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Abstract

Recently the area of motion planning research has been experiencing a significant resur-
gence of interest based on hybrid working environments that combine point and CAD
models. Companies are able to work with point clouds and perform certain operations,
such as path-planning, but they lack the support for fast shortest-distance computations
for point clouds with more than tens of millions of points. Therefore, there is a need for
handling and pre-processing massive point clouds for fast-queries.

In this thesis, algorithms have been developed that are capable of efficiently pre-
processing massive point clouds for fast out-of-core queries allowing rapid computation
of the exact shortest distance between a point cloud and a triangulated object. This is
achieved by exploiting fast approximate distance computations between subsets of points
and the triangulated object.

This approach was able to compute, on average, the shortest distance in 15 fps for
a point cloud having 1 billion points, given only 8 GB of RAM. The findings and im-
plementations will have a direct impact for the many companies that want to perform
path-planning through massive point clouds since the algorithms are able to produce
near real-time distance computations on a standard PC.
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Abbreviations and Symbols

Abbreviation Full text

AABB Axis-aligned bounding box

CH Convex hull

HDD Hard disk drive

PQP Proximity query package

RAM Random access memory

SSD Solid state drive

Symbol Name

αi The maximal displacement of S at iteration i

ε Allowed error in the computed shortest distance

de Length of the longest edge in a two-dimensional convex hull

dj Distance from S to the closest extreme point in convex hull number j

dmin The shortest distance between two geometric models

F A face of a convex hull

P Point cloud

P̄ε Simplification of the point cloud P

Q Subset of the point cloud

rmax Upper bound of the distance from u to v

S The object moved through the point cloud

T Targeted number of points in each convex hull

u The point in a convex hull that is closest to S

v The extreme point in a convex hull that is closest to S

w The extreme point in a convex hull that is closest to u

x̂ Point that maximizes the minimum distance to the vertices in a polygon



1
Introduction

1.1 Background

High-resolution point clouds have become very important in the last 15 years after peo-
ple started to exploit the advantages over triangle-based models in computer graphics
applications [1], [2]. Improvements in scanning technologies make it possible to easily
scan larger objects, thereby making point clouds more popular than CAD models in
certain applications. The reason for this is that scanning an entire geometry is much
easier than building a CAD model from scratch [1].

One area where point clouds are useful is in path-planning, where the interest is
focused on collision detection and/or the computation of the shortest distance between a
point cloud and an object moving through the point cloud. The processing and efficient
structuring of massive point clouds is critical in order to speed-up the path-planning
algorithms, [3]. The reason for this is that computing the necessary collisions and/or
distances is a common bottleneck for the path-planning algorithm [4].

The point clouds used for path-planning can contain billions of points, [5], making
it a challenge to process them efficiently. Volvo Cars have scanned their factories in
Torslanda with the resulting point cloud containing 10 billion points, with a spacing of
about 0.5 centimeters [6]. In order to illustrate how there can be billions of points in a
point cloud, imagine a box with dimensions 300m × 100m × 10m. If points are placed
on each side as a lattice with spacing of 0.5 centimeters, the resulting point cloud will
contain as many as 2.7 billion points.

Path-planning through environments consisting of triangle meshes has been stud-
ied intensively and lots of research exists on the subject [7], [8]. Although the area of
path-planning with point clouds is newer, there are methods designed specifically for it,
such as [9], [10]. Path-planning through hybrid environments can also be considered,
where the geometry is a point cloud and the object is a triangle mesh; this combination
has been studied in [1], [11], [12]. Hybrid path-planning is uncommon because of the
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1.2. PURPOSE AND GOAL

preferred option to triangulate the point cloud and use path-planning on the resulting
triangle mesh, [13]. However, this triangulation process is only of interest for point clouds
smaller than those considered in this thesis, for which the algorithms used to triangulate
the point cloud would be way too cumbersome to be practical [1].

This thesis will focus on path-planning with distance computation, which is still
related to path-planning with collision computations for triangle meshes. A common as-
sumption for collision computations is to assume an error bound such that false collisions
may be detected but true collisions are never missed, [14]. Most modern approaches to
collision detection build on this assumption since it makes it possible to simplify the
point cloud or triangle mesh. The work in this thesis strives to develop a scheme that, if
necessary, will be able to compute the exact shortest distance and does not rely on such
a simplification scheme.

1.2 Purpose and goal

The goal of this master’s thesis project is to construct a set of algorithms that are able
to efficiently pre-process a massive point cloud for out-of-core proximity queries and
mathematically prove that the algorithms are efficient. The algorithms should be able
to compute the exact shortest distance from the pre-processed point cloud to an object,
represented by a triangle mesh, that is moved through the point cloud. By allowing the
distance to deviate from the true distance up to a certain limit, the point cloud may be
simplified to a point cloud having fewer points.

In order to avoid computing the distance from the object to all points in the point
cloud, the point cloud must be structured in such a way that facilitates deriving strict
criteria for the relevance of points therefore making it possible to neglect points that are
far away. The resulting shortest distances must be continuous when the object moves,
disallowing any modification to the point cloud that would violate this requirement.

After constructing the algorithms and proving that they are suitable for the intended
purpose, they are implemented in C++ and lastly, simulations are carried out in order
to evaluate how the algorithms perform in practice.

The solution to this problem must satisfy the following criteria:

• It should be able to process point clouds having billions of points, independent of
the amount of RAM available, given enough hard drive space.

• The set of computed distances must be continuous, which means that no subset of
points can be completely removed if containing the point closest to the object.

• Computing the shortest distance between the massive point cloud and the object
should be as fast as possible.

• For very large point clouds, the point cloud may be simplified by allowing the
computed distance to deviate from the true distance as long as it never exceeds a
specified limit.
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1.3. LIMITATIONS

• The time to compute the shortest distance should not vary significantly when the
object moves. This means that waiting several seconds in order to import a large
subset of the point cloud is not allowed.

1.3 Limitations

This work is based on the availability of an implementation and the efficiency of an
in-core algorithm to compute the shortest distance from a small point cloud to a triangle
mesh. The aim of the thesis is to process and structure a massive point cloud in such a
way that makes it possible to neglect a large amount of points that are far away from the
object. The remaining points can fit in-core and then make use of the existing algorithms
to compute the shortest distance.

The work in this thesis also relies on the existence of an already generated path for
the object passing through the point cloud and aims to verify that the correct shortest
distance can be computed efficiently along this path. The algorithms developed can and
will be used to generate a path, but the aim of the simulations in the thesis is to verify
that the distance computation is correct and fast.

1.4 Outline

Chapter 2 will describe how to divide a massive point cloud into disjoint subsets that are
small enough to fit in-core. Chapter 3 will describe how to pre-process these subsets to
allow for fast-query. If the point cloud is very large and the exact shortest distance is not
of interest, Chapter 4 describes how the point cloud can be simplified to a new point cloud
with fewer points such that the computed shortest distance never exceeds a specified user-
tolerance. Build times are analyzed in Section 4.4. Chapter 5 describes implementation
choices and how to work with massive point clouds out-of-core. It also introduces PQP,
which is a fast way to compute the distance between two small geometrical models. In
order to test the algorithms on a real point cloud, Chapter 6 applies the theoretical
results in practice. A discussion and a conclusion is provided in Chapter 7.
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2
Organizing the point cloud

T
his chapter presents the simple structures of the point cloud and how it should
be pre-processed in order to allow for fast distance computation. It is described
how the point cloud can be divided into disjoint subsets for which Chapter 3
aims to derive criteria for when a subset may contain the point closest to the

object. The first algorithm considered in this chapter recursively divides the axis-aligned
bounding box (AABB) of the original point cloud into two AABBs until all AABBs
contain a suitable number of points. The second algorithm is a clustering algorithm
that can be used to recursively cluster sets of points into a fixed number of clusters.
Section 2.1 contains some elementary definitions and some notations that will be used
throughout this thesis. Section 2.2 describes how the point cloud can be divided into
disjoint AABBs, and Section 2.3 describes how to cluster the point cloud using the
k-means method.

2.1 Preparation

This section will introduce some important definitions as a necessary preparation. The
first definition will be what a point cloud is:

Definition 2.1. A point cloud is a set of points {pi | pi ∈ Rn} in a coordinate system.

The point cloud will always be denoted by P and its corresponding cardinality (num-
ber of points) by |P |. The object that is moved through the point cloud is denoted by
S, and it is a closed and bounded set that could be either a triangulation or a point
cloud. This thesis will, however, focus on the case when S is a triangulation. This thesis
will focus on n = 2 or n = 3 unless stated otherwise. Denote by pi, i = 1,2, . . . , n, the
coordinates of a point p ∈ Rn and let p1, p2, . . . , pm denote m points where pi ∈ Rn.
An important property of the point cloud is its axis-aligned bounding box which will be
defined next.
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2.2. PARTITIONING THE POINT CLOUD

Definition 2.2. The axis-aligned bounding box (AABB) of a point cloud is defined
to be the smallest axis-aligned box in a Cartesian coordinate system such that it contains
all objects of interest.

The AABB provides the opportunity to only consider a subset of Rn that contains
the point cloud. When a subset of P is considered it will be denoted by Q, with the
implication that Q ⊆ P . Multiple disjoint subsets of P will be denoted by Qi and when
no particular subset is of interest the index will be dropped.

2.2 Partitioning the point cloud

This section illustrates how the original AABB of the point cloud can be successively
divided into new AABBs in order to obtain a partitioning of the original point cloud.
Given the original point cloud, it is straightforward to find the AABB of P . Suppose
that it is of interest to divide the point cloud into subsets of at most T points and that
|P | > T . By splitting the original AABB along one of the coordinate directions two new
AABBs can be created. There are several options on where to divide the AABBs, such
as along the longest side or the coordinate direction with the largest variance.

Assume for now that the point cloud is stored in an out-of-core array and that it
is possible to perform swaps of its elements. It would be convenient for each AABB to
have its corresponding elements of the original point cloud as a contiguous piece of this
array so that each AABB only needs the first and last index of its subset of points. In
addition, an AABB with data Q will need to store the six values that determines its
boundaries, i.e. min qi and max qi for all q ∈ Q and for i = 1,2,3. The algorithm for
partitioning the point cloud can be seen in Algorithm 1.

