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ABSTRACT
The number of concurrently executing processes and their memory demand in multi-

core systems continue to grow. Larger and still fast main memory is needed for meeting

the demand and avoiding an increase in backing store accesses that are much slower and

less energy efficient than main memory accesses. Luckily, Non-Volatile Memory (NVM)

technologies can bridge the cost, density, performance, and energy efficiency gaps

between backing store and DRAM, the conventional main memory technology. Thus,

NVM can be combined with DRAM into hybrid main memory striving to enjoy both the

larger capacity enabled by NVM and the speed and energy efficiency of DRAM.

NVM adds a new dimension to the system design space inspiring researchers to

investigate sophisticated hybrid memories. This has resulted in a large body of work

that, unfortunately, lacks systematization. The thesis at hand addresses this problem by

proposing a taxonomy and a notation for classifying hybrid main memory organizations.

The design space of hybrid systems is large, and the best partitioning of resources

between DRAM and NVM is nontrivial. The high implementation and computation

efforts of detailed modeling impede extensive design space exploration required for

finding the most promising design points. This thesis aids such extensive exploration by

proposing a workload methodology and first-order models for system-level execution

time and energy. Next, the thesis contributes with Rock, an insightful performance model

showing how memory system throughput can be boosted by installing more DRAM and

NVM thus motivating Design-time Resource Partitioning (DRP). The lack of an approach

suitable for extensive partitioning is addressed by proposing Crystal, a DRP method

powered by the system-level models and framing partitioning as an optimization problem,

such that the first-order nature of the models does not restrict its applicability, as shown

by validation. Crystal is practical and facilitates early and rapid DRP finding promising

design points for further detailed evaluation. For instance, Crystal shows how for specific

workloads higher performance and energy efficiency can be achieved by employing NVM

with the speed and energy consumption of NAND Flash instead of a much faster and

more energy efficient NVM technology like phase-change memory.

Keywords: DRAM, Non-Volatile Memory, Taxonomy, Methodology, Design Space

Exploration, System-Level Models, Performance, Energy Efficiency.



ii



Preface

The thesis at hand is for the degree of Licentiate of Engineering, a Swedish degree

between MSc and PhD. Parts of the contributions presented in this thesis have previously

been accepted to workshops:

• Dmitry Knyaginin, Sally A. McKee, and Georgi N. Gaydadjiev, “A hybrid

main memory systems taxonomy,” in Memory Architecture and Organiza-

tion Workshop, co-located with Embedded Systems Week, Tampere, Finland,

Oct. 2012, pp. 1–6.

• Dmitry Knyaginin, Georgi N. Gaydadjiev, and Per Stenström, “Crystal:

A design-time resource partitioning method for hybrid main memory,” in

Workshop on Reproducible Research Methodologies, co-located with Int.

Symp. on High Performance Computer Architecture, Orlando, FL, USA,

Feb. 2014, pp. 1–6.

The following manuscript contains parts of the contributions presented in this thesis and

has been submitted to an international conference:

• Dmitry Knyaginin, Georgi N. Gaydadjiev, and Per Stenström, “Crystal: A

design-time resource partitioning method for hybrid main memory,” Under

review since Mar. 2014.

iii



iv PREFACE



Acknowledgments

I cannot thank enough my advisor, Per Stenström, for his inspiration, mentorship, and

guidance. Without Per I would not be able to navigate in the deep waters of research.

Many thanks to my co-advisor and examiner, Georgi N. Gaydadjiev, for his input and

feedback, and for the opportunities to practice research discussions in Russian.

I am grateful to Sally A. McKee for her input at the early stages of my PhD program,

for the successful collaboration on the taxonomy paper, and especially for her help with

editing the text of the first draft of Crystal.

A big thank you to Lars Svensson for his support, advice, and weekly meetings during

2011-12. The work done during that period laid the ground for this thesis.

I would like to extend my gratitude to everybody with whom I have been fortunate to

discuss my work. In particular, I would like to thank Anurag Negi and Magnus Själander

for countless discussions inside and outside the premises of Chalmers, and Vinay Jethava

for his help with various mathematical questions.

Many thanks to Eva Axelsson, Gerardo Schneider, Jan Jonsson, Johan Karlsson, Koen

Lindström Claessen, Malin Nilsson, Marianne Pleen-Schreiber, Peter Helander, Rune

Ljungbjörn, and Tiina Rankanen for providing administrative and technical support. I

would also like to thank Bhavishya Goel and Jacob Lidman for maintaining the ttitania

cluster. A special thank you to Anna-Lena Karlsson for her help during my first days at

Chalmers and for finding a beautiful apartment for me.

I express my deep appreciation to everybody at the Department of Computer Science and

Engineering and especially at the Division of Computer Engineering for contributing to

the warm and professional environment. In particular, I thank Alen Bardizbanyan and

Angelos Arelakis for the productive atmosphere inside our office.

v



vi ACKNOWLEDGMENTS

Finally, I would like to thank all my friends. Special thanks to Alex Geppert, Dima

Mishenin, Jeff Jung, John Moyes, Katarina Steffenburg, Martin Lever, Morris Stuttard,

Oleg Bogdanov, and Vilhelm Verendel for their support, and to my family—Victoria,

Vladimir, and Oleg—for their love.

The thesis at hand is based upon work supported by the Swedish Research Council (Veten-

skapsrådet) under the Chalmers Adaptable Multicore Processing Project (CHAMPP).

Dmitry Knyaginin

Gothenburg, May 2014



Contents

Abstract i

Preface iii

Acknowledgments v

Acronyms xv

1 Introduction 1
1.1 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Workload Methodology 7
2.1 Program Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Workload Representation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Workload Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Profiling Setup and Program Profiles . . . . . . . . . . . . . . . . . . . 14

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Memory Technologies 19
3.1 Basic Memory Cell Properties . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.4 Magnetic Memory . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.5 Other Technologies . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



viii CONTENTS

3.2 Device Organization and Operation . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Basic Solid-State Device . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 DRAM Device . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 PCM Device . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 NAND Flash Device . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 NOR Flash Device . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.6 SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.7 HDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Device-Level Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 DRAM Models . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 PCM Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 NAND Flash Models . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.4 SSD and HDD Models . . . . . . . . . . . . . . . . . . . . . . 39

3.3.5 Example Estimates . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Hybrid Memory Systems Taxonomy 43
4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Flat Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Hierarchical Systems . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Hybrid Memory Systems Design Methodology 53
5.1 System-Level Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Rock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Complexity of Equal-Area Partitioning . . . . . . . . . . . . . 75

5.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



CONTENTS ix

5.3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusion 95
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 101



x CONTENTS



List of Figures

1.1 Normalized bit cost vs. bit density and access dynamic energy vs. access

latency of memory technologies . . . . . . . . . . . . . . . . . . . . . 2

2.1 Example miss curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Algorithm of high- and low-utility DRA . . . . . . . . . . . . . . . . 12

2.3 Miss curves for illustrating high-utility, low-utility, and utility-agnostic

DRA policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Miss curves of CG, lbm, mcf, sjeng, and soplex . . . . . . . . . . 16

4.1 Baseline system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 TPN–L notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 TPN–L classification of contemporary hybrid memory systems . . . . 51

5.1 Memory hierarchy organizations . . . . . . . . . . . . . . . . . . . . 56

5.2 Detailed diagram of system modeled . . . . . . . . . . . . . . . . . . 56

5.3 Rock for WA and systems with PCM and SSD . . . . . . . . . . . . . 65

5.4 Rock for WB and systems with PCM and SSD (part I) . . . . . . . . . 66

5.5 Rock for WB and systems with PCM and SSD (part II) . . . . . . . . 69

5.6 Rock for WB and systems with NAND Flash and HDD (part I) . . . . 72

5.7 Rock for WB and systems with NAND Flash and HDD (part II) . . . . 73

5.8 Equal-area partitioning and multiple local minima of execution time . . 76

5.9 Crystal for hybrids with HDD and mcf/soplex set . . . . . . . . . . 82

5.10 Crystal for hybrids with HDD and lbm/sjeng set . . . . . . . . . . . 83

5.11 Crystal for hybrids III-L and III-H and lbm/sjeng set . . . . . . . . 84

5.12 Crystal for hybrids with HDD and CG/sjeng set . . . . . . . . . . . . 85

5.13 Sensitivity of Crystal for hybrid II-L and W4 from lbm/sjeng set . . 87

xi



xii LIST OF FIGURES

5.14 Sensitivity of Crystal for hybrid I-L and W4 from lbm/sjeng set . . . 89

5.15 Sensitivity of Crystal for hybrid III-L and W4 from lbm/sjeng set . . 91



List of Tables

2.1 Selected characteristics of CG, lbm, mcf, sjeng, and soplex . . . . 17

3.1 Characteristics of example DRAM, PCM, NAND and NOR Flash devices 25

3.2 Subset of DDR3 SDRAM commands . . . . . . . . . . . . . . . . . . 29

3.3 Selected DRAM characteristics . . . . . . . . . . . . . . . . . . . . . 30

3.4 Currents of DRAM revisions F and G . . . . . . . . . . . . . . . . . . 30

3.5 PCM array latencies and energies normalized to those of DRAM . . . 35

3.6 Selected NAND Flash characteristics . . . . . . . . . . . . . . . . . . 37

3.7 Selected characteristics of SSD and HDD . . . . . . . . . . . . . . . . 39

3.8 64B access latencies of DRAM, PCM, and NAND Flash . . . . . . . . 40

3.9 4KB access latencies of DRAM, PCM, NAND Flash, SSD, and HDD . 40

3.10 64B access dynamic energies of DRAM, PCM, and NAND Flash . . . 41

3.11 4KB access dynamic energies of DRAM, PCM, NAND Flash, SSD, and

HDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Assumed model parameters . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Variables in Equations (5.1) to (5.12) . . . . . . . . . . . . . . . . . . 58

5.3 System configuration for Rock . . . . . . . . . . . . . . . . . . . . . 63

5.4 Model parameters for Rock . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Selected memory characteristics for Rock . . . . . . . . . . . . . . . . 63

5.6 Low-utility DRA for WB when M2 area is zero . . . . . . . . . . . . 67

5.7 Low-utility DRA for WB when total area is six DIMMs . . . . . . . . 68

5.8 High-utility DRA for WB when M2 area is zero . . . . . . . . . . . . 70

5.9 High-utility DRA for WB when total area is three DIMMs . . . . . . . 71

5.10 System configuration for Crystal . . . . . . . . . . . . . . . . . . . . 78

xiii



xiv LIST OF TABLES

5.11 Default model parameters for Crystal . . . . . . . . . . . . . . . . . . 78

5.12 Characteristics of DRAM revisions F and G . . . . . . . . . . . . . . 79

5.13 Selected memory characteristics for Crystal . . . . . . . . . . . . . . . 80

5.14 Hybrids and their baselines . . . . . . . . . . . . . . . . . . . . . . . 80

5.15 Model parameters for sensitivity analysis of Crystal . . . . . . . . . . 86



Acronyms

1T One Transistor

1T1C One Transistor and One Capacitor

1T1MTJ One Transistor and One Magnetic Tunnel Junction

1T1R One Transistor and One Resistor

CPU Central Processing Unit

DDR Double Data Rate

DIMM Dual In-line Memory Module

DLL Delay-Locked Loop

DRA Design-time Resource Allocation

DRAM Dynamic Random Access Memory

DRP Design-time Resource Partitioning

FeRAM Ferroelectic Random Access Memory

HDD Hard Disk Drive

I/O Input/Output

L1C Level-One Cache

LLC Last Level Cache

LRU Least Recently Used

MLC Multi-Level Cell

MRAM Magnetoresistive Random Access Memory

MTJ Magnetic Tunnel Junction

xv



xvi ACRONYMS

NVM Non-Volatile Memory

ONFI Open NAND Flash Interface

OS Operating System

PCM Phase-Change Memory

RDP Run-time Data Placement

RRAM Resistive Random Access Memory

SATA Serial Advanced Technology Attachment

SCM Storage-Class Memory

SDRAM Synchronous Dynamic Random Access Memory

SLC Single-Level Cell

SRAM Static Random Access Memory

SSD Solid-State Disk

STT-MRAM Spin Transfer Torque Magnetoresistive Random Access Memory

VLSI Very Large Scale Integration



1
Introduction

The contemporary trend of increasing core counts in computing systems [1] implies

growing numbers of concurrently executing programs in the system workload. The

problem sizes of contemporary programs continue to grow, too, especially in the domains

of scientific computing, databases, and consolidated cloud environments. These two

trends result in a continuously increasing demand for larger and still fast memory of

computing systems.

A typical high-performance memory system is organized as a hierarchy. Central

Processing Unit (CPU) memory, such as the register file and a cache hierarchy from

Level-One Cache (L1C) down to Last Level Cache (LLC), is followed by larger but

slower main memory that is further followed by even more large and slow backing store.

Caches are conventionally implemented as Static Random Access Memory (SRAM),

main memory is built from Dynamic Random Access Memory (DRAM), and backing

store is composed of magnetic Hard Disk Drives (HDDs). Each of the technologies has

pros and cons, offering different bit densities (the number of bits per mm2), bit costs,

1
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Figure 1.1: Normalized bit cost vs. bit density and access dynamic energy vs. access

latency of memory technologies

access latencies, and dynamic energies. The purpose of the hierarchy is to enjoy the pros

while hiding the cons that negatively impact the performance and energy efficiency of

the entire system. However, the gaps between the adjoining levels of the conventional

memory hierarchy are rather large and uneven. For instance, the access latency gap

between SRAM LLC and DRAM main memory is about three times, while between

DRAM and HDD this gap is at least four orders of magnitude. The larger the gaps, the

more challenging it is to hide the cons of the hierarchy levels. Thus, bridging or reducing

the gaps between DRAM and HDD remains a major design challenge.

Fortunately, technological progress in the field of solid-state memory [1, 2] has

contributed a number of promising Non-Volatile Memory (NVM) technologies that fit

in the gaps between DRAM and HDD. One such technology, Phase-Change Memory

(PCM) [3, 4], is gaining maturity and has the potential to offer a higher bit density than

DRAM but at a penalty of slower and less energy efficient accesses. Another technology,

NAND Flash, is mature and offers a higher bit density and a lower bit cost than DRAM,

but accessing it is even slower and less energy efficient than accessing PCM. NVM has

enabled high-performance disks, such as Solid-State Disk (SSD) built from NAND Flash.

Figure 1.1 aggregates the bit density, cost, access latency, and dynamic energy

numbers of representative memory technologies [1, 5–12], where access denotes both
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random reads and writes of typical sizes. All of the numbers are normalized to the smallest

respective numbers of SRAM and are expressed as ratios (×). They are of a sufficient

accuracy to illustrate the gaps between the technologies. The numbers are represented by

ranges, because they depend on many factors, including the implementation process and

the type and size of access. Such ranges of values for each technology and characteristic

are shown by the rectangles. For instance, consider the right part of the figure (normalized

access dynamic energy vs. access latency). The bottom left corner of the SRAM rectangle

shows the access latency and dynamic energy of L1C, and the top right corner shows

those of LLC. The left edge of the DRAM rectangle depicts the latency of a read access,

the right edge the latency of a write access, the bottom edge the dynamic energy of a read

access served by a single DRAM device, and the top edge the dynamic energy of a write

access served by a rank of eight less energy-efficient DRAM devices. For the purposes of

this chapter no further details need to be discussed, as the figure clearly shows that the

gaps exist even if broad ranges of technology characteristics are considered.

NVM technologies can help bridge the gaps between the levels of the conventional

memory hierarchy from the main memory side by enabling hybrid main memory, i.e.,

main memory divided into two or more partitions where each partition is optimized for

specific purposes (e.g., performance, energy efficiency, capacity, or cost). In addition,

NVM technologies can help reduce the gaps from the backing store side by enabling

faster and more energy efficient disks, such as SSD. This thesis investigates hybrid main

memory. The rest of this chapter details the problems addressed by the thesis, lists my

contributions, and explains the organization of the thesis.

1.1 Problem Statements
Hybrid main memory systems have attracted vivid interest among researchers that

have proposed and investigated a plurality of hybrid system organizations [13–30].

Unfortunately, this large body of work lacks systematization. This complicates positioning

new hybrid memory proposals within the existing body of work. Systematization of

hybrid main memory system organizations is one of the problems addressed by this thesis.

An obvious design challenge for hybrid main memory is that memory resources

are restricted from the physical, technological, and cost perspectives. This boils the

design process down to optimization of resources under design goals that can differ. For

instance, if the goal is to reduce the cost of main memory, DRAM can be combined with

a less expensive NVM technology to create hybrid memory of a lower cost but the same
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capacity as DRAM-only main memory. If the goal is to increase capacity, DRAM can

be combined with a bit-denser NVM technology to store more bits in the same physical

area as DRAM-only main memory. Finding the best amounts of DRAM and NVM is a

nontrivial design-time resource partitioning problem. The best solution depends on many

factors, including the workload, properties of memory technologies, and characteristics

of subsystems other than main memory and disk (e.g., the CPU). Characteristics of

hybrid systems implementing different partitioning options can vary widely. This makes

design-time partitioning a fundamental problem for hybrid main memory systems with a

multi-dimensional design space.

Partitioning of main memory resources between different technologies has been

studied using simulators [14–16] and prototyping [13]. Simulation typically involves

a significant implementation overhead and consumes large computational resources,

impeding extensive design space exploration. Prototyping with, e.g., a virtual machine

monitor [13], requires a substantial implementation effort and restricts exploration to

a given host configuration (e.g., the total capacity of main memory). The lack of a

design-time partitioning method suitable for rapid and extensive hybrid memory design

space exploration is another problem tackled by this thesis.

1.2 Contributions

The thesis addresses the problems stated above by making the following contributions:

• First, a taxonomy of hybrid main memory organizations is proposed [31]. The tax-

onomy is applied to classify and illustrate the existing diversity of hybrid systems,

highlighting organizations that have received most attention among researchers.

• Next, the thesis contributes models for first-order estimation of system-level

execution time and energy of conventional and hybrid main memory systems. The

models embody a light-weight tool for obtaining insights about memory system

design trade-offs. They power a model named Rock, that illustrates the potential

of design-time resource partitioning for improving memory system performance.

• Further, the models enable the final contribution of the thesis: Crystal, a design-

time resource partitioning method for hybrid main memory [32]. Crystal facilitates

quick and early identification of the most promising resource partitioning options

for detailed evaluation. Thus, Crystal greatly simplifies the design process and

represents a valuable addition to the system designer’s toolbox.
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1.3 Thesis Organization
The rest of the thesis is organized as follows. Chapter 2 first explains how programs and

workloads—the stimuli of the memory system—are represented and classifies them by

memory behavior. The chapter identifies the type of workloads that benefit from hybrid

main memory and introduces programs used for composing workloads in this thesis. Next,

memory technologies—the building blocks of hybrid memory systems—are presented

in Chapter 3 from basic memory cell properties to device organization and operation to

device modeling. The device models provide estimates of device characteristics used

throughout this thesis (including Figure 1.1). Chapter 4 presents the first contribution, a

taxonomy of hybrid main memory systems, systematizing the existing plurality of their

organizations. Chapter 5 leverages the previous chapters and presents the second and third

contributions of this thesis: Section 5.1 describes the models for system-level execution

time and energy, Section 5.2 introduces Rock, and Section 5.3 presents Crystal. The

thesis is concluded by Chapter 6 offering a review of the contributions in Section 6.1 and

an overview of future work in Section 6.2.
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2
Workload Methodology

Workloads are the stimuli driving design decisions in computing systems. It takes a

certain amount of time and energy to produce results for a particular workload on a

particular system, and reducing system-level execution time and/or energy are major

design goals. The goals can be achieved by optimizing system hardware, software, or the

code of the workload. This thesis is about optimizing the main memory of computing

systems by increasing its capacity for executing workloads faster and with less energy.

A workload may comprise one or more programs that are single- or multi-threaded.

This thesis considers multi-program workloads where each program is single-threaded.

Benefits from memory system optimization realizable by workloads depend on their

memory behavior. This thesis uses workloads for which execution time and energy can

be reduced by increasing main memory capacity.

Main memory optimizations can be evaluated using simulators of different degrees

of detail (e.g., full-system, system-call emulation, execution-driven, or trace-driven) or

analytic memory models. The latter approach represents systems at the highest level

7
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of abstraction compared to the other approaches and thus is the fastest. As has been

stated in Section 1.1, the design space of interest in this thesis is large and detailed

modeling impedes its extensive exploration. Analytic modeling facilitates such extensive

exploration and thus suits the purposes of this thesis best. It requires representing each

program by a profile (described in Section 2.1), and the procedure of recording profiles is

labeled profiling here. The aggregate behavior of programs in a workload is modeled by

distributing available main memory capacity among the programs in a way that represents

their memory behavior (as defined by their profiles) as well as memory management.

The next section explains profiling of single-thread programs, Section 2.2 describes

the representation of entire workloads, and Section 2.3 introduces a workload classifi-

cation by the kind of benefits that workloads enjoy from memory system optimizations.

Section 2.4 presents the profiling setup and the profiles of programs used for composing

workloads in this thesis, and Section 2.5 summarizes the chapter.

2.1 Program Profiling

The goal of profiling in this thesis is to create compact representations of programs

sufficient for quick evaluation of main memory optimization ideas in Chapter 5. Such

profiling requires the detailed execution and analysis of a program just once, when

recording its profile, as described further in this section. Each evaluation iteration reuses

the profile instead of running the program in detail, and this dramatically reduces the

computation effort of evaluation.

Memory system optimization is typically performed for specific program execution

intervals of interest. Information in main memory is managed at the granularity of an

Operating System (OS) page, and pages referenced by a program during an execution

interval constitute the program’s working set of that interval [33]. In this thesis, each

program is profiled for its dominant execution interval in the steady state, i.e., after system

warmup, when no cold (compulsory) misses in the LLC occur. A profile contains:

1. The miss curve below LLC, denoted by Miss(C), i.e., the number of main

memory capacity misses as a function of its capacity C, where main memory is

fully-associative and employs the Least Recently Used (LRU) replacement policy.

In general, the miss curve can represent all memory references of the program, but

here LLC filters them, such that the miss curve represents only accesses below

LLC. It shows how the number of disk accesses reduces as the capacity of main
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Figure 2.1: Example miss curve

memory is increased, and is thus an essential program characteristic for evaluation

of memory system optimizations that increase main memory capacity.

