
thesis March 27, 2014 10:04 Page i �
�	

�
�	 �
�	

�
�	

Thesis for the Degree of Doctor of Philosophy

Random Structured
Test Data Generation
for Black-Box Testing

M ichał H. Pałka

Department of Computer Science and Engineering
Chalmers University of Technology

and Göteborg University

Göteborg, Sweden 2014

thesis March 27, 2014 10:04 Page ii �
�	

�
�	 �
�	

�
�	

Random Structured Test Data Generation for Black-Box Testing
M ichał H. Pałka

ISBN 978-91-7385-996-7

c© 2014 M ichał H. Pałka

Ny serie nr 3677

Technical Report 106D
ISSN 0346-718X
Department of Computer Science and Engineering
Functional Programming Research Group

Chalmers University of Technology

and Göteborg University

SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 10 00

Printed at Chalmers
Göteborg, Sweden 2014

thesis March 27, 2014 10:04 Page iii �
�	

�
�	 �
�	

�
�	

iii

Abstract

We show how automated random testing can be used to effectively find
bugs in complex software, such as an optimising compiler. To test the
ghc Haskell compiler we created a generator of simple random programs,
used ghc to compile them with different optimisation levels, and then
compared the results of running them. Using this simple approach we
found a number of optimisation bugs in ghc.

This approach for finding bugs proved to be very effective, but we found
that implementing a generator of random programs by hand required a
large amount of effort. Therefore, we developed an automatic method for
deriving random generators of complex test data based on computable
boolean predicates that specify the well-formed values of the data type.
Defining such a predicate is usually much quicker than implementing a
dedicated generator, even if its performance might be comparably lower.

In addition, we discovered that the pseudorandom number generator
used by us for random testing is unreliable, and that no reliable contruction
exists that supports our particular requirements. Consequently, we designed
and implemented a high-quality pseudorandom number generator, which
is based on a known and reliable cryptographic construction, and whose
correctness is supported by a formal argument.

Finally, we present how random testing can be used to rank a group
of programs according to their relative correctness with respect to their
observed behaviour. The ranking method removes the influence of the
distribution of the random data generator used for testing, which results in
a reliable ranking.

thesis March 27, 2014 10:04 Page iv �
�	

�
�	 �
�	

�
�	

thesis March 27, 2014 10:04 Page v �
�	

�
�	 �
�	

�
�	

Contents

Contents v

Introduction 1

Paper I: Testing an Optimising Compiler by Generating Random
Lambda Terms 17
1 Introduction . 17

2 Related work . 20

3 Structure . 21

4 Generation method . 23

5 Shrinking . 34

6 Applications . 50

7 Related Work . 68

8 Future work . 73

9 Conclusions . 74

Paper II: Generating Constrained Random Data with Uniform Dis-
tribution 79
1 Introduction . 79

2 Generating Values of Algebraic Datatypes 82

3 Predicate-Guided Indexing 85

4 Experimental Evaluation . 90

5 Related Work . 95

6 Discussion . 97

Paper III: Splittable Pseudorandom Number Generators using Cryp-
tographic Hashing 101
1 Introduction . 101

2 Splittable prngs . 105

3 Proposed construction . 109

4 Correct hashing . 113

v

thesis March 27, 2014 10:04 Page vi �
�	

�
�	 �
�	

�
�	

vi Contents

5 Linear generation . 118

6 Performance . 122

7 Discussion and future work 127

8 Related work . 129

9 Conclusion . 131

A Appendix. Definitions and Proofs 132

Paper IV: Ranking Programs using Black Box Testing 137
1 Introduction . 137

2 The Experiment . 139

3 Evaluation Method . 143

4 Analysis . 147

5 Related Work . 154

6 Conclusions . 155

Bibliography 157

thesis March 27, 2014 10:04 Page vii �
�	

�
�	 �
�	

�
�	

Contents vii

Acknowledgements

I would like to thank my supervisors, Koen Claessen and John Hughes,
for their guidance and support. Both of them were a continuous source of
ideas and contagious enthusiasm. I also wish to thank my examiner, Mary
Sheeran for providing valuable feedback throughout my studies.

I would like to thank all of my colleagues at the department for making
it such an open and friendly environment. I was lucky to have a chance to
interact with many extraordinary individuals, many of whom contributed
suggestions that helped me in writing this thesis.

I also want to thank all my friends for their encouragement and friend-
ship. I would like to especially thank Laleh for her friendship, care and
understanding. Laleh, you are great! Finally, I would like to thank my
parents for all the love and support throughout my life.

thesis March 27, 2014 10:04 Page viii �
�	

�
�	 �
�	

�
�	

thesis March 27, 2014 10:04 Page 1 �
�	

�
�	 �
�	

�
�	

Introduction

This thesis is concerned with finding software bugs using random testing.
Our main focus is providing tools that programmers can use to find and
remove bugs from their programs in an effective way. The principal applica-
tion of the random testing techniques presented here is finding optimisation
bugs in the ghc optimising Haskell compiler.

Software testing Software testing is the most common method of ensur-
ing the quality of software, accounting for at least 50% of the budget of
most software projects [Beizer, 1990, Myers et al., 2012]. Systematic soft-
ware testing is widely used for validation [Sommerville, 2010] of developed
software. At the same time, it finds even more use during the development
process [Myers et al., 2012, Sommerville, 2010, Zeller, 2005], when it is
performed in order to find and remove software bugs.

Testing and removing bugs (debugging) are time-consuming activi-
ties [Myers et al., 2012, Zeller, 2005], whose success is critical to software
project completion. For example, a study in 2005 showed that 30–40% of
all changes in Eclipse and Mozilla projects were bug fixes [Śliwerski et al.,
2005]. Bringing improvements to testing and debugging may decrease the
time spent in these activities, but more importantly also reduce the impact
of poor software quality [Tassey, 2002].

This work is concerned with black-box testing, which treats the software
under test as a black box, and is only concerned with observing the results
of its execution [Beizer, 1990, Myers et al., 2012].

Why test software? A common focus of testing is to use it for demonstrat-
ing the correctness of software. However, for systems of realistic sizes only
an approximate judgement about correctness can be made based on testing,
as the number of possible inputs is much larger than the number tests that
can be run. Thus, as famously stated by Dijkstra [1969]: “Program testing
can be used to show the presence of bugs, but never to show their absence!”

1

thesis March 27, 2014 10:04 Page 2 �
�	

�
�	 �
�	

�
�	

2 Introduction

Nevertheless, the need to give stronger guarantees about the correctness
of software using testing led to the development of code coverage criteria,
which are a way of measuring which parts of the program are exercised by
the tests. Unfortunately, practical coverage criteria are not precise enough
to ensure that a test suite that satisfies them can catch all bugs, and thus
can only demonstrate that the test suite is insufficient [Myers et al., 2012].

In general, testing can only provide a weak guarantee about the cor-
rectness of software. While it is undoubtedly useful, making validation
the primary goal of testing might put its effectiveness at risk. Since some
bugs might only be triggered by test inputs that are rare and complex,
finding them may require ingenuity. If the goal of the testing process is
to demonstrate the absence of failing test cases, the people performing it
might be encouraged to try less hard to find bugs thus undermining the
testing effort [Myers et al., 2012].

Indeed, while testing is used for validation, its importance has shifted
towards finding bugs during the whole software development process [My-
ers et al., 2012, Sommerville, 2010, Zeller, 2005]. In our opinion, testing
with the intention of finding bugs is more constructive than attempting to
demonstrate their absence, and consequently we would like to make it our
focus.

Debugging Every software project of a certain size contains bugs during
its development, and their successful removal is critical to the project’s
completion. Debugging can be a challenging and error-prone process. For
example, compared to ordinary changes, bug fixes are more likely to induce
bugs [Mockus and Weiss, 2000].

Despite its difficulty, debugging receives comparatively little attention.
According to Myers et al. [2012], “Of all the software development activities,
debugging is the most mentally taxing”, but at the same time “Compared
to other software development activities, comparatively little research,
literature, and formal instruction exist on the process of debugging”. A
similar observation about the hardness of debugging has been made by
Kernighan et al.:

Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you’re as clever as you can be
when you write it, how will you ever debug it? [Kernighan and
Plauger, 1982, Chapter 2]

Debugging starts with discovering a program failure, and its aim is to
diagnose the underlying problem that caused the failure and fix it. This
usually requires completing the following steps:

thesis March 27, 2014 10:04 Page 3 �
�	

�
�	 �
�	

�
�	

3

1. Finding a failing test case (counterexample),

2. reproducing the failure,

3. identifying its root cause, and

4. fixing the bug that caused the failure.

While reproducing the found failure might pose problems due to uncon-
trollable parts of a program’s external environment or its non-deterministic
execution, identifying and removing the underlying cause of the failure
tend to be the most difficult parts of debugging [Zeller, 2005]. Finding the
problem might be especially difficult if the bug is caused by many errors
scattered over different parts of the program, or a fundamental design flaw.

Solving a difficult debugging problem may sometimes seem like looking
for a needle in a haystack. Using a systematic approach might be necessary
to find the underlying cause of the failure. One approach is to use the
scientific method [Zeller, 2005], which involves formulating hypotheses about
the system, and testing them using experiments.

Given the difficulty of debugging, we believe that supporting this activ-
ity should be one of the principal goals of a testing method. Testing should
be a programmer’s tool for solving debugging problems.

Test automation Creating and executing test cases are labour-intensive
tasks, which could benefit from automation. According to Beizer [1995],
“Manual test execution doesn’t work”, as it allows very few test runs at a
high cost, and is prone to errors, which puts the test results into question.
Manually created test suites also require much effort, are troublesome to
maintain, and tend to get out of sync with the code.

Automated test execution is becoming increasingly popular, dramatically
reducing the labour involved in testing [Sommerville, 2010]. In particular,
effective regression testing requires simply too much effort if test execution
is not automated. The main obstacle for automating test execution is having
insufficient control over the environment of the tested software, for example
when testing gui applications [Zeller, 2005].

Automated test case generation is unfortunately less widespread, and
can be performed by generating individual test cases from a test case
‘template’. Running automatically generated tests requires a test oracle,
which is an effective procedure for deciding whether the test has passed
based on the responses of the tested system to test data.

Automating test case generation requires more infrastructure compared
to just automating test execution, but can also yield more benefits. One
promising approach to automating test case generation is random testing.

thesis March 27, 2014 10:04 Page 4 �
�	

�
�	 �
�	

�
�	

4 Introduction

Random testing Random testing refers to testing software with ‘arbitrary’
random data aimed at exercising diverse program executions in order
to trigger bugs [Zeller, 2005]. The term fuzz testing may also be used to
describe this technique, although it often indicates more specifically testing
programs using random, and mostly incorrect input [Miller et al., 1990].
Random testing defined in this way is our focus.

Confusingly, the term random testing may also refer to two other ap-
proaches to testing software, which is not always made clear. Originally
random testing referred to ad-hoc, unsystematic testing performed man-
ually [Hamlet, 1994]. Another meaning of random testing is to perform
system testing against a randomly generated test suite, whose distribu-
tion approximates the operational profile of the application [Hamlet, 1994].
This way of testing may give concrete reliability guarantees, but requires
knowing the distribution of real data with which the system will be run.

The practice of random testing enjoys a mixed reputation. Accord-
ing to Myers et al. [2012], “In general, the least effective methodology
of all is random-input testing”, as opposed to selecting test data “more
intelligently”. Despite this criticism, successful applications of random
testing point at its usefulness in a range of domains, such as testing UNIX
utilities [Miller et al., 1990], compilers [Faigon, 2005, Lindig, 2005, McK-
eeman, 1998, Yang et al., 2011], and telecom software [Arts et al., 2006].
Random testing was shown to be effective in testing both small ‘units’ of
code [Claessen and Hughes, 2000] and large programs [Yang et al., 2011].

There are three commonly mentioned shortcomings of using random
testing for finding and removing software bugs:

1. Simple random data generators, such as generating random strings,
may not be able to exercise significant part of program code [Beizer,
1990].

2. A test oracle is needed to perform testing [Hamlet, 1994, Zeller, 2005].

3. Randomly generated failing test cases are often large and complicated,
which makes them hard to understand [Yang et al., 2011, Zeller, 2005].
For example, Yang et al. [2011] observed that simplifying random test
cases is essential for reported C compiler bugs to be fixed.

Successful application of random testing usually depends on addressing
at least one of these concerns [Claessen and Hughes, 2000, Faigon, 2005,
McKeeman, 1998, Yang et al., 2011]. Thus, we would like to concentrate on
these three problems in order to make the benefits of random testing more
widely available.

thesis March 27, 2014 10:04 Page 5 �
�	

�
�	 �
�	

�
�	

5

Property-based testing Property-based testing is a particular style of auto-
mated testing, which is implemented by QuickCheck [Claessen and Hughes,
2000]. QuickCheck is a random testing tool for Haskell based on properties,
which is another name for test case templates. The following snippet is a
property that checks whether the insert function applied to an element
and a sorted list returns a sorted list.

prop_insert :: Int -> [Int] -> Property

prop_insert x xs =

ordered xs ==> ordered (insert x xs)

A property is a Haskell function, which can be applied to different ar-
guments to produce different test cases. In order to test the property,
QuickCheck generates random instances of lists of integers and integers,
and executes the resulting test cases. Thanks to the conditional ==> operator,
its right hand side will be tested only for sorted argument lists. The body
of the property calls the tested code (insert), and defines an oracle that
decides about the result of each test case using ordered.

QuickCheck delivers the advantages of automated test case generation
by allowing test suites to be specified in a very concise way, which also
makes modifying them much less time-consuming, and much more likely
to be adapted to changing code than traditional test suites.

QuickCheck properties are defined using a domain-specific language,
which is the Haskell language extended with additional operators like ==>.
Each property may be regarded as a hypothesis about the tested code, which
can be tested, and possibly disproved, by randomly testing the property.

When a random test fails, QuickCheck reports a counterexample. In-
stead of displaying the original counterexample, which might be rather
large, QuickCheck applies an iterative shrinking procedure to find a simpler
test case that also fails the property. Shrinking uses simple, structural
reduction rules, which are provided for common data types, and can also
be defined by users.

QuickCheck also provides another domain-specific language for defin-
ing random test data generators, as well as a number of predefined genera-
tors for common data types, which can be combined together, for example
for generating lists of integers.

However, defining generators for custom data types is still manual,
and may be challenging for some data types. As effective random test-
ing requires good random test data distribution, significant effort might
be needed to define a suitable generator. While automatic derivation of
uniform generators for arbitrary algebraic data types has been recently
demonstrated [Duregård et al., 2012], but the solution does not support
data types with complex invariants.

thesis March 27, 2014 10:04 Page 6 �
�	

�
�	 �
�	

�
�	

6 Introduction

Random number generation Generating complex random test data re-
quires a high-quality random generator [Hamlet, 1994]. Since the software
under test may perform arbitrary computations on its input data, they may
uncover any existing flaws of the random number generator, which could
compromise the results of testing.

Pseudorandom number generators (prngs) are often used for random
testing due to their ability to replay randomly generated numbers. Unfortu-
nately, the quality of prngs is difficult to assess, and some common prngs
have been shown to be flawed [McCullough, 2009]. Empirical statistical
tests are a common way of evaluating prngs, but passing a number of
statistical tests is a poor predictor for passing other statistical tests.

In addition to requiring a high-quality pseudorandom number gener-
ator, QuickCheck requires it also to be splittable. That is, each generator
instance has an operation split, which creates two deterministically de-
rived generator instances that return uncorrelated pseudorandom number
streams. The split operation can be used freely to create any number of
independent, yet deterministically derived instances.

QuickCheck uses splitting to efficiently generate random lazy data
structures, whose different parts are computed on demand as they are
accessed. Splitting can also be used to create a large number of independent
pseudorandom streams for use in parallel computations.

To our knowledge, the problem of designing a fast, high-quality split-
table prng that is supported by something more than statistical tests has
until recently been unsolved.

This thesis Automated random testing has proven to be an effective tool
for finding software bugs, but using it effectively requires addressing three
main challenges: generating good random test data, providing a test oracle,
and returning understandable counterexamples. With these challenges
in mind, the aim of this thesis is to lower the barrier of entry to using
random testing by improving random testing tools. In particular, we want
to provide tools that programmers will use, without much effort, to make
observations about the execution of their code, test hypotheses, track down
failures, and gain understanding of the code. The primary application of
random testing considered in this work is testing compilers.

In an ideal situation, we would like to have a push-button tool for
random testing. Property-based testing and QuickCheck are largely such
a push-button solution. In particular, many simple Haskell functions can
be effectively tested by writing simple properties and using the predefined
random data generators. However, defining test oracles (properties) and
generators for testing more complex code is far from easy. For example,

thesis March 27, 2014 10:04 Page 7 �
�	

�
�	 �
�	

�
�	

7

testing a compiler requires generating very complex data (programs), and
having an oracle that decides whether the result of compilation is correct,
which is in general very difficult.

In this thesis, we propose to approach this problem in the following
way:

1. Since defining a test oracle requires having a correctness criterion,
we propose using weak correctness criteria that are easy to define.
Oracles based on weak correctness criteria are not able to catch all
bugs, but can be an economical solution for finding many of them.

2. We propose an automatic way of constructing random test data gen-
erators that generate random values of complex data types. The
generators yield predictable distributions of values, and despite be-
ing less efficient than optimised hand-written alternatives, they are
significantly easier to develop.

The first two papers of this dissertation demonstrate the usefulness of this
approach to testing the ghc optimising Haskell compiler.

Another problem that is addressed in this work is the lack of high-quality
pseudorandom number generators required by QuickCheck. As part of
its infrastructure, QuickCheck requires a high-quality splittable prng to
perform reliable random testing. We present a splittable prng construction,
which is efficient and comes with a formal correctness argument, thus
increasing the confidence in the results of random testing.

Finally, we show how random testing can be applied to create an unbi-
ased test suite in order to rank a group of programs according to their rela-
tive correctness with respect to a reference program. The ranking method
removes the influence of the distribution of the random data generator used
for testing.

This thesis makes these specific contributions:

• We present a hand-written generator of random simply-typed lambda
terms, based on performing random local choice and backtracking.
The generator is used to test the ghc compiler using weak correctness
criteria, such as differential testing, and successfully find optimisation
bugs. (Paper i)

• We use simple, structural reduction rules to effectively reduce failing
test cases found by random testing. (Paper i)

• In order to reduce the effort needed to develop a custom generator,
we present an automatic method for deriving generators of random
values of algebraic data types that satisfy a given predicate. As an

thesis March 27, 2014 10:04 Page 8 �
�	

�
�	 �
�	

�
�	

8 Introduction

important feature of the derived generators, the distributions of values
returned by them are predictable. (Paper i i)

• We present an efficient construction of a high-quality splittable prng

together with a formal correctness argument. (Paper i i i)

• We provide a method for ranking a group of programs according
to their relative correctness using an unbiased test suite, which is
obtained using random testing. (Paper iv)

The remaining part of this introduction discusses the individual papers that
form the thesis.

Work that led to this thesis has been supported by the Resource-Aware
Functional Programming (raw fp) grant awarded by the Swedish Founda-
tion for Strategic Research.

Paper I: Testing an Optimising Compiler by Generating
Random Lambda Terms

The paper presents a hand-written generator of random simply-typed
lambda terms with polymorphic constants, and its application for testing
the ghc optimising Haskell compiler.

The ghc compiler was tested using differential testing [McKeeman, 1998],
which involves compiling the same randomly-generated program using
two different optimisation levels, and comparing the results of execution
of both programs. Another variant of differential testing considered was
to compile two different programs with equivalent semantics and look
for discrepancies. In both cases differential testing was based on weak
correctness criteria in the sense that satisfying the criteria gives very little
assurance about the correctness of the compiler. However, we managed to
demonstrate the usefulness of test oracles based on these criteria for finding
bugs in ghc.

As the counterexamples returned by testing were large and hard to
understand, we implemented simple, structural shrinking rules in order to
automatically reduce them. Three shrinking rules were used: (1) replacing
an expression with a proper subexpression, (2) inlining an argument into
the function to which it was applied, and (3) replacing a complex expression
with a constant. Shrinking using these simple rules proved to give very
good results for all bugs that we found, and yielded understandable test
cases, in addition to reducing their variety.

The project demonstrated that it is possible to find bugs in a complex
optimising compiler using a relatively simple language as test data, and

thesis March 27, 2014 10:04 Page 9 �
�	

�
�	 �
�	

�
�	

9

properties based on weak correctness criteria. Simply-typed lambda cal-
culus with polymorphic constants, whose random terms were generated,
is much simpler than the Haskell language. The differential testing setup
used by us is based on a weak correctness criterion, for which a test oracle
is easy to implement. Thus, starting with relatively simple random test data
and correctness criterion may be an economical way of finding bugs even
in complex software. At the same time, we found that the main effort was
spent on developing the random test data generator, which took months to
develop in this case. Making this process easier could considerably reduce
the effort associated with random testing.

Related work Differential testing of compilers using random test data
has been pioneered by McKeeman [1998], and subsequently used by Yang
et al. [2011]. Both approaches apply it to testing C compilers by looking
for discrepancies in the results of compilation between different compiler
versions, and both use relatively complex hand-written test data generators.
Additional complexity of these generators comes from the fact that they
have to avoid undefined behaviour in generated C programs, which is
avoided much more easily in typical Haskell programs.

Automated failing test case reduction has been explored before [Zeller
and Hildebrandt, 2002]. Regehr et al. [2012] experimented with different
reduction methods for shrinking C programs, and found that structural
reduction gives the best overall results. Due to possible undefined behaviour
introduced by reduction, semantic checks had to be performed on the
reduced test cases to filter out invalid ones.

Fuzz testing [Miller et al., 1990] is an early example of using weak
correctness criteria in random testing. Fuzz testing works by feeding
random input data to programs and checking if they crash, and can be used
to find security vulnerabilities.

Statement of contributions This paper is a slightly revised version of the
author’s Licentiate Thesis, which in turn is an extended version of a paper
that appeared in the International Workshop on Automation of Software
Test (AST), 2011. The original workshop paper was coauthored with Koen
Claessen, Alejandro Russo and John Hughes. Koen Claessen came up with
the original idea behind the paper. The implementation of the test data
generator and the testing was performed mostly by Michał H. Pałka. The
workshop paper was joint work of all authors.

thesis March 27, 2014 10:04 Page 10 �
�	

�
�	 �
�	

�
�	

10 Introduction

Paper II: Generating Constrained Random Data
with Uniform Distribution

This paper presents a method for automatically deriving generators of
complex random test data. The derived generators produce random values
of an algebraic data type that satisfy a given predicate, which is provided
as a lazy Haskell function. The main advantage of the derived genera-
tors is that defining a predicate is typically much simpler than creating a
dedicated generator of values satisfying that predicate. In addition, the
derived generators can provide concrete guarantees about the distribution
of generated values, which reduces the risk of important test data being
underrepresented.

We evaluated the technique on a number of examples, including re-
peating testing the ghc compiler using one of the properties from the
previous paper. We found that the performance of the derived generator
was lower than that of the hand-written one for the sizes of values that
the testing required, and prevented it from finding bugs at a competitive
rate. However, creating a suitable predicate for the derived generator took
a matter of days, instead of months that it took to develop the dedicated
generator.

The project demonstrated that generating values of a certain size sat-
isfying computable predicates selected uniformly at random is practical
in many circumstances. Moreover, developing generators based on com-
putable predicates takes much less effort than dedicated generators. We
found that the performance of the derived generators may be considerably
influenced by the order of evaluation of the predicate, which means that
creating suitable predicates requires some thought, but is still much easier
than developing dedicated generators. Even though we found the derived
generators to be too slow in some of our benchmarks, we consider these
initial results to be encouraging, as addressing the performance issues may
make derived generators an effective and widely applicable random test
data generation tool.

Related work Bounded-exhaustive testing is a strategy where software
is tested for all values up to a certain size, and can be regarded as an
alternative to random testing. The rationale behind trying all small values
for triggering bugs is the small scope hypothesis [Jackson, 2006, Marinov,
2005, Runciman et al., 2008], which maintains that “Most bugs have small
counterexamples” [Jackson, 2006]. Bounded exhaustive testing makes test
data generators simpler, as they work by enumerating values [Marinov,
2005, Runciman et al., 2008]. Furthermore, the enumerators can also be
adapted to efficiently generate values that satisfy a computable predicate

thesis March 27, 2014 10:04 Page 11 �
�	

�
�	 �
�	

�
�	

11

using a similar, but slightly simpler technique than ours [Marinov, 2005,
Runciman et al., 2008].

Bounded-exhaustive testing is an attractive way of finding minimal
counterexamples, which might be more efficient than finding a random
counterexample. On the other hand, the practice of random testing has
shown that finding a large counterexample and reducing it is often easier
than finding a small failing test case [Andrews et al., 2008, Lei and An-
drews, 2005, Regehr et al., 2012]. Thus, we hypothesise that both bounded-
exhaustive testing and random testing could show their advantages in
different situations, and it is useful to have both of them at hand.

A slightly different approach to generating complex test data has been
explored by Reich et al. [2012], who used computable predicates to generate
canonical programs of a simple functional programming language. The
generation procedure combined a predicate that allows only well-formed
programs with other predicates, which ensure that the programs are in a
particular canonical form. Generating canonical forms, which are single
representative programs from sets pf equivalent programs, led to efficient
pruning of the search space and generating a relatively small number of
interesting test values, which were then used to falsify properties.

White-box testing [Myers et al., 2012] uses knowledge about the internal
logic of a program to generate test inputs. Using that knowledge, white-box
testing is able to decide that some test inputs are equivalent, or generate
test inputs that lead to particular branches of the program being executed.
A disadvantage of white-box testing is the heavy machinery that the testing
tools need in order to support it, and that they are often restricted to a
particular programming language, or low-level code architecture.

An interesting variant of white-box testing is white-box fuzz testing [Bouni-
mova et al., 2013]. White-box fuzz testing starts by choosing a random input
and running the program on it using a symbolic execution and collecting
the path constraints of the chosen execution path. Then, one of the path
constraints is negated, and a concrete input is generated that satisfies the
negated path constraint, and all the preceding ones, so that executing the
program with the new input will trigger a new execution path. This process
is repeated many times, leading to exercising many different program paths.
White-box fuzz testing has been successfully used to find many potential
security vulnerabilities in Microsoft products.

Statement of contributions This is a slightly revised version of a paper
to be presented at the International Symposium on Functional and Logic
Programming (FLOPS), 2014. The original paper was coauthored with Koen
Claessen and Jonas Duregård. Koen Claessen came up with the original

thesis March 27, 2014 10:04 Page 12 �
�	

�
�	 �
�	

�
�	

12 Introduction

idea behind the paper and the initial implementation. All three authors
were involved in the subsequent implementation and improvement of the
generator, and contributed equally to writing the paper.