Algorithm 1 Partitioning of the point cloud

Create an empty list L of AABBs
Compute the AABB of the original point cloud P
Add this AABB to the back of L
Initialize i← 0
while i <number of elements in L do

if |L(i)| > T then
Divide L(i) into two disjoint sets
Create two new AABBs
Perform swaps in P to make the subsets of the new AABBs contiguous in P
Add the two AABBs to L after the last element
Flag as deleted, but do not remove, L(i)

end if
i← i+ 1

end while
Create a new list without the AABBs that are flagged as deleted
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2.3. THE K-MEANS METHOD

2.3 The k-means method

This section will describe how to use k-means clustering in order to partition the point
cloud. The k-means method is one of the oldest clustering methods whose aim is to
divide a set of points into k clusters. The algorithm is based on work by Lloyd, [15],
and is often referred to as Lloyd’s algorithm. The clusters C1, . . . ,Ck have the properties
Ci ⊆ Q, Ci ∩Cj = ∅ for i 6= j, and

⋃k
i=1Ci = Q. Each cluster has a centroid µi which is

computed as the the mean value of all points belonging to cluster Ci. A point is assigned
to the cluster of the centroid closest to the point. The k-means method for a set of points
Q can be written as the optimization problem:

minimize
C1,...,Ck

k∑
j=1

∑
i∈Cj

‖qi − µj‖2, ∀qi ∈ Q. (2.1)

By choosing to minimize Equation 2.1 in the Euclidean norm so that points are assigned
to the closest centroid in the L2-sense, the resulting convex hulls of the generated clusters
will be disjoint [16]. The definition of convex hulls is given on page 8 in Definition 3.3

The k-means method relies on prior knowledge of how many clusters should be cre-
ated, rather than how many points are allowed to be in each cluster. Since the clustering
process may produce an uneven distribution of points between the clusters, it is hard
to choose k such that no cluster contains more than T points. A recursive variation of
k-means is more suitable where subsets that contain more than T points are clustered
with a small value of k until all subsets contain no more than T points. A variation of
Algorithm 1 that uses k-means instead of the AABBs can be seen in Algorithm 2.

Algorithm 2 Clustering the point cloud P using recursive k-means

Create an empty list L of subsets (clusters)
Add P to the back of L
Initialize i← 0
while i < number of elements in L do

if |L(i)| > T then
Initialize the centroids µ1, . . . , µk

while repeat until convergence or maximal number of iterations exceeded do
Assign the points to the cluster with the closest centroid in L2

Compute the new centroid µi as the mean value of the points in cluster Ci
end while
Add the k new subsets to L after the last element
Flag as deleted, but do not remove, L(i)

end if
i← i+ 1

end while
Create a new list without the subsets that are flagged as deleted

The most critical part of the algorithm is choosing the initial centroids µ1, . . . , µk
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2.3. THE K-MEANS METHOD

since a poor initial configuration can lead to slow convergence or a suboptimal solution
to the k-means problem. There are many different strategies for this problem, such as
choosing k random points from the set of points. One recent approach is k-means++
[17] which guarantees an O(log k) competitive solution. The idea is based on the fact
that convergence is expected to be faster if the initial centroids are far apart. Thus the
k-means++ method chooses the first centroid at random and then for each point q ∈ Q
the distance to the closest centroid, denoted by D(q), is computed. The next centroid
is then picked with a probability proportional to D(q)2, giving points that are further
away from their closest centroid a much higher probability to be chosen. Note that this
makes it impossible for a preexisting centroid to be chosen again, as long as k ≤ |Q|,
since D(q) = 0 in this case.

By using the k-means method, the point cloud can recursively be divided into dis-
joint subsets with at most T points by re-running k-means on each new cluster that has
more than T points. This will be done for a small value of k such as k = 2 or k = 3.
Figure 2.1 shows an example of the k-means algorithm on two-dimensional simulated
data using k = 5 and the k-means++ initialization. It is clear that after a few iterations
that the positions of the centroids have started to converge.
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Figure 2.1: The k-means method with k-means++ initialization for k = 5.

7



3
Pre-processing of the point cloud

for fast-query

T
his chapter describes how the organized point cloud from Chapter 2 can be
pre-processed to allow for fast distance computation. Section 3.1 introduces
the concept of convex hulls and some elementary results from optimization
that will be necessary throughout this chapter. In Section 3.2 a lower bound

on the distance from a set of points Q ⊆ P to an object S, such that the convex hull of
Q does not intersect with S, will be derived in 2D. The lower bound is only based on
the extreme points of Q to allow a fast way to estimate how close the closest point in Q
can be from S. This result is then generalized to 3D in Section 3.3. Section 3.4 shows
how to use information from the last known position of the object in order to directly
rule out subsets of P . Section 3.5 will demonstrate a case where the results from Section
3.3 perform poorly. In Section 3.6 it is investigated how a simple AABB would compare
to using the convex hulls. Finally, Section 3.7 explains how to treat the case where S is
located within a convex hull, for which the results from Section 3.3 do not apply.

3.1 Convex hulls and optimization

As preparation, the concepts of convex sets, convex combinations, and convex hulls are
introduced, [18], which will frequently be used from now on.

Definition 3.1. A set C ⊂ Rn is said to be convex if for every x1, x2 ∈ C and every
real number α, 0 < α < 1, the point αx1 + (1− α)x2 ∈ C.

Definition 3.2. A convex combination of a set C ⊂ Rn is of the form
α1x

1 + . . .+ αnx
n where αi ∈ Rn, αi ≥ 0,

∑n
i=1 αi = 1 and where {x1, . . . , xn} ∈ C.

8



3.1. CONVEX HULLS AND OPTIMIZATION

Definition 3.3. Let C ⊂ Rn. The convex hull of C is the set of all convex combinations
of C:

CH(C) =

{
α1x

1 + . . .+ αnx
n

∣∣∣∣α1, . . . , αn ≥ 0;

n∑
i=1

αi = 1

}
, (3.1)

where {x1, . . . , xn} ∈ C.

Figure 3.1: Convex hulls in 2D constructed from disjoint subsets.

The concept of the extreme points of a convex hull is very important and is introduced
next:

Definition 3.4. A point x in a convex set C is said the be an extreme point of C if
there are no two distinct points x1 and x2 in C such that x = αx1 + (1− α)x2 for some
α, 0 < α < 1.

Denote by E(Q) the set of extreme points of CH(Q), where E(Q) ⊆ Q. The use of
extreme points is very important because they are all that is needed to determine the
convex hull of a set of points. This follows from the following theorem [18]:

Theorem 3.1. A closed and bounded convex set in Rn is equal to the closed convex hull
of its extreme points.

This theorem is important because it means that the extreme points of the convex
hull, made up by a subset of points from the point cloud, will be enough to determine
the convex hull. The extreme points will be very important throughout this thesis since
they can be used to bound the distance to a subset of points. The distance between two
points, from a point to a set, and from a set to a set is defined according to:

Definition 3.5. Let Q, R ⊂ Rn and q, r ∈ Rn. Define:

d(q,r) = ‖q − r‖2
d(q,R) = inf

r∈R
d(q,r) (3.2)

d(Q,R) = inf
q∈Q, r∈R

d(q,r)
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3.1. CONVEX HULLS AND OPTIMIZATION

As a necessary preparation, a theorem stating that there exists a nonempty set of
optimal solutions to the problem of minimizing a continuous function over a non-empty,
closed, and bounded set is needed. This theorem is well-known as Weierstrass’ theorem,
for which a proof and all necessary definitions can be found in [19].

Theorem 3.2. Let D be a non-empty, closed, and bounded subset of Rn and let
f : D → R be a continuous function on D. Then the problem

minimize f(x) (3.3)

subject tox ∈ D

has a global minimum.

This theorem guarantees the existence of a bounded set of global minimas that is
also non-empty. Before ending this section, the aim is to prove that the point belonging
to the convex hull that is closest to the object S must lie on the boundary, given that
CH(Q)∩S = ∅. This proof will only be carried out for full-dimensional polytopes, which
is defined next.

Definition 3.6. K ⊂ Rn is a polytope if it is the convex hull of finitely many points
in Rn.

Definition 3.7. A polytope is called full-dimensional in Rn if n + 1 of its extreme
points do not lie in a common hyperplane.

Note that according to this definition, a polytope with less than n+1 points can never
be full-dimensional in Rn. The work in this thesis will only consider full-dimensional
polytopes and it will be assumed from now on that all polytopes are full-dimensional.
This is also known as assuming general position in computational geometry [20]. Degen-
erate cases are not of interest and can be made full-dimensional in Rn, if the subset has
at least n+ 1 points, by perturbing the points. In order to define what the boundary of
a full-dimensional convex hull is, the terms half-space and face are necessary to define.

Definition 3.8. A closed half-space in Rn is a set {x ∈ Rn : a·x ≥ b} for some
a ∈ Rn\{0} and b ∈ Rn; the hyperplane {x ∈ Rn : a·x = b} is its boundary.

Definition 3.9. A face of a convex polytope is any intersection of the polytope with a
half-space such that none of the interior points of the polytope lie on the boundary of the
half-space.

Let ∂ CH(Q) denote the boundary of the convex hull and define this as the union
of the faces of the polytope. The next theorem will show that if CH(Q) ∩ S = ∅ and
CH(Q) is a full-dimensional polytope, the point on CH(Q) that is closest to S must lie
on ∂ CH(Q).

Theorem 3.3. Let S ⊂ Rn be a closed and bounded set and let CH(Q) ⊂ Rn be a closed
and bounded convex hull that is a full-dimensional polytope. If CH(Q)∩S = ∅, the point
in CH(Q) closest to S must lie on the boundary.

10



3.2. DISTANCE FROM THE OBJECT TO THE CONVEX HULL IN 2D

Proof. Let V = (S , CH(Q)) ⊆ Rn × Rn ∼= R2n and define the function

f : R2n → R
f(x) =

∥∥xS − xCH(Q)

∥∥
2

(3.4)

where xS ∈ S and xCH(Q) ∈ CH(Q). From Theorem 3.2

∃y =
(
yS , yCH(Q)

)
such that y = arg min

x∈V
f(x). (3.5)

If yCH(Q) lies on the boundary of CH(Q), the proof is completed. If yCH(Q) is an interior
point of CH(Q), construct the line

L =
{
yCH(Q) +

(
yS − yCH(Q)

)
t | 0 ≤ t ≤ 1, t ∈ R

}
(3.6)

between the two points. Since yCH(Q) is an interior point of a closed set, take δ > 0, δ ∈ R
small enough so that ŷ = yCH(Q) + (yS − yCH(Q))δ ∈ CH(Q). This implies that

‖ŷ − yS‖2 < ‖x− yS‖2 (3.7)

This contradicts the fact that yCH(Q) was the point in CH(Q) closest to yS . Hence the
optimal point yCH(Q) must lie on the boundary of CH(Q).

3.2 Distance from the object to the convex hull in 2D

This section aims to derive a strict criteria based on only the extreme points of Q, that
is fast to evaluate and can be used to determine whether a point of Q can be the point
closest to S. Such a criteria will allow neglecting subsets Q that are far away from S,
without computing the distance from these points to S. All results will assume that
CH(Q) ∩ S = ∅ and Section 3.7 will explain how to treat the situation where this may
not hold.

It will be assumed in this section that S and Q are objects in 2D, which will later be
extended to 3D. Some notations for a few important points of the convex hull that will
be used throughout this chapter will be defined next, where the definition for adjacent
extreme points can be found in [21].

