EPJ Web of Conferences **66**, 03094 (2014) DOI: 10.1051/epjconf/ 20146603094 © Owned by the authors, published by EDP Sciences, 2014

Exclusive measurements of nuclear breakup reactions of ¹⁷Ne

F. Wamers^{1,2,3,4,a}, J. Marganiec¹, F. Aksouh^{4,5}, Yu. Aksyutina⁴, H. Álvarez-Pol⁶, T. Aumann^{3,4}, S. Beceiro-Novo⁶, C.A. Bertulani⁷, K. Boretzky⁴, M.J.G. Borge⁸, M. Chartier⁹, A. Chatillon⁴, L.V. Chulkov^{4,10}, D. Cortina-Gil⁶, I.A. Egorova¹¹, H. Emling⁴, O. Ershova^{4,12}, C. Forssén¹³, L.M. Fraile¹⁴, H. Fynbo¹⁵, D. Galaviz⁸, H. Geissel⁴, L.V. Grigorenko^{4,10,16}, M. Heil⁴, D.H.H. Hoffmann³, J. Hoffmann⁴, H. Johansson¹³, B. Jonson¹³, C. Karagiannis⁴, M. Karakoç^{7,17}, O.A. Kiselev⁴, J.V. Kratz¹⁸, R. Kulessa¹⁹, N. Kurz⁴, C. Langer^{4,12}, M. Lantz^{13,20}, K. Larsson⁴, T. Le Bleis^{4,21}, R. Lemmon²², Yu.A. Litvinov⁴, K. Mahata^{4,23}, C. Müntz¹², T. Nilsson¹³, C. Nociforo⁴, G. Nyman¹³, W. Ott⁴, V. Panin^{3,4}, Yu.L. Parfenova^{16,24}, S. Paschalis^{4,9}, A. Perea⁸, R. Plag^{4,12}, R. Reifarth^{4,12}, A. Richter³, C. Rodriguez-Tajes⁶, D. Rossi^{4,18}, K. Riisager¹⁵, D. Savran^{1,2}, G. Schrieder³, N.B. Shul'gina^{10,13}, H. Simon⁴, J. Stroth¹², K. Sümmerer⁴, J. Taylor⁹, O. Tengblad⁸, E. Tengborn¹³, H. Weick⁴, C. Wimmer^{4,12}, and M.V. Zhukov¹³

¹ ExtreMe Matter Institute EMMI and Research Division, GSI, Darmstadt, Germany

² Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main, Germany

³ Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany

⁴GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

⁵King Saud University, Riyadh, KSA

⁶Universidade de Santiago de Compostela, Santiago de Compostela, Spain

⁷ Texas A&M University-Commerce, Commerce, USA

⁸ Instituto de Estructura de la Materia, CSIC, Madrid, Spain

⁹University of Liverpool, Liverpool, UK

¹⁰ Russian Research Center "The Kurchatov Institute", Moscow, Russia

¹¹Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia

¹² Institut für Angewandte Physik, Goethe Universität, Frankfurt am Main, Germany

¹³Chalmers University of Technology, Göteborg, Sweden

¹⁴ Universidad Complutense de Madrid, Marid, Spain

¹⁵Dept. of Physics and Astronomy, Aarhus University, Aarhus, Denmark

¹⁶ Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

¹⁷Akdeniz University, Antalya, Turkey

¹⁸ Johannes Gutenberg-Universität Mainz, Mainz, Germany

¹⁹Jagiellonian University, Krakow, Poland

²⁰Uppsala Universitet, Uppsala, Sweden

²¹ Technische Universität München, München, Germany

²²STFC Daresbury Laboratory, Daresbury, UK

²³Bhabha Atomic Research Centre, Mumbai, India

²⁴ Institute of Nuclear Physics, Moscow State University, Moscow, Russia

Abstract. We have studied one-proton-removal reactions of about 500 MeV/u ¹⁷Ne beams on a carbon target at the R³B/LAND setup at GSI by detecting beam-like ¹⁵O-p and determining their relative-energy distribution. We exclusively selected the removal

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^ae-mail: f.wamers@gsi.de

EPJ Web of Conferences

of a ¹⁷Ne halo proton, and the Glauber-model analysis of the ¹⁶F momentum distribution resulted in an s^2 contribution in the ¹⁷Ne ground state of about 40 %.