2. The fraction of writes below LLC, denoted by fWr, required for distinguishing

read and write misses at each point of the miss curve: Among y = Miss(x) misses

for each capacity x, (1 − fWr)· y are read misses, and fWr· y are write misses.

Distinguishing reads and writes is important, because memory technologies can

have asymmetric read and write access characteristics, as described in Chapter 3.

3. The time spent on computation plus all cache accesses, denoted by TCPU , required

for representing the constant part of execution time that is not affected by main

memory optimization.

The miss curve represents the size of the working set and the reuse distance (LRU

stack distance [34]) of pages within the working set, as explained below. Figure 2.1 shows

an example miss curve, where capacity is expressed in arbitrary units. The total number

of main memory accesses is defined by the Miss(0) point (e.g., N4 in Figure 2.1).

Each point of the miss curve corresponds to the number of capacity misses made by the

program if it is given the amount of memory denoted by the horizontal coordinate of

the point, where that memory is fully associative and implements the LRU replacement

policy. The number of disk accesses is given by the point with the horizontal coordinate

equal to the main memory capacity allocated to the program. For instance, if the program

is allocated capacity C4, it makes N1 disk accesses. The working set size is given by

the horizontal coordinate of the point where the number of misses is zero, because cold

misses are not profiled (e.g., C5 in Figure 2.1).
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The reuse distance of pages within the working set is represented by the steepness of

the miss curve: The number of misses y at each capacity x, expressed in the number of

pages, is equal to Ntotal −Nhit −Ncold, where Ntotal is the number of accesses to all

pages in the working set (the total number of main memory accesses), Nhit is the number

of accesses to pages with reuse distances less than x, and Ncold is the number of cold

misses (Ncold = 0 because cold misses are not profiled). If the miss curve decreases

from point (x0, y0) to point (x1, y1), i.e., x0 < x1 and y0 > y1, it means that there are

pages with reuse distances greater than or equal to x0 and less than x1, where both x0
and x1 are expressed in the number of pages. Thus, increasing main memory capacity

from x0 to x1 reduces the number of disk accesses. For instance, such are capacities C3

and C4 in Figure 2.1, respectively (N2 > N1). If the miss curve is flat between the two

points (forms a flat plateau), i.e., x0 < x1 but y0 = y1, it means that pages with reuse

distances greater than or equal to x0 actually have reuse distances greater than or equal

to x1. Thus, increasing main memory capacity from x0 to x1 does not reduce the number

of disk accesses. For instance, such are capacities C1 and C2 in Figure 2.1, respectively

(the number of misses is N3 at both C1 and C2). In general, a program can have pages

with different reuse distances, making the shape of the program’s miss curve complex: It

may contain a number of decreasing and flat fragments.

The shape of the miss curve is linked to the concept of utility of memory capacity

as follows. A program’s utility of a given capacity can be defined as the reduction in

the number of misses that the program enjoys if it obtains the capacity. The steeper the

miss curve between points (x0, y0) and (x1, y1), i.e., the greater y0 − y1, the higher the

program’s utility of main memory capacity x1 − x0. The flatter the miss curve between

the two points, i.e., the smaller y0 − y1, the lower the program’s utility of that capacity.

For instance, the utility of capacity C2 − C1 in Figure 2.1 is zero, and the utility of

capacity C3 − C2 is N3 −N2. The concept of utility is used in the next section, when

defining the aggregate behavior of programs in a multi-program workload.

2.2 Workload Representation
Multi-program workloads where each program is defined by its profile are represented

as follows. All programs in a workload are single-threaded, assigned one per core, and

run concurrently. Available main memory capacity is distributed among them at design-

time by a procedure labeled Design-time Resource Allocation (DRA). Each program

is allocated memory capacity according to its utility of capacity relative to that of the
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other programs in the workload. DRA represents characteristics of both the programs and

memory management. A memory management policy is labeled low-utility DRA policy

if it allocates more memory capacity to programs with low utility of it, and it is labeled

high-utility if it allocates more capacity to programs with high utility of it.

A program’s utility of a particular memory capacity slice is estimated by the program’s

miss curve. For instance, programs A and B have been allocated 1MB each, and there

is another 1MB slice to allocate. Program A has 10M misses at capacity 1MB and 1M

misses at capacity 2MB, and program B has 10M and 9M misses at these capacities,

respectively. The difference in the number of misses between the two capacities is greater

for program A, thus it has a higher utility of the 1MB slice than program B and wins it

according to the high-utility DRA policy. Program B has a lower utility of the slice and

thus wins it according to the low-utility DRA policy.

There are multiple ways of implementing DRA. For a given multi-program workload

and DRA policy, the final distribution depends on an initial allocation and the granularity

of DRA. The final distribution is represented by main memory slices allocated to each

program in the workload. The initial allocation defines main memory capacity allocated

to each program by default (the minimum that each program gets when it starts execution).

The granularity of DRA defines how much memory is awarded to a program at each

iteration of DRA. Figure 2.2 shows my implementation of the high- and low-utility DRA.

The algorithm starts with an initial allocation where each program in the workload gets

slice csmin of main memory capacity. Flag done for each program indicates if allocation

has been completed, i.e., if the program has been allocated enough main memory capacity

to fit its entire working set. The working set size of each program, denoted by wssi,

is the horizontal coordinate of the last point of the program’s miss curve. Cleft keeps

track of available main memory (left for allocation). After initial allocation, the algorithm

distributes available memory capacity iteratively at the granularity of a capacity slice

delta (∆cs). For each program, the difference in the number of misses ∆N is estimated

between two points on the miss curve: one at the current slice and one at the new capacity

that is the current slice plus the slice delta. If the current capacity is such that it entirely fits

the working set of a program, the program is labeled done. If the new capacity exceeds

the working set size of a program, the last point of the miss curve is extended (then the

number of misses at the new capacity is zero, since cold misses are not profiled). On the

next step, a list is created of ∆N of programs that still participate in DRA, i.e., those not

yet labeled as done. If the high-utility policy is chosen, the list is sorted in descending

order, such that the program with the largest ∆N (the highest utility) is on the top of the
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Data:
n programs defined by their miss curves Missi(C) and working set sizes wssi, 0 ≤ i < n

Total main memory capacity Ctotal

Minimum capacity slice csmin allocated per program
Capacity slice delta ∆cs that is iterative allocation granularity
DRA policy type dra_type (high- or low-utility)

Result:
Capacity slices for each program csi, 0 ≤ i < n

1 foreach program i, 0 ≤ i < n do
2 csi = csmin /* Initial allocation */

3 donei = False

4 Cleft = Ctotal − n· csmin

5 while Cleft and allocation not done for all programs do
6 foreach program i, 0 ≤ i < n do
7 if csi ≥ wssi then
8 ∆Ni = 0 /* Allocation for program is done */

9 donei = True

10 else
11 if csi + ∆cs ≥ wssi then
12 ∆Ni = Miss(csi)−Miss(wssi)

13 else
14 ∆Ni = Miss(csi)−Miss(csi + ∆cs)

15 Create list [∆N ] of ∆Ni for 0 ≤ i < n such that donei = False

16 if dra_type is high-utility then
17 Sort [∆N ] in descending order /* High-utility DRA */

18 else
19 Sort [∆N ] in ascending order /* Low-utility DRA */

20 Programs with same ∆N as program on top of list are winners
21 foreach program in winners do
22 if Cleft then
23 csi += ∆cs /* Award ∆cs to program */

24 Cleft −= ∆cs

25 return csi, 0 ≤ i < n

Figure 2.2: Algorithm of high- and low-utility DRA
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Figure 2.3: Miss curves for illustrating high-utility, low-utility, and utility-agnostic DRA

policies

list. If the low-utility policy is chosen, the list is sorted in ascending order, such that the

program with the smallest ∆N (the lowest utility) is on the top. Starting with the program

on the top of the list, programs with the same ∆N are labeled winners, awarded the

capacity slice delta, and available memory capacity Cleft is updated accordingly. When

there is not enough memory available, some programs might not be awarded the slice

delta even if they are winners. This iterative DRA repeats until either all programs in

the workload have been allocated enough capacity to fit their entire working sets, or until

there is no more main memory available.

The total number of disk accesses for a given workload is not always smaller if the

high-utility DRA policy is employed instead of the low-utility one. Consider the example

miss curves of programs P1 and P2 in Figure 2.3. P1 and P2 form a workload. Point 0

on the horizontal axis corresponds to an initial capacity allocation, and there are five

capacity slices (expressed in arbitrary units) to distribute between the programs. Let us

first consider the low-utility DRA policy. P1 wins the first slice becauseA−B < A−C,

the second and third slices because B − B < A − C, and the fourth and fifth slices

becauseB−D < A−C andD−0 < A−C, respectively. The number of disk accesses

is zero for P1, A for P2, and hence A for the entire workload. Let us now consider the

high-utility DRA policy. P2 wins the first slice because A − C > A − B. P1 wins

the second slice because A − B > C − E. Now P1 has hit its flat plateau, and P2

wins the remaining three slices because its miss curve is decreasing. The number of disk

accesses is B for P1, D for P2, and hence B + D for the workload. The high-utility
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DRA policy has resulted in a greater number of disk accesses made by the workload than

the low-utility DRA policy (B +D > A).

Another distinct DRA policy is agnostic to utility and distributes the available capacity

evenly among programs in the workload, as long as their working sets do not fit entirely

into their respective capacity slices. I label this policy utility-agnostic DRA policy. For

the example miss curves in Figure 2.3 and the five capacity slices in question, the policy

results in three slices allocated to P1 and two slices allocated to P2, given that allocation

starts with P1. The number of disk accesses made by the workload is thus B +E, which

is by E −D greater than that if the high-utility DRA policy is used.

2.3 Workload Classification

A workload is labeled in-memory if it does not access disk in the steady state (after system

warmup), i.e., its working set fits entirely into main memory. Likewise, a workload is

labeled not-in-memory if it accesses disk in the steady state, i.e, its working set size

exceeds the capacity of main memory.

As a result of memory system optimization, main memory capacity can be increased.

For instance, the baseline memory technology can be partly replaced with a technology

that enables storing more bits. In-memory workloads do not benefit in terms of execution

time and energy from a larger memory capacity, because their working sets fit into the

baseline capacity, and increasing capacity cannot decrease the number of capacity misses.

Not-in-memory programs benefit from a memory capacity increase as long as there are

pages with reuse distances greater than or equal to the baseline capacity and less than the

increased capacity (where the capacities are expressed in the number of pages).

2.4 Profiling Setup and Program Profiles

A program profile contains the miss curve (Miss(C)), the fraction of writes (fWr),

and the computation and cache time (TCPU ), as described in Section 2.1. A profile of a

program can be extracted from its memory access trace and execution statistics recorded

during the interval of interest. For instance, they can be obtained with: 1) a simulator

(e.g., gem5 [35]) including models of a CPU and its cache hierarchy; or 2) an execution-

driven (e.g., Pin [36] or Valgrind [37]) model of a cache hierarchy. In this thesis, I

compile programs from SPEC CPU2006 [38] and NPB 3.3 [39] for the 64-bit extension
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of x86 and run them individually on gem5 to record main memory access traces and

execution statistics in the system-call emulation mode (system calls are not profiled). For

each program, the miss curve is reconstructed from its main memory access trace using

Mattson’s stack algorithm [34] at the granularity of a 4KB page. gem5 is configured to

simulate an in-order CPU running at 1GHz with 64KB, 4-way, LRU, split L1 caches and

a 1MB, 8-way, LRU, unified L2 cache. The cache line size is 64B. The SPEC CPU2006

programs are profiled with reference inputs and the NPB 3.3 programs are profiled

with large problem sizes (e.g., size C for CG). For each program, I identify one major

2B-instruction execution interval using the SimPoint methodology [40] and simulate it

after fast-forwarding and warming the system for 500M instructions. A single execution

interval does not fully represent an entire program, but I observe that the working set

sizes of the major execution intervals closely match those of the entire programs.

For brevity, I choose a subset of programs with larger working sets (above 150MB)

and diverse behavior, as described below. The programs are:

• CG, a conjugate gradient kernel with irregular memory accesses as a result of

sparse matrix-vector multiplications;

• 470.lbm, a computational fluid dynamics program implementing a lattice

Boltzmann method;

• 429.mcf, a combinatorial optimization program implementing single-depot

vehicle scheduling using a network simplex algorithm accelerated with a

column generation;

• 458.sjeng, an artificial intelligence program playing chess by implementing

game tree search and pattern recognition; and

• 450.soplex, a simplex linear program solver employing sparse linear algebra.

Program names are used as profile names for simplicity. For instance, lbm denotes

470.lbm with the reference inputs during its major 2B-instruction execution inter-

val. Likewise, mcf, sjeng, and soplex denote 429.mcf, 458.sjeng, and

450.soplex, respectively.

Table 2.1 shows that the working set sizes of CG and lbm are similar, but CG has

about 100× smaller fraction of writes (fWr) and about 2× greater computation and

cache time (TCPU ). Evaluating a memory system optimization first using workloads

containing CG and then workloads containing lbm can help reveal how the results of

the optimization depend on fWr and TCPU . The working set of mcf is the largest

among the programs, and that of sjeng is the smallest (about 10× smaller than the

working set of mcf, about 2.5× smaller than those of CG and lbm, and about 1.5×
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Table 2.1: Selected characteristics of CG, lbm, mcf, sjeng, and soplex

CG lbm mcf sjeng soplex

Working set size [MB] 419 403 1674 172 251
fWr [%] 0.4 42.9 20.2 44.1 16.5
TCPU [s] 8.4 4.4 6.6 3.4 4.6

smaller than that of soplex). The programs can be used for composing multi-program

workloads with aggregate working set sizes that differ by increments from hundreds

of megabytes to gigabytes. Such workloads are essential for the evaluation of memory

system optimizations that increase main memory capacity.

Figure 2.4 shows that the miss curve of each program, except sjeng, has a distinct

plateau representing the bulk of the working set, and a relatively small part referenced

significantly more than the remainder of the working set. For mcf, such part is about

100MB and forms a plateau itself. Decreasing fragments of the miss curves illustrate

that pages have gradually increasing reuse distances. Flat fragments of the miss curves

illustrate that pages have equal reuse distances. For instance, lbm’s plateau is totally flat,

and thus the pages of the bulk of its working set share the same reuse distance that is the

size of the entire working set. On the contrary, sjeng has no plateaus, its miss curve

decreases monotonically, and so the pages of its working set have different, gradually

increasing reuse distances.

2.5 Summary
Programs in a multi-program workload are represented by compact profiles. The profiles

are recorded once and reused throughout the evaluation of main memory optimizations.

Memory management and the way programs affect each other’s behavior are represented

by DRA. The high- and low-utility DRA policies are two distinct cases of DRA driven

by the program utility of memory capacity. The utility-agnostic DRA is a distinct

example of a policy that neglects the program utility of memory capacity. Not-in-memory

workloads are of primary interest in this thesis, since they benefit in terms of execution

time and energy from a main memory capacity increase that can be achieved by memory

system optimizations. The next chapter presents memory technologies that make such

optimizations possible.
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3
Memory Technologies

Memory technologies are the building blocks of memory systems. A number of

technologies with different characteristics exist today, and they have to be well understood

in order to choose the most appropriate technologies for a particular memory system. The

characteristics vary among technologies and even across different device implementations

of the same technology. In order to correctly interpret numbers reported by various

sources and to be able to model the operation of memory devices, it is necessary to

understand their basic organization and operational principles. This chapter describes

these principles without going too deep into the nuances of Very Large Scale Integration

(VLSI). Section 3.1 presents memory technologies as follows. First, the fundamental cell

characteristics are presented: basic memory cell physics (the principles of storing data in

the memory element), cell structure (the mechanism of accessing the memory element),

and cell bit density (the number of bits per cell, i.e., the number of bits encoded by a single

physical state of the memory element). They determine such memory characteristics as

data retention (the period of time during which the cell remains stable without power)

19
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and write endurance (the maximum number of cell state modifications that the cell can

perform reliably). Next, Section 3.2 presents ways of organizing cells into arrays and

accessing them on the device level that eventually affect the device access latencies,

access energies, and maintenance overhead (e.g., for maintaining data integrity within

the arrays and during transfers across the device interface). The specifics of device

organization, implementation, and fabrication determine the area efficiency and thus the

bit density of the device. Section 3.3 introduces my analytic, device-level models for

estimating the timing, energy, and power characteristics of DRAM, PCM, NAND Flash,

SSD, and HDD.

3.1 Basic Memory Cell Properties

Memory technologies are classified as charge-based if they represent data as electric

charge. Otherwise, e.g., if data are represented as resistance, memory technologies are

classified as non-charge-based. Memory technologies are classified as Single-Level

Cell (SLC) if one memory cell state encodes one bit of information, and as Multi-Level

Cell (MLC) if it encodes two or more bits. Memory technologies are typically classified as

volatile if their cells lose state within seconds after disconnecting from power, otherwise

they are classified as non-volatile.

3.1.1 DRAM

DRAM is a charge-based, One Transistor and One Capacitor (1T1C), SLC memory

technology. One bit of data is stored as charge on the capacitor of the memory cell. The

capacitor is accessed via the transistor. Charge leaks from the capacitor, thus DRAM is a

volatile technology. It is typically required for data integrity that charge is refreshed each

64ms at temperatures from 0C◦ to 85C◦ and each 32ms at temperatures from 85C◦ to

95C◦ [41]. Primarily because the charge is unstable, one DRAM cell encodes a single

bit. Reading (sensing) the cell depletes the capacitor, thus DRAM reads are destructive.

DRAM cells have endurance of about 1016 accesses, primarily defined by the endurance

of the access transistor. DRAM is a mature technology and is conventionally employed

in the main memory of computing systems. It is used as the baseline memory technology

in this thesis.
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3.1.2 Flash

Flash is a charge-based, One Transistor (1T), SLC/MLC memory technology. The cell

transistor has both the control gate and a floating gate that is not directly connected to any

control signals. Data are stored as charge on the floating gate of the transistor. The cell is

programmed by injecting electrons into the floating gate and erased by ejecting them out

from the floating gate by means of quantum tunneling. The cell can be programmed only

if it is first erased. The floating gate is electrically isolated from the control gate by the

interpoly oxide and from substrate by the tunnel oxide, which prevents charge leakage.

Thus, Flash is a non-volatile technology, and its retention time is typically above ten

years. Because the charge is stable and can be controlled, the cell can encode a number of

bits. However, the higher the number of bits per cell, the lower the cell endurance: Each

program/erase cycle damages the tunnel oxide of the floating gate, creating defects that

trap electrons thus degrading its electrical characteristics and narrowing margins between

different cell states. As a result, the programmed and erased states of a worn-out cell

cannot be reliably distinguished. The endurance of SLC Flash is about 105 program/erase

cycles [9], and that of three-bit MLC Flash is about 103 cycles [42]. Flash is a mature

technology and is of interest in this thesis because it enables high-density storage.

3.1.3 PCM

PCM is a non-charge-based, One Transistor and One Resistor (1T1R), SLC/MLC memory

technology. Bits of information are stored as the resistance of the chalcogenide alloy

of the cell, as described below. The cell is programmed (set) when the alloy is in the

polycrystalline phase (low resistance). This phase is achieved by first melting the alloy

by injecting current and then cooling it at a rate slower than the crystal growth rate. If

the melted alloy is cooled at a rate faster than the crystal growth rate, it gets locked in

the amorphous phase (high resistance), and the cell becomes erased (reset). PCM is a

non-volatile technology, but is prone to the resistivity drift effect: The resistance of the

alloy in the amorphous phase continuously increases and is highly temperature-dependent.

Resistivity drift does not matter for SLC PCM, but complicates the implementation of

MLC PCM. However, there are mechanisms for coping with the negative effect of the

drift [43, 44], and PCM is commonly used as an MLC technology. Because of thermal

expansion and contraction, each set/reset cycle degrades the current injection contacts

and the resistance uniformity of the chalcogenide alloy. The endurance of PCM cells

is estimated from 105 to 108 set/reset cycles [10, 45, 46]. PCM is a relatively new
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technology and is popular among researchers. It is of interest in the scope of this thesis

because: 1) it is MLC-capable and 2) it employs different device physics compared to

Flash and thus offers significantly different timing and electrical characteristics, as is

shown later in this chapter.

3.1.4 Magnetic Memory

One example of magnetic memory is Magnetoresistive Random Access Memory

(MRAM): a non-charge-based, One Transistor and One Magnetic Tunnel Junction

(1T1MTJ), SLC technology. The Magnetic Tunnel Junction (MTJ) comprises two

ferromagnetic layers: one fixed (the direction of magnetization is fixed) and one free

(the direction of magnetization can be changed). One bit of information is stored as the

magnetization of the free layer relative to the fixed layer: The MTJ is in the reset state

(low resistance) when the two layers are parallel (spin-aligned) and in the set state (high

resistance) when the layers are anti-parallel. MRAM is a non-volatile technology and

has the endurance of 1016 write cycles, primarily defined by the endurance of the access

transistor [47]. Spin Transfer Torque Magnetoresistive Random Access Memory (STT-

MRAM) is a contemporary implementation of MRAM and uses spin-polarized current to

change the magnetic orientation of the free layer [48]. It is a promising technology and

attracts vivid interest of memory researchers. However, neither STT-MRAM nor MRAM

are explicitly considered further in this thesis, because they do not currently offer higher

bit densities than DRAM [47, 49].

Another representative of magnetic memory is the ferromagnetic material covering

the platters of HDDs. One bit is stored as the direction of magnetization of a magnetic

region on a track of a platter [5]. The direction of magnetization is read and written by an

external head. This is a mature technology conventionally employed in the backing store

of computing systems.

3.1.5 Other Technologies

The plurality of memory technologies is not limited to those described above. For instance,

one NVM technology of active research is Resistive Random Access Memory (RRAM):

a non-charge-based, 1T1R, and MLC-capable. Data are stored as the resistance of the

metal oxide of the cell. The cell is set (low resistance) when conductive filaments (paths)

are formed in the metal oxide and reset (high resistance) when the filaments are ruptured.
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The endurance of SLC RRAM ranges from 106 to 1010 set/reset cycles [50, 51], and that

of two-bit MLC RRAM is about 107 cycles [52].