Definition 3.10. Define u ∈ CH(Q) to be the point that is closest to S,

u = arg min
x∈CH(Q)

d(x, S). (3.8)

Definition 3.11. Let v ∈ E(Q) be the extreme point closest to S,

v = arg min
x∈E(Q)

d(x, S). (3.9)

11



3.2. DISTANCE FROM THE OBJECT TO THE CONVEX HULL IN 2D

Definition 3.12. Let w ∈ E(Q) to be the extreme point that is closest to u,

w = arg min
x∈E(Q)

d(x, u). (3.10)

Definition 3.13. Define by de ∈ R the length of the longest edge in CH(Q) between any
two adjacent extreme points.

Note that u 6= v can hold since u may not be an extreme point. It is also possible
that u = v = w in which the closest point is an extreme point. A situation where all
points are distinct is illustrated in Figure 3.2.

v

u

S
w

u

vv

u

w S

u

CH(Q)

Figure 3.2: Illustration of the points u, v and w used in Theorem 3.4.

The following theorem shows a straightforward way to approximate the minimum
distance from a convex hull CH(Q) to S.

Theorem 3.4. Assume that CH(Q) ∩ S = ∅. Then 1
2de is an upper bound of |d(u,S)−

d(v,S)|. This means that u cannot be closer to S than d(v,S)− 1
2de, that is:

d(Q,S) = d(u,S) ≥ d(v,S)− 1

2
de. (3.11)

Proof. From Theorem 3.3 it must hold that u ∈ ∂ CH(Q). There must always be an
extreme point on the edge where u is located that is within 1

2de from u since de is the
length of the longest edge. The use of the triangle inequality yields,

d(w,S) ≤ d(w,u) + d(u,S) ≤ 1

2
de + d(u,S). (3.12)

By the definition of v it must hold that d(v,S) ≤ d(w,S) and hence

d(u,S) ≥ d(w,S)− 1

2
de ≥ d(v,S)− 1

2
de, (3.13)

which proves the claim.
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3.3. DISTANCE FROM THE OBJECT TO THE CONVEX HULL IN 3D

x̂

v1

v2
v3

v4

v5

ri

Figure 3.3: (Left) A full-dimensional convex hull in 3D. (Right) A face with five vertices
illustrating the location of x̂ and also ri, the distance from x̂ to its closest vertex.

This presents a simple algorithm to approximate the minimum distance from S to
Q:

1. Compute the value of de for CH(Q).

2. Find the closest extreme point v ∈ E(Q) to S.

3. The approximation d(Q,S) ≥ d(v,S) − 1
2de can be used to quickly find a lower

bound for how close any point in Q is to S.

3.3 Distance from the object to the convex hull in 3D

The point clouds of interest consist of points in three dimensions which is why the results
from the previous section have to be extended to 3D. For a three dimensional point cloud
the convex hull is a polyhedron, where the body is bounded by its polygonal faces. A
polytope in 3D is called a polyhedron and its faces will be polygons containing their
interior. An example of a polyhedron can be seen in Figure 3.3. In order to extend
Theorem 3.4 to 3D, the faces of the convex hull will be considered instead of the edges in
2D. For a face Fi ∈ ∂ CH(Q), the point that corresponds to the midpoint of the longest
edge in 2D must be replaced. The definitions of u, v and w from Section 3.2 are still
valid and will still be used in this section. In order to replace 1

2de, some definitions are
necessary.

Definition 3.14. Consider a face Fi of CH(Q) with vertices v1, . . . ,vr. Define

ri = max
x∈Fi

min
j∈{1,...,r}

d(x,vj). (3.14)
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3.3. DISTANCE FROM THE OBJECT TO THE CONVEX HULL IN 3D

and
x̂ = arg max

x∈Fi
min

j∈{1,...,r}
d(x,vj). (3.15)

Definition 3.15. Let rmax be the largest ri considering all m faces in CH(Q). Define

rmax = max
i∈{1,...,m}

ri. (3.16)

This defines ri as the maximal possible distance from a point in Fi to its closest
vertex in Fi and x̂ as the point for which this maximum is attained. An illustration
of the location of x̂ for a face with five vertices can be seen in Figure 3.3. The next
theorem will show that rmax, the largest value of ri, is a generalization of the value 1

2de
that makes it possible to derive a similar inequality in 3D.

Theorem 3.5. Given a full-dimensional convex hull with faces F1, . . . ,Fm, such that

m⋃
i=1

Fi = ∂ CH(Q). (3.17)

Then,
d(S,v)− rmax ≤ d(S,u) = d(S,Q). (3.18)

Proof. Theorem 3.3 guarantees that u ∈ ∂ CH(Q). Consider the face where u is located
and denote it by Fi. There must then be an extreme point on this face that is no further
away from u than ri, which follows directly from the definition of ri. The triangle
inequality implies that

d(S,u) ≤ d(S,w) + d(w,u) ≤ d(S,v) + ri ≤ d(S,v) + rmax, (3.19)

which completes the proof.

Theorem 3.5 provides a fast way to check how close any point of a convex hull can
potentially be from S by comparing the distances to all of the extreme points and use
the distance to the closest extreme point and the pre-computed value of rmax in order
to evaluate the lower bound in Equation 3.18. It should be clarified that it is unknown
what face u lies in, which is why the inequality is based on rmax.

The special case of a triangular face is considered next for which it is possible to
derive an exact expression for ri. Consider a triangular face with vertices v1, v2, v3; there
are two cases to consider in order to compute x̂ and the value of ri for that face. The first
case is that of an acute triangular face and the second case is when the face is obtuse.

For the first case, the center of the circumscribed circle will lie on the triangular
face. This center will thus be the point x̂ and the radius of the circle will be the distance
to any of the vertices. Given a triangular face, an expression for the radius r can be
derived directly from the Law of Sines. Given sides a, b, c and angles A,B,C the Law of
Sines states that

sin(A)

a
=

sin(B)

b
=

sin(C)

c
=

1

2r
, (3.20)
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3.3. DISTANCE FROM THE OBJECT TO THE CONVEX HULL IN 3D

where r is the radius of the circumscribed circle. The relation between the usual Law of
Sines and the radius of the circumscribed circle can be conveniently derived by consid-
ering the inscribed angle at the center of the circumscribed circle.

By using that the area of the triangle is given by

bc sin(A)

2
=

1

2
|(v2 − v1)× (v3 − v1)| (3.21)

it follows that

r =
‖v1 − v2‖‖v2 − v3‖‖v3 − v1‖

2‖(v2 − v1)× (v3 − v1)‖ . (3.22)

In the second case of an obtuse triangle, the center of the circumscribed circle will lie
outside the face and will therefore not be the desired point x̂. It can be shown, in this
case, that x̂ can never be an interior point of the face and must therefore lie on the
boundary. This follows from the following Lemma:

Lemma 3.1. Let F ∈ CH(Q) be an obtuse triangular face, then x̂ cannot be an interior
point.

Proof. By means of contradiction, assume that x̂ is an interior point. Since one angle
is larger than 90o the distance to all of the vertices cannot be the same, since this is
only true for the center of the circumscribed circle, which is unique and in this case lies
outside the triangle. If x̂ is closest to exactly one vertex it can be moved away from this
vertex along the line between the points which is a contradiction. In the case x̂ is closest
to two vertices, x̂ can be moved away from both vertices except for the case when all
three points lies on the same line, but then x̂ lies on the boundary contradicting that x̂
is an interior point.

It is now known that x̂ lies on the boundary of the obtuse triangular face F . The
next step is to show that x̂ must have the same distance to exactly two of the vertices.
This lemma will be very useful later.

Lemma 3.2. Given an obtuse triangular face F ∈ CH(Q), x̂ will have the same distance
to exactly two vertices and the third vertex is further away.

Proof. Theorem 3.1 gurantees that x̂ must lie on the boundary. Now assume that x̂ has
exactly one point as its closest vertex. Then x̂ can be moved away from this point along
the edge and the distance from the closest vertex will keep increasing until the distance
to the second closest vertex is exactly the same. This contradicts that x̂ can be closest
to only one vertex.

It has now been shown that x̂ is closest to exactly two vertices and that it also lies
on one of the edges of F . The next step is to identify the edge where x̂ is located. The
following lemma shows that x̂ must lie on the longest edge:

Lemma 3.3. Given an obtuse triangular face, then x̂ lies on the longest edge of the
triangle.
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3.3. DISTANCE FROM THE OBJECT TO THE CONVEX HULL IN 3D

Proof. Assume that the edges of the triangle are such that c ≤ b ≤ a just as in the
bottom triangle in Figure 3.4. Assume that x̂ lies on the longest side of the triangle and
is such that s = d(v1,x̂) = d(v3,x̂), in which case s = b

2 cos(C) . For this to be possible, it
is necessary to verify that

d(v2,x̂)− d(v3,x̂) = (a− s)− s = a− b

cosC
> 0, (3.23)

which shows that the third vertex is further away. An application of the triangle in-
equality yields

b = d(v1,v3) < d(v1,x̂) + d(x̂,v3) = 2s (3.24)

which implicates that b/2 < s. This shows that no point on any other edge can be
further away from its closest vertex since c ≤ b and no point on the edge of length b can
be further away than b/2 from its two closest vertices. Hence, by construction, x̂ lies on
the longest edge of the triangle.

Now that it is known which edge x̂ must lie on, only two possible points remain:
d(v1,x̂) = d(v3,x̂) or d(v1,x̂) = d(v2,x̂). Denote these two distances by s and t respec-
tively. The next theorem makes it possible to explicitly compute ri without having to
find the exact location of x̂.

Theorem 3.6. Given a triangular face with one angle exceeding 90o with c ≤ b ≤ a and
A > 90o. Then the point that is furthest away from the closest vertex has distance

b

2 cosC
(3.25)

from its closest vertex.

Proof. Lemma 3.1, 3.2, 3.3 guarantees the existence of such a point and only two possi-
bilities remain. It follows directly that s = b

2 cosC and t = c
2 cosB , for which the aim is to

show that s ≥ t. It was shown in Lemma 3.3 that in the case of d(v1,x̂) = d(v3,x̂), the
third vertex lies further away so showing that s ≥ t will complete the proof. From using
the Pythagorean inequality it holds that a2 > b2 + c2 and hence

(a2 − b2 − c2)(b2 − c2) ≥ 0. (3.26)

After dividing both sides by abc this inequality can be rearranged to obtain

b(a2 + c2 − b2)

ac
≥ c(a2 + b2 − c2)

ab
(3.27)

and using the law of cosines it follows directly that

b

cosC
≥ c

cosB
, (3.28)

which is exactly the same as s ≥ t.