1 Introduction

The proton-dripline nucleus ¹⁷Ne has raised considerable interest in nuclear physics in the past two decades. While this nucleus also has been studied in the context of nuclear astrophysics [1] and in the search for two-proton radioactivity [2], the focus of the present work has its origin in nuclear-structure physics. The goal is to clarify the ¹⁷Ne ground-state structure and its long proclaimed candidacy as a 2proton halo nucleus [3]. Like the famous 2n-halo nuclei ¹¹Li or ⁶He, ¹⁷Ne is a Borromean three-body system. Its binary subsystems (p-p and ¹⁵O-p) are unbound, and it can be described as an ¹⁵O core with two valence protons, predominantly in $(1s_{1/2})^2$ or $(0d_{5/2})^2$ configurations. The spin and parity of ¹⁷Ne are $J^{\pi} = \frac{1}{2}^{-1}$, its half-life for β^+ -decay to ¹⁷F is $T_{1/2} = 109.2$ ms, its proton-separation energies are $S_{1p}=1479$ keV and $S_{2p}=943$ keV, and it does not have any bound excited states. While earlier experiments had already revealed certain indications for the halo characteristics of ¹⁷Ne (e.g., an anomalous beta decay branching ratio [4], and large matter radius [5]), the more recent experimental and theoretical studies have focused on the s^2 -weight in the s^2/d^2 configuration mixture of the valence proton pair in the ¹⁷Ne ground state. Yet, there is no final conclusion: the three-body model of Grigorenko et al. [6], which is the benchmark for our study, predicts a value of 48 %. Kanungo et al. [7] have measured narrow longitudinal-momentum distributions of the ¹⁵O core in connection with a large cross section in 2p-removal reactions from ¹⁷Ne beams on a Be target. They determined an s^2 -weight of 70% and concluded to observe a 2-proton halo. However, this experiment was not exclusive to the removal of halo protons, but also includes that of the core protons. Further reported s^2 -weights are 40 % [8], "dominant" [9], and 15 % [10]. Our aim is to provide a conclusive result.

2 Experimental Technique and Setup

We report on an experiment performed at GSI in 2007. Secondary ¹⁷Ne beams were produced in fragmentation reactions of (630 MeV/u) primary ²⁰Ne beams impinging on a thick (6.3 g/cm²) beryllium target at the entrance of the fragment separator (FRS). They were delivered to the experimental setup, impinging on a secondary (370 mg/cm²) carbon target at an energy of about 500 MeV/u and an intensity of about 10⁴ ions/s. In the one-proton knockout reactions induced there, individual protons were instantly removed from the 17 Ne projectiles, leading to unbound 16 F decaying in-flight to 15 O+p. The ¹⁶F fragments were spectators, thus in the c.m. system carried only the recoil to the intrinsic momentum of the removed proton: $\vec{p}(p) = -\vec{p}({}^{16}F)$. Correspondingly, their momentum distribution reflects the removed protons' intrinsic momentum. Since the width and shape of these momentum distributions are sensitive to the angular-momentum value of the removed proton, a configuration mixture in the studied nucleus (such as the mentioned s^2/d^2 mixture in ¹⁷Ne) can be decomposed by a fit with momentum distributions calculated in the Eikonal approximation using single-particle wave functions. At GSI, such reactions were studied using the R³B/LAND complete-kinematics reaction setup. The ¹⁷Ne ions were identified and tracked onto the carbon reaction target, which was surrounded by a box of Si strip detectors and a thick 4π NaI shell segmented into 162 detectors for measuring light recoil particles and gamma rays from excited fragments. ¹⁵O fragments and beam-like protons travelling under forward angles were detected in two silicon strip detectors closely behind the target, separated in the ALADIN dipole magnet, and identified and tracked by two fibre detectors and a ToF wall under 16.7 degrees (¹⁵O fragments), and by two drift chambers and a ToF wall under 31 degrees (protons).

INPC 2013

3 Analysis and Preliminary Results

For each one-proton-knockout event, the ¹⁷Ne projectile and the ¹⁵O+p ejectiles were identified, tracked, and their four-momenta were reconstructed. Using the *invariant-mass* technique, the ¹⁵O-p relative kinetic energy distribution has been determined and is shown in figure 1(a), next to the ¹⁶F level scheme (b), and a reaction scheme (c). In figure 1(a), the experimental data (black markers)

Figure 1: (a) Measured relative-energy distribution of 15 O-p (black markers), and locations of the 16 F resonances states (coloured arrows). (b) Level scheme of 16 F resonances in terms of the 15 O-p relative energy [11]. The lowest 0⁻ state is the 16 F ground state. (c) Proton-knockout processes from 17 Ne core and halo states, as depicted in [6].

