Explicit expressions for two optimal control problems

HÅKAN JOHANSSON

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2014
Explicit expressions for two optimal control problems

Håkan Johansson*

Department of Applied Mechanics, Chalmers University of Technology

SUMMARY
In this report explicit expressions relevant to goal-oriented a posteriori error analysis of two optimal control problems are given. The first problem considers the trajectory of a particle (can be interpreted as a lane change manoeuver in vehicle dynamics) and the second problem is a double pendulum (can be viewed as lifting of an arm). This paper is to be considered as supporting material and is not a self-contained complete paper.

KEY WORDS: particle trajectory, movement planning, supplementary material

1. Purpose

The purpose of this paper is to collect a set of explicit expressions to support an intended publication regarding a posteriori error estimation for optimal control problem, [1]. Hence, motivations and definitions are sometimes omitted, for instance the definition of relevant function spaces. As the solution method used in [1] involves a lot of rather straightforward differentiations, that would be lengthy in a journal paper these are collected here instead. Differentiation of the abstract forms involved are made as Gâteaux-derivatives, and the following notation will be used:

\[
A'(\bullet, u; \delta u) \overset{\text{def}}{=} \lim_{\epsilon \to 0} \frac{A(\bullet, u + \delta u \epsilon) - A(\bullet, u)}{\epsilon}.
\]

2. General format of optimal control problem

We consider the steering of a mechanical system (without feedback) described by the following state equation

\[
M(u)\ddot{u}(t) + J(u(t), t) = f(p(t), t), \quad t \in [0, T]
\]

(1)

where \(u \) is a vector-valued collection of \(N \) state variables, matrix \(M(u) \) and internal force vector \(J(u(t), t) \) define the mechanical system and \(f(p(t), t) \) is forces emanating from external sources.

*Correspondence to: H. Johansson, Department of Applied Mechanics, Chalmers University of Technology, 412 96 Göteborg, Sweden. E-mail: hakan.johansson@chalmers.se
excitation determined by the K control(s) $p(t)$. We here consider mechanical systems consisting of rigid bodies assembled at joints, although the pertinent formulation can be extended to the situation of elastic bodies. The state u must satisfy boundary conditions determined by desired initial and target (end) configuration of the system as follows

$$u(0) = u_0, \quad u(T) = u_T.$$ \tag{2}

The desired control $p(t)$ is found as the minimizer to the scalar performance measure (objective functional)

$$F(p, u).$$ \tag{3}

In addition, p and u must satisfy M inequality constraints on the form

$$g(p, u) \leq 0, \quad t \in [0, T].$$ \tag{4}

In summary, the optimal control problem can be formulated as follows: Determine the (vector-valued) control $p(t)$ that minimizes the objective function (3) while satisfying the state equation (1), the boundary condition (2) and the (nonlinear) inequality constraint (4).

Upon solving the optimal control problem using a Finite Element approximation, we shall consider a set of measures of the solution, so-called goal functions $Q(p, u)$, of engineering interest in which the effect of discretization errors is to be estimated.

2.1. Derivatives of state equation

The state equation is given on weak form as

$$A(u; v) = L(p; v) \quad \forall v \in V \tag{5}$$

$$A(u; v) \overset{\text{def}}{=} \int_0^T v^T [M(u)\dot{u} + J(u, t)] \, dt, \quad L(p; v) \overset{\text{def}}{=} \int_0^T v^T f(p, t) \, dt \tag{6}$$