Another prominent example of an NVM technology is Ferroelectic Random Access

Memory (FeRAM): a non-charge-based, 1T1C, SLC memory technology. One bit is

represented by the polarization of the thin film of a ferroelectric material placed between

two electrodes in a way similar to the structure of a capacitor [53]. FeRAM endurance is

estimated from 1010 to 1013 read/write cycles [54, 55].

Despite the specifics of their basic device physics and operational characteristics,

these technologies are not explicitly considered further in this thesis. The term Storage-

Class Memory (SCM) is used for collectively denoting such NVM technologies. The

characteristics of interest for main memory optimization by increasing its capacity are

represented by DRAM, Flash, and PCM.

3.2 Device Organization and Operation

Memory devices are classified as mechanical if they contain moving parts, otherwise

they are classified as solid-state. This section first describes the general organization and

operation of a basic solid-state device. Then it illustrates by example implementation

details specific to DRAM, PCM, and Flash, and concludes by describing SSDs (compound

solid-state devices) and HDDs (mechanical storage devices).

3.2.1 Basic Solid-State Device

Memory cells of a single solid-state device are organized into an array with word lines

along rows and bit lines along columns. Memory arrays may be logically subdivided into

smaller units such as blocks, pages, or words that define the granularity of memory array

operations. A die may contain one or more memory arrays, each having dedicated sensing

and buffering circuitry. The sensing circuits are often referred to as sense amplifiers and

are required for reading data out from the memory array into the buffering circuitry (which

may be integrated with the sense amplifiers). The buffering circuitry is further referred

to simply as a buffer. Memory array read latency is the time required for reading data

from the array into the buffer, and the memory array write latency is the time required for

writing data back from the buffer to the array.

The buffer stores data for fast reads and writes (column accesses) via an Input/Output

(I/O) interface. The number of I/O data pins, denoted by NDQ, matches the word width
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(or device width) that is denoted by ×NDQ. For instance, an ×8 device has eight data

pins. An input data mask pin can be used for masking nonvalid write data. The buffer

is typically larger than one word and may be accessed at different granularities or burst

sizes, i.e., one or more words may be transferred between the buffer and the I/O data

pins per column access. Peak data rate is the product of the device width and the I/O

interface speed. It is the maximum theoretical bandwidth of the I/O data interface. An

I/O interface may be synchronous, and it is called a Double Data Rate (DDR) interface if

it transfers data on both the rising and falling edges of the I/O clock. High-speed data

interfaces require for signal integrity bidirectional data strobe pins (e.g., one differential

pair) that are used for indicating when read and write data must be captured.

On-die control circuitry implements the command protocol and orchestrates internal

operations. Data interfaces running at high frequencies require additional circuits,

such as Delay-Locked Loop (DLL), and additional operations for signal integrity

maintenance [41]. Static power (sometimes referred to as background power) is dissipated

when the memory device is powered-on and clocked but not in use, i.e., there are no

ongoing internal operations. Power-down (low power) modes may be entered by disabling

parts of the die, e.g., the clock circuitry, DLL, and memory array periphery such as row

and column decoders.

A single memory device may be composed of one or more dies within a package.

Memory devices are often organized into ranks such that all devices within a rank are

identical and operate in lock-step, servicing the same command simultaneously. The peak

data rate of a rank is thus the sum of the peak data rates of all the devices composing it.

3.2.2 DRAM Device

Organizational and performance characteristics of an example ×8 DRAM device [8] are

presented in the first column of Table 3.1. The DRAM cells are organized into eight

arrays (banks), each of which is subdivided into pages (rows) of 1KB, such that one

array contains 16K pages. The array buffer is referred to as a row buffer. A DRAM

array is ready for a read operation when its bit lines are precharged. DRAM array

reads are destructive, i.e., the page data in the array get lost after they have been read

out into the row buffer. The operations of writing a page back and precharging the

array bit lines for the next read are collectively referred to as a precharge operation.

The DRAM device in Table 3.1 implements the widely used third generation of the

double data rate (DDR3) Synchronous Dynamic Random Access Memory (SDRAM)
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Table 3.1: Characteristics of example DRAM, PCM, NAND and NOR Flash devices

Characteristic Units DRAM PCM NAND Flash NOR Flash

Volatile yes no no no
Cell endurance write cycle 1016 108 105 105

Cell capacity b/cell 1 1–4 1 2

Die capacity Gb 1 1–4 16 1

Block size KB —

S
am

e
as

fo
rD

R
A

M 512 128

Page size B 1024 4096 32

Word width b 8 8 16

Clock frequency MHz 800 83 52

DDR yes yes no
Peak data rate Mb/s 12.8·103 1328 832

Burst size B 8 1–4096 2–32

Latencies:
Array read ns/page 13.75 48–250 25·103 100

Array write ns/page 13.75 150–2·103 230·103 (270–900)·103

Array erase ms/block — — 0.7 800

interface [41], that yields a peak data rate of 12.8Gb/s at a device clock frequency of

800MHz. Such a high-speed interface requires signal integrity maintenance performed by

output impedance (ZQ) calibration [41]. DDR3 supports the burst size of eight words,

hence the granularity of a column access is eight bytes for the ×8 device considered

here. In addition, DDR3 supports the burst size of four words, but it is emulated, i.e.,

implemented by masking the last four words of the default eight-word burst. DRAM is

volatile and requires periodic refresh operations that read data from the array into the row

buffer and then write the data back.

3.2.3 PCM Device

PCM device organization is commonly assumed to be similar to that of DRAM devices.

Thus, the differences between PCM and DRAM devices lie primarily in the characteristics

related to the memory cell: endurance, bit capacity, and array read and array write

latencies and dynamic energies. Example ×8 PCM device organization and performance

characteristics are presented in the second column of Table 3.1. The PCM device can

be assumed to have from one to four times the capacity of the DRAM device discussed

above because of its MLC capability and a potentially smaller cell area [16]. The device

employs the same I/O interface as the DRAM device. PCM reads are non-destructive, and
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depending on the device implementation the array read latency can be from several times

to at least 10× greater than that of DRAM [10, 56]. The PCM array write latency can be

from about 10× to 100× greater than that of DRAM, as determined by the time required

for setting the cell into the low-resistance state. In this context, the main advantage of

PCM over DRAM is its higher bit density.

3.2.4 NAND Flash Device

NAND Flash is one of the flavors of Flash memory. Unlike DRAM and PCM arrays

where each cell is directly connected to its bit line, NAND Flash physically organizes

cells into strings (in series) such that all cells in one string share a single bit line

contact [57]. Reducing the number of bit line contacts reduces the area overhead per cell

and thus increases the bit density. The complication of NAND Flash is that reading and

programming a single cell of a string requires setting all other cells of that string into

specific temporary modes that enable modifying the state of the target cell only [58].

Example characteristics of an ×8 SLC NAND Flash device [9] are presented in the

third column of Table 3.1. In this example device, cells are organized into two arrays

(planes) that are subdivided into blocks of 512KB, and the blocks are subdivided into

pages of 4KB. There are 128 pages per block and 2K blocks per array, giving each

array 256K pages. Each page also contains additional data (224B) for book-keeping

purposes, that are excluded from consideration here for ease of page size comparison

among technologies. Array read and program operations are performed on the granularity

of a page, and array erase operations are performed on the granularity of a block. The

NAND Flash page of the example device is four times larger than that of the DRAM

device discussed above. The capacity of the NAND Flash device is 16 times greater than

that of the DRAM device and is at least four times greater than that of the PCM device.

There are MLC NAND Flash devices of even greater capacities in production, but their

cell endurance is lower (e.g., 3· 103 program/erase cycles [42]) than the 105 cycles of the

example SLC NAND Flash device. The endurance of the example NAND Flash device is

three orders of magnitude lower than that of the PCM device discussed above. Memory

technologies like RRAM have the promise to improve the endurance of high-density

devices with array read and program latencies similar to those of NAND Flash [59]. Thus,

the endurance problem of NAND Flash is not of interest in this thesis, and NAND Flash

is used as an example NVM technology in terms of bit density and access characteristics.
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The NAND Flash I/O data interface (Open NAND Flash Interface (ONFI) [60])

supports double data rate with an approximately 10× lower peak data rate than that of

the example DRAM device. The NAND Flash protocol allows reading out an entire page

in one burst. In addition, it allows changing the start word (column) and reading out as

many words as needed up to the end of the page. The NAND Flash array read latency is

at least three orders of magnitude greater than that of DRAM and at least 100× greater

than that of PCM. The array write latency is at least four orders of magnitude greater than

that of DRAM and at least two orders of magnitude greater than that of PCM.

3.2.5 NOR Flash Device

Another flavor of Flash memory is NOR Flash, that organizes cells into arrays such that

each cell is directly connected to its bit line and can be accessed independently [61].

Characteristics of an example ×16 MLC NOR Flash device [62] are presented in the last

column of Table 3.1. Despite its MLC capability, the device happens to have the same

endurance as the example SLC NAND Flash device, and the same capacity as the example

SLC DRAM device. NOR Flash cells are organized into blocks of 128KB, and one block

is the granularity of the erase operation. The NOR Flash page is not an organizational

unit of the memory array but just a small buffer that supports random accesses at the

word granularity. Unlike the devices discussed above, the NOR Flash device is 16-bit

wide, because it is a typical width of the parallel NOR Flash interface. The interface

is word-addressable and can operate in the synchronous mode with a peak data rate of

832Mb/s, which is of the same order of magnitude but lower than that of the NAND Flash

device. The NOR Flash protocol allows reading out an entire page in a burst at the word

granularity. The NOR Flash array read latency is about 10× greater than that of DRAM,

falls within the range of the PCM array read latencies, and is at least 100× smaller than

that of NAND Flash. The NOR Flash array write latency depends on the granularity of

operation, from one word (which is comparable to the NAND Flash array write latency)

to 512 words (which is about 3.5× greater). The NOR Flash array erase latency is at least

three orders of magnitude greater than that of NAND Flash.

NOR and NAND Flash storage arrays do not have to be taken as one with their

respective legacy interfaces. Both NOR and NAND Flash can be assumed to employ the

DDR3 interface, just like it is assumed for PCM. The greater device capacity of NAND

Flash makes it a better representative of slow but bit-dense NVM technologies. Thus,

NAND is the Flash flavor of primary interest in this thesis.
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3.2.6 SSD

NAND Flash has enabled Solid-State Disks (SSDs). NAND Flash devices inside an SSD

are typically organized such that the I/O bandwidth is maximized by exploiting different

forms of operation parallelism. SSDs typically implement mechanisms for hiding the

long NAND Flash array write latency. In addition, SSDs can cache data, which further

improves their access characteristics. A typical I/O interface employed by SSDs is the

6Gb/s Serial Advanced Technology Attachment (SATA) interface.

3.2.7 HDD

Hard Disk Drives (HDDs) are the conventional backing store devices. An HDD comprises

a number of magnetic platters (the storage medium) read and written by mechanical heads.

Because of the moving parts, HDD access latencies are counted in milliseconds. The long

read access latency can be significantly shortened by prefetching data from the storage

medium into a cache [5]. Like SSDs, HDDs typically employ the 6Gb/s SATA interface.

3.3 Device-Level Models
This section presents device-level timing, power, and energy models for DRAM, PCM,

NAND Flash, SSD, and HDD. The models for DRAM are derived from a device

datasheet [8] and Micron’s Power Calculator [63–66], that estimates power of a given

memory utilization scenario. My models estimate dynamic energy per access and thus

provide insights into device energy characteristics. Micron’s models do not represent

power mode transition overhead and can produce misleading results when power-down

modes are modeled [67]. However, it is safe to derive from Micron’s models here,

because this thesis considers high-performance systems that do not use power-down

modes. The models for PCM and NAND Flash adapt the DRAM models by sharing the

DDR3 interface and by adding technology-specific modifications. For the purposes of

this thesis, I model the following accesses:

1. A read access with one or more column reads that:

a) misses in the buffer (requires an array read), denoted by readmiss;

b) hits in the buffer (the column read(s) are served immediately), denoted by read hit;



3.3. DEVICE-LEVEL MODELS 29

Table 3.2: Subset of DDR3 SDRAM commands

Symbol Description Symbol Description

ACT Activate command (array read) PRE Precharge command (array write)
RD Read command (column read) REF Refresh command
WR Write command (column write) ZQCS ZQ Calibration Short command

2. A write access with one or more column writes that:

a) misses in the buffer, denoted by writemiss;

b) hits in the buffer, denoted by write hit.

Accesses 1.a and 2.a are modeled for DRAM, PCM, and NAND Flash, but accesses 1.b

and 2.b are modeled only for DRAM that satisfies the needs of Chapter 5.

3.3.1 DRAM Models

An SDRAM device dissipates static (background) power when it is powered-on, clocked

(ready to receive commands), but is idle (not executing any operations). The device is in

the precharge standby mode, if all of its banks are closed, i.e., the row buffers contain no

data. If any of the banks is open, i.e., at least one row buffer contains data, the device

is in the active standby mode. The precharge standby mode is denoted by PRE_STBY

and the active standby mode by ACT_STBY. The device transitions from PRE_STBY to

ACT_STBY when it receives the activate command, denoted by ACT, and back from

ACT_STBY to PRE_STBY when it receives the precharge command, denoted by PRE.

ACT performs an array read, and PRE an array write. When the device is in ACT_STBY,

it is ready to receive column access commands, denoted by RD for reads and by WR for

writes. The device requires array data integrity maintenance, implemented by the refresh

command (REF), and data interface maintenance, implemented by the ZQ Calibration

Short command (ZQCS). The above subset of the device modes and DDR3 commands

is sufficient for the purposes of this thesis, since it represents the specifics of device

operation, and power-down modes are of no interest. The commands are summarized in

Table 3.2. The device draws a certain amount of current in each of the modes and when

executing the commands. The amounts of energy expended statically when the device

is idle and dynamically when the device is executing a command are calculated using

timing and electrical characteristics tabulated in the device datasheet [8].
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Table 3.3: Selected DRAM characteristics

Symbol Value Units Description

V 1.5 V Supply voltage

NDQ 8 – Number of data pins (device (word) width in bits)
NDQS 2 – Number of strobe pins
NDM 1 – Number of data mask pins
BL 8 word Burst length
Psize 1 KB Page size

PDQ(R) 1.1 mW Power per pin when driving output [65]
PDQ(W ) 8.2 mW Power per pin when terminating a write [65]

tCLK 1.25 ns Clock period
tRC 48.75 ns ACT to ACT delay used for IDD0 measurement
tRAS 35 ns ACT to PRE delay used for IDD0 measurement
tRCD 13.75 ns ACT to RD or WR (array read to column access) delay
RL 13.75 ns Column read latency (RD to first word)
WL 13.75 ns Column write latency (WR to first word)
tCCD 5 ns Column to column delay (RD to RD or WR to WR)
tRTP 7.5 ns Column read to precharge delay (RD to PRE)
tWR 15 ns Write recovery latency (last word to PRE)
tRP 13.75 ns PRE (row precharge) latency
tRFC(MIN) 110 ns REF period used for IDD5B measurement
tREFI 7.8125 µs Interval between REF in normal conditions (0-85C◦)
tZQCS 80 ns ZQCS latency
tZQI 152 ms Interval between ZQCS [68]

Table 3.4: Currents of DRAM revisions F and G

Symbol Rev. F Rev. G Units Description

IDD0 120 70 mA ACT current
IDD2N 70 45 mA PRE_STBY current
IDD3N 67 45 mA ACT_STBY current
IDD4R 250 140 mA RD current
IDD4W 250 145 mA WR current
IDD5B 260 170 mA REF current

The datasheet provides numbers for two different versions of the device labeled

revision F and revision G. The revisions share same timing characteristics presented

in Table 3.3, but revision F has roughly two times worse electrical characteristics than

revision G, as is shown by the current values for the two revisions in Table 3.4. IDD0
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is the average current that the device draws during a measurement loop when the

memory controller issues ACT each tRC followed by PRE after tRAS . The device

draws the IDD2N current when it is in the PRE_STBY mode and IDD3N when it is

in the ACT_STBY mode. These two currents are equal for revision G, but slightly

differ for revision F (it is unknown why IDD3N is less than IDD2N for revision F). The

device draws the IDD4R and IDD4W currents when performing column reads and writes,

respectively. IDD5B is the average current that the device draws during a measurement

loop when the memory controller issues REF each tRFC(MIN). Each of the currents is

the total current drawn by the device (e.g., IDD4R includes IDD3N ). Since IDD0 and

IDD5B are measured for specific scenarios (defined by the measurement loops), their

values have to be scaled to the actual scenarios. For instance, the IDD5B value have to be

scaled according to the actual interval between the REF commands, that is tREFI .

A DRAM readmiss first incurs the latency of an array read (tRCD). Next, a column

read command (RD) incurs the delay to the first valid word on the data pins (RL) and the

data transfer latency of Tburst = BL· tCLK/2. The delay between two consecutive RD

commands is tCCD (that is also equal to Tburst) and the RL delays of two consecutive

column reads overlap. The delay between the last RD command and PRE (tRTP ) is

followed by the latency of PRE (tRP ). The RL delay of the first column read and

Tburst of all the data transfers overlap with tCCD of the remaining column reads and the

concluding tRTP and tRP . Thus, the latency of a DRAM readmiss with NCA column

reads is given by:

TDRAM
readmiss

= tRCD + (NCA − 1) · tCCD + tRTP + tRP (3.1)

A DRAM writemiss incurs tRCD , followed by WL from the first column write

(WR) to the first input word on the data pins, and then the data transfer latency (Tburst).

The delay between two consecutive WR commands is tCCD , and the WL delays of two

consecutive WR commands overlap. The delay between the last word on the data pins and

PRE (tWR) is followed by tRP . Thus, the latency of a DRAM writemiss is given by:

TDRAM
writemiss

= tRCD +WL+ Tdata + tWR + tRP (3.2)

where Tdata is the data transfer time of NCA column accesses given by:

Tdata = NCA·Tburst = NCA·BL· tCLK/2 (3.3)
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The latencies of the read hit and write hit accesses are modeled simply as the

respective first-word delays followed by the data transfer latencies:

TDRAM
read hit

= RL+ Tdata (3.4)

TDRAM
write hit

= WL+ Tdata (3.5)

where Tdata is given by (3.3). The read hit and write hit accesses coalesce with the

readmiss and writemiss accesses.

When devices are organized into a rank, the access latencies of each device overlap.

For instance, if a rank comprises eight ×8 devices and BL = 8, the latency of reading

64B out from the rank is defined by (3.1), and each device performs just one column read

(NCA = 1) providing 8B.

Static (background) energy expended in the PRE_STBY mode is a constant

component of the total device energy and is calculated by multiplying execution time and

static power PPRE_STBY given by:

PPRE_STBY = IDD2N ·V (3.6)

Dynamic energy is calculated per device operation as additional energy on top of

static energy. The energy expended in the ACT_STBY mode is counted as dynamic

energy, too, according to (3.7) for reads and (3.8) for writes:

EDRAM
ACT _STBY (readmiss)

= PDD3N ·
(
TDRAM
readmiss

− tRP

)
(3.7)

EDRAM
ACT _STBY (writemiss)

= PDD3N ·
(
TDRAM
writemiss

− tRP

)
(3.8)

where PDD3N = (IDD3N − IDD2N ) ·V , TDRAM
readmiss

is given by (3.1), and TDRAM
writemiss

is given by (3.2). IDD2N is subtracted from IDD3N , since the latter includes the former,

and I want to separate dynamic energy from static energy. However, for the current values

in Table 3.4 this dynamic energy is either small compared to static energy (for revision F)

or zero (for revision G). I assume that IDD3N equals IDD2N for both DRAM revisions,

thus eliminating the ACT_STBY dynamic energy and simplifying the models.
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The ACT current (IDD0) is measured as the current drawn by the device during a

specific loop of ACT and PRE commands: The delay between ACT and PRE is tRAS ,

and the delay between two consecutive ACT commands is tRC . The device is in the

ACT_STBY mode during tRAS and in the PRE_STBY mode otherwise. In order to

separate the current drawn by executing the ACT command, the tabulated ACT_STBY

current (IDD3N ) is subtracted from IDD0 during tRAS , and the PRE_STBY current

(IDD2N ) is subtracted from IDD0 during (tRC − tRAS):

I
′
DD0 = IDD0 −

1

tRC
· (IDD3N · tRAS + IDD2N · (tRC − tRAS)) (3.9)

I
′
DD0 is the average current drawn by the device when performing one ACT and one PRE

within tRC . Thus, the dynamic energy of performing one ACT and one PRE is given by:

EDD0 = I
′
DD0·V · tRC (3.10)

Lee et al. [10] estimate that 75% of that energy are expended by executing ACT, and the

remaining 25% are expended by executing PRE, hence:

EACT = 0.75·EDD0 (3.11)

EPRE = 0.25·EDD0 (3.12)

The dynamic energy of reading data from the device (performing read column

accesses) is calculated using the RD current (IDD4R) separated from the ACT_STBY

current (IDD3N ) during Tdata given by (3.3):

ERD = (IDD4R − IDD3N ) ·V ·Tdata (3.13)

In addition, reading data out from the device expends the dynamic energy of driving the

data and strobe pins:

EDQ = PDQ(R)· (NDQ +NDQS) ·Tdata (3.14)
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The dynamic energy of writing data to the device (performing write column accesses) is

calculated similarly to (3.13):

EWR = (IDD4W − IDD3N ) ·V ·Tdata (3.15)

with additional energy expended for write termination at the data, strobe, and mask pins:

Eterm = PDQ(W )· (NDQ +NDQS +NDM ) ·Tdata (3.16)

Thus, the dynamic energies of the readmiss and writemiss accesses are defined by:

EDRAM
readmiss

= EDD0 + ERD + EDQ (3.17)

EDRAM
writemiss

= EDD0 + EWR + Eterm (3.18)

where EDD0 is given by (3.10), ERD by (3.13), EDQ by (3.14), EWR by (3.15), and

Eterm by (3.16).

The dynamic energies of the read hit and write hit accesses are modeled simply as

the dynamic energies of column accesses:

EDRAM
read hit

= ERD + EDQ (3.19)

EDRAM
write hit

= EWR + Eterm (3.20)

where ERD is given by (3.13), EDQ by (3.14), EWR by (3.15), and Eterm by (3.16).

