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Positive vetor bundles in omplex and onvex geometryHossein Rau�AbstratThis thesis onerns various aspets of the geometry of holomorphi vetor bun-dles and their analytial theory whih all, vaguely speaking, are related to thenotion of positive urvature in general, and L2-methods for the ∂̄-equation inpartiular. The thesis ontains four papers.In Paper I we introdue and study the notion of singular hermitian metrison holomorphi vetor bundles. We de�ne what it means for suh metris tobe positively urved in the sense of Gri�ths, and investigate the assumptionsneeded in order to de�ne the urvature tensor of suh metris as urrents withmeasure oe�ients. We also investigate the regularisation of suh metris.In Paper II we prove the Nakano vanishing theorem with Hörmander L2-estimates on a ompat Kähler manifold using Siu's ∂∂̄-Bohner-Kodairamethod.We then introdue the singular hermitian metris and regularisation results ofPaper I, and use these to prove a Demailly-Nadel type of vanishing theorem forvetor bundles over Riemann surfaes.A fundamental tool in omplex geometry losely related to the notion ofpositivity is the Ohsawa-Takegoshi extension theorem. In Paper III the ∂∂̄-Bohner-Kodaira method is applied to extend this theorem from line bundlesto vetor bundles over ompat Kähler manifolds. Another way of obtaininga vetor bundle version of this theorem is to redue it to the line bundle set-ting through the useful algebrai geometri proedure of studying the projetivebundle assoiated with the vetor bundle. In Paper III we also investigate therelationship between these two di�erent approahes.On a trivial line bundle, a positively urved metri is the omplex-analytiounterpart of a log onave funtion in the real-variable setting. In Paper IV weextend this link between omplex and onvex geometry to trivial vetor bundles.We de�ne two new notions of log onavity for real, matrix-valued funtions,orresponding to Gri�ths and Nakano positivity, and we prove a matrix-valuedPrékopa theorem.
Keywords: holomorphi vetor bundles, ∂̄-equation, L2-estimates, sin-gular hermitian metris, Gri�ths positivity, Nakano positivity, van-ishing theorems, Ohsawa-Takegoshi extension theorem, onvex geom-etry, Prékopa theorem
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Part IINTRODUCTION





Introdution1. Complex analysisIn basi, �rst year alulus ourses it is quikly reognized that one anobtain a great deal of information about a real funtion f : R → R, bystudying its derivative funtion, f ′. This funtion is de�ned at a point
x ∈ R through(1.1) f ′(x) := lim

h→0

f(x+ h) − f(x)

h
.Although the preise mathematial de�nition of the limit in the right handside is the big "bugaboo" of these basi alulus ourses, students are nev-ertheless quik to grasp the importane of di�erentiation. In later ourses,one then proeeds to de�ne integration (the "opposite" of di�erentiation)and also study the several variable analogues of these onepts.In all of these ourses, it is of utmost importane that the funtionsdepend on real variables. In more mathematis oriented studies, one mightthen turn to the study of funtions that depend on one omplex variable,

z = x + iy ∈ C. Hene one onsiders funtions f : C → C and replae(1.1) with,(1.2) f ′(z) := lim
h→0

f(z + h) − f(z)

h
,where now h ∈ C. If this limit exists, one says that f is holomorphic at

z ∈ C. This innoent looking de�nition turns out to have quite amazingand far reahing onsequenes that often stand in sharp ontrast to theorresponding real-variable theory. For example we have the following"miraulous" fats.1. Contour Integration: If f is holomorphi in a domain Ω ⊂ C, (i.e.an open and onneted set), then for appropriate losed paths γ in Ω,
∫

γ
f(z)dz = 0.2. Regularity: If f is holomorphi, then f is in�nitely di�erentiable.3



Introdution3. Analyti Continuation: If f and g are holomorphi funtions ina domain Ω ⊂ C, whih are equal in an arbitrarily small dis in Ω, then
f = g everywhere in Ω.These basi features of the one-variable theory are overed in standardourses that are sometimes studied in the very �rst years of an under-graduate program; (we reommend [SS℄ for a nie introdution). However,even if one hooses to speialize in mathematis, hanes are slim that oneever gets to hear anything about funtions that depend on several om-plex variables, f : C

n → C, at either the undergraduate or master's level.This latter subjet is not at all as well-developed as the orrespondingreal-variable theory, and in fat, a more thorough understanding of om-plex analysis in several variables started to evolve in the seond half ofthe twentieth entury.This theory, one again, starts with the following very innoent-lookingde�nition.De�nition 1. Let Ω be a domain in C
n. A funtion f : Ω → C is saidto be holomorphic in Ω, if it is holomorphi in eah variable separately.We will denote the set of funtions that are holomorphi in Ω by O(Ω).Many of the basi one omplex variable properties, suh as 2 and 3above, (and even 1 if properly interpreted), also hold in several omplexvariables. Many other, though, do not. A salient feature of the theory ofholomorphi funtions of several variables is that it is not similar to nei-ther the real variable nor the single omplex variable theory. Instead, it isan independent theory with tools and methods of its own, that neverthe-less overlaps with many other mathematial areas. One of the foundingfathers, Kiyoshi Oka, used Figure 1 below to illustrate this, ([O1℄).In this thesis, we are onerned with the parts of the theory that fallinto the 'Geometry' and 'Mathematial Analysis' groups. Before we ango on to desribe this in more detail, we �rst need to introdue some ofthe main onepts and ideas of modern di�erential geometry.2. Manifolds, di�erential forms and partitions of unityThe most fundamental objets of study in modern geometry are man-ifolds. From "everyday life" we are familiar with urves and surfaes,whih are one and two dimensional objets in spae, R

3. The idea behindthe onept of a manifold is to generalize this to arbitrary dimensions.Thus, intuitively, a manifold is a k-dimensional "surfae" in R
n, where

k < n. 4



Introdution
PSfrag replaements GeometryNumber Theoryand Algebra

MathematialAnalysisMathematialPhysis
Several VariableComplex Analysis Several VariableComplex Analysis

One VariableComplex Analysis

Figure 1. Several variable omplex analysis from KiyoshiOka's perspetiveMore preisely, the harateristi property of urves and surfaes thatone wants to generalize to these higher dimensional objets, is that theyare "loally �at". By this we mean that if we zoom in su�iently muhon say a two dimensional surfae in R
3, it will look very muh like a pieeof R

2. Hene a k-dimensional manifold M in R
n with k < n, is an objetthat loally looks like R

k. Mathematially we express this in the followingway.De�nition 2. A subset M of R
n is alled a k-dimensional manifold iffor every point x ∈M , there exists open sets U, V ⊂ R

n with x ∈ U , anda homeomorphism φ : U → V , (i.e. a bijetive ontinuous map with aontinuous inverse), suh that,
φ(U ∩M) = V ∩ (Rk × {0}) = {y ∈ V ; yk+1 = . . . = yn = 0}.Stritly speaking, the objets that we have just de�ned are alled

embedded manifolds. The general de�nition is the following.De�nition 3. Let M be a topologial spae. We say that M is a (topo-logial) manifold of dimension k if it has the following properties:(i) M is a Hausdor� spae: for every pair of distint points p, q ∈ M ,5



Introdutionthere are disjoint open subsets U, V ⊂M suh that p ∈ U and q ∈ V .(ii) M is seond ountable: there exists a ountable basis for the topologyof M .(iii) M is loally Eulidean of dimension k: for every point p ∈ M thereexists an open set U ⊂ M with p ∈ U , an open set V ⊂ R
k, and ahomeomorphism φ : U → V .In the general de�nition, there is no mention of any ambient spae

R
n. When one thinks about manifolds, one ertainly imagines them to beembedded in some R

n, and a famous theorem of Hassler Whitney, [W2℄,shows that suh an embedding always is possible. However, in pratie theambient oordinates and the vetor spae struture of R
n are super�uousdata that often are not related to the relevant problems in any way.There are several di�erent types of manifolds. The ones that we havejust de�ned are the most general ones, alled topologial manifolds. In-tuitively, these are geometri objets that are allowed to have edges, likefor example a square or a ube. If one is interested in studying manifoldswith the tools of alulus, like di�erentiation and integration, only smoothgeometri objets, like for example the sphere, should be allowed. Thisleads to the onept of smooth manifolds.De�nition 4. A topologial manifold M of dimension k, is said to be asmooth manifold if there exists an open overing {Uα} of M , and homeo-morphisms φα : Uα → R

k for eah α, with the property that for any twoopen sets Uα, Uβ with Uα ∩ Uβ 6= ∅, the so alled transition funtion(2.1) φβ ◦ φ
−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)(whih hene is a mapping between two open sets in R

k), is smooth.On smooth manifolds it is possible to give meaning to and developthe onepts and tools of alulus. If M and N are smooth manifolds,one an de�ne what it means for funtions f : M → R and F : M →
N to be smooth, and also how to di�erentiate and integrate on smoothmanifolds. As simple as this may sound, this is not an easy task at all,and in fat most (good) textbooks on the subjet (like e.g. [L2℄) have tospend several hundred pages on motivating and developing these tools.The main di�ulty stems from the fat that manifolds only loally looklike R

k, where these onepts are well-known. Hene, one has to �ndonstrutions that, (to a large extent), resemble say di�erentiation orintegration, yet are invariant under hanges of oordinates.For integration this leads to the onept of di�erential forms, whih areobjets that an be integrated in a oordinate invariant way. These play a6



Introdutionvery entral part in modern di�erential geometry, (as well as in algebraitopology and algebrai geometry, see e.g. [BT℄ and [GH℄), and will bea very useful tool for us as well. However, we will not spend any timedeveloping this theory here, but will assume that the reader is familiarwith the basi parts, like e.g. exterior di�erentiation and wedge produts.We reommend [L2℄ for a good introdution to di�erential forms, as wellas the basi onepts and theorems of di�erential geometry; (see also [M℄for a nie exposition of the entral position oupied by di�erential formsin modern geometry).We will in fat be interested in a more general type of di�erential formsalled urrents. Integration of di�erential forms on smooth, (orientable),manifolds, orresponds to integration of funtions in ordinary alulus. Inthe same way, the onept of urrents are the manifold ounterpart of dis-tributions, or generalised funtions. Thus, a urrent is a linear funtionalon di�erential forms, (together with a weak ontinuity ondition), whihwe intuitively should think of as a "singular di�erential form". Currentswill be of great importane to us in Paper I.Several natural ounterparts for di�erentiation on smooth manifoldsexist as well. For us, the most important onept will be that of onne-tions, whih we will return to in setion 7 below.Now from the de�nition of manifolds it is lear that tools whih makeit possible to path together loal onstrutions into global objets are ofgreat value. One suh tehnial tool whih is of utmost importane in thetheory of smooth manifolds are so alled partitions of unity, the existeneand properties of whih are given in the following theorem, (see e.g. [L2℄,Theorem 2.25 for a proof).Theorem 2.1. Suppose that M is a smooth manifold and U = {Uα}α∈Ais any indexed open over of M . Then there exists a smooth partition ofunity subordinate to U , i.e. there exists an indexed family {ψα}α∈A ofsmooth funtions ψα : M → R with the following properties:(i) 0 ≤ ψα(x) ≤ 1 for all α ∈ A and all x ∈M .(ii) supp ψα ⊂ Uα for eah α ∈ A.(iii) The family of supports, {supp ψα}α∈A is loally �nite.(iv) ∑

α∈A ψα(x) = 1 for all x ∈M .Here, ondition (iii) means that eah point in M has a neighborhoodthat intersets supp ψα for only �nitely many values of α. This in turnimplies that the sum in (iv) only has �nitely many non-zero terms in a7