are shown together with the location (figure 1(b)) of the first four low-lying and next four higherlying ¹⁶F resonances (orange full and purple dashed arrows/lines). The experimental spectrum can be broadly divided into three regions: a narrow low-energy peak between 0 and 2 MeV, an intermediate region (2-4 MeV), and a high-lying broad peak (around 4.5 MeV). The low-lying peak is quite well in agreement with the position of the four low-lying negative-parity states in ¹⁶F, which can be attributed to the knockout of a halo proton from ¹⁷Ne. The high-lying broad peak may be attributed to the knockout of a proton from the ¹⁵O core of ¹⁷Ne leading to population of the positive-parity states in ¹⁶F, see figure 1(c) [6]. An exhaustive description of the ¹⁵O-p relative-energy spectrum is currently ongoing. Detailed Monte-Carlo simulations including our experimental response are being employed, and contributions from competing reaction channels are being evaluated. Nevertheless, gating on the low-energy peak (< 2 MeV), yields an exclusive selection of single-proton removal from the 17 Ne halo. Figure 2 shows the longitudinal (a) and x-transverse (b) 16 F momentum distributions for events in which a proton was removed from the ¹⁷Ne halo. Both distributions have been fitted by a superposition (red full lines) of momentum distributions corresponding to the knockout of either s-wave (green dashed lines) or d-wave (blue dotted lines) protons using a Glauber-model [12]. The description of the data is very good, and the preliminary analysis yields a value of around 40% of s-wave content in the ¹⁷Ne halo.

4 Summary and Acknowledgements

We have measured the ¹⁵O-p relative-energy spectrum and the ¹⁶F momentum distribution following one-proton knockout on ¹⁷Ne projectiles. Via a low-energy gate in the ¹⁵O-p E_{rel} spectrum we can

Figure 2: Momentum distributions of the ${}^{16}F({}^{15}O+p)$ system after one-proton knockout from the halo of ${}^{17}Ne$. A Glauber-model calculation for proton knockout from single-particle states (green dash: *s*-wave, blue dots: *d*-wave) in ${}^{17}Ne$ is used to fit (red full) the experimental data (black markers).

exclusively select the knockout of halo protons, and the Glauber-model analysis of the ¹⁶F recoilmomentum distributions yields an *s*-wave content of about 40 % in the ¹⁷Ne halo. The final aspects of the analysis will comprise the setup response, contaminations, and the partial cross sections. This work was supported by the Alliance Program of the Helmholtz Association (HA216/EMMI), by the German Federal Ministry for Education and Research (BMBF) (project 05P12RDFN8) by HIC for FAIR, by Eurons (European Commission contract no. 506065), and by GSI.

References

- [1] L.V. Grigorenko, K. Langanke, N.B. Shul'gina, M.V. Zhukov, Physics Letters B 641, 254 (2006)
- [2] M.J. Chromik, P.G. Thirolf, M. Thoennessen, B.A. Brown, T. Davinson, D. Gassmann, P. Heckman, J. Prisciandaro, P. Reiter, E. Tryggestad et al., Physical Review C 66, 024313 (2002)
- [3] M.V. Zhukov, I.J. Thompson, Physical Review C 52, 3505 (1995)
- [4] M.J.G. Borge, J. Deding, P.G. Hansen, B. Jonson, G. Martinez-Pinedo, P. Møller, G. Nyman, A. Poves, A. Richter, K. Riisager et al., Physics Letters B 317, 25 (1993)
- [5] A. Ozawa, T. Kobayashi, H. Sato, D. Hirata, I. Tanihata, O. Yamakawa, K. Omata, K. Sugimoto, D. Olson, W. Christie et al., Physics Letters B 334, 18 (1994)
- [6] L.V. Grigorenko, Y.L. Parfenova, M.V. Zhukov, Physical Review C 71, 051604 (2005)
- [7] R. Kanungo, M. Chiba, B. Abu-Ibrahim, S. Adhikari, D. Q. Fang, N. Iwasa, K. Kimura, K. Maeda, S. Nishimura, T. Ohnishi et al., European Physics Journal A 25, 327 (2005)
- [8] W. Geithner, T. Neff, G. Audi, K. Blaum, P. Delahaye, H. Feldmeier, S. George, C. Guénaut, F. Herfurth, A. Herlert et al., Physical Review Letters 101, 252502 (2008)
- [9] K. Tanaka, M. Fukuda, M. Mihara, M. Takechi, D. Nishimura, T. Chinda, T. Sumikama, S. Kudo, K. Matsuta, T. Minamisono et al., Physical Review C 82, 044309 (2010)
- [10] T. Oishi, K. Hagino, H. Sagawa, Phys. Rev. C 82, 024315 (2010)
- [11] D.R. Tilley, H.R. Weller, C.M. Cheves, Nuclear Physics A 564, 1 (1993)
- [12] M. Karakoç, A. Banu, C.A. Bertulani, L. Trache, Phys. Rev. C 87, 024607 (2013)