When devices are organized into a rank, the access dynamic energies of each device

are added together. For instance, if a rank comprises eight ×8 devices and BL = 8, the

energy of reading out 64B is defined by 8·EDRAM
readmiss

given by (3.17), and each device

performs one column read (NCA = 1).

The tabulated REF current (IDD5B) is measured in a specific loop of REF commands

when one REF is issued each tRFC(MIN). Thus, in order to calculate the REF power of

a typical scenario (one REF per tREFI ), the IDD5B value is scaled:

PREF = (IDD5B − IDD2N ) ·V · tRFC(MIN)/tREFI (3.21)

and the REF energy is calculated for entire execution time.
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Table 3.5: PCM array latencies and energies normalized to those of DRAM

Operation Norm. Latency Norm. Energy

Array read 4.4 2.1
Array write 12.0 43.1

3.3.2 PCM Models

Models similar to those for DRAM are employed for calculating access latencies and

dynamic energies of PCM devices, assuming that they implement the DDR3 interface.

The operation of PCM differs from DRAM in a number of ways, e.g.: 1) PCM does not

require refresh, since it is non-volatile; 2) PCM array writes are required only if data in

the buffer are modified (dirty), since PCM array reads are non-destructive; 3) PCM array

writes are implemented such that only modified words are written into the array (partial

writes [10]). These differences are implemented as optimizations of DDR3 for PCM.

The latencies and dynamic energies of the PCM array read and array write are derived

by scaling those of DRAM using the ratios estimated by Lee et al. [10] and shown in

Table 3.5. The latency of a PCM readmiss access is calculated similarly to that of

DRAM. Since the access does not modify data, PRE is not required, and thus tRTP and

tRP are not incurred:

TPCM
readmiss

= t
′
RCD +RL+ Tdata (3.22)

where t
′
RCD = 4.4· tRCD as per Table 3.5, RL is provided in Table 3.3, and Tdata is

given by (3.3). The latency of a PCM writemiss access is calculated using the same

equation as that for DRAM, but with scaled array read and write latencies:

TPCM
writemiss

= t
′
RCD +WL+ Tdata + tWR + t

′
RP (3.23)

where t
′
RCD = 4.4· tRCD , t

′
RP = 12· tRP as per Table 3.5, WL and tWR are provided

in Table 3.3, and Tdata is given by (3.3).

Static energy expended by a PCM device in the PRE_STBY mode is the same as that

of DRAM and is given by (3.6). The dynamic energy of the ACT_STBY mode is zero,

because IDD3N and IDD2N are assumed to be equal. The dynamic energies of the PCM

array read and write are scaled according to Table 3.5 and are given by (3.24) and (3.25):
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E
′
ACT = 2.1· 0.75·EDD0 (3.24)

E
′
PRE = 43.1· 0.25·EDD0 (3.25)

where EDD0 is given by (3.10). Partial writes are modeled at the granularity of one

burst of BL words by scaling E
′
PRE linearly, according to the number of dirty words.

In case of a write access with NCA column writes, NCA·BL words are written to the

array. Given that an array page contains Psize bits and the word width is NDQ bits, the

scaling factor is:

α =
NCA·BL
Psize/NDQ

(3.26)

Thus, the dynamic energies of the PCM readmiss and writemiss accesses are given

by (3.27) and (3.28), respectively:

EPCM
readmiss

= E
′
ACT + ERD + EDQ (3.27)

EPCM
writemiss

= E
′
ACT + EWR + Eterm + α·E

′
PRE (3.28)

where E
′
ACT is given by (3.24), ERD by (3.13), EDQ by (3.14), EWR by (3.15), Eterm

by (3.16), E
′
PRE by (3.25), and α is calculated using (3.26) for the number of column

writes (NCA) that the access performs.

3.3.3 NAND Flash Models

The access latencies and dynamic energies of NAND Flash can be calculated using

models similar to those for DRAM. The native interface of NAND Flash is ONFI [60],

that is a relatively slow DDR interface (e.g., 83MHz [9]) where signal lines are shared

among command, address, and data. For instance, a read access comprises one command

cycle followed by five address cycles, then one more command cycle initiating an array

read, followed by data cycles when valid data become available in the buffer [69]. For

the purposes of this thesis, I adapt the DDR3 interface to work with NAND Flash arrays.

The operation of NAND Flash differs from DRAM in a number of ways, for instance:

1) NAND Flash does not require refresh, since it is non-volatile; 2) NAND Flash array
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Table 3.6: Selected NAND Flash characteristics

Symbol Value Units Description

VCC 3.3 V Supply voltage

VCCQ 1.8 V I/O supply voltage

Psize 4096 B Page size
Bsize 128 page Block size

tR 25 µs R latency
tPROG 230 µs PROG latency
tBERS 700 µs BERS latency

ICC1_S 20 mA R current
ICC2_S 20 mA PROG current
ICC3_S 20 mA BERS current
ICC5_S 5 mA Bus idle current
ISB 10 µA Standby current VCC

ISBQ 3 µA Standby current VCCQ

writes are required only if data in the buffer are dirty, since NAND Flash array reads are

non-destructive; 3) NAND Flash array writes can only be performed to an erased array

page (this is the erase-before-write overhead of Flash).

ONFI denotes the array read operation by R, the array write operation by PROG, and

the array erase operation by BERS. The currents drawn by a NAND Flash device executing

these operations are tabulated in the datasheet [9]. The tabulated currents include the

current drawn by the interface circuits of the device. NAND Flash characteristics of

interest are summarized in Table 3.6.

Each array write requires an erased page to be available in the array. The erase

operation is performed at the granularity of a block of Bsize pages. Thus, the device must

perform one array erase per Bsize array writes. The erase-before-write latency overhead

can be simplistically accounted for by distributing the array erase latency over Bsize
array writes:

t
′
PROG =

tBERS
Bsize

+ tPROG (3.29)

Assuming the specifics of NAND Flash operation listed above, the latencies of the

readmiss and writemiss accesses are respectively given by:
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TNAND
readmiss

= tR +RL+ Tdata (3.30)

TNAND
writemiss

= tR +WL+ Tdata + tWR + t
′
PROG (3.31)

where tR is provided in Table 3.6, t
′
PROG is given by (3.29), latencies RL, WL, and

tWR are provided in Table 3.3, and Tdata is given by (3.3).

The static energy of the PRE_STBY mode is the same as that of DRAM and PCM,

and the dynamic energy of the ACT_STBY mode is assumed equal to zero for the same

reason as for DRAM and PCM. The dynamic energies of the array read (R), write

(PROG), and erase (BERS) are given by (3.32), (3.33), and (3.34), respectively:

ER = (ICC1_S − ICC5_S) ·VCC · tR (3.32)

EPROG = (ICC2_S − ICC5_S) ·VCC · tPROG (3.33)

EBERS = (ICC3_S − ICC5_S) ·VCC · tBERS (3.34)

where the currents, VCC , and latencies are provided in Table 3.6. The standby currents

ISB and ISBQ are three orders of magnitude smaller than ICC5_S , so I omit them from

calculations. The erase-before-write energy overhead is simplistically accounted for by

distributing array erase energy EBERS over Bsize array writes:

E
′
PROG =

EBERS
Bsize

+ EPROG (3.35)

Thus, the dynamic energies of the NAND Flash readmiss and writemiss accesses are

respectively given by (3.36) and (3.37):

ENAND
readmiss

= ER + ERD + EDQ (3.36)

ENAND
writemiss

= ER + EWR + Eterm + E
′
PROG (3.37)

where ER is given by (3.32), ERD by (3.13), EDQ by (3.14), EWR by (3.15), Eterm by

(3.16), and E
′
PROG by (3.35).
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Table 3.7: Selected characteristics of SSD and HDD

tRD tRDhit tWR PRD PWR Pidle

SSD 50µs 30µs 50µs 0.51W 1.05W 30mW
HDD 6.78ms 150µs 3.19ms 4.2W 4.8W 3W

3.3.4 SSD and HDD Models

I characterize disk by its interface bandwidth, random read and write access latencies, the

latency of a read access hitting in the disk cache, idle (static) power, read power, and write

power. SSD and HDD share the same simple model but with different input numbers, that

come from product measurements [11, 12] and are summarized in Table 3.7. I aggregate

the smallest measured values across all the products, with the exception that I set the

random access latency of SSD to 50µs and its cache hit latency to 30µs. The cache hit

latency of HDD is set to 150µs. Both SSD and HDD employ the 6Gb/s SATA interface.

The latencies of a random read, a read hitting in the disk cache, and a random write

are given by (3.38), (3.39), and (3.40), respectively:

Tdisk
read

= tRD + Txfer (3.38)

Tdisk
read hit

= tRDhit + Txfer (3.39)

Tdisk
write

= Txfer + tWR (3.40)

where tRD is the latency of an internal read, Txfer = #bytes to transfer
interface bandwidth

is the interface

data transfer latency, tRDhit is the latency of an internal read hitting in the disk cache,

and tWR is the latency of an internal write.

The dynamic energies of a random read, a read hitting in the disk cache, and a random

write are given by (3.41), (3.42), and (3.43), respectively:

Edisk
read

= (PRD − Pidle) ·Tdisk
read

(3.41)

Edisk
read hit

= (PRD − Pidle) ·Tdisk
read hit

(3.42)

Edisk
write

= (PWR − Pidle) ·Tdisk
write

(3.43)

where PRD is the read power, Pidle is the idle power, PWR is the write power and Tdisk
read

,

Tdisk
read hit

, and Tdisk
write

are given by (3.38), (3.39), and (3.40), respectively.
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Table 3.8: 64B access latencies of DRAM, PCM, and NAND Flash

DRAM, PCM, and NAND Flash latencies are per rank of eight devices
Ratios (×) normalized to respective DRAM latencies

readmiss writemiss

DRAM 35ns 61ns
PCM 2.26× 4.23×
NAND Flash 715× 4253×

Table 3.9: 4KB access latencies of DRAM, PCM, NAND Flash, SSD, and HDD

DRAM, PCM, and NAND Flash latencies are per rank of eight devices
Ratios (×) normalized to respective DRAM latencies

readmiss writemiss

DRAM 350ns 376ns
PCM 1.13× 1.53×
NAND Flash 72× 693×

SSD 157× 146×
HDD 19386× 8492×

3.3.5 Example Estimates

Using the models described earlier in this section, I obtain example estimates of access

latencies and access dynamic energies for DRAM, PCM, NAND Flash, SSD, and HDD.

The input characteristics of the technologies are provided in Tables 3.3 to 3.7. I consider

DRAM revision G as the state-of-the-art DRAM in this thesis. DRAM and PCM have

equal page sizes, and the page size of NAND Flash (4KB) is scaled down four times to

match that of DRAM (1KB). This scaling decreases four times the NAND Flash ER and

E
′
PROG energies, given by (3.32) and (3.35), respectively. I organize DRAM, PCM and

NAND Flash into ranks of eight ×8 devices. The access sizes of interest are 64B and

4KB per rank. SSD and HDD access latencies and dynamic energies are estimated only

for 4KB accesses, since disk is typically not accessed at smaller granularities.

Table 3.8 shows the DRAM, PCM, and NAND Flash latencies of the 64B readmiss

and writemiss accesses (accesses that require array reads) to the rank of eight ×8

devices. PCM is slower than DRAM by a factor of several times: by 2.26× for 64B reads

and by 4.23× for 64B writes. NAND Flash is slower than DRAM by several orders of

magnitude: by 715× for 64B reads and by 4253× for 64B writes.
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Table 3.10: 64B access dynamic energies of DRAM, PCM, and NAND Flash

DRAM, PCM, and NAND Flash dynamic energies are per rank of eight devices
Ratios (×) normalized to respective dynamic energies of DRAM revision G

readmiss writemiss

DRAM 21nJ 24nJ
PCM 1.41× 1.40×
NAND Flash 120× 1065×

Table 3.11: 4KB access dynamic energies of DRAM, PCM, NAND Flash, SSD, and HDD

DRAM, PCM, and NAND Flash dynamic energies are per rank of eight devices
Ratios (×) normalized to respective dynamic energies of DRAM revision G

readmiss writemiss

DRAM 408nJ 630nJ
PCM 1.02× 1.14×
NAND Flash 7.0× 42×

SSD 65× 89×
HDD 19976× 9136×

Table 3.9 shows the DRAM, PCM, and NAND Flash latencies of the 4KB readmiss

andwritemiss accesses to the rank of eight ×8 devices (each device executes 64 column

accesses), and the SSD and HDD latencies of 4KB reads and writes that miss in the disk

cache. The large access size amortizes the differences in the array read and write latencies

among the technologies: PCM is slower than DRAM only by 1.13× for reads and by

1.53× for writes, and NAND Flash is slower than DRAM by 72× for reads (instead of

715× in case of the short 64B access) and by 693× for writes (instead of 4253×). The

access latency gap between DRAM and SSD is about 150× for disk reads and writes that

miss in the disk cache. The SSD cache reduces the gap for reads down to about 100×
(not shown in Table 3.9). The access latency gap between DRAM and HDD is close to

four orders of magnitude for disk writes and above four orders of magnitude for disk

reads that miss in the disk cache. HDD cache dramatically reduces the gap for disk reads

down to about 443× (not shown in Table 3.9).

The estimates of access dynamic energies in Tables 3.10 and 3.11 follow the same

trend as the estimates of access latencies discussed above. SSD and HDD normalized

dynamic energies of reads hitting in the disk cache are 41× and 457×, respectively (not

shown in Table 3.11).
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3.3.6 Discussion

There exist a number of models for estimating timing and electrical characteristics of

different memory technologies [7, 63, 70–72]. I choose to develop custom models,

specific to the purposes of this thesis, that can be used for obtaining characteristics of

devices employing different memory technologies but using the same interface type. The

energy and power estimates represent the worst case, since datasheets tabulate worst-case

measurements of currents. This is acceptable for the purposes of this thesis, because the

access dynamic energy gaps between the memory technologies are preserved.

3.4 Summary
Memory technologies differ by their basic cell properties, device organization, and device

operation. The primary property of interest in this thesis is bit density, because it enables

increasing memory capacity. Technologies like PCM and NAND Flash offer 4× and

16× higher bit densities than DRAM, respectively. It is assumed that bit density does not

depend on the I/O interface of a memory device, thus for simplicity a single high-speed

interface, DDR3, is employed for DRAM, PCM, and NAND Flash. Technologies with

higher bit densities than DRAM typically suffer from worse performance and energy

efficiency, but they are still faster and more energy efficient than disk, as is shown by

Tables 3.9 and 3.11. The access latency and dynamic energy gaps between PCM and

DRAM are small compared to those between NAND Flash and DRAM, but PCM has a

four times lower bit density than NAND Flash. DRAM, PCM, and NAND Flash are the

representative technologies used later in this thesis for composing hybrid main memories.



4
Hybrid Memory Systems Taxonomy

In the quest for higher-performance, more energy efficient memory systems, uncon-

ventional memory systems have been investigated. The baseline is a multi-core, high-

performance computing system with a cache hierarchy and on-chip memory controllers,

main memory, and a disk system accessible via I/O (Figure 4.1). Main memory is built

from conventional DRAM devices connected to the memory controllers via memory

channels. Main memory is hybrid if it is divided into two or more partitions where

each partition is optimized for specific purposes, e.g., performance, energy efficiency,

capacity, or cost. Today’s diversity of memory technologies, e.g., DRAM, PCM, and

NAND Flash, has created opportunities for research and implementation of hybrid main

memory systems. As a result, a large body of work on hybrid systems has been created.

Unfortunately, it lacks systematization, and this complicates positioning new proposals

within the existing body of work. Due to the development of memory technologies,

inspiring results of contemporary work, and the continuous increase in demand for higher

memory system performance, energy efficiency, and capacity, the field of hybrid main

43
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Figure 4.1: Baseline system

memory systems is expected to continue expanding. In this chapter, I survey a body of

work on hybrid main memory systems not older than ten years and classify systems by

organization in accordance with a novel taxonomy.

4.1 Notation

Various hybrid main memory system organizations have been proposed in the literature.

I classify these by their logical and physical organization. A hybrid system is logically

divided into partitions. Logical partitions can be located on the same or on different

physical levels, explained below.

I classify hybrid systems as flat or hierarchical by their logical topology. In the

former, each partition can be accessed independently. In the latter, lower partitions

can be accessed via higher partitions in much the same way as levels in a conventional

cache hierarchy. For clarity in describing the next taxonomy category, additional terms

are introduced. A data migration is a data move between two partitions, and a data

replication is a data copy. A data promotion is a data migration or replication to a

partition with higher performance in terms of access latency or energy efficiency in terms

of access dynamic energy. A migrating hybrid system migrates data on promotion, and a

replicating one replicates. In the context of hierarchical organizations, migrating systems

are exclusive and replicating systems are inclusive. I identify three physical levels by the

distance from the processor(s): 1) on-chip (inside the processor package), 2) off-chip

but before I/O, and 3) after I/O. The physical levels are labeled with I , II , and III in
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Figure 4.2: TPN–L notation

Figure 4.1, respectively. With respect to the physical organization, I distinguish between

hybrid systems that have logical partitions on the same or on different levels.

To categorize prior work in the field of hybrid systems, I introduce a TPN–L notation,

explained in Figure 4.2. In addition, I describe specifics of each organization, e.g.,

memory technologies used for building partitions from, or if a partition of a hierarchical

system can be bypassed for specific types of accesses. Evaluation results provided here

should be taken within the context of the corresponding work. The reader can refer to the

original publications to clarify authors’ assumptions, evaluation approaches, and results.

4.2 Classification
According to the TPN–L notation, hybrid systems are categorized into flat and hierarchical

on the top level. Section 4.2.1 describes the diversity of flat system organizations, and

Section 4.2.2 the diversity of hierarchical ones.

4.2.1 Flat Systems

I first describe an example of a flat hybrid system with partitions on different physical

levels. According to the TPN–L notation, Dong et al. [27] propose an FM2–D system

(flat, migrating, with two partitions of different physical levels), where one partition is

built from custom DRAM and the other from conventional DRAM. The authors bridge the

processor/memory performance gap by augmenting conventional DRAM main memory

with customized high-performance DRAM placed inside the processor package. They

consider on-package DRAM capacities up to 1GB because of limited power supply and

heat dissipation capabilities. They conclude that using the on-package DRAM as Last

Level Cache (LLC) is not worthwhile because of the small difference between the hit

latency and miss penalty and the negligible reduction of the cache miss rate compared to



46 CHAPTER 4. HYBRID MEMORY SYSTEMS TAXONOMY

a smaller LLC. Their hybrid system maps statically the first gigabyte of program memory

addresses to the on-package DRAM. When the program’s working set fits completely

in the on-package DRAM, the system may offer better performance than conventional

main memory with DRAM LLC of the same capacity as the on-package DRAM partition.

The authors investigate coarse-grain pure-hardware and fine-grain OS-assisted dynamic

data mapping schemes, too. Their main conclusions are: 1) data migration granularity

should be adaptive to different workload types, and 2) off-package memory access traffic

reduction of 83% can be achieved on average for workloads used in their study. Their

hybrid system organization with dynamic data mapping suffers a power overhead from

two to 62× compared to conventional DRAM main memory. The authors do not evaluate

the effect of increasing main memory capacity on the number of disk accesses.

Phadke and Narayanasamy [23] bridge the processor/memory performance gap with

an FM3–S system, where one partition each is built from DRAM optimized either for

latency, bandwidth, or power. Unlike Dong et al. [27], they reduce power consumption.

The authors classify programs at design-time into three groups based on memory access

behavior: latency-sensitive, bandwidth-sensitive, or latency/bandwidth-insensitive (data

can be mapped to the low-power partition without hurting performance). They implement

in the OS a dynamic data mapping scheme that matches the program type with available

memory resources. Compared to conventional DRAM main memory of the same capacity,

their hybrid memory improves performance by 13.5% and reduces memory power by

20%, but increases the number of disk accesses by 1%.

Unlike Dong et al. [27] and Phadke and Narayanasamy [23], Sudan et al. [19] bridge

the memory/disk performance gap with their FM2–S system, where both partitions are

built from DRAM, but one partition is aggressively power-managed (at the granularity

of a rank) and the other is not. The partitions are labeled cold and hot tiers, respectively.

The power dissipation of one hot rank is the same as six cold ranks, thus main memory

capacity can be increased within a fixed power budget by making some hot ranks cold. For

workloads with working set sizes exceeding baseline main memory capacity, this reduces

the number of disk accesses and consequently improves system performance, although

the average main memory access latency increases. Employing the same DRAM devices

in both tiers allows for dynamic resizing of the hot tier depending on an actual workload

working set size, so that the average main memory access latency is not penalized when

extra capacity is not needed. Compared to a system where all ranks are hot, their system

supports up to three times more DRAM within the same power budget. Despite an average

main memory latency increase, the system performance improves by 250%.
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Similarly to Sudan et al. [19], Mogul et al. [20] increase the main memory capacity,

but with a different memory technology. Their FM2–S system has one DRAM and one

large NOR Flash partitions. The authors adaptively map data accessed mostly for reads

into the NOR Flash partition, observing that the fraction of such data is large enough in

server programs.

Unlike Mogul et al. [20], Zhang and Li [28] build the second partition of their FM2–S
system from PCM. Both partitions are 3D-stacked on top of the processor die. They use

2GB PCM as main memory and the DRAM partition as a 128MB OS-managed buffer

in front of it. Data are initially mapped to PCM, and write-intensive data are adaptively

promoted. Moving main memory inside the processor package improves the average

main memory access latency and bandwidth, but increases the memory/disk performance

gap. Compared to a baseline system with DRAM-only main memory inside the processor

package, their hybrid system of the same capacity achieves power savings of 54% with

a performance degradation of 6%. The power savings reduce thermal constraints of the

processor package and thus allow for an average speedup of 7%. Assuming Multi-Level

Cell (MLC) PCM with two bits per cell, PCM capacity doubles (4GB), and this reduces

the average main memory access latency by 15% compared to the baseline DRAM-only

system half the capacity (2GB).