Paper III: Splittable Pseudorandom Number Generators
using Cryptographic Hashing

The paper presents the design of a high-quality splittable pseudorandom
number generator (prng) and a formal argument about its correctness.

Traditional, non-cryptographic prngs are developed according to rather
ad-hoc criteria of pseudorandomness, notably that they have a sufficiently
long period, and pass a number of empirical statistical tests [L’Ecuyer and
Simard, 2007]. These criteria are relatively fragile, and do not ensure that a
prng passing them will not fail another statistical test.

We found that this notion of pseudorandomness is not precise enough to
guide the design of a splittable prng. In particular, evaluating the designs
by running a battery of statistical tests takes hours or days and gives very
little insight about what a good design should be.

On the other hand, we found that one of the standard cryptographic
constructions can be used as foundation for a reliable splittable prng.
Keyed hash functions are flexible cryptographic primitives that generate
pseudorandom output, and are used for example as Message Authentica-
tion Codes (macs). By using a standard cryptographic construction, we
managed to outsource the concern of providing pseudorandom output.

Keyed hash functions are typically built on top of cryptographic block
ciphers. To gain confidence about the correctness of their construction,
security reduction proofs are provided [Bellare et al., 1996]. The proofs can
guarantee a certain degree of pseudorandomness, while making an assump-
tion about the pseudorandomness of the underlying block cipher. This
assumption must be asserted, as there are no proofs of pseudorandomness
of block ciphers. However, relying on a standard property of a well-studied
cryptographic primitive is the best bet that we can make in this situation.

The project resulted in a design of an efficient, high-quality splittable
prng that is justified by a convincing correctness argument. We found that
the cryptographic definition of pseudorandomness is simple and can serve
as a robust correctness criterion for pseudorandom number generators. We
also found that there was no other readily available framework that could
be used to create a reliable splittable prng. Despite the common belief
that prngs based on cryptographic primitives are inefficient, the project
demonstrated that modern cryptographic primitives are efficient enough to
offer competetive performance to traditional prngs. Finally, we found that
the problem of creating a keyed hash function is closely related to creating

thesis March 27, 2014 10:04 Page 13 �
�	

�
�	 �
�	

�
�	

13

a splittable prng, and if there is any progress in developing new keyed
hash function constructions, then it can also be carried over to splittable
prngs.

Statement of contributions This is a slightly revised version of a paper
that appeared in the Haskell Symposium, 2013. The original paper was
coauthored with Koen Claessen. Both authors contributed to the design of
the generator. Michał H. Pałka implemented the generator and was behind
using a security reduction proof to justify its correctness. Both authors
contributed to the writing of the paper.

Paper IV: Ranking Programs using Black-Box Testing

The paper presents an experiment in which students’ programming solu-
tions are ranked using a random test suite selected to avoid the bias caused
by a particular random distribution of test data.

The original goal of the experiment was to compare the performance of
students solving Haskell programming puzzles while using property-based
testing, and unit testing, respectively. Unfortunately, the results of the
experiment were inconclusive, due to the low number of students that took
part in it.

Analysis of students’ solutions led to a novel method of ranking different
solutions to the same problem based on the observed results of testing
against a reference solution. The method looks at the discrepancies between
different solutions and the reference solution, and tries to explain them by
the smallest number of bugs. Each of the solutions is then assigned the
number of inferred bugs based on its test results.

The solutions can be ranked by the numbers of bugs they have, or
presented as a partial order where more correct solutions are above the
more buggy ones. Each inferred bug is represented by a small test case, and
therefore looking at these test cases can give an idea about the differences
between the solutions.

As part of the experiment, the students were also asked to provide test
suites for their code, in the form of properties or unit tests, depending on the
group. The test suites were evaluated based on how many of the incorrect
solutions they can catch. This led to an interesting finding that while
unit testing resulted in higher average score for test suites, property-based
testing resulted in test suites that are either very ineffective or very effective.
Our hypothesis about this result is that properties are more effective, but
also more difficult to write. We would like to test this hypothesis in a future
experiment.

thesis March 27, 2014 10:04 Page 14 �
�	

�
�	 �
�	

�
�	

The main outcome of the project is an analytical technique of evaluating
and ranking programs based on the level of correctness of their observed
behaviour. We found that ranking solutions in this way can be a useful
tool for analysing the differences in behaviour of a set of programs. For
example, analysing students’ solutions using it quickly brought into atten-
tion common mistakes made by many students simultaneously. A possible
future application of this method might be regression testing, where a
number of versions of the same software would be benchmarked against
each other. Furthermore, we found the rankings to be relatively stable
across different runs of the algorithm. Finally, even though the performed
experiment involved too few students to reach conclusive results, we believe
that performing a similar experiment on a larger scale would be interesting.

Statement of contributions This is a slightly revised version of a paper
that appeared in the International Workshop on Automation of Software
Test (AST), 2010. The original paper was coauthored with Koen Claessen,
John Hughes, Nick Smallbone and Hans Svensson. John Hughes came up
with the idea for the experiment and was the initiator of the work that led
to the paper. Each of the authors contributed to running the experiment,
performing the analysis and writing the paper.

thesis March 27, 2014 10:04 Page 15 �
�	

�
�	 �
�	

�
�	

Paper I

Testing an Optimising Compiler
by Generating

Random Lambda Terms

Michał H. Pałka Koen Claessen Alejandro Russo
John Hughes

This in an extended version of a paper that appeared in the International
Workshop on Automation of Software Test (AST), 2011.

thesis March 27, 2014 10:04 Page 16 �
�	

�
�	 �
�	

�
�	

thesis March 27, 2014 10:04 Page 17 �
�	

�
�	 �
�	

�
�	

Paper I: Testing an Optimising
Compiler by Generating
Random Lambda Terms

Abstract

This work tries to improve on the relatively uncommon practice of
random testing of compilers. Random testing of compilers is difficult
and not widespread for two reasons. First, it is hard to come up with
a generator of valid test data for compilers, that is a generator of pro-
grams. And secondly, it is difficult to provide a specification, or test
oracle, that decides what should be the correct behaviour of a compiler.
This work addresses both of these problems. Existing random compiler
test tools do not use a structured way of generating well-typed pro-
grams, which is often a requirement to perform comprehensive testing
of a compiler. This thesis proposes such a method based on a formal
calculus. To address the second problem, this thesis proposes using
two variants of differential testing, which allows for detecting bugs
even when a very limited partial specification of the tested compiler is
available. This setup is evaluated practically by performing effective
testing of a real compiler.

1 Introduction

Correctness of compilers is crucial to most software projects, while at the
same ensuring their correctness is relatively difficult. While there exist
examples of formally-verified compilers, such as the CompCert optimising
compiler [Leroy, 2009] and the Racket compiler and virtual machine [Klein
et al., 2010a], such compilers are not common. Instead of using modern
testing and verification techniques, writers of production compilers rely
mostly on testing based on test cases manually created by themselves or
contributed by the users.

17

thesis March 27, 2014 10:04 Page 18 �
�	

�
�	 �
�	

�
�	

18 i Testing an Optimising Compiler . . .

Formal verification is an attractive approach to reliable software, but its
cost and complexity are still sky-high, which makes it applicable only to
very specialised compilers. For instance, over 3/4 of the code of CompCert
is devoted to verification [Leroy, 2009]. Software testing, on the other hand,
is the most prevalent and economical way of assuring quality, which, if
done right, may result in quicker software development [Tassey, 2002].

Thus, compiler writers resort to test suites1, which are run continuously
during development. But these test suites consist largely of test cases that
were taken from bug reports submitted by the users, which means that they
tend to find few new bugs.

Having an automatic testing tool for a compiler, on the other hand,
would give the advantage of finding bugs early. One possibility is to use
random property-based testing. However, this requires having a generator
of random programs.

Generating good test programs is not an easy task, since these programs
should have a structure that is accepted by the compiler. As compilers
often employ multi-stage processing before producing compiled code, in
order to test later stages, earlier ones must be completed without error.
The requirements for passing a compilation stage can be as basic as a
program having the correct syntax, or more complex such as a program
being type-correct in a statically-typed programming language.

In this thesis, we investigate generation of random type-correct Haskell
programs for the purpose of testing the ghc Haskell compiler, and in
particular, its optimising middle-end [Peyton Jones, 1996].

We chose the simply-typed lambda-calculus [Pierce, 2002] as the underlying
model of well-typed programs as it is the simplest calculus that has the no-
tion of variable binding and type-correctness, as well as first-class functions,
which makes it adequate for representing simple Haskell programs. On
top of that, we support polymorphic constants, which makes it possible to
generate simple Haskell programs that use polymorphic library functions
as well as to encode in them some programming language constructs.

The presented generator of random simply-typed lambda-terms has
been successfully applied to testing the ghc Haskell compiler. This com-
piler contains a particularly sophisticated optimising middle-end, which
performs many stages of intermediate-language transformations, such as
inlining, let-floating, lambda lifting, specialisation and common subexpres-
sion elimination [Peyton Jones, 1996]. Such elaborate processing could
easily be a source of intricate bugs, making it especially interesting to test.

1For example, the GCC compiler test suite: http://gcc.gnu.org/onlinedocs/gccint/

Testsuites.html; or the ghc test suite: http://hackage.haskell.org/trac/ghc/wiki/Building/
RunningTests/Adding.

http://gcc.gnu.org/onlinedocs/gccint/Testsuites.html
http://gcc.gnu.org/onlinedocs/gccint/Testsuites.html
http://hackage.haskell.org/trac/ghc/wiki/Building/RunningTests/Adding
http://hackage.haskell.org/trac/ghc/wiki/Building/RunningTests/Adding

thesis March 27, 2014 10:04 Page 19 �
�	

�
�	 �
�	

�
�	

1 Introduction 19

term

module

generate

code

result

run

code

result

run

compile compile opt.

?
=

Figure 1.1: Differential testing

The ghc compiler has been tested with randomly generated Haskell
programs using differential testing [McKeeman, 1998], which involved com-
piling the same program with different optimisation settings and comparing
its observed behaviour. Figure 1.1 shows a diagram of the testing process.
Testing uncovered four interesting bugs, three of which were fixed based on
our bug reports2. We also learned interesting facts about valid optimisations
performed by the ghc.

Reported failing test cases were often reasonably small due to the process
of shrinking, which automatically reduces the failing test case as much as
possible. Below is one of the found terms that provoked a failure.

(\a -> seq a (seq (a []) id)) (\a -> seq undefined (+1))

This term can be manually rewritten as follows, to obtain a program that
provokes a bug:

a = \x -> seq undefined (+1)

main = do

print $ (a [] ‘seq‘ id) [0]

This short program turned out to be miscompiled by the tested version of
ghc when optimisation was turned off. The failure has been reported as
ticket 5625 and the bug causing it was fixed. More information about this
failure can be found in Section 6.1.

2The remaining one has been fixed as a result of another bug report.

thesis March 27, 2014 10:04 Page 20 �
�	

�
�	 �
�	

�
�	

20 i Testing an Optimising Compiler . . .

2 Related work

Even though random testing is not commonplace in compiler development,
there are accounts of its successful application. The work of McKeeman
[1998] and the CSmith tool [Yang et al., 2011] are both such examples.
Both tools employ Differential testing where results of programs compiled
with different C compilers are compared to spot bugs. Generating random
programs was a central part of both of these efforts, and in both cases the
problem was solved using an elaborate, but ad-hoc generator.

McKeeman focuses on testing all stages of a C compiler by generating
programs of different level of conformity to the C language: lexically-
correct, syntax-correct, etc., and much effort is put into creating program
generators for each of these levels. CSmith, on the other hand, focuses on
testing optimising middle-ends of the compilers and most effort was put
into generating C programs that do not depend on undefined or unspecified
behaviour. Assuring this semantic property is, of course, difficult, which is
why CSmith uses an array of heuristics and checks for assuring it.

Notwithstanding the effort put into creating these program generators,
both test tools found a big collection of previously unreported bugs in the
tested compilers. The test cases reported by these tools are usually large
and hard to analyse. Only McKeeman discusses automated reduction of
size of counterexamples—in case of CSmith they have to be reduced by
hand, which can be very labour-intensive.

Lindig [Lindig, 2005] created a random testing tool to test whether the
C function calling convention is followed by compilers. The generation
of programs is much simpler in this case, as only types of functions to
be test-called need to be randomly generated. The rest of the program is
skeleton code that is generated algorithmically. Despite its simplicity, the
tool managed to find a number of discrepancies between compilers that
manifested when a function was called from code compiled with another
compiler. Automated testing of unexpected cases was important.

Random program generators have also been successfully applied to
testing Java libraries [Klein et al., 2010b]. This work defines a formal
calculus, whose random terms are then transformed into programs and is
able to generate programs containing higher-order features.

Verified compilers The CompCert optimising compiler [Leroy, 2009] and
the Racket compiler and virtual machine [Klein et al., 2010a] are notable for
their quality assurance. The former is a full-fledged optimising compiler
that was constructed with formal verification in mind. However, it only
supports a subset of C and the catalogue of optimisations performed by it
is limited. Furthermore, even though the most important of its parts are

thesis March 27, 2014 10:04 Page 21 �
�	

�
�	 �
�	

�
�	

3 Structure 21

formally-verified, which was a costly task, testing was able to find in it
previously unknown bugs [Yang et al., 2011].

The Racket compiler is verified using lightweight formal verification,
which is realised by testing the compiler against a formal model. While
the compiler supports unrestricted version of the Scheme programming
language, it is only capable of performing basic optimisations.

Term generators Generation of random lambda-terms has attracted mod-
erate attention. There were attempts at generating random untyped lambda
terms [Bodini et al., 2011, Wang, 2005], where it is already difficult to obtain
a reasonable distribution. Two notable attempts at generating simply-typed
lambda terms are based on bit-encoding schemes [Vytiniotis and Kennedy,
2010] and enumeration [Rodriguez Yakushev and Jeuring, 2010], but it is
unclear whether it is possible to adapt the latter for random generation.

Unfortunately, none of these works considers any practical applications
for randomly generated lambda-terms—the only application considered
is examining statistical properties of random lambda terms [Bodini et al.,
2011, Wang, 2005]. Also, none of the typed generators handles parametric
polymorphism.

3 Structure

The rest of this section introduces property-based testing, which is the way
of structuring test data generators and test oracles used throughout the
paper. In the next section we explain our approach to random generation of
simply-typed lambda terms. Section 5 describes the method of structurally
shrinking the generated terms aimed at reducing the sizes of reported
counterexamples. We identify two interesting design decisions that we can
make in the shrinking method and evaluate their performance based on
experimental benchmarks. Section 6 presents the failing test cases found for
ghc and properties used to find them. We also analyse the consequences
of the noticed discrepancies for the programmers using ghc. Section 7

describes related work, and Sections 8 and 9 present future work and
conclusions.

Contributions We claim the following contributions:

• We present a generator of random simply-typed lambda terms based
on performing random local choice and backtracking. The genera-
tor makes use of tailored generation rules and heuristics to avoid
excessive backtracking and skewing the distribution of generated

thesis March 27, 2014 10:04 Page 22 �
�	

�
�	 �
�	

�
�	

22 i Testing an Optimising Compiler . . .

terms too much. The generator also supports generating terms with
polymorphic constants. (Section 4)

• The generator is applied successfully for finding bugs in ghc opti-
mising compiler using differential testing. (Section 6)

• We perform differential testing using two expressions that should
give equivalent results and find discrepancies that are independent of
optimisation options. (Section 6)

• We present a method for shrinking simply-typed lambda terms, which
is used for reducing counterexamples found by us during testing.
The method proposed by us reduces the terms structurally, but is
very effective in reducing the test cases despite the complexity of
the processing performed by ghc. Shrinking makes finding the
root cause of a bug based on a counterexample dramatically easier.
(Sections 5 and 6)

3.1 Property-based testing

To obtain test oracles for random testing we employ property-based testing,
which allows us to derive test oracles naturally from logical properties. For
example, consider the commutativity law for integers.

∀n m. n + m = m + n

We may turn it into a testable property by writing a Haskell function that
checks this equality for two given numbers.

prop_comm :: Integer -> Integer -> Bool

prop_comm n m = n + m == m + n

This function is an executable version of the above logical property and
may be used as an oracle in random testing. We use the word ‘property’ to
denote such executable properties throughout this paper.

A single test on the above property is performed by generating two
random numbers n and m, evaluating the function and checking if its result
is true.

Testing this property involves running the function on a finite number
of inputs when the number of all inputs is infinite, so testing can only
result in disproving the property, by finding a counterexample, or leaving its
validity undecided.

The function prop_comm implements both the tested code (the + operator)
and the test oracle (the == operator), while the random test case generator
is separated.

thesis March 27, 2014 10:04 Page 23 �
�	

�
�	 �
�	

�
�	

4 Generation method 23

Variables x, y, . . .
Constants c, d, . . . ::= head, tail, (+), 0, 1, . . .
Types σ, τ, . . . ::= Int | Bool | ListInt | · · · | σ→ τ
Terms M, N, . . . ::= x | c | λx : σ. M | MN

Figure 1.2: Syntax for simply-typed λ-calculus

The properties used by us to test the ghc compiler employed differential
testing, described in Section 6, and an example diagram illustrating the
process is shown in Figure 1.11 in that section.

QuickCheck [Claessen and Hughes, 2000] is a Haskell library that pro-
vides comprehensive support for property-based testing. QuickCheck
contains a combinator library for building composable properties as well
as random generators for basic Haskell data types. We implemented our
random simply-typed term generator in QuickCheck using these basic
generators and performed testing of the ghc compiler using properties
also written in QuickCheck.

QuickCheck also provides generic support for shrinking [Claessen and
Hughes, 2000]3 that tries to reduce the size and complexity of the reported
counterexamples. We implemented a shrinking method for the simply-
typed lambda terms for use in our testing.

The method for generation of random simply-typed lambda terms is
independent from QuickCheck, however many other aspects of the testing
are heavily influenced by property-based testing, for example the properties
and shrinking.

4 Generation method

To generate random programs for use in testing we consider simply-typed
lambda terms [Pierce, 2002] that can contain constants in addition to vari-
ables. Their syntax is shown in Figure 1.2. Typing rules, shown in Figure 1.3,
are standard and constants are typed in the same way as variables. We
require that all variables and constants in environments have distinct names.

The aim of the generator is to produce a well-typed term of a certain type,
which can contain free variables and constants from a given environment.
Of course there are combinations of target type and environment for which
no term can be constructed.

Simple generator One possible generation method can be obtained by
reading the typing rules shown in Figure 1.3 backwards. To generate a

3Shrinking is not referred to by name in this paper, but is realised by the function ‘smaller’.

thesis March 27, 2014 10:04 Page 24 �
�	

�
�	 �
�	

�
�	

24 i Testing an Optimising Compiler . . .

Typing judgements Γ ` M : σ
Environment Γ ::= {x1 : σ1, x2 : σ2, c1 : σ3, . . .}

(Var)
x : σ ∈ Γ
Γ ` x : σ

(Cnst)
c : σ ∈ Γ
Γ ` c : σ

(Lam)
x : σ, Γ ` M : τ

Γ ` λx : σ.M : σ→ τ

(App)
Γ ` M : σ→ τ Γ ` N : σ

Γ ` MN : τ
Figure 1.3: Typing rules

term that is in the consequence of a rule it is firstly necessary to generate
terms that are in its premises, if they exist, and then combine them. In other
words, the goal of generating a term might involve generating the subgoals
recursively, leading to a procedure that works top-down and produces a
term together with its typing derivation. Of course, the derivation must be
finite. The rules ensure that the resulting terms are well-typed.

Suppose that we want to generate a simply-typed λ-term of type Int

while having access to the following constants: z :Int and s :Int→ Int.
The simplest term that can be generated is just z, as this constant has

the right type. This term is generated by applying the Cnst rule with
c instantiated with the constant z. This rule does not have any recursive
premises, only a side condition that z must be in the environment, so no
subgoals must be generated to finish the generation. Successful generation
yields a type derivation tree for the generated term, shown below. We
define Γ to be the initial environment {z :Int, s :Int→ Int}.

(Cnst)
z :Int ∈ Γ

Γ ` z :Int

We can generate another term if we apply s to z and obtain the term
s z, which also has the right type. To do that by following the typing
rules, we must first apply an instance of the App rule where both σ and τ
are instantiated with Int. Applying this rule requires two subgoals to be
generated recursively with their own generation contexts, that is their target
types together with their environments. Below we show the part of the
derivation tree that is determined after selecting the App rule.

(App)
Γ ` ?1 :Int→ Int Γ ` ?2 :Int

Γ ` ?1 ?2 :Int

The question marks (?1 and ?2) represent the subterms that will be generated
as subgoals.

thesis March 27, 2014 10:04 Page 25 �
�	

�
�	 �
�	

�
�	

4 Generation method 25

The first subgoal has the same environment as the original term, but a
different target type, which is Int→ Int. This subgoal is generated using
the Cnst rule instantiated with the constant s.

The second subgoal receives the same generation context as the original
term and is generated using the Cnst rule.

Solving the subgoals yields the missing parts of the term and its deriva-
tion tree.

(App)

(Cnst)
s :Int→ Int ∈ Γ

Γ ` s :Int→ Int
(Cnst)

z :Int ∈ Γ

Γ ` z :Int

Γ ` s z :Int

In the same way it is possible to generate more complex terms, for
example s (s (s z)). The terms can also contain locally-defined functions
in the form of λ-expressions. In this way, we can create more type-correct
λ-terms, for example (λx : Int.x) (s z), or (λx : Int.s (s x)) z. The Lam

typing rule, which is needed for generating a locally-defined function, adds
one variable to the environment of its subgoal, which makes it possible to
refer to that variable in the body of the function.

Thus, interpreting the typing rules as generation rules allows us to gen-
erate well-typed terms in a top-down fashion. The four rules are capable
of generating every well-typed term—after all a term is well-typed only if
there exists a typing derivation for it.

Using a generation rule to generate a part of a term involves choosing
its specific instance. Choosing a suitable instance of the Var and Cnst

rules is straightforward, as the type of the chosen variable or constant must
be the same as the target type. If such variable or constant is not available,
then the rules cannot be applied.

Similarly, the Lam rule can only be applied if the target type is func-
tional and type σ from the rule must be equal to the argument of the target
type.

This is not the case, however, when the App rule is applied, as the type
of the argument is not determined by the generation context and can be
chosen freely.

Often a specific instance of the App rule is required to occur in a
derivation tree of a term. For example, suppose that a derivation tree might
only be constructed by using constant c that has type σ1 → σ2 → σ3 → τ
to solve a goal of type τ. The App rule must be then instantiated with σ3.
Furthermore, two more applications of the App rule are required, also with
specific types.

In addition, some instances of the App rule cannot occur in a valid
derivation tree. Notably, if it is instantiated with an argument type, for

thesis March 27, 2014 10:04 Page 26 �
�	

�
�	 �
�	

�
�	

26 i Testing an Optimising Compiler . . .

which a term cannot be constructed, then no valid derivation containing it
exists.

Thus, the derivation is sensitive to the way the App rule is instantiated.

Concrete realisation The generation rules give us a non-deterministic gen-
eration procedure as in a given generation context it might be, and fre-
quently is, possible to use more than one instance of the rules. Unfortu-
nately, we can not have the luxury of allowing the generator to select an
arbitrary viable instance, as bad choices may lead the generator to a dead
end or non-termination, even if making another choice would result in
successful generation.

These problems can be solved by using a procedure that performs
backtracking. Whenever a bad choice is made, the procedure will fail and
backtrack to another choice. Given that it is possible to run into an infinite
loop, a limit on the number of recursive invocations is imposed.

Unfortunately, since the success or failure of the generation depends so
much on the way the App rule is instantiated, such generation procedure
suffers from excessive backtracking, which is why we propose a different
set of generation rules.

4.1 Alternative rules

We chose to use an alternative set of generation rules instead of adopting
the typing rules for that purpose. Consider following method where a term
can be generated in two ways:

• We may introduce a lambda expression if the target type is func-
tional. The body of the lambda expression must then be generated to
complete the term.

• We may use a symbol from the environment, constant or variable,
that possibly needs some arguments to be applied to it to match the
target type. The needed arguments become new goals that have to be
generated. If the type of the symbol is the same as the target type, no
arguments are needed and generation is finished.

The first tactic is captured by the Lam rule in Figure 1.3 and the formal
rule for the second one is given below:

(IndirV)
f : σ1 → . . .→ σn → τ ∈ Γ Γ ` M1 : σ1 · · · Γ ` Mn : σn

Γ ` f M1 . . . Mn : τ

thesis March 27, 2014 10:04 Page 27 �
�	

�
�	 �
�	

�
�	

4 Generation method 27

There is also a sister rule for constants, which we omit here. Please note
that τ can be any type, also functional, and that the Indir rules supersede
Var and Cnst if n = 0.

This choice of generation rules gives us a generation method with
interesting properties. First, it is not possible to generate all terms with it,
as it never generates any β-redexes. Secondly, it is nevertheless complete,
as it will be able to generate a term if a well-typed term exists for a given
combination of the target type and environment. And finally, the problem
of generation being very sensitive to the way rules are instantiated is
reduced. The reason for this is that applying the Indir rule does not
involve choosing any types, and while choosing the wrong variable or
constant might result in failed generation there is a finite number of choices
to make.

In a way, the Indir rule is a ‘guided’ App rule, which chooses the
argument types to suit a specific variable or constant from the environment.

Keeping the App rule For the purpose of practical generation, we nev-
ertheless keep the App rule in addition to the Indir rule to be able to
generate β-expanded terms. While the Indir rule gives higher chances
of successfully generating a term without excessive backtracking, the App

rule is capable of generating β-expanded terms.

4.2 Polymorphic constants

So far we discussed the simply-typed lambda calculus with monomorphic
constants, which means that constants have specific types. However, typical
Haskell programs make use of parametric polymorphism, which requires a
richer term representation.

The type system of Haskell is quite complex, but a large part of code
in Haskell uses only one aspect of parametric polymorphism, notably poly-
morphic constants4. Other variations of polymorphism in Haskell, such
as higher-rank types or polymorphic let definitions require a more compli-
cated type system, which is why we decided to support only polymorphic
constants.

Polymorphic constants can be used to represent functions operating on
polymorphic data structures, such as lists. They are also needed to build
expressions that use advanced Haskell libraries, including ones involving
monads, applicative functors and arrows.

4In particular, Haskell 98 programs are restricted to Hindley-Milner polymorphism with
monomorphic let bindings if no explicit type signatures are provided [Peyton Jones, 2003].

thesis March 27, 2014 10:04 Page 28 �
�	

�
�	 �
�	

�
�	

28 i Testing an Optimising Compiler . . .