Differentiation wrt u gives

$$A'_u(u; v, \delta u) = \int_0^T v^T [M(u)\delta \dot{u} + (M'_u\delta u)\dot{u} + J'_u\delta u] \, dt, \quad L'_p(p; v, \delta p) = \int_0^T v^T f'_p\delta p \, dt \tag{7}$$

and

$$A''_{uu}(u; v, \delta u_1, \delta u_2) = \int_0^T (\delta u_2)^T v^T M'_u\delta \dot{u}_1 + (\delta \dot{u}_2)^T v^T M'_u\delta u_1 + (\delta u_2)^T v^T M''_{uu}\delta \dot{u}_1 + (\delta \dot{u}_2)^T v^T J''_{uu}\delta u_1 \, dt \tag{8}$$

$$L''_{pp}(p; v, \delta p, \delta p) = \int_0^T (\delta p)^T v^T f''_{pp}\delta p \, dt \tag{9}$$

where M'_u, J''_{uu} and f''_{pp} are 3-dimensional arrays with suitable indexing, and M''_{uu} as a 4-dimensional array.

2.2. Derivatives of equality constraints

The target condition is enforced weakly as an equality constraint

$$h(u; v^h) = (v^h)^T (u(T) - u_T) = 0 \quad \forall v^h \in \mathbb{R}^N \tag{10}$$

differentiation of h w.r.t u gives

$$h(u; v^h, \delta u) = (v^h)^T \delta u(T) \tag{11}$$

and second derivatives are zero.
2.3. Derivatives of equality constraints

The inequality constraint is enforced weakly as
\[g(p, u; v^e) = \int_0^T [v^e]^T g(p, u) \, dt \leq 0 \]
(12)
differentiation of \(g \) w.r.t \(p \) and \(u \) gives
\[g'_p(p, u; v^e, \delta p) = \int_0^T (v^e)^T g_p(p, u) \delta p \, dt \]
(13)
\[g''_p(p, u; v^e, \delta p_1, \delta p_2) = \int_0^T (\delta p_2)^T (v^e)^T g_{pp}(p, u) \delta p_1 \, dt \]
(14)
\[g'_{pu}(p, u; v^e, \delta p, \delta u) = \int_0^T (\delta p)^T (v^e)^T g'_{pu}(p, u) \delta u \, dt \]
(15)
\[g''_{uu}(p, u; v^e, \delta u_1, \delta u_2) = \int_0^T (\delta u_2)^T (v^e)^T g''_{uu}(p, u) \delta u_1 \, dt \]
(16)
Where \(g_{pp}, g'_{pu}, g''_{uu} \) can be defined as 3-dimensional arrays.

2.3.1. Penalty formulation
A straightforward manner to treat the inequality constraints is to introduce a suitable penalty formulation, where a violation of the constraints is given a cost that is added to the objective function\(^\dagger\)

\[F(p, u) := F(p, u) + F_{pen} \]
(17)
where \(a_1, a_2 \) and \(\epsilon \) are problem-dependant "tuning" parameters for the penalty term. This will give the following expressions for additions to \(F \)
\[(F_{pen})'_p(p, u; \delta p) = a_1 a_2 \sum_i \int_0^T (\max([0, g_i(p, u) - \epsilon])^{(a_2-1)} \delta g'_p(p, u) \delta p \, dt \]
(18)
\[(F_{pen})'_u(p, u; \delta u) = a_1 a_2 \sum_i \int_0^T (\max([0, g_i(p, u) - \epsilon])^{(a_2-1)} \delta g'_u(p, u) \delta u \, dt \]
(19)
\[(F_{pen})''_{pp}(p, u; \delta p_1, \delta p_2) = a_1 a_2 \sum_i \int_0^T (\max([0, g_i(p, u) - \epsilon])^{(a_2-1)} \delta g''_{pp}(p, u) \delta p_1 \, dt \]
(20)
\[(\delta p_2)^T [(g'_p)^2 + (a_2-1)(\max([0, g_i(p, u) - \epsilon])^{(a_2-2)} g''_{pp}) \delta p_1 \, dt \]
(21)