Similarly to Zhang and Li [28], Ramos et al. [18] build the second partition of their

FM2–S system from PCM. The DRAM partition is used as a buffer for PCM, and both

partitions are managed with an adaptive hardware data mapping scheme that promotes

not only write-intensive but also frequently accessed data. The PCM lifetime is estimated

below five years, and the average energy-delay-squared product of their system is 24%

smaller than of a hybrid system with static data mapping, and 13% smaller than of two

state-of-the-art hybrid systems [16, 28]. The authors do not evaluate the effect of a greater

main memory capacity on the number of disk accesses.

Fang et al. [24] consider the same system organization as Ramos et al. [18]. Motivated

by the differences among the characteristics of DRAM and memory technologies like

PCM, they propose a universal memory protocol instead of DDR3 [41]. Their hybrid

system just illustrates the viability of their universal memory architecture. The system

employs one DRAM and one PCM partitions of equal capacities and a static, even

interleaving of program data across the DRAM and PCM devices. The authors conclude

that the performance of the hybrid system is 12% lower than the performance of a DRAM-

only system of the same total capacity. They state that the capacity of the PCM partition

can be increased but do not evaluate it.
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Unlike the previous authors, Yoon et al. [21] propose an FR2–S (replicating) system.

Similarly to Zhang and Li [28], Ramos et al. [18], and Fang et al. [24], the partitions are

built from DRAM and PCM. A data mapping scheme adaptively promotes frequently

accessed data and data with high row buffer miss rates. The DRAM partition is organized

as a 16-way set-associative cache for the PCM partition, but is bypassed for all accesses

to data residing in the PCM partition only (i.e., to data not replicated to the DRAM

partition). Both partitions are directly accessible and thus the system is flat. Similarly to

Dong et al. [27], Ramos et al. [18], and Fang et al. [24], the authors exclude disk from

evaluation. Compared to a baseline hybrid system where DRAM acts as a conventional

cache for PCM, their system achieves 41% higher performance.

Summary

Dong et al. [27], Phadke and Narayanasamy [23], Sudan et al. [19], Mogul et al. [20],

Zhang and Li [28], Ramos et al. [18], and Fang et al. [24] propose flat, migrating hybrid

systems. Only Yoon et al. [21] propose a replicating system. Only Dong et al. [27]

study a hybrid system with partitions on different physical levels. Only Phadke and

Narayanasamy [23] divide their hybrid system into three partitions. Dong et al. [27],

Phadke and Narayanasamy [23], and Sudan et al. [19] build partitions from either

conventional or customized DRAM, while Mogul et al. [20], Zhang and Li [28],

Ramos et al. [18], Fang et al. [24], and Yoon et al. [21] combine conventional DRAM

with an NVM technology. Dong et al. [27] bridge the processor/memory performance

gap at the cost of higher power dissipation. Phadke and Narayanasamy [23] and

Fang et al. [24] target the same goal but manage to reduce memory power dissipation.

Unlike Dong et al. [27] and Phadke and Narayanasamy [23], Sudan et al. [19],

Mogul et al. [20], Ramos et al. [18], and Yoon et al. [21] bridge the memory/disk

performance gap by increasing main memory capacity. Only Zhang and Li [28] place

all main memory inside the processor package and improve main memory latency and

bandwidth, thereby increasing the memory/disk performance gap.

4.2.2 Hierarchical Systems

The earliest work in this category is by Ekman and Stenstrom [14, 15]. Both partitions of

their HM2–D system are built from DRAM. One partition is local to the processor and

acts as a fully-associative cache for the other partition that is remote and accessible via a

fiber optic link. The authors make remote as much local memory as possible within a
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fixed memory performance degradation thus reducing the cost and power of local memory.

They conclude that only 30% of memory resources must be accessed at the local DRAM

speed (about 100ns) for the workloads in their study. The remaining memory resources

can be accessed at a speed one order of magnitude slower (up to 1µs). Their hybrid

system has an average performance overhead of 1.2% compared to an all-local DRAM

baseline of the same capacity. Disk is not a performance bottleneck since the workload is

in-memory w.r.t. baseline main memory. The authors state that their organization could

be generalized to 1) a hybrid system with fast and slow (compressed or aggressively

power-managed) DRAM partitions located on the same physical level, i.e., the main

memory level, and 2) a hierarchical, migrating system with N partitions.

Similarly to Ekman and Stenstrom [14, 15], Sudan et al. [17] and Badam and Pai [22]

organize the DRAM partition of their HM2–D systems as a fully-associative cache

for the second partition, but build the latter from NAND Flash. Unlike Ekman and

Stenstrom [14, 15], the authors bridge the memory/disk performance gap by increasing

main memory capacity with a large NAND Flash partition accessible via a Peripheral

Component Interconnect express (PCIe) bus. The system improves the throughput of

programs used in their study from 131% to 1740% compared to a system with the same

amount of DRAM but no NAND Flash. Their hybrid memory manager (implemented in

the OS) reduces write traffic to NAND Flash and thus increases its lifetime up to 32×
compared to a system where NAND Flash is organized as a disk cache.

Ye et al. [13] bridge the memory/disk performance gap but, similarly to Ekman and

Stenstrom [14, 15], evaluate systems with in-memory workloads only. They investigate

both HM2–S and HR2–S systems, where one partition is composed of DRAM and the

other of a slower memory technology (similar to NAND Flash). Compared to a system

with DRAM-only main memory, the performance degradation of their hybrid system of

the same capacity stays within 10% for the slow partition read latencies up to 40µs if

the DRAM partition contains on average 75% of the workload’s working set for their

programs. A small write buffer can hide the slow partition write latencies of up to 1ms.

Similarly to Ye et al. [13], Bivens et al. [25] and Dube et al. [26] build the second

partition of their HM2–S system from a hypothetical technology termed Storage-Class

Memory (SCM) that is slower than DRAM (e.g., PCM or NAND Flash). The DRAM

partition acts as a direct-mapped cache for the SCM partition. Similarly to Ye et al. [13],

they consider a range of SCM access latencies. An individual SCM device in their system

must have a read latency below 350ns and a minimum write bandwidth of 200MB/s. This

places NAND Flash outside the feasible working region within the memory performance
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degradation of 5% compared to a DRAM-only system of the same capacity. Similarly to

Ekman and Stenstrom [14, 15] and Ye et al. [13], the authors exclude disk from evaluation.

Unlike the previous authors, Qureshi et al. [16] implement a bypass mechanism in

their HR2–S system. They state that disk is a major system performance bottleneck

even if augmented with a NAND Flash based disk cache. They replace all DRAM of the

baseline system with PCM of the same area but 4× greater capacity and augment it with

a DRAM partition 3% its capacity that acts as a 16-way set-associative cache for it. The

PCM partition is bypassed for reads from disk (data are transferred directly to DRAM)

for all programs and for writebacks to disk for programs with low temporal locality

of reference, such as streaming programs. Their hybrid system reduces the number of

disk accesses by a factor of five, increases the system performance by a factor of three,

provides energy savings of 55%, and incurs a 13% area overhead compared to the baseline

DRAM-only system of a 4× smaller capacity. The PCM lifetime is about ten years in

their system. Compared to a conventional DRAM system of the same capacity as the

PCM partition, their system suffers less than a 10% performance degradation.

Summary

Ekman and Stenstrom [14, 15], Sudan et al. [17], Badam and Pai [22], Bivens et al. [25],

and Dube et al. [26] propose hierarchical, migrating hybrid systems. Only

Qureshi et al. [16] propose a replicating system with a bypass mechanism. Ye et al. [13]

study both migrating and replicating systems. All of the hierarchical systems have two

partitions. Ekman and Stenstrom [14, 15], Sudan et al. [17], and Badam and Pai [22]

place the partitions on different physical levels. Only Ekman and Stenstrom [14, 15]

build both partitions from DRAM, while the others employ DRAM and NVM. Ekman

and Stenstrom [14, 15] reduce the conventional DRAM main memory capacity within

a fixed performance degradation. Unlike them, Sudan et al. [17], Badam and Pai [22],

Ye et al. [13], Bivens et al. [25], Dube et al. [26], and Qureshi et al. [16] bridge the

memory/disk performance gap by increasing main memory capacity.

4.3 Summary

I have surveyed and classified hybrid main memory systems not older than 10 years

based on their logical and physical organizations, according to a novel TPN–L notation.

To the best of my knowledge, this is the first attempt to introduce such a classification.
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Figure 4.3: TPN–L classification of contemporary hybrid memory systems

Figure 4.3 illustrates the classification, where the color squares represent different memory

technologies employed for building hybrid system partitions, as per the legend above

the figure, the roman numbers (I , II , and III) inside the color squares match the physical

levels in Figure 4.1, and each group of the color squares thus represents a specific hybrid

memory organization. The references to the right from each group of the color squares

cite the publications that propose the respective hybrid memory organizations.

Among the 14 different hybrid system proposals surveyed, I have identified four

unique flat organizations and three unique hierarchical organizations. Classifying them

further by the types of memory technologies and the physical locations of partitions, I

have identified seven unique flat systems and five unique hierarchical systems. Among

the seven flat systems the majority are migrating with two partitions on the same physical

level. All of the five hierarchical systems have two partitions. Two hierarchical systems

are migrating with partitions on different physical levels. Three hierarchical systems have

their partitions on the same physical level, and among them one is migrating and two are

replicating. One of the hierarchical, replicating systems employs a bypass mechanism.
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5
Hybrid Memory Systems Design

Methodology

NVM technologies introduce a new dimension to the system design space. They typically

bridge the access latency, access dynamic energy, bit density, and bit cost gaps between

the conventional main memory technology, DRAM, and backing store technologies,

collectively called disk here. NVM technologies such as PCM and NAND Flash can be

bit-denser and less expensive per bit than DRAM. The potential benefits of combining

DRAM with such technologies instead of building DRAM-only main memory are: 1) a

lower cost for main memory of the same capacity; and 2) a larger capacity for main

memory of the same area, where area is expressed in the number of memory devices,

and one DRAM device has the same area in mm2 as one NVM device, as described

in Section 5.1. For instance, if the baseline system has two channels, two Dual In-line

Memory Modules (DIMMs) per channel, 16 memory devices per DIMM, the total area

53
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is 64 devices. An equal-area hybrid system would have 64 devices, too, some of which

would be DRAM and some NVM. A larger main memory capacity can reduce the number

of disk accesses and consequently reduce system-level execution time and/or energy.

I identify the following hybrid main memory design challenges: 1) resource

partitioning, i.e., how much memory of each type to employ; 2) resource allocation,

i.e., how to distribute the capacity of hybrid partitions among co-running programs; and

3) data placement, i.e., where in hybrid main memory to place program data. Each of the

three challenges is present both at design-time and at run-time. Design-time Resource

Partitioning (DRP) finds the amounts of different memory technologies that have to

be installed in the system to satisfy a design goal best. Run-time resource partitioning

adjusts these amounts dynamically, provided that memory technologies support such

reconfiguration [30]. Design-time Resource Allocation (DRA) statically distributes

available main memory capacity among programs in a given workload, and run-time

resource allocation dynamically adjusts memory capacity allocated per program. Design-

time data placement statically maps program data to hybrid main memory partitions, and

Run-time Data Placement (RDP) does so dynamically to satisfy a run-time goal.

DRP is a nontrivial problem, and its best solution depends on many factors, including

the workload, properties of memory technologies and disk, and characteristics of non-

main-memory subsystems, such as the CPU. Speedups and energy savings compared

to the DRAM-only baseline can vary widely. Thus, DRP is a fundamental problem for

hybrid memory systems with a multi-dimensional design space.

DRP has been studied using simulators [14–16] and a virtual machine monitor [13].

Simulation typically has a large implementation overhead and consumes significant

computational resources (hours for high-performance multicore systems with contem-

porary workloads). Prototyping hybrid main memory with a virtual machine monitor

involves substantial implementation overhead, too, and restricts exploration to the host

configuration (e.g., the total main memory capacity). Thus, these approaches complicate

extensive design space exploration and impede finding the best solution to DRP.

In order to enable extensive DRP, I propose using analytic, system-level models for

execution time and energy that require no lengthy simulations except for the one-time

effort of creating program profiles, as described in Section 2.1. The models describe the

fundamental processes of the memory hierarchy and indirectly represent implementation-

dependent details by assumed parameters, as explained in Section 5.1. Essentially, they

embody the standard memory hierarchy models applied in the context of hybrid main

memory systems. The model for execution time is employed in Section 5.2 for driving a
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performance model named Rock. It provides first-order estimates of the memory system

throughput of different hybrid system configurations. As a result, it emphasizes the

importance of DRP. I tackle DRP in Section 5.3 by proposing a novel partitioning method

named Crystal and driven by both the model for execution time and the model for energy.

The chapter is summarized by Section 5.4.

5.1 System-Level Models
For ease of demonstration I make several assumptions about the systems I model.

Figure 5.1 depicts logical memory organizations, and Figure 5.2 shows details (the

number of cores, main memory channels, and DIMM organization can be different). First,

I assume that unlike the conventional main memory of Figure 5.1(a), hybrid memory

consists of two exclusive partitions labeled M1 and M2 and organized hierarchically

(M2 is only accessible viaM1), as in Figure 5.1(b). This is an HM2–S system according

to the TPN–L notation, introduced in Section 4.1.

Programs are represented by profiles recorded in the steady state, as described in

Section 2.1. The system workload consists of one single-thread program per core, where

the OS can be one of the programs. DRA statically distributes memory capacity among

the programs according to a given policy, e.g., as described in Section 2.2. The program

with the longest TCPU of the workload programs is labeled pα. The programs start at the

same time and run concurrently, so the workload’s TCPU is set to that of pα.

Program data are managed at the granularity of an OS page. A program can be not-in-

memory w.r.t. the memory capacity slice allocated to it after DRA. If a requested page of

a not-in-memory program is not in M1 of the baseline system or not in M2 of the hybrid

system, it is paged in from disk. Each page-in (insertion) causes a page-out (eviction),

since the miss curve represents steady-state behavior. In the hybrid system, pages evicted

from M1 are migrated to M2. Only dirty pages of a not-in-memory program are paged

out to disk, thus the writebacks for each program are defined by its write fraction (fWr).

I choose this organization because it is simple to model and it does not waste memory

capacity (like replicating systems do). The organization implies a data placement policy

that is further referred to as basic.

For simplicity of device capacity comparison, I assume that DRAM and NVM devices

have the same number of memory cells, and the cells have the same area in µm2. The

higher bit density of NVM is represented by multiple bits per cell. Rows of DRAM and

NVM have equal bit capacity, thus an NVM row comprises fewer cells than a DRAM row,
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Table 5.1: Assumed model parameters

Assumed parameter Description

Row buffer hit rate Row buffer hit rate for M1 reads and writes

Buffer disk writes For each program, overlap its disk write time with TCPU and main
memory time

Disk cache hit rate Disk cache hit rate for disk reads

Disk write propagation rate Fraction of writes to main memory that propagate to disk

Overlap TCPU and Tmem Overlap TCPU of program that defines TCPU of entire workload
with main memory and disk times of all other programs in workload

and an NVM device comprises more rows than a DRAM device. In addition, I assume

equal peripheral circuits and data interfaces, hence the same static power. This way, the

areas of one DRAM and one NVM device are equal, and equal-area main memories have

the same number of devices, regardless of type.

Lastly, I introduce a number of assumed model parameters to indirectly represent

execution details, as described below. Row buffer hit rate models the execution details that

decrease the average main memory access latency and dynamic energy. For instance, the

parameter models access reordering and bank- and channel-level parallelism utilization by

the memory controller. The Buffer disk writes parameter models an ideal write buffer in

the I/O controller by overlapping each program’s disk write time with its TCPU and main

memory time. Disk cache hit rate models prefetching to the disk cache, I/O controller

cache, and disk access reordering. It affects solely disk reads, since only they are likely to

hit in the cache [5]. Disk write propagation rate models write coalescing in main memory,

such that only a fraction of the total number of writes to main memory propagate to

disk. The Overlap TCPU and Tmem parameter overlaps the workload’s TCPU with main

memory and disk times of all the workload programs except pα. This overlap represents

a limit case resulting in the shortest execution time.
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Table 5.2: Variables in Equations (5.1) to (5.12)

Miss(C), fWr, and TCPU are from program profile

Variable Description

n Number of programs constituting system workload

A{M1,M2} Area (in memory devices) of M1 and M2, respectively

C{M1,M2} Capacity of M1 and M2, respectively

N{M1,M2,D} Number of accesses to M1, M2, and disk, respectively: NM1 = Miss(0), NM2 =

Miss(CM1), and ND = Miss(CM1 + CM2)

{T,E}M1 acc Latency and dynamic energy, respectively, per M1 access (acc), where access
can be read (Rd) or write (Wr), and size of access is one cache line

{T,E}X→Y Latency and dynamic energy, respectively, reading one OS page from memory
part X, transferring, and writing it to memory part Y

TD {Rd,Wr} Latency of reading (Rd) and writing (Wr), respectively, one OS page from/to disk

dwpr Assumed disk write propagation rate

Pnon-
mem

System power excluding main memory and disk

P{M1,M2,D}
stat

Static power of M1, M2, and disk, respectively. For M1 and M2, depends on
their respective areas and technologies

P{M1,M2}
maint

Maintenance power of M1 and M2, respectively (e.g., refresh power of DRAM).
Depends on respective areas and technologies of M1 and M2

Equations (5.1) and (5.2) describe the models for the execution time and dynamic

energy of a single-thread program in the baseline system of Figure 5.1(a):

Tbase = TCPU +NM1· ((1 − fWr)·TM1Rd + fWr·TM1Wr) (5.1)

+ND· (TD→M1 + dwpr· fWr·TM1→D)

Ebase
dyn

= NM1· ((1 − fWr)·EM1Rd + fWr·EM1Wr) (5.2)

+ND· (ED→M1 + dwpr· fWr·EM1→D)

where the entire main memory constitutes partitionM1, and the variables are described in

Table 5.2. The number of accesses to main memory (NM1) by each program is obtained

from the program’s miss curve at capacity 0. The latencies and dynamic energies per M1
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read and write are calculated by simple equations according to the assumed Row buffer

hit rate value. E.g., TM1Rd = rbhr·TM1RdHit + (1 − rbhr)·TM1RdMiss, where

rbhr is the row buffer hit rate, and TM1RdHit and TM1RdMiss are the latencies of

servicing one read hitting and missing in the row buffer, respectively. By varying the row

buffer hit rate I vary the actual latencies and dynamic energies per M1 access. Partition

M2 is accessed only at a page granularity, thus the row buffer hit rate is constant, and

a separate parameter is not needed. The latencies and dynamic energies per disk read

are calculated according to the assumed Disk cache hit rate value in the same way, and

I omit separate equations for brevity. All the access, migration, and paging latencies

and dynamic energies include the latencies and dynamic energies of data transfers. For

instance, the latency of a page-out from M1 to disk (TM1→D) comprises the latencies

of reading and transferring the page from M1 to the I/O controller and the latencies of

transferring and writing it from the I/O controller to disk.

Equations (5.1) and (5.2) represent the fundamental processes of the memory

hierarchy. The models for execution time and dynamic energy of the hierarchical,

migrating system of Figure 5.1(b) are derived by simply adding partition M2 and are

given by (5.3) and (5.4), respectively:

Thyb = TCPU +NM1· ((1 − fWr)·TM1Rd + fWr·TM1Wr)

+NM2· (TM2→M1 + TM1→M2) (5.3)

+ND· (TD→M2 + dwpr· fWr·TM2→D)

Ehyb
dyn

= NM1· ((1 − fWr)·EM1Rd + fWr·EM1Wr)

+NM2· (EM2→M1 + EM1→M2) (5.4)

+ND· (ED→M2 + dwpr· fWr·EM2→D)

where the variables are described in Table 5.2.

In order to estimate system-level execution time and energy, I distribute partition

capacities among the workload programs according to a DRA policy of choice and apply

(5.5) to (5.12). Table 5.2 describes the variables in the equations. For each program I

calculate execution time, buffering disk writes if the respective parameter is enabled:
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T ′ =

T if Buffer disk writes = no

TBDW otherwise
(5.5)

TBDW =


TDRd
total

+ TDWr
total

if TDWr
total

≥ T − TDRd
total

− TDWr
total

T − TDWr
total

otherwise

where TDRd
total

= ND·TDRd, TDWr
total

= ND· dwpr· fWr·TDWr , and T is given by

(5.1) for the baseline system and by (5.3) for the hybrid system. The conditions for

calculating TBDW are as follows. T − TDRd
total

− TDWr
total

represents the sum of the

program’s TCPU and main memory time. If the disk write time is greater than or equal to

the program’s TCPU and main memory time, the former overlaps the latter and defines

the result time in addition to the disk read time, that cannot be overlapped. This gives

TBDW = TDRd
total

+TDWr
total

. Otherwise, i.e., if the disk write time is less than the program’s

TCPU and main memory time, the latter overlaps the former and thus defines the result

time in addition to the disk read time. This gives TBDW = T − TDWr
total

. Next, I sum the

execution times of the programs overlapping their TCPU to obtain the execution time of

the entire workload:

Tsys = max
0≤i<n

TCPUi +
∑

0≤i<n

T ′i − TCPUi (5.6)

where T ′ is defined by (5.5). Workload’s TCPU and Tmem are overlapped if the respective

parameter is enabled:

T ′sys =

Tsys if Overlap TCPU and Tmem = no

Tsys
OCM

otherwise
(5.7)

Tsys
OCM

=


Tα if TCPUα ≥

∑
0≤i<n, i6=α

T ′i − TCPUi

Tsys − TCPUα otherwise

where α is such that TCPUα = max
0≤i<n

TCPUi , and Tsys is defined by (5.6). Next, the

overhead of ZQ-calibration is added, if a high-speed data interface is employed. ZQCS



5.1. SYSTEM-LEVEL MODELS 61

commands are assumed to overlap for all ranks, so the overhead of ZQ-calibration is

calculated by simply dividing execution time over the ZQCS period and multiplying by

the latency of the ZQCS command:

T ′′sys =

T ′sys +
T ′
sys

tZQI
· tZQCS if high-speed data interface employed

T ′sys otherwise
(5.8)

where T ′sys is given by (5.7), tZQI is the ZQCS period, and tZQCS is the ZQCS latency.