Introdutionneighborhood of eah point, so there will not be any problems related toonvergene.Thus, a partition of unity is a family of smooth funtions of ompatsupport, that are used to form global objet from loal ones. For examplethis is preisely how one de�nes integrals of di�erential forms. Unfor-tunately, due to analyti ontinuation this passage from loal to globalis not available in the holomorphi setting. We will soon disuss this indetail, but �rst we will introdue omplex manifolds, whih are our maingeometri objets of interest.3. Complex manifolds and the additive Cousin problemThe subjet of this thesis is omplex geometry. Hene, we are not re-ally interested in smooth manifolds, but rather a more restritive lassof manifolds alled omplex manifolds. These are de�ned in exatly thesame way as smooth manifolds, (De�nition 4), exept that one requiresthe harts φα to take values in C
k instead of R

k. One also requires thetransition funtions (2.1) to be holomorphi, and not just smooth.Sine omplex manifolds are geometri objets that loally look like
C
k, they are always even-dimensional. Furthermore, one an prove thatthey always are orientable, i.e. have a well-de�ned inside and outside.For omplex manifolds of dimension one, (i.e. "genuine" surfaes as theyloally look like C ≃ R

2), one an show that orientability is su�ient.This means that all orientable, smooth manifolds of (real) dimension two,an be given a omplex struture.In higher dimensions, however, this is no longer true. In fat, despitethe similar looking de�nitions, the world of smooth and omplex manifoldsare very di�erent. For example, as we have already mentioned, for smoothmanifolds we have the Whitney embedding theorem, whih states that anysmooth manifold M , an be smoothly embedded in R
n, for some n ∈ N.In stark ontrast to this, it is not very di�ult to show that the onlyompat omplex manifolds that an be holomorphially embedded intosome C

n, are points.At the end of the previous setion, we introdued partitions of unityand desribed them as an important tool in going from loal to global.We also mentioned that, due to analyti ontinuity, this tool unfortunatelyis missing in the omplex analyti setting. It is important to point outthat this does not just relate to omplex manifolds; pathing togetherloal objets into global ones in a holomorphi way is a highly non-trivialproblem already for domains in C
n. We will now desribe this in greater8



Introdutiondetail and in order to keep things as simple as possible, we will only treat
C
n for quite some time.Two famous loal to global results from one variable omplex analysisare the Weierstrass produt theorem, and the Mittag-Le�er theorem, (seee.g. [A℄). Attempts to generalize these, (espeially the latter), to severalomplex variables, historially turned out to be very important for thedevelopment of the �eld. The natural several variable generalization ofboth these theorems is the following deomposition problem.Additive Cousin Problem: Let Ω be an open set in C

n. Suppose that
{Uj}

∞
j=1 is an open overing of Ω, and that for any j, k ≥ 1, funtions

gjk ∈ O(Uj ∩ Uk) are given, with(3.1) gjk + gkl + glj = 0 on Uj ∩ Uk ∩ Ul,whenever Uj ∩ Uk ∩ Ul 6= ∅.Find funtions gj ∈ O(Uj), suh that gj − gk = gjk on Uj ∩ Uk.To see how this deomposition problem is related to loal to globalproblems, let us see how we an use it to obtain a several omplex variableversion of the Mittag-Le�er problem. The formulation of this problem isthe following.Mittag-Leffler Problem: Let Ω be an open set in C
n. Supposethat {Uj}

∞
j=1 is an open overing of Ω. For eah j ≥ 1, let mj denote ameromorphi funtion on Uj , (i.e. a quotient of holomorphi funtions),and assume that these "math up", in the sense that mj −mk =: gjk isholomorphi on Uj ∩ Uk, whenever this set is non-empty.Find a global meromorphi funtion m on Ω, suh that m − mj ∈

O(Uj) for all j ≥ 1, (hene the "singularities", or the prinipal parts of
m and mj are the same).The Mittag-Le�er problem is an immediate onsequene of the Cousinproblem. Namely, as gjk := mj −mk ∈ O(Uj ∩ Uk) learly satisfy (3.1),the Cousin problem yields holomorphi funtions gj ∈ O(Uj), suh that
mj −mk = gj − gk, or equivalently,

mj − gj = mk − gk on Uj ∩ Uk.Thus, we get a globally well-de�ned meromorphi funtion m on Ω, with
m−mj ∈ O(Uj), by setting m := mj − gj on Uj .The several variable generalization of the Weierstrass produt theoremalso follows from the (multipliative) Cousin problem, but the argumentis more involved, (see e.g. [R℄). 9



IntrodutionHistorially, the Cousin problem was solved on ertain domains Ω ⊂
C
n, alled domains of holomorphy, in a spetaular way by the Japanesemathematiian Kiyoshi Oka, in 1936, (see [R℄ for a nie survey of the earlydevelopments of several variable omplex analysis). This important anddi�ult ahievement was later simpli�ed and expanded by Henri Cartanduring the 1940's and 1950's, using methods of sheaf ohomology theory.Beginning in the 1960's, other analytial ways to form global holomorphiobjets out of loal ones were disovered. Before we an start desribingthese however, we �rst need to introdue the key di�erential operator ofomplex analysis. 4. The ∂̄-operatorIn the �rst setion, we de�ned holomorphiity of a single variable funtion

f : C → C, as being omplex di�erentiable. If we regard f as a real-valuedmapping instead, i.e.
f(x, y) = u(x, y) + iv(x, y),for some real-valued funtions u, v : R

2 → R, one an show that the holo-morphiity of f is equivalent to the following system of partial di�erentialequations, know as the Cauhy-Riemann equations,
{

u′x = v′y,
u′y = −v′x.The idea behind the ∂̄-operator omes from yet another reformulation ofthe holomorphiity ondition.It is a onsequene of the Cauhy integral formula that holomorphifuntions always an be expanded in power-series. Hene, we an expand

f in a Taylor-series about a point z0 = x0 + iy0,
f(z) = f(z0) + f ′x(z0)(x− x0) + f ′y(z0)(y − y0) + o(|z − z0|).If we replae x and y by(4.1) {

x = z+z̄
2 ,

y = z−z̄
2i ,i.e. make the hange of variables

{

z = x+ iy,
z̄ = x− iy,then this beomes,

f(z) = f(z0) +
∂f

∂z
(z0)(z − z0) +

∂f

∂z̄
(z0)(z̄ − z̄0) + o(|z − z0|),10



Introdutionwhere,
∂f

∂z
=

1

2

(

∂f

∂x
− i

∂f

∂y

) and ∂f

∂z̄
=

1

2

(

∂f

∂x
+ i

∂f

∂y

)

.Writing f = u+ iv, we get that
∂f

∂z̄
=

1

2

(

∂u

∂x
−
∂v

∂y

)

−
i

2

(

∂u

∂y
+
∂v

∂x

)

.Hene, using the Cauhy-Riemann equations, we see that in this formu-lation, f is holomorphi if and only if
∂f

∂z̄
= 0,i.e. the power-series expansion of f does not ontain any powers of z̄.In the several variable setting, we an in the same way set,

∂

∂zj
=

1

2

(

∂

∂xj
− i

∂

∂yj

) and ∂

∂z̄j
=

1

2

(

∂

∂xj
+ i

∂

∂yj

)

,for j = 1, . . . , n. Then a several variable funtion f : C
n → C will beholomorphi if and only if,(4.2) ∂f

∂z̄j
= 0 for all j = 1, . . . , n.Using the language of di�erential forms, it is in fat possible to expressthese onditions in an even more ompressed form.The exterior di�erentiation operator, d, applied to a funtion f : C

n ≃
R

2n → C, yields
df =

n
∑

j=1

(

∂f

∂xj
dxj +

∂f

∂yj
dyj

)

.Making the hange of variables (4.1) again, and setting
{

dzj = dxj + idyj ,
dz̄j = dxj − idyj ,this transforms into,

df =
n

∑

j=1

(

∂f

∂zj
dzj +

∂f

∂z̄j
dz̄j

)

.Hene, for funtions on C
n, we an de�ne two operators, ∂ and ∂̄, bysetting,

∂f =
n

∑

j=1

∂f

∂zj
dzj and ∂̄f =

n
∑

j=1

∂f

∂z̄j
dz̄j ,11



Introdutionthereby splitting exterior di�erentiation into two parts, d = ∂ + ∂̄. Com-paring the de�ntion of ∂̄ with (4.2), we see that a several variable funtion
f : C

n → C is holomorphi, if and only if,
∂̄f = 0.Just as with exterior di�erentiation, it is possible to extend ∂ and ∂̄ toat on di�erential forms of higher degree. A di�erential form α, of degree

p+ q, whih is of the form,
α =

∑

|I|=p,|J |=q

αI,JdzI ∧ dz̄J ,where I = (i1, . . . , ip), J = (j1, . . . , jq) are multiindies with integer om-ponents, |I|, |J | stand for the number of omponents, and
dzI = dzi1 ∧ . . . ∧ dzip and dz̄J = dz̄j1 ∧ . . . ∧ dz̄jq ,is said to be of bidegree (p, q). For these, we set

∂α :=

n
∑

j=1

∑

|I|=p,|J |=q

∂αI,J
∂zj

dzj ∧ dzI ∧ dz̄J ,and,
∂̄α :=

n
∑

j=1

∑

|I|=p,|J |=q

∂αI,J
∂z̄j

dz̄j ∧ dzI ∧ dz̄J .Sine d2 = 0, it then follows that ∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂.Now for loal to global problems, suh as the additive Cousin problemof the previous setion, it turns our that the inhomogenous ∂̄-problem isof great interest.Inhomogenous ∂̄-problem: Let Ω be a domain in C
n, and let f be a(0,1)-form on Ω, with ∂̄f = 0. Find a funtion u : Ω → C, suh that(4.3) ∂̄u = f.Sine ∂̄2 = 0, the ondition ∂̄f = 0 is neessary for the solvability ofthis equation. If

f =
n

∑

j=1

fjdzj ,then ∂̄f = 0 means that,(4.4) ∂fj
∂z̄k

=
∂fk
∂z̄j

for all j, k = 1, . . . , n.12



IntrodutionHene, (4.3) is a ompressed way of saying: Given an n-tuple of funtions
{fj}

n
j=1 on Ω suh that (4.4) holds, �nd a funtion u : Ω → C, suh that

∂u

∂z̄j
= fj for j = 1, . . . , n.And so for n ≥ 2, the inhomogenous ∂̄-equation is an over-determinedsystem of �rst order, linear, partial di�erential equations.It turns out that the neessary ondition, ∂̄f = 0, is su�ient for theexistene of local solutions to (4.3). This is the famous Grothendiek-Dolbeault lemma, (see e.g. [H4℄, Proposition 1.3.8). The existene of

global solutions is, however, a muh more di�ult problem, losely relatedto the domain Ω. In fat, we have the following theorem.Theorem 4.1. The existene of global solutions to the inhomogenous ∂̄-equation on a domain Ω ⊂ C
n, is equivalent to the solvability of the addi-tive Cousin problem on Ω.Proof. The easy diretion here is if we assume known that the Cousinproblem is solvable on Ω. Then, as ∂̄u = f is known to have loal so-lutions, there exists an open overing {Uj}

∞
j=1 of Ω, and orrespondingfuntions uj , suh that

∂̄uj = f on Uj for any j.Now let gjk := uj−uk ∈ O(Uj∩Uk). Then, by the solvability of the Cousinproblem, there exists funtions gj ∈ O(Uj), suh that, gjk = gj − gk, orequivalently
uj − gj = uk − gk whenever Uj ∩ Uk 6= ∅.Thus, setting u := uj − gj on Uj , yields a well-de�ned global funtion on

Ω, with
∂̄u = ∂̄uj − ∂̄gj = f.Conversely, assume that the inhomogenous ∂̄-equation is (globally)solvable on Ω. Assume that {Uj}

∞
j=1 is an open overing of Ω, and thatfuntions gjk ∈ O(Uj ∩Uk) are given, whih satisfy the oyle ondition,

gjk + gkl + glj = 0 on Uj ∩ Uk ∩ Ul 6= ∅.We want to �nd gj ∈ O(Uj), suh that gj − gk = gjk on Uj ∩ Uk.For this, we start by onstruting smooth solutions to the Cousinproblem. Let {φj}
∞
j=1 be a partition of unity subordinate to {Uj}

∞
j=1,(Theorem 2.1). Set

hj :=
∞

∑

k=1

φkgjk on Uj .13



IntrodutionBy the properties of partitions of unity, for any z ∈ Uj , this sum ontainsonly a �nite number of terms, so we do not have any onvergene problems.Then hj is well-de�ned and smooth on Uj . Furthermore, using the oyleondition, we get that on Uj ∩ Uk,
hj − hk =