\(^\dagger\)A penalty formulation for the equality condition \(h(u) \) is also possible along the same lines, but is not further considered here.
\[(\mathcal{F}^{\text{pen}})_{u_p} (p, u; \delta p, \delta u) = a_1 a_2 \sum_i^M \int_0^T \max[0, g_i (p, u) - \epsilon])^{(a_2 - 1)} \]

\[(\delta p)^T \left[\left(g_i \right)_p^u \left(\frac{g_i}{p} \right)_u + (a_2 - 1) \max[0, g_i (p, u) - \epsilon])^{(a_2 - 2)} \right] \delta u \ dt \quad (23)\]

\[(\mathcal{F}^{\text{pen}})_{u_u} (p, u; \delta u_1, \delta u_2) = a_1 a_2 \sum_i^M \int_0^T \max[0, g_i (p, u) - \epsilon])^{(a_2 - 1)} \]

\[\left(\delta u_2\right)^T \left[\left(\frac{g_i}{u} \right)_u^2 + (a_2 - 1) \max[0, g_i (p, u) - \epsilon])^{(a_2 - 2)} \right] \delta u_1 \ dt \quad (25)\]

3. Trajectory control

As a first application, we shall consider a particle trajectory, inspired by a vehicle dynamics problem described in [2]. A particle of unit mass travels in the 2D-plane with external force acting as control, i.e.

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{v}_x \\
\dot{v}_y
\end{bmatrix} =
\begin{bmatrix}
v_x \\
v_y \\
0 \\
0
\end{bmatrix} -
\begin{bmatrix}
0 \\
0 \\
F_x \\
F_y
\end{bmatrix}
\]

\quad (26)

with initial condition \(u_0 = [0, 10, 30, 0]^T\) and target condition \(u_T = [100, 0, 20, 0]^T\) to be reached at final time \(T = 4s\). In addition, we have inequality constraints.

\[g(p, u) =
\begin{bmatrix}
(F_x^2 + F_y^2) - (\mu g)^2 \\
v_{\text{min}} - v_x \\
1 - ((x - x_{p1})/x_{L1})^{N_1} + ((y - y_{p1})/y_{L1})^{N_1} \\
1 - ((x - x_{p2})/x_{L2})^{N_2} + ((y - y_{p2})/y_{L2})^{N_2} \\
\vdots
\end{bmatrix}
\]

\quad (27)

where in the first constraint \(\mu g\) represents a maximum available force (due to friction between vehicle and ground), \(v_{\text{min}}\) is a prescribed minimum speed in \(x\)-direction (to avoid loops), and a number of hyper-ellipsoid obstacles defined by center points \((x_{p1, y_{p1}})\), size \((x_{L1, y_{L1}})\) and exponent \(N_i\) the shape of obstacles \((N = 2\) for circular obstacles). The first two constraints are convex whereas the latter are not.

3.1. Derivatives of state equation

By defining \(u\) as vector of state variables \(u = [x, y, v_x, v_y]^T\) and extracting from (26) we identify

\[M =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \quad J =
\begin{bmatrix}
-u_3 \\
-u_4 \\
0 \\
0
\end{bmatrix}, \quad f =
\begin{bmatrix}
0 \\
0 \\
F_x \\
F_y
\end{bmatrix}
\]

\quad (28)
we obtain as derivatives

\[M'\mathbf{u} = 0, \quad J'\mathbf{u} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad f'_p = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \] (29)

and second derivatives are zero.

3.2. Objective functions

To allow for analysis of trade-off between deviation from desired route \((y = 0\) is a desired route) and forces and forces rates, we express the objective function as

\[\mathcal{F} = \gamma_1 \int_0^T F_x^2 dt + \gamma_2 \int_0^T F_y^2 dt + \gamma_3 \int_0^T x^2 dt + \gamma_4 \int_0^T y^2 dt + \gamma_5 \int_0^T v_x^2 dt + \gamma_6 \int_0^T v_y^2 dt \] (30)

where \(\gamma_1 - \gamma_6\) are parameters to be studied.