Variables x, y, . . .
Constants c, d, . . . ::= head, tail, +, 0, 1, . . .
Type variables α, β, . . .
Types σ, τ, . . . ::= Int | Bool | σ→ τ | α

| List σ | · · ·
Polymorphic types Σ, Υ, . . . ::= ∀αβγ · · · .σ
Terms M, N, . . . ::= x | c | λx : σ. M | MN

Figure 1.4: A simple λ-calculus with polymorphism

Polymorphic constants can also be used to encode some programming
language constructs, such as if-then-else, which means that support for
them does not have to be hard-coded into the generator.

Instead of supporting polymorphic constants, we could replace them
with a number of their instances, for example:

headInt : List Int→ Int

headInt→Int : List (Int→ Int)→ Int→ Int

· · ·

However, this would lead to an explosion of constants and, given that there
are infinitely many instances of each (non-trivial) polymorphic type, it is
not clear which and how many instances should be included.

To accommodate polymorphic constants we must extend our core calcu-
lus, as shown in Figure 1.4. Polymorphic types are written as ∀αβγ · · · .σ,
where α, β, . . . are type variables, which are allowed to occur in σ and are
replaced by types during instantiation. It is illegal for a type variable to
occur in a non-polymorphic type even though the syntax allows this.

The typing rules, shown in Figure 1.5, are only slightly different to
previous typing rules. All terms have monomorphic types. Lambda-
bindings and, in consequence, variables are monomorphic. Also, the
occurrences of constants are fully instantiated, and thus all have concrete
types. The only rule that has changed is Cnst, which now performs
instantiation of the constant’s polymorphic type.

Generation rules for terms with polymorphic constants also need only
small changes compared to previous ones. The rule that changes is IndirC ,
which introduces constants:

(IndirC)

Σ[α 7→ ρ1, . . .] = σ1 → . . .→ σn → τ
··· f : Σ ∈ Γ Γ ` M1 : σ1 · · · Γ ` Mn : σn

Γ ` fM1 . . . Mn : τ

thesis March 27, 2014 10:04 Page 29 �
�	

�
�	 �
�	

�
�	

4 Generation method 29

Typing judgements Γ ` M : σ
Environment Γ ::= {x1 : σ1, x2 : σ2, c1 : Σ1, . . .}
Type substitution [α 7→ τ1, β 7→ τ2, . . .]

(Var)
x : σ ∈ Γ
Γ ` x : σ

(Cnst)
c :∀αβ · · · .σ ∈ Γ

Γ ` c :∀αβ · · · .σ[α 7→ τ1, β 7→ τ2, . . .]

(Lam)
x : σ, Γ ` M : τ

Γ ` λx : σ.M : σ→ τ
(App)

Γ ` M : σ→ τ Γ ` N : σ

Γ ` MN : τ

Figure 1.5: Typing rules for simple λ-calculus with polymorphism

Constant f can be used if its polymorphic type Σ can be instantiated so
that its result is the same as the target type τ, which is realised by the side
condition marked with vertical dots.

Instantiation

Of course, in order to use the IndirC rule, both f and an instantiation of
its type must be chosen. Depending on the circumstances, this might be
easy or difficult. The following examples examine different cases.

Example 1 Consider that the following constant is present in the environ-
ment:

tail :∀α.List α→ List α ∈ Γ

and that the target type is List Int. If we want to use tail to generate
this term we have to find an instance of the IndirC rule. But the only
instantiation that can possibly be used here is [α 7→ Int], and thus the
generation step might look as follows:

(IndirC)

Σ[α 7→ Int] = List α→ List α
··· tail : Σ ∈ Γ

· · ·
Γ ` ? :List α

Γ ` tail ? :List α

Therefore, in this case the instantiation is completely guided by the envi-
ronment and target type.

Example 2 A slightly more complicated situation occurs when the identity
function is to be instantiated. The identity function has following type:

id :∀α.α→ α

thesis March 27, 2014 10:04 Page 30 �
�	

�
�	 �
�	

�
�	

30 i Testing an Optimising Compiler . . .

Suppose that, for example, the type of the expression that is to be generated
is Int. Then, the most obvious choice is to instantiate α with Int and
generate id applied to an Int argument. However, it is not the only choice.
We may as well instantiate α with Bool → Int in which case applying id

to an argument yields a function of type Bool → Int. Thus, id effectively
becomes a two-argument function that can be applied to arguments Bool→
Int and Bool. Continuing this way, we may instantiate α with Bool →
Bool → Int and obtain an instance of id that takes three arguments. We
may carry on adding arguments to id like this forever, even if the resulting
terms would look uncommon.

This demonstrates that whenever a constant has type that looks like
∀α · · · . · · · → α, there will be infinitely many possible ways of instantiat-
ing it. Fortunately, it is not likely that constants applied to many ‘extra
arguments’ are relevant for generating interesting terms.

Example 3 Consider the function map and that we want to use it to
generate a list of integers. Map is represented with the following constant:

map :∀αβ.(α→ β)→ List α→ List β

Since the resulting term has the List type, the constant must be applied to
two arguments. Furthermore, the target type of List Int dictates that β in
the type of map must be instantiated with Int. However, nothing constrains
how α must be instantiated, making it possible to use any instantiation of
it.

Therefore, many instantiations of map are possible, and the same problem
occurs with several important constants that we might want to use for
generating terms, such as:

ap : ∀αβ.A (α→ β)→ A α→ A β
bind : ∀αβ.M α→ (α→ M β)→ M β

The problem is important as specific instances of map and similar con-
stants are likely to be required to generate some interesting terms. For
example, bind has to be used (and instantiated) in order to build complex
monadic expressions.

Also, not surprisingly, if we include a constant that represents function
application, exactly the same problem would occur as we would have to
select α in the following type:

($) :∀αβ.(α→ β)→ α→ β

Therefore, the problem of instantiating such constants is more general then
the problem of instantiating the App rule.

thesis March 27, 2014 10:04 Page 31 �
�	

�
�	 �
�	

�
�	

4 Generation method 31

These three examples show that the problem of instantiating polymor-
phic types in the Indir rule is (a) easily solvable in some cases and (b)
choosing arbitrary types might be needed in other cases, which is not cru-
cial for generation, but (c) there are also important cases where instantiation
is critical.

We were not able to solve this problem completely, but we present
a partial solution of it, which is based on heuristics, in our generation
algorithm.

Generation algorithm

The algorithm generates terms recursively top-down by applying generation
rules. To avoid non-terminating generation each recursive invocation of
the algorithm uses a size parameter, which is decreased in subsequent
invocations.

The first step of each recursive invocation is to create a list of admissible
instances of the generation rules, that is the instances that can be used in
the current context.

When the size parameter is 0 the list is restricted only to non-recursive
rule instances, and thus the generation is forced to succeed or fail without
further recursion.

The list is then permuted at random and the first rule instance from it is
applied. If the rule instance requires subterms to be generated, these get
turned into subgoals and the generation procedure is invoked recursively
with new generation contexts.

When the recursive invocations succeed, their results are combined into
the resulting term according to the generation rule and the current invo-
cation of the generator concludes. When they fail, the generator performs
backtracking by selecting the next admissible instance of some generation
rule from the list. If there are no more instances left, the original recursive
invocation fails.

The size parameter used to generate the subgoals of a goal is decreased
using the following equation, where p is the number of immediate subterms
that need to be generated and sg is the size parameter of the goal.

ssg =

⌊
(sg − 1)

p

⌋
(4.1)

Example Consider an environment containing constants tail :∀α.List α→
List α and x :List Int. Note that we omit writing ∀ when a polymorphic
type does not have type parameters. If the type of the term to be generated
is List Int, the admissible rule instances are the following:

thesis March 27, 2014 10:04 Page 32 �
�	

�
�	 �
�	

�
�	

32 i Testing an Optimising Compiler . . .

• The Indir rule may be instantiated with tail and n = 1, which
requires generating a subterm of type List Int. The instantiation
involves a substitution [α 7→ Int] and both τ and σ1 are instantiated
with List Int. The instance is presented below in full:

(IndirC)

∀α.List α→ List α[α 7→ Int] = List Int→ List Int
··· tail :∀α.List α→ List α ∈ Γ Γ ` M1 :List Int

Γ ` tail M1 :List Int

• The Indir rule may similarly be instantiated with x and n = 0.

• The App rule may be instantiated with τ mapped to List Int and
with σ mapped to any type.

• There is no admissible instantiation of the Lam rule.

If the size parameter is 0, then Indir instantiated with x becomes the only
admissible instance, as it is the only one that is non-recursive.

The algorithm described above is an ordinary randomised search algo-
rithm with backtracking and size limit. The important part of it is how
the set of admissible rule instances in a given context is selected. Ideally,
we should select all the admissible rule instances, but because of the pos-
sible many instantiations of some constants, this set might be infinite and
therefore we must approximate it by selecting the subset of all possible
instantiations. The following procedure is used:

• Admissible instances of Indirv and Lam are selected completely as
there is a finite number of them. Variables are monomorphic and the
type of the λ-bound variable is uniquely determined by the generation
context.

• Applying the App rule involves choosing the argument type. To in-
stantiate the rule, Napp_tries types are chosen at random and instances
of App based on these types are included in the set.

• There are three cases involving the Indirc rule, inspired by the
examples that we discussed previously:

1. When the instantiation of a given constant is unique, that instan-
tiation is chosen.

2. When the constant’s type looks like ∀α · · · . · · · → α, the constant
can be applied to a number of extra arguments. Up to Nextra_arg
extra arguments can be applied, and any types that are not
determined are chosen at random.

thesis March 27, 2014 10:04 Page 33 �
�	

�
�	 �
�	

�
�	

4 Generation method 33

3. When the constant’s type is not fully instantiated based on the
target type, the remaining types are chosen at random.

Limiting the number of instances of App and Indirc is done by
selecting arbitrary types at random in places where any type is allowed.
The procedure for random selection of types chooses them based on the set
of types available in the environment. First, a set of base types is created by
considering different combinations of symbols from the environment and
then a ‘small’ random type is generated from it.

Parameter Napp_tries is arbitrarily fixed to 5 and this number of instances
of the App rule are created, as the rule has a high chance of failing if the
wrong type is chosen. Higher values of Napp_tries did not seem to be more
effective in triggering bugs in our testing, but led to excessive backtracking,
which slowed down the generator.

Parameter Nextra_arg is set to 3. Values higher than 1 already did not give
any advantage in testing. We decided to conservatively increase Nextra_arg
to 3, as the there is no performance hit associated with that. Choosing an
arbitrary value for this parameter prevents some terms from being present
in the distribution of the generator. However, we believe that these terms
should occur very rarely in any reasonable distribution and omitting them
is acceptable. Note that generation is not sensitive to this parameter as
using extra arguments is never required for it to succeed.

Weights The random backtracking algorithm tries the rule instances
in a random order in a given recursive invocation. In order to increase
the variety of the generated terms, the rules have weights assigned to
them. Instances of rules with higher weights have higher chances of being
tried first. Weights assigned to rules are respectively 2 for rules that use
locally-bound variables, 1 for rules that introduce constants and 4 for the
rules for introducing an application or a λ-expression. We tried different
combinations of weights and found that increasing the weights on the App

and Lam rules increases the chances of triggering bugs during our testing.
On the other hand, increasing the weight of the App rule beyond 4 (if other
weights are low) causes excessive backtracking. We also chose to prefer
local variables to constants as using them should lead to expressions with
more ‘interesting’ semantics.

Instance selection Selecting viable instances of rules involving vari-
ables Lam and Indirv , is relatively easy and involves checking for equality
between monomorphic types. Choosing instances of Indirc is done by
performing unification of the target type with possibly modified types of
constants.

thesis March 27, 2014 10:04 Page 34 �
�	

�
�	 �
�	

�
�	

34 i Testing an Optimising Compiler . . .

Generating terms containing seq Some of our applications require
generating terms that contain occurrences of the following constant.

seq :∀αβ.α→ β→ β

The purpose of the Haskell function seq is to change strictness of an
expression without changing its semantics in any other way. The meaning
of expression seq a b is the same as that of b, with the difference that the
former is strict in a (however, b might be also strict in a by itself). The
function seq is often used to eliminate space leaks in Haskell programs by
making forcing some expressions to be evaluated. More discussion about
function seq can be found in Section 6.2.

Using this constant expands the generation space greatly, as matching
β against the target type leaves the choice of α completely unconstrained.
Given that seq is most useful in our applications when its first argument
contains locally-bound variables, instead of treating it as ordinary constant,
the generator allows it to have only variables as first arguments.

Distribution

The generator described above works by performing random local choice,
influenced by rule weights, and is restricted by the size parameter. The
distribution of the generated terms is similar to that for a size-limited
generator based on stochastic grammars.

Due to the fact that the size parameter is always distributed evenly
between subterms (Equation 4.1), the distribution of the generated terms is
biased towards full trees, compared to the uniform distribution of terms
with ‘n’ nodes.

The current design of the generator results in that some terms whose
generation involves guessing of types, as described in Section 4.2, might be
underrepresented in the distribution if successful generation of subgoals of
a rule depends on specific types being chosen in that instantiating that rule.

5 Shrinking

Counterexamples found by random generation of lambda terms often look
strange and convoluted. However, in order to come up with a useful bug
report the counterexample must be convincing to the developers working
on the project.

thesis March 27, 2014 10:04 Page 35 �
�	

�
�	 �
�	

�
�	

5 Shrinking 35

The following term was found to violate a property, described in Sec-
tion 6, that optimisation should not increase strictness.

(λa.seq a ((λb.seq a (λc.seq b tail)) (a (head undefined))

(case1 (λb.length) (seq a 2) (seq a undefined))))

(λa.seq a ((λb.seq a (seq a (seq a (λc.seq c (seq b undefined)))))

(seq a (λb.seq b (λc.a)))))

The term is a tangible proof that there is something wrong with the tested
compiler, however to say what goes wrong exactly is more difficult. In
particular, tracing the execution of the compiler on it is likely to be very
labour-intensive because of the size of the term, which would make identi-
fying the root cause of the bug difficult.

Fortunately, it is quite likely that only part of the test case is relevant
for triggering the problem and there probably exists a smaller term that
triggers the same bug. We use a technique called shrinking [Claessen and
Hughes, 2000] to search for a simpler counterexample that also triggers a
bug. Shrinking was able to reduce the above counterexample to a simpler
term that violates the same property:

(λa.seq a (seq (a undefined) tail)) (λa.seq undefined (+1))

The shrunk term is much smaller than the original one, which makes
its analysis much easier. It is also minimal in the sense that it cannot be
further reduced, which suggests that the term contains only parts that
are required for triggering the bug. Furthermore, shrinking reduces the
variation of terms reported as counterexamples, as different terms originally
found during testing often shrink to the same or very similar terms. This
makes differentiation between different bugs easier as one bug is typically
represented by a set of similar shrunk terms.

Moreover, looking at different shrunk terms that violate one property
can give even stronger hints about the problem that is triggered. For
example, most terms found by this property contained subterms that look
like λa.seq undefined ..., which define a function that is a defined value
itself, but returns ⊥ given any argument.

Given their size and understandability, shrunk terms are good candi-
dates for including in bug reports as they are more likely to convince the
developers that the reported bug is worth fixing.

5.1 Shrinking simply-typed lambda terms

Shrinking is done by searching for a smaller term similar to the original
one that also causes the given property to fail. Smaller shrinking candidates

thesis March 27, 2014 10:04 Page 36 �
�	

�
�	 �
�	

�
�	

36 i Testing an Optimising Compiler . . .

are created by reducing the term structurally. When one of the shrinking
candidates triggers a failure shrinking will try to reduce it further. The
example term shown earlier has been shrunk in 17 steps.

To illustrate a shrinking step, suppose that the term below provokes
some failure.

(λx.id (tail x)) (b ++ b)

Constants that appear in it represent common Haskell functions and have
the following types:

id : ∀α.α→ α
tail : ∀α.List α→ List α
(++) : ∀α.List α→ List α→ List α

Constant b is a list of integers and has type List Int.
In search of a smaller term that also provokes a failure, we may turn

to looking at subterms of the original term. For example, subterm b ++ b,
which has the same type as the original term, could be considered. Term
λx.id (tail x) cannot be used as it has a different type. Terms id (tail x),
and tail x, although having the right type, contain an unbound variable5

so we cannot use them as either.
However, it also makes sense to perform simplifications inside of the

term. For example, b ++ b may be replaced with b, since they have the same
type, which gives:

(λx.id (tail x)) b

Similarly, we may make a replacement inside of the lambda expression:

(λx.tail x) (b ++ b)

Also, the whole lambda expression, which has type Int → Int, may be
replaced with its subterm:

tail (b ++ b)

Another way in which we could simplify a term is by replacing its part
with a constant of the right type. For example, if the environment contained
constant [] (empty list), we could replace one of the list subterms with it:

(λx.id []) (b ++ b)

Finally, we can simplify a simply-typed lambda term by performing
β-reduction on it, that is inline the function’s argument into its body.

The formal properties of the simply-typed lambda calculus ensure that
we can do this reliably as two important guarantees are made—that (a) the

5Terms with unbound variables are not well-typed and thus technically have no type.

thesis March 27, 2014 10:04 Page 37 �
�	

�
�	 �
�	

�
�	

5 Shrinking 37

a

b

e

c

f g

d · · ·

Figure 1.6: Shrinking process. Test cases that fail are marked in grey. Dotted
test cases are not considered.

resulting term is well-typed and that (b) β-reductions always terminate.
The second property is non-trivial as the size of a term might increase after
a β-reduction.

The considered term contains one function applied to an argument, so
it may be β-reduced in one way:

id (tail (b ++ b))

5.2 Shrinking using QuickCheck

The example above illustrates all ways of shrinking a term. This subsec-
tion presents a semi-formal description of the generic shrinking process
performed by QuickCheck.

In each step of the shrinking process a number of shrinking candidates
are tested, which are reduced versions of the original test case. When
one of them fails, the shrinking step is concluded and the newly found
counterexample becomes the starting point for the next shrinking step.

Figure 1.6 contains an illustration the shrinking process. Test case a is
the original counterexample found during testing, which is subsequently
shrunk. The first shrinking step considers a’s shrinking candidates b, c,
d, and so on, which are tested in turn. Test case b, which is considered
first, succeeds and is discarded. Test case c fails and becomes the ‘current’
shrunk test case, whose shrinking candidates are tested in the next step. In
this step g is found to falsify the property and the process continues with
its shrinking candidates. Shrinking terminates when all current shrinking
candidates succeed, or when a test case does not have any, and the last
failing test case is reported.

thesis March 27, 2014 10:04 Page 38 �
�	

�
�	 �
�	

�
�	

38 i Testing an Optimising Compiler . . .

Note that the failing test case e from Figure 1.6 is never considered,
because shrinking looks only at immediate shrinking candidates of a failing
test case. Also, test case d is not considered, because it occurs after the
failing c in a sequence of shrinking candidates. Shrinking is a greedy
algorithm that performs local choice, which is not guaranteed to be optimal.
The resulting shrunk test case is only a local minimum. However, good
choice of a specific shrinking method tends to give results that are not far
away from optimal.

A shrinking method for a particular data type is defined as a function
that maps each element of that data type to a list of shrinking candidates
defined as the following Haskell function:

class Arbitrary a where

...

shrink :: a -> [a]

The shrinking candidates should be smaller than the original element,
but the measure by which they are smaller can be freely chosen by the
developer of the shrinking method. The only formal requirements on the
function are that (a) it is total, (b) that lists of candidates are finite and (c)
there are no infinite chains of shrinking steps. These requirements ensure
that the shrinking process will always terminate, either when all shrinking
candidates succeed, or when the current term has an empty list of shrinking
candidates.

5.3 Shrinking method for simply-typed lambda terms

The particular shrinking method for the simply-typed lambda terms that
works as described in the beginning of the section can be defined by
performing 3 kinds of steps:

Rule 1. replace with subterms A subterm may be replaced with its proper
subterm, if their types are equal. Care must be taken to avoid referring
to variables bound by removed λ-bindings.

Rule 2. β-reduce A term may be β-reduced.

Rule 3. replace with constant Any subterm that is not a constant may be
replaced with a constant if the types agree.

There is a possible optimisation that we could introduce in Rule 1—we
may restrict it to only consider replacing subterms with their immediate
proper subterms of the right type. For example, term 0 + (1 + 2) may be

thesis March 27, 2014 10:04 Page 39 �
�	

�
�	 �
�	

�
�	

5 Shrinking 39

replaced by 1 using the unrestricted Rule 1, but not using the restricted one,
because 1 is a proper subterm of 1 + 2 that can also be used.

The idea behind this restriction is that 1 will be tried anyway in a
later shrinking step and that omitting unnecessary shrinking candidates
prevents the list from being excessively long. This is important, for example,
when shrinking the data type of binary trees where the total number of all
subtrees might be rather large. Since shrinking has to respect types, we
expect this optimisation to have a smaller effect in the case of simply-typed
lambda terms, however we decided to take it into consideration. The effects
of this restriction are investigated later in Section 5.8.

5.4 Properties of shrinking

There are two important properties that must be established for our shrink-
ing method: that (a) shrunk terms are well-formed and that (b) there can
be no infinite sequence of shrinking steps.

Shrinking produces well-typed terms It is easy to see that rules 1 and 3

turn well-typed terms into well-typed terms as their construction explicitly
ensures that. For rule 2, which performs β-reduction, it is not trivial.
However, a known result for the simply-typed lambda calculus called subject
reduction[Pierce, 2002] states exactly that β-reduction is type-safe. Even
though we allow polymorphic constants, our terms can still be modelled
in the simply-typed lambda calculus as the constants are always fully
instantiated. Thus, all three kinds of steps preserve well-typedness.

Shrinking terminates Again, it is easy to see that rules 1 and 3 are
constructed in such way that they always make terms smaller, so they
can never result in non-termination. Rule 2 is more tricky, as it may
increase the size of the term due to duplication when the argument term is
inlined into the function body. However, another standard result, strong
normalisation, states that β-reduction terminates for the simply-typed
lambda calculus[Pierce, 2002].

Unfortunately, even though no rule can cause non-termination by itself,
it is not possible to extend this easily into proof that any combination of
steps will always terminate. We expect that the proof can be extended,
however the extra steps are non-trivial, and thus we leave it for future work.

Unfortunately, even though no rule can cause non-termination if used
in isolation, it is not possible to extend this easily into proof that any
combination of steps will always terminate. We expect that the proof can
be extended, however the extra steps are non-trivial, and thus we leave it
for future work.

thesis March 27, 2014 10:04 Page 40 �
�	

�
�	 �
�	

�
�	

40 i Testing an Optimising Compiler . . .

5.5 Design choices of shrinking

The three ways of simplifying a term were chosen because they comprise
generic ways of simplifying a term. Parts of a counterexample that are not
relevant for triggering a failure might be removed by rules 1 and 3.

It is debatable whether rule 2 that inlines a function argument into its
body is a simplification. In some cases the opposite, β-expansion, might lead
to a simplified term. However, unrestricted β-expansion is non-terminating,
whereas β-reduction terminates even when rules 1 and 3 are present, as we
showed previously.

On top of that, the shrinking process turned out to be effective in practice
as the shrunk counterexamples were not possible to be reduced further by
hand in most cases.

5.6 Shrinking with batch test cases

In order to speed up testing, a single test case contains a list of terms that
are tested together in one run, as described in Section 6. Usually 1000 terms
are tested in one batch. Generating test cases that contain a list of terms is
straightforward in QuickCheck, where it is enough to compose a generic
generator of lists with a generator of terms. Similarly, a shrinking method
can be derived from the generic one for lists. However, this solution has
some shortcomings.

The generic shrinking method first tries to reduce the length of the list
to one element using binary search, and then tries to shrink that element
using its own shrinking function.

This method is inefficient in two ways. First, it does not use the infor-
mation about which term in the list has failed and has to resort to binary
search, adding about 10 unnecessary shrinking steps. And secondly, each
shrinking candidate is compiled separately without taking advantage of
compiling and running them in batches.

An optimised shrinking method would receive the index of the term
that has failed the property, and generate a list of shrinking candidates of
that term that could be compiled in a batch. Thus, it would avoid the initial
search for the failing term and make shrinking that involves many failed
attempts much faster.

It turned out that this can be implemented without changing the im-
plementation of QuickCheck, although at a price of making the properties
less composable. In order to create a property that uses batch test cases we
propose using the following combinator.

forAllParShrink

:: Int -- Number of test cases in one batch

thesis March 27, 2014 10:04 Page 41 �
�	

�
�	 �
�	

�
�	

5 Shrinking 41

-> Int -- Number of shrinking candidates in one batch

-> Gen a -- Test case generator

-> (a -> [a]) -- Shrinking function

-> (a -> String) -- Printing

-> ([a] -> Maybe Int) -- Batch property

-> Gen Prop

The batch property is passed as a function taking a list of test cases and
returning a Maybe Int where Nothing indicates that all test cases succeeded,
whereas Just n means that test case n was the lowest one that failed.

For each run of the property, the function creates a list of test cases
whose length is specified by its first argument. When a failure occurs,
the offending test case, which is pointed to by the index returned by
the property, is passed to the shrinking function, which generates a list of
shrinking candidates. A number of these test cases, limited by the function’s
second argument, is passed again as a batch to the property.

The batch property defined as a function of type [a] -> Maybe Int has
a disadvantage when it comes to composability. Contrast it to the ordinary
forAll combinator, which takes properties of type Testable t => a -> t.
The property defined inside of forAll may itself use any of the QuickCheck
property combinators, such as collect, printTestCase or within, whereas
the one defined using forAllParShrink cannot, and must be defined mono-
lithically.

On the other hand, the property inside of a forAll cannot give any
extra information about the failure to the combinator, such as which test
case failed in the batch, which is precisely why we have to use the type
[a] -> Maybe Int for batch properties.

Shrinking using batch test cases implemented like this was sped up by
factor of around 10–20 in typical cases, using batches that were limited to
having 40 terms.

5.7 Weaknesses and possible improvements

Reducing the variety of constants The shrinking process is not able to
replace a constant in a term with another one because of risk of non-
termination. This leads to many similar terms being reported if a particular
one is not required to trigger a failure. For example, one property generated

thesis March 27, 2014 10:04 Page 42 �
�	

�
�	 �
�	

�
�	

42 i Testing an Optimising Compiler . . .

the following terms:

(-) a ((-) b 0)

(-) a ((-) b 1)

(-) a ((-) b 2)

(-) a ((+) b 0)

. . .

The counter-examples were shrunk to 12 variations, all using a different
combination of constants. Given that shrinking should reduce, if possible,
the number of reported counterexamples for a given bug, it would be
beneficial if all these terms were normalised to a common representative.
One way of doing that would be to establish an ordering on all constants
and allow a ‘larger’ constant to be replaced by a ‘smaller’ one.