∞
∑

l=1

φl(glj − glk) = gjk

∞
∑

l=1

φl = gjk.Thus, {hj}∞j=1 yield a smooth solution to the Cousin problem.Sine every gjk is holomorphi, we have that
∂̄hj − ∂̄hk = ∂̄gjk = 0 on Uj ∩ Uk.Hene, we get a well-de�ned (0,1)-form, f , on Ω, by setting f := ∂̄hj on

Uj . By onstrution, ∂̄f = 0. The global solvability of the ∂̄-equation nowimplies that there exists a global funtion, u : Ω → C, suh that ∂̄u = fon Ω. Set gj := hj − u on Uj . Then,
∂̄gj = ∂̄hj − ∂̄u = ∂̄hj − f = 0,so that gj ∈ O(Uj) for all j, and furthermore,

gj − gk = (hj − u) − (hk − u) = hj − hk = gjk on Uj ∩ Uk.Thus {gj}∞j=1 solves the Cousin problem. �Hene, returning to the disussion of the previous setion, instead ofattaking the Cousin problem with the methods of sheaf ohomology the-ory, one an study the existene of global solutions to the inhomogenous
∂̄-equation, using methods from the theory of partial di�erential equa-tions. This approah, whih beame popular in the 1960's, turned out tobe very fruitful, in partiular after the work of Lars Hörmander. We willnow spend quite some time explaining some of the basi omponents ofthis theory, whih plays a very entral part in this thesis.5. L2-theory for the ∂̄-equationUsing Hilbert spae methods, Hörmander ([H1℄,[H2℄), in 1965 showed thatnot only is it possible to solve ∂̄u = f on ertain domains Ω ⊂ C

n, butalso provided very useful estimates for the solutions. These estimates havesine then beome an indispensible tool for the onstrution of globalholomorphi funtions with spei�ed properties. To illustrate the mainideas more learly, we begin by studying the one-variable version of thistheorem.Let Ω be any domain in C, and let f : Ω → C be any loally integrablefuntion, (as we are in C, we an without loss of generality interhange14



Introdution(0,1)-forms with funtions). In this setting, the inhomogenous ∂̄-equationtranslates into �nding a funtion u : Ω → C, suh that(5.1) ∂u

∂z̄
= f on Ωin the sense of distributions.The "usual" Hilbert spae approah to linear partial di�erential equa-tions now is to make a weak reformulation of this equation, make somesuitable estimates and �nally, after having made some assumption aboutthe regularity of f , dedue that a solution exists by invoking the Rieszrepresentation theorem.In our ase, this would translate into multiplying our equation with theomplex onjugate of a test funtion α ∈ C∞

c (Ω), and apply integrationby parts to arrive at,
−

∫

Ω
u
∂α

∂z
=

∫

Ω
fᾱ.Then we would try to estimate the right hand side.Hörmander showed that this approah an be made suessful, andalso produe nie estimates for the solution, if we introdue weighted L2inner produts instead.Let φ ∈ C2(Ω) be a real-valued funtion and introdue the weightedsalar produt

〈f, g〉φ :=

∫

Ω
fḡe−φ.With respet to this salar produt, the weak formulation of (5.1) be-omes,(5.2) ∫

Ω
u∂̄∗φαe

−φ =

∫

Ω
fᾱe−φ,where

∂̄∗φα := −eφ
∂

∂z

(

αe−φ
)is the formal adjoint of the ∂̄-operator. We then have the following propo-sition.Proposition 5.1. Let Ω ⊂ C be any domain, and let

L2(e−φ) := {g ∈ L2
loc(Ω) ;

∫

Ω
|g|2e−φ <∞}.15



IntrodutionThen, for any f ∈ L2(e−φ), there exists a solution u : Ω → C to theinhomogenous ∂̄-equation (5.1) satisfying,(5.3) ∫

Ω
|u|2e−φ ≤

∫

Ω
|f |2e−φ,if and only if(5.4) ∣

∣

∣

∫

Ω
fᾱe−φ

∣

∣

∣

2
≤

∫

Ω
|f |2e−φ

∫

Ω
|∂̄∗φα|

2e−φholds for all α ∈ C2
c (Ω).Proof. One diretion is immediate: If u is a solution to (5.1) satisfying(5.3), then (5.4) follows at one by applying the Cauhy-Shwarz inequal-ity to (5.2).Now suppose that (5.4) holds for all α ∈ C2

c (Ω), and let E ⊂ L2(e−φ)be the subspae,
E := {∂̄∗φα;α ∈ C2

c (Ω)}.De�ne the anti-linear funtional L : E → C as,
L(∂̄∗φα) :=

∫

Ω
fᾱe−φ.Then, (5.4) says that L is well-de�ned and of norm not exeeding,(5.5) ∫

Ω
|f |2e−φ.The Hahn-Banah extension theorem an now be used to extend L toan anti-linear funtional on all of L2(e−φ), with the same norm. By theRiesz representation theorem, there exists some element u ∈ L2(e−φ),with norm less than or equal to (5.5), suh that

L(g) =

∫

Ω
uḡe−φ,for all g ∈ L2(e−φ). Choosing g = ∂̄∗φα yields,

∫

Ω
u∂̄∗φαe

−φ =

∫

Ω
fᾱe−φ,so u solves the inhomogenous ∂̄-equation (5.1). �Hene, we have redued the existene of solutions to (5.1), to provingthe inequality (5.4). The next step is to rewrite this inequality a bit16



Introdutionfurther. Assume that ψ : Ω → R is a stritly positive funtion. Then,with the same reasoning we get that there exists a solution to (5.1) with
∫

Ω
|u|2e−φ ≤

∫

Ω

|f |2

ψ
e−φ,if and only if,(5.6) ∫

Ω
ψ|α|2e−φ ≤

∫

Ω
|∂̄∗φα|

2e−φ,for all α ∈ C2
c (Ω).The reason for this reformulation is that there exists a speial hoieof ψ, for whih (5.6) always holds, for any domain in C. Namely,

ψ =
∂2φ

∂z∂z̄
=: ∆φ.(This is the reason for requiring that φ ∈ C2(Ω).)Proposition 5.2. Let Ω ⊂ C be any domain, and let φ ∈ C2(Ω). Then,for any α ∈ C2

c (Ω),
∫

Ω
∆φ|α|2e−φ +

∫

Ω

∣

∣

∂α

∂z̄

∣

∣

2
e−φ =

∫

Ω
|∂̄∗φα|

2e−φ.Proof. By integration by parts
∫

Ω
|∂̄∗φα|

2e−φ = −

∫

Ω
∂̄∗φα

∂

∂z̄
(ᾱe−φ) =

∫

Ω

( ∂

∂z̄
∂̄∗φα

)

ᾱe−φ.Also, by de�nition,̄
∂∗φα = −eφ

∂

∂z

(

αe−φ
)

= −
∂α

∂z
+ α

∂φ

∂z
,and so,

∂

∂z̄
∂̄∗φα = −

∂2α

∂z̄∂z
+
∂α

∂z̄

∂φ

∂z
+

∂2φ

∂z̄∂z
α = ∂̄∗φ

(∂α

∂z̄

)

+ (∆φ)α.Hene,
∫

Ω
|∂̄∗φα|

2e−φ =

∫

Ω
∂̄∗φ

(∂α

∂z̄

)

ᾱe−φ +

∫

Ω
∆φ|α|2e−φ =

=

∫

Ω

∣

∣

∣

∂α

∂z̄

∣

∣

∣

2
e−φ +

∫

Ω
∆φ|α|2e−φ,where we have just used that ∂̄∗φ is the adjoint of ∂

∂z̄ with respet to thesalar produt de�ned by φ. �17



IntrodutionAltogether, we have proved the following one-dimensional version ofHörmander's theorem.Theorem 5.3. Let Ω ⊂ C be any domain, and let φ ∈ C2(Ω) be anyfuntion with ∆φ > 0. Then, for any f ∈ L2
loc(Ω), there exists a solution

u to the inhomogenous ∂̄-equation,
∂u

∂z̄
= f on Ω,with,

∫

Ω
|u|2e−φ ≤

∫

Ω

|f |2

∆φ
e−φ.Let us quikly reapitulate what we have done so far. We started o�with the additive Cousin problem for domains Ω in C

n, i.e. the problemof pathing together loal holomorphi funtions in a holomorphi way.We then reformulated this problem into the problem of �nding globalsolutions to the inhomogenous ∂̄-equation on Ω. And now, we have justshown that for domains in C, this equation is always globally solvable,and there exists good estimates for the solutions as well.The natural question to pose now is whether it is possible to proeedwith this analyti approah in higher dimensions? Before we an startanswering this, we need to introdue some new notation, sine we an nolonger interhange funtions and (0,1)-forms.Let f and α be (0,1)-forms on Ω ⊂ C
n,

f =
n

∑

j=1

fjdz̄j , α =
n

∑

j=1

αjdz̄j ,let φ ∈ C2(Ω), and de�ne a salar produt with respet to φ, through
〈f, α〉φ :=

n
∑

j=1

∫

Ω
fjαje

−φ.One an hek that the formal adjoint of the ∂̄-operator, (whih now takes(0,1)-forms to funtions), with respet to this salar produt beomes,
∂̄∗φα := −eφ

n
∑

j=1

∂

∂zj

(

αje
−φ

)

.With this notation, the weighted dual formulation of the inhomogenous
∂̄-equation,

∂̄u = f on Ω,18



Introdutionbeomes: Find u : Ω → C, suh that
∫

Ω
u∂̄∗φαe

−φ =
n

∑

j=1

∫

Ω
fjᾱje

−φ,for all α ∈ C2
(0,1)(Ω), where
C2

(0,1)(Ω) :=
{

α =
n

∑

j=1

αjdz̄j ; αj ∈ C2
c (Ω)

}

.If we replae L2(e−φ) with,
L2

(0,1)(e
−φ) :=

{

f =
n

∑

j=1

fjdz̄j ;
n

∑

j=1

∫

Ω
|fj |

2e−φ <∞
}

,in Proposition 5.1, then a areful study of the proof reveals that thisresult holds, basially unhanged, in this several variable setting as well.However, this is not as good news as one might think at �rst. In fat, inseveral variables, it is impossible to prove that(5.7) ∣

∣〈f, α〉φ
∣

∣

2
≤

(

n
∑

j=1

∫

Ω
|fj |

2e−φ
)

∫

Ω
|∂̄∗φα|

2e−φ,for all α ∈ C2
(0,1)(Ω). If we ould prove this, then we would have shownthat there exists a solution to ∂̄u = f , without using the ompatibilityondition ∂̄f = 0. Hene, we need some way of taking this extra informa-tion into onsideration as well. For this, we �rst need to introdue somenotation from the theory of Hilbert spaes.Let T denote the operator ∂̄ but with the spei�ed domain,
Dom(T ) := {u ∈ L2(e−φ) ; ∂̄u ∈ L2

(0,1)(e
−φ)}.Furthermore, let T ∗ denote the adjoint operator, whih is ∂̄∗φ but with thespei�ed domain,

Dom(T ∗) : = {v ∈ L2
(0,1)(e

−φ) ; u ∈ Dom(T ) 7→ 〈∂̄u, v〉φ is abounded linear funtional}.The following proposition is the several variable analogue of, (the rewrit-ten form of), Proposition 5.1, (see [B3℄, Proposition 1.3.2 for a proof).Proposition 5.4. Let Ω be a domain in C
n, and let ψ : Ω → C

r×r be aontinuous funtion whose value at any point z ∈ Ω is a stritly positivede�nite, and uniformly bounded hermitian matrix ψ(z) = (ψjk(z))1≤j,k≤n.19