\[\mathcal{F}_p'(\mathbf{p}, \mathbf{u}; \delta \mathbf{p}) = 2\gamma_2 \int_0^T F_x \delta F_x dt + 2\gamma_3 \int_0^T F_y \delta F_y dt + 2\gamma_4 \int_0^T \dot{F}_x \delta \dot{F}_x dt + 2\gamma_5 \int_0^T \dot{F}_y \delta \dot{F}_y dt \] (31)

\[\mathcal{F}_u'(\mathbf{p}, \mathbf{u}; \delta \mathbf{u}) = 2\gamma_1 \int_0^T \dot{y} \delta y dt \] (32)

\[\mathcal{F}_p''(\mathbf{p}, \mathbf{u}; \delta \mathbf{p}, \delta \mathbf{p}) = 2\gamma_2 \int_0^T \delta F_x \delta F_x dt + 2\gamma_3 \int_0^T \delta F_y \delta F_y dt + 2\gamma_4 \int_0^T \delta \dot{F}_x \delta \dot{F}_x dt + 2\gamma_5 \int_0^T \delta \dot{F}_y \delta \dot{F}_y dt \] (33)

\[\mathcal{F}_{uu}''(\mathbf{p}, \mathbf{u}; \delta \mathbf{u}, \delta \mathbf{u}) = 2\gamma_1 \int_0^T \delta \dot{y} \delta y dt \] (34)

and \(\mathcal{F}_{pu}''(\mathbf{p}, \mathbf{u}; \delta \mathbf{p}, \delta \mathbf{u}) = 0\)

3.3. Derivatives of inequality constraints

\[g(\mathbf{p}, \mathbf{u}) = \begin{bmatrix} (F_x^2 + F_y^2) - (\mu g)^2 \\ v_{\text{min}} - v_x \\ 1 - ((x - x_{p1})/x_{L1})^{N_1} - ((y - y_{p1})/y_{L1})^{N_1} \\ 1 - ((x - x_{p2})/x_{L2})^{N_2} - ((y - y_{p2})/y_{L2})^{N_2} \\ \vdots \end{bmatrix} \] (35)

Derivatives of first constraint

\[(g_1)'_p = \begin{bmatrix} 2F_x \\ 2F_y \end{bmatrix}, \quad (g_1)'_u = 0 \] (36)

\[(g_1)''_p = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad (g_1)''_u = 0, \quad (g_1)''_{u,u} = 0 \] (37)
Second constraint (minimum speed in x-direction) derivatives

\[
(g_2)'_p = 0, \quad (g_2)'_u = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}
\]
(38)

\[
(g_2)''_p = 0, \quad (g_2)''_p, u = 0, \quad (g_2)''_u, u = 0
\]
(39)

Obstacle constraint derivatives

\[
(g_2)''_p = 0, \quad (g_2)''_p, u = 0, \quad (g_2)''_u, u = \begin{bmatrix} -\frac{N_1(N_1-1)}{x_{L_1}}((x - x_p)/(x_{L_1})^{(N_1-2)} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\]
(40)

3.4. Goal functions

For the case of trajectory control, the following goal functions were considered

\[
Q_1 = F, \quad Q_2 = x(t_s), \quad Q_3 = y(t_s), \quad Q_4 = v_x(t_s), \quad Q_5 = v_y(t_s)
\]

\[
Q_6 = x^\text{sim}(T), \quad Q_7 = y^\text{sim}(T), \quad Q_8 = v_x^\text{sim}(T), \quad Q_9 = v_y^\text{sim}(T), \quad Q_{10} = \int_0^T v_x F_x + v_y F_y dt
\]
(41)

where \(x^\text{sim}\) and \(y^\text{sim}\) refers to a subsequent 'exact' simulation where the discrete solution \(p_h\) is used, i.e. \(u^\text{sim}\) solves

\[
A(u^\text{sim}; v) = L(p_h; v), \quad \forall v \in \mathbb{V}^\text{sim}
\]
(42)