A slightly related idea would be to expand constants into their defini-
tions. The expansion, obviously, has to be restricted as recursive definitions
could be expanded forever. Such a rule might solve, for instance, the prob-
lem of transforming 1 into 0, as 1 expanded to (+1) 0 can be reduced to
0. However, even this simple expansion is problematic because the whole
(+1) 0 can be transformed back to 1 using Rule 3 introducing the risk of
non-termination. Also, expanding all non-recursive definitions might make
the terms much larger. Thus, it is not clear how to restrict expansion of
definitions so that it is useful for shrinking.

Retyping subterms Some cases would benefit from being able to replace
a subterm with its proper subterm if it can be retyped to match the type of
the term that it replaces. For example, if subterm λx.[] has type Bool →
List Int it could also be retyped with Int→ List Bool and used to replace
a larger term of this type.

Small improvements Two potential improvements can be experimented
with that would introduce only small changes to the method. Firstly, sub-
terms could be replaced with variables that are in scope with the right type.
And secondly, the shrinking candidates could be ordered in a more compli-
cated way involving, for instance, interleaving of candidates generated by
different rules.

5.8 Shrinking parameters

There are two possible choices in the shrinking method. The first one is
the order in which the shrinking candidates generated by different rules

thesis March 27, 2014 10:04 Page 43 �
�	

�
�	 �
�	

�
�	

5 Shrinking 43

should be considered, which in some cases might influence the result of
shrinking.

The second choice is whether to optimise shrinking by restricting Rule 1

to only consider replacing subterms with their immediate proper subterms
of the right type, as described in Section 5.3.

To assess the effects of these choices on shrinking, we parametrised
our shrinking method over these choices and conducted an experiment
to measure its performance with different parameters. The experiment
was performed by collecting pools of randomly generated unshrunk coun-
terexamples for two properties, shrinking them with different combinations
of parameters and examining their performance based on the results of
shrinking and its speed. The two properties were the ones discussed in
Sections 6.1 and 6.2 of the next chapter and each of the pools contained 200

terms. While it is certainly worth extending the experiment to cover more
properties, or even other applications than just testing ghc, the data that
we obtained should give us some idea about the influence of parameters.

The results of the experiment suggest that restricting Rule 1 yields no
negative effects on the quality of shrunk terms while improving the speed of
shrinking by a small margin. The outcomes are less conclusive about which
order of shrinking rules should be used. All orderings deliver comparable
quality of shrunk terms, but differ in the numbers of shrinking steps and
failed shrink attempts performed during shrinking. Although we can spot
orderings that are clearly better than others, it is not possible to nominate
the best one, if we assume that batch shrinking (described in Section 5.6) is
used.

In this section we present the data that we gathered together with our
analysis. We also propose recommendations based on that, but some of our
conclusions are not definitive and for that reason we present our analysis
in detail to allow drawing alternative conclusions from it.

Immediate subterms

First, the parameter defining whether to consider only largest applicable
subterms was evaluated. Due to the fact that shrinking is a greedy process,
it is impossible to predict the outcome of restricting the lists of shrinking
candidates, but we expected that doing it might reduce the numbers of
failed shrinking attempts. At the same time, it might reduce the effective-
ness of shrinking.

The experiment showed that using this restriction has no effect on the
results of shrinking whatsoever, as all the terms were shrunk in the same
way regardless of it. The number of successful shrinking steps was also the
same in all cases.

thesis March 27, 2014 10:04 Page 44 �
�	

�
�	 �
�	

�
�	

44 i Testing an Optimising Compiler . . .

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Fa
ile

d
sh

ri
nk

s

Shrinking steps

Figure 1.7: Number of shrinking steps and failed shrink attempts for
different terms from a pool

However, the number of unsuccessful shrinking attempts for some terms
was higher when all proper subterms were considered during shrinking.
The differences were not large on average, with up to 2% more failed
attempts in the first property when a specific ordering of shrinking rules
was used (the other parameter of shrinking) and up to 7% more in the
second one. The biggest discrepancy for any given term was 22% more
failed attempts in the first property and 64% in the second one, however
these were isolated cases.

There are typically 5–15 more failed shrinking attempts than successful
steps for a given term. For example, Figure 1.7 shows a scatter-plot for
respective numbers for the first of the considered properties where shrink-
ing was performed with all subterms considered and the with the default
ordering of shrinking rules.

It seems to be very beneficial to limit the number of failed shrink
attempts since their number is often much larger than the number of

thesis March 27, 2014 10:04 Page 45 �
�	

�
�	 �
�	

�
�	

5 Shrinking 45

10

15

20

25

30

35

40

10 15 20 25 30 35 40

Si
ze

of
sh

ru
nk

te
rm

s,
ru

le
or

de
r

3
,2

,1

Size of shrunk terms, rule order 1, 2, 3

Figure 1.8: Sizes of shrunk terms for different terms from a pool; the
diagrams are similar for all other pairs of rule orderings.

successful steps. However, the benefit seems less profound when we
consider that using batch shrinking, described in Section 5.6, makes failed
shrink attempts much cheaper, as in our case up to 40 shrinking candidates
are tested in one batch.

This optimisation has little effect with testing the properties that we used
in our experiment, but we can imagine a situation where terms contain
many subterms of the same type (for example involving a binary tree
data type), in which case the reduction in failed shrink attempts might be
substantial.

Ordering of shrinking rules

The second parameter of the shrinking method is the order in which the
three shrinking rules, mentioned in Section 5.3, are tried on a term.

We investigated the influence of the ordering of rules on the quality of

thesis March 27, 2014 10:04 Page 46 �
�	

�
�	 �
�	

�
�	

46 i Testing an Optimising Compiler . . .

Property 1 Property 2

rule order. shrinks failed shr. shrinks failed shr.

1, 2, 3 10.95 108.43 7.89 61.61

1, 3, 2 10.92 137.92 8.41 119.13

2, 1, 3 12.64 107.93 11.35 52.02

2, 3, 1 7.33 194.85 5.88 155.09

3, 1, 2 6.92 267.45 5.90 310.94

3, 2, 1 6.90 257.39 5.94 290.38

Table 1.1: Shrinking steps and failed shrink attempts

shrunk terms. For any given two orderings of rules, the shrunk terms were
the same in at least 61% of cases for Property 1 and in at least 76% of cases
for Property 2. This makes us think that when we change the ordering of
rules the results of shrinking remain quite consistent.

To compare different shrunk terms that come from the same original
counterexample we decided to use the size of the final shrunk terms as the
measure of their quality, and to naturally prefer smaller terms. Figure 1.8
shows a scatter-plot of sizes of shrunk terms that were generated by Prop-
erty 1 and shrunk using two different rule orderings. The area of each circle
in the plot is proportional to the number of data points that occurred in the
same place.

We can infer by looking at the plot that no ordering of rules is better
than the other when it comes to sizes of shrunk term. Plots for other pairs
of orderings and for Property 2 look very similar to the one in Figure 1.8,
which makes us conclude that the ordering of rules does not influence the
quality of shrunk terms in a measurable way.

The other factor that we considered was the speed of shrinking. Instead
of using wall clock time for benchmarking we used two numbers: (a) the
number of shrinking steps performed during a single shrinking and (b) the
number of failed shrink attempts. Table 1.1 shows the mean values of these
numbers for different orderings of rules. In all cases we consider shrinking
that uses the optimisation presented in Section 5.8.

Looking at Table 1.1 lets us isolate two groups of orderings. The first
three generally result in more successful shrinking steps, but fewer failed
attempts, whereas for the latter three it is the other way around.

For a possible explanation of this phenomenon notice that in the first
group Rule 1 (replacing a subterm with its proper subterm) always precedes
Rule 3 (replacing a subterm with a constant), while in the second group the

thesis March 27, 2014 10:04 Page 47 �
�	

�
�	 �
�	

�
�	

5 Shrinking 47

opposite is the case. We suspect that Rule 3 generates very many shrinking
candidates and many of them fail before a successful one is tested. Rule 1,
on the other hand, if placed before Rule 3, might successfully reduce a
term before shrinking candidates of Rule 3 are considered. Nevertheless,
the lower numbers of shrinking steps in the second group might indicate
that shrinking candidates generated by Rule 3 are more effective in quickly
reducing the term’s size.

Looking more closely at the rule orderings in the first group, we can
see that ordering 1, 2, 3 seems to be better than 1, 3, 2, because the mean
number of shrinks is either very similar (Property 1), or smaller in 1, 2, 3

(Property 2), and the mean number of failed attempts is always lower in
1, 2, 3. Orderings 1, 2, 3 and 2, 1, 3 are closely tied as the mean number of
shrinks is lower in 1, 2, 3, but the mean number of failed attempts is better
in 2, 1, 3 in Property 2 by a considerable margin.

In the second group 2, 3, 1 seems to be the winner thanks to lower
numbers of failed attempts, even though its numbers of shrinking steps are
a little higher.

Having a choice between an ordering from the first group and one
from the second one, which one should we choose? The numbers of failed
shrinking attempts are usually much higher than the numbers of successful
shrinks, which hints at the first group. However, given that when testing
the ghc compiler we use batch shrinking, failed attempts are much cheaper
than shrinking steps as up to 40 shrinking candidates are tested at the same
time. With this assumption, all the orderings get much closer to each other
in terms of performance. In contrast, when batch shrinking is not used,
then the orderings from the first group are clearly better.

Figures 1.9 and 1.10 show scatter-plots of numbers of successful shrinks
and failed shrink attempts for terms generated by Property 1, when using
orderings 1, 2, 3 (first group) and 2, 3, 1 (second group). The scatter-plot of
the numbers of failed shrink attempts is plotted using the logarithmic scale.

As we can see in Figure 1.9, ordering 2, 3, 1 generally results in fewer
shrinking steps, the difference being more than 10 in some cases. On the
other hand, ordering 1, 2, 3 brings about fewer failed shrink attempts, as
shown in Figure 1.10. The discrepancies for some terms are as large as over
1000 failed shrink attempts for ordering 2, 3, 1 and less than 200 for the
other ordering. Given that ordering 2, 3, 1 generates over 800 more failed
shrink attempts for these terms, this corresponds to about 20 more batches
used in shrinking.

Comparisons of other orderings from the two groups yield similar
scatter-plots to the ones presented here, which prompts us to conclude that
the first group results in fewer pathological cases when shrinking takes a

thesis March 27, 2014 10:04 Page 48 �
�	

�
�	 �
�	

�
�	

48 i Testing an Optimising Compiler . . .

0

5

10

15

20

25

0 5 10 15 20 25

Si
ze

of
sh

ru
nk

te
rm

s,
ru

le
or

de
r

2
,3

,1

Shrinking steps, rule order 1, 2, 3

Figure 1.9: Numbers of shrinks for different terms from a pool

long time.

Conclusions about shrinking parameters

We conclude that restricting the shrinking candidates to terms where only
largest applicable subterm can replace its superterm does not yield a
sizeable speed-up. However, we also found that it has no detrimental effect
on the quality of shrunk counterexamples, which is why we recommend
that it is enabled by default.

The conclusions about which ordering of rules gives the best perfor-
mance depends on whether we assume that batch shrinking is used. There
is no measurable difference in the quality of the shrunk counterexamples
when different orderings are used. What differed was the mean numbers
of shrinking steps and failed shrink attempts.

The first three orderings shown in Table 1.1 performed fewer failed
shrink attempts during shrinking, which made them appropriate for situa-

thesis March 27, 2014 10:04 Page 49 �
�	

�
�	 �
�	

�
�	

5 Shrinking 49

10

100

1000

10 100 1000

Fa
ile

d
sh

ri
nk

at
te

m
pt

s,
ru

le
or

de
r

2
,3

,1

Failed shrink attempts, rule order 1, 2, 3

Figure 1.10: Numbers of failed shrink attempts for different terms from a
pool

tions when batch shrinking is not used. Out of this group, orderings 1, 2, 3

and 2, 1, 3 performed particularly well.

When batch shrinking is used, with a maximum of 40 terms in one
batch, as in our case, the differences in the average performance between
the orderings is much smaller. In this case orderings 1, 2, 3 and 2, 1, 3 from
the first group, and 2, 3, 1 from the second one could be considered. Based
on the scatter-plot in Figure 1.10 we would still recommend the orderings
from the first group to limit the amount of pathological cases. Choosing
one of 1, 2, 3 and 2, 1, 3 over the other may impose a hit of 20% in the
worst case, which is why we could arbitrarily choose the first one as a safe
default.

Clearly, some of these recommendations are conditional and weak, but
should serve well as the default values, whereas it should be possible to
use alternative parameters whenever the user chooses to do so.

thesis March 27, 2014 10:04 Page 50 �
�	

�
�	 �
�	

�
�	

50 i Testing an Optimising Compiler . . .

term

module

generate

code

result

run

code

result

run

compile compile opt.

?
=

Figure 1.11: Differential testing

6 Applications

We used the generator to test the ghc compiler using differential testing [Mc-
Keeman, 1998] directed towards testing the compiler’s middle-end. Even
though the generator was capable of generating only a very limited subset
of all Haskell programs, it was able to uncover interesting bugs in the
compiler.

The testing resulted in finding eight interesting failures and four bugs
were reported for ghc and subsequently fixed. The counterexamples
obtained were concise enough to be understandable thanks to automatic
shrinking.

Apart from bugs detected in the ghc compiler, the testing allowed us
to understand better the effects of optimisation performed by it.

6.1 Strictness changed by optimisation

We investigate whether optimisation performed by ghc influences strict-
ness of the compiled programs. Optimisation is performed on a program in
order to turn it into a more ‘optimal’ one without changing its observable
behaviour, where more ‘optimal’ might mean, for example, one that runs
quicker. However, erroneous transformations might change the semantics
of a program. In particular, changes in strictness, while subtle, can influence
the program’s observable behaviour—for example, the program may crash
or consume more memory than it should.

thesis March 27, 2014 10:04 Page 51 �
�	

�
�	 �
�	

�
�	

6 Applications 51

module Main where

import Control.Monad (forM_)

import qualified Control.Exception as E

import System.IO (hSetBuffering, stdout,

BufferMode (NoBuffering))

handler (E.ErrorCall s) = putStrLn $ "*** Exception: "

inputs :: [[Int]]

inputs = ...

code :: [Int] -> [Int]

code = ...

main = do

hSetBuffering stdout NoBuffering

forM_ inputs $ \x -> do

E.catch (print $ code x) handler

Figure 1.12: Module skeleton

To detect whether the ghc’s optimiser modifies strictness of some
expressions we used differential testing where observed output of an opti-
mised program is compared with observed output of the same program
compiled with no optimisation, as shown in Figure 1.11. Changes in strict-
ness of expressions might result in less or more output to be printed by
tested functions before crashing.

A generated term whose strictness is to be analysed is compiled as part
of a module whose skeleton is shown in Figure 1.12. The generated term is
bound to the code variable and is a function of type [Int] -> [Int].

The main function of the module is devised to print the results of the
code function applied to a small number of partially-defined lists of in-
tegers defined by the constant inputs, which we elide here. Expression
print $ code x prints the result of the function, and thus forces its evalua-
tion.

When an error is encountered during the evaluation, it is caught as an
exception by E.catch. The exception handler prints a message indicating an
exception, but disregards its exact kind as we do not consider changing the
exception kind as a change in program’s semantics following the Haskell
Report [Marlow, 2010]. The program is then allowed to continue to evaluate
the function for all remaining inputs.

thesis March 27, 2014 10:04 Page 52 �
�	

�
�	 �
�	

�
�	

52 i Testing an Optimising Compiler . . .

To provide accurate information on partial values potentially returned
by the observed function, it is necessary to turn off output buffering, which
is done by calling hSetBuffering in the main function. Had buffering been
active, the printing code would try to print a whole line of characters at
once and if an exception were triggered before the buffer is flushed, the
output that had already been generated would be discarded. Therefore, we
would not be able to distinguish between different partially-defined results.
On the other hand, when buffering is turned off, characters are printed one
by one and the exception handler will trigger only after the last defined
character is printed. Even though a more accurate technique is available for
discovering the semantics of partial values [Danielsson and Jansson, 2004],
we chose this method as fast and accurate enough.

Each module created from the skeleton is compiled in two variants. The
unoptimised variant is compiled without any optimisation options, which
results in the default -O0 ‘zero’ optimisation level. The optimised variant is
compiled with -O -fno-full-laziness, which turns on typical optimisation
options, but turns off the full laziness optimisation, which is also known as
let-floating. The reason for leaving out full laziness is that it is known to
change the strictness of compiled code and that examples involving it are
less interesting.

The initial environment for terms contains simple integer constants and
functions, like 0 and +, as well as common functions operating on lists from
the Haskell prelude. The initial environment that is used in this subsection
is presented in Figure 1.13.

Given that we want to test the strictness of compiled functions, we must
make sure that their arguments are not inlined, otherwise each function
would be compiled and optimised many times together with each of its
arguments. Fortunately, iterating through inputs using the forM_ function
is enough to stop ghc from inlining the arguments.

Due to high fixed cost associated with compilation and linking a mod-
ule, 1000 terms are included in a single ‘batch’ module during testing,
which requires a slightly different module skeleton and a suitable output
comparison procedure.

Testing the property for a given generated term is done by (1) creating
a module using the skeleton from Figure 1.12, (2) compiling it twice with
different optimisation settings, (3) running the compiled modules and (4)
comparing their output for equality. If the outputs are different then we
have found a counterexample that has a different observable behaviour
depending on the optimisation options. We can define the property in
a more formal way as follows, where t is the term, module is a function
that creates a module out of a term, and c∗ and run are functions that,

thesis March 27, 2014 10:04 Page 53 �
�	

�
�	 �
�	

�
�	

6 Applications 53

seq :: a -> b -> b

id :: a -> a

[] :: [a]

0 :: Int

1 :: Int

2 :: Int

(+) :: Int -> Int -> Int

(+1) :: Int -> Int

(-) :: Int -> Int -> Int

(:) :: a -> [a] -> [a]

enumFromTo :: Int -> Int -> [Int]

enumFromTo’ :: Int -> Int -> [Int]

head :: [a] -> a

tail :: [a] -> [a]

take :: Int -> [a] -> [a]

(!!) :: [a] -> Int -> a

length :: [a] -> Int

filter :: (a -> Bool) -> [a] -> [a]

map :: (a -> b) -> [a] -> [b]

null :: [a] -> Bool

(++) :: [a] -> [a] -> [a]

odd :: Int -> Bool

even :: Int -> Bool

(&&) :: Bool -> Bool -> Bool

(||) :: Bool -> Bool -> Bool

not :: Bool -> Bool

True :: Bool

False :: Bool

foldr :: (a -> b -> b) -> b -> [a] -> b

(==) :: Int -> Int -> Bool

(==) :: Bool -> Bool -> Bool

(==) :: [Int] -> [Int] -> Bool

case1 :: (a -> [a] -> b) -> b -> [a] -> b

undefined :: a

Figure 1.13: Initial environment. Many instances of (==) are needed be-
cause our generator does not support Haskell type classes. The constant
enumFromTo’ is our own definition where the second argument is the length
of the enumeration. The constant case1 is another definition that performs
case analysis on lists.

thesis March 27, 2014 10:04 Page 54 �
�	

�
�	 �
�	

�
�	

54 i Testing an Optimising Compiler . . .

respectively, compile and run the module yielding its output:

∀t.run(copt(module(t))) = run(cnoopt(module(t)))

Results

The property described above led to observing a discrepancy between
optimised and unoptimised code for about one in 10000 terms, which takes
about 3 minutes of CPU time when terms are tested in batches.

One failure for each 10000 tests is an unusually low number for a
QuickCheck property, and we might speculate why this number is so low.
One likely reason is the very high number of all expressions even among
terms of small size. It is possible that failing test cases comprise a small
number of all expressions. Another possible reason is an imperfect distri-
bution of our generator, which may increase the probability of generating
the same terms many times.

All counterexamples that we present here have been shrunk by the
shrinking process, which means that any further shrinking results in a test
case that does not trigger a failure.

Failure 1 The following snippet is an example expression that violated
the property.

foldr (\a -> seq) id ((:) 0 (undefined::[Int]))

For clarity, it can be rewritten as follows by η-expanding one of the subex-
pressions, while keeping the same behaviour:

foldr (\a b c -> seq b c) id (0 : undefined :: [Int])

The expression exhibits different observable behaviour depending on com-
pilation options, which indicates that at least one of the versions is compiled
wrongly. However, to find out which one we must determine by hand what
is its correct semantics.

The intended semantics of the higher-order function foldr is to return
its first argument applied to the first element of the list (variable a gets
bound to 0) and to the result of foldr’s recursive call (b gets bound to the
result of the recursive call). Function foldr is defined as a two-argument
function, but is applied to three arguments in its context.

The whole expression should reduce to \c -> seq (foldr ...) c, which
acts as the identity function except when expression foldr ... crashes, in
which case the whole expression should also crash when applied to an
argument. The expression should in fact crash as the recursive foldr is
applied to the undefined list.

thesis March 27, 2014 10:04 Page 55 �
�	

�
�	 �
�	

�
�	

6 Applications 55

We were able to construct a simple program that demonstrates the
incorrect compilation, shown below, which is simpler than the original
module and more suitable for submitting a bug report.

main = print $

wrap

(foldr (\a b c -> seq b c) id (0 : undefined::[Int]))

[0]

The tested expression is passed as argument to wrap, which acts as the iden-
tity function and an example list [0] is applied to the resulting expression.
The purpose of wrap is to prevent the expression from being simplified
together with its argument, which is achieved by implementing wrap in
such way that ghc cannot reduce it6.

wrap :: a -> a

wrap x = [x]!!0

When the program is compiled using ghc without optimisation, it
prints

program: Prelude.undefined

which indicates that the expected exception has been raised. However, with
optimisation turned on, the expression gets incorrectly compiled into the
identity function and [0] is printed instead. A likely explanation for this is
that seq is somehow omitted from the generated code.

The demonstrated change in observable behaviour caused by optimi-
sation violates the semantics defined by the Haskell Report. To assess the
seriousness of this bug we will analyse its possible consequences.

The bug might cause a crashing function to successfully return a result.
This does not seem dangerous, but can have two implications. First, it is a
surprise factor for the programmer, which may hinder the understanding of
the code. And furthermore it may invalidate a partial correctness arguments
about a program, which state that Program has property P if it terminates. If the
program’s overall correctness relies on such partial correctness argument,
the programmer might be mistakenly convinced about its correctness.

A more common manifestation of the bug might be, however, a space
leak caused by an omitted seq application. Common wisdom about Haskell
programs compiled using ghc is that optimisation occasionally reduces
their performance, which often happens by introducing space leaks. This
and similar bugs might have a role in causing the performance regressions.

6Using the builtin function of ghc named GHC.Exts.lazy has the same effect.

thesis March 27, 2014 10:04 Page 56 �
�	

�
�	 �
�	

�
�	

56 i Testing an Optimising Compiler . . .

Failure 2 Another counterexample yielded by the same property is this
expression.

seq (seq (head []) (\a -> undefined))

Identifying incorrect compilation again requires analysing the expression’s
semantics. The nested expression containing seq should evaluate to an
exception, since its first argument is head of an empty list. Therefore the
whole expression should also be a function that crashes. To demonstrate
the error we can use the same skeleton program as with the previous term.

main = print $

wrap (seq (seq (head []) (\a -> undefined))) [0]

Compiling the program with no optimisation yields the correct result.

program: Prelude.head: empty list

However, when compiled with optimisation, the expression behaves as
the identity function and yields [0]. Thus, the semantics in the optimised
version is changed to more lazy, which is a similar to the problem triggered
by the expression in Failure 1.

The fact that the counterexample that we are considering has been
shrunk allows us to draw some conclusions about the bug that has been
triggered. From the way the shrinking is performed, we know that neither
of the shrinking candidates generated from the reported term failed the
property. This means that if we simplify the counterexample in a structural
way it will no longer be a counterexample.

For example, if we replace the expression head [] with undefined the
term will be compiled correctly, or at least testing will not detect any
error. Note that these two terms ought to have the same semantics, nev-
ertheless using head [] is required to trigger a bug. We might speculate
that undefined is correctly identified by the compiler as a crashing expres-
sion, while head [] is not, which makes the compiler perform different
transformations each time.

Another term that would look like a good candidate for replacement
is \a -> undefined and again replacing it with undefined makes the failure
go away. If treated as functions, both terms behave as undefined functions,
but it is possible to differentiate between them by executing seq on them.
One hypothesis might be that the compiler at some point assumes that
\a -> undefined is equal to undefined ‘for all practical purposes’, but the
distinction between them turns out to be relevant in this context.

This speculation might be further reinforced by looking at some other
counterexamples for the same property, presented below.

thesis March 27, 2014 10:04 Page 57 �
�	

�
�	 �
�	

�
�	

6 Applications 57

seq (seq ((!!) ([]::[] Bool) 0) (\a -> (undefined::Int)))

seq (seq ((!!) ([]::[] Bool) 0) (\a -> (undefined::Int)))

seq (seq ((+1) (undefined::Int)) (\a -> (undefined::Int)))

seq (seq (even (undefined::Int)) (\a -> (undefined::Int)))

seq (seq ((+) (undefined::Int) 0) (\a -> (undefined::Bool)))

All of them are structured similarly to the original one, having a crashing
expression (but not error ... or undefined) as the argument of the nested
seq, and \a -> undefined as the second argument of the other seq. This
may suggest which combination of features is needed to trigger a failure
and which details are not relevant in an expression.

Apart from the expressions shown above, several other groups of ex-
pressions could be distinguished among the ones reported by the property.
It is impossible to say, based on testing, if each of the groups is caused
by a distinct bug, or whether there is one bug that causes all the failures.
By looking at bug fixes that were added to the ghc we deduced that, for
example, this failure was probably caused by a different bug than Failure 1.

Failure 3 Counterexamples presented in previous examples were terms
whose behaviour was always more lazy in the optimised version of the
program, and indeed all found terms that were scrutinised by us during
testing had this characteristic. We decided to check if it is possible to find a
term that is more strict when it is compiled with optimisation.

For this we modified the function that compares outputs of two variants
of a program compiled with different optimisation levels to signal failure
only when the optimised version prints less output, indicating that it is
more strict. As expected, terms like this were much harder to come across,
but still possible to find at a rate about 100 times lower than the previous
kind.

The following term was found by the modified property.

(\a -> seq a (seq (a []) id)) (\a -> seq undefined (+1))

For clarity we might rewrite it as follows:

let a = \x -> seq undefined (+1) in a ‘seq‘ a [] ‘seq‘ id

If we consider its semantics: variable a is bound to a function whose
semantics is equivalent to that of \x -> undefined, which means that seq a x
is defined, but seq (a y) x is undefined for any defined x and y.

Given that the considered expression performs seq both on a and on
a [] its result should be undefined and the correct outcome of a program
that evaluates this expression should be a raised exception. Strangely

thesis March 27, 2014 10:04 Page 58 �
�	

�
�	 �
�	

�
�	

58 i Testing an Optimising Compiler . . .

enough, compiling the expression with no optimisation gives a program
that prints [0] (when the expression is applied to [0]) instead of crashing
and with optimisation turned on the result is correct.

