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Abstract: We study achievable rates for four-dimensional (4D) constellations for spectrally
efficient optical systems based on a (suboptimal) bit-wise receiver. We show that PM-QPSK
outperforms the best 4D constellation designed for uncoded transmission by approximately 1
dB. Numerical results using LDPC codes validate the analysis.
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1. Introduction

Long-haul fiber-optic communication systems utilize coherent transmission, where both quadratures and both polar-
izations of the electromagnetic field are used, resulting in a four-dimensional (4D) signal space. To meet the demands
for spectral efficiency, multiple bits are encapsulated in each constellation symbol. Combined with the use of forward
error correction (FEC), this leads to the challenging problem of designing coded modulation (CM) schemes for optical
communications [1].

One promising candidate for future optical CM systems is the (noniterative) bit-interleaved coded modulation
(BICM) paradigm [2,3]. The key feature of BICM is a suboptimal but flexible bit-wise receiver. In BICM, the detection
process is decoupled: soft information on the bits is calculated and then a soft FEC decoder is used. BICM systems
are used in most wireless standards and they have also been considered for optical communications in, i.e., [1, 4, 5].

From an information-theoretic point of view, the suboptimality of a bit-wise receiver is reflected in terms of achiev-
able rates, i.e., in the number of bits per symbol that can be reliably transmitted through the channel. The mutual
information (MI) is the largest achievable rate for any kind of communication scheme. For a bit-wise decoder, this
quantity is replaced by the so-called generalized mutual information (GMI). Although the MI and the GMI coincide
when the signal-to-noise ratio (SNR) tends to infinity, the MI is strictly larger than the GMI for any finite SNR. This
penalty depends on the constellation and its binary labeling and can be very large [3, Fig. 4], [6].

In this paper, we study achievable rates for 4D constellations with a bit-wise receiver. The results show that constel-
lations that are good for uncoded systems are also good in terms of MI. However, these constellation are not necessarily
the best choice for coded systems based on (suboptimal) a bit-wise receiver. Numerical results based on low-density
parity check (LDPC) codes confirm the theoretical analysis.

2. Model and Achievable Rates

We consider the vectorial additive white Gaussian noise (AWGN) channel Y = X + Z, where X,Y,Z are four-
dimensional real vectors. The transmitted vector X is selected with equal probability from a constellation X !

{x1,x2, . . . ,xM}, where M = 2m. The components of the noise vector Z are independent, zero-mean, Gaussian ran-
dom variables with variance N0/2 in each dimension. The average symbol energy is Es ! (1/M)∑M

i=1‖xi‖2.
Fig. 1 shows the considered transmitter and receiver structures. The CM transmitter consists of a FEC encoder

(ENC), which encodes a binary input sequence U into m binary sequences B1, . . . ,Bm, and a memoryless mapper Φ,
which maps B1, . . . ,Bm into a sequence of symbols X, one symbol at a time. For a rate Rc FEC encoder, the transmission
rate in bit/symbol is R = Rcm. The average bit energy is Eb = Es/R. At the receiver side, an optimal receiver based
on the maximum-likelihood (ML) rule can be implemented. An alternative to the ML receiver is a (suboptimal) bit-
wise receiver. In this case, soft information on the coded bits B1, . . . ,Bm is calculated by Φ−1, typically in the form
of logarithmic likelihood ratios (LLRs) L1, . . . ,Lm. These LLRs are then passed to an off-the-shelf soft FEC decoder



(DEC).1 The bit-wise receiver in Fig. 1 is usually known as a BICM receiver, owing its name to the original works [2,3],
where a bit-level interleaver was included between the encoder and mapper. We refrain from using such a name
because the interleaver might or might not be included, and if included, we assume it to be part of the FEC encoder.2
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Fig. 1. Transmitter and receiver structures.

For the optimum ML receiver and a given constellation X , the largest
achievable rate is the MI between X and Y, denoted by I(X;Y). Thus, de-
coding with arbitrarily low probability of error is possible if R ≤ I(X;Y).
On the other hand, an achievable rate for the bit-wise receiver in Fig. 1 is
the GMI, given by ∑

m
k=1 I(Bk;Y), where Bk is the kth bit at the mapper’s

input (see Fig. 1). It follows from the chain rule of MI that ∑
m
k=1 I(Bk;Y)≤

I(X;Y), which can be understood as the loss in terms of achievable rates
caused by the use of a bit-wise receiver. Furthermore, the GMI (unlike the
MI) is highly dependent on the binary labeling (i.e., Φ in Fig. 1). Gray
codes are known to be good for high SNR [3, Fig. 4], [6], [7, Sec. IV], but
for many constellations, they do not exist.