Finally, DRAM refresh is added, if DRAM is employed by at least one partition. REF

commands are assumed to overlap for all ranks, so the latency overhead of DRAM refresh

is calculated similarly to the above overhead of ZQCS commands, giving the following

equation for system-level execution time:

T ′′′sys =

{
T ′′sys +

T ′′
sys

tREFI
· tRFC (MIN) if DRAM employed

T ′′sys otherwise
(5.9)

where T ′′sys is given by (5.8), tREFI is the REF period, and tRFC (MIN) is the REF

latency. Then, I calculate system-level static and maintenance energies given by (5.10)

and (5.11), respectively:

Esys
stat

= T ′′′sys·
(
Pnon-
mem

+ PM1
stat

(AM1) + PM2
stat

(AM2) + PD
stat

)
(5.10)

Esys
maint

= T ′′′sys·
(
PM1
maint

(AM1) + PM2
maint

(AM2)
)

(5.11)

where T ′′′sys is given by (5.9). The maintenance power of M1 or M2 can be, e.g., the

refresh power of DRAM, or nothing in case of PCM or NAND Flash. The area of M2

(AM2) is zero for the baseline system. Lastly, system-level execution energy is calculated:

Esys
total

= Esys
stat

+ Esys
maint

+
∑

0≤i<n

Edyni (5.12)

whereEsys
stat

is given by (5.10),Esys
maint

by (5.11), andEdyni denotes the dynamic energy

of each program in the workload given by (5.2) for the baseline system and by (5.4) for

the hybrid system.
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5.2 Rock
Rock is a performance model for hybrid systems, inspired by the Roofline model [73].

Rock plots estimates of memory system throughput of different hybrid configurations

executing a given workload. The workload is fixed and the system is optimized. Rock is

driven by (5.1), (5.3), and (5.5) to (5.9), and thus provides first-order throughput estimates.

Throughput is calculated as the total amount of data accessed by the workload (the number

of accesses below Last Level Cache (LLC) multiplied by the access size, i.e., the cache

line size) over system-level execution time. As a result, Rock illustrates how memory

system throughput can be boosted by different memory system optimizations for a given

workload, and highlights the importance of Design-time Resource Partitioning (DRP).

5.2.1 Experimental Setup

Workloads

Programs are represented by CG, lbm, mcf, sjeng, and soplex (their respective

profiles are described in Section 2.4). I consider two pairs of workloads and systems:

1) 16 instances of sjeng, denoted by WA, running on a 16-core system and 2) one

each of mcf, lbm, CG, and soplex, denoted by WB, running on a 4-core system. The

programs are assigned one per core, as described in Section 5.1.

System Configuration

For each of the workloads, the maximum area of main memory is defined by the number

of DRAM DIMMs required to fit the entire working set of the workload. Each DIMM

is dual-rank with eight memory devices per rank, as illustrated in Figure 5.2. I scale

the device capacity down by a factor of four in order to increase the number of DIMMs

required for workloads WA and WB. This gives the maximum main memory area of six

DIMMs. Hybrid configurations are such that the area of the NVM partition is varied from

0% to 100% of the total main memory area. The partitioning granularity, i.e., the area by

which DRAM can be replaced with NVM, is one DIMM, since I optimistically assume

mixed-technology channels. Table 5.3 summarizes the system configuration. The number

of cores is 16 for WA and four for WB. The cache line size defines the size of main

memory accesses. The OS page size defines the granularity of the program miss curve

and the size of accesses to M2 and disk. Table 5.4 shows the assumed model parameters

representing the worst case for memory system throughput: no row buffer hits and no disk
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Table 5.3: System configuration for Rock

Number of cores 16 (WA), 4 (WB) Partitioning granularity 1DIMM
Cache line size 64B Datasheet device capacity 128MB
OS page size 4KB Capacity scale-down factor 4×
Number of DIMMs 6 Scaled device capacity 32MB
Devices per DIMM 16 Scaled DIMM capacity 512MB

Table 5.4: Model parameters for Rock

Row buffer hit rate 0% Buffer disk writes No
Disk cache hit rate 0% Overlap TCPU and Tmem No
Disk write propagation rate 100%

Table 5.5: Selected memory characteristics for Rock

Main memory numbers are per rank of eight devices

Ratios (×) normalized to respective DRAM numbers

DRAM PCM NAND Flash SSD HDD
Bit density 1× 4× 16× Don’t care

Latency

64B Read 35ns 2.26× 715×
Not used

64B Write 61ns 4.23× 4253×

4KB Read 350ns 1.13× 72× 157× 19386×
4KB Write 376ns 1.53× 693× 146× 8492×

cache hits, all writes propagate to disk and are not buffered, and the workload’s TCPU
does not overlap with its memory and disk time.

The 12.8Gb/s DDR3 (×8 DDR at 800MHz) interface is employed by all main

memory devices. NVM technologies are represented by PCM and NAND Flash. Their

timing characteristics are estimated using the models described in Section 3.3. Although I

scale the device capacity, I use the original datasheet timing characteristics for DRAM and

NAND Flash. I model the ZQ-calibration latency overhead of the DDR3 interface and the

refresh latency overhead of DRAM using (5.8) and (5.9) and the tZQI , tZQCS , tREFI ,

and tRFC (MIN) values from Table 3.3. Both the memory and I/O controller delays are

assumed 5ns. The 6Gb/s SATA interface is employed by both SSD and HDD, and the

models described in Section 3.3 are used for estimating their access latencies. Selected

memory characteristics are summarized in Table 5.5. The NVM and disk numbers given
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as ratios in the table are normalized to the respective DRAM numbers. PCM and NAND

Flash are assumed four and 16 times denser than DRAM, respectively. The access

latencies of the memory technologies have been discussed in Section 3.3.5.

I consider systems employing DRAM, PCM, and SSD, and systems employing

DRAM, NAND Flash, and HDD. Each configuration is evaluated using the high-

utility, low-utility, and utility-agnostic DRA policies described in Section 2.2. The

implementations of the policies are agnostic to memory technology type and consider

only the total capacity of main memory. The capacity of M1 is distributed first. The

initial slice size is 32MB for each program and the slice delta is 1MB (recall the algorithm

in Figure 2.2). The baseline Run-time Data Placement (RDP) policy is the basic one

implied by the system organization described in Section 5.1. A hypothetical, ideal RDP

policy renders hybrid main memory built from the M1 memory technology but of the

aggregate capacity of partitions M1 and M2, and thus represents the data placement

of an ideal flat hybrid system. I employ it to demonstrate memory system throughput

attainable if a hybrid system could serve all accesses at the DRAM speed but retaining its

hybrid capacity.

5.2.2 Results

Figures 5.3 to 5.7 show results of applying Rock to workloads WA and WB (defined in

the beginning of Section 5.2.1). The X axis of the figures shows the total area of main

memory, ranging from one to six DIMMs. The Y axis of the figures shows the area

of partition M2, ranging from zero to six DIMMs. The area of M1 is the difference

between the total area and the area of M2. Thus, memory technology configurations

are represented by (x, y) points. Configurations where M1 area is zero are such that

NVM completely replaces DRAM and main memory comprises only one partition. The

Z axis of the figures shows memory system throughput. The surfaces with green-to-

yellow curves show throughput attainable if the high-utility DRA policy is employed,

and the surfaces with red-to-yellow curves show that if the low-utility DRA policy is

employed. The surface curves are projected onto theXZ plane as contour plots. The blue

vertical bars show throughput attainable if the utility-agnostic DRA policy is employed.

Throughput attainable if the ideal RDP policy is employed is shown by the cyan vertical

bars. The white curves show the equal-area partitioning options.

Figure 5.3 shows results for WA and systems with variable amounts of DRAM and

PCM backed by SSD. Since WA consists of multiple instances of the same program
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Figure 5.3: Rock for WA and systems with PCM and SSD

(sjeng), the high-utility, low-utility, and utility-agnostic DRA policies result in equal

capacity distributions, and thus results are shown only for the high-utility policy. sjeng’s

miss curve decreases monotonically, as illustrated by Figure 2.4. Thus, memory system

throughput increases as the capacity of the DRAM-only system is increased, as shown by

the green curve for M2 area equal to zero (y = 0). The throughput of the system with

six DRAM DIMMs (point (6, 0)) is the maximum throughput because disk accesses are

eliminated (WA becomes in-memory) and entire main memory is build from DRAM.

When the total area is one DIMM, replacing DRAM with PCM increases throughput

(points (1, 0) vs. (1, 1)) because the benefit of reducing the number of disk accesses is

greater than the penalty for accessing PCM. The throughput at point (1, 1) is visually

similar to the throughput at point (4, 0), because the total capacities are equal (one PCM

DIMM has the same capacity as four DRAM DIMMs) but not large enough to make

WA in-memory, and disk accesses dwarf the difference between the access latencies of

DRAM and PCM.

When the total area is two DIMMs, replacing one DRAM DIMM with one PCM

DIMM increases throughput (points (2, 0) vs. (2, 1)). But the workload is still not-in-

memory, thus disk accesses limit throughput attainable even if the ideal RDP policy is
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Figure 5.4: Rock for WB and systems with PCM and SSD (part I)

employed. This highlights the importance of provisioning enough main memory for the

workload and thus eliminating disk accesses in the steady state. For instance, when both

DRAM DIMMs are replaced by PCM DIMMs (points (2, 1) vs. (2, 2)), the workload

becomes in-memory and throughput increases significantly.

When the total area is three DIMMs, replacing one DRAM DIMM with one PCM

DIMM increases throughput since the workload becomes in-memory (points (3, 0) vs.

(3, 1)). Replacing two DRAM DIMMs with PCM reduces throughput (points (3, 1) vs.

(3, 2)) because the number of page migrations between the DRAM and PCM partitions

increases. Replacing all three DRAM DIMMs with PCM boosts throughput (points

(3, 2) vs. (3, 3)), because the benefit of eliminating migrations between the DRAM and

PCM partitions is greater than the penalty for servicing all accesses from PCM. The

ideal RDP policy maximizes throughput for the hybrid configurations (points (3, 1) and

(3, 2)) because disk accesses are eliminated and the entire memory is assumed to be

accessed at the DRAM speed. The throughput values of the systems with the total main

memory area of four and five DIMMs can be explained similarly. When the total area

is six DIMMs, the capacity of the DRAM-only system is large enough to eliminate
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Table 5.6: Low-utility DRA for WB when M2 area is zero

M1 capacity slices [MB]
M1 area

mcf lbm CG soplex[DIMM]
1 32 396 52 32
2 32 399 418 175
3 463 403 419 251
4 975 403 419 251
5 1487 403 419 251
6 1674 403 419 251

disk accesses. The workload becomes in-memory and thus does not benefit from larger

capacity, and replacing DRAM DIMMs with PCM reduces throughput.

Figure 5.4 shows results for WB and system configurations with variable amounts of

DRAM and PCM backed by SSD. Since WB consists of instances of different programs

(mcf, lbm, CG, soplex), the high-utility, low-utility, and utility-agnostic DRA policies

result in different capacity distributions. The results for the low-utility policy are shown

by the surface and for the utility-agnostic policy by the blue bars.

The miss curves of mcf, lbm, CG, and soplex have distinct plateaus, as illustrated

by Figure 2.4, and throughput increases steeply when one or more plateaus get fit into

DRAM, as detailed below. Table 5.6 shows the capacity slices allocated per program

by the low-utility DRA policy when main memory is DRAM-only (M2 area is zero).

Consider increasing the total area from two to three DRAM DIMMs (points (2, 0) vs.

(3, 0) in Figure 5.4 and rows 2 and 3 of Table 5.6). Throughput increases significantly

because the first plateau of mcf (about 100MB) and the entire working sets of lbm

(403MB), CG (419MB), and soplex (251MB) get fit into DRAM. Adding more DRAM

DIMMs reduces the number of accesses to disk initiated by mcf (rows 4-6 of Table 5.6)

and results in a much smaller throughput increase.

When the total area is one DIMM, replacing DRAM with PCM (points (1, 0) vs.

(1, 1)) increases the total capacity, and this increases throughput, because the benefit of

reducing the number of disk accesses of mcf and eliminating the disk accesses of lbm,

CG, and soplex is greater than the penalty for accessing PCM directly.

Likewise, when the total area is two DIMMs, replacing one DRAM DIMM with a

PCM DIMM increases throughput (points (2, 0) vs. (2, 1)): The benefit of reducing the

number of disk accesses of mcf and eliminating the disk accesses of lbm and soplex

is greater than the overhead of page migrations between the DRAM and PCM partitions.
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Table 5.7: Low-utility DRA for WB when total area is six DIMMs

Capacity slices [MB]

Row
M2 area mcf lbm CG soplex
[DIMM] M1 M2 M1 M2 M1 M2 M1 M2

1 0 1674 0 403 0 419 0 251 0
2 1 1487 187 403 0 419 0 251 0
3 2 975 699 403 0 419 0 251 0
4 3 463 1211 403 0 419 0 251 0
5 4 32 1642 399 4 418 1 175 76
6 5 32 1642 396 7 52 367 32 219
7 6 0 1674 0 403 0 419 0 251

Replacing all two DRAM DIMMs with PCM slightly reduces throughput (points (2, 1) vs.

(2, 2)): The penalty for accessing PCM directly is greater than the benefit of eliminating

disk accesses and the overhead of migrations between DRAM and PCM.

When the total area is three DIMMs, replacing one DRAM DIMM with one PCM

DIMM reduces throughput (points (3, 0) vs. (3, 1)). This is so because the low-utility

DRA policy does not allocate enough DRAM to mcf to fit its first plateau and the overhead

of page migrations between the hybrid partitions is added, despite that the workload

becomes in-memory (two DRAM DIMMs and one PCM DIMM provide enough capacity

to fit the entire WB working set). Replacing two DRAM DIMMs with PCM does not

significantly increase the number of migrations between the partitions, and throughput

does not visibly change (points (3, 1) vs. (3, 2)). Replacing all three DRAM DIMMs

reduces throughput (points (3, 2) vs. (3, 3)), because the penalty for accessing PCM

directly is greater than the benefit of eliminating migrations between the partitions.

When the total area is four DIMMs, replacing one DRAM DIMM with one PCM

DIMM increases throughput (points (4, 0) vs. (4, 1)), because disk accesses are

eliminated and the amount of DRAM is sufficient to fit the first plateau of mcf and

the entire working sets of lbm, CG, and soplex. Replacing two DRAM DIMMs with

PCM (points (4, 1) vs. (4, 2)) steeply reduces throughput, because the low-utility DRA

policy does not allocate enough DRAM to fit the first plateau of mcf, and the overhead of

page migrations between the hybrid partitions is added. At this point, WB does not benefit

from more capacity, and replacing more DRAM DIMMs with PCM reduces throughput

further. The steep decrease of throughput at points (5, 3) and (6, 4) is explained the same

way as that at point (4, 2), described above.
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Figure 5.5: Rock for WB and systems with PCM and SSD (part II)

When the total area is six DIMMs, replacing one to three DRAM DIMMs with

PCM results in the visibly similar throughput values (points (6, 0) vs. (6, 1) to (6, 3)),

as explained below. Table 5.7 shows the capacity slices allocated per program by the

low-utility DRA policy when the total area of main memory is six DIMMs. Rows 1-4

correspond to the configurations when the PCM partition area is zero to three DIMMs,

respectively. For these configurations, the capacity of the DRAM partition is large enough

to fit the first plateau of mcf (about 100MB) and the entire working sets of lbm (403MB),

CG (419MB), and soplex (251MB). There are no disk accesses, and the number of page

migrations between the hybrid partitions increases relatively slowly as DRAM DIMMs

get replaced with PCM DIMMs, because the second plateau of mcf is almost flat.

The throughput values attainable when the utility-agnostic DRA policy is employed

are shown by the blue error bars in Figure 5.4. The policy manages to achieve higher

throughput than the low-utility policy because it allocates enough DRAM to mcf to fit its

first plateau.

Figure 5.5 shows results for the high-utility DRA policy by the surface and the results

for ideal RDP policy by the cyan bars. Increasing DRAM-only capacity (the green

curve for y = 0) gradually increases throughput, as detailed below. Table 5.8 shows the
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Table 5.8: High-utility DRA for WB when M2 area is zero

M1 capacity slices [MB]
M1 area

mcf lbm CG soplex[DIMM]
1 187 33 41 251
2 699 33 41 251
3 1211 33 41 251
4 1674 43 80 251
5 1674 216 419 251
6 1674 403 419 251

capacity slices allocated per program by the high-utility DRA policy when main memory

is DRAM-only (M2 area is zero). The high-utility policy fits into DRAM the entire

working set of soplex (251MB) and allocates enough DRAM to mcf to fit its first

plateau (about 100MB) already when the total area is just one DIMM (point (1, 0) in

Figure 5.5 and row 1 of Table 5.8). Adding more DRAM DIMMs gradually reduces the

number of disk accesses of mcf and thus gradually increases throughput (points (2, 0) to

(4, 0) in Figure 5.5 and rows 2-4 of Table 5.8). Increasing the total area to five DIMMs

fits the entire working set of CG (419MB) and results in a visible throughput boost (points

(4, 0) vs. (5, 0) in Figure 5.5 and row 5 of Table 5.8). Finally, making WB in-memory at

point (6, 0) maximizes the throughput.

Comparing to the results in Figure 5.4, the high-utility policy achieves better results

than the low-utility policy and similar results to the utility-agnostic policy at points (1, 0)

and (2, 0), because it fits the first plateau of mcf into DRAM. It achieves worse results

at points (3, 0), (4, 0) and (5, 0), because it favors allocating DRAM to mcf instead of

fitting the entire working sets of lbm and CG (recall the example of how the high-utility

DRA policy can perform worse than the low-utility DRA policy illustrated by Figure 2.3).

When the total area is one DIMM, replacing the single DRAM DIMM with a PCM

DIMM reduces throughput (points (1, 0) vs. (1, 1) in Figure 5.5), because the benefit

of reducing disk accesses is smaller than the penalty for accessing PCM directly. The

throughput value is lower than that attainable when the low-utility policy or the utility-

agnostic policy is employed, because the high-utility policy favors allocating PCM to

mcf and does not fit the entire working sets of lbm and CG.

When the total area is two DIMMs, replacing one DRAM DIMMs with one PCM

DIMMs increases throughput (points (2, 0) vs. (2, 1) in Figure 5.5), because the benefit of

eliminating disk accesses for mcf and CG is greater than the overhead of page migrations
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Table 5.9: High-utility DRA for WB when total area is three DIMMs

Capacity slices [MB]

Row
M2 area mcf lbm CG soplex
[DIMM] M1 M2 M1 M2 M1 M2 M1 M2

1 0 1211 0 33 0 41 0 251 0
2 1 699 975 33 370 41 378 251 0
3 2 187 1487 33 370 41 378 251 0
4 3 0 1674 0 403 0 419 0 251

between the DRAM and PCM partitions. Since WB is still not-in-memory w.r.t. the

combined capacity of one DRAM DIMM and one PCM DIMM, disk accesses limit

throughput attainable even if the ideal RDP policy is employed (the cyan bar is barely

visible at point (2, 1)). Replacing both DRAM DIMMs with PCM happens to result in

visibly the same throughput (points (2, 1) vs. (2, 2)): The benefit of eliminating disk

accesses and migrations between the hybrid partitions happens to be similar to the penalty

for accessing PCM directly, so they cancel out each other.

Table 5.9 shows the capacity slices allocated per program by the high-utility DRA

policy, when the total area of main memory is three DIMMs. Replacing one DRAM

DIMM with one PCM DIMM increases throughput steeply (points (3, 0) vs. (3, 1)).

This is so because WB becomes in-memory (the sum of the capacity slices in row 2

of Table 5.9 equals the aggregate working set size of WB), and the overhead of page

migrations between the hybrid partitions is dwarfed by the benefit of eliminating disk

accesses. The throughput value at point (3, 1) is close to the maximum (point (6, 0)), as

indicated by the relatively short cyan bar of the ideal RDP policy. Thus, the ideal RDP

policy offers a relatively small throughput boost compared to the throughput attainable

by the basic RDP policy implied by the hybrid system organization. Replacing two

DRAM DIMMs with PCM does not visibly reduce throughput (points (3, 1) vs. (3, 2)),

because the number of migrations between the hybrid partitions increases relatively little.

Replacing all three DRAM DIMMs with PCM decreases throughput steeply (points (3, 2)

vs. (3, 3)), because the penalty for accessing PCM directly is greater than the benefit

from eliminating migrations between the hybrid partitions. The remainder of the surface

in Figure 5.5 offers no new insights, so I omit describing it for brevity.
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Figure 5.6: Rock for WB and systems with NAND Flash and HDD (part I)

Figure 5.6 shows results for WB and system configurations employing the low-utility

and utility-agnostic DRA policies with variable amounts of DRAM and NAND Flash

backed by HDD. Some similarities can be observed between Figure 5.6 and Figure 5.4,

but Figure 5.6 highlights the negative impact of the long latencies of NAND Flash:

The throughput values attainable by the systems with at least one NAND Flash DIMM

are much lower than those attainable by the systems employing PCM in Figure 5.4.

Likewise, the two figures illustrate how the long latencies of HDD result in a much lower

memory system throughput for all configurations where disk is accessed, compared to the

respective configurations with SSD. Increasing the total area by adding DRAM (the red

curve for y = 0 in Figure 5.6) increases throughput slowly up to point (5, 0). The steep

throughput increase (points (5, 0) vs. (6, 0)) emphasizes the importance of eliminating

disk accesses.

When the total area is one DIMM, replacing the single DRAM DIMM with a NAND

Flash DIMM provides enough main memory capacity to make WB in-memory (NAND

Flash is 16× bit-denser than DRAM). However, this does not visibly increase throughput

(points (1, 0) vs. (1, 1)). This is so because the benefit of eliminating disk accesses does

not dwarf the penalty for accessing NAND Flash directly. When the total area is two
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Figure 5.7: Rock for WB and systems with NAND Flash and HDD (part II)

DIMMs, replacing one DRAM DIMM with one NAND Flash DIMM does not visibly

increase throughput (points (2, 0) vs. (2, 1)), because the benefit of reducing the number

of disk accesses of mcf and eliminating the disk accesses of lbm and soplex does not

dwarf the overhead of page migrations between the DRAM and NAND Flash partitions.

When the total area is three DIMMs, replacing one DRAM DIMM with one NAND

Flash DIMM decreases throughput (points (3, 0) vs. (3, 1)) for the same reason as such

partitioning decreases throughput in Figure 5.4. The remainder of the figure resembles a

scaled version of Figure 5.4 and offers no new insights.