It seems, thus, that our working hypothesis that unoptimised programs
are correct and should be treated as reference for testing is not always
true as we have just found a program that gets fixed by compiling with
optimisation.

This very unexpected bug was reported as ticket 5625
7 in the ghc bug

tracker and was subsequently fixed.
As previously, we may look at other reported counterexamples to deter-

mine what features of the expression are relevant to causing failures. The
counterexamples are shown below, each spanning two lines.

(\a -> seq (a (seq a (undefined::[] Int))) id)

(\a -> seq (undefined::[] Int) (+1))

(\a -> seq a (seq (a (undefined::[] Int)) tail))

(\a -> seq (undefined::[] Int) (+1))

(\a -> seq a (seq (a ([]::[] (Int -> Int))) (:)))

(\a -> seq (undefined::[] Bool) (+1)) 0

(\a -> seq (a (seq a (undefined::[] Int))) id)

(\a -> seq (undefined::Bool) (\b -> head))

(\a -> seq (a ([]::[] Int) (undefined::Int)) (seq a))

(\a -> \b -> seq (undefined::Int) (+1)

The common features visible in these expressions are (a) subexpression
\x -> seq undefined e (slightly modified in the last example) that is bound
to the variable a of the first function, and (b) that variable a is used twice
in the function. Given the expected semantics of the subexpression, it may
also be important that a is applied to an argument at least once in each
counterexample.

It is worth noting that it is actually possible to reduce this counterex-
ample further by hand. It appears that the bug is triggered only if a is not
inlined and the reported term contains two occurrences of a, which prevent
it from being inlined. But if we move out a to become a top-level definition
and export it from the module then only one occurrence of a is needed. The
module demonstrating the bug becomes then:

module Main (a, main) where

a = \x -> seq undefined (+1)

7Available at http://hackage.haskell.org/trac/ghc/ticket/5625. All ghc tickets can be
accessed in this manner by altering the ticket number.

http://hackage.haskell.org/trac/ghc/ticket/5625

thesis March 27, 2014 10:04 Page 59 �
�	

�
�	 �
�	

�
�	

6 Applications 59

main = do

print $ (a [] ‘seq‘ id) [0]

Were the bugs fixed?

In the three examples presented above, we demonstrated that ghc may
subtly change the semantics of expressions by changing their strictness.
The compiled expressions were too lazy, which in two cases was caused by
optimisation, while in one case optimisation unexpectedly fixed the error.

The counterexamples reduced by the shrinking process were concise
enough for us to initially analyse and understand the failures. Even though
we have no expertise about the internals of the ghc compiler, we were able
to make educated guesses about the failures based on the counterexamples.
Furthermore, the found test cases were of high enough quality that they
could be used in bug reports. Out of the three presented expressions, one
was used to submit a bug report for ghc.

The bugs causing all three failures have been fixed. The term in
Failure 1 is no longer miscompiled by ghc 7.3.20111127 when option
-fpedantic-bottoms is used. The option was introduced as a fix for another
bug that we reported (ticket 5587). Therefore, we conclude that the fix
affects also this failure.

Failure 2 has been fixed before ghc version 7.3.20111022. However, we
cannot identify a specific bug that is relevant. The bug concerning Failure 3

has been fixed before ghc version 7.3.20111127 through ticket 5625.

Failure 4 Out of the hundreds of reported counterexamples, those that
were scrutinised by us always contained seqs. This is not surprising as seq

is a construction that is a difficult case for the compiler. However, grepping
through the counterexamples revealed that there are several that do not
involve seq, all rather similar.

Here is the simplest of such terms that has been found:

\a -> foldr (\b -> \c -> c) (undefined ()) (a ++ a) 0

The correct semantics of this function applied to a defined list is to concate-
nate the list with itself and then execute a fold on it. The fold ignores the
elements of the list, but threads through the initial value of the fold. The
initial value, which is undefined (), is returned as the result of the fold and
is applied to 0, so the whole expression should crash with an exception.

Compiling the code with no optimisation yields correct results, but the
following program was found to demonstrate incorrect compilation:

thesis March 27, 2014 10:04 Page 60 �
�	

�
�	 �
�	

�
�	

60 i Testing an Optimising Compiler . . .

f :: [Int] -> [Int]

f a = foldr (\b -> \c -> c) (undefined ()) (a ++ a) 0

main = print $ f []

When compiled with no optimisation it correctly prints

program: Prelude.undefined

However, when optimisation is turned on, the program does not crash, and
does not print any output. This is surprising, as we would expect that the
program would either crash or print a list of integers, which is the type of
values returned by f.

To investigate how this happens, we looked at the intermediate Core
representation of the program, which revealed that the code that is sup-
posed to print the resulting list is missing. The only sensible reason why
a compiler would omit this code is that it expects the function to crash
before returning the value. This seems a likely guess, as ghc strictness
analysis marks f as a function returning bottom. To confirm our findings,
we decided to fool the ghc’s strictness analyser using the wrap function.

f :: [Int] -> [Int]

f a = foldr (\b -> \c -> c) (undefined ()) (a ++ a) 0

main = print $ wrap $ f []

When the result of f is passed through wrap, the printing code is included
and a (somewhat less) incorrect result gets printed.

[]

But unlike previous examples, where expressions were lazier as a result of
some seqs not being executed, here they do not occur and the returned value
seems arbitrary. Indeed, it turned out that the body of f is polymorphic in
the result type and we can make it return an integer, as follows:

f :: [Int] -> Int

f a = foldr (\b -> \c -> c) (undefined ()) (a ++ a) 0

main = print $ wrap $ f []

This program, when optimised, prints:

1099511628032

thesis March 27, 2014 10:04 Page 61 �
�	

�
�	 �
�	

�
�	

6 Applications 61

What is more, when we choose (Int, Int) as the result type, the program
dies with a segmentation fault.

Earlier in this section, we discussed the situation where a partial cor-
rectness argument might be invalidated if some expression in a program
is evaluated successfully by mistake instead of crashing. This example
suggests that ghc itself can fall into this trap. If ghc’s analysis concludes
that f [] will crash, then the compiler is ‘careless’ about handling its result,
because it believes that the result will never be returned. Due to an error
in optimisation, the result is nevertheless returned, which may lead to the
effects that we demonstrated. Thus, failure to throw an exception may lead
to worse consequences than space leaks or too lazy expressions.

The bug was reported as ticket 5626 and fixed as a result of another bug
report.

6.2 Optimisation influencing the evaluation order

We decided to investigate whether optimisation changes the order of eval-
uation of expressions, which is interesting for two reasons. First, it is
interesting to see which changes actually take place to get an understand-
ing of optimisations performed by ghc; and secondly, to relate that to the
changes that ghc is allowed to make, as it is possible that the evaluation
order is changed in an invalid way.

The Haskell programming language is designed with the intention
that the evaluation order should not matter for programs. Specifically,
the evaluation order is not observable, unless the program uses unsafe
programming constructs, and the compiler is free to use any evaluation
order as long as the non-strict semantics is preserved [Marlow, 2010].

Still, the evaluation order is important for reasons of efficiency, which
is why ghc gives certain guarantees about it to make it possible to write
efficient programs. Essentially, the evaluation order used by ghc is deter-
mined by the call-by-need evaluation strategy, with the exception that in
some cases the order might be chosen freely by the compiler [Peyton Jones
et al., 1999].

A Haskell program may exhibit different levels of space usage depend-
ing on what is the exact order of evaluation [Gustavsson and Sands, 2001],
but efficient programs rely on the additional guarantees provided by ghc

for predictable space behaviour.
Determining the evaluation order is impossible in general, since it is not

observable as far as pure computations are concerned, but we can use a
trick to observe it. To detect which of two subexpressions of an expression is
evaluated first, we can make use of catching exceptions. Not unexpectedly,

thesis March 27, 2014 10:04 Page 62 �
�	

�
�	 �
�	

�
�	

62 i Testing an Optimising Compiler . . .

catching exceptions is an impure operation, which is why it lets us observe
the evaluation order.

Consider expression e that contains two subexpressions a and b.

e = . . . a . . . b . . .

We can replace the two subexpressions with error terms as follows:

e′ = . . . error "aaa" . . . error "bbb" . . .

If evaluation of the term requires both subterms to be evaluated, one of the
exceptions will be thrown and precisely which one gets thrown depends
on their relative evaluation order. It is reasonable to expect that the error
term that is evaluated first will yield an exception.

Replacing a subexpression with the error x expressions carries the
risk that the presence of undefined subterms will affect the optimisations
performed by the compiler on the expression. Thus, instead of placing the
error x terms inside of the expression it is better to create a function that is
later applied to suitable error terms and make sure its arguments are not
inlined.

e′′ = λab. . . . a . . . b . . .

e′′ (error "aa") (error "bb")

Testing was performed using the same approach as with the previous
property, that is by comparing outputs of the same module compiled
with different optimisation options. The module skeleton was slightly
different as this time we were interested in discriminating between different
exception kinds. Therefore, the exception handler also prints the exception
string:

handler (E.ErrorCall s) = putStrLn $ "*** Exception: " ++ s

The modules were again compiled with no optimisation and with
-O -fno-full-laziness options. The criterion for selecting offending terms
was that a different exception from the two passed as arguments is thrown
by each variant of the module.

Results

Failure 5 Terms that exhibit the above behaviour turned out to be quite
common. One of the simplest terms found is the following:

\aa bb -> seq aa (seq bb aa)

We can rewrite it using the infix notation for seq for clarity.

thesis March 27, 2014 10:04 Page 63 �
�	

�
�	 �
�	

�
�	

6 Applications 63

\aa bb -> aa ‘seq‘ bb ‘seq‘ aa

The term represents a function that forces the evaluation of both of its
arguments and returns the first one. When applied to two error terms
the unoptimised and optimised versions produced different results. The
unoptimised one printed the exception thrown by the first error term:

*** Exception: aa

The optimised threw the other exception, indicating that bb is evaluated
first.

*** Exception: bb

Inspecting the ghc’s internal Core representation of the optimised program
reveals that the code of the function was transformed by the compiler into
\aa bb -> bb ‘seq‘ aa, omitting the seq operation on aa altogether.

This result surprised us at first, as seq is often used to eliminate space
leaks by making sure that its first argument is evaluated before the second
one. For example, the definition of the standard library function foldl’

relies on performing seq to avoid a space leak.
To answer whether omitting this seq is acceptable, we consulted the

Haskell Report [Marlow, 2010], which provides the following definition of
seq:

seq bot b = bot

seq a b = b if a /= bot

This definition is a semantic one and ensures that seq is strict in its first
argument, however it says nothing about the evaluation order. A naïve im-
plementation of seq would simply force the first argument before returning
the second one, and this would result in the behaviour which programmers
seem to rely on. However, if evaluating the second argument of seq forces
the evaluation of the first one by itself, the compiler might omit the seq

operation without violating the semantics. This is indeed the case in the
discussed example, as returning aa means that it will be forced by the caller
of the function, so forcing it beforehand is not necessary.

The lesson from this example is that seq, which is implemented correctly
by the compiler, might still not guarantee that its first argument will be evaluated
before the second! Unfortunately, many of the Haskell programs and libraries
rely on this guarantee to avoid space leaks, such as the above mentioned
foldl’ function.

This fact, while neglected by many, has been known before. For example,
as outlined in [Marlow et al., 2009], it is apparent that an operation that

thesis March 27, 2014 10:04 Page 64 �
�	

�
�	 �
�	

�
�	

64 i Testing an Optimising Compiler . . .

forces a specific evaluation order is needed for implementing efficient
parallel computations in Haskell. However, restricting seq to allow only a
specific evaluation order might eliminate some optimisation opportunities,
which is why another variant of it called pseq was introduced. The new
construction has the same semantics as seq, but is guaranteed to evaluate
its first argument before its second.

Thus, consistently with [Marlow et al., 2009] and the Haskell Report, we
would make the following recommendation.

• Whenever strict ordering of evaluation of expressions is needed, pseq
should be used.

• The seq operator should be used to change the strictness of expres-
sions, but not to enforce the order of evaluation.

Failure 6 Here is another term reported using the property.

\aa bb -> (+) (length (take bb ([]::[] Bool))) aa

The term performs integer addition of an expression that depends on
arguments bb and aa. At first it seems that bb should always be evaluated
first, since + should evaluate its first argument before the second one.
However, the + operation is one of the cases where ghc is allowed to alter
the evaluation order for reasons of efficiency [Peyton Jones et al., 1999].
Thus, the change of evaluation order in this case is also legitimate.

Many more terms involving seq, + and functions involving + were
reported by the property. Unfortunately, only manual inspection of them
was able to establish whether the changes in the order of evaluation were
allowed, which means that we checked only a small number.

To perform more effective testing of this issue, a more accurate property
would have to be constructed. However, it would require precise modelling
of the Haskell semantics, which is an ambitious task by itself. It is not clear
if a truly ‘differential’ technique that does not rely on a complex oracle
could be applied here.

6.3 Equivalence of inlined and non-inlined expressions

Another property that we constructed compares the observable behaviour
of a let expression and its reduced form, which we can portray with the
following equation.

let x = e in C[x] ≈obs C[e]

thesis March 27, 2014 10:04 Page 65 �
�	

�
�	 �
�	

�
�	

6 Applications 65

Notation C[t] denotes an expression with zero or more gaps that are filled
with occurrences of expression t. The two expressions should behave in the
same way if no impure language constructs are used by them.

The initial goal of this effort was to reveal impure behaviour of some
library functions. We failed to reach it. However, an interesting compiler
bug was found in the process.

The property is implemented in a similar way as previous ones. How-
ever, only one module is created that contains both variants of expressions
that are compared. For each test case two terms are generated, one repre-
senting the expression e and one representing the context C[•]. The second
term is then used to create expressions C[x] and C[e].

To disregard the effects of possibly changed evaluation order the prop-
erty treats all thrown exception types as equal, as was the case in our first
property.

Failure 7 The following expression was found to behave differently than
its reduced form when compiled with ghc:

let x = error "aaa" in seq (seq (tail ([]::[Int])) (\a -> x))

When we run this expression as part of the program below, it yields
the correct result, that is it crashes and prints the following exception:
Prelude.tail: empty list.

print $

wrap

(let x = error "aaa" in

seq (seq (tail ([]::[Int])) (\a -> x)))

[0]

However, if we replace the generated expression in this program with its
second variant, shown below, the program prints 0 instead.

seq (seq (tail ([]::[Int])) (\a -> error "aaa"))

It is interesting that the program gets miscompiled regardless of the op-
timisation level used and even unoptimised compilation yields the same
erroneous results. Thus, this failure could not be detected using our pre-
vious approach of using differential testing with different optimisation
levels.

The approach of differential testing using pairs of expressions like the
one in this example is inspired by traditional property-based testing where
simple logical properties, such as equality laws, are tested. This gives

thesis March 27, 2014 10:04 Page 66 �
�	

�
�	 �
�	

�
�	

66 i Testing an Optimising Compiler . . .

us additional bug-finding power, which is not possible with traditional
differential testing when only one compiler, the one under test, is available.

And as in any programming language, in Haskell there are many pos-
sible schemes of generating equivalent expressions. The failure that we
found suggests one more such scheme, apart from a let expression and its
reduced form. As it turns out, if we replace error "aaa" with undefined in
the offending expression, as shown below, it is again compiled correctly.

seq (seq (tail ([]::[Int])) (\a -> undefined))

Thus, one possible scheme is pairs of expressions where occurrences of
error "aaa" are replaced with undefined.

The failure has been reported as ghc ticket 5557 and fixed before
version 7.3.20111022.

6.4 Equivalence of different crashing expressions

The bug that we found using the property described above led us to
investigate the following property.

C[error ”aaa”] ≈obs C[undefined]

This property is implemented similarly to the previous one, but requires
generating only one term that represents C[•].

As expected, testing this property yielded the same, and similar, failures
as the previous one, and unfortunately no fresh failures.

Thus, we decided to modify the property and tested the following one
instead.

C[hiddenError] ≈obs C[undefined]

Here hiddenError is an expression that crashes, but is defined in such a
way that makes it impossible for ghc to determine its semantics at compile
time. We hoped that using an expression with a concealed crash might
make ghc assume that it will not crash and use a transformation that is
only valid for non-crashing expressions on it.

Failure 8 Indeed, testing found interesting terms that were miscompiled,
one of which is presented below.

hiddenError = error "hidden error"

main = do

print $ seq

(head (map (\a -> \b -> hiddenError)

(hiddenError::[] Bool)))

thesis March 27, 2014 10:04 Page 67 �
�	

�
�	 �
�	

�
�	

6 Applications 67

id

[1]

When this program is compiled with optimisation using ghcwith the -O

-fno-full-laziness options, it prints [1] instead of crashing. As visible in
the program, it is actually enough that hiddenError is just a plain definition
using error ..., without further obfuscation. However, using error ...

directly does not trigger the bug.
The failure has been reported as ghc ticket 5587, which now contains a

comprehensive explanation of its causes. The offending expression, which
contains a head function applied to map, undergoes complex transformations
using rewrite rules [Peyton Jones et al., 2001] thanks to list fusion [Gill et al.,
1993]. This process leads to a subexpression that is a case expression whose
one branch crashes, while the other one is a function that expects one more
argument. For reasons of performance, this subexpression gets η-expanded,
so that it crashes only when the extra argument is applied, changing its
behaviour in some contexts.

This particular counterexample has an interesting feature, in that the
code that triggered the bug was created indirectly by ghc by transforming
the original expression using inlining and rewrite rules. The resulting
expression had elements that were not possible to generate using our
generator, but were needed to cause the failure, such as case-expressions.
Thus, given the multi-pass operation of the ghc optimiser, it is possible to
subject the compiler to a wider variety of expressions than the ones that
are possible to generate directly.

It is also worth noting that even though the shrinking process only
tries to reduce terms structurally, it shrank this counterexample very well.
The sequence of rewrite steps performed during the optimisation process
reveals that the counterexample is in fact minimal.

The bug has been fixed in ghcby introducing a new compiler option
-fpedantic-bottoms. Using this option causes the compiler to omit the
erroneous transformation. However, the default is still to perform it. The
motivation for this is that increased performance might be attained at a
price of changes in the semantics. However, it is not known at this point
what is the performance penalty of -fpedantic-bottoms.

6.5 Summary

Testing the ghc compiler using randomly generated simply-typed lambda
terms and differential testing proved to be effective, even when only a small
fragment of the Haskell language is covered. We found many interesting
failures, eight of which we presented here. Four of these counterexamples

thesis March 27, 2014 10:04 Page 68 �
�	

�
�	 �
�	

�
�	

68 i Testing an Optimising Compiler . . .

resulted in high-quality bug reports, which were acknowledged by the ghc

developers as relevant.
We managed to obtain succinct counterexamples without understanding

the inner workings of ghc, only by using shrinking, which automatically
reduces a failing test case to a smaller one. Shrinking usually resulted in
test cases that were not possible to be shrunk further by hand. Shrunk
counterexamples for a single property are often similar and looking at their
similarities allows for making educated guesses about the cause of the
failures.

The fact that the test cases have been reduced by shrinking proved to be
of enormous help. In one case it was possible to find a well-hidden error in
one of the ghc’s phases of compilation in a matter of minutes, something
that would not be possible if the reported test case was large.

All the reported bugs concerned strictness of expressions being incor-
rectly changed in the process of optimisation. We also investigated whether
optimisation might result in changes in the evaluation order of expressions.
However, we were not able to detect any bugs there. What we discovered,
instead, was that in many cases the order of evaluation is unspecified, such
as when the operator seq is used, which is permitted by the Haskell Report.
On the other hand, programmers often rely on seq having a determined
evaluation order, which may cause their programs to exhibit space leaks
if an alternative order is used. Thus, in addition to finding bugs in the
compiler, our testing method can be used to support or disprove hypotheses
about the compiled programs, which may help in understanding of the
compiler.

We used differential testing using one compiler implementation, but
comparing behaviour of programs compiled using different optimisation
levels. In addition to that, we used another form of differential testing
where two programs are compared, which are different but have equivalent
semantics. The second approach led to discovering failures that were not
possible to discover using the first one.

7 Related Work

7.1 Compiler test tools

CSmith [Yang et al., 2011] is a random C program generator aimed at testing
compilers. It attempts to generate C programs that avoid undefined or un-
specified behaviour [ISO, 1999] without compromising the expressiveness
of the generated programs. To achieve this goal CSmith employs a relatively
complex program generator that uses different techniques for producing
safe programs. Firstly, it avoids some unsafe behaviours simply by intro-

thesis March 27, 2014 10:04 Page 69 �
�	

�
�	 �
�	

�
�	

7 Related Work 69

ducing structural constraints. And secondly, for cases where this would be
too restrictive, the generator resorts to performing static analysis on already
generated code fragments to determine whether a given operation is safe,
or by inserting runtime safety checks in the generated code.

Evaluation of test results is done using differential testing with different
compilers, or different options to the same compiler. The comparison of
effects of two executions is performed by comparing checksums of non-
pointer global variables sampled at the end of each execution. A variety of
compilers were tested, including GCC, LLVM, CompCert and commercial
C compilers. CSmith was able to uncover as many as 325 previously
unreported bugs in all compilers altogether, most of them in GCC and
LLVM. Even CompCert, which has a formally verified core, exhibited a
number of bugs.

CSmith has no means of reducing the size of a failing test case, as
it would be difficult to ensure that a shrunk test case is also free from
undefined or unspecified behaviour. Programs containing 8k–16k tokens
gave the highest rate of triggering bugs, and reducing them by hand was
employed to obtain understandable test cases.

Lindig [2005] created a simple tool called Quest for testing the C function
calling convention of C compilers. This tool randomly generates programs
containing C functions that execute consistency checks to verify that their
arguments have been passed correctly. Program generation is type-driven,
that is the type of a function is first picked at random and a suitable body
is generated algorithmically. Although Lindig claims that his method does
not require a language specification, he relies on a partial specification
stipulating that the consistency checks should succeed. The scheme was
able to detect bugs related to passing function arguments in 5 different
compilers. Bugs found by Quest were triggered by surprisingly simple
code, which is explained by the fact that the static test suites used to by
compiler writers contain very few kinds of argument and result types of
functions.

McKeeman [1998] presents a case of differential testing of C compilers
using inputs of various quality levels. Starting with sequences of any ascii

characters, which have the lowest quality level, the inputs range through
valid sequences of tokens and syntactically correct programs to reach
programs with well-defined semantics. This led to successful finding of
errors in different stages of the compilers tested. Additionally, starting with
a test case from any level, ‘nearby’ test cases are created by introducing
small changes to the original test case, which often causes a tested compiler
to crash, uncovering a bug.

The test case generator was implemented as a Tcl script, which is based

thesis March 27, 2014 10:04 Page 70 �
�	

�
�	 �
�	

�
�	

70 i Testing an Optimising Compiler . . .

on a context-free-grammar-based generator enhanced to support context-
sensitive features, like tracking defined variables. Grammar rules are
weighted and termination is ensured by assigning small enough weights to
recursive rules.

If a failing test case is found, a shrinking process is applied to reduce
its size. Failing test cases can be as big as 600 lines of code and can often
be shrunk to just several lines of code. However, this might require about
10000 compilations.

Instead of avoiding illegal operations at higher quality levels, whenever
there is a discrepancy in the behaviour of two compiled versions, the pro-
gram is rerun with all potentially problematic operations replaced by their
error-checking variants. If an error is detected, the test case is discarded.

The highest level of quality that can be generated comprises of programs
with meaningful semantics. Programs of this level are generated from
specific templates that define their high-level structure, which guarantees
certain semantic properties. Of course the diversity of the generated pro-
grams is traded here for semantic correctness, as the programs are much
more specific than those from lower quality levels.

Our work does not have the breadth of CSmith or the McKeeman’s tool,
as we cover a much smaller part of the language that we generate. However,
in that part we are able to generate very interesting programs, thanks to
using a formal calculus that ensures well-typedness. We also had to solve
problems that are absent while generating C programs, such as generating
higher-order and curried functions and parametric polymorphism. Like
McKeeman’s work, our testing tool shrinks counterexamples, but does it
in a type-safe way that guarantees to preserve typing and makes it much
more efficient by using batch testing.

Hanford [1970] presented an early example of a recursive, grammar-
based random program generator used for testing compilers. The generator
is based on context-free grammars, which are dynamically modified during
generation to accommodate some context-sensitive behaviour, for example
when a new variable is introduced. The generator has a limited support
for backtracking, which occurs when it is not possible to rewrite some non-
terminal. The tool has been used to test compilers for simple properties,
such as using programs that are syntactically-correct, or containing syntax
errors, for example integer expressions in place of boolean ones.

7.2 Shrinking

Shrinking proved to be a very effective technique in property-based testing
and is now standard in Haskell QuickCheck [Claessen and Hughes, 2000]
and Erlang QuickCheck [Hughes, 2007]. Shrinking allows for defining

thesis March 27, 2014 10:04 Page 71 �
�	

�
�	 �
�	

�
�	

7 Related Work 71

generic shrinking methods for polymorphic data types, which can be
composed with shrinking methods for their element types. For instance,
the default shrinking method for lists of integers uses the shrinking method
for lists and also that for integers to reduce individual elements.

A similar technique has been invented concurrently, called delta debug-
ging [Zeller and Hildebrandt, 2002], which is broader, but when applied
to test input it bears resemblance to shrinking. For example, the stan-
dard method for reducing strings using delta debugging is very similar
to the default shrinking method for lists. Delta debugging has been ap-
plied successfully to obtain small failing test cases for large and complex
software.

Like shrinking, delta debugging finds a failing test case that is locally
minimal. However, delta debugging assumes a different model for reducing
test cases. A test case is first decomposed into a number of independent
changes that represent transformation of an empty test case into the original
test case. Then, a locally-minimal set of changes is determined, that results
in a failing test case. Shrinking in QuickCheck, on the other hand, places
very loose requirements on each specific shrinking method.

7.3 Library test tools

Klein et al. [2010b] created a testing tool that generates random programs
to test an object-oriented library. Their generator is capable of producing
higher-order object-oriented programs (which override methods) and sup-
ports monitoring of pre- and post-conditions, which are used to establish
the validity and result of the test. Their generation method uses generation
rules similar to ours, with random rule selection, size bound, and back-
tracking. Rather than our Indir rule, which generates calls of functions
in the environment only when their result type matches the target type,
they use a rule that can generate a call of any function in the environment
at any time, binding its result to a fresh local variable, which can then in
turn be used in another attempt to generate a term of the target type. The
advantage of their approach is that it is easier to generate calls of functions
in the environment; the disadvantage is that many of the local variables
they create are never used, because their types do not match the target type.
Klein et al. do not consider polymorphic types, nor do they shrink failing
test cases to minimal examples as we do.