for a very fine mesh \(\mathbb{V}^\text{sim}\). Differentiation of the goal quantities gives:

\[
(Q_1)'_p(p, u; \delta p) = F'_p(p, u; \delta p), \quad (Q_1)'_u(p, u; \delta u) = F'_u(p, u; \delta u)
\]
(43)

\[
(Q_2)'_p(p, u; \delta p) = 0, \quad (Q_2)'_u(p, u; \delta u) = \delta x(t_s)
\]
(44)

\[
(Q_3)'_p(p, u; \delta p) = 0, \quad (Q_3)'_u(p, u; \delta u) = \delta y(t_s)
\]
(45)

\[
(Q_4)'_p(p, u; \delta p) = 0, \quad (Q_4)'_u(p, u; \delta u) = \delta v_x(t_s)
\]
(46)

\[
(Q_5)'_p(p, u; \delta p) = 0, \quad (Q_5)'_u(p, u; \delta u) = \delta v_y(t_s)
\]
(47)

\[
(Q_6)'_p(p, u; \delta p) = d_p x^\text{sim}(T), \quad (Q_6)'_u(p, u; \delta u) = 0
\]
(48)

\[
(Q_7)'_p(p, u; \delta p) = d_p y^\text{sim}(T), \quad (Q_7)'_u(p, u; \delta u) = 0
\]
(49)

\[
(Q_8)'_p(p, u; \delta p) = d_p v_x^\text{sim}(T), \quad (Q_8)'_u(p, u; \delta u) = 0
\]
(50)

\[
(Q_9)'_p(p, u; \delta p) = d_p v_y^\text{sim}(T), \quad (Q_9)'_u(p, u; \delta u) = 0
\]
(51)

\[
(Q_{10})'_p(p, u; \delta p) = \int_0^T v_x \delta F_x + v_y \delta F_y dt, \quad (Q_{10})'_u(p, u; \delta u) = \int_0^T \delta v_x F_x + \delta v_y F_y dt
\]
(52)

Note: \(d_p u^\text{sim}(T)\) needed for goal functions 6-9. that can be solved for from the tangent equation

\[
A'_u(u^\text{sim}, v, d_p u^\text{sim}) = L'_p(p_h; v, \delta p), \quad \forall v \in \mathbb{V}^\text{sim}.
\]
(53)
As a second example we consider the control of a double pendulum (inspired by a bio-mechanic modeling of a human arm, cf. [3]). The configuration of the pendulum is described by the two angles θ_1 and θ_2 and is steered by "applied" bending moment $M_1(t)$, $M_2(t)$ in the joints, defining the controls $p = [p_1, p_2]^T = [M_1, M_2]^T$. The inertia of the pendulum is given by three point masses m_1-m_3, and the links have lengths l_1 and l_2.

Initial condition corresponds to a vertical pendulum at rest, $u(0) = [0, 0, 0, 0]^T$, and we consider a target condition that the pendulum should be horizontal and at rest, i.e. that $u(T) = [0, 0, \pi/2, \pi/2]^T$. As constraints we have: The controls has some limited capacity, i.e. the allowable bending moments in the joints are restricted as $-7.5 = p_{1,\text{min}} \leq p_1 \leq p_{1,\text{max}} = 20$ and $-10 = p_{2,\text{min}} \leq p_2 \leq p_{2,\text{max}} = 10$. Moreover, the rotation in the second joint is restricted as $0 = \theta_{\Delta,\text{min}} \leq \theta_1 - \theta_2 \leq \theta_{\Delta,\text{max}} = \frac{3}{4}\pi$. The inequality constraints $g(p, u)$ are thus defined as

$$
g(p, u) = \begin{bmatrix}
-p_1 + p_{1,\text{min}} \\
p_1 - p_{1,\text{max}} \\
-p_2 + p_{2,\text{min}} \\
p_2 - p_{2,\text{max}} \\
\theta_2 - \theta_1 + \theta_{\Delta,\text{min}} \\
\theta_1 - \theta_2 - \theta_{\Delta,\text{max}}
\end{bmatrix}
$$