Figure 5.7 shows results for WB and system configurations employing the high-utility

DRA policy with variable amounts of DRAM and NAND Flash backed by HDD. The

throughput values attainable by employing the ideal RDP policy are shown by the cyan

bars. The surface resembles a scaled version of the surface in Figure 5.5. The long access

latencies of NAND Flash and HDD are emphasized by the lower throughput values at all

points except (6, 0), where the DRAM capacity is large enough to make WB in-memory.

Since NAND Flash is 16× bit-denser than DRAM, the system at point (2, 1) fits the

entire working set of WB, and the ideal RDP policy achieves the maximum throughput

for the workload.
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5.2.3 Discussion

The three DRA policies considered in this paper are distinct but do not represent limit

cases. Adding DRA polices that result in the minimum and maximum throughput for each

system configuration would provide more insights. Additional insights can be obtained

by varying the assumed model parameters. Further, Rock can be extended to an energy-

efficiency model for hybrid memory systems by employing the model for system-level

execution energy presented in Section 5.1.

5.2.4 Concluding Remarks

To the best of my knowledge, Rock is the first performance model for hybrid memory

systems. It is driven by the system-level execution time model presented in Section 5.1,

and provides first-order estimates of memory system throughput. Rock is quick and

enables exhaustive design-space exploration. It can yield important insights, e.g.:

• Partitioning main memory area between DRAM and NVM can significantly boost

memory system throughput, for instance, as between points (4, 0) and (4, 1) in

Figures 5.3, 5.5, and 5.6;

• The choice of the DRA policy can significantly affect the result of Design-time

Resource Partitioning (DRP), as between points (3, 0) and (3, 1) in Figure 5.4,

where throughput decreases if the low-utility policy is employed and increases if

the utility-agnostic policy is employed; and

• Throughput boost attainable by the ideal RDP policy can be limited because of

disk accesses, as at point (2, 1) in Figures 5.3 and 5.5, or because the total number

of accesses below LLC dwarfs the overhead of page migrations between the hybrid

partitions, as on top of the surface in Figure 5.5.

DRP is the fundamental design challenge of hybrid memory design. Rock shows

that DRP can improve throughput significantly, and the best area partitioning between

DRAM and NVM is not trivial. This motivates the subject of the next section, a novel

DRP method named Crystal.
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5.3 Crystal
Hybrid main memory offers a larger capacity than an equal-area DRAM-only memory,

where area is expressed in the number of memory devices. According to Section 2.3,

not-in-memory workloads benefit from a larger memory capacity as long as their working

sets contain pages with reuse distances greater than or equal to the baseline DRAM-

only capacity and less than the larger capacity of hybrid memory, where the capacities

are expressed in the number of pages. Partitioning main memory for such workloads

has a high potential of increasing the performance of memory systems, as has been

demonstrated by Rock in Section 5.2.2. Finding the right amount of DRAM and NVM

to be installed in a system executing a specific workload is a nontrivial problem. Its

solution depends on many factors, and the performance and energy efficiency of equal-

area system configurations with different area partitioning between DRAM and NVM can

vary dramatically. The goals of such Design-time Resource Partitioning (DRP) can be

different, e.g., to minimize system-level execution time or energy. As has been stated in the

beginning of this chapter, DRP has been studied by means of detailed simulation [14–16]

and prototyping [13]. These approaches typically imply high efforts and thus impede

extensive partitioning, required for finding the best design points. This section presents

Crystal, a DRP method that enables such extensive partitioning and quickly identifies

promising design points for further detailed evaluation, as described below.

The main idea behind Crystal is to frame design-time main memory partitioning as

an optimization problem in which the minimum of a target metric (execution time or

energy) is sought. The trend of that metric is of more interest than absolute values, and the

precision of detailed simulation or prototyping is unnecessary. I propose driving Crystal

by the first-order, analytic, system-level models for execution time and energy presented

in Section 5.1. The models do not require lengthy simulations, thus Crystal enables rapid,

exhaustive search by examining all partitioning options at the partitioning granularity.

Results of applying Crystal to a number of system configurations and workloads are

presented in Section 5.3.3. I validate Crystal by means of sensitivity analysis, varying the

model parameters in broad ranges in Section 5.3.4.

5.3.1 Complexity of Equal-Area Partitioning

A target metric might have several minima as a function of DRAM and NVM partition

capacities, when the goal is to find the best memory area partitioning between the two

technologies. For instance, consider the execution time of a workload whose miss



76 CHAPTER 5. HYBRID MEMORY SYSTEMS DESIGN METHODOLOGY

N
u

m
b

e
r 

o
f 

m
is

se
s

(l
o
g

 s
ca

le
)

E
xe

cu
ti

o
n

 t
im

e
[a

rb
it

ra
ry

 u
n

it
]

Main memory
capacity 
[arbitrary unit]

Main memory
capacity 
[arbitrary unit]

DRAM
NVM

Capacity of one module

D1
D8

H1
D2

D3
D4

D5
D6

D7 H2 H3 H4 H5 H6 H7

Figure 5.8: Equal-area partitioning and multiple local minima of execution time

curve decreases from 0 to 1GB, stays flat up to 2GB forming a flat plateau, and then

decreases again. Increasing memory capacity from 1GB to 2GB increases execution

time, because DRAM is replaced with slower NVM, but the number of disk accesses

does not change. There is one local minimum at 1GB and one more at a capacity above

2GB. The workload’s miss curve might have multiple flat plateaus, each creating a

local target metric minimum.

Figure 5.8 illustrates multiple local minima of execution time as a result of equal-area

partitioning. The figure shows a miss curve in the top part of the graph and execution time

in the bottom part. Execution time is expressed in arbitrary units. The horizontal axis

represents total main memory capacity. The baseline DRAM-only capacity is indicated

by point D8 on the horizontal axis i.e., it is eight DRAM modules, where module is an

arbitrary area unit for DRAM and NVM. The area of one DRAM module equals that

of one NVM module, but the capacity of one NVM module is greater than that of one

DRAM module. Consider replacing one DRAM module with one NVM module: the

DRAM partition capacity becomes D7, the NVM partition capacity becomes H1 −D7,

the total capacity becomes H1, the miss curve decreases between points D8 and H1,

and execution time decreases, too. Consider replacing one more DRAM module: the

DRAM partition capacity becomes D6, the NVM partition capacity becomes H2 −D6,
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the total capacity becomes H2, the miss curve decreases between points H1 and H2, and

execution time decreases, too. Replacing one more DRAM module increases execution

time, because the miss curve does not decrease between points H3 and H2. The number

of disk accesses is the same as for the previous configuration, but the number of page

migrations between the DRAM and NVM partitions increases. Thus, there is a local

minimum at pointH2. Replacing more DRAM modules reveals one more local minimum

at point H5. When only one DRAM module is left (the DRAM partition capacity is D1),

the overhead of migrations between the hybrid partitions is greater than the benefit of

reducing the number of disk accesses, and execution time at point H7 is greater than the

execution time of the DRAM-only baseline.

All of potentially multiple minima must be found in order to identify the hybrid

configuration that matches a partitioning goal best. Besides minimizing execution time

or energy, the goal can include additional criteria such as minimizing system cost and

maximizing its lifetime. Crystal uses the models of Section 5.1 for estimating the

execution time and energy of all hybrid configurations at the partitioning granularity of

choice. Then Crystal identifies the configuration that matches the partitioning goal best.

The search time complexity is linear as a function of the number of hybrid configurations.

5.3.2 Experimental Setup

Workloads

Programs are represented by profiles described in Section 2.4. I vary the system workload

according to:

Wi = plarge × (n− i) + psmall × i for 0 ≤ i ≤ n (5.13)

where n denotes the number of cores; plarge denotes one of CG, lbm, or mcf; psmall
denotes sjeng or soplex (thus the program sets are: mcf/sjeng, mcf/soplex,

lbm/sjeng, lbm/soplex, CG/sjeng, and CG/soplex); i denotes the system

workload index (which is also the number of cores that run the psmall program). For

instance, for a system with eight cores workload W0 (i = 0) for the mcf/sjeng set

consists of eight instances of mcf, giving it the largest working set and behavior defined

by mcf. Likewise, W1 consists of seven instances of mcf and one instance of sjeng.

W8 consists of eight instances of sjeng and thus has the smallest working set for the

mcf/sjeng set and behavior defined by sjeng. The programs are assigned one per

core, as explained in Section 5.1.
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Table 5.10: System configuration for Crystal

Number of cores 8 Partitioning granularity 1DIMM
Cache line size 64B Datasheet device capacity 128MB
OS page size 4KB Datasheet system capacity 8GB
Number of DIMMs 4 Capacity scale-down factor 4×
Devices per DIMM 16 Scaled device capacity 32MB

Scaled DIMM capacity 512MB
Scaled system capacity 2GB

Table 5.11: Default model parameters for Crystal

DRAM revision G [8] Row buffer hit rate 0%
Non-memory power 50W Buffer disk writes No
Overlap TCPU and Tmem No Disk cache hit rate 0%

Disk write propagation rate 100%

System Configuration

Table 5.10 shows the system configuration, explained below. The cache line size defines

the size of main memory accesses. The OS page size defines the granularity of the program

miss curve and the size of accesses to M2 and disk. I scale down the capacity of the

DRAM-only baseline so that some workloads become not-in-memory. The partitioning

granularity, i.e., the area by which DRAM can be replaced with NVM, is one DIMM,

since I optimistically assume mixed-technology channels. There are four DIMMs in

total, one DIMM is always DRAM in order to implement hybrid main memory with

two partitions, hence the partitioning options are one to three NVM DIMMs plus the

DRAM-only option.

Table 5.11 summarizes the default model parameters, described below. The default

DRAM revision is G [8]. Non-memory power is the system power excluding main

memory and disk. The assumed model parameters are as follows: no row buffer hits and

no disk cache hits, all writes propagate to disk and are not buffered, and the workload’s

TCPU does not overlap with its memory and disk time.

The 12.8Gb/s DDR3 (×8 DDR at 800MHz) interface is employed by all main

memory devices, and they are organized in two fully-populated channels (two DIMMs

per channel). Each DIMM is dual-rank with eight devices per rank, and each device has

eight banks with dedicated row buffers, as illustrated in Figure 5.2. The timing, power,

and energy numbers for DRAM, PCM, and NAND Flash are estimated by the models
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Table 5.12: Characteristics of DRAM revisions F and G

Numbers per rank of eight devices

RB – row buffer

Revision F Revision G
RB miss RB hit RB miss RB hit

Latency [ns]
64B Read 35.00 18.75

Same as revision F
64B Write 61.25 18.75

Dynamic energy [nJ]
64B Read 40.49 11.24 20.77 6.14
64B Write 43.65 14.41 24.23 9.61

Power [mW]
Static 840 540
Refresh 32 21

presented in Section 3.3. Although I scale the device capacity, I use the original datasheet

numbers. I model the ZQ-calibration latency overhead of the DDR3 interface and both

the latency and power overheads of DRAM using (5.8), (5.9), and (3.21) and the tZQI ,

tZQCS , tREFI , tRFC (MIN), IDD2N , and IDD5B values from Tables 3.3 and 3.4.

The default DRAM revision is G, and the less energy efficient revision F [8] is

used for the sensitivity analysis presented in Section 5.3.4. Table 5.12 summarizes my

estimates of selected DRAM numbers. All of the estimates are provided for a rank of

eight ×8 devices. Both revisions share the same timing characteristics, and hitting in

the row buffer shortens the latencies of 64B reads and writes by about 1.9× and 3.3×,

respectively, as shown by the first two rows of the table. The dynamic energies of 64B

reads and writes of revision F are almost 2× greater than those of revision G because of

the larger currents, as per Table 3.4. Hitting in the row buffer reduces the dynamic energy

of a 64B read by about 3.6× for revision F and by about 3.4× for revision G, as shown

by the third row of Table 5.12. The dynamic energy of a 64B write is reduced by about

3× for revision F and by 2.5× for revision G if the writes hit in the row buffer, as shown

by the fourth row of Table 5.12. The static power of revision F is about 1.5× greater than

that of revision G, as shown by the fifth row of Table 5.12. The refresh power estimates

of both DRAM revisions are only about 4% of their respective static power estimates, as

shown by the last row of Table 5.12.

Table 5.13 summarizes selected characteristics of DRAM, PCM, NAND Flash, SSD,

and HDD. The DRAM, PCM, and NAND Flash estimates are provided for a rank of

eight ×8 devices. The NVM and disk estimates given as ratios (×) are normalized to

the respective estimates for DRAM revision G. The 6Gb/s SATA interface is employed
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Table 5.13: Selected memory characteristics for Crystal

Main memory numbers are per rank of eight devices

Ratios (×) normalized to respective DRAM revision G numbers

DRAM PCM NAND Flash SSD HDD
Bit density 1× 4× 16× Don’t care

Latency
4KB Read 350ns 1.13× 72× 157× 19386×
4KB Write 376ns 1.53× 693× 146× 8492×

Dynamic energy
4KB Read 408nJ 1.02× 7× 65× 19976×
4KB Write 630nJ 1.14× 42× 89× 9136×

Static power 1× 1× 1× 0.03W 3.00W

Table 5.14: Hybrids and their baselines

M1 M2 Disk DRA policy
a) DRAM b) PCM d) SSD f) Low-utility

c) NAND Flash e) HDD g) High-utility

Label Organization Baseline Label Organization Baseline
I-L a-b-e-f a-e-f III-L a-b-d-f a-d-f

I-H a-b-e-g a-e-g III-H a-b-d-g a-d-g

II-L a-c-e-f a-e-f IV-L a-c-d-f a-d-f

II-H a-c-e-g a-e-g IV-H a-c-d-g a-d-g

by both disk types. PCM and NAND Flash are assumed 4× and 16× bit-denser than

DRAM, respectively. The latency and dynamic energy estimates come from Section 3.3.5

and have been discussed there. I assume that the static (background) power of NVM is

the same as that of DRAM, as per Section 5.1. The SSD static power is measured after

ten minutes of the system being idle [11], thus it is relatively small (e.g., smaller than the

static power of a single NAND Flash rank discussed above), but such inaccuracy can be

tolerated, as is shown in Section 5.3.4. The latency and dynamic energy of a 4KB read

from the disk cache are 100× and 41× for SSD, respectively, and 443× and 457× for

HDD, respectively (normalized to those of a 4KB read from DRAM revision G).

Hybrid Organizations

I apply Crystal to eight hybrid systems, or simply hybrids for short, shown in Table 5.14.

The baselines for the hybrids are DRAM-only systems with respective disk types and

DRA policies. Both the high- and low-utility DRA policies initially allocate 32MB of
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DRAM to each program, and the capacity slice delta is 1MB (recall the algorithm in

Figure 2.2). The implementations of the policies are agnostic to memory technology type

and consider only the total main memory capacity. The capacity ofM1 is distributed first.

5.3.3 Results

I set the goal to partition main memory area between DRAM and NVM such that system-

level execution time and energy are within 20% of their respective global minima and the

area of the NVM partition is minimized. Due to the first-order nature of the models in the

heart of Crystal, I regard speedups and energy savings below 1.5-2× as noise and dismiss

them. Minimizing the area of the NVM partition keeps system cost and lifetime closest

to those of the baseline system. Replacing one DRAM DIMM with one NVM DIMM

does not reduce main memory cost: For one NVM DIMM to cost less than one DRAM

DIMM, NVM must cost less per bit for at least as many times as it is bit-denser than

DRAM. In this study this does not hold even for NAND Flash, that is 16× bit-denser but

only about 10× less expensive than DRAM. Since NVM such as PCM and NAND Flash

suffer from lower write endurance than DRAM, the less NVM is employed the better it is

for system lifetime.

The bottom parts of the graphs in Figures 5.9 to 5.12 show best hybrid configurations

as NVM area normalized to total main memory area. The configurations satisfy the

partitioning goal for the default model parameters (Table 5.11) and workloads W0-W8

(recall (5.13) in the beginning of Section 5.3.2) from different program sets. NVM area

ranges from 0 to 75%: Main memory comprises four DIMMs in total, hence one DIMM

is 25%, and one DIMM is always DRAM to implement a hybrid with two partitions.

DRAM area is the difference between total main memory area and NVM area. The

configurations found for execution time as the target metric are shown by bars, and

those for execution energy are shown by diamonds. The top parts of the graphs show

improvements—speedups (by bars) and energy savings (by diamonds)—attainable by the

best hybrid configurations. Energy savings are very close to speedups for all the hybrids

and workloads, thus I show the two metrics together.

Figure 5.9 shows results for the hybrids with HDD partitioned for workloads from the

mcf/soplex set. The hybrids employing NAND Flash (II-L and II-H) offer significant

improvements for W0-W1 and W3-W4 (17-19×), but the hybrids employing PCM (I-L

and I-H) do not. This is so because hybrids II-L and II-H provide enough main memory

capacity to fit the entire working sets of these workloads, and the benefit of eliminating
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Figure 5.9: Crystal for hybrids with HDD and mcf/soplex set

HDD accesses is greater than the overhead of accessing the NAND Flash partition. PCM

bit density is 4× lower than that of NAND Flash, and the main memory capacity of

hybrids I-L and I-H is too small to eliminate HDD accesses even if the area of the PCM

partition is maximized to 75%. The overhead of accessing the PCM partition is greater

than the benefit of reducing the number of HDD accesses by replacing DRAM with PCM.

Normalized PCM area is 0%, i.e., the respective DRAM-only baselines are better than

hybrids I-L and I-H for these workloads. The improvements for hybrids II-L and II-H are

equal, because the amount of DRAM is such that the high- and low-utility DRA policies

result in equal distributions of main memory capacity.

Hybrid II-L is worse than its baseline for W2 in Figure 5.9, despite that the hybrid

can provide enough main memory capacity to fit the entire working set of the workload.

This is so because the low-utility DRA policy, employed by the hybrid, does not allocate

enough DRAM to the mcf instances to fit their first plateau (Figure 2.4). soplex has

a lower utility and wins the DRAM capacity. This results in a great number of page

migrations between the DRAM and NAND Flash partitions initiated by the mcf instances.

These migrations take more time and expend more energy than the baseline HDD accesses.

Hybrid II-H attains significant improvements (about 7×) thanks to the high-utility DRA

policy, that allocates enough DRAM to the mcf instances to fit their first plateau.

Hybrids I-L and I-H attain great improvements (10-34×) for W5-W7 because the

overhead of accessing the PCM partition is less than the benefit of eliminating HDD
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Figure 5.10: Crystal for hybrids with HDD and lbm/sjeng set

accesses. The hybrids offer greater improvements than hybrids II-L and II-H for W5,

since PCM is faster and more energy efficient than NAND Flash. Hybrids II-L and II-H

are worse than their respective baselines for W6-W7, because the overhead of accessing

the NAND Flash partition is greater than the benefit of eliminating HDD accesses. The

four hybrids make no sense for W8, because the workload is in-memory w.r.t. the baseline

main memory capacity.

Figure 5.10 shows results for the hybrids employing HDD and partitioned for

workloads from the lbm/sjeng program set. The results can be explained similarly to

those in Figure 5.9. The hybrids attain great improvements for W0-W5 (above 14×),

because they provide enough main memory capacity to fit the entire workload working

sets, and the benefit of eliminating HDD accesses is greater than the overhead of accessing

the NVM partition. Hybrids I-L and I-H offer greater improvements than hybrids II-L

and II-H, since PCM is faster and more energy efficient than NAND Flash. The four

hybrids are worse than their respective baselines for W6-W8, because these workloads

are in-memory w.r.t. the baseline main memory capacity.

Hybrid I-L offers greater speedups than hybrid I-H for W1-W4, although the

execution times of both hybrid I-L and its baseline are greater than those of hybrid

I-H and its baseline, respectively. Hybrid I-L offers lower speedups than hybrid I-H

for W5, because the execution times of their respective baselines are similar, but the
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Figure 5.11: Crystal for hybrids III-L and III-H and lbm/sjeng set

execution time of hybrid I-L is greater than that of hybrid I-H. The difference in energy

savings offered by the hybrids can be explained in the same way.

As for systems with SSD backing store, the hybrids employing PCM (III-L and III-H)

are worse than their respective baselines for the workloads containing mcf. The hybrids

employing NAND Flash (IV-L and IV-H) are never better than their respective baselines

for all the workloads, because the access latency and access dynamic energy of NAND

Flash are too close to those of SSD, and the overhead of accessing the NAND Flash

partition is always greater than the benefit of reducing the number of SSD accesses.

Figure 5.11 shows results for the hybrids employing PCM and SSD and partitioned

for workloads from the lbm/sjeng program set. The results resemble those for hybrids

I-L and I-H in Figure 5.10. The improvements in Figure 5.11 are significant for W0-W5

(4-8×) but smaller than those offered by hybrids I-L and I-H in Figure 5.10, since SSD is

closer to DRAM than HDD in terms of access latency and access dynamic energy.

The results for workloads containing CG and respective workloads containing lbm are

similar, because CG and lbm have similar miss curves (recall Figure 2.4). For instance,

compare Figure 5.12 and Figure 5.10: The best hybrid configurations are the same,

although CG affects the improvements by having a much smaller fraction of writes and

almost double TCPU compared to lbm (recall Table 2.1).
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Figure 5.12: Crystal for hybrids with HDD and CG/sjeng set

Summary

Intuitively, hybrid memory offers speedups and energy savings compared to an equal-area

DRAM-only memory if the benefit of reducing the number of disk accesses is greater

than the overhead of page migrations between the hybrid partitions. However, for specific

workloads such beneficial hybrid configurations are nontrivial: Speedups and energy

savings can be relatively small (e.g., below 1.5×) and can significantly depend on DRA

(e.g., the case of W2 in Figure 5.9). Crystal comes in handy in such situations and quickly

identifies promising hybrid configurations.

For instance, Crystal shows how the bit density of NAND Flash enables hybrids that

offer significant speedups and energy savings for W0-W4 in Figure 5.9, while the bit

density of PCM is not high enough to enable hybrids offering any improvements for the

same workloads. The higher speed and energy efficiency of PCM (compared to those

of NAND Flash) offer no advantage is such cases. The higher endurance of PCM is not

considered here, since NAND Flash serves as a representative technology in terms of bit

density and access characteristics only. Memory technologies with similar bit densities

and access characteristics but much higher endurance (e.g., Resistive Random Access

Memory (RRAM) [59]) may gain maturity in the future.