IntrodutionIf, for any α ∈ Dom(T ∗) ∩Ker(∂̄) it holds that,
n

∑

j,k=1

∫

Ω
ψjkαjᾱke

−φ ≤

∫

Ω
|∂̄∗φα|

2e−φ,then, for any f ∈ L2
(0,1)(e

−φ) with ∂̄f = 0, there exists a solution to
∂̄u = f satisfying,

∫

Ω
|u|2e−φ ≤

n
∑

j,k=1

∫

Ω
ψ−1
jk fj f̄ke

−φ.Comparing this with Propostion 5.1, we see that the main di�erene,whih re�ets the neessary ondition ∂̄f = 0 in several variables, is thelass of test funtions.Although we have hosen not to inlude it, the proof of this proposi-tion is not overly di�ult. Instead, the main di�ulty lies in �nding theappropriate several variable analogue of Proposition 5.2. We now turn tostudying this in greater detail.First o�, onsider the matrix-valued funtion ψ. It turns out that theappropriate hoie is,(5.8) ψjk =
∂2φ

∂zj∂z̄k
,whih learly is onsistent with Proposition 5.1. Furthermore, the severalvariable ounterpart of ∆φ > 0, is requiring the Hessian (5.8) to be stritlypositive de�nite.Funtions de�ned on domains in C

n, with positive de�nite omplexHessians of this type, are alled plurisubharmoni funtions. These fun-tions are the omplex-variable analogues of onvex funtions in real anal-ysis, and just as for onvex funtions, there exists several alternative def-initions of plurisubharmoniity that do not require the funtions to betwie di�erentiable. One de�nition that bears a striking resemblane tothe de�nition of onvex funtions, as well as explains the name, is thefollowing.De�nition 5. (i) Let Ω ⊂ C be a domain, and let u : Ω → [−∞,∞) bean upper semiontinuous funtion. Then u is alled subharmonic if, forevery ompat subset K ⊂ Ω, and every ontinuous funtion h : K → Rwhih is harmoni on the interior of K, the inequality u ≤ h is valid in
K, if it holds on ∂K.(ii) Let Ω ⊂ C

n be a domain, and let u : Ω → [−∞,∞) be an upper semi-ontinuous funtion. Then u is alled plurisubharmonic if its restrition20



Introdutionto every omplex line in Ω is subharmoni, i.e. for arbitrary z, w ∈ C
n,the funtion

τ 7→ u(z + τw),is subharmoni in the open subset of C where it is de�ned.The omplex-analyti ounterpart of onvex sets in R
n, is the notionof pseudo-onvexity.De�nition 6. A domain Ω in C

n is alled pseudo-onvex if there existsa ontinuous, plurisubharmoni funtion ψ de�ned in Ω, whih tends toin�nity at the boundary; (suh a ψ is alled an exhaustion funtion for
Ω). The study of plurisubharmoni funtions and pseudo-onvexity are ex-tremely important and key parts of several omplex variable theory. Wewill, however, not treat this theory in any great detail. For the inter-ested reader we reommend the nie survey [K1℄, as well as the standardtreatises [H3℄ and [K2℄.One intuitive way of regarding pseudo-onvex sets is that they are thedomains in C

n that behave most similar to domains in C; ("things work asusual"). The lassial example of this is the Hartogs' extension theoremand domains of holomorphy, (one again, see [R℄). Another example is thatpseudo-onvexity is a su�ient ondition for the several variable versionof Proposition 5.2 to hold.Proposition 5.5. Let Ω be a pseudo-onvex domain in C
n, and let φ ∈

C2(Ω). Then, for any α ∈ C2
(0,1)(Ω) ∩Dom(T ∗),

n
∑

j,k=1

∫

Ω

∂2φ

∂zj∂z̄k
αjᾱke

−φ ≤

∫

Ω
|∂̄∗φα|

2e−φ +
1

2

∫

Ω
|∂̄α|2e−φ,where,

|∂̄α|2 =
∑

j<k

∣

∣

∣

∂αj
∂z̄k

−
∂αk
∂z̄j

∣

∣

∣

2
.See e.g. [B3℄, Theorem 1.4.2 for a proof.Hene, we get that for a pseudo-onvex domain Ω in C

n,
n

∑

j,k=1

∫

Ω

∂2φ

∂zj∂z̄k
αjᾱke

−φ ≤

∫

Ω
|∂̄∗φα|

2e−φ,for any α ∈ C2
(0,1)(Ω) ∩ Dom(T ∗) ∩ Ker(∂̄). Assume that φ ∈ C2(Ω) isstritly plurisubharmoni, i.e. the omplex Hessian of φ is stritly positivede�nite. If we ompare this with the setting of Proposition 5.4, we see21



Introdutionthat the only di�erene is the extra requirement of smoothness up to theboundary, α ∈ C2
(0,1)(Ω). This extra requirement an be removed throughapproximations, but doing so is highly non-trivial.One this, far from obvious step, has been taken we arrive at thefollowing theorem, ([H1,H2,H3℄).Theorem 5.6. Let Ω be a pseudoonvex domain in C

n, let φ ∈ C2(Ω) bea stritly plurisubharmoni funtion, and let f ∈ L2
(0,1)(e

−φ). If ∂̄f = 0,(in the sense of distributions), then there exists a global solution, u, to theinhomogenous ∂̄-equation ∂̄u = f . Furthermore, this solution satis�es theestimate,(5.9) ∫

Ω
|u|2e−φ ≤

n
∑

j,k=1

∫

Ω
φjkfj f̄ke

−φ,provided that the left hand side is �nite, where φjk denotes the inversematrix of the omplex Hessian of φ.This is (one version of) the Hörmander theorem for the inhomogenous
∂̄-equation in C

n. Apart from the relation to loal to global phenomenadisussed so far, this theorem is an extremely useful tool for onstrutingholomorphi funtions with spei�ed properties. In the words of FeodorNazarov ([N3℄)This amazing theorem has beome the main tool for onstruting analytifuntions in C
n with good growth/deay estimates. It has essentially wipedout all previous ad ho proedures based on power series, Cauhy integralsand suh.The philosophy behind these onstrutions is that through the funda-mental estimate (5.9), the sought after properties of a holomorphi fun-tion an be redued to the onstrution of a spei� plurisubharmoniweight funtion φ, whih is a muh less rigid objet than holomorphifuntions. The analyti proof of the Kodaira embedding theorem at theend of setion 8 below is a nie illustration of this.Now as we have tried to point out throughout this setion, the proofof the Hörmander theorem has two main parts:(i) Reduing the existene of solutions to an inequality.(ii) Finding onditions whih ensure that this inequality holds.We will now turn to the study of inhomogenous ∂̄-equations on om-plex manifolds, where the Hörmander estimates are an important tool inthe analyti study of omplex geometry. For omplex manifolds, just as22



Introdutionfor domains in C
n, the di�ult part is step (ii). The �rst part of Paper IIis devoted to illustrating a new method, whih we believe is simpler thanthe traditional methods, for the establishment of this step.6. Holomorphi vetor bundles - MotivationA general strategy in order to understand the geometry of a omplexmanifold X, is to study:(i) Holomorphi maps from other omplex manifolds into X.(ii) Holomorphi maps from X into other, (easier), omplex manifolds.(iii) Holomorphi vetor bundles on X.(We will explain what (iii) means shortly.) As we will soon see, these areall losely related.In (i), one is partiularly interested in investigating the omplex sub-manifolds, or more generally the analyti subvarieties, of X. These arede�ned in the following way.De�nition 7. Let X be a omplex manifold. An analyti subvarietyof X is a losed subset Y ⊂ X, suh that for any point x ∈ X, thereexists an open neighborhood U ⊂ X ontaining x, suh that Y ∩ U isthe zero set of �nitely many holomorphi funtions on U , i.e. there exists

f1, . . . , fk ∈ O(U) with,
Y ∩ U = {f1 = . . . = fk = 0} ∩ U.An analyti subvariety is not always a submanifold, sine it an havesingularities. For example, the union of the two oordinate axes in C

2 anbe written as {z1z2 = 0}, so it is an analyti subvariety with a singularityat the origin. However, one an show that for any analyti subvariety
Y , the set of regular points Yreg := Y \ Ysing is a non-empty omplexsubmanifold of X.We will need the following standard notions from the theory of analytisubvarieties.De�nition 8. Let X be a omplex manifold, and let Y ⊂ X be ananalyti subvariety.
• We say that Y is irreducible if it annot be written as the union Y =
Y1 ∪ Y2 of two proper analyti subvarieties Yi ⊂ Y .
• If Y is irreduible, then the dimension of Y is de�ned as the dimensionof the manifold of its regular points, dim(Y ) :=dim(Yreg).
• Y is said to be an analyti hypersurface of X, if it has odimensionone, i.e. dim(Y ) = dim(X) − 1. 23



IntrodutionVarieties and hypersurfaes, (not neessarily analyti ones), are themain objets of investigation in algebrai geometry. Many deep and in-genious tools have been developed for their study, (see e.g. [SKKT℄ for anie introdution). From our point of view, however, analyti subvarietiesare mainly interesting beause of their lose onnetion to (iii) above.The basi de�nition of vetor bundles is the following.De�nition 9. Suppose X is a omplex manifold. A holomorphi vetorbundle of rank r over X is a omplex manifold E, together with a surjetiveholomorphi map, π : E → X, satisfying the following onditions:I. For eah x ∈ X, the set Ex := π−1(x), alled the �ber over x, has thestruture of an r-dimensional omplex vetor spae.II. For eah x ∈ X, there exists a neighborhood U ⊂ X of x, and abiholomorphism Φ : π−1(U) → U × C
r, suh that π|U = π1 ◦ Φ, where

π1 is projetion on the �rst fator. Furthermore, for any y ∈ U , therestrition Φ|Ey
: Ey → {y} × C

r is a C-linear isomorphism. The pair
(U,Φ) is alled a loal trivialization of E over U.A holomorphi vetor bundle of rank 1 is alled a holomorphi linebundle.The main example, and motivation, for vetor bundles is the so alledtangent bundle of a manifold. The intuition behind this onstrution isto think of the manifold as a submanifold of C

n. At eah point of themanifold we then have a tangent spae, and the idea is to glue all of thesetogether so that the resulting geometri objet also is a manifold. Gener-alising this onstrution, making it independent of the ambient spae andoordinates, has led to the abstrat de�nition above; for eah x ∈ X, the�ber Ex represents the tangent spae at x.As vetor bundles are, possibly twisted, disjoint unions of vetorspaes, there is a meta-theorem to the e�et that any anonial onstru-tion in linear algebra gives rise to a geometri version for vetor bundles.Thus, it is possible to onstrut the dual, tensor produt, diret sum, et.of vetor bundles.Now vetor bundles are one of the main building bloks of moderngeometry. Considering that the tangent bundle of a manifold, by on-strution, ontains a lot of interesting geometri information about themanifold, this is perhaps not so surprising. For us, holomorphi vetorbundles, and their rih theory, are the main objets of study. Unfortu-nately, this rihness also makes it very di�ult to give a self-ontainedintrodution. In this setion we will give a rather detailed motivation fortheir study by desribing their relation to analyti varieties. After this,24



Introdutionwe will reapitulate some basi onepts and theory in the next setion,but this will be done hastily and mainly to establish the notation and ouronventions. We reommend [W1℄, [H4℄, and [K3℄ among many others forthe uninitiated reader.We have the following simple onsequene of De�nition 9, ([L2℄, Lemma5.4).Lemma 6.1. Let E → X be a rank r holomorphi vetor bundle overa omplex manifold X. Whenever (Uα,Φα) and (Uβ ,Φβ) are two loaltrivializations of E that overlap, the omposite map Φβ ◦Φ−1
α from (Uα ∩

Uβ) × C
r to itself, will be of the form,

Φβ ◦ Φ−1
α (x, z) = (x, ταβ(x)z),where ταβ is a holomorphi map ταβ : Uα ∩ Uβ → GL(r,C), alled thetransition funtion from Φα to Φβ.It follows immediately from the de�nition of transition funtions thatthey have the following oyle property: Whenever there are three over-lapping loal trivializations, we have that(6.1) ταβ(x)τβγ(x) = ταγ(x) for all x ∈ Uα ∩ Uβ ∩ Uγ ,where the juxtaposition on the left hand side denotes matrix multiplia-tion.It turns out, rather surprisingly, that the transition funtions ontainall the information about the vetor bundle. This remarkable feature isthe key property for the link between holomorphi vetor bundles andanalyti subvarieties alluded to above.Proposition 6.2. Let X be a omplex manifold. Suppose we are givenan open over {Uα}α∈A of X, and for eah α, β ∈ A with Uα ∩ Uβ 6= ∅,a holomorphi map ταβ : Uα ∩ Uβ → GL(r,C), satisfying the oyleondition (6.1) above. Then there is a rank r holomorphi vetor bundle