(54)

Given thses constraints, we seek to find the controls such that the objective function measuring the magnitude of moments and moment velocities exerted in joints is minimized

$$
\mathcal{F}(p) = \frac{1}{2} \int_0^T \left[|p(t)|^2 + \alpha |\dot{p}(t)|^2 \right] dt
$$

(55)

the parameter α is used the weight between the two components (which in a numerical realization acts as a regularization parameter).
4.1. Derivatives of state equation

The Lagrangian function entailing kinematic and potential energy for the 3-mass double pendulum takes the form

\[
\mathcal{L} = l_1^2 \left(\frac{m_1}{4} + m_3 \right) \frac{\dot{\theta}_1^2}{2} + l_2^2 \left(m_1 + \frac{m_2}{4} + m_3 \right) \frac{\dot{\theta}_2^2}{2} + gl_1 \left(\frac{m_1}{2} + m_3 \right) \cos(\theta_1) + gl_2 \left(m_1 + \frac{m_2}{2} + m_3 \right) \cos(\theta_2) + l_1 l_2 \left(\frac{m_1}{2} + m_3 \right) \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2)
\]

from which the Euler-Lagrange equations of motion are obtained as

\[
l_1^2 \left(\frac{m_1}{4} + m_3 \right) \ddot{\theta}_1 + l_1 l_2 \left(\frac{m_1}{2} + m_3 \right) \left(\ddot{\theta}_2 \cos(\theta_1 - \theta_2) + \dot{\theta}_2^2 \sin(\theta_1 - \theta_2) \right) + gl_1 \left(\frac{m_1}{2} + m_3 \right) \sin(\theta_1) = M_1(t)
\]

\[
l_2^2 \left(m_1 + \frac{m_2}{4} + m_3 \right) \ddot{\theta}_2 + l_1 l_2 \left(\frac{m_1}{2} + m_3 \right) \left(\ddot{\theta}_1 \cos(\theta_1 - \theta_2) - \dot{\theta}_1^2 \sin(\theta_1 - \theta_2) \right) + gl_2 \left(m_1 + \frac{m_2}{2} + m_3 \right) \sin(\theta_2) = M_2(t)
\]

We define \(\mathbf{u} \) as vector of state variables \(\mathbf{u} = [\theta_1, \theta_2, \dot{\theta}_1, \dot{\theta}_2]^T \) from which we identify

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
l_1 l_2(\frac{m_1}{2} + m_3) & l_1 l_2(\frac{m_1}{2} + m_3) \cos(u_1 - u_2) & l_2^2(\frac{m_1}{2} + m_2 + m_3) & 0 \\
0 & 0 & 0 & 0 \\
l_1 l_2(\frac{m_1}{2} + m_3) \sin(u_1 - u_2) & l_1 l_2(\frac{m_1}{2} + m_3) \cos(u_1 - u_2) & l_2^2(\frac{m_1}{2} + m_2 + m_3) & 0
\end{bmatrix}
\]

\[
J = \begin{bmatrix}
\begin{matrix}
-u_3 \\
-u_4
\end{matrix} \\
l_1 l_2(\frac{m_1}{2} + m_3) u_1^2 \sin(u_1 - u_2) + gl_1 \left(\frac{m_1}{2} + m_3 \right) \sin(u_1) \\
-l_1 l_2(\frac{m_1}{2} + m_3) u_2^2 \sin(u_1 - u_2) + gl_2 \left(m_1 + \frac{m_2}{2} + m_3 \right) \sin(u_2)
\end{bmatrix}
\]

\[
f = \begin{bmatrix}
0 \\
0 \\
M_1 \\
M_2
\end{bmatrix}
\]