Wrangler, a refactoring tool for Erlang has also been tested using random
program generation [Drienyovszky et al., 2010]. A rich program generator
has been created, which is capable of generating full modules. Even though
Erlang is an untyped language, the generator takes types into consideration
in order to avoid argument mismatches when calling functions. Similarly,

thesis March 27, 2014 10:04 Page 72 �
�	

�
�	 �
�	

�
�	

72 i Testing an Optimising Compiler . . .

Daniel et al. [2007] exhaustively generate Java programs (up a to certain size)
in order to test the refactoring engines in Eclipse and NetBeans. Different
from our approach, some of the generated programs are not valid inputs
for the Java compiler.

Generating random sequential programs is practised in testing monadic
code with QuickCheck [Claessen and Hughes, 2002] and in testing stateful
programs with Erlang QuickCheck [Hughes, 2007]. Such a program is
usually a sequence of actions, which might contain variables, but all variable
handling is outsourced to the programmer using QuickCheck. Often such
generated programs are not parametrised, which makes it possible to ensure
that preconditions of all actions are satisfied.

7.4 Testing of formal models

Redex [Klein et al., 2012] is a tool for lightweight verification of program-
ming language formal models. Formal models are randomly tested whether
they satisfy the stated properties using randomly generated expressions
of the ‘object’ language. Generation of size-bounded terms is based on
grammars (syntax of the object language is defined using a context-free
grammar), and malformed expressions, for example containing free vari-
ables, are filtered out. Naïve generation and filtering is, of course, not
enough to test more complex models, as many reduction rules are never
exercised. To raise the likelihood of generating expressions that could be
reduced with these reduction rules, their left-hand sides are used to guide
the generation. Redex has been successfully used to formalise and test a
nine existing formal models and find mistakes in all of them.

7.5 Typed term generators

Djinn [Augustsson, 2005] solves the type inhabitation problem for simply-
typed λ-calculus, that is, it returns any term instead of a random one for a
given type. It is based on a terminating proof procedure for intuitionistic
propositional logic [Dyckhoff, 1992], which makes it find a term of a given
type reliably when one exists. It is limited, however, in that it does not
perform polymorphic instantiation, which means that it cannot generate some
terms involving polymorphic constants.

Vytiniotis and Kennedy [2010] present encoding of data types into
streams of bits, which can be used for their random generation. In their
approach to generating simply-typed λ-terms, the target type is never fixed,
and thus the generation never fails, eliminating the need for backtracking.
This way of generating well-typed terms can also be extended to simply-
typed lambda calculus with polymorphic constants. Reducing the problem

thesis March 27, 2014 10:04 Page 73 �
�	

�
�	 �
�	

�
�	

8 Future work 73

of random data generation to encoding in bit-streams has the consequence
that improving the distribution of generated data corresponds to inventing
efficient compression schemes, such as Huffman coding.

The λ-term enumerator developed by Rodriguez Yakushev and Jeuring
[2010] creates function applications in the same way as our method, by
generating a candidate type for the argument, and trying to generate the
argument afterwards.

7.6 Untyped term generators

Statistical properties of random untyped λ-terms have been explored in [Bo-
dini et al., 2011], which also explores a method of generating them using
Boltzmann sampling. Generation of random untyped λ-terms is tackled
in [Wang, 2005], which employs counting of possible subterms to achieve
uniform generation distribution. Correspondingly, the work in [Moczurad
et al., 2000] examines the proportion of simple types that are inhabited, that
is, for which it is possible to create a term of that type.

TGGS [Guilmette, 1995] is a random test data generation system based
on context-free grammars enhanced with context-sensitive constructs, like
imperative actions conditional clauses and stacks, which serve a similar
rôle to attributes in attribute grammars. The system generates data by
expanding non-terminal symbols by choosing grammar rules at random
and backtracks whenever that is not possible, rolling back all relevant
imperative actions. It is possible to affect the distribution of the generated
data using weights, which influence how often different grammar rules are
chosen.

8 Future work

The potential for finding bugs in ghc using the presented method has not
at all been exhausted during the testing that we performed. Although most
of the presented bugs have been fixed, and our properties find counterex-
amples at a much lower rate, we are still able to find new interesting error
cases using them. Many more new properties and variations of existing
ones are likely to yield even more new counterexamples.

The same method can be applied to other Haskell compilers. However,
it might be less effective for compilers that do not perform as sophisticated
optimisation as ghc. When more Haskell compilers are available, it would
be interesting to perform the standard variant of differential testing i.e.
cross-testing of two different implementations.

Given that the subset of Haskell that is randomly generated is very lim-
ited, there is room for improvement by adding support for more language

thesis March 27, 2014 10:04 Page 74 �
�	

�
�	 �
�	

�
�	

74 i Testing an Optimising Compiler . . .

constructions that can occur in the generated terms. For example, let and
where clauses could be generated in a similar way to function applications
and case expressions could be generated by having polymorphic constants
that are required to be fully-applied. Polymorphic let bindings could
also be supported by means of introducing polymorphic constants in their
bodies and dummy type constants (simulating ‘rigid’ type variables) in the
type of bound expressions.

The biggest technical challenge to solve in the current generator is to
improve on the generation of terms involving polymorphic constants like
map or monadic bind, which suffers from problems described in Section 4.2.
The problem can be alleviated, for example, by allowing the generator to
generate terms with partially-specified types. One argument of map would
be generated with a partially-specified type while the other argument would
be generated with a type that agrees with that of the already generated
subterm.

More drastic redesign is also possible in order to solve this problem.
Theorem proving techniques might be used to track unresolved type vari-
ables and propagate the changes whenever they are refined in one of the
subterms. However, we have been trying to avoid using theorem proving
techniques as this approach would change the scope of this project too
radically. We nevertheless think that using such an approach would be
legitimate in well-typed term generation.

Even more radical would be creating a generator that approximates the
uniform distribution of terms (of a given size) by counting all possible terms
that can be generated, as it is done in agata [Almström Duregård, 2009].
However, it is not clear whether this approach is feasible computationally
as the data type of well-typed terms is very complex, and quite large terms
are needed to perform useful testing.

Another approach that could possibly be used is to adapt the technique
proposed by Vytiniotis and Kennedy [2010]. The advantage of this approach
is its simplicity and elegance, but a naïve generator seems to be very skewed
towards creating terms with partially-applied constants, which suggests
that much effort might be required to correct the distribution.

9 Conclusions

We applied property-based testing and random program generation for test-
ing a sophisticated optimising Haskell compiler. Even though we generated
a limited subset of Haskell, we were able to find interesting bugs in the com-
piler. Found counterexamples were reduced structurally using shrinking,
which made them understandable and well-suited for bug reports.

thesis March 27, 2014 10:04 Page 75 �
�	

�
�	 �
�	

�
�	

The properties used for finding the bugs employed differential testing
by comparing the behaviour of the same program compiled with different
optimisation levels. Also, we used an alternative form of differential testing
where the behaviour of two equivalent programs is compared, which was
used to find more bugs. In addition to bug reports, we learned about valid
interesting behaviour of ghc, and in particular about changes to the default
order of evaluation that it performs.

We have two positive observations about structural shrinking of coun-
terexamples. First, even though the process is oblivious to the complex
internal workings of the tested compiler the shrunk counterexamples could
not be reduced by us further by hand in most cases, which suggests that
the results were close to optimal. And secondly, looking at shrunk coun-
terexamples allowed us to make educated guesses about the cause of the
failures, even without referring to or understanding the compiler’s code.

Unfortunately, testing a compiler using a random program generator is
hardly a fully automatic technique, which we hoped it to be in the beginning.
In contrast, we found that effective testing requires spending effort on
creatively devising properties. In particular, some unexpected bugs were
found by properties that were created for another purpose. However, the
technique brings some automation to finding compiler bugs.

We were satisfied with the relevance and quality of counterexamples that
we found for ghc with reasonable effort. Based on this experience we think
that random compiler testing is an attractive technique for finding compiler
bugs, which could be scaled up to perform much more comprehensive
testing than we performed.

thesis March 27, 2014 10:04 Page 76 �
�	

�
�	 �
�	

�
�	

thesis March 27, 2014 10:04 Page 77 �
�	

�
�	 �
�	

�
�	

Paper II

Generating Constrained Random
Data with Uniform Distribution

Koen Claessen Jonas Duregård Michał H. Pałka

This in a revised version of a paper to be presented at the International
Symposium on Functional and Logic Programming (FLOPS), 2014.

thesis March 27, 2014 10:04 Page 78 �
�	

�
�	 �
�	

�
�	

thesis March 27, 2014 10:04 Page 79 �
�	

�
�	 �
�	

�
�	

Paper II: Generating Constrained
Random Data with
Uniform Distribution

Abstract

We present a technique for automatically deriving test data genera-
tors from a predicate expressed as a Boolean function. The distribution
of these generators is uniform over values of a given size. To make the
generation efficient we rely on laziness of the predicate, allowing us
to prune the space of values quickly. In contrast, implementing test
data generators by hand is labour intensive and error prone. More-
over, handwritten generators often have an unpredictable distribution
of values, risking that some values are arbitrarily underrepresented.
We also present a variation of the technique where the distribution is
skewed in a limited and predictable way, potentially increasing the
performance. Experimental evaluation of the techniques shows that
the uniform derived generators are much easier to define than hand-
written ones, and their performance, while lower, is adequate for some
realistic applications.

1 Introduction

Random property-based testing has proven to be an effective method
for finding bugs in programs [Arts et al., 2006, Claessen and Hughes,
2000]. Two ingredients are required for property-based testing: a test data
generator and a property (sometimes called oracle). For each test, the test
data generator generates input to the program under test, and the property
checks whether or not the observed behaviour is acceptable. This paper
focuses on the test data generators.

The popular random testing tool QuickCheck [Claessen and Hughes,
2000] provides a library for defining random generators for data types.

79

thesis March 27, 2014 10:04 Page 80 �
�	

�
�	 �
�	

�
�	

80 ii Generating Constrained Random Data . . .

data Expr = Ap Expr Expr Type | Vr Int | Lm Expr
data Type = A | B | C | Type :→ Type

check :: [Type]→ Expr→ Type→ Bool
check env (Vr i) t = env !! i ≡ t
check env (Ap f x tx) t =

check env f (tx :→ t) ∧ check env x tx
check env (Lm e) (ta :→ tb) = check (ta : env) e tb
check env = False

Figure 2.1: Data type and type checker for simply-typed lambda calculus.
The Type in the Ap nodes represents the type of the argument term.

Typically, a generator is a recursive function that at every recursion level
chooses a random constructor of the relevant data type. Relative frequencies
for the constructors can be specified by the programmer to control the
distribution. An extra resource argument that shrinks at each recursive call
is used to control the size of the generated test data and ensures termination.

The above method for test generation works well for generating struc-
tured, well-typed data. But it becomes much harder when our objective
is to generate well-typed data that satisfies an extra condition. A motivating
example is the random generation of programs as test data for testing
compilers. In order to successfully test different phases of a compiler, pro-
grams not only need to be grammatically correct, they may also need to
satisfy other properties such as all variables are bound, all expressions are
well-typed, certain combinations of constructs do not occur in the programs,
or a combination of such properties.

In previous work by some of the authors, it was shown to be possible
but very tedious to manually construct a generator that (a) could generate
random well-typed programs in the polymorphic lambda-calculus, and at
the same time (b) maintain a reasonable distribution such that no programs
were arbitrarily excluded from generation.

The problem is that generators mix concerns that we would like to
separate: (1) what is the structure of the test data, (2) which properties
should it obey, and (3) what distribution do we want.

In this paper, we investigate solutions to the following problem: Given a
definition of the structure of test data (a data type definition), and given one
or more predicates (functions computing a boolean), can we automatically
generate test data that satisfies all the predicates and at the same time has a

thesis March 27, 2014 10:04 Page 81 �
�	

�
�	 �
�	

�
�	

1 Introduction 81

predictable, good distribution?
To be more concrete, let us take a look at Figure 2.1. Here, a data type

for typed lambda expressions is defined, together with a function that
given an environment, an expression, and a type, checks whether or not the
expression has the stated type in the environment. From this input alone,
we would like to be able to generate random well-typed expressions with a
good distribution.

What does a ‘good’ distribution mean? First, we need to have a way to
restrict the size of the generated test data. In any application, we are only
ever going to generate a finite number of values, so we need a decision
on what test data sizes to use. An easy and common way to control test
data size is to control the depth of a term. This is for example done in
SmallCheck [Runciman et al., 2008]. The problem with using depth is that
the cardinality of terms of a certain depth grows extremely fast as the depth
increases. Moreover, good distributions for, to give an example, the set of
trees of depth d are hard to find, because there are many more almost full
trees of depth d than there are sparse trees of depth d, which may lead to
an overrepresentation of almost full trees in randomly generated values.

Another possibility is to work with the set of values of a given size n,
where size is understood as the number of data constructors in the term.
Previous work by one of the authors on feat [Duregård et al., 2012] has
shown that it is possible to efficiently index in, and compute cardinalities
of, sets of terms of a given size n. This is the choice we make in this paper.

The simplest useful and predictable distribution that does not arbitrarily
exclude values from a set is the uniform distribution, which is why we chose
to focus on uniform distributions in this paper. We acknowledge the need
for other distributions than uniform in certain applications. However, we
think that a uniform distribution is at least a useful building block in
the process of crafting test data generators. We anticipate methods for
controlling the distribution of our generators in multiple ways, but that
remains future work.

Our first main contribution in this paper is an algorithm that, given a
data type definition, a predicate, and a test data size, generates random
values satisfying the predicate, with a perfectly uniform distribution. It
works by first computing the cardinality of the set of all values of the
given size, and then randomly picking indices in this set, computing the
values that correspond to those indices, until we find a value for which the
predicate is true. The key feature of the algorithm is that every time a value
x is found for which the predicate is false, it is removed from the set of
values, together with all other values that would have lead to the predicate
returning false using the same execution path as x.

thesis March 27, 2014 10:04 Page 82 �
�	

�
�	 �
�	

�
�	

82 ii Generating Constrained Random Data . . .

Unfortunately, even with this optimisation, uniformity turns out to be
a very costly property in many practical cases. We have also developed a
backtracking-based generator that is more efficient, but has no guarantees
on the distribution. Our second main contribution is a hybrid generator
that combines the uniform algorithm and the backtracking algorithm, and
is ‘almost uniform’ in a precise and predictable way.

2 Generating Values of Algebraic Datatypes

In this section we explain how to generate random values of an algebraic
data type (adt) uniformly. Our approach is based on a representation of
sets of values that allows efficient indexing, inspired by feat [Duregård
et al., 2012], which is used to map random indices to random values. In the
next section we modify this procedure to efficiently search for values that
satisfy a predicate.

Algebraic Data Types (adts) are constructed using units (atomic values),
disjoint unions of data types, products of data types, and may refer to their
own definitions recursively. For instance, consider these definitions of
Haskell data types for natural numbers and lists of natural numbers:

data Nat = Z | Suc Nat
data ListNat = Nill | Cons Nat ListNat

In general, adts may contain an infinite number of values, which is the
case for both data types above. Our approach for generating random
values of an adt uniformly is to generate values of a specific size, under-
stood as the number of constructors used in a value. For example, all of
Cons (Suc (Suc Z)) (Cons Z Nill), Cons (Suc Z) (Cons (Suc Z) Nill) and
Cons Z (Cons Z (Cons Z Nill)) are values of size 7. As there is only a finite
number of values of each size, we can create a sampling procedure that
generates a uniformly random value of ListNat of a given size.

2.1 Indexing

Our method for generating random values of an adt is based on an indexing
function, which maps integers to corresponding data type values of a given
size.

indexS,k : {i ∈N | i < |Sk|} → Sk

Here, S is the data type, and Sk is the set of k-sized values of S. The intuitive
idea behind efficient indexing is to quickly calculate cardinalities of subsets
of the indexed set. For example, when S = T ⊕U is a sum type, then

thesis March 27, 2014 10:04 Page 83 �
�	

�
�	 �
�	

�
�	

2 Generating Values of Algebraic Datatypes 83

indexing is performed as follows:

indexT⊕U,k(i) =

{
indexT,k(i) if i < |Tk|
indexU,k(i− |Tk|) otherwise

When S = T ⊗U is a product type, we need to consider all ways size k can
be divided between the components of the product. The cardinality of the
product can be computed as follows:

|(T ⊗U)k| = ∑
k1+k2=k

|Tk1 ||Uk2 |

When indexing (T ⊗U)k using index i, we first select the division of size
k1 + k2 = k, such that:

0 ≤ i′ < |Tk1 ||Uk2 | where i′ = i− ∑
l1<k1

l1+l2=k

|Tl1 ||Ul2 |

Then, elements of Tk1 and Uk2 are selected using the remaining part of the
index i′.

indexT⊗U,k(i) = (indexT,k(i′ div |Uk2 |), indexU,k(i′ mod |Uk2 |))

In the rest of this section, we outline how to implement indexing in Haskell.

2.2 Representation of Spaces

We define a Haskell Generalized Algebraic Data Type (gadt) Space to
represent adts, and allow efficient cardinality computations and indexing.

data Space a where
Empty :: Space a
Pure :: a → Space a
(:+:) :: Space a → Space a→ Space a
(:∗ :) :: Space a → Space b→ Space (a, b)
Pay :: Space a → Space a
(: $:) :: (a→ b)→ Space a→ Space b

Spaces can be built using four basic operations: Empty for empty space,
Pure for unit space, (:+:) for a sum of two spaces and (:∗ :) for a product.
Spaces also have an operator Pay which represents a unit cost imposed by
using a constructor. The last operation (: $:), applies a function to all values
in the space. We assume that spaces are constructed in such a way that
all their elements are unique. If this is not the case, a ‘uniform’ sampling
procedure would return repeated elements more often than unique ones.

thesis March 27, 2014 10:04 Page 84 �
�	

�
�	 �
�	

�
�	

84 ii Generating Constrained Random Data . . .

A very convenient operator on spaces is the lifted application operator,
that takes a space of functions and a space of parameters and produces a
space of all applications of the functions to the parameters:

(<∗>) :: Space (a→ b)→ Space a→ Space b
s1 <∗> s2 = (λ(f , a)→ f a) : $: (s1 :∗ : s2)

With the operators defined above, the definition of spaces mirror the defini-
tions of data types. For example, spaces for the Nat and ListNat data types
can be defined as follows:

spaceNat :: Space Nat
spaceNat = Pay (Pure Z :+: (Suc : $: spaceNat))
spaceListNat :: Space ListNat
spaceListNat =

Pay (Pure Nill :+: (Cons : $: spaceNat <∗> spaceListNat))

Unit constructors are represented with Pure, whereas compound construc-
tors are mapped on the subspaces of the values they contain. In this
example, Pay is applied each time we introduce a constructor, which makes
the size of values equal to number of constructors they contain, and is
the usual practice. However, the user may choose to use another way of
assigning costs, which would change the sizes of individual values and, as
a result,the distribution of the generated values. The only rule that must be
followed when assigning costs is that all recursion is guarded by at least
one Pay operation, otherwise the sets of values of a given size might be
infinite, which would lead to non-terminating cardinality computations.

2.3 Indexing on Spaces

Indexing on spaces can be reduced to two subproblems: Extracting the
finite set of values of a particular set, and indexing into such finite sets.
Assume we have some data type for finite sets constructed by combining
the empty set ({}), singleton sets ({a}), disjoint union (]) and Cartesian
product (×). From the definition of such a finite set, its cardinality can be
computed as follows:

|{}| = 0
|{a}| = 1

|a× b| = |a| ∗ |b|
|a] b| = |a|+ |b|

Using this function it is possible to define an indexing function on the type:

indexFin {a} 0 = a
indexFin (a] b) i | i < |a| = indexFin a i

thesis March 27, 2014 10:04 Page 85 �
�	

�
�	 �
�	

�
�	

3 Predicate -Guided Indexing 85

indexFin (a] b) i | i > |a| = indexFin b (i− |a|)
indexFin (a× b) i =
(indexFin a (i÷ |b|), indexFin b (i mod |b|))

With these definitions at hand, all we have to do to index in spaces is to
define a function sized which extracts the finite set of values of a given size
k from a space.

sized Empty k = {}
sized (Pure a) 0 = {a}
sized (Pure a) k = {}
sized (Pay a) 0 = {}
sized (Pay a) k = sized a (k− 1)
sized (a :+: b) k = sized a k] sized b k
sized (f : $: a) k = {f x : x ∈ sized a k}

We define sized Pure to be empty for all sizes except 0, since we want values
of an exact size. For Pay we get the values of size k− 1 in the underlying
space. Union and function application translate directly to union and
application on sets. Selecting k-sized values of a product space requires
dividing the size between its components. Thus, we can consider the set
as a disjoint union of the k + 1 different ways of dividing size between the
components:

sized (a :∗ : b) k =
⊎

k1+k2=k
sized a k1 × sized b k2

Knowing how to index in finite sets, we can implement an indexing function
on spaces by composing the sized function with the indexFin function.

indexSized :: Space a→ Int→ Integer→ a
indexSized s k i = indexFin (sized s k) i

Computing cardinalities and indexing requires arbitrarily large integers,
which are provided by Haskell’s Integer type. Calculating cardinalities
can be computationally intensive, and to be practical requires memoising
cardinalities of recursive data types, which is implemented using another
constructor of the Space a data type not shown here.

3 Predicate-Guided Indexing

Having solved the problem of generating members of algebraic data types,
we extend the problem with a predicate that all generated values must
satisfy.

thesis March 27, 2014 10:04 Page 86 �
�	

�
�	 �
�	

�
�	

86 ii Generating Constrained Random Data . . .

A first approach for uniform generation is to choose a size, generate
values of that size, test them against the predicate and keep the ones for
which the predicate is True. This works well for cases where the proportion
of values that satisfy the predicate is large enough, for example larger than
1%, but is far too inefficient in many practical situations.

In order to speed up random generation of values satisfying a given
predicate, we use the lazy behaviour of the predicate to know its result
on sets of values, rather than individual values, similarly to [Runciman
et al., 2008]. For instance, consider a predicate that tests if a list is sorted by
checking the inequality of each pair of consecutive elements in turn starting
from the front. Applying the predicate to 1 : 2 : 1 : 3 : 5 : [] will yield False
after the pair (2, 1) is encountered, before the predicate looks at the later
elements, which means that it will return False for all lists starting with
1, 2, 1. Once we have computed a set of values for which the predicate is
going to return false, we remove all of these values from our original set.

To detect this we can exploit Haskell’s call-by-need semantics by ap-
plying the predicate to a partially-defined value. In this case, observing
that our predicate returns False when applied to a partially-defined list
1 : 2 : 1 :⊥, can lead us to conclude that ⊥ can be replaced with any value
without affecting the result. Thus, we could remove all lists that start
with 1, 2, 1 from the space. For many realistic predicates this removes a
large number of values with each failed generation attempt, improving the
chances of finding a value satisfying the predicate next time.

We implement this by using the function valid, that determines whether a
given predicate needs to investigate its argument or not in order to produce
its result. The function valid returns Nothing if the predicate needed its
argument, and Just b if the predicate returns b regardless of its argument.

valid :: (a→ Bool)→ Maybe Bool

For example valid (λa → True) ≡ Just True, valid (λa → False) ≡ Just False,
valid (λx → x + 1 > x) ≡ Nothing. Implementing valid involves applying
the predicate to ⊥ and catching the resulting exception if there is one.
Catching the exception is an impure operation in Haskell, so the function
valid is also impure (specifically, it breaks monotonicity).

The function valid is used to implement the indexing function, which
takes the predicate, the space, the size and a random index.

index :: (a→ Bool)→ Space a→ Int→ Integer→ Space a

It returns a space of values containing at least the value at the given index,
and any number of values for which the predicate yields the same result.
When the returned space contains values for which the predicate is false,

thesis March 27, 2014 10:04 Page 87 �
�	

�
�	 �
�	

�
�	

3 Predicate -Guided Indexing 87

the top level search procedure (not shown here) removes all these values
from the original enumeration and retries with a new index in the now
smaller enumeration.

The function index is implemented by recursion on its Space a argument,
and composing the predicate with traversed constructor functions, until its
result is independent of which value from the current space is chosen. In
particular, index on a function application (: $:) returns the current space if
the predicate p′ returns the same result regardless of its argument, which is
determined by calling valid p′. Otherwise, it calls index recursively on the
subspace, composing the predicate with the applied function.

index p (f : $: a) k i = case valid p′ of
Just → f : $: a
Nothing→ f : $: index p′ a k i
where p′ = p ◦ f

3.1 Predicate-Guided Refinement Order

When implementing index for products, it is no longer possible to choose
a division of size between the components, as was the case for indexing
in Section 2. Determining the size of components early causes problems
when generalising to sets of partial values, as the same partial value may
represent values where size is divided in different ways.

We solve this problem using the algebraic nature of our spaces to
eliminate products altogether. Disregarding the order of values when
indexing, spaces form an algebraic semi-ring, which means that we can use
the following algebraic laws to eliminate products.

a⊗ (b⊕ c) ≡ (a⊗ b)⊕ (a⊗ c) [distributivity]
a⊗ (b⊗ c) ≡ (a⊗ b)⊗ c [associativity]
a⊗ 1 ≡ a [identity]
a⊗ 0 ≡ 0 [annihilation]

Expressing these rules on our Haskell data type is more complicated,
because we need to preserve the types of the result, i.e. we only have
associativity of products if we provide a function that transforms the left
associative pair back to a right associative one, etc. The four rules defined
on the Space data type expressed as a transformation operator (∗∗∗) are as
follows:

a ∗∗∗ (b :+: c) = (a :∗ : b) :+: (a :∗ : c) [distributivity]
a ∗∗∗ (b :∗ : c) = [associativity]
(λ((x, y), z)→ (x, (y, z))) : $: ((a :∗ : b) :∗ : c)

thesis March 27, 2014 10:04 Page 88 �
�	

�
�	 �
�	

�
�	

88 ii Generating Constrained Random Data . . .

a ∗∗∗ (Pure x) = (λy→ (y, x)) : $: a [identity]
a ∗∗∗ Empty = Empty [annihilation]

In addition to this, we need two laws for eliminating Pay and function
application.

a ∗∗∗ (Pay b) = Pay (a :∗ : b) [lift-pay]
a ∗∗∗ (f : $: b) = (λ(x, y)→ (x, f y)) : $: (a :∗ : b) [lift-fmap]

The first law states that paying for the component of a pair is the same as
paying for the pair, the second that applying a function f to one component
of a pair is the same as applying a modified (lifted) function on the pair.
If recursion is always guarded by a Pay, we know that the transformation
will terminate after a bounded number of steps.