E → X, with loal trivializations (Uα,Φα), whose transition funtions arethe given maps ταβ.See e.g. [W1℄, Chapter 1.2 for a proof.Hene, a set of transition funtions is all we need to get a vetorbundle. This an be used to reate a line bundle from a hypersurfae
Y ⊂ X in the following way: By de�nition, there exists open sets Uα ⊂ Xovering Y , and holomorphi funtions fα ∈ O(Uα) with Y ∩Uα = {fα =
0}∩Uα. The idea is to de�ne the transition funtions for a line bundle as(6.2) ταβ :=

fα
fβ
,25



Introdutionwhenever Uα and Uβ overlap. These will ertainly satisfy the oyle on-dition (6.1), but unfortunately, this is not enough. The problem is thatwe do not know the vanishing order of the loal holomorphi funtions,and so the ταβ :s ould vanish or blow up on Y . This leads to the notionof e�etive divisors. Intuitively, these are hypersurfaes, every branh,(i.e. irreduible omponent), of whih are endowed with a non-negativemultipliity. Loally then, an e�etive divisor D is the zero lous of holo-morphi funtions f ∈ O(Uα) whih vanish to the given multipliity onevery branh of D.If we form the transition funtions (6.2) for e�etive divisors, theywill now be holomorphi and non-vanishing on Uα ∩ Uβ . By Proposition6.2 they form the transition funtions of a line bundle. Thus, instead ofstudying the hypersurfaes of a omplex manifold X, we an study linebundles on X. From an analytial viewpoint, line bundles turn out to beeasier to work with.For example, if X is a compact omplex manifold, then by the max-imum priniple any holomorphi funtion f : X → C is onstant. Nowsuppose that π : L → X is a holomorphi line bundle and study holo-morphi maps from subsets U ⊂ X to L satisfying π ◦ f = IdU , alledloal holomorphi setions to L. If L is trivial, i.e. L = X × C, the set ofglobal holomorphi setions to L are in one-to-one orrespondene withthe set of holomorphi funtions on X. The point here is of ourse that if
X is ompat, there might exist non-trivial holomorphi line bundles on
X, having non-onstant global holomorphi setions, whih one an applythe tools of analysis to.7. Holomorphi vetor bundles - The settingJust as in the line bundle setting, setions of a holomorphi vetor bundle,
π : E → X are de�ned as maps from subsets U ⊂ X to E, f : U → E,satisfying π ◦ f = IdU . We denote the set of smooth setions of E by
C∞(X,E), and the set of holomorphi setions by O(X,E).As setions of vetor bundles orrespond to funtions on the manifold,we want to be able to apply the tools of analysis to their study. We willnow quikly reall the most important of these tools and notions from thetheory of vetor bundles.Assume that rankCE = r. A loal frame for E is an ordered r-tuple ofloal setions (ei) = (e1, . . . , er) over U , with the property that for eah
x ∈ U , the r-tuple (e1(x), . . . , er(x)) forms a basis for the �ber Ex.We have already introdued di�erential forms, whih are nothing butsetions to exterior powers of the otangent bundle, the dual of the tangent26



Introdutionbundle. For a vetor bundle E → X, we an form setions of the bundle
ΛT ∗X⊗E. We all these di�erential forms on X with values in E. Loally,suh a setion is just a linear ombination of tensor produts of di�erentialforms and setions of E. For p ≥ 1 we let C∞

p (X,E) denote the set ofsmooth di�erential p-forms with values in E.A hermitian metri, h, on a vetor bundle E → X is a positive de�nitehermitian inner produt, (·, ·)h(x), on eah �ber Ex that varies smoothlywith x. More expliitly, given two setions s, t the funtion (s, t)h on X issmooth. Loally in a neighborhood U of a point x ∈ X we an identify sand t with vetors of funtions on U and h with a matrix-valued funtionon U so that
(s, t)h = t∗hswhere t∗ is the transpose onjugate of t and juxtaposition denotes matrixmultipliation.As soon as we have a metri on a vetor bundle, we also get a well-de�ned bilinear map, {·, ·}, for di�erential forms on X with values in E.Namely by letting {α⊗s, β⊗t} := α∧ β̄ (s, t)h for forms α, β and setions

s, t, and then extend to arbitrary forms with values in E by linearity.A connection D on E is a C-linear mappingD : C∞(X,E) → C∞
1 (X,E)satisfying the Leibniz rule

D(fs) = df ⊗ s+ fDsfor any smooth map f ∈ C∞(X) and setion s ∈ C∞(X,E). Henea onnetion is a �rst order di�erential operator that allows us to takediretional derivatives of setions. Loally, if we regard a setion s as avetor of funtions we have that
Ds = ds+ θswhere θ is a matrix of one-forms.On a holomorphi vetor bundle with a hermitian metri h, there ex-ists a speial onnetion D alled the Chern onnetion whih re�ets thegeometri and holomorphi struture of the vetor bundle. This onne-tion is haraterized by:(i) Compatibility with h

d(s, t)h = {Ds, t}h + {s,Dt}h.(ii) In the deomposition of D into (1,0) and (0,1) parts, D = D′ +D′′,the (0,1) part D′′ equals ∂̄.One an show that the Chern onnetion is unique and that loally theonnetion matrix θ is a matrix of (1,0)-forms given by θ = h−1∂h.27



IntrodutionGiven a onnetion D we an extend it to C∞
p (X,E) for p ≥ 1 by theLeibniz rule

D(α ∧ s) = dα ∧ s+ (−1)kα ∧Dswhere α is a k-form on X and s is a smooth setion of E. We use thisto de�ne the curvature Θ assoiated with a onnetion D through Θs :=
D2s. We then have
Θ(fs) = D(df ⊗ s+ fDs) = d2f ⊗ s− df ⊗Ds+ df ⊗Ds+ fΘs = fΘsfor f ∈ C∞(X), s ∈ C∞(X,E) so Θ is a form-valued endomorphism of
E, i.e. loally just a matrix of two-forms.For a hermitian holomorphi vetor bundle (E, h), we all the urva-ture assoiated with the Chern onnetion the urvature of E and one anshow that in this ase

Θ = ∂̄θ = ∂̄(h−1∂h).Hene, if we let {dzj}nj=1 be a basis for the holomorphi otangent spaeof X, the urvature an loally be represented as a matrix of (1,1)-formswhih we an write either as
Θ =

n
∑

j,k=1

Θjkdzj ∧ dz̄k,where Θjk are loal r × r matrix-valued funtions, or as
Θ =

∑

1≤j,k≤n
1≤µ,λ≤r

cjkµλdzj ∧ dz̄k ⊗ e∗µ ⊗ eλ,where cjkµλ are loal funtions, {eµ}rµ=1 is a loal frame for E, and {e∗µ}
r
µ=1is the orresponding dual oframe.In Riemannian geometry one studies the geometry of a manifold M ,through the geometry of its tangent bundle, TM . A Riemannian metrion M is a salar produt on eah tangent spae that varies smoothly withrespet to the base point. Just as for holomorphi vetor bundles, givena Riemannian metri there exists a anonial hoie of onnetion, theLevi-Civita onnetion, ∇, that re�ets the geometry of M .Suppose now that M = X is a omplex manifold with a hermitianmetri g. By de�nition, this means that for eah x ∈ X, g(x) is a hermitiansalar produt on the omplex tangent spae T 1,0

x X. This means that if
z = (z1, . . . , zn) are loal oordinates near x, g an be written as(7.1) g =

n
∑

j,k=1

gjkdzj ⊗ dz̄k.28



IntrodutionIf v is a holomorphi vetor �eld on X,
v =

n
∑

j=1

vj
∂

∂zj
,we an hene de�ne the norm of v as,

‖v‖2
g =

n
∑

j,k=1

gjkvj v̄k.It turns out, however, to be muh more onvenient to work with theimaginary part of g, instead of the metri itself. This two-form, ω, isalled the Kähler form of g, and if g is given in loal oordinates as in(7.1), then it is not di�ult to show that(7.2) ω = i
n

∑

j,k=1

gjkdzj ∧ dz̄k.One example of the way things are simpli�ed by working with ω in-stead of g, is the relation between ω and the volume form. By de�nition,a volume form is a di�erential form of maximal degree that an be writtenas,
dVω = inξ1 ∧ ξ̄1 ∧ . . . ∧ ξn ∧ ξ̄nwhenever ξ = (ξ1, . . . , ξn) is an orthonormal basis for the holomorphiotangent spae. This is a well-de�ned global form, (any other orthonor-mal basis is related to ξ via a unitary linear transformation), and it analso be expressed as

dVω = ωn/n!,in terms of the Kähler form
ω = i

n
∑

j,k=1

gjkdzj ∧ dz̄k = i

n
∑

j=1

ξj ∧ ξ̄j .This, in turn, an be utilized to introdue a onvenient formalism foromputing the norms of forms. We will do this in the setting of di�erentialforms with values in a vetor bundle over a ompat omplex manifold.Thus, let (E, h) → (X,ω) be a holomorphi vetor bundle over aompat omplex manifold. Let α be an E-valued form of bidegree (p, 0).We de�ne the norm of α with respet to the metris h and ω through(7.3) ‖α‖2dVω = cp{α, α}h ∧ ωn−p29



Introdutionwhere ωn−p := ωn−p/(n − p)!, and cp := ip
2 is a unimodular onstanthosen so that the right hand side is positive. One an show that if {ξj}are orthonormal oordinates at a point and

α =
∑

|I|=p

αIξIwhere {αI} are setions of E, then
‖α‖2 =

∑

|I|=p

‖αI‖
2
h.We also use (7.3) to de�ne the norm of E-valued forms of bidegree (0, q).In partiular then ‖α‖ = ‖ᾱ‖.Using this de�nition one an now proeed to show that it is possibleto de�ne the norm of an E-valued form η of arbitrary bidegree in suh away that if

η =
∑

ηIJξI ∧ ξ̄Jin terms of an orthonormal basis at a point, then
‖η‖2 =

∑

‖ηIJ‖
2
h.This norm an then be polarized yielding an inner produt for E-valuedforms of arbitrary bidegree. Hene if µ is another form with values in E,whih is of the same bidegree as η, then

(η, µ) =
∑

(ηIJ , µIJ)hif we express η and µ in terms of an orthonormal basis as above.Integrating these norms over X with respet to the volume form, onean hene extend the Hilbert spae formalism of setion 5 to vetor bundlevalued di�erential forms on omplex manifolds. But before we an turnto the study of the inhomogenous ∂̄-equation on omplex manifolds, weneed to introdue the onept of Kähler manifolds.We say that g is a Kähler metri, and that X is a Kähler manifold, ifthe two-form ω is losed, dω = 0.Kähler manifolds are very important in omplex geometry. There areoneptual and omputational reasons for this.First o�, given a metri g, we have seen that there are two anonialonnetions on the holomorphi tangent bundle assoiated with g:(i) The Chern onnetion, Dg, indued by the holomorphi struture on
X.(ii)The Levi-Civita onnetion, ∇g, indued by the Riemannian struture30