For all the memory technologies, hybrids, and workloads considered in this study,

hybrid configurations that minimize execution time also minimize execution energy, and

speedups are similar to energy savings for each given hybrid and workload. Execution
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Table 5.15: Model parameters for sensitivity analysis of Crystal

DRAM revision F, G [8] Row buffer hit rate [%] 0, 99
Non-memory power [W] 25, 50, 100 Buffer disk writes No, Yes
Overlap TCPU and Tmem No, Yes Disk cache hit rate [%] 0,50

time and energy follow the same trend for the technologies, since NVM access latencies

and dynamic energies are worse than those of DRAM but better than those of disk.

Ultimately, partitioning can be done for execution time even if the actual target metric is

energy, and this further simplifies the use of Crystal.

5.3.4 Validation

I validate Crystal by means of sensitivity analysis, showing that partitioning results are

insensitive to the implementation-dependent details represented indirectly, as is described

in Section 5.1. I vary the model parameters in broad ranges covering a large space of

execution scenarios. Table 5.15 shows the parameter values. I consider the two DRAM

device revisions introduced in Section 3.3, a low and a high row buffer hit rate, three non-

memory power values, toggling the Buffer disk writes and the Overlap TCPU and Tmem
parameters, and a low and a high disk cache hit rate, thus producing 96 combinations in

total. In order to limit the size of the validation space, Disk write propagation rate is set

to (100 −Row buffer hit rate) %, since writes that hit in the row buffer of M1 are

guaranteed to not propagate as writes to disk. Thus, the row buffer hit rates of 0% and

99% yield disk write propagation rates of 100% and 1%, respectively. I assume that the

propagation rate of 100% represents the worst case in terms of execution time and energy,

and that the rate of 1% represents the best case. Each of the eight hybrids is partitioned for

W0-W8 from each of the six program sets (mcf/sjeng, mcf/soplex, lbm/sjeng,

lbm/soplex, CG/sjeng, and CG/soplex) and each of the 96 parameter combinations.

The results show that the best partitioning for each given hybrid and workload is stable

for all the parameter combinations, as is discussed below by the example of three selected

hybrid/workload combinations.

Figures 5.13 to 5.15 show results for W4 from the lbm/sjeng set and hybrids II-L,

I-L, and III-L, respectively. The horizontal axis shows the 96 parameter combinations

(0-95), encoded by the colors from the legend on the right. For instance, parameter

combination 0 denotes DRAM revision F, the non-memory power of 25W, no overlapping

of TCPU and Tmem, the row buffer hit rate of 0%, no buffering of disk writes, and the
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disk cache hit rate of 50%. The bottom parts of the graphs show the best configurations for

each parameter combination as the best NVM area normalized to the total main memory

area. The bars of alternating shades (darker for the even parameter combinations and

lighter for the odd ones) show the best configurations found for execution time as the

target metric, and the diamonds show those for execution energy as the target metric. The

top parts of the graphs show corresponding improvements: speedups (by bars) and energy

savings (by diamonds).

The improvements in Figures 5.13 to 5.15 are rather insensitive to DRAM revision,

i.e., to the variation of DRAM electrical characteristics expressed as the operating currents

in Table 5.12. In addition, the results are rather insensitive to non-memory power, that I

vary from one-half to double the default value of 50W and observe relatively insignificant

changes in energy savings. This is why, e.g., the inaccuracy of SSD idle power is tolerable

(recall the remark in Section 5.3.2). The robustness of the best hybrid configuration (25%

NVM in Figures 5.13 to 5.15) to such parameter variations indicates that Crystal can

be applied early in the design process, when accurate estimates of system component

characteristics are not yet available.

The speedups and energy savings offered by hybrid II-L in Figure 5.13 are most

sensitive to the disk cache hit rate (parameter combinations 0-47 vs. 48-95) and to the

row buffer hit rate (parameter combinations 0-11 vs. 12-23, 24-35 vs. 36-47, etc.). Disk

cache hits significantly reduce the execution time and energy of the baseline, but do not

affect those of the hybrid, since it provides enough main memory capacity to make the

workload in-memory and thus eliminate its disk accesses. Hence the high disk cache

hit rate results in the lower speedups and energy savings. The high row buffer hit rate

yields the low disk write propagation rate, that significantly reduces the number of disk

writes in the baseline system thus reducing its execution time and energy. However, the

disk write propagation rate does not affect the execution time and energy of the hybrid,

since the workload is in-memory w.r.t. its main memory capacity and disk is not accessed.

At the same time, the high row buffer hit rate equally reduces the execution times and

energies of the baseline and the hybrid systems. In addition, its effect is dwarfed by the

disk accesses in the baseline system and the migrations between the DRAM and NAND

Flash partitions in the hybrid. Hence the high row buffer hit rate results in the lower

speedups and energy savings.

The improvements attainable by hybrid I-L in Figure 5.14 are sensitive to the overlap

of TCPU and Tmem (parameter combinations 0-5 vs. 6-11, 12-17 vs. 18-23, etc.),

row buffer hit rate, and disk cache hit rate. Overlapping TCPU and Tmem does not
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significantly reduce baseline execution time and energy, because disk accesses dwarf

the result of the overlap. On the contrary, the overlap does reduce the execution time

and energy of the hybrid, since its main memory capacity is large enough to eliminate

disk accesses. Hence enabling the parameter increases the improvements. Similarly, disk

accesses dwarf the effect of high row buffer hit rate in the baseline system, even though

the corresponding low disk write propagation rate significantly reduces the number of

disk writes. But since disk is not accessed in the hybrid, and the migrations between

the DRAM and PCM partitions do not dwarf the effect of the high row buffer hit rate,

it significantly reduces the execution time and energy of the hybrid. Hence, unlike the

above result for hybrid II-L, the high row buffer hit rate results in greater improvements.

The speedups and energy savings attainable by hybrid III-L in Figure 5.15 are

sensitive to the overlap of TCPU and Tmem, row buffer hit rate, disk write buffering

(parameter combinations 0-23 vs. 24-47 and 48-71 vs. 72-95), and disk cache hit rate.

Unlike the above case of hybrid I-L, disk write buffering reduces the improvements more

than increasing disk cache hit rate does: Hitting in the SSD cache reduces the disk access

latency not as dramatically as hitting in the HDD cache. The effect of buffering disk

writes is greater in systems with SSD than in systems with HDD, because SSD accesses

dwarf TCPU and main memory accesses not as much as HDD accesses do.

The sensitivity analysis shows that the partitioning results are most sensitive to the

number of accesses to main memory and disk initiated by the workload. Each disk access

and each page migration between the DRAM and NVM partitions dwarf many execution

details at higher levels in the system. The assumed model parameters do not affect the

best partitioning even if varied in broad ranges. Though, they do affect speedups and

energy savings within understandable margins. The best hybrid configurations for each

hybrid and workload are stable among all the 96 parameter combinations. This holds

both at the partitioning granularity of one DIMM and at a hypothetical, two times finer

granularity (for brevity, I do not show more results than those in Figures 5.13 to 5.15

because they offer no new insights). Thus, the first-order nature of the models does not

restrict the applicability of Crystal.

5.3.5 Related Work

Qureshi et al. [16] replace all DRAM devices with PCM devices and add a DRAM cache

to create a hierarchical, replicating (inclusive) system. The DRAM cache does not add

capacity and constitutes an area overhead. Main memory is backed by HDD with a
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NAND Flash cache. Using a detailed simulator, the authors model candidate hybrids for

not-in-memory (w.r.t. their DRAM-only baseline) workloads. The models in the heart of

Crystal can be easily modified to represent hierarchical, replicating systems, and Crystal

can be applied to evaluate more configurations with less computational effort.

Ekman and Stenstrom [14, 15] reduce main memory cost by replacing part of its fast

DRAM with a less expensive, slower technology, and organizing hierarchical, migrating

systems.They study in-memory workloads with a detailed simulator, identifying the

fraction of each working set that must remain in fast DRAM in order to maintain execution

times similar to those of the baseline system. Such partitioning can be done with Crystal

by setting the goal to “for a fixed main memory capacity, minimize DRAM within a given

degradation of execution time”.

Ye et al. [13] study partitioning for in-memory workloads employing NVM with a

broad range of access characteristics. Like Ekman and Stenstrom [14, 15], they set a goal

to find a hybrid configuration with acceptable performance degradation. Unlike me, they

partition main memory capacity, i.e., the total main memory capacity is fixed for all of

their candidate configurations. They emulate hybrid memory on a real machine with a

custom virtual machine monitor. The total main memory capacity is limited by that of the

host machine, and Crystal avoids this limitation.

Jacob et al. [74] propose an analytic, first-order model for finding the number and the

capacities of levels in an n-level, replicating (inclusive) memory hierarchy for a given

cost (monetary budget). Unlike me, the authors impose no area constraint, assume equal

bit densities of memory technologies, treat all accesses as reads, and roughly approximate

miss curves abstracting away plateaus, that are crucial for partitioning (recall the example

in Section 5.3.1).

Yavits et al. [75] study cache hierarchy partitioning in 3D chip multi-processors. For

given area and power budgets, their analytic model finds the optimal number and area of

the cache levels. Unlike me, the authors do not consider hybrid technology hierarchies

and specialize the model on on-chip caches.

Choi et al. [76] propose a model for finding an optimal placement of program data in a

hybrid that is flat (both the DRAM and NVM partitions are accessed directly). The model

does not include disk and is thus applicable for in-memory workloads only. The authors

partition main memory capacity (i.e., the total capacity is fixed) and do not consider area.

Their model involves integer linear programming and, although not discussed by the

authors, implies a limit on the working set size for which the optimal placement can be

practically found. On the contrary, Crystal is holistic (models the entire system and is thus
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applicable for both in-memory and not-in-memory workloads) and practical (considers

main memory area and is applicable for workloads with realistic working set sizes).

5.3.6 Concluding Remarks

Finding the right balance between DRAM and NVM is fundamental for hybrid main

memory design. Detailed simulation or prototyping involve high effort impeding

comprehensive design space exploration required for finding the best partitioning.

I propose Crystal, an analytic approach to the design-time resource partitioning of

hierarchical, migrating hybrid systems. Crystal employs simple models that deliver first-

order estimates of system-level execution time and energy. I validate Crystal by means of

sensitivity analysis and show that partitioning results are robust to the inaccuracies of the

models. I make the following contributions and observations:

• Crystal helps designers identify promising design points on which to focus detailed

evaluation via simulation or prototyping. E.g., Crystal shows how for a practical

partitioning goal and specific workloads higher performance and energy efficiency

can be achieved by employing NVM with the speed and energy consumption of

NAND Flash instead of a much faster and more energy efficient NVM technology

like PCM. This makes Crystal a valuable addition to the system designer’s toolbox.

• Simple models and coarse estimates of system component characteristics are

sufficient for finding the best hybrid configuration. This illustrates the robustness

of the best configuration to variations of system characteristics and makes

Crystal applicable early in the design process, when accurate numbers might

be not yet available.

• For the current state of technologies, system-level execution time can be used for

partitioning even if the actual target metric is system-level execution energy: Both

metrics follow the same trend, and minimizing execution time minimizes execution

energy. This speeds the partitioning process, since the model for execution time is

simpler than that for energy.

Crystal is holistic, practical, and enables early and rapid partitioning, thus powering

exhaustive design space exploration. To the best of my knowledge, Crystal is the first

design-time hybrid memory partitioning method that is applicable for both in-memory

and not-in-memory workloads.
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5.4 Summary
Hybrid main memory increases complexity of already complex contemporary high-

performance systems. Different memory technologies and ways to organize and manage

them within hybrid main memory add new dimensions to the system design space. The

simulation or prototyping of hybrid memory systems imply high effort and thus impede

obtaining insights and finding the best solutions to such problems as DRP.

I have proposed using light-weight, analytic, system-level models for representing

hybrid memory systems. The models provide first-order estimates of system-level

execution time and energy. They power Rock, a performance model for hybrid systems,

and Crystal, a exhaustive DRP method. Although execution time and energy estimates

are first-order, their accuracy is sufficient for obtaining insights using Rock and finding

the best area partitioning using Crystal.



6
Conclusion

The memory demand created by growing working set sizes of system workloads can

be addressed by increasing the capacity of main memory. The type of workloads that

benefit from main memory capacity increase is introduced in Section 2.3. When the area

budget of main memory is fixed, its capacity can be increased by employing memory

technologies that are bit-denser than the baseline main memory technology, DRAM. Such

technologies are typically slower and less energy efficient than DRAM but still faster and

more energy efficient than disk. In addition, they can be cheaper per bit than DRAM but

more expensive than disk. Their prominent representatives are NVM technologies like

PCM and NAND Flash, introduced in detail in Chapter 3. Combining DRAM with NVM

into hybrid main memory has the potential of enjoying the advantages of both DRAM

and NVM, i.e., the speed and energy efficiency of DRAM and the aggregate capacity

of DRAM and NVM. However, in practice each access to NVM incurs a performance

and energy penalty. Thus, hybrid main memory can offer speedups and energy savings

(compared to an equal-area DRAM-only baseline) only on the system-level when its

95
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larger capacity helps to reduce the number of disk accesses. If a performance degradation

and/or an energy efficiency degradation are acceptable and if NVM costs less per bit

than DRAM, hybrid main memory can offer a lower cost compared to an equal-capacity

DRAM-only baseline. The complexity of hybrid main memory design is that NVM

introduces a new dimension to the system design space. The best amounts of different

memory technologies employed for building the partitions of hybrid main memory and

their organization are nontrivial. They depend on many factors, e.g.: workloads, the design

goal, the characteristics of memory technologies, disk, and non-memory subsystems. The

performance and energy efficiency of different hybrid memory designs can vary widely.

The complexity is well illustrated by the plurality of hybrid memory systems that

have been proposed to date. The first problem is that this diversity of hybrid systems

is large and lacks systematization. This complicates positioning new hybrid memory

proposals within the existing body of work. The second problem is that there is a lack

of quick, system-level models for exploring the large design space of hybrid memory

systems. For instance, partitioning the area of main memory between DRAM and NVM

is a fundamental hybrid memory design challenge that requires a method driven by

such models. Using simulators implies significant implementation and computation

efforts which impede extensive design space exploration. Likewise, prototyping implies

substantial implementation effort and design space restrictions such as the total main

memory capacity of the host machine. Simulation or prototyping are the right approaches

for the detailed evaluation of the most promising hybrid configurations. However, quicker

models are needed for enabling early and extensive design space exploration for finding

such promising configurations.

The next section reviews the contributions of this thesis addressing the above problems

and discusses its findings. Section 6.2 outlines the prospects of future work that will

leverage the contribution of this thesis to Design-time Resource Partitioning (DRP)

and will address such important hybrid memory design challenges as run-time resource

allocation and Run-time Data Placement (RDP), introduced in the beginning of Chapter 5.

6.1 Contributions
The first contribution of this thesis is the taxonomy of hybrid memory systems presented

in Chapter 4. It illustrates the diversity of hybrid systems not older than 10 years by

classifying them by four key organizational criteria using the TPN–L notation: 1) the

logical T opology, i.e., if hybrid memory is flat, such that its partitions can be accessed
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directly, or if it is hierarchical, such that partitions on lower levels can be accessed

only via partitions on higher levels; 2) the Promotion policy, i.e., if data are migrated

(moved) or replicated (copied) when placed into a partition with higher performance

and/or energy efficiency; 3) the Number of partitions; and 4) if the partitions are located

on the same or on different physical Levels of the system, where the levels are: the

processor chip/package, main memory channels, and after I/O. Using the notation, I

identify seven unique organizations. Classifying them further by the types of memory

technologies (presented in Chapter 3) and the physical locations of partitions, I identify

12 unique systems. I find that the most popular organizations are flat and migrating.

This is understandable, since flat organizations allow implementing sophisticated RDP

policies that decrease the performance and energy overhead of accessing lower partitions,

and migrating organizations do not waste capacity as replicating ones do. Hierarchical

organizations are well represented, too, by the five unique systems identified. Such

systems are simpler to model than flat systems, and two have been prototyped [13, 17, 22].

For workloads that benefit from a main memory capacity increase (as described in

Section 2.3), hierarchical organizations allow finding if hybrid main memory can help to

attain speedups and/or energy savings on the system level (compared to a DRAM-only

baseline of a lower capacity) when the overhead of accessing lower partitions is the largest.

This way, they represent the worst case in terms of system-level execution time and energy.

Flat organizations leverage these findings and further improve the performance and energy

efficiency of hybrid systems by reducing the overhead of accessing lower partitions.

The second contribution of this thesis is the models for system-level execution time

and energy of hierarchical hybrid systems presented in Section 5.1 and enabling early,

rapid, and extensive design space exploration. The models embody the standard memory

hierarchy equations but in the context of multi-level, hybrid main memory. They are

analytic, first-order and thus are faster than memory system simulators. Implementation-

dependent details are represented indirectly by the assumed model parameters. The

models employ the workload methodology described in Chapter 2. It requires detailed

program execution and analysis just once, when recording program profiles. The program

profiles are reused throughout design space exploration thus reducing the computation

effort. The models utilize the estimates of memory technology characteristics obtained

with the device-level models derived from datasheets and tuned to the purposes of this

thesis as described in Section 3.3. For instance, DRAM, PCM, and NAND Flash devices

are modeled to share the same type of I/O interface.
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The system-level models power Rock, the performance model for hybrid memory

systems presented in Section 5.2. Rock provides first-order estimates of memory system

throughput attainable for specific workloads. Rock is simple, quick, and insightful. For

instance, Rock shows how partitioning the area of main memory between DRAM and

NVM (such as PCM or NAND Flash) can significantly boost memory system throughput.

In addition, Rock illustrates how the result of DRP can substantially depend on the choice

of a Design-time Resource Allocation (DRA) policy. One prominent example described

in Section 5.2.2 is when two hybrid systems with the same partition areas but different

DRA policies (the low-utility and utility-agnostic policies introduced in Section 2.2)

have a higher and a lower throughput, respectively, compared to the throughput of an

equal-area DRAM-only baseline. Further, Rock shows how the throughput boost offered

by a sophisticated RDP policy can be limited, because the total latency of accesses

to main memory and/or disk can dwarf the overhead of accessing the NVM partition.

Rock illustrates that in such cases even employing a hypothetical, ideal RDP policy (that

completely eliminates the overhead of accessing the NVM partition) does not boost the

memory system throughput significantly. In other words, it might be a better solution

in such cases to employ a hierarchical organization and a basic RDP policy (e.g., those

described in the beginning of Section 5.1), which are simpler to implement than a flat

organization and a sophisticated RDP policy.

Rock shows a great potential of DRP for improving memory system performance and

that the result of DRP substantially depends on workloads, DRA, and the characteristics

of memory technologies. Thus, Rock motivates the final contribution of this thesis:

Crystal, the DRP method presented in Section 5.3. Crystal is powered by the models

for both system-level execution time and energy and finds for a given workload the

partitioning of main memory area between DRAM and NVM that meets the design goal

best. Crystal is simple yet holistic, quick, and practical. It frames partitioning as an

optimization problem where the trends of execution time and energy matter more than

absolute numbers, such that the first-order nature of the system-level models does not

restrict its applicability. This is supported by an extensive validation of Crystal by means

of sensitivity analysis, covering a large space of execution scenarios and showing that

the partitioning results are robust to the model parameter variation in broad ranges. In

addition, the sensitivity analysis shows that Crystal can be applied early in the design

process when accurate estimates of system component characteristics are not yet available.

For instance, the variation of system-level static power (including the static power of the

CPU, main memory, and disk) is shown to have no impact on the best partitioning for a
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given workload. Likewise, the results of Crystal are robust to a variation in the power

and dynamic energy of DRAM devices as is illustrated by the example of two different

DRAM device revisions introduced in Section 3.3. This is important since the power

variability in contemporary DRAM devices can be significant [77]. The conclusion is that

simple models and coarse estimates of system component characteristics are sufficient for

finding the best area partitioning between DRAM and NVM in hierarchical, migrating

hybrid memory systems.

Next, I observe that for the current state of memory technologies (represented by

DRAM, PCM, NAND Flash, SSD, and HDD in this thesis) system-level execution time

can be used for partitioning even if the actual target metric is system-level execution

energy. This is understandable, since PCM fits in the gap between DRAM and both

SSD and HDD, and NAND Flash fits in the gap between DRAM and HDD without

overlaps in terms of access latency and access dynamic energy. Using execution time as

the target metric instead of energy further simplifies the use of Crystal, since the model

for system-level execution time is simpler than that for energy.

Most importantly, Crystal identifies promising design points for detailed evaluation.

It partitions hierarchical hybrid memories, that represent the worst case in terms of

system-level execution time and energy compared to flat hybrid memories. Thus, the

results of Crystal can be a starting point in building a hybrid main memory system. In

addition, Crystal shows how for specific workloads memory technologies as slow and

energy inefficient as NAND Flash can enable hybrid systems with higher performance

and energy efficiency compared to those of hybrid systems employing technologies as

fast and energy efficient as PCM. This highlights that for specific workloads bit density is

a crucial characteristic that must be considered when designing hybrid main memory.

Design-time resource partitioning is the fundamental problem of hybrid memory

system design, and this thesis addresses it by proposing Crystal. Resource allocation and

data placement are considered but not investigated in detail in this thesis. They are the

subject of my future work, described in the next section.
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6.2 Future Work
Resource allocation is a memory system design challenge that is present both at design-

time and at run-time. This thesis has considered several design-time resource allocation

policies in order to investigate design-time resource partitioning. Run-time resource

allocation is essential for dynamic optimization of main memory utilization. It has been

investigated in the context of conventional DRAM-only systems [78]. However, run-

time resource allocation for hybrid main memories is different in a number of respects.

For instance, it has to be efficient for managing multiple partitions (instead of the

single partition of conventional main memory). In addition, it has to be efficient for

managing large capacities (enabled by hybrid memories). I am planning to propose

a practical solution to run-time resource allocation for hierarchical, migrating hybrid

systems employing a basic run-time data placement policy first. Next, I will try to

complete the picture by proposing an adaptive run-time data placement policy in the

context of the above run-time resource allocation solution.
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