The derivatives of \(M \) are obtained as

\[
M'_{u_1} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -l_1 l_2(\frac{m_1}{2} + m_3) \sin(u_1 - u_2) \\
0 & 0 & -l_1 l_2(\frac{m_1}{2} + m_3) \sin(u_1 - u_2) & 0
\end{bmatrix}
\]

\[
M'_{u_2} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & l_1 l_2(\frac{m_1}{2} + m_3) \sin(u_1 - u_2) \\
0 & 0 & 0 & 0 \\
0 & 0 & l_1 l_2(\frac{m_1}{2} + m_3) \sin(u_1 - u_2) & 0
\end{bmatrix}
\]

\[M'_{u_3, u_4} = M'_{u_3, u_4} = 0\]

8
with all other components of $M''_{uu} = 0$. Furthermore, for derivatives of J, we consider each component individually:

$((J)_1)'_u = \begin{bmatrix} 0 & 0 & -1 & 0 \end{bmatrix}^T$, $((J)_1)''_{uu} = 0$ \hspace{1cm} (67)

$((J)_2)'_u = \begin{bmatrix} 0 & 0 & 0 & -1 \end{bmatrix}^T$, $((J)_2)''_{uu} = 0$ \hspace{1cm} (68)

$((J)_3)'_u = \begin{bmatrix} l_1l_2(m_1/2 + m_3)u_2^2 \cos(u_1 - u_2) + gl_1(m_1/2 + m_3) \cos(u_1) \\ -l_1l_2(m_1/2 + m_3)u_4^2 \cos(u_1 - u_2) \\ 0 \\ 2l_1l_2(m_1/2 + m_3)u_4 \sin(u_1 - u_2) \end{bmatrix}$ \hspace{1cm} (69)

$((J)_3)''_{u_1} u = \begin{bmatrix} -l_1l_2(m_1/2 + m_3)u_2^2 \sin(u_1 - u_2) - gl_1(m_1/2 + m_3) \sin(u_1) \\ l_1l_2(m_1/2 + m_3)u_4^2 \sin(u_1 - u_2) \\ 0 \\ 2l_1l_2(m_1/2 + m_3)u_4 \cos(u_1 - u_2) \end{bmatrix}$ \hspace{1cm} (70)

$((J)_3)''_{u_2} u = \begin{bmatrix} l_1l_2(m_1/2 + m_3)u_2^2 \sin(u_1 - u_2) \\ -l_1l_2(m_1/2 + m_3)u_4^2 \sin(u_1 - u_2) \\ -2l_1l_2(m_1/2 + m_3)u_4 \cos(u_1 - u_2) \end{bmatrix}$ \hspace{1cm} (71)

$((J)_3)''_{uu} u = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ \hspace{1cm} (72)
Finally, \(\frac{d^2J}{du^2} \) can be rewritten as:

\[
((J)_4)'' \quad \frac{u}{u_1} \quad \frac{u}{u_2} \quad \frac{u}{u_3} \quad \frac{u}{u_4} = \begin{bmatrix}
2l_1l_2(m_1/2 + m_3)u_4 \cos(u_1 - u_2) \\
-2l_1l_2(m_1/2 + m_3)u_4 \cos(u_1 - u_2) \\
0 \\
2l_1l_2(m_1/2 + m_3) \sin(u_1 - u_2)
\end{bmatrix}
\]

(73)

\[
((J)_4)' \quad \frac{u}{u_1} \quad \frac{u}{u_2} \quad \frac{u}{u_3} \quad \frac{u}{u_4} = \begin{bmatrix}
l_1l_2(m_1/2 + m_3)u_3^2 \cos(u_1 - u_2) \\
-l_1l_2(m_1/2 + m_3)u_3^2 \cos(u_1 - u_2) + gl_2(m_1 + \frac{m_2}{2} + m_3) \cos(u_2) \\
-2l_1l_2(m_1/2 + m_3)u_3 \sin(u_1 - u_2) \\
0
\end{bmatrix}
\]