Introdutionon X.We then have the following result, (see e.g. [B3℄, Proposition 3.4.2):Proposition 7.1. Let g be a hermitian metri on a omplex manifold
X. Let Dg be the Chern onnetion, and ∇g the Levi-Civita onnetion,indued by g. If (X, g) is a Kähler manifold, then Dg = ∇g.Seondly, omputations in loal oordinates are usually greatly sim-pli�ed if one is able to use normal oordinates. These are loal oordinatesat a point x ∈ X in whih the metri g, resembles the eulidean metri to�rst order. More preisely,

gjk = δjk,and,
dgjk = 0at x.It is an immediate onsequene of (7.2) that if we an hoose normaloordinates at any point, then dω = 0, so the metri must be Kähler. To alarge extent, the omputational advantage of Kähler manifolds stems fromthe fat that the onverse of this also holds, (see e.g. [H4℄, Proposition1.3.12).Proposition 7.2. Let g be a Kähler metri. For eah x ∈ X, there areloal holomorphi oordinates near x that are normal in x.8. L2-methods for the ∂̄-equation on ompat Kähler manifoldsWith the onepts and formalism of the previous setion at our disposal,we an now formulate the ompat Kähler generalisation of Theorem 5.6on the global solvability of the inhomogenous ∂̄-equation together withHörmander's L2-estimates.Theorem 8.1. Let (X,ω) be a ompat Kähler manifold, and let (L, h) bea holomorphi line bundle over X. Assume that the metri h has stritlypositive urvature,(8.1) iΘ ≥ εω,for some ε > 0.For any ∂̄-losed (n, q)-form f with values in L and q ≥ 1, there existsan (n, q − 1)-form u with values in L, suh that
∂̄u = f,and(8.2) ∫

X
‖u‖2dVω ≤

1

εq

∫

X
‖f‖2dVω.31



Introdution(Apart from the L2-estimates (8.2), this is the famous Kodaira van-ishing theorem, [K4℄.)To see that this theorem is the ompat Kähler version of Theorem5.6, note that on a line bundle L → X, a metri h is loally just astritly positive funtion. Hene we an write it as h = e−ϕ for somesmooth, real-valued, funtion ϕ, (stritly speaking, ϕ is not a funtionbut rather a olletion of smooth real-valued loal funtions, related in aonsistent way on overlaps; we will return to this shortly), so norms of
L-valued di�erential forms orrespond to weighted L2-norms in C

n. Wewill emphasize this by writing the norm of a setion as ‖u‖2 = |u|2e−ϕ,from now on.Furthermore, in C
n a su�ient ondition for the global solvability ofthe inhomogenous ∂̄-equation was for the domain to be pseoduonvex.This meant that there existed a plurisubharmoni exhaustion or weightfuntion ϕ. Formally, in our setting, this orresponds to,

0 < i∂∂̄ϕ = i∂̄∂ log e−ϕ = i∂̄(h−1∂h) = iΘ,i.e. the existene of a stritly positively urved metri on L.We mentioned earlier that by the Whitney embedding theorem, anysmooth manifold an be smoothly embedded in R
m for some m ∈ N. Wealso noted that the situation is very di�erent in the omplex setting, as theonly ompat omplex manifolds that an be holomorphially embeddedinto some C

m, are points. It is then quite natural to ask: Is there anysimilar embedding theorem for ompat omplex manifolds?The answer is provided by the elebrated Kodaira embedding theorem,[K5℄.Theorem 8.2. Let X be a ompat omplex manifold. There exists apositive line bundle over X, (i.e. a line bundle arrying a stritly positivelyurved metri), if and only if X an be holomorphially embedded intoomplex projetive spae P
m, for some m ∈ N.This deep and important theorem niely illustrates how losely inter-twined the three general strategies to understand the geometry of mani-folds, mentioned at the beginning of setion 6, are. In order to study thesubvarieties of a ompat omplex manifold X, one was led to introdueholomorphi line bundles, and using these in turn, one an deide if X infat is a submanifold of omplex projetive spae, the simplest and mostfundamental ompat omplex manifold.Kodaira's original proof for the theorem relies heavily on, and was themain motivation for, his vanishing theorem. The argument is quite in-volved and algebrai, using blow-ups and sheaf ohomology theory, ([K5℄;32



Introdutionsee also [W1℄ Chapter 6). Using a more general form of the L2-estimates,(whih of ourse did not exist at the time Kodaira proved the theorem),an analyti proof of the theorem an be given. In order to formulate these,we �rst need to introdue singular metris on line bundles.Up until now, a hermitian metri h = e−ϕ on a line bundle L→ X, hasbeen a smooth mapping from the base manifold to the spae of stritlypositive hermitian norms on the �ber. This means that given an openover {Uj} ofX, ϕ is given by a olletion of smooth, real-valued funtions
{ϕj}, subordinate to {Uj}, suh that

ϕj − ϕk = log |τjk|
2 on Uj ∩ Uk 6= ∅,where {τjk} are the transition funtions of L. (An immediate onsequeneof this is that if ϕ is a metri and χ is a global funtion on X, then ϕ+χis also a metri.)As the τjk:s are holomorphi and non-vanishing, log |τjk|

2 will be pluri-harmoni, and so
∂∂̄ϕj = ∂∂̄ϕk on Uj ∩ Uk 6= ∅.Hene, for smooth loal representatives, ϕj , the urvature form

Θ = ∂∂̄ϕ := ∂∂̄ϕj ,is a globally de�ned (1, 1)-form, although ϕj is just loally de�ned.A singular metri ϕ on L is de�ned in the same way, but withoutrequiring the ϕj :s to be smooth. Instead one requires ϕj ∈ L1
loc(X) andso the urvature form, ∂∂̄ϕ, is well-de�ned in the sense of urrents.Singular hermitian metris on holomorphi line bundles were intro-dued by Demailly in [D3℄, and ever sine then they have been a funda-mental tool in interpreting notions of omplex algebrai geometry analyt-ially.It is possible to prove the existene of solutions to the inhomogenous

∂̄-equation with L2-estimates, in the setting of singular metris. This isthe ontent of the Demailly-Nadel vanishing theorem, [D2,N1℄. Demaillyshowed this in a very general ontext, (namely for omplex manifolds ar-rying some omplete Kähler metri), but we will just need it for projectivemanifolds. These are ompat Kähler manifolds on whih it is known toexist some line bundle arrying a positively urved, smooth metri. (Theterminology is explained by the Kodaira embedding theorem whih im-plies that these manifolds an be seen as submanifolds of projetive spae.)We then have the following theorem.Theorem 8.3. Let (X,ω) be a projetive manifold. Let L be a holomor-phi line bundle over X having a, possibly singular, metri h = e−ϕ whose33



Introdutionurvature satis�es,(8.3) i∂∂̄ϕ ≥ εω,for some ε > 0.For any ∂̄-losed (n, q)-form f with values in L and q ≥ 1, there existsan (n, q − 1)-form u, with values in L, suh that
∂̄u = f,and(8.4) ∫

X
|u|2e−ϕdVω ≤

1

εq

∫

X
|f |2e−ϕdVω,provided that the right hand side is �nite.Here, the urvature assumption (8.3) is in the sense of urrents, (itbasially just means that the loal representatives of ϕ an be hosen tobe stritly plurisubharmoni).An important di�erene ompared to Theorem 8.1, is the very lastproviso. The �niteness of the L2-norm with respet to a singular metri,implies that f must vanish on the non-integrability lous of e−ϕ. In par-tiular, if ϕ = log |s|2, for some holomorphi funtion s, this means that

f must vanish on the zero lous of s. Through the L2-estimates (8.4),this in turn implies that u must vanish on the zero lous of s too. Thisobservation is originally due to Bombieri, [B6℄, and is extremely useful foronstruting global holomorphi funtions with spei� zero sets.A nie illustration of this tehnique is the analyti proof of the Kodairaembedding theorem mentioned previously. We end this setion with arough sketh of the di�ult diretion of the proof.Given a projetive manifold X, we want to onstrut a holomorphimapping K : X → P
N for some N ∈ N, whih is an embedding. Thismeans that K is injetive, and has an injetive di�erential dK. We willonly disuss the injetivity of K.Let L → X be a line bundle and let E denote the spae of globalholomorphi setions of L, (whih we will assume to be non-empty). Fur-thermore, let s0, . . . , sN be a basis for E, (one an show that E is �nite-dimensional by using the Montel theorem).We laim that there exists a line bundle L suh that
K(x) := [s0(x), . . . , sN (x)],is the sought for embedding. Although it might look strange at �rstsight, the right hand side is well-de�ned. What we mean is simply thevalues of the sj :s with respet to some loal trivialisation of L. If we34



Introdutionhange to another trivialisation, all the setions get multiplied with thesame quantity, so we will still get the same point in P
N . Hene K iswell-de�ned and learly holomorphi.The main step in proving the injetivity of K, is to show that for anytwo points a, b ∈ X, a 6= b, we an onstrut a global holomorphi setion

s to L, suh that s(a) 6= 0 and s(b) = 0. We will now outline how Theorem8.3 an be used to ahieve this.As X is projetive, there exists a holomorphi line bundle F → Xwith a smooth metri φ, whih is stritly positively urved,
i∂∂̄φ ≥ εω,for some ε > 0. Assume that dimCX = n, identify a neighborhood of awith C

n, and set
ψa(z) := χa(z) log |z − a|2n,where χa is a ut-o� funtion with χa ≡ 1 lose to a. ψa is a loallyintegrable funtion on X, and one an show that,

i∂∂̄ψa ≥ −Cω,for some onstant C, whih is independent of a if X is ompat.For k ∈ N,
kφ+ ψawill then de�ne a singular metri on kF := F⊗k, (the k times tensorprodut of F ), and

i∂∂̄(kφ+ ψa) ≥ (kε− C)ω ≥ ω,for large enough k.As a �rst step we will use this metri in Theorem 8.3 to onstrut aglobal, ∂̄-losed (n, 0)-form, u with values in kF , and u(a) 6= 0.Choose loal oordinates (z1, . . . , zn) in a neighborhood of a, let χ be aut-o� funtion with χ ≡ 1 near the origin, and let uloc := dz1 ∧ . . .∧ dzn.De�ne a smooth (n, 0)-form s̃ with values in kF loally through, s̃ :=
χuloc. Then,

f = ∂̄s̃ = ∂̄χ ∧ uloc,will be a smooth, ∂̄-losed (n, 1)-form with values in kF . Also, the L2-norm of f with respet to the metri kφ+ ψa will be �nite, as f vanisheson the non-integrability lous of e−ψa . Hene, Theorem 8.3 an be appliedto produe a kF -valued (n, 0)-form v, with ∂̄v = f and
∫

X
|v|2e−(kφ+ψa)dVω ≤

∫

X
|f |2e−(kφ+ψa)dVω.35



IntrodutionSine f is smooth, it follows from regularity theory for the ∂̄-operatorthat v is smooth as well. Furthermore, as the L2-norm of v is �nite withrespet to kφ+ ψa, this implies that v(a) = 0.Thus,
u := s̃− vis a ∂̄-losed, (n, 0)-form with values in kF and u(a) 6= 0.Di�erential forms of bidegree (n, 0) with values in kF , are just setionsof kF ⊗ KX , where KX is the anonial bundle of X. If we repeat theabove argument but with kF replaed by kF ⊗K∗

X , (i.e. take the tensorprodut with the dual bundle of KX), we get a global holomorphi setion
u to kF with u(a) 6= 0.Finally, we an make sure that u(a) 6= 0, and u(b) = 0, by repeatingthis last argument one again, but this time with,

f = χ̃uloc,where χ̃ ≡ 1 in a neighborhood of a, but χ̃ ≡ 0 in a neighborhood of b.Also, we add the funtion
ψb(z) := χ log |z − b|2n,to the metri.Returning to the beginning of the proof and the mapping K, we seethat by hoosing the line bundle L as kF , and using the tehnique skethedabove for large enough k, we an onstrut a global holomorphi setion swith s(a) 6= 0 and s(b) = 0. As {sj}Nj=0 form a basis for the set of globalholomorphi setions, s an be written as

s =
N

∑

j=0

cjsj ,for some funtions {cj}Nj=0. Hene,
N

∑

j=0

cjsj(a) 6= 0, and N
∑

j=0

cjsj(b) = 0,and so,
K(a) = [s0(a) : . . . : sN (a)] 6= [s0(b) : . . . : sN (b)] = K(b).36



Introdution9. Positivity onepts and L2-theory for vetor bundlesIn the previous setion we introdued L2-theory for the inhomogenous
∂̄-equation for line bundle valued di�erential forms. We now turn to theextension of these results to vetor bundles.Given a hermitian, holomorphi vetor bundle (E, h) over a omplexmanifold X, we have already de�ned the urvature tensor Θ of h in setion7. For Theorem 8.1 hold, the existene of a stritly positively urvedmetri on the line bundle is ruial. Hene the �rst thing we need toonsider in the vetor bundle setting is what it should mean for Θ to bepositive.Let {dzj}nj=1 denote an orthonormal basis for the holomorphi otan-gent bundle of X, at some �xed point. Then, if rankCE = r, the urvaturetensor is of the form,

