Brief Announcement: ParMarkSplit:
A Parallel Mark-Split Garbage Collector
Based on a Lock-Free Skip-List

Nhan Nguyen', Philippas Tsigas!, and Hakan Sundell?

! Chalmers University of Technology, Sweden
{nhann, tsigas}@chalmers.se
2 University of Boras, Sweden
Hakan.Sundell@hb.se

Abstract. This brief announcement provides a high level overview of
a parallel mark-split garbage collector. Our parallel design introduces
and makes use of an efficient concurrency control mechanism based on
a lock-free skip-list design for handling the list of free memory inter-
vals. We have implemented the parallel mark-split garbage collector in
OpenJDK HotSpot as a parallel and concurrent garbage collector for the
old generation. We experimentally evaluate the collector and compare it
with the default concurrent mark-sweep garbage collector in OpenJDK
HotSpot, using the DaCapo benchmarks.

1 DMotivation

Garbage collection (GC) is an important component of many modern program-
ming languages and runtime systems. As parallelism has become a core issue
in the design and implementation of software systems, garbage collection al-
gorithms have been parallelized and evaluated for their potential a range of
scenarios. However, none of them can outperform the other in all use cases and
researchers are still trying to improve different aspects of garbage collection.
Mark-split is a new GC technique introduced by Sagonas and Wilhelmsson
[1] that combines advantages of mark-sweep and copying algorithms. Mark-split
evolves from mark-sweep but removes the sweep phase. Instead, it creates the list
of free memory while marking by using a special operation called split. Mark-
split does not move objects, uses little extra space and has time complexity
proportional to the size of the live data set. These advantages help it outperform
mark-sweep in certain scenarios in sequential environment [1]. Whether it can
maintain the advantages in a parallel environment remains an open question.
As mark-split repeatedly searches for and splits memory spaces, a high per-
formance concurrent data structure to store the spaces is essential to the parallel
design of mark-split. Lock-free data structures offer scalability and high through-
put, guarantee progress, immune to deadlocks and livelocks. Several lock-free
implementations of data structures have been introduced in the literature [2] [3],
and included in Intels Threading Building Blocks Framework, the PEPPHER



framework [4], the Java concurrency package, and the Microsoft .NET Frame-
work. Skip-list is a search data structure which provides expected logarithmic
time search without the need to rebalance like balanced trees. The skip-list al-
gorithm by Sundell and Tsigas [5] [6] is the first lock-free skip-list introduced
in the literature. It is an efficient and practical lock-free implementation that
is suitable for both fully concurrent (large multi-processor) systems as well as
pre-emptive (multi-process) systems. We opt to extend it to store free memory
spaces in our parallel mark-split.

2 Our Results

We extend the lock-free skip-list so that it is capable to handle the free memory
intervals for mark-split. It is because the basic operations supported by the
original lock-free skip-list, e.g search, insert, remove, are not strong enough to
satisfy the functionality requirement of mark-split in concurrent environment.
Our extension including a sophisticated concurrency control allows the skip-list
to execute more complex operations such as split in mark-split algorithm.

Using the extended skip-list, we implement a parallel version of mark-split,
namely ParMarkSplit, as a garbage collector in the OpenJDK HotSpot virtual
machine. The collector performs marking and splitting in parallel to take ad-
vantage of multi-core architectures. In addition, a lazy-splitting mechanism is
designed to improve the performance of the parallel mark-split.

The ParMarkSplit was evaluated and compared against a naive parallelized
mark-split and the Concurrent Mark-Sweep collector bundled with the HotSpot.
The former was a parallel mark-split implementation using a balanced search
tree based on coarse-grained locking. The experiments were done on two con-
temporary multiprocessor systems, one has 12 Intel Nehalem cores with Hyper-
Threading and the other has 48 AMD Bulldozer cores. A detailed version of our
results will appear in a subsequent version of this brief announcement.

References

1. Sagonas, K., Wilhelmsson, J.: Mark and split. In: Proceedings of the 5th Interna-
tional Symposium on Memory Management, ISMM 2006, pp. 29-39. ACM (2006)

2. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

3. Cederman, D., Gidenstam, A., Ha, P., Sundell, H., Papatriantafilou, M., Tsigas, P.:
Lock-free concurrent data structures. In: Pllana, S., Xhafa, F. (eds.) Programming
Multi-Core and Many-Core Computing Systems. Wiley-Blackwell (2014)

4. Benkner, S., Pllana, S., Larsson Traff, J., Tsigas, P., Dolinsky, U., Augonnet, C.,
Bachmayer, B., Kessler, C., Moloney, D., Osipov, V.: PEPPHER: Efficient and
Productive Usage of Hybrid Computing Systems. IEEE Micro (99), 1 (2011)

5. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. J. Parallel Distrib. Comput. 65(5), 609-627 (2005)

6. Sundell, H., Tsigas, P.: Scalable and lock-free concurrent dictionaries. In: Proceed-
ings of the 2004 ACM Symposium on Applied Computing, pp. 1438-1445. ACM
(2004)