3. Numerical Results

We consider three 4D constellations with M = 16 (m = 4): polarization-
multiplexing quadrature phase-shift keying (PM-QPSK) [8], the constella-
tion C4,16 introduced in [9], which is the most power-efficient constellation
of this size for uncoded transmission, and subset-optimized PM-QPSK (SO-PM-QPSK) [10]. In terms of uncoded
error probability, C4,16 and SO-PM-QPSK offer asymptotic gains over PM-QPSK of 1.11 dB and 0.44 dB, resp. While
C4,16 is asymptotically the best constellation, PM-QPSK and SO-PM-QPSK have the advantage of a lower implemen-
tation complexity. The asymptotic gains offered by C4,16 have been experimentally demonstrated in [11, 12], where
it was also shown that C4,16 gives higher MI than PM-QPSK at all SNRs. This indicates that C4,16 is the best choice
among these formats for capacity-approaching CM schemes with ML decoding.

In Fig. 2 (left), the MI and GMI for the three constellations under consideration are shown.3 For SO-PM-QPSK,
we use the labeling proposed in [10], while for C4,16 we use a labeling (found numerically) that gives high GMI for
a wide range of SNR. For PM-QPSK, we use the unique Gray code, which assigns a separate bit to each dimension.
Thus, PM-QPSK becomes the Cartesian product of four 2-PAM constellations, and ∑m

k=1 I(Bk;Y) = I(X;Y). In other
words, PM-QPSK causes no penalty if a bit-wise receiver is used. This is not the case for the two other constellations.
The results in Fig. 2 show that C4,16 indeed gives a high MI at all SNRs; however, a large gap between the MI and
GMI exists (more than 1 dB for low rates). Therefore, C4,16 will not work well with a bit-wise receiver. The situation
is similar for SO-PM-QPSK, although in this case the losses are smaller. Interestingly, when comparing the GMIs for
C4,16 and SO-PM-QPSK, we observe that they cross at around R ≈ 3.25 bit/symbol. This indicates that a capacity-
approaching scheme with a bit-wise receiver will perform better with C4,16 than SO-PM-QPSK at high SNR. However,
PM-QPSK is the best choice at any SNR.

To show that the conclusions above correspond to gains in terms of bit-error rate (BER), we simulated the three
constellations with irregular repeat-accumulate LDPC codes. Each transmitted block consists of 64,800 coded bits,
four code rates Rc = 1/4,1/2,3/4,9/10 are considered, and the transmission rates are R= 1.0,2.0,3.0,3.6 bit/symbol,
resp. The coded bits are assigned cyclically to the binary sequences B1,B2,B3,B4,B1, . . ., with no interleaver. At the
receiver, LLRs are calculated and passed to the soft FEC decoder, which performs 50 iterations. The obtained BER
results are shown in Fig. 2 (right). Among the three constellations, PM-QPSK (green curves) always gives the lowest
BER. The gains offered by PM-QPSK with respect to C4,16 for low rates are about 1 dB. More importantly, these gains
are obtained by using a very simple demapper that computes four 2-PAM LLRs, one in each dimension. These results
also show that the GMI curves in the left graph predict the coded performance of the system well. For example, the
GMI curves indicate that at high coding rates, C4,16 is better than SO-PM-QPSK, which is exactly what happens in
terms of BER (i.e., for Rc = 9/10, C4,16 gives a lower BER than SO-PM-QPSK).

4D constellations with M = 256 (m = 8), i.e., 2 bit/dimension, were also investigated. In this case, we compared the
GMI for two constellations: PM-16QAM, i.e., a straightforward generalization of PM-QPSK formed as the Cartesian
product of four 4-PAM constellations, and a numerically optimized constellation that gives low error probability at

1Alternatively, a hard-decision demapper can be combined with a binary-input decoder.
2Note that when an interleaver is included, ML decoding becomes impractical, and thus, the bit-wise receiver is the preferred alternative.
3Calculated numerically using the ready-to-use Gauss–Hermite quadrature expressions in [7, Sec. III].
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Fig. 2. Left: MI (solid lines) and GMI (dashed lines) for three constellations. Right: BER for the
LDPC code with different rates and PM-QPSK (green), C4,16 (red), and SO-PM-QPSK (blue).

high SNR, which we denote by C4,256. The results obtained in this case are quite similar to the ones shown in Fig. 2,
i.e., the constellation C4,256 gives higher MI and lower GMI than PM-16QAM. Thus, C4,256 is unsuitable for a bit-wise
receiver. A major advantage with PM-16QAM is the existence of Gray codes, which not only offer good performance
but also let the LLRs be calculated in each dimension separately, thus reducing complexity.

4. Conclusions

In this paper, we studied achievable rates for coherent optical coded modulation systems where the receiver is based
on a bit-wise structure. Both analytical and numerical results show that simply transmitting and receiving independent
data in each polarization is the best choice in this scenario. Multidimensional constellations, which are optimal with
ML receivers and in uncoded systems, are not good for bit-wise receivers. On top of the weaker performance and
higher decoder complexity, such constellation also carry the design challenge of selecting a good binary labeling.
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