Using these laws we could define index on products by applying the
transformation, so index p (a :∗ : b) = index p (a ∗∗∗ b). This is problematic,
because ∗∗∗ is a right-first traversal, which means that for our generators
the left component of a pair is never generated before the right one is fully
defined. This is detrimental to generation, since the predicate may not
require the right operand to be defined. To guide the refinement order by
the evaluation order of the predicate, we need to ‘ask’ the predicate which
component should be defined first. We define a function similar to valid
that takes a predicate on pairs:

inspectsRight :: ((a, b)→ Bool)→ Bool

The expression inspectsRight p is True iff p evaluates the right component of
the pair before the left. Just like valid, inspectsRight exposes some informa-
tion of the Haskell runtime, which can not be observed directly.

To define indexing on products we combine inspectsRight with another
algebraic law: commutativity of products. If the predicate ‘pulls’ at the left
component, the operands of the product are swapped before applying the
transformation for the recursive call.

index p (a :∗ : b) k i = if inspectsRight p
then index p (a ∗∗∗ b) k i
else index p (swap : $: (b ∗∗∗ a)) k i
where swap (a, b) = (b, a)

The end result is an indexing algorithm that gradually refines the value it
indexes to, by expanding only the part that the predicate needs in order
to progress. With every refinement, the space is narrowed down until the
predicate is guaranteed to be true or false for all values in the space. In the

thesis March 27, 2014 10:04 Page 89 �
�	

�
�	 �
�	

�
�	

3 Predicate -Guided Indexing 89

end the algorithm removes the indexed subspace from the search space, so
no specialisations of the tested value are ever generated.

Note that the generation algorithm is still uniform because we only
remove values for which the predicate is false from the original set of
values. The uniformity is only concerned with the set of values for which
the predicate is true.

3.2 Relaxed Uniformity Constraint

When our uniform generator finds a space for which the predicate is
false, the algorithm chooses a new index and retries, which is required for
uniformity. We have implemented two alternative algorithms.

The first one is to backtrack and try the alternative in the most recent
choice. Such generators are no longer uniform, but potentially more ef-
ficient. Even though the algorithm start searching at a uniformly chosen
index, since an arbitrary number of backtracking steps is allowed the distri-
bution of generated values may be arbitrarily skewed. In particular, values
satisfying the predicate that are ‘surrounded’ by many values for which it
does not hold may be much more likely to be generated than other values.

The second algorithm also performs backtracking, but imposes a bound
b for how many values the backtracking search is allowed to skip over.
When the bound b is reached, a new random index is generated and the
search is restarted. The result is an algorithm which has an ‘almost uniform’
distribution in a precise way: the probabilities of generating any two values
differ at most by a factor b + 1. So, if we pick b = 1000, generating the most
likely value is at most 1001 times more likely than the least likely value.

The bounded backtracking search strategy generalises both the uniform
search (when the bound b is 0) and the unlimited backtracking search (when
the bound b is infinite).

We expected the backtracking strategy to be more efficient in terms of
time and space usage than the uniform search, and the bounded backtrack-
ing strategy to be somewhere in between, with higher bounds leading to
results closer to unlimited backtracking. Our intention for developing these
alternative algorithms was that trading the uniformity of the distribution
for higher performance may lead to a higher rate of finding bugs. Section 4

contains experimental verification of these hypotheses.

3.3 Parallel Conjunction

It is possible to improve the generation performance by introducing the
parallel conjunction operator [Runciman et al., 2008], which makes pruning
the search space more efficient. Suppose we have a predicate p x = q x ∧ r x.

thesis March 27, 2014 10:04 Page 90 �
�	

�
�	 �
�	

�
�	

90 ii Generating Constrained Random Data . . .

Given that && is left-biased, if valid r ≡ Just False and valid q ≡ Nothing
then the result of valid p will be Nothing, even though we expect that
refining q will make the conjunction return False regardless of what q x
returns.

We can define a new operator &&& for parallel conjunction with differ-
ent behaviour when the first operand is undefined: ⊥&&& False ≡ False.
This may make the indexing algorithm terminate earlier when the second
operand of a conjunction is false, without needing to perform refinements
needed by the first operand at all. Similarly, we can define parallel disjunc-
tion that is True when either operand is True.

4 Experimental Evaluation

We evaluated our approach in four benchmarks. Three of them involved
measuring the time and memory needed to generate 2000 random values
of a given size satisfying a predicate. The fourth benchmark compared a
derived simply-typed lambda term generator against a hand-written one
in triggering strictness bugs in the ghc compiler. Some benchmarks were
also run with a naïve generator that generates random values from a space,
as in Section 2, and filters out those that do not satisfy a predicate.

4.1 Trees

Our first example is binary search trees (bsts) with Peano-encoded natural
numbers as their elements, defined as follows.

data Tree a = L
| N a (Tree a) (Tree a)

isBST :: Ord a⇒ Tree a→ Bool
data Nat = Z | Suc Nat

instance Ord Nat where
< Z = False

Z < Suc = True
Suc x < Suc y = x < y

The isBST predicate (omitted) decides if the tree is a bst, and uses a
supplied lazy comparison function for type Nat for increased laziness.

We measured the time and space needed to generate 2000 trees for
each size from a range of sizes, allowing at most 300 s of cpu time and
4 GiB of memory to be used. Derived generators based on three different
search strategies (see Section 3.2) were used: One performing uniform
sampling (uniform), one bounded backtracking allowed to skip at most
10k values (backtracking 10k), and one performing unbounded backtracking
(backtracking). A naïve generate-and-filter generator was also used for
comparison.

thesis March 27, 2014 10:04 Page 91 �
�	

�
�	 �
�	

�
�	

4 Experimental Evaluation 91

20 40 60 80 100 120
0.01

0.1

1

10

100

Size

[s]

uniform
backtracking 10k
backtracking

20 40 60 80 100 120
1

10

100

1,000

Size

[MiB]

Figure 2.2: Run times in (left) and memory consumption (right) of derived
generators generating 2000 bsts depending on the size of generated values.

Both backtracking 10k and backtracking generators produce non-uniform
distributions of values. The skew of the backtracking 10k generator is limited,
as the least likely values are generated at most 10k times less likely than
the most common ones, as mentioned in Section 3.2.

Figure 2.2 shows the time and memory consumed the runs with resource
limits marked by dotted lines in the plots. Run times for all derived
generators rise sharply with the increased size of generated values and
seem to approach exponential growth for larger sizes. The backtracking
generator performs best of all, and has a slower exponential growth rate for
large sizes than the other derived generators. The backtracking 10k generator
achieved similar performance as the uniform one when generating values
that are about 11 size units larger. The generate-and-filter generator was not
able to complete any of the runs in time, and is omitted from the graphs.

4.2 Simply-typed Lambda Terms

Generating random simply-typed lambda terms was our motivating appli-
cation. Simply-typed lambda terms can be turned into well-typed Haskell
programs and used for testing compilers. Developing a hand-written re-
cursive generator for them requires the use of backtracking, because of the
inability of predicting whether a given local choice can lead to a successful
generation, and because typing constraints from two distant parts of a term
can cause conflict. Achieving satisfactory distribution and performance
requires careful tuning, and it is difficult to assess if any important values
are severely underrepresented, as noted in Chapter i of this thesis..

On the other hand, obtaining a generator that is based on our framework

thesis March 27, 2014 10:04 Page 92 �
�	

�
�	 �
�	

�
�	

92 ii Generating Constrained Random Data . . .

16 18 20 22 24 26 28
1

10

100

Size

[s]

uniform
backtracking 10k
backtracking

16 18 20 22 24 26 28

10

100

1,000

Size

[MiB]

Figure 2.3: Run times (left) and memory consumption (right) of derived
generators generating 2000 simply-typed lambda terms depending on the
size of generated terms.

requires only the definitions from Figure 2.1, and a relatively simple space
definition, which we omit here. The code for the type checker is standard
and uses a type stored in each application node (tx in Ap f x tx) to denote
the type of the argument term for simplicity.

To evaluate the generators, we generated 2000 terms with a simple
initial environment of 6 constants. The derived generator with three search
strategies and one based on generate-and-filter were used. Figure 2.3 shows
the results. The uniform search strategy is capable of generating terms of
size up to 23. For larger sizes, the generator exceeded the resource limits
(300 s and 4 GiB, marked with dotted lines). The generator that used limited
backtracking allowed generating terms up to size 28, using 9 times less
cpu time and over 11 times less memory than the uniform one at size 23.
Unlimited backtracking improved memory consumption dramatically, up
to 30-fold, compared to limited backtracking. The run time is improved
only slightly with unlimited backtracking. Finally, the generator based on
generate-and-filter exceeded the run times for all sizes, and is not included
in the plots.

4.3 Testing GHC

Discovering strictness bugs in the ghc optimising Haskell compiler was
our prime reason for generating random simply-typed lambda terms. To
evaluate our approach, we compared its bug finding power to a hand-
written generator that is presented in Paper i of this thesis using the same
test property that had been used there.

thesis March 27, 2014 10:04 Page 93 �
�	

�
�	 �
�	

�
�	

4 Experimental Evaluation 93

Generator Hand-written Derived (size 30)

Terms per ctr ex. (k) 18.6 52.5
Gen. cpu time per ctr ex. 1.7 14.0
Test cpu time per ctr ex. 1.8 10.4
Tot. cpu time per ctr ex. 3.5 24.4

Table 2.1: Performance of the reference hand-written term generator com-
pared to a derived generator using backtracking with size 30. We compare
the average number of terms that have to be generated before a counterex-
ample (ctr ex.) is found, and how much cpu time (in min.) the generation
and testing consumes per found counterexample.

Random simply-typed lambda terms were used for testing ghc by first
generating type-correct Haskell modules containing the terms, and then
using them as test data. In this case, we generated modules containing
expressions of type [Int]→ [Int] and compiled them with two different op-
timisation levels. Then, we tested their observable behaviour and compared
them against each other, looking for discrepancies.

We implemented the generator using a similar data type as in Figure 2.1
extended with polymorphic constants and type constructors. For efficiency
reasons we avoided having types in term application constructors, and used
a type checker based on type inference, which is more complex but still
easily implementable. It allows generators to scale up to larger effective
term sizes because not having types in the term representation increases
the density of well-typed terms.

A generator based on this data type was capable of generating terms
containing 30 term constructors, and was able to trigger ghc failures.
Table 2.1 shows the results of testing ghc both with the hand-written
simply-typed lambda term generator and our derived generator. The hand-
written generator used for comparison generated terms of sizes from 0

to about 90, with most terms falling in the range of 20–50. It needed the
least total cpu time to find a counterexample, and the lowest number of
generated terms. The derived generator needs almost 7 times more cpu

time per failure than the hand-written one.
The above results show that a generator derived from a predicate can

be used to effectively find bugs in ghc. The derived generator is less
effective than a hand-written one, but is significantly easier to develop.
Developing an efficient type-checking predicate required for the derived
generator took a few days, whereas the development and tuning of the
hand-written generator took an order of months.

thesis March 27, 2014 10:04 Page 94 �
�	

�
�	 �
�	

�
�	

94 ii Generating Constrained Random Data . . .

Predicates Backtracking Backtracking c/o

1, 2, 3, 4, 5 13 15

1, 3, 4, 5 13 30

1, 3, 5 31 30

Table 2.2: Maximum practical sizes of values generated by derived program
generators that use unlimited backtracking and backtracking with cut-off
of 10k.

4.4 Programs

The Program benchmark is meant to simulate testing of a simple compiler
by generating random programs, represented by the following data type.

type Name = String
data Program = New Name Program | Name := Expr | Skip

| Program :>> Program
| If Expr Program Program
| While Expr Program

data Expr = Var Name | Add Expr Expr

The programs contain some common imperative constructs and declarations
of new variables using New, which creates a new scope.

A compiler may perform a number of compilation passes, which would
typically transform the program into some kind of normal form that may be
required by the following pass. Our goal is to generate test data that satisfy
the precondition in order to test the code of each pass separately. We con-
sidered 5 predicates on the program data type that model simple conditions
that may be required by some compilation phases: (1) boundProgram saying
that the program is well-scoped, (2) usedProgram saying that all bound
variables are used, (3) noLocalDecls requiring all variables to be bound on
the top level, (4) noSkips forbidding the redundant use of :>> and Skip,
and (5) noNestedIfs forbidding nested if expressions.

Table 2.2 shows maximum value sizes that can be practically reached
by the derived generators for the program data type with different com-
binations of predicates. All runs were generating 2000 random programs
with resource limits (300 s and 4 GiB). When all predicates were used, the
generators performed poorly being able to reach at most size 15. When
the usedProgram predicate was omitted, the generator that uses limited
backtracking improved considerably, whereas the one using unlimited back-
tracking remained at size 13. Removing the noSkips predicate turns the

thesis March 27, 2014 10:04 Page 95 �
�	

�
�	 �
�	

�
�	

5 Related Work 95

tables on the two generators improving the performance of the unlimited
backtracking generator dramatically.

A generator based on generate-and-filter was also benchmarked, but
did not terminate within the time limit for the sizes we tried.

4.5 Summary

All derived generators performed much better than ones based on generate-
and-filter in three out of four benchmarks. In the fourth one, testing ghc,
using a generator based on generate-and-filter was comparable to using
our uniform or near-uniform derived generators, and slower than a derived
generator using backtracking. In that benchmark the backtracking generator
was the only that was able to find counterexamples, and yet it was less
effective than a hand-written generator. However, as creating the derived
generators was much quicker, we believe that they are still an attractive
alternative to a hand-written generator.

The time and space overhead of the derived generators appeared to rise
exponentially, or almost exponentially with the size of generated values
in most cases we looked at, similarly to what can be seen in Figures 2.2
and 2.3.

In most cases the backtracking generator provided the best performance,
which means that sometimes we may have to sacrifice our goal of having
a predictable distribution. However, we found the backtracking generator
to be very sensitive to the choice of the predicate. For example, some
combinations of predicates in Section 4.4 destroyed its performance, while
having less influence on the uniform and near-uniform generators. We
hypothesise that this behaviour may be caused by regions of search space
where the predicates evaluate values to a large extent before returning False.
The backtracking search remain in such regions for a long time, in contrast
to the other search that gives up and restarts after a number of values have
been skipped.

Overall, the performance of the derived generators is practical for some
applications, but reaching higher sizes of generated data might be needed
for effective bug finding. In particular, being able to generate larger terms
may improve the bug-finding performance when testing for ghc strictness
bugs.

5 Related Work

Feat Our representation of spaces and efficient indexing is based on feat

(Functional Enumeration of Algebraic Types) [Duregård et al., 2012]. The
practicalities of computing cardinalities and the deterministic indexing

thesis March 27, 2014 10:04 Page 96 �
�	

�
�	 �
�	

�
�	

96 ii Generating Constrained Random Data . . .

functions are described there. The inability to deal with complex data type
invariants is the major concern for feat, which is addressed by this paper.

Lazy SmallCheck and Korat. Lazy SmallCheck [Runciman et al., 2008]
uses laziness of predicates to get faster progress in an exhaustive depth-
limited search. Our goal was to reach larger, potentially more useful values
than Lazy SmallCheck by improving on it in two directions: using size
instead of depth and allowing random search in sets that are too large
to search exhaustively. Korat is a framework for testing Java programs
[Boyapati et al., 2002]. It uses similar techniques to exhaustively generate
size-bounded values that satisfy the precondition of a method, and then
automatically check the result of the method for those values against a
postcondition.

EasyCheck: Test Data For Free EasyCheck is a library for generating
random test data written in the Curry functional logic programming lan-
guage [Christiansen and Fischer, 2008]. Its generators define search spaces,
which are enumerated using diagonalisation and randomising local choices.
In this way values of larger sizes have a chance of appearing early in the
enumeration, which is not the case when breadth-first search is used. The
Curry language supports narrowing, which can be used by EasyCheck to
generate values that satisfy a given predicate. The examples that are given
in the paper suggest that, nonetheless, micro-management of the search
space is needed to get a reasonable distribution. The authors point out that
their enumeration technique has the problem of many very similar values
being enumerated in the same run.

Metaheuristic Search In the GödelTest [Feldt and Poulding, 2013] system,
so-called metaheuristic search is used to find test cases that exhibit certain
properties referred to as bias objectives. The objectives are expressed as
fitness metrics for the search such as the mean height and width of trees,
and requirements on several such metrics can be combined for a single
search. It may be possible to write a GödelTest generator by hand for well
typed lambda terms and then use bias objectives to tweak the distribution
of values in a desired direction, which could then be compared to our work.

Lazy Nondeterminism There is some recent work on embedding non-
determinism in functional languages [Fischer et al., 2011]. As a motivating
example an isSorted predicate is used to derive a sorting function, a process
which is quite similar to generating sorted lists from a predicate. The frame-
work defined in [Fischer et al., 2011] is very general and could potentially be

thesis March 27, 2014 10:04 Page 97 �
�	

�
�	 �
�	

�
�	

6 D iscussion 97

used both for implementing SmallCheck style enumeration and for random
generation.

Generating Lambda Terms There are several other attempts at enumer-
ating or generating well typed lambda terms. One such attempt uses
generic programming to exhaustively enumerate lambda terms by size [Ro-
driguez Yakushev and Jeuring, 2010]. The description focuses mainly on
the generic programming aspect, and the actual enumeration appears to be
mainly proof of concept with very little discussion of the performance of
the algorithm. There has been some work on counting lambda terms and
generating them uniformly [Grygiel and Lescanne, 2013]. This includes
generating well typed terms by a simple generate-and-filter approach.

6 Discussion

Performance of Limiting Backtracking The performance of our genera-
tors depends on the strictness and evaluation order of the used predicate.
The generator that performs unlimited backtracking was especially sensitive
to the choice of predicate, as shown in Section 4.4. Similar effects have been
observed in Korat [Boyapati et al., 2002], which also performs backtracking.

We found that for most predicates unbounded backtracking is the fastest.
But unexpectedly, for some predicates imposing a bound on backtracking
improves the run time of the generator. This also makes the distribution
more predictable, at the cost of increased memory consumption. We found
tweaking the degree of backtracking to be a useful tool for improving
the performance of the generators, and possibly trading it for distribution
guarantees.

In-place Refinement We experimented with a more efficient mechanism
for observing the evaluation order of predicates, which avoids repeated
evaluation of the predicate. For that we use an indexing function that
attaches a Haskell IO-action to each subcomponent of the generated value.
When the predicate is applied to the value, the IO-actions will fire only
for the parts that the property needs to inspect to determine the outcome.
Whenever the indexing function is required to make a choice, the corre-
sponding IO-action records the option it did not take, so after the predicate
has finished executing the refined search space can be reconstructed. Guid-
ing the evaluation order is handled automatically by the Haskell run time
system, which has call-by-need built into it.

In-place refinement is somewhat more complicated than the procedure
described in Section 3. Also, defining parallel conjunction for this type

thesis March 27, 2014 10:04 Page 98 �
�	

�
�	 �
�	

�
�	

of refinement is difficult, because inspecting the result of a predicate irre-
versibly makes the choices required to compute the result. For this reason
our implementation of in-place refinement remains a separate branch of
development and a topic of future work.

Conclusion Our method aims at preserving the simplicity of generate-
and-filter type generators, but supporting more realistic predicates that
accept only a small fraction of all values. This approach works well provided
the predicates are lazy enough.

Our approach reduces the risk of having incorrect generators, as coming
up with a correct predicate is usually much easier than writing a correct
dedicated generator. Creating a predicate which leads to an efficient derived
generator, on the other hand, is more difficult.

Even though performance remains an issue when generating large test
cases, experimental results show that our approach is a viable option for
generating test data in many realistic cases.

Acknowledgements

This research has been supported by the Resource-Aware Functional Pro-
gramming (raw fp) grant awarded by the Swedish Foundation for Strategic
Research.

thesis March 27, 2014 10:04 Page 99 �
�	

�
�	 �
�	

�
�	

Paper III

Splittable Pseudorandom
Number Generators using

Cryptographic Hashing

Koen Claessen Michał H. Pałka

This in a revised version of a paper that appeared in the Haskell Symposium,
2013.

thesis March 27, 2014 10:04 Page 100 �
�	

�
�	 �
�	

�
�	

thesis March 27, 2014 10:04 Page 101 �
�	

�
�	 �
�	

�
�	

Paper III: Splittable
Pseudorandom Number
Generators using
Cryptographic Hashing

Abstract

We propose a new splittable pseudorandom number generator
(prng) based on a cryptographic hash function. Splittable prngs, in
contrast to linear prngs, allow the creation of two (seemingly) inde-
pendent generators from a given random number generator. Splittable
prngs are very useful for structuring purely functional programs, as
they avoid the need for threading around state. We show that the cur-
rently known and used splittable prngs are either not efficient enough,
have inherent flaws, or lack formal arguments about their randomness.
In contrast, our proposed generator can be implemented efficiently,
and comes with a formal statements and proofs that quantify how
‘random’ the results are that are generated. The provided proofs give
strong randomness guarantees under assumptions commonly made in
cryptography.

1 Introduction

Splittable pseudorandom number generators (prngs) are very useful for
structuring purely functional programs that deal with randomness. They
allow different parts of the program to independently (without interaction)
generate random values, thus avoiding the threading of a random seed
through the whole program [Burton and Page, 1992]. Moreover, splittable
prngs are essential when generating random infinite values, such as ran-
dom infinite lists in a lazy language, or random functions. In addition,
deterministic distribution of parallel random number streams, which is of

101

thesis March 27, 2014 10:04 Page 102 �
�	

�
�	 �
�	

�
�	

102 iii : Splittable Pseudorandom Number Generators . . .

interest to the High-Performance Computing community [Hill et al., 2012,
Leiserson et al., 2012], can be realised using splitting.

In Haskell, the standard module System.Random provides a default im-
plementation of a splittable generator StdGen, with the following api:

split :: StdGen -> (StdGen, StdGen)

next :: StdGen -> (Int, StdGen)

The function split creates two new, independent generators from a given
generator. The function next can be used to create one random value. A
user of this api is not supposed to use both next and split on the same
argument; doing so voids all warranties about promised randomness.

The property-based testing tool QuickCheck [Claessen and Hughes,
2000] makes heavy use of splitting. Let us see it in action. Consider the
following simple (but somewhat contrived) property:

newtype Int14 = Int14 Int

deriving Show

instance Arbitrary Int14 where

arbitrary = Int14 ‘fmap‘ choose (0, 13)

prop_shouldFail (_, Int14 a) (Int14 b) = a /= b

We define a new type Int14 for representing integers from 0 to 13. Next,
we create a random generator for it that randomly picks a number from 0

to 13. Finally, we define a property, which states that two randomly picked
Int14 numbers, one of which is a component of a randomly picked pair,
are always unequal.

Testing the property yields the following result:

*Main> quickCheckWith

stdArgs { maxSuccess = 10000 } prop_shouldFail

+++ OK, passed 10000 tests.

Even though the property is false (we would expect one of every 14 tests to
fail), all 10000 tests succeed!

The reason for this surprising behaviour is a previously unknown flaw in
the standard Haskell pseudorandom number generator used by QuickCheck
during testing. The prng should pick all combinations of numbers 0–13

for a and b, but in fact combinations where a and b are the same number
are never picked.

It turns out that the StdGen standard generator used in current Haskell
compilers contains an ad hoc implementation of splitting. The current

thesis March 27, 2014 10:04 Page 103 �
�	

�
�	 �
�	

�
�	

1 Introduction 103

implementation is the source of the randomness flaw1 demonstrated above.
The flaw requires a particular pattern of split operations to manifest and
results in very strong correlation of generated numbers. In fact, when
13 in the Int14 generator is replaced by other numbers from range 1–500,
the problem arises for 465 of them! Unfortunately, this pattern of splits is
simple and likely to arise often in typical usage of QuickCheck. Because
of this, we cannot be sure that QuickCheck properties that pass a large
number of tests are true with high probability.

Unfortunately, research devoted to pseudorandom generation has mainly
concentrated on linear generators, which do not support on-demand split-
ting. Several attempts have been made at extending linear prngs into
splittable ones [Burton and Page, 1992, Frederickson et al., 1984, Mascagni
et al., 1993]. Most proposed constructions were incompatible with unlim-
ited on-demand splitting. Yet the ones that supported it did not assure the
independence of derived generators. In fact, the current implementation of
splitting in System.Random contains a comment ‘no statistical foundation for
this!’. Indeed.

Attempting to generalise an existing traditional linear prng into a
splittable one is problematic for two reasons. First, it is not clear how
randomness properties of a linear generator carry over to a splittable
generator. For example, demanding that every path through a splitting
tree is a good linear prng is not at all enough to ensure that the two
subgenerators created by a split are independent. And second, which may
even be more problematic, the formal requirements satisfied by traditional
linear prngs are not even sufficient to guarantee good randomness. Instead,
their randomness is assessed using suites of statistical tests [L’Ecuyer and
Simard, 2007, Salmon et al., 2011, Yao, 1982]. However, even if a linear
generator passes these tests, this may not guarantee that it will work well
in particular situations, as some linear prngs have been found to fail in
intricate ways [McCullough, 2009]. So, because of the lack of strong formal
properties satisfied by linear prngs, there is no reliable way of extending a
linear prng into a splittable one that guarantees good statistical properties.

In contrast, cryptographic research has resulted in methods for gener-
ating high-quality pseudorandom numbers, which are provably random,
using pseudorandom functions (prfs) [Bellare et al., 1996, Goldreich et al.,
1986, Håstad et al., 1999, Micali and Schnorr, 1991]. The proofs depend on
unproven but commonly accepted assumptions, such as the computational
difficulty of some problems, or on the existence of secure block ciphers.
Despite that, they provide a much higher degree of confidence than statis-
tical test suites. Even more importantly, the proofs serve as guidance for

1http://hackage.haskell.org/trac/ghc/ticket/3575 and .../3620

http://hackage.haskell.org/trac/ghc/ticket/3575
http://hackage.haskell.org/trac/ghc/ticket/3620

thesis March 27, 2014 10:04 Page 104 �
�	

�
�	 �
�	

�
�	

104 iii : Splittable Pseudorandom Number Generators . . .

deciding which constructions of prngs are sound.
Cryptographic methods have been proposed for implementing splittable

prngs recently. In a Haskell-Cafe mailing list discussion [Peyton-Jones
et al., 2010] Burton Smith et al. propose basing such a generator on a cryp-
tographic block cipher. Another example are random number generators
specified in nist sp 800 -90a [Barker and Kelsey, 2012], which are based
on prngs (called drbgs2 there), whose one instance can be initialised
using pseudorandom output from another instance. This mechanism has
been used for implementing splitting in the crypto-api Hackage package3.

The idea behind both of these designs is similar and appears to give
good results. However, only an informal justification is provided for the
first of them, and none for the second. Furthermore, splitting is costly in
both of them, as every split operation requires one (or more) run of the
underlying cryptographic primitive, such as a block cipher.

An efficient prng that supports splitting under the hood has been
proposed by Leiserson et al. [2012]. To generate random numbers, the
generator hashes a path, which identifies the current program location,
using a hash function. The hash function is constructed in a way that
minimises the probability of collisions and contains a final mixing step to
make the output unpredictable. However, low probability of collisions is
the only property that is proven for the hash function, whereas randomness
of its results is only evaluated using statistical test.