Θ =
n

∑

j,k=1

Θjkdzj ∧ dz̄k,where {Θjk}
n
j,k=1 are r × r matrix-valued funtions on X.In the line bundle setting, r = 1, and so the Θjk:s are just salar-valued funtions. Hene the natural de�nition of positivity for Θ is tode�ne it as the positivity of the real (1, 1)-form iΘ; (the i is needed sine

dz ∧ dz̄ = −2idx ∧ dy).For matrix-valued oe�ients, however, there exists no similar 'anon-ial' way of de�ning the positivity of Θ. Over time, two di�erent, butequally important notions of positivity for vetor bundles have evolved:Positivity in the sense of Gri�ths, and positivity in the sense of Nakano.De�nition 10. Let (E, h) → X, and Θ be as above.(i) We say that Θ is stritly positively urved in the sense of Gri�ths,if for any (smooth) setion s of E, and any n-tuple of omplex numbers
{vj}

n
j=1(9.1) n

∑

j,k=1

(

Θjks, s
)

h
vj v̄k ≥ ε‖s‖2

h

n
∑

j=1

|vj |
2,for some ε > 0.(ii) We say that Θ is stritly positively urved in the sense of Nakano, iffor any n-tuple of setions {sj}nj=1 of E,(9.2) n

∑

j,k=1

(

Θjksj , sk
)

h
≥ ε

n
∑

j=1

‖sj‖
2
h,37



Introdutionfor some ε > 0.Semi-positivity, semi-negativity and strit negativity are de�ned similarly.It follows immediately from the de�nitions that when r = 1, boththese notions oinide and redue to the positivity ondition in the linebundle setting. Other immediate onsequenes of the de�nitions are thatGri�ths and Nakano positivity also oinide when n = 1, i.e. for vetorbundles over Riemann surfaes, and that being positively urved in thesense of Nakano implies being positively urved in the sense of Gri�ths;just hoose sj = svj in (9.2). The onverse property, however, does nothold in general (see e.g. [D1℄ Chapter VII, Example 6.8, or Example 4 inPaper IV).Positivity in the sense of Gri�ths is losely onneted to, and stemsfrom, a ommon algebro-geometri proedure of reduing vetor bundlesto line bundles. For a vetor bundle E → X this is ahieved throughthe study of the so alled Serre line bundle OP(E)(1) over the projetivebundle P(E) → X, assoiated to E.These onepts an be onstruted in an abstrat, global way, (see e.g.[L1℄, Appendix A), but in order to present the ideas as, (in our view), on-retely as possible, we will only disuss the loal setting here. Hene let Edenote an arbitrary omplex vetor bundle over X with rankCE = r, andlet E∗ denote the dual bundle. We an de�ne a �ber bundle π : P(E) → Xby de�ning eah �ber through P(E)x := P(E∗
x), the projetivization of an

r-dimensional vetor spae. Loally, for an open set U ⊂ X, we have that
E∗

∣

∣

U
≃ U × C

r and then P(E)
∣

∣

U
≃ U × P

r−1. Furthermore the pullbakbundle π∗E∗ → P(E) will then loally be given by
π∗E∗

∣

∣

U
≃ U × P

r−1 × C
rand so we an de�ne the tautologial line subbundle OP(E)(−1) of π∗E∗as

OP(E)(−1)
∣

∣

U
:= {(x, [w], z) ; z ∈ [w]}.The Serre line bundle OP(E)(1) is then de�ned as the dual of OP(E)(−1).The notation is justi�ed by the fat that �berwise this is nothing but theusual line bundle O(1) over P

r. Thus we have that the global holomorphisetions of OP(E)(1) over any �ber are in one-to-one orrespondene withthe linear forms on E∗
x, i.e. with the elements of Ex; (this is the reasonfor projetivizing E∗ instead of E).Suppose now that the vetor bundle E is equipped with a hermitianmetri h. Then the Serre line bundle OP(E)(1) will inherit a orresponding38



Introdutionmetri π∗h. One an show that positivity in the sense of Gri�ths isequivalent to π∗h being positively urved in the line bundle sense, ([G℄).Remark 1. It might very well happen that OP(E)(1) an be equippedwith a positively urved metri that does not stem from a metri on Eto begin with. The Gri�ths onjeture, ([G℄), says that E then an beequipped with a Gri�ths positive metri. This has been shown to be trueon Riemann surfaes by Umemura [U℄, and Campana and Flenner [CF℄,but the general ase is still unresolved.The following useful and important properties hold in the Gri�thsontext.Proposition 9.1. Let (E, h) → X be a hermitian, holomorphi vetorbundle over a omplex manifold X.(i) Θh is Gri�ths positive if and only if the dual metri h−1 on E∗ isnegatively urved in the sense of Gri�ths.(ii) Θh is Gri�ths negative if and only if for any holomorphi setion uto E,
log ‖u‖2

h,is plurisubharmoni.We will prove (i) in the setting of real metris in Paper IV, (Propo-sition 2.1; see e.g. [B2℄ setion 2 for a omplex proof), and (ii) will bedisussed in Paper I. Both these properties are of fundamental importanein the latter paper.Now, in ontrast to the algebro-geometri origins of Gri�ths posi-tivity, urvature in the sense of Nakano is an analyti onept diretlyonneted to the existene of solutions to the inhomogenous ∂̄-equation,for form-valued setions of vetor bundles. Namely, if one reworks theproof of Theorem 8.1 in the vetor bundle setting, strit Nakano positiv-ity will be the neessary replaement of the positivity ondition (8.1). Infat, we have the following vetor-bundle version of Theorem 8.1.Theorem 9.2. Let (X,ω) be a ompat Kähler manifold, and let (E, h) bea hermitian, holomorphi vetor bundle over X. Assume that the metri
h is stritly positively urved in the sense of Nakano,(9.3) iΘ ≥Nak. εω ⊗ I,for some ε > 0.For any ∂̄-losed (n, q)-form f with values in E and q ≥ 1, there existsan (n, q − 1)-form u with values in E, suh that

∂̄u = f,39



Introdutionand(9.4) ∫

X
‖u‖2dVω ≤

1

εq

∫

X
‖f‖2dVω.Apart from the L2-estimates, Theorem 9.2 is known as the Nakanovanishing theorem, [N2℄. In the �rst part of Paper II we show that thistheorem an be proven using the ∂∂̄-Bohner-Kodaira method, introduedby Siu in [S℄, whih we believe to be muh simpler than the traditionalproofs.Being so losely related to the inhomogenous ∂̄-equation, Nakano pos-itivity is of fundamental importane for the analytial study of holomor-phi vetor bundles. Unfortunately, it is di�ult to obtain an intuitiveunderstanding of this onept, and in ontrast to the Gri�ths setting,there are not many nie funtorial properties. For example, the dual of aNakano positive vetor bundle, in general, is not Nakano negative.We have already noted that Nakano positivity implies Gri�ths pos-itivity. In the other diretion we have the following important theoremdue to Demailly and Skoda, ([DS℄; see also Paper IV, Theorem 2.2).Theorem 9.3. Let (E, h) → X be a hermitian, holomorphi vetor bun-dle over a omplex manifold X. If h is positively urved in the sense ofGri�ths, then hdeth is positively urved in the sense of Nakano.10. Summary of papersWe end the introdution with a brief summary of the papers.10.1. Paper I: Singular hermitian metris on holomorphi vetorbundles. In setion 8 we introdued singular metris on holomorphi linebundles and the Demailly-Nadel vanishing theorem, and identi�ed these asfundamental tools in the analyti study of omplex geometry. In Paper I,we wanted to investigate whether anything similar existed for holomorphivetor bundles.Up until now, a hermitian metri h̃ on a holomorphi vetor bundle

E → X has been a positive de�nite hermitian inner produt (·, ·)h̃(x) oneah �ber Ex, that varies smoothly with x. Assume now that we dropthe smoothness assumption and introdue singular hermitian metris onholomorphi vetor bundles, as just measurable maps from the base spaeto the spae of positive de�nite hermitian forms on the �ber. What anbe said about these?Let h denote suh a singular metri. In the line bundle setting, h isloally just a funtion, and so the onnetion matrix and the urvature anbe written as θ = h−1∂h = ∂ log h and Θ = ∂̄θ = ∂̄∂ log h. Hene, all that40



Introdutionis needed for these onepts to be well-de�ned in the sense of urrents isthat log h ∈ L1
loc. In the vetor bundle setting, h is matrix-valued, whihmakes the situation muh more ompliated.Now although we an not de�ne the urvature tensor of h immediately,we an nevertheless still de�ne what it means for a singular hermitian met-ri to be positively and negatively urved in the sense of Gri�ths. Thisis due to the equivalent haraterisation of Gri�ths negativity of Propo-sition 9.1 (ii), whih does not require any regularity from h, and property(i). It turns out that this de�nition of Gri�ths urvature rules out most ofthe possible pathologial examples of singular hermitian metris, (PaperI, Proposition 1.1).The main question that we wanted to investigate in Paper I was:Given a singular hermitian metri h on a holomorphi vetor bundle

E → X with rankCE ≥ 2, where h is urved in the sense of Gri�thsas in Proposition 9.1, is it possible to de�ne θ, and in partiular Θ, in ameaningful way; for example as urrents with measure oe�ients?In Paper I, Proposition 1.2, the urrent ∂h is shown to be loally
L2-valued and θ := h−1∂h an a.e. wellde�ned matrix of (1, 0)-forms.For the urvature, however, the situation turns out to be more in-volved. In Paper I, Theorem 1.3, we give a simple example whih showsthat Θ := ∂̄(h−1∂h) an not be de�ned everywhere as a urrent withmeasure oe�ients. Thus Gri�ths urvature in the sense of Proposition9.1, is not enough to de�ne the urvature in general.In the example of Theorem 1.3, the set of points that ause problemsis the singular lous, {deth = 0}, of the metri. Hene, the natural thingto investigate next is if it is possible to de�ne the urvature outside ofthis set; (it is an immediate onsequene of Paper I, Proposition 1.2, (ii)that the singular lous has Lebesgue measure zero). In Paper I, Theorem1.4, we show that it is indeed possible to de�ne the urvature as a urrentwith measure oe�ients outside of the singular lous.In partiular, it is now possible to de�ne what it means for a singularhermitian metri to be strictly positively urved in the sense of Gri�thsand Nakano, outside of the singular lous. Sine the urvature assump-tions needed in order to solve the inhomogenous ∂̄-equation with Hörman-der's L2-estimates, only depend on the absolutely ontinuous part of theurvature, the �rst ingredient needed in order to prove Demailly-Nadeltype of vanishing theorems on vetor bundles, an hene be ahieved.41



IntrodutionThe seond ingredient that is needed are regularisation results; it is ofutmost importane to be able to approximate the stritly positively urvedsingular metri with a sequene of smooth metris, while keeping the stritpositivity. We end Paper I with showing that suh regularisations arepossible for stritly Gri�ths positive and negative, and Nakano negativesingular hermitian metris. We disuss these approximation results andthe resulting vanishing theorem in the summary of Paper II.10.2. Paper II: The Nakano vanishing theorem and a vanishingtheorem of Demailly-Nadel type for holomorphi vetor bundles.As mentioned in the introdution, the �rst part of Paper II is devoted toproving the Nakano vanishing theorem with Hörmader type L2-estimates,(Theorem 9.2), using Siu's so alled ∂∂̄-Bohner-Kodaira method, ([S℄).In Riemannian geometry the basi idea behind the Bohner methodis (very vaguely) to alulate the Laplaian of the norm of forms. Thenone an draw onlusions about the geometry by arefully analyzing theresulting expression and putting restritions on the urvature of the met-ri. The straightforward adaptation of this method in our omplex settingwould then be to alulate and analyze(10.1) ∆‖α‖2where α is an E-valued, (n, p)-form. However, it turns out that thisapproah will not work out well and so the historial approah to thevanishing theorem has been through the Kähler identities.What Siu demonstrates in [S℄, (among other things), is that if themetri is dually, negatively urved in the sense of Nakano, an approahthat is very similar to the lassial Bohner method an be applied. Themain idea is to let the E-valued (0, q)-form α remain form-valued, replae
∆ by i∂∂̄ and alulate

i∂∂̄cq{α, α} ∧ ω
n−q−1/(n− q − 1)!instead of (10.1).In [B1℄ Berndtsson shows that in the line bundle ase, this methodan be applied diretly, without resorting to dual bundles, and he alsoderives the Hörmander L2-estimates. Here the situation is slightly moreinvolved. Let (L, φ) be a positively urved line bundle over X and let

