
Histogram of damage index rate for front main bearing (left), rear main bearing 
(middle) and front stator bearing (right)  at different mean wind speeds

Plotting the damage index rate distribution versus mean wind speed, it is observed
that:

• For front main bearing the largest damage rate, as well as the largest variability
arise at 11 m/s, likely related to rotor blade pitch control.

• For the rear main bearing, the damage and variability increase with higher mean
wind speeds
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In order to assess the fatigue life of drive train components, we seek to determine
how the component damage index can be estimated, not only in terms of its
expected value, but also its distribution due to a turbulent wind field introducing
randomness. For assessing the fatigue life of main shaft bearings it was found
that:

• A quasi-static drive train model may be sufficient for a direct drive concept in
normal operation

• The average and variability of the damage index rate varies substantially with
the mean wind speed

• The variability of the estimated total component damage index should be
considered when estimating the total damage

Acknowledgement

As a basis for this investigation, we consider a simulation model for a commercial multi-MW direct drive wind
turbine which was implemented in the software ViDyn [1] developed by Teknikgruppen AB. The simulation
model is a structural model of the full turbine, including control system with individual pitch control, subjected
to a 3-dimensional wind field, wind loads computed using Blade Element Momentum theory, implemented in

code Aerforce [4]. The wind fields are random realizations based on the Kaimal spectra as described in the
standard IEC-61400 [2] characterized by turbulence intensity for a specific mean wind speed. Each such wind
field realization is used as input to the full-turbine model from which the forces at the hub are extracted. These
forces are used as input for a drive train model based of Euler-Bernoulli beam theory implemented in Matlab.

Simulation set-up

As the rate of bearing damage index DI [1/s] is estimated at four bearings along the main shaft; Front and
Rear main bearings and Front and Rear generator stator bearings (results from the last is omitted below). The
damage rate is computed using the Palmgren-Miner rule as rate other parameters specified by the bearing
design, cf. [3]

Thus, each wind field realization (10 minutes) is mapped to one value of damage rate index DI per bearing,
with the aim of assessing the distribution of calculated DI-values, It should be noted that this damage rate is

for classical subsurface fatigue and not e.g. white etch cracking [5].
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Histogram of damage index rate for 300 realizations at mean wind speed 10 m/s 
for front main bearing (left), rear main bearing (middle) and stator bearing (right), 

comparison of different drive train models

Observations:

• Quasi-static assumption sufficient to predict damage index rate for main
bearings.

• Inertia effects should be considered to predict the damage index rate of the
stator bearings.
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Assuming the mean wind speed varies according to a Rayleigh distribution, the
total average damage rate can be approximated

which has been evaluated numerically

Distribution of average total damage index rate for front main bearing (left), rear 
main bearing (middle) and front stator bearing (right) at different mean wind 

speeds

Observation: For the main bearings, a ”tail” extends to higher damage index rates,
indicating that a substantial safety factor is needed if the variability is not properly
considered.

Total accumulated damage index rate

• Model detail can for some cases affect the estimated damage rate.

• The main result of the present investigation was that the not only the mean, but 
also the variance of damage rate depend on mean wind speed, and that this 
carries over to the predicted accumulated damage index. An important future 
work is to investigate the generality of these conclusions with respect to other 
drive train designs.

• Future work will in more detail study the efficient sampling of wind turbine 
simulations to estimate mean and variability of predicted damage index in the 
turbine drive train components with sufficient accuracy.
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