(74)

\[
((J)_4)'' \quad \frac{u}{u_1} \quad \frac{u}{u_2} \quad \frac{u}{u_3} \quad \frac{u}{u_4} = \begin{bmatrix}
l_1l_2(m_1/2 + m_3)u_3^2 \sin(u_1 - u_2) \\
l_1l_2(m_1/2 + m_3)u_3^2 \sin(u_1 - u_2) \\
2l_1l_2(m_1/2 + m_3)u_3 \cos(u_1 - u_2) \\
0
\end{bmatrix}
\]

(75)

\[
((J)_4)'' \quad \frac{u}{u_1} \quad \frac{u}{u_2} \quad \frac{u}{u_3} \quad \frac{u}{u_4} = \begin{bmatrix}
l_1l_2(m_1/2 + m_3)u_3^2 \sin(u_1 - u_2) - gl_2(m_1 + \frac{m_2}{2} + m_3) \sin(u_2) \\
-2l_1l_2(m_1/2 + m_3)u_3 \cos(u_1 - u_2) + gl_2(m_1 + \frac{m_2}{2} + m_3) \sin(u_2) \\
-2l_1l_2(m_1/2 + m_3)u_3 \cos(u_1 - u_2) \\
0
\end{bmatrix}
\]

(76)

\[
((J)_4)'' \quad \frac{u}{u_1} \quad \frac{u}{u_2} \quad \frac{u}{u_3} \quad \frac{u}{u_4} = \begin{bmatrix}
-2l_1l_2(m_1/2 + m_3)u_3 \cos(u_1 - u_2) \\
2l_1l_2(m_1/2 + m_3)u_3 \cos(u_1 - u_2) - 2l_1l_2(m_1/2 + m_3) \sin(u_1 - u_2) \\
0 \\
0
\end{bmatrix}
\]

(77)

Finally,\(\frac{d^2J}{du^2} \) can be rewritten as:

\[
f' = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad f'' = 0
\]

(79)

4.2. Derivatives of inequality constraints

Recalling:

\[
g(p, u) = \begin{bmatrix}
-p_1 + p_{1,min} \\
p_{1} - p_{1,max} \\
p_2 + p_{2,min} \\
p_{2} - p_{2,max} \\
\theta_2 - \theta_1 + \theta_{\Delta,min} \\
\theta_1 - \theta_2 - \theta_{\Delta,max}
\end{bmatrix}
\]

(80)
we have the following component derivatives

\[
(g_1)'_p = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \quad (g_1)'_u = 0
\]

\[
(g_2)'_p = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad (g_2)'_u = 0
\]

\[
(g_3)'_p = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \quad (g_3)'_u = 0
\]

\[
(g_4)'_p = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad (g_4)'_u = 0
\]

\[
(g_5)'_p = 0, \quad (g_5)'_u = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}
\]

\[
(g_6)'_p = 0, \quad (g_6)'_u = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}
\]

Due to its linear nature of the constraints, all second derivatives of \(g \) are zero.

4.3. Goal functions

For the case of movement planning, the following goal functions were considered

\[
Q_1 = \mathcal{F}, \quad Q_2 = \theta_1(t_s), \quad Q_3 = \theta_2(t_s), \quad Q_4 = \dot{\theta}_1(t_s), \quad Q_5 = \dot{\theta}_2(t_s)
\]

\[
Q_6 = \theta^\text{sim}_1(T), \quad Q_7 = \theta^\text{sim}_2(T), \quad Q_8 = \dot{\theta}^\text{sim}_1(T), \quad Q_9 = \dot{\theta}^\text{sim}_2(T), \quad Q_{10} = \int_0^T M_1 \dot{\theta}_1 + M_2 \dot{\theta}_2 dt
\]

which are in direct analogy to the trajectory control example above.

REFERENCES