α be an (n, p)-form with values in L. It turns out that the appropriateounterpart of (10.1) in this ase is
i∂∂̄cn−pγα ∧ γα ∧ ωp−1e−φ/(p− 1)!42



Introdutionwhere γα, (up to a onstant), is the Hodge-∗ of α, i.e. an L-valued (n −
p, 0)-form suh that

α = γα ∧ ωp/p!.The �rst aim of Paper II is to show that this latter approah worksalmost without hange for forms with values in a vetor bundle, therebyproving Theorem 9.2.In the seond part of Paper II, we return to the singular hermit-ian metris of Paper I. As mentioned previously, in order to extend theDemailly-Nadel vanishing theorem to vetor bundles, we need to de�newhat it means for the singular hermitian metri to be stritly positivelyurved in the sense of Nakano, (at least a.e. with respet to Lebesguemeasure), and we must also be able to approximate the metri with asequene of smooth metris, while keeping the strit positivity.In Paper I we show that it is possible to obtain a regularising sequenewhen the metri is stritly negatively urved in the sense of Gri�ths,(Paper I, Proposition 6.1). Through duality, (Proposition 9.1, (i)), itthen follows that this an be obtained in the stritly Gri�ths positivease as well. In Paper I we also prove a similar approximation result forsingular hermitian metris that are stritly negatively urved in the senseof Nakano, (Paper I, Proposition 1.6). However, as the dual of a Nakanonegative metri, in general is not Nakano positive, the same trik an notbe applied here.Both regularisation results of Paper I are based on alternative hara-terisations of Gri�ths and Nakano negativity in terms of some plurisub-harmoni funtion. For Nakano positive metris, suh an alternative har-aterisation does not exist and so some other approah to regularisationis needed. Unfortunately, despite many e�orts, we have so far failed to�nd any sueful way to ahieve this.When n = 1, i.e. for vetor bundles over Riemann surfaes, the on-epts of Gri�ths and Nakano positivity oinide. Hene, using the reg-ularisation result of Paper I, in the seond part of Paper II we prove aDemailly-Nadel type of vanishing theorem for holomorphi vetor bundlesover Riemann surfaes, (Paper II, Theorem 1.2).10.3. Paper III: Extensions of Ohsawa-Takegoshi type for se-tions of a vetor bundle. The extension theorem of Ohsawa and Takegoshi,whih �rst appeared in [OT℄, is a very useful tool in omplex analysis, witha lot of appliations. This theorem has many di�erent variants, one of themost basi being the so alled adjuntion version. This version states thefollowing. 43



IntrodutionLet X be a ompat Kähler manifold and let S be a smooth hyper-surfae in X. S then de�nes a line bundle on X, whih we will denote by
(S) and whih has a global holomorphi setion s suh that S = s−1(0).Also let L be a omplex line bundle over all of X. Assume that the linebundles L and (S) have smooth metris φ and ψ respetively, satisfyingthe urvature assumptions(10.2) i∂∂̄φ ≥ 0,and(10.3) i∂∂̄φ ≥ δi∂∂̄ψ,for some δ > 0. Assume furthermore that s is normalized so that

|s|2e−ψ ≤ e−1/δ.Finally let u be a global holomorphi setion of KS + L|S .Then there exists a global holomorphi setion U of KX + (S) + Lsuh that
U = ds ∧ uon S and suh that U sats�es the estimate

∫

X
cnU ∧ Ūe−φ−ψ ≤ C

∫

S
cn−1u ∧ ūe−φfor some onstant C, where we use the shorthand notation cp := ip

2 .Hene, we see that just as in Hörmander's theorem on the solvabilityof the inhomogenous ∂̄-equation, (Theorem 8.1), the Ohsawa-Takegoshiextension theorem onsists of two parts: One whih states that an ex-tension is possible, and a seond part whih gives an L2-estimate for theextension. Just as with Hörmander's theorem it is mainly this estimate,(with a ompletely universal onstant), that makes the theorem so useful;(see e.g. [D1℄, Chapter VIII for some appliations).There are many di�erent ways of proving this extension theorem, butbasially all of them are rather involved. The approah that we are in-terested in is the one introdued by Berndtsson in [B4℄, where he showsthat �nding an extension with L2-estimates is equivalent to solving theinhomogenous ∂̄-equation,
∂̄v = u ∧ [S],where [S] is the urrent of integration on S. What makes the analysisinvolved in this proof, is that the right hand side no longer is an L2-valued di�erential form, but a urrent. In [B1℄, Leture 6, it is shown thata modi�ed version of the ∂∂̄-Bohner-Kodaira method an be applied.44



IntrodutionHaving studied the ∂∂̄-Bohner-Kodaira method extensively in PaperII, our main goal in Paper III is to use it to prove a vetor bundle versionof the extension theorem. This is ahieved in Paper III, Theorem 1.1 and1.2, and the proof of these theorems onstitute the main part of the paper.After the publiation of [OT℄, Ohsawa extended the theorem in di�er-ent diretions in a long series of papers. In one of these papers, [O2℄, heobtains a result whih shares some similarities to our extension theorems,although the formulation is quite di�erent from ours, ([O2℄ Theorem 4).We believe that our ompat Kähler setting is slightly more general, as[O2℄ Theorem 4 only treats omplex manifolds that beome Stein after re-moving a losed subset. The main di�erene, however, lies in our methodsof proof. We onsider our adaptation of the ∂∂̄-Bohner-Kodaira methodto the vetor bundle setting to be our main originality. Furthermore,Guan and Zhou have reently proven a muh more general version of theextension theorem, and also managed to determine the optimal onstantin the L2-estimate, ([GZ℄, Theorem 2.1).Now in setion 9 we introdued the so alled Serre line bundle OP(E)(1)over the projetive bundle P(E), assoiated with a given vetor bundle
E → X. We also showed that this line bundle, in some sense, ontainsall the information about E. Hene, a ommon method when one wantsto generalize a result that is already known for line bundles to vetorbundles, is to study OP(E)(1) → P(E), instead of E → X. This an bedone for the Ohsawa-Takegoshi extension theorem as well.This approah is interesting in our ase sine it turns out that the ur-vature assumptions needed for our vetor bundle versions of the extensiontheorem, (i.e. the vetor bundle replaements of (10.2)-(10.3)), requirepositivity in the sense of Nakano, whih is a very strong requirement.Thus, it is natural to inquire about the relation between our vetor bun-dle assumptions, and the urvature assumptions in the Serre line bundlesetting.In the last part of Paper III, we show that the urvature assump-tions in the Serre line bundle setting, imply the vetor bundle onditions.Hene, although being urved in the sense of Nakano is a strong onditionto impose on a metri, the onditions that arise when one redues theproblem to line bundles are in fat even stronger. A key ingredient inproving these impliations is Theorem 9.3 by Demailly and Skoda.10.4. Paper IV: Log onavity for matrix-valued funtions and amatrix-valued Prékopa theorem. When we introdued plurisubhar-moni funtions in setion 5, we mentioned that they are the omplex-analyti ounterparts of onvex funtions in real analysis. Using this45



Introdutionanalogy, it is not too di�ult to show that a positively urved metri ona trivial line bundle, is nothing but the omplex version of a log onavefuntion.In Paper IV we turn this analogy around and extend it to trivialvetor bundles, i.e. we introdue two new 'onvexity' notions for real,matrix-valued funtions, orresponding to Gri�ths and Nakano positivityin the omplex-analyti setting. We all these being log onave in thesense of Gri�ths and Nakano. In the �rst part of the paper we studysome examples and investigate the fundamental properties of these newonepts; (these turn out to be very similar to the basi omplex propertiesintrodued in setion 9).For log onave funtions an important result that is losely related tothe Brunn-Minkowski inequality is the following theorem due to Prékopa,([P℄).Theorem 10.1. Let ϕ : R
m
t ×R

n
y → R be onvex and de�ne ϕ̃ : R

m → Rthrough
e−ϕ̃(t) =

∫

Rn

e−ϕ(t,y)dV (y).Then ϕ̃ is onvex.Just as for the Brunn-Minkowski inequality, Prékopa's theorem an beproven in many di�erent ways, eah pointing towards various diretionsof generalisations. One of these proofs, due to Brasamp and Lieb [BL℄,is based on a weighted Poinaré inequality, whih in fat turns out to be areal variable version of the Hörmander L2-estimates for the inhomogenous
∂̄-equation, (see e.g. [B1℄, setion 1.3). Hene, it is quite natural to ask ifthere exist any orresponding omplex variants of the Prékopa theorem.This question has been extensively studied in reent years, mainly byBerndtsson, who in a series of papers has obtained omplex analyti oun-terparts of the Prékopa theorem, with gradually inreasing generality. Intheir most general form, these are theorems on the urvature properties ofertain in�nite rank holomorphi vetor bundles assoiated with holomor-phi �brations, ([B2℄, Theorem 1.1 and 1.2). We will not desribe theseresults and their relation to the Brunn-Minkowski and Prékopa theoremhere, but refer the reader to [B5℄, setions 2 and 3.Now after we introdue the notions of Gri�ths and Nakano log on-avity for matrix-valued funtions in the �rst part of Paper IV, we proeedto show a matrix-valued Prékopa theorem in the seond part, (Paper IV,Theorem 1.2). The main idea behind the proof of this theorem is to gen-eralize one of the above mentioned omplex-analyti Prékopa theoremsof Berndtsson, (Paper IV, Theorem 1.5), and then reast this theorem in46



Introdutionthe real variable setting. This latter reformulation is ahieved through aweighted, vetor-valued Paley-Wiener type of theorem, (Paper IV, The-orem 1.4), and the proof of this theorem and Paper IV, Theorem 1.5,onstitutes the main bulk of the seond part of Paper IV.Referenes[A℄ M. Andersson, Topis in omplex analysis, Universitext, Springer-Verlag, NewYork, 1997.[B1℄ B. Berndtsson, An introdution to things ∂, Analyti and algebrai geometry,IAS/Park City Math. Ser., vol. 17, Amer. Math. So., Providene, RI, 2010,pp. 7�76.[B2℄ B. Berndtsson, Curvature of vetor bundles assoiated to holomorphi �bra-tions, Ann. of Math. (2) 169 (2009), no. 2, 531�560.[B3℄ B. Berndtsson, L
2-methods for the ∂̄-equation, Kass University Press, CTH(1995).[B4℄ B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theoremof Donnelly-Fe�erman, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 4, 1083�1094.[B5℄ B. Berndtsson, The openness onjeture and omplex Brunn-Minkowski in-equalities (2014), Preprint, available at arXiv:1405.0989[math.CV℄.[B6℄ E. Bombieri, Algebrai values of meromorphi maps, Invent. Math. 10 (1970),267�287.[BL℄ H. J. Brasamp and E. H. Lieb, On extensions of the Brunn-Minkowski andPrékopa-Leindler theorems, inluding inequalities for log onave funtions,and with an appliation to the di�usion equation, J. Funtional Analysis 22(1976), no. 4, 366�389.[BT℄ R. Bott and L. W. Tu, Di�erential forms in algebrai topology, Graduate Textsin Mathematis, vol. 82, Springer-Verlag, New York-Berlin, 1982.[CF℄ F. Campana and H. Flenner, A haraterization of ample vetor bundles on aurve, Math. Ann. 287 (1990), no. 4, 571�575.[D1℄ J-P. Demailly, Complex Analyti and Di�erential Geometry, Monograph,available at http://www-fourier.ujf-grenoble.fr/~demailly.[D2℄ J.-P. Demailly, Estimations L
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