In summary, Equation 3.22 can be used to find ri for an acute triangular face and
Equation 3.25 for an obtuse triangular face. After the convex hull has been built the
values of ri are computed for each face and only the largest such value is saved as the
corresponding value of rmax for this convex hull.
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Figure 3.4: Illustration of the location of x̂ in the case of an (Upper) acute (Lower) obtuse
triangular face of a convex hull.

3.4 A fast exclusion theorem

In this section a very simple criterion is constructed to make it possible to exclude a
majority of the convex hulls without computing any distances when it is clear that they
are too far away from the object to contain the closest point. It will be assumed that
the object S is moved through the point cloud with discrete time-steps ti, where i will
be referred to as the iteration.

Definition 3.16. Define by αi the largest displacement of any point on S at iteration i.

Definition 3.17. Define by dj the distance from the extreme points of convex hull num-
ber j to S.

Definition 3.18. Let dmin = d(P,S).

The idea is that αi can be used to bound how much closer a convex hull can be
to the object compared to the previous iteration. The result is stated in the following
Theorem:

Theorem 3.7. Suppose that P has been divided into m disjoint sets for which the convex
hulls have been constructed and that dj, or a lower bound, is known for each convex hull.
If S is moved at most αi, no point in convex hull number j can be closer to S than

max(0, dj − αi − rmax , j) (3.29)
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3.5. QUALITY OF APPROXIMATION WHEN USING CONVEX HULLS

and there must be at least one point that is no further away from S than dmin + αi.

Proof. The first statement follows from the fact that S has moved at most αi and that
no point in Qj was closer than dj − rmax , j before S moved, which yields that no points
in the convex hull can be closer than max(0, dj − αi − rmax , j). Since S has moved at
most αi, the point that was previously at a distance dmin away from S cannot be further
away than dmin + αi. This implies the second statement.

This offers the opportunity to compute all the values of dj prior to computing the
shortest distance for the first time and each time S moves, compute the value of αi and
set dmin ← dmin +αi and dj ← dj−αi until dj needs to be updated. If dj−rmax , j > dmin,
the convex hull number j can be ignored completely since there must be a point that is
at most dmin away from S. Note that this means that dj will be used as a lower bound
until the true distance is computed, when it is expected that the convex hull is close to
S.

This inequality based on αi is designed for quick evaluation, however it should be
mentioned that it can be very weak in the sense that it does not take the direction of
movement into account. If S is moved away from a convex hull so that d(CH(Q),S)
increases, the lower bound will be pessimistic since dj will be subtracted by αi.

The complete algorithm for the pre-processing for fast distances queries and how to
compute the shortest distance from P to S can be seen in Algorithm 3, which addresses
the building of the convex hulls and how to decide which convex hulls are close to the
object. A subindex has been added to the shortest distance, that is denoted dmin ,i for
iteration i, in order to compute a series of shortest distances to be able to see how close
S is to P along its path.

3.5 Quality of approximation when using convex hulls

It will here be shown that the approximation of using the extreme points of CH(Q) can
perform poorly. Consider a triangular face of a convex hull with base b and height h,
where h� b, such as in Figure 3.5. Let S consist of only one point s and let it be located
along the normal of this face that intersects the face at p3. This implies that p3 is the
extreme point of this convex hull that is closest to s. Assume also that rmax is located
on this face. It can be verified that rmax = b

4 + h2

b . Assume that

d(p3,s) =
b

4
+
h2

b
+ ε (3.30)

so that
d(p3,s)− rmax = ε. (3.31)

Let b→∞ by separating p1 and p2 in the direction of the base line. Move s at the same
time, along the normal of the face passing through p3, in order to maintain d(p3,s) =
b
4 + h2

b + ε. Then dmin = d(p3,s)→∞ even though d(p3,s)− rmax = ε. This shows that
the real minimum distance goes to ∞ but the approximation is still equal to ε showing

18



3.5. QUALITY OF APPROXIMATION WHEN USING CONVEX HULLS

Algorithm 3 Algorithm for the preprocessing for fast-query for a moving object

Data: Subsets Q of Point cloud P , Object S moving with discrete time-steps

for each subset Q do
Read all points in subset Q
Compute the convex hull and separate the extreme points from other points
Compute rmax

end for

for each convex hull CH(Q) do
Compute dj , the distance from S to the closest extreme point

end for

Compute dmin ,0 ← min
j
dj as an initial upper bound

i← 1
while Object is moving do

Move S to the next position and compute αi
dmin ,i ← dmin ,i−1 + αi
for each convex hull number j do

dj ← dj − αi
if dj ≤ dmin ,i then

Update dj and set dmin ,i = min(dj ,dmin ,i)
if dj − rmax , j ≤ dmin ,i then

Compute the distance from S to the points that are not extreme points
and update dmin ,i if any point is closer to S than dmin ,i

end if
end if

end for
i← i+ 1

end while

19



3.6. A QUALITY COMPARISON BETWEEN CONVEX HULLS AND AABBS

that the approximation is far from the true value. This is not unexpected since Theorem
3.5 only gives a lower bound of the distance, which may not always be close to the true
value.

It should be mentioned that rmax is bounded by the size of the convex hull so that
there is an upper bound for how bad the approximation can be.

b/2

p3

p2p1 b/2

h

p1 p2

p3

p1 p2

p3

h

b/2b/2

Figure 3.5: An example of a triangular face for when using the extreme points to approxi-
mate the distance from the subset to S can give a weak bound. The point s is located above
p3.

3.6 A quality comparison between convex hulls and AABBs

The construction of convex hulls will be carried out using the Quickhull algorithm [22],
which is known to have complexity O(n log n). This can be compared to computing a
simple AABB around each subset, which can be done in O(n).

It is clear that the convex hull will always be contained within the AABB, making it
more accurate and possibly yielding a much better lower bound of the distance computed
from Theorem 3.5. In fact, if an AABB has side lengths c ≤ b ≤ a the corresponding
value of rmax for this AABB would be 1

2

√
a2 + b2, if the corner points are taken as the

extreme points in this case. The difference between the approximation for a convex hull
compared to an AABB is actually even larger since the closest corner point of the AABB
may not be a part of the point cloud whereas the closest extreme point of the convex
hull is always in the point cloud.

It will now be demonstrated that the value of rmax from using an AABB can be
significantly larger compared to using convex hulls. To this cause consider the line

L = {x+ (y − x)t | 0 ≤ t ≤ 1,t ∈ R} (3.32)

and let x = (a,a,a) and y = (b,b,b) where a < b so that the three dimensional bounding
box has side lengths b − a. Consider placing slightly perturbed points around this line
that are contained in the bounding box so that

rmax = δ � b− a. (3.33)

The corresponding value of rmax for the bounding box will be equal to (b−a)/
√

2 which
is independent of δ.
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By increasing the number of points so that δ → 0, it follows that the minimum
distance estimation of Theorem 3.5 approaches the real minimum distance. For an
AABB, the minimum distance approximation will not change after adding more points
because they are all contained in the AABB and do not affect its size. Therefore, in this
case, as the error approaches 0 for the convex hull it remains fixed for the bounding box.

The points from the original point cloud are expected to be tightly distributed in
clusters, which can be planes corresponding to walls that may not be axis-aligned, in
which case the convex hull of the should give a better bound than the AABB.

3.7 If the object resides inside a convex hull

Throughout Chapter 3 it was assumed that the convex hull and S did not intersect. If S
would lie inside the convex hull, the results from Chapter 3 would not hold since a point
that is not an extreme point might be closer than a point residing on the boundary of
the convex hull. It is therefore necessary to make the assumption that the object can
never be entirely located within a convex hull. It can be be guaranteed that the object
can never be inside a convex hull by making sure that the optimal bounding box of the
object is larger than the optimal bounding boxes of the convex hulls. For this cause the
bounding boxes do not have to be axis-aligned.

One solution would be to always check the points that are not extreme points of the
convex hull number k with the closest extreme point and check the points that are not
extreme points of all convex hulls j with extreme points, such that dj−rmax , j−rmax , k ≤
dk. By checking these additional sets of points that are not extreme points it can be
guranteed that even if the object lies within a convex hull, the points that are not extreme
points of that set will also be checked. Depending on the geometry, this solution will
also work in cases where the point cloud is much larger than the object thus making
it hard to bound the sizes of the convex hulls without forcing them to contain too few
points.

An additional possibility would be to save the convex hull that was closest during
the last iteration. Under the assumption that the object is moved in small increments,
if no sets of points that are not extreme points are checked during an iteration, the set
of points that are not extreme points belonging to the convex hull that had the closest
point during the last iteration can be checked since the fact that no points that are not
extreme points had to be checked indicates that the object might be located inside one
of the convex hulls. This is not necessary if the object cannot fit in the convex hulls, as
the first solution suggested.

21



4
Simplification of the point cloud

F
or very large point clouds consisting of several billions of points, it may be of
interest to simplify the point cloud, with the drawback of not being able to
compute the exact shortest distance from S to P . If an error of size ε is allowed
when computing the shortest distance between S and P , the point cloud may

be simplified to a point cloud P̄ε with fewer points. The main idea is that points that
are close in P may be represented by fewer points in P̄ε and still be able to guarantee
continuous shortest distances. Two methods will be investigated in this section, the first
being a grid-based partitioning of the point cloud and the second by clustering according
to the k-means method, introduced in Section 2.3. Section 4.4 will analyze the build
times of the different algorithms introduced in Chapter 2, Chapter 3, and this chapter.
Finally, an overview of the work presented so far in this thesis is given in Chapter 4.5.

4.1 The grid-based partitioning

This section aims to introduce a simplification scheme that is based on partitioning the
point cloud by small axis-aligned grid boxes with diagonal 2ε, where ε ∈ R, ε > 0 is the
maximal allowed error in the computed shortest distance.

Definition 4.1. A point cloud P̄ε is referred to as a simplification of P if it satisfies:

1. |P̄ε| ≤ |P |

2. |d(P,R)− d(P̄ε,R)| ≤ ε,∀R ⊆ Rn.

This definition states that a simplification may have fewer points than the original
point cloud under the condition that the error in the computed shortest distance never
exceeds ε. Section 4.3 will show that the second requirement can be guaranteed if

∀p ∈ P : min
p̄∈P̄ε

d(p, p̄) ≤ ε. (4.1)
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This means that as long as there is a point p̄ ∈ P̄ε for each p ∈ P that is no further away
than ε, the error in the shortest distance will never exceed ε.

Referring back to the grid-based partitioning, two points that are closer than 2ε may
be represented by only one point in P̄ε. The grid-based partitioning utilizes this fact by
partitioning the original AABB into disjoint axis-aligned grid boxes with side length 2√

n
ε

so that the diagonal is 2ε and all points that fall into the same axis-aligned grid box may
be represented by its midpoint in P̄ε. In order to allow for this partitioning, the original
AABB of P can easily be extended to make all side lengths divisible by 2√

n
ε. Extending

the bounding box will still guarantee that it contains P .
A data structure that can be used to simplify P is a hash-table. The idea is to map

each point into its corresponding axis-aligned grid box and add this box to the hash-table
if it does not already exist. The choice of using a hash-table is very suitable here since it
makes it possible to both add and find axis-aligned grid boxes in O(1) time-complexity.
This method is memory-efficient and suitable since the point cloud is expected to be
sparse. In the case of a dense point cloud, it would be possible to perform this step in
parallel and create all possible grid boxes instead of using the hash-table. How a point
from the current subset of P can be mapped to the hash-table will be described next.

The position of the corner of the AABB with the smallest coordinate value in all
directions will be denoted by b ∈ Rn. Given a point p ∈ P , the axis-aligned grid box in
which p resides can be denoted by the integer representation

indi =

⌊
pi − bi

2√
n
ε

⌋
. (4.2)

Assume thatNi boxes can be stored in coordinate direction i, whereNi is easily computed
from the size of the AABB. The mapping F (p) that gives each axis-aligned bounding
box a unique integer index can be defined as

F (p) :=
n∑
i=1

indi

n∏
j=i+1

Nj . (4.3)

This will map the axis-aligned grid boxes with points onto the integers{
0, 1 ,...,

n∏
i=1

Ni − 1

}
, (4.4)

such that each box has its unique integer representation. This unique integer is what
will be stored in the hash-table and after adding all points in the point cloud, each value
of F (p) can be inverted to obtain the indices from which the center of the axis-aligned
grid box can be conveniently computed according to

ci = bi +

(
indi +

1

2

)
2√
n
ε. (4.5)

The center will represent all points within this axis-aligned grid box in the new simplified
point cloud P̄ε. This is illustrated in Figure 4.1 where the original point cloud in 2D

23



4.1. THE GRID-BASED PARTITIONING

can be seen to the left and the resulting simplified point cloud obtained from using the
grid-based partitioning simplification can be seen to the right.

Figure 4.1: (Left) Original 2D point cloud. (Right) Simplification of the point cloud after
using the grid-based partitioning.

This shows that points falling inside the same axis-aligned grid box may be rep-
resented by only the midpoint in the new simplified point cloud. It is possible that
|P̄ε| = |P | if only one point falls within each axis-aligned grid box, which could happen if
the point cloud is sparse or if ε is very small. The complete procedure of the grid-based
partitioning can be seen in Algorithm 4.

Algorithm 4 Map disjoint subsets of data to grid boxes

Data: Point cloud P
Create an empty hash-table H
for each point p ∈ P do

if F (p) /∈ H then
Add F (p) to H

end if
end for
Create P̄ε from F (p)

It should be noted that this algorithm relies on the existence of an out-of-core hash-
table. The use of such a data structure can be avoided by modifying Algorithm 1 where
the AABB of P is extended, as mentioned earlier in this chapter, and then divided so
that the two new AABBs both have side lengths divisible by 2√

n
ε. When each disjoint

subset is small enough to run the grid-based partitioning in-core, P̄ε can be created. If
the AABBs are divided in this way it can be guaranteed that Q̄ε,i ∩ Q̄ε,j = ∅, i 6= j, so
that no points from different subsets can be mapped to the same point in the simplified
point cloud.

24



4.2. THE K-MEANS METHOD

4.2 The k-means method

The grid-based partitioning described in the previous section has the advantage of having
linear time-complexity in the size of the point cloud, but it may give a non-optimal
partitioning for at least two reasons:

1. A box of diagonal 2ε can be contained in a sphere of radius ε.

2. The position of the axis-aligned grid boxes is chosen based only on the AABB of
P and no other properties of the point cloud

The first point addresses the fact that an axis-aligned grid box of diagonal 2ε is not the
object of maximal volume that could have been used to simplify the point cloud. In
fact, Equation 4.1 will hold also in the case of representing all points falling within a
sphere with radius ε by the center of the sphere. These spheres would have to be placed
depending on the distribution of the point cloud since the original AABB cannot be
partitioned into disjoint spheres.

This addresses the second problem of the grid-based partitioning, which regards
the fact that the axis-aligned grid boxes are placed only depending on the AABB of P
and not on the structure of the point cloud making it possible that significantly fewer
axis-aligned grid boxes can be used if they are placed adaptively.

The k-means method was described in Section 2.3 and can be used to divide each
subset in the same way as in Chapter 2. For each new subset it would have to be
investigated whether the radius of the smallest enclosing sphere has a radius that is no
more than ε. The problem of finding the smallest enclosing sphere of a set of points has
been studied by Welzl [23], who constructed an algorithm that runs in expected linear
time. If the radius is larger than ε, the k-means method can be used to create new
clusters until each cluster can be replaced by the center of a sphere with radius of at
most ε.

Figure 4.2: Grid based method compared to the k-means method in 2D, illustrating that the
k-means method may be able to create a simplified point cloud with fewer points.
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4.3 Maximum error in the computed shortest distance

This section will show that Equation 4.1 implies the second condition in the definition
of P̄ε. It is not necessary to consider the use of the convex hulls since the approximated
distances are lower approximations of the true distances, therefore Algorithm 3 will
always compute the exact shortest distance. In order for the point closest to the object
to never be neglected, it suffices to consider only the error induced from simplifying the
point cloud. This process is trivial if S consists of only one point and follows directly
from the triangle inequality. The following theorem shows that the error in the shortest
distance is always bounded by ε for a simplification scheme satisfying 4.1 for a general
S.

Theorem 4.1. Let p ∈ P be the point from the original point cloud that is closest to S
and s = arg minx∈S d(x,P ). Furthermore, let p̄ ∈ P̄ε be the point in the simplified point
cloud that is closest to S and t = arg minx∈S d(x,P̄ε). Assume a simplification scheme
such that condition 4.1 holds. Then it follows that

|d(p, s)− d(p̄, t)| ≤ ε (4.6)

Proof. By the definition of s and t it must hold that

d(p, s) ≤ d(p, t) (4.7)

d(p̄, t) ≤ d(p̄, s). (4.8)

From the triangle inequality it follows that

|d(p, s)− d(p̄, s)| ≤ ε (4.9)

|d(p, t)− d(p̄, t)| ≤ ε, (4.10)

since d(p, p̄) = d(p̄, p) ≤ ε. To show the inequality in (4.6) assume that d(p,s) ≥ d(p̄,t)
in which case

|d(p, s)− d(p̄, t)|
(4.7)

≤ |d(p, t)− d(p̄, t)|
(4.10)

≤ ε. (4.11)

and for d(p, s) ≤ d(p̄, t),

|d(p, s)− d(p̄, t)|
(4.8)

≤ |d(p̄, s)− d(p, s)|
(4.9)

≤ ε, (4.12)

which proves the claim.

4.4 Build times

This section wishes to analyze the build times for each of the components from Chapter
2, Chapter 3, and this chapter. Algorithm 1 aims to divide the point cloud into subsets
of at most T points, by splitting AABBs, and has time-complexity

O

(
|P | log

(⌈ |P |
T

⌉))
(4.13)
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Figure 4.3: Illustration of the maximal error of the method in the case of a grid box with
diagonal 2ε.

which is close to linear when T is large. This holds under the assumption that each
AABB is divided into two new AABBs with approximately the same number of points.
When T is small the time-complexity will instead be close to O(|P | log |P |). If k-means
is used instead, the time-complexity will be much larger. Solving the exact k-means
problem for a set of n points, i.e. finding the globally optimal centroids, has time-
complexity O(ndk+1 log n), where d is the number of dimensions [24]. Assume instead
that k-means++ is used and that the clustering phase in Algorithm 2 is aborted after
I iterations, even if the clusters are still changing. The initializing phase of k-means++
has time-complexity O(k2n) and each iteration of k-means will have time-complexity
O(kn). If k-means runs for at most I iterations, the resulting time-complexity will be
O(k(k + I)n). Assuming that all new clusters have roughly the same number of points,
the resulting time-complexity will thus be

O

(
k(k + I)

log k
|P | log

(⌈ |P |
T

⌉))
. (4.14)

The factor log
(⌈
|P |
T

⌉)
/ log k is the expected number of times k-means needs to run to

create clusters with less than T points, under the assumption that the clusters have
roughly the same size. Since the swapping of elements when splitting AABBs is sig-
nificantly faster than computing the distances and assigning points to clusters in the
k-means method, the k-means method is expected to be much more time-consuming.
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Building the convex hull for a set of points with approximately T points can be done
in O(T log T ), [22], so that all convex hulls can be built in O(|P | log T ) time since there

are approximately
⌈
|P |
T

⌉
convex hulls that have to be built. In case the point cloud is

to be simplified, the grid-based partitioning with a well-performing hash-table structure
will be both linear in the size of the point cloud and in memory consumption since only
one pass per point is needed after the subsets have been created. If the k-means method
would have been used instead, together with Welzl’s algorithm, the running time would
be increased significantly, becoming

O(k(k + I)n+ n) = O(k(k + I)n). (4.15)

Note that this is the expected runtime since Welzl’s algorithm has expected linear time-
complexity. Assuming, just as before, that k-means assigns points into clusters with
about the same number of points and, furthermore, that each sphere of radius ε will
contain, on average, m points the time-complexity will be given by

O

(
k(k + I)

log k
|P | log

(⌈ |P |
m

⌉))
. (4.16)

In the worst case, when m = 1, the time-complexity will be O(|P | log |P |), compared to
O(|P |) for the grid-based partitioning, although the constant will be significantly larger
for k-means and Welzl’s algorithm potentially making it orders of magnitudes slower in
practice.

4.5 Overview

In order to summarize all the steps in the pre-processing procedure a complete flow
chart can be seen in Figure 4.4. This flowchart shows the major steps describing the
pre-processing phase of the point cloud for fast-query together with the distance com-
putation. More information regarding how the distance computation is carried out will
be presented in Chapter 5.
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Figure 4.4: A flowchart representation of the algorithm developed in this thesis in order to
pre-process a massive point cloud for fast-query out-of-core. The loop over the interesting
convex hulls in the iteration block is preferably carried out in parallel as described in Section
5.4.
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5
Implementation

T
his chapter describes the implementation details with the main focus on how
to work with a massive point cloud with the help of an out-of-core vector
data structure. The choice of out-of-core implementation for this vector data
structure is described in Section 5.1. The choice of algorithm for building the

convex hulls is described in Section 5.2. In Section 5.3 it is described how to use bounding
volume hierarchies and swept volumes to be able to rapidly compute the distance from
two geometric models. This is what will be used for the convex hulls to be able to
efficiently compute the distance from the object moved through the point cloud and the
extreme points or the points that are not extreme points of the convex hulls.

5.1 STXXL

T
he out-of-core algorithms are implemented with the help of the STXXL library
[25], which is an out-of-core implementation of the C++ STL (standard tem-
plate library) data structures such as vector, stack, and queue. STXXL was
designed, amongst other uses, to support multiple disks, overlapping of I/O

and computations, prevention of overhead and pipelining. STXXL keeps a local copy
of the data on the disks and loads elements that are requested into the cached memory
of STXXL. STXXL was also designed to support STL-compatible interfaces in order to
shorten the development time [25].

One STXXL vector is what will be used to hold the original point cloud throughout
the pre-processing steps. A point cloud consisting of ten billion points with 3D coordi-
nates, all of which are assumed to be floats, will need a total of 120 GB. Here a float is
assumed to be 4 bytes according to [26]. Such a point cloud will hardly fit in-core on any
computer whereas an STXXL vector could store the point cloud out-of-core using only
64 MB of internal memory (with standard configurations). STXXL can be used with
even more RAM which will allow keeping more elements in RAM at the same time and
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therefore avoiding reading as many elements from the disk. The algorithms will always
store the point cloud in an STXXL vector, thereby making the largest possible point
cloud stored dependent only on the amount of disk drive space available.

There are however some limitations to the STXXL data structures, one being that
it is not allowed to use pointers or references to elements. The reason for this is that the
reference to an element is only valid as long as it is in the cached memory of STXXL.
When new elements are read from the disk, old elements will have to be evicted from
the cached memory and written to the disk, invalidating their references. STXXL pro-
vides memory iterators that are never invalidated and can be used to iterate through all
points, such as when computing the AABB of P .

When an element of an STXXL vector is requested from a constant vector, the
element will not have to be written back to the disk after being evicted from the cached
memory, avoiding unnecessary writing to the disk. The limitation of not being able
to use references complicates the construction of parallel algorithms with STXXL data
structures since tools like OpenMP will use references to access the shared memory.

Another problematic limitation is that the STXXL data structures can only hold
elements that satisfy the criteria for being PODS (plain old data structure) since there is
no obvious way to convert other elements to the internal binary format used by STXXL.
This means that an STXXL vector cannot be used to hold instances of a class that does
not satisfy the criteria for being a POD, which is not satisfied by most sophisticated
classes.

STXXL allows different types of memory access implementations depending on the
operating system used; for Windows the most common choices are syscall, wincall, mem-
ory, and mmap. Syscall uses the memory pages directly and is currently the fastest
method, wincall uses the Windows API, memory keeps the data in RAM (for testing
purposes), and mmap uses memory map system calls. Syscall will always be used in this
thesis since it is the fastest way of accessing the data.

In order to test the performance of STXXL a few simple test cases have to be con-
structed. The first test is to compute the sum of a vector of 1 billion floats. The second
test is to perform 1 billion swaps in a vector of 1 billion floats in order to test how the
time varies when both reading and writing is of necessity. The final test will be to do
push backs of 1 billion floats to an STXXL vector. The tests are carried out using the
STL implementations and will be compared to using one SSD (solid state drive), one
HDD (hard disk drive) and one SSD together with an HDD. The results can be seen in
Table 5.1.

From Table 5.1 it can be seen the main memory is in all cases much faster than
STXXL, which is to be expected since the access time is several orders of magnitude
faster for RAM than for disk drives. When swaps are performed, the speed of using two
disks is almost the sum of the individual speeds, showing that the parallel disks seems
to be working well. The same almost applies for the push back operations where some
speed is gained from using two disks, even if the SSD is dominating the HDD in write
speed. On the other hand, not much speed-up was gained from using two disks while
only accessing elements when computing the sums of the vector. These simple tests
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verify that even if STXXL is fast, it is still about one order of magnitude slower than
RAM.

5.2 Building the convex hulls

The construction of the convex hulls is a time-consuming part of the pre-processing,
with Chan’s algorithm having the best theoretical run time of O(n log h), where n is the
number of points and h is the number of extreme points [27]. Another available algorithm
is the Quickhull algorithm [22] with run time O(n log n), which is the standard approach
for computing convex hulls. Quickhull has been implemented in the geometrical software
package CGAL [28] and in the library Qhull [29]. Joesph O’Rourke provides a slow but
simple implementation of the incremental algorithm that is described in [30]. The Qhull
implementation is preferred for the work in this thesis since it is a smaller library than
CGAL and also because O’Rourke’s implementation is about a factor of 100 slower than
Qhull. Another problem with O’Rourke’s algorithm is that it is designed for data with
integer precision in order to check for coplanarity or colinearity while Qhull supports
coordinates in floating precision and solves a potential precision problem by merging
faces.

After the convex hulls have been built, they are separated into two STXXL vectors,
one with points that are not extreme points and one with extreme points. A convex hull
structure keeps track of which indices belong to each convex hull and what the value
of rmax is. This data is then saved in a binary format in order to allow skipping the
pre-processing the next time this particular point cloud is considered. The reason for
choosing a binary format over simply saving the points to a textfile is the fact that an
STL vector is contiguous in memory, making it possible to quickly insert the elements in
memory again. Pieces of an STXXL vector are converted to an STL vector from which
the piece is saved into a binary format because of the previously mentioned problem
regarding references to elements in an STXXL vector.

Test case RAM SSD HDD SSD & HDD

Sum 2.0 10.9 10.6 9.5

Swaps 2.6 38.2 59.0 23.6

push backs 2.0 17.5 53.0 14.7

Table 5.1: Run time in seconds when operating on a point cloud with 1 billion points. Each
point is represented by three floats making the memory consumption for the point cloud 12
GB. STXXL was used with 64 MB of RAM.
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5.3 PQP

In order to use the algorithms from Chapter 3, a way to find the shortest distance
between a subset of the point cloud and the triangulated object is needed. The Proximity
Query Package (PQP) [31] was designed for collision detection, distance computation,
and tolerance verification between a pair of geometric models. When necessary, this is
what will be used to compute the distance from either the extreme points and/or points
that are not extreme points of a convex hull to S. PQP uses swept sphere volumes to
create a bounding volume hierarchy that can be used to efficiently compute the shortest
distance by traversing the tree of bounding volumes. By storing indices of the closest
pair of points/triangles from the last distance computation, an upper bound of dmin can
immediately be obtained, giving PQP a good starting point. This makes it possible to
rule out a large amount of points when traversing the boundary volume hierarchy.

The memory requirement to build a PQP model is extensive since building a PQP
model with 100 million points uses 16GB of RAM. This memory limitation is not a
problem for the proposed approach since the convex hulls will have one PQP model for
its extreme points and one for its points that are not extreme points. It will be seen in
Chapter 6 that T = 100,000, where T was defined as the maximal number of points in a
subset, works well for a point cloud with 1 billion points for which the PQP models can
be constructed without using much RAM. A constructed PQP model for a set of points
will need roughly 3 times the memory of the point cloud.

PQP is fast and it could be questioned as to why not just use one huge PQP
model that could run out-of-core? The reason for this is that the limitations of STXXL
makes the construction of the PQP model problematic, and this implementation is not
of interest to modify because the changes would be contradictory to the programming
paradigm in C++. Another reason that can be seen from Table 5.1 is that RAM accesses
are significantly faster, in which case the PQP models that are known to be closest to
the object should preferably be in RAM, avoiding reading the same data from the hard
disk drive to the cached memory for multiple iterations in a row.

Instead of running one big PQP model out-of-core, several PQP models will be
used and run out-of-core. This is where the convex hulls are exploited since they make
it possible to rule out many of the PQP models that are too far away from the object to
be of interest. This situation changes when the object moves in which case some PQP
models will have to be loaded while others can be removed from RAM in case all of the
PQP models cannot fit at once.

PQP was modified to allow writing of the interior data structure into a binary format
since STXXL cannot be used to hold the PQP models due to the fact that the PQP
data structure does not satisfy the criteria for being a PODS. Another reason for this
modification is that the distance can be computed in parallel, which would not have been
the case if an STXXL vector would have been used to hold the PQP models. The PQP
models for the extreme points of each convex hull are never removed from RAM since
the number of extreme points is expected to be small, compared to the number of points
that are not extreme points, so that they can fit in RAM at all times. Another reason
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for always keeping the PQP models of the extreme points in memory is that they will
always be considered before the PQP model for the points that are not extreme points.
One advantage with not using STXXL is that when a PQP model for points that are not
extreme points has to be read, PQP models that are far away from S can be removed
since they are not expected to be used again. In the case of using STXXL it is not clear
what will be removed in order to free up the space for the reading, which means that a
PQP model that is close to S could be removed. A situation where the PQP models for
the closest sets of points that are not extreme points are in RAM together with all PQP
models for the extreme points is illustrated in Figure 5.1

S

dmindmin

S

Figure 5.1: The PQP models for the closest sets of points that are not extreme points are
in RAM and the models that are further away exist only on the disk. When S moves the
PQP models for points that are not extreme points of sets that come closer will have to be
read and PQP models for points that are not extreme points that are then further away will
then be removed.

5.4 Shortest distance computation

It will in this section be described how to compute the shortest distance in parallel
after the object has been moved and αi has been computed. The for-loop inside the
while-statement of Algorithm 3 will be replaced by one for-loop that sets dj ← dj − αi
and then saves all the convex hulls such that dj ≤ dmin ,i to a list L, that will then
contain all convex hulls that can contain the point closest to S. A parallel for-loop over
the elements of L is created, with each thread having their local copy of the shortest
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distance found so far, which is initialized to dmin ,i. After thread number k has processed
a convex hull and updated its local value of the shortest distance, δk, the global value of
dmin ,i is updated if δk < dmin ,i. If not, δk is updated to equal the global value of dmin ,i,
which is the shortest distance found so far. By updating δk, each thread can make use
of the information collected by the other threads and this can make it possible to rule
out additional convex hulls.

The reading of PQP models takes place inside the same loop and can also be done
in parallel as long as enough PQP models are removed ahead of the reading so that
enough memory can be guaranteed. When a PQP model has to be removed, the one
with the largest value of dj (and is in RAM) will be removed, so that a model that is
being removed is unlikely to be considered again. The complete parallel algorithm that
replaces the for loop within the while loop in Algorithm 3 is given in Algorithm 5.
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Algorithm 5 Algorithm for computing the shortest distance in parallel

Data: Convex hulls of subsets of Point cloud P , Object S, iteration i
Create empty list L
for each convex hull number j do

dj ← dj − αi
if dj ≤ dmin ,i then

Add convex hull number j to L
end if

end for

Start of parallel region
Initialize δk = dmin ,i for thread number k
for each convex hull number j in L (in parallel) do

Update dj and set δk = min(dj ,δk)
if dj − rmax ,j ≤ δk then

if PQP model for the points that are not extreme points is not in RAM then
Start of barrier
Remove PQP models in order to free memory for the reading
End of barrier
Read the necessary PQP model

end if
Compute the distance from S to the points that are not extreme points and
update δk if any point is closer to S than δk

end if
Start of barrier
if δk < dmin ,i then

dmin ,i = δk
else

δk = dmin ,i

end if
End of barrier

end for
End of parallel region
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6
Simulations

T
his chapter aims to test the results from the previous chapters by considering
a real-world point cloud. Section 6.1 will describe the point cloud that will be
considered and how it can be up-sampled in order to force the shortest distance
computations to run out-of-core. Section 6.2 will introduce some alternative

approaches to using Theorem 3.5 for fast approximate distance computations. In Section
6.3 the simulation setup will be presented and the results will later be analyzed in Section
6.4. The simulations were carried out on a desktop computer with an Intel Core i7
processor, 32 GB RAM, and a 250 GB SSD.

6.1 Test geometry

The point cloud that will be considered is a factory originally consisting of about 40
million points. A picture of the point cloud can be seen in Figure 6.1 and the entrance,
where the object moved through the point cloud is placed can be seen in Figure 6.2. The
red line shows the path along which the object will be moved through the point cloud.
This entrance is located in the upper right corner of Figure 6.1 and the object will move
through the tunnel until it reaches the part of the point cloud that is in the lower left
corner of Figure 6.1.

The original point cloud is obviously not of interest because it contains so few points,
with the main focus of this thesis being massive point clouds having billions of points.
For this reason, the point cloud was up-sampled to contain a larger number of points
by simulating k − 1 new points around each original point in order to generate a point
cloud with 40k million points.

The object that is being moved through the point cloud is a holding mechanism for
a car and its triangulation consists of 80,667 points and 78,403 triangles; this can be
seen in Figure 6.3. The position of the object along the existing path is given at discrete
points in time and the displacements of the object vary in size. The variation in the
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Figure 6.1: An overview of the original point cloud consisting of about 40 million points.

displacements will directly affect the computed values of αi.
The value of αi has to be computed quickly since the aim is to obtain close to

real-time computations of the shortest distance, which is taken to be 24 fps, [32]. To
put this in perspective, the eye can only process 10-12 distinct frames per second, [33].
The idea of αi is to provide a quick and reliable test without computing any distances
from the subset to S for whether any points in a subset can be of interest by using the
information from the previous iteration. The choice here was to therefore compute the
original bounding box of the object and transform its 8 corners at each iteration and then
compute the furthest a corner point has moved. This will give an upper approximation
of αi that can be computed quickly since it is independent of the number of vertices and
triangles of the object.

Another approach that would yield a more precise value of αi would be to compute
the convex hull of the object and then see how far the vertices have been moved, but
this can be considerably slower if the fraction of extreme points in this convex hull is
large. The total number of steps in the already generated path is 707 and the total time
taken to carry out the steps is 229 seconds in simulation time.

6.2 Alternative approaches

In order to test the results from Chapter 3, it will be investigated how the algorithm
compares to some similar ideas on how to rule out subsets of P that are far away from
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Figure 6.2: A view of the entrance of the tunnel through where the object will be moved.
The red line shows the path of the object.

the object. The five approaches that will be considered are:

1. Convex hulls

2. Triangulated convex hulls

3. The hybrid method

4. Multiple PQP models

5. A Single PQP model

The first approach uses the lower bound of dj that is based on αi to rule out some of the
subsets, exactly as is described in Algorithm 3. Each subset will have one PQP model
for its extreme point and one for the points that are not extreme points, with all PQP
models for the extreme points residing in RAM at all times.

Triangulated convex hulls will be used to compute the exact distance from the
convex hull to the object. This will be much more expensive to evaluate since computing
the distance between two triangulations is more time-consuming compared to computing
the distance from a set of points to a triangulation. It is, on average, four times faster
to compute the distance between a point and a triangle compared to computing the
distance between two triangles. If a convex hull contains h extreme points and all faces
are triangles, then there are 2h − 4 triangular faces, [34]. Hence there are about twice
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Figure 6.3: A visualization of the object, a car holding mechanism, that will be moved
through the point cloud. This triangulated model consists of 80,667 points and 78,403 trian-
gles.

as many faces as there are extreme points, making it about 8 times slower to compute
the exact distance to a convex hull, compared to using the extreme points. On the other
hand, the triangulated convex hulls have the strength of not having to do as many reads
of PQP models since the exact distance is computed from CH(Q) to S. Each subset will
have one PQP model for the triangulation of the convex hull and one for all the points
in the subset.

The hybrid method aims to use the strengths of both the previously mentioned
approaches by utilizing the fact that reading a new PQP model is generally very time
consuming. Each subset will have a PQP model for the extreme points, triangulation and
points that are not extreme points, and is used identically to the first approach unless
Theorem 3.5 fails to rule out a set of points that are not extreme points that is not in
currently RAM. In such a case, the exact distance is computed from the triangulation
to the object as an attempt to avoid reading the PQP model of the points that are not
extreme points.

By multiple PQP models it is meant that instead of building convex hulls for
the subsets generated during the pre-processing as described in Chapter 2, PQP models
are built for each subset. Only the lower bound based on αi is used to avoid considering
certain subsets when it is known that they must be further away than the subset with
the closest point. As soon as a set comes too close, the distance is computed from its
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rmax

Figure 6.4: The point cloud after diving it into subsets it and building convex hulls. The
color indicates the value of rmax and is given in meters.

PQP model to the object. This approach will have to perform many unnecessary reads
of PQP models that turn out not to be close; it is mainly a naive way of just splitting
one large PQP model into multiple subsets.

Using a single PQP model requires no additional description than what was given
in Section 5.3. It will be seen that PQP will be much faster than the other approaches
for small point clouds but beyond that, a single PQP model cannot be used anymore
due to the extensive memory requirement to build the model.

An additional possibility that was discarded was using an AABB of each subset by
either computing the distance between a triangulation of the AABB or from the corner
points and also applying the inequality from Chapter 3. The reason to not consider the
AABBs is that only a small fraction of the points are expected to be extreme points,
so there are not many more points to consider for the convex hulls over the AABB and
will therefore not be much slower, under the assumption that PQP is logarithmic in the
size of the number of points. Furthermore, it is expected that using convex hulls will
produce better bounds than an AABB, as was argued in Section 3.6.
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6.3. SIMULATION SETUP

6.3 Simulation setup

This section will present the setup used in the simulations meant to compare the five
approaches from the previous section. No point cloud simplification was used, which
means that ε was set to zero. The point cloud was organized by the means of Algorithm
1 since it is significantly faster than using the k-means method. Five different values
of |P | were considered, starting with the original point cloud with 40 million points.
This case was possible to run in-core for all five approaches and was evaluated for four
different values of T . The point cloud was then up-sampled to contain five times as many
points, yielding a point cloud with 200 million points. This is the maximum number of
points for which it is possible to build a PQP model on a machine with 32 GB memory.
After this, all test cases except, a single PQP model, were evaluated on a point cloud
with 600 million points, which was possible to run in-core with 32 GB of RAM. The
hybrid method was not used for any of these three tests that run in-core since, in this
case, it is equivalent to using the convex hulls.

After these three tests, that were carried out in-core, two point clouds with 1 billion
and 3 billion points were generated. For the point cloud with 1 billion points, the memory
for PQP was restricted to 8 GB so that only about 25% of the PQP models for the points
that are not extreme points could be in RAM at once. In the case of 3 billion points,
the memory was restricted to 16 GB in which case only about 15% of the PQP models
for the points that are not extreme points could be in RAM simultaneously. The results
from the simulations can be seen in Table 6.1.

In order to illustrate how smaller values of T will average out the time for the
reads/removals of PQP models over the iterations, the time to compute the shortest
distance for was plotted against the number of reads. The results from this test can be
seen in Figure 6.5. Table 6.2 shows how many reads and tests of different PQP models
had to be carried out for the first four approaches in the case of the point cloud with 3
billion points and 16 GB of RAM.

The last test was to investigate how the grid-based partitioning and the k-means
method compared when it comes to point cloud simplification. Even though other criteria
besides the number of points in the simplified point cloud could have been considered, it
was decided to use this as the measure of efficiency. The original point cloud introduced
in Section 6.1 was considered since an up-sampled point cloud would have made it hard
to choose realistic values of ε in addition to extending the runtime. The results from
using the grid-based partitioning and k-means for k = 2 and k = 3, for different values
of ε, can be seen in Table 6.3.

6.4 Simulation results and discussion

This section aims to analyze the results from the previous section. Starting with Table
6.1, it can be seen for the two smaller point clouds that a single PQP model is clearly
the fastest. This result is expected since PQP was optimized to work on point clouds
of this size. For smaller point clouds, there is of no interest to replace PQP unless the
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6.4. SIMULATION RESULTS AND DISCUSSION

|P | Memory T Convex Triangulated Hybrid Multiple Single

(millions) (GB) (thousands) hulls hulls method PQP PQP

40 32 10 18.7 136.5 - 25.1 3.7

40 32 100 7.2 23.9 - 8.8 3.7

40 32 500 7.8 14.9 - 8.2 3.7

40 32 1,000 7.9 11.2 - 7.9 3.7

200 32 100 14.0 111.6 - 48.2 8.3

200 32 500 9.1 29.4 - 23.2 8.3

200 32 1,000 10.8 21.6 - 22.1 8.3

200 32 5,000 12.6 16.0 - 22.5 8.3

600 32 500 11.9 61.7 - 55.7 -

600 32 1,000 11.3 37.8 - 42.3 -

600 32 5,000 15.7 22.1 - 33.8 -

600 32 10,000 18.4 22.7 - 31.7 -

1,000 8 50 66.3 568.7 71.3 718.7 -

1,000 8 100 47.5 373.1 48.6 571.3 -

1,000 8 500 53.2 103.1 52.0 573.2 -

1,000 8 1,000 67.3 76.5 56.4 491.3 -

1,000 8 5,000 91.7 96.1 88.8 782.9 -

3,000 16 100 103.5 735.2 100.2 2453.6 -

3,000 16 500 93.0 288.8 67.3 2138.2 -

3,000 16 1,000 129.2 167.7 87.9 2543.1 -

3,000 16 10,000 258.2 235.5 225.1 3049.2 -

3,000 16 50,000 303.1 286.3 279.9 3875.0 -

Table 6.1: Run times, in seconds, for computing the shortest distance for all 707 steps in
the path of the object. The best time for each size of |P | is written in bold font. Memory
indicates how the amount of RAM was constrained to force the algorithms to run out-of-
core. For the point clouds with 40, 200 and 600 million points, all algorithms ran in-core.
Hybrid was not used in these cases, since it is identical to the convex hulls when running
in-core. PQP was not used for point clouds with more than 200 million points because of
the memory problems associated with building a model with that many points. The values
of T were chosen to capture the variation in time for all of the scenarios and were chosen
adaptively from a larger set of simulations. The loop over the convex hulls at each iteration
was always carried out in parallel as described in Algorithm 5.

amount of RAM available is very small; the two small point clouds were only considered
to illustrate how fast PQP is. It is clear that the triangulated convex hulls are better
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Figure 6.5: A plot of the time to compute the shortest distance for the hybrid method
compared to how many PQP models that had to be read for the first 100 iterations. The
point cloud was up-sampled to 3 billion points and the RAM was constrained to 16 GB. Note
that the scales are different.

when the subsets are larger since this will make the number of comparisons between
triangles smaller. Both the triangulated convex hulls and multiple PQP models will be
faster when the subsets are larger since, in this case, they converge towards a single
PQP model, which is the fastest approach for small point clouds. For the convex hulls,
it works better to have about 400-500 convex hulls, and for 200 million points the convex
hulls compare well in runtime to a single PQP model.