Micali and Schnorr [1991] present a prng based on the rsa cryptosys-
tem, which is provably random and supports n-way splitting. However,
the results are asymptotic, which means that they do not indicate what pa-
rameters to choose to achieve a particular level of randomness, or whether
the generator is practical at all [Chatterjee et al., 2012, Fischlin and Schnorr,
1997, Sidorenko and Schoenmakers, 2005].

Thus, until now all splittable prngs were either ad hoc extensions of
linear prngs, informally justified solutions based on cryptographic prim-
itives, or cryptographic constructions covered by asymptotic arguments,
which do not say anything about their practical quality. In this paper, we
propose an efficient, provably-random splittable prng and give concrete
security bounds for it. Our generator is based on an existing cryptographic
keyed hash function [Bellare et al., 1996], which uses a block cipher as the
cryptographic primitive. The generator is provably-random, which makes
use of previously established concrete security proof of the hash function.
Our contributions are as follows:

2Deterministic Random Bit Generators
3 http://hackage.haskell.org/packages/archive/crypto-api/0.12.2.1/doc/html/

Crypto-Random.html

http://hackage.haskell.org/packages/archive/crypto-api/0.12.2.1/doc/html/Crypto-Random.html
http://hackage.haskell.org/packages/archive/crypto-api/0.12.2.1/doc/html/Crypto-Random.html

thesis March 27, 2014 10:04 Page 105 �
�	

�
�	 �
�	

�
�	

2 Splittable prngs 105

• We propose a splittable prng that provides provable randomness
guarantees under the assumption that the underlying block cipher is
secure. The construction is conceptually very simple, and relies on a
known keyed hash function design. (Section 3)

• We provide proofs of randomness of the proposed generator, which
rely on previously known results about the hash function. The ran-
domness results are concrete, not asymptotic, and degrade gracefully
if the assumptions about the block cipher are relaxed. (Section 4)

• We present benchmark results indicating that QuickCheck executes
typical properties about 8% slower than with StdGen, and the perfor-
mance of linear random number generation is good. (Section 6)

• We show that the problem solved by a splittable prng is essentially
the same as the one solved by a keyed hash function. (Section 7)

• The obtained randomness bounds are weaker than those possible for
a linear prng. So, we quantify the price in randomness we have to
pay for the increased flexibility that splitting provides. (Section 7)

2 Splittable prngs

The traditional way of using random numbers is to give a program access
to a process that generates a linear sequence of random numbers. This,
however, is not a modular approach. Consider that we have function f that
calls two other functions g and h that perform subcomputations.

f x = ... (g y) ... (h z)

Normally, when using a linear pseudorandom generator, f would pass a
reference to the generator to g, which would consume some number of
random numbers and change the state of the generator, and then to h,
which would do the same.

There are two problems with this approach. First, it would create
an unnecessary data dependency between g and h which may otherwise
have been independent computations, destroying opportunities for possible
laziness or parallelism. Secondly, any change to g that would influence
the amount of random numbers that it consumes would also influence
the computation of h. Thus, repeating the computation with the same
random seed and a changed program would also introduce disturbances in
unchanged places.

Addressing these problems is the goal of splittable prngs [Burton and
Page, 1992]. Consider the following interface for a prng whose state is

thesis March 27, 2014 10:04 Page 106 �
�	

�
�	 �
�	

�
�	

106 iii : Splittable Pseudorandom Number Generators . . .

represented by the type Rand. This api is simpler than the one presented in
the introduction in that the linear next operation is replaced by rand that
only returns one random number. We will come back to the original api in
Section 5.

split :: Rand -> (Rand, Rand)

rand :: Rand -> Word32

Operation split takes a generator state and returns two independent gen-
erator states, which are derived from it. Operation rand generates a single
random number from a generator state. Both split and rand are pure, which
means that given the same arguments they yield the same result. Calling
rand many times with the same generator state will yield the same result
each time. The intended way of using such a generator is to start with an
initial value of Rand and then split it to generate many random numbers.

Similar to the original api, an additional requirement is placed on
the program that it is not allowed to call both split and rand on a given
generator state, since the parent generator state is not guaranteed to be
independent from generator states derived from it.

When using this api, function f can simply call split and pass two
independent derived generator states to its subcomputations, which may
use them without any data dependencies. This allows for generating
random lazy infinite data structures in an efficient way, as independent
subcomputations can be launched at any time.

2.1 Naïve approach

A naïve way of implementing a referentially-transparent splittable prng is
to start with a linear prng and make split divide the sequence of random
numbers in some way [Burton and Page, 1992]. For example, split may
return the even-indexed elements as the left sequence and odd-indexed
elements as the right sequence, whereas rand may return the first number
of the sequence.

split (〈x0, x1, . . .〉) = (〈x0, x2, . . .〉, 〈x1, x3, . . .〉)

Similarly, split may divide the whole sequence period into two halves
and return them as subsequences. However, both of these approaches
allow for a very short sequence of split operations, as after n splits the
resulting sequence would be of length one, assuming the state size of n bits.
Moreover, the amount of memory required to store a generator grows at
least linearly in the number of splits.

Furthermore, there are no guarantees that the resulting numbers have
good randomness properties. Traditionally, linear prngs are evaluated in

thesis March 27, 2014 10:04 Page 107 �
�	

�
�	 �
�	

�
�	

2 Splittable prngs 107

terms of their periods, which is how long a sequence they can generate
without experiencing a state collision. Making statements about periods
is meaningless for a splittable generator; for any generator that uses a
constant amount of n bits of memory, there will be two identical generator
states at most n splits away from each other, given that a full binary tree of
depth n has 2n leaves. The precise overall randomness properties have not
been formalised for traditional linear prngs, and thus cannot be carried
over to splittable generators at all.

An improved idea for a splittable prng is that the split operation
jumps to a random place in the linear sequence [Burton and Page, 1992]. The
design is compelling, as it does not suffer from the obvious limitation that
concerns regular ways splitting. However, the quality of returned random
numbers would again depend on the suitability of the original sequence,
which is hard to determine.

Another approach for distributing unique generator states to subcompu-
tations is to use an impure operation under the hood that returns numbers
from a pseudorandom sequence, similarly to this solution for generating
unique names [Augustsson et al., 1994]. However, such generator would no
longer give deterministic results if the order of evaluation changes.

2.2 Pseudorandomness

We found that a formal definition of pseudorandomness is essential for
designing and evaluating a splittable prng. In particular, we found that
the concept of pseudorandomness used in cryptography matches closely
our goal of creating random-looking numbers, which we explain in this
section.

For simplicity, we first consider linear pseudorandom number genera-
tion. Consider non-deterministic program D that can perform a number
m of coin flips and use their results in computations. We can model such
a program with a deterministic function that has access to a sequence of
m bits that has been chosen uniformly at random (we will use bits instead
of numbers for simplicity). We assume that all ‘deterministic’ inputs are
already baked into the program, and that it returns ‘0’ or ‘1’.

We quantify the behaviour of the non-deterministic program D by the
probability that it returns ‘1’ when run with a sequence of bits chosen
uniformly at random.

Pr
r←{0,1}m

[D(r) = 1]

The goal of pseudorandom number generation is to replace the randomly
chosen sequence of bits by one generated by deterministic function p
(the generator) from a small seed (s ∈ S = {0, 1}n) chosen at random,

thesis March 27, 2014 10:04 Page 108 �
�	

�
�	 �
�	

�
�	

108 iii : Splittable Pseudorandom Number Generators . . .

so that the program gives almost the same results with both random
sequences. Thus, the probabilities of returning ‘1’ by program D should
be close to each other when run with a fully random sequence and with a
pseudorandom sequence generated by function p. The absolute difference
in these probabilities is D’s advantage in distinguishing the output of p from
random bits.

AdvD(p) =
∣∣∣∣ Pr
r←{0,1}m

[D(r) = 1] − Pr
s←S

[D(p(s)) = 1]
∣∣∣∣

Unfortunately, when m > n, it is always possible to construct a ‘dis-
tinguishing’ program that will make the difference in results large, since
the image p[S] is only a small part of all possible sequences. If program D
checks whether the sequence of bits belongs to p[S] outputting ‘1’ in that
case and ‘0’ otherwise, then its results would always be ‘1’ with p, but only
half of the time or less with fully random bits.

Thus, any pseudorandom number generator p can be distinguished
from a fully random choice of bits in the sense of information theory, that
is when the distinguishing program has unlimited resources. However, it
is widely believed that it is possible to construct effectively computable
p, whose output can be distinguished from a true random sequence by a
non-negligible margin only by programs that perform an enormous amount
of computation [Blum and Micali, 1984, Goldreich et al., 1986, Håstad et al.,
1999, Yao, 1982].

It has been shown that such deterministic functions whose output
appears to be random (in an asymptotic sense) to any polynomial-time
program can be constructed from one-way functions [Goldreich et al., 1986,
Håstad et al., 1999]. At the same time, the existence of one-way functions
is considered to be a reasonable complexity-theoretic assumption. For
example, some number-theoretic functions, such as the rsa-function, are
believed to be one-way [Bellare and Rogaway, 2005].

However, prng constructions based on one-way functions are ineffi-
cient. Cryptographic block ciphers, on the other hand, offer a more efficient
alternative for implementing prngs [Bellare et al., 1996, Salmon et al., 2011].
Pseudorandomness of such generators depends on the security of block
ciphers they are based on.

Block ciphers are common and widely used cryptographic primitives.
Unlike number-theoretic constructions, the security of block ciphers does
not follow from complexity-theoretic assumptions. Instead, their security is
asserted based on careful design and unsuccessful cryptanalytic attempts
on them [Bellare and Rogaway, 2005, Rogaway, 2011]. Even though there
are many block ciphers that had once been considered safe and were
subsequently broken, there exists a selection of them that successfully

thesis March 27, 2014 10:04 Page 109 �
�	

�
�	 �
�	

�
�	

3 Proposed construction 109

underwent a thorough peer-review process without being broken, and are
generally considered to be trusted primitives.

Asserting the security of a block cipher appears to be an unnecessarily
strong assumption, given that constructions based on one-way functions
could be used. However, proving their concrete (non-asymptotic) pseudo-
randomness requires making additional concrete assumptions about the
one-way functions, which are much less obvious.

We propose to use the 256-bit variant of the ThreeFish [Ferguson et al.,
2010] block cipher for the construction of our prng, which is one such peer-
reviewed primitive. It has been proposed as the basis for the Skein hash
function, which was one of the finalists of the National Institute of Standards
and Technology (nist) sha -3 secure hash standard competition4. The
hash function survived three rounds of public peer-review, withstanding
the best attacks with a reasonable security margin, and its security was
considered acceptable by nist [Chang et al., 2012].

3 Proposed construction

We propose a simple construction that gives a splittable prng, whose out-
put appears to be fully random to any program that performs a reasonably
bounded amount of computation. A program that has access to such a
generator, using the api presented in Section 2, can use splitting to create
a number of generator states over the course of its execution, and can also
query some of these states for random numbers using rand. Observe that
we can identify each generator state with the path that was used to derive
it from the initial generator state. The main idea behind our construction is
to map these paths to numbers using a keyed hash function, whose results
for different arguments appear to be unpredictably random.

First, we injectively encode each path as a sequence of bits. Starting
from the initial generator state we take ‘0’ each time we go to the left and
‘1’ to the right. Then we use a cryptographic keyed hash function to map
that sequence of bits to a hash value. The initial seed of the generator is
used as the key for the hash function. The result of the hash function is our
random number.

Figure 3.1 shows a tree of generator states created by splitting the initial
generator state a. Random numbers are generated by computing the hash
function of the encoded paths leading to the respective generator states.
For example, generator state c has been obtained from the initial state using
3 split operations: first the right generator state has been chosen, second
also the right one, and third the left one. Hence, the path leading to c is

4http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

thesis March 27, 2014 10:04 Page 110 �
�	

�
�	 �
�	

�
�	

110 iii : Splittable Pseudorandom Number Generators . . .

a

b

d

c

h(〈0〉)

h(〈10010〉)

h(〈110〉)

Figure 3.1: Splittable prng through hashing of paths.

encoded as bit sequence 〈110〉, and the hash of that is the random number
returned by rand c.

The following code shows a simple, but inefficient Haskell implementa-
tion of this generator.

type Rand = (Seed, [Bit])

split :: Rand -> (Rand, Rand)

split (s, p) = ((s, p ++ [0]), (s, p ++ [1]))

rand :: Rand -> Word32

rand (s, p) = extract $ hash s p

The concern of this simple construction is to uniquely encode each derived
generator state. The entire task of creating random-looking output is
outsourced to the keyed hash function, which we chose to implement with
a tried and tested construction.

3.1 Efficient hashing

Using a cryptographic hash function to process the paths leading to every
random number may seem to be very slow. However, cryptographic hash
functions often have an iterated construction, which allows them to be
computed incrementally. By doing so we can implement both split and
rand in O(1) time, and make split a very cheap operation most of the
time. In this way we achieved performance that almost matches the current
standard splittable generator for Haskell.

We use the Merkle-Damgård construction [Bellare et al., 1996, Coron
et al., 2005, Damgård, 1990] to implement hashing, which is a common
pattern for iterated hash functions. In this construction, shown in Figure 3.2,
the input consists of a number of fixed-width data blocks m0 to mn that are

thesis March 27, 2014 10:04 Page 111 �
�	

�
�	 �
�	

�
�	

3 Proposed construction 111

m0 m1 · · · mn

k = h0 f f · · · f hn+1
h1 h2 hn

Figure 3.2: Merkle-Damgård construction. f represents the compression
function.

iteratively fed into function f (the compression function), which takes both a
data block and intermediate state hi and computes new intermediate state
hi+1.

hi+1 = f (hi, mi)

The hash key is used as the initial state of the iteration h0, and the final
state hi+1 is the value of the hash. The function is essentially a fold of the
compression function f , and can be computed incrementally.

hash k [m0, . . . , mn] = foldl’ f k [m0, . . . , mn]

The purpose of the compression function is to mix a block of input data
into an intermediate state in an unpredictable way.

The unpredictability can only be achieved when the initial state and all
intermediate states are unknown to the program receiving the outputs of
the hash function. For this reason, none of the inputs for the hash function
with a given key should be a prefix of another one. Otherwise, the result
of the hash function for the shorter input would be the same as one of the
intermediate states for the longer one, which would mean that one function
result could be predicted from another. In other words, the construction
requires that the set of queried inputs is prefix-free.

The construction relies on the compression function for unpredictability,
merely extending its domain from single blocks to their sequences. The
compression function can be implemented using a block cipher by feeding
the state hi as the key of the cipher and the data blocks as the data blocks
of the cipher, as shown in Figure 3.3.

The requirements of the hash function that the input is a sequence of
blocks of a size determined by the block cipher, and that the inputs used
during one program run form a prefix-free set, need to be addressed by the
encoding used to create inputs. Below we present such an encoding.

thesis March 27, 2014 10:04 Page 112 �
�	

�
�	 �
�	

�
�	

112 iii : Splittable Pseudorandom Number Generators . . .

m0 m1 · · · mn

h0 E E · · · E hn+1
h1 h2 hn

Figure 3.3: Merkle-Damgård construction using a block cipher. Input
indicated with a triangle is the key of the block cipher.

3.2 Encoding

We encode the paths leading to generator states as sequences of blocks.
First, let’s represent a path as a sequence of bits as previously, by walking
the path from the initial generator state and taking ‘0’ for going left and ‘1’
for going right. Then, we divide this sequence into blocks of the required
size and if the last block is incomplete, pad it with ‘0’s.

Observe that the paths to the generator states that are queried in a single
run of a program must form a prefix-free set, due to the requirement that
split and rand cannot be called on the same generator state.

The fact that the paths form a prefix-free set is required for the encoding
to be injective. To show the injectivity, let’s assume the opposite. Suppose
that we have two different paths that are mapped to the same sequence of
k blocks. Given that the initial k− 1 blocks are equal, the paths must have a
common prefix that was encoded in these blocks. Since the last block is also
equal, the two paths must have different lengths and the suffix of the longer
one must be encoded as all ‘0’s to match the padding in the encoding of the
shorter one. Furthermore, the part that precedes that suffix must be equal
to the last part of the shorter path. From this we can see that the shorter
path must be a prefix of the longer one, which contradicts our assumption.

We can similarly show that no sequence of blocks is a prefix of another
one if both are encodings of paths that are not each other’s prefixes. Thus,
the encodings of paths that form a prefix-free set will themselves form a
prefix-free set, which is required by the hash function.

The encoding is efficient in the sense that to hash a given path a block
cipher is invoked only once every b splits where b is the block size in bits.

3.3 Incremental computation

To obtain hashing and encoding presented above in an efficient and in-
cremental way we implemented both of these stages together in the split

and rand operations. Operation split takes a partially-computed hash
value and returns two partially-computed hash values. Operation rand

completes the computation of the hash and returns its value. Implementing

thesis March 27, 2014 10:04 Page 113 �
�	

�
�	 �
�	

�
�	

4 Correct hashing 113

the encoding and hashing together has the added benefit that the hash
computation of the initial common part of the path can be shared between
different generator states.

To allow incremental computation the generator state must contain both
the last intermediate state block of the hash function and the last part of
the path that has not been hashed yet. Operation split adds a bit (‘0’ in
the right generator state, ‘1’ in the left one) to the unhashed sequence and
if the unhashed sequence has reached the length of a block, it runs one
iteration of the hash function that consumes the sequence and updates
the intermediate state. Operation rand runs the final iteration of the hash
function with whatever unhashed sequence there is (it might be empty),
pads it with ‘0’s and extracts a random number from the hash.

type Rand = (Block, [Bit])

hashStep :: Rand -> Rand

hashStep s@(h_i, unhashed)

| length unhashed < blockLength = s

| otherwise = (compress h_i (pad unhashed), [])

split :: Rand -> (Rand, Rand)

split (h_i, unhashed) =

(hashStep (h_i, unhashed ++ [0]),

hashStep (h_i, unhashed ++ [1]))

rand :: Rand -> Word32

rand (h_i, unhashed) =

extract $ compress h_i (pad unhashed)

Since the length of unhashed is at most equal to blockLength, the run
time of both rand and split operations is bounded. Also, split is usually
inexpensive, as most of the time it only adds a single bit to the state.

4 Correct hashing

The Merkle-Damgård hashing construction shown by us in the previous
section relies on a block cipher, or another compression function with
similar properties, to provide pseudorandomness. However, the block
cipher invocations are chained, making its use rather non-trivial. Thus, it is
important to consider the correctness of the construction.

One way of analysing a cryptographic hash function is to use a security
reduction proof to bound the advantage of any program in distinguishing

thesis March 27, 2014 10:04 Page 114 �
�	

�
�	 �
�	

�
�	

114 iii : Splittable Pseudorandom Number Generators . . .

the results of the hash function from completely random results, depending
on the amount of computation the program can perform. Proving the hash
function’s correctness amounts to showing that it gives only negligible
advantage to programs that perform reasonable amount of computation.

The M-D construction has previously been analysed from this perspec-
tive. Below, we present a reduction proof of its pseudorandomness, based
on [Bellare and Rogaway, 2005, Bellare et al., 1996]. the proof allows us to
derive concrete bounds on the maximum discrepancy that a program using
the generator can observe.

Using security proofs turned out to be very helpful in designing the
prng, as they helped to identify incorrect designs as well as their elements,
which were not bringing any benefits. In addition, the bounds that they
provide made the limitations of the generator explicit.

The reduction proof assumes that the used block cipher is secure in
the sense that it can be effectively broken only by key enumeration, which
is the main assumption of our prng (see Section 2.2). Moreover, even if
the cipher’s known security is reduced, the bound provided by the proof
degrades gracefully.

However, perhaps the biggest value of the proof is the guarantee that
the block cipher is used in a correct way in the construction, as otherwise it
would not have been possible to achieve a low bound on the discrepancy.

4.1 Pseudorandom functions

In order to formally model block ciphers and keyed hash functions, we need
to introduce pseudorandom functions (prfs) [Bellare and Rogaway, 2005,
Bellare et al., 1996, Goldreich et al., 1986], which generalise pseudorandom
number generators.

Let F = { fk : k ∈ K} be a finite family of functions fk ∈ BA indexed by
elements of finite set K. We write f ← F to mean that f has been chosen
from F by choosing its index uniformly at random from K. Next, consider
F′ = BA to be the set of functions from A to B, where B is a finite set, and
A is possibly infinite.

This introduces a slight complication, as F′ may be infinite, and the
uniform distribution does not exist for coutably infinite sets. To address
that, we use the lazy sampling principle [Bellare and Rogaway, 2004]. That
is, instead of choosing a random member of BA, we create a lazy non-
deterministic procedure that generates the function’s random results on
demand. The procedure picks a random value of B each time the function
is called with a new argument. Consequently, the results of the function
appear exactly as if they were returned by a ‘randomly chosen’ function.
We use the same notation f ′ ← F′ to mean that f ′ has been chosen from F′

thesis March 27, 2014 10:04 Page 115 �
�	

�
�	 �
�	

�
�	

4 Correct hashing 115

using lazy sampling. For function families that are finite, when both A and
B are finite, lazy sampling gives the same observed distribution as choosing
their representant uniformly at random.

We generalise the definition of advantage from Section 2.2. Let F1 and F2
be two function families of functions BA, each of which may be an indexed
function family, or the set of all functions from A to B. The advantage of D
in distinguishing between F1 and F2 is defined as follows:

AdvD(F1, F2) =

∣∣∣∣ Pr
f1←F1

[D(f1) = 1] − Pr
f2←F2

[D(f2) = 1]
∣∣∣∣

where D(f) is program D instantiated with a particular function f : BA,
which it can query as a black-box oracle.

Our objective now will be to have a small and easily computable indexed
function family F ⊆ BA, whose random member appears to programs as a
random function BA. In other words, the advantage AdvD(F, BA) should
be as small as possible for any (reasonably bounded) D, making F and BA

difficult to distinguish (indistinguishable). Such an indexed function family
is said to be pseudorandom.

The original goal of bounding the advantage of any program with
a certain run time limit has been to defend against an adversary who
could create a program that breaks the pseudorandom number generator,
or another cryptographic entity. Even though we do not assume any
adversarial behaviour, we would like that the user of a prng can write any
program without risking that a flaw in the generator will compromise his
results.

4.2 Iterative hash construction

We will now formalise the construction of the hash function presented in
Section 3.1. The hash function uses a compression function f to process
each of the data blocks in turn. Let F = { fk : k ∈ B} be an indexed function
family representing the compression function, so that fk(x) = f (k, x) and
B = {0, 1}n represent the set of data blocks, as well as the set of keys.
We define F∗ = { f ∗k : k ∈ B} with f ∗k ∈ BB∗ to be a finite function family
that represents the iterative hash construction based on f , as follows by
induction.

f ∗k (〈〉) = k

f ∗k (〈B0, . . . , Bn−1, Bn〉) = f f ∗k (〈B0,...,Bn−1〉)(Bn)

To show that this iterative hash construction is a good pseudorandom
function we show a bound on the advantage program D can get in distin-

thesis March 27, 2014 10:04 Page 116 �
�	

�
�	 �
�	

�
�	

116 iii : Splittable Pseudorandom Number Generators . . .

guishing it from a random function.

AdvD(F∗, BB∗) 6 ε

The above bound can only be shown assuming that is that the advan-
tage in distinguishing the compression function from a random function
(AdvD′(F, BB)) is also bounded. The proof also captures the crucial assump-
tion that the sequences used by D for making queries form a prefix-free
set.

To show the bound we refer to a result from [Bellare et al., 1996]. The
following theorem assumes the Random-Access Machine (ram) computa-
tional model, which we also assume for the rest of this section.

Theorem 4.1. Let F be a finite function family F = { fk : k ∈ B} with fk : B→ B.
Suppose that there exists program D, which has access to an oracle of type B∗ → B,
and makes at most q prefix-free queries to this oracle at most l > 1 blocks long,
consuming at most t units of time5. Then, there exists program E, which has access
to an oracle of type B→ B, as well as to program D as another oracle, such that:

AdvD(F∗, BB∗) 6 ql AdvE(D)(F, BB)

Program E(D) makes at most q queries and runs in time at most t + cq(l +
k + b)(Time(F) + log q), where Time(F) is the time required to execute the
implementation of F and c is a small constant.

Proof. The theorem follows from Theorem 3.1 in [Bellare et al., 1996].

The theorem states that if there exists program D that distinguishes
between F∗ from a random function with probability ε, then it is possible
to construct program E(D), which uses D as its subprogram, and that is
able to distinguish the compression function F from a random function
with probability qlε, with additional constraints on the run time of both
programs.

Conversely, if we assert that the advantage of any program in distin-
guishing F∗ from a random function is not greater than ε, then we can
bound the advantage of any program for distinguishing F from a random
function by qlε.

It is worth noting that we only specified the computational model for the
reduction as the ram computational model, and did not precise what addi-
tional operations programs may execute, such as the decryption function of
a block cipher. This may seem suspicious as using a computational model
that is weaker may appear to ‘leave out’ some ways to attack the hash.

5Time to read the program text is also counted in t.

thesis March 27, 2014 10:04 Page 117 �
�	

�
�	 �
�	

�
�	

4 Correct hashing 117

However, in fact using a weaker model can only result in AdvE(D)(F, KB)
being smaller and providing a more conservative bound on AdvD(F∗, KB∗).

To use Theorem 4.1 to bound the advantage on the hash function, we
need to supply the bound on the compression function.

4.3 Compression function

In order to obtain an unpredictable compression function, we employ a
cryptographic block cipher. A block cipher is a pair of effectively computable
functions enc : K × B → B and enc−1 : K × B → B, where K is the set
of keys and B is the set of blocks. Both keys and blocks are fixed-length
sequences of bits, and for our purposes we assume that K = B = {0, 1}n.
Each enck : B→ B is a permutation on B and also (enck)

−1 = enc−1
k .

The theoretical model for block ciphers that we will use is pseudoran-
dom permutations (prps) [Bellare et al., 1998, Rogaway, 2011]. A prp is an
indexed function family that is indistinguishable from a random permu-
tation in the same way as a pseudorandom function is indistinguishable
from a random function.

To show the security bound of the hash function we need the com-
pression function to be a prf, but a block cipher that we have is a prp.
However, using a prp in place of a prf does not impose a large penalty
on observed randomness, which resulted in many analyses treating block
ciphers as prfs [Bellare and Rogaway, 2004].

The ‘similarity’ of prps and prfs is stated by the prp/prf Switch-
ing Lemma [Bellare and Rogaway, 2004, Hall et al., 1998], which gives
a bound on the ability to differentiate between a prf and a prp by a
computationally-unbounded program (Perm(B) denotes the set of permