa theorem.This question has been extensively studied in re
ent years, mainly byBerndtsson, who in a series of papers has obtained 
omplex analyti
 
oun-terparts of the Prékopa theorem, with gradually in
reasing generality. Intheir most general form, these are theorems on the 
urvature properties of
ertain in�nite rank holomorphi
 ve
tor bundles asso
iated with holomor-phi
 �brations, ([B2℄, Theorem 1.1 and 1.2). We will not des
ribe theseresults and their relation to the Brunn-Minkowski and Prékopa theoremhere, but refer the reader to [B5℄, se
tions 2 and 3.Now after we introdu
e the notions of Gri�ths and Nakano log 
on-
avity for matrix-valued fun
tions in the �rst part of Paper IV, we pro
eedto show a matrix-valued Prékopa theorem in the se
ond part, (Paper IV,Theorem 1.2). The main idea behind the proof of this theorem is to gen-eralize one of the above mentioned 
omplex-analyti
 Prékopa theoremsof Berndtsson, (Paper IV, Theorem 1.5), and then re
ast this theorem in46



Introdu
tionthe real variable setting. This latter reformulation is a
hieved through aweighted, ve
tor-valued Paley-Wiener type of theorem, (Paper IV, The-orem 1.4), and the proof of this theorem and Paper IV, Theorem 1.5,
onstitutes the main bulk of the se
ond part of Paper IV.Referen
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