When the point cloud has 600 million points and it is still possible to run the dis-
tance computations in-core, except for a single PQP model, it is clear that the method
with the convex hulls is the fastest. Just as for the two smallest point clouds, the trian-
gulated hulls and the multiple PQP models get better when the subsets are increased.
This will change when the algorithms start running out-of-core in which case the reading
of PQP models will become a bottleneck.

For the two largest point clouds, when only a fraction of PQP models can fit in
RAM, it is clear that the hybrid method and the convex hulls both perform well. The
convex hulls work better when T is small since the values of rmax are expected to be
smaller in this case. On the other hand, when the convex hulls become too small, the
fraction of extreme points will increase, making it problematic to fit the PQP models
for the extreme points in memory. This will also make it very expensive to compute
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6.4. SIMULATION RESULTS AND DISCUSSION

T = 50 (millions) Convex hulls Triangulated hulls Hybrid method Multiple PQP

Extreme points 5,630 - 5,235 -

Triangulations - 4,352 424 -

Not extreme points 3,490 2,125 2,748 4,294

Reads 64 59 59 1,010

T = 10 (millions) Convex hulls Triangulated hulls Hybrid method Multiple PQP

Extreme points 23,613 - 22,734 -

Triangulations - 19,186 2,645 -

Not extreme points 10,074 4,883 6,961 19,008

Reads 307 255 253 4,431

T = 1 (millions) Convex hulls Triangulated hulls Hybrid method Multiple PQP

Extreme points 194,763 - 193,565 -

Triangulations - 175,458 11,896 -

Not extreme points 24,187 6,416 12,629 175,274

Reads 1,729 886 926 44,399

T = 0.5 (millions) Convex hulls Triangulated hulls Hybrid method Multiple PQP

Extreme points 368,056 - 366,780 -

Triangulations - 339,305 14,224 -

Not extreme points 26,209 6,621 12,773 339,161

Reads 2,545 1,168 1,142 87,421

T = 0.1 (millions) Convex hulls Triangulated hulls Hybrid method Multiple PQP

Extreme points 1,671,502 - 1,669,979 -

Triangulations - 1,482,392 17,329 -

Not extreme points 26,519 5,932 10,783 1,456,329

Reads 5,108 1,598 1,557 432,901

Table 6.2: Number of distance computation in-between different PQP models and reading
of PQP models in the case of |P | = 3,000 million points and 16GB memory

the distance from the triangulations to the object, which is why the triangulated convex
hulls perform worse for small values of T .

It can be seen in Figure 6.5 that when using values of T that are large the criteria
that it is not allowed to wait several seconds to load a large number of points will be
violated. This requirement will force T to be small in order to average out the I/Os
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6.4. SIMULATION RESULTS AND DISCUSSION

ε k-means, k = 2 k-means, k = 3 Grid-based partitioning

(meters) Points % Points % Points %

0.005 33,902,556 79.4 36,441,171 85.4 40,226,840 94.3

0.01 19,467,172 45.6 23,186,798 54.3 34,432,143 80.6

0.02 8,547,284 20.0 10,041,080 23.5 15,772,929 37.0

0.03 4,634,686 10.8 5,409,136 12.7 7,549,912 17.7

0.05 1,977,789 4.6 2,315,186 5.4 2,913,543 6.8

0.1 556,833 1.3 674,305 1.6 788,407 1.8

Table 6.3: Number of points remaining and percentage of points remaining for each simpli-
fication method. The the original point cloud consisted of 42,675,250 points. The k-means
method tried to minimize Equation 2.1 in L2.

among the iterations, making only the convex hulls and the hybrid method suitable
choices, since the triangulated hulls perform poorly when T is small. Especially in the
case T = 50 millions it is clear that the algorithm stops for up to 8 seconds in order to
read points. What follows are some very fast iterations until a new large model has to
be imported again. Such a behaviour is exactly what should be avoided and therefore
smaller values of T will have to be used.

It is clear from Table 6.2 that the multiple PQP models have to perform many
unnecessary reads, which is mainly why this approach is so much slower. The triangu-
lated convex hulls and the hybrid method compute the exact distance to the convex hull
before reading PQP models, which is why they do the smallest number of reads. On
the other hand, the triangulated convex hulls have to compute almost as many distances
from the triangulated convex hulls to the object as the convex hulls have to compute
the distances from the extreme points. This is where the hybrid method offers a good
balance between the two since it only computes the exact distance in order to avoid
reading a PQP model.

It is natural to ask the question, why the number of reads is not always the same for
the triangulated convex hulls and for the hybrid method? The main reason is that the
the distances are computed in parallel, so how dmin ,i changes depends on the order in
which the threads finish processing the convex hulls. Depending on how dmin ,i changes,
it can be possible to rule out a few extra sets of points that are not extreme points if a
small value of dmin ,i is found early.

Finally, Table 6.3 shows that the simplified point cloud can be constructed with
fewer points when using the k-means method rather than the grid-based partitioning.
Additionally, it is clear that more points can be removed when k = 2 compared to k = 3.
The reason that k = 2 performs better than k = 3 is that for smaller sets of points
that could possibly fit in two spheres of radius ε, dividing such a set into three new sets
creates one unnecessary sphere. It should be mentioned again that using point cloud
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simplification with k-means is several orders of magnitudes slower than using the grid-
based partitioning.

One additional advantage of using the k-means method is that the risk of the re-
sulting subset being coplanar or collinear is much less since the points are not placed in
a lattice as they are in the case of the grid-based partitioning. If a subset is coplanar or
collinear, the convex hulls cannot be built anymore, although it would still be possible
to build an embedded two-dimensional convex hull for a coplanar (but not collinear) set
of points and then triangulate this convex hull. The value of ri can then be computed
for each such triangle and rmax can be taken as the largest ri. On the other hand, since
not that many convex hulls are expected to be either coplanar or collinear, the entire
subset can be represented by a single PQP model.

47



7
Discussion and conclusion

A
discussion regarding the results in this thesis is given next. It will be discussed

in Section 7.1 how the theoretical framework from Chapter 3 performed in
practice. The topic on how efficient the simplification schemes introduced in
Chapter 4 can be, depending on ε, will also be addressed. By analyzing the

results from Chapter 6, conclusions will be drawn regarding the efficiency of the five
different approaches introduced in Section 6.2. Some concluding remarks will be given
in Section 7.2 and some investigations for future work and improvements are stated in
Section 7.3.

7.1 Discussion

It has been verified that using convex hulls as a basis to derive sharp criteria for neglecting
points works well both in-core and out-of-core. Theorem 3.5 is not only appealing in
theory but turns out to work well in the simulations carried out in Chapter 6. When
used in combination with Theorem 3.7 that uses αi to quickly find a lower bound of the
distance to the subset, a large number of subsets can immediately be ruled out. In the
case of a point cloud with 3 billion points and T = 100,000 only 4% of the subsets had to
be considered at each iteration after the use of Theorem 3.7. This is a huge performance
increase since so many subsets can be excluded immediately without computing any
distances.

It can be questioned whether it is worth using the hybrid method or if the model of
the convex hulls is the most appropriate approach for a commercial implementation? It
would seem to be preferable to use the hybrid method, because it helps minimize reads
of PQP models in cases where some of the convex hulls have large values of rmax, which
could be a possibility in the presence of outliers. In the case of using an HDD for reading
PQP models, the price for I/O will increase making it even more critical to avoid reading
PQP models.
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The runtime is expected to increase when the size of the point cloud increases,
especially when the memory is constrained. In the case of the point cloud with 1 billion
points and 8 GB of memory, the size of all PQP models will be about 36 GB, with only 8
GB being in the memory during the first iteration. Reading all other PQP models once
on the SSD used, with a theoretical speed of 450 MB/s, would then take 62 seconds,
which is more than the fastest total runtime. This is because all PQP models were
not used, but indicates that reading models is expected to take up much more time
than actually computing distances. This is why the hybrid method works well since
it minimizes the reading without having to consider as many triangulations as for the
triangulated convex hulls.

It was seen for the both the hybrid method and for the convex hulls that a small value
of T is necessary since this will both minimize the runtime and even out the reading of
PQP models, so that the distance computation does not have to stop for several seconds
in order to read a large set of points. On the other hand, more investigation is needed
on the topic of choosing the value of T , which proved to be critical in order to minimize
the runtime. From Table 6.1 it seems as though the optimal value of T increases when
|P | increases. The values in the table with the optimal values of T for the method of
interest can be interpolated or extrapolated to the size of the point cloud considered.

The work of this thesis has now made it possible to conveniently work with point
models with an order or magnitude of more points, making it possible to work with
billions of points rather than the hundreds of millions of points that was the restriction
for a single PQP model in-core.

7.2 Concluding Remarks

The main conclusions of this thesis are:

• Computing distances to a massive point cloud having billions of points is now
possible on a computer with only a few GB of RAM.

• Convex hulls are efficient for ruling out subsets of points with the use of Theorem
3.5.

• By computing αi, the largest displacement of any point in S, a large number of
subsets can be ruled out without computing any distances by using Theorem 3.7.

• The reading of PQP models will be averaged out over the iterations if T is small,
making each distance computation similar to the others in time.

• The hybrid method, which was designed to avoid reading PQP models, minimizes
the runtime even further.

• The k-means method is more efficient at simplifying the point cloud than the grid-
based partitioning, if the point cloud needs to be simplified, but is at least an order
of magnitude slower.
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7.3 Future work

Some modifications that are expected to improve the algorithms even further are:

• Taking the direction of motion of S into account in Theorem 3.7 is expected to
improve the use of Theorem 3.7.

• Improving convex hulls that have large values of rmax is expected to improve The-
orem 3.5.

• Support reading of PQP models from multiple disks.

Interesting areas to investigate in order to give better performance and insight have been
identified as:

• Use AABBs instead of swept sphere volumes in PQP in order to decrease the
memory requirement for a PQP model and hence reduce the amount of memory
read.

• Carry out tests with different geometries and objects to be able to further compare
the convex hulls and the hybrid method.

• Investigate how to choose T optimally as a function of amount of RAM, |P | and
the properties of the disk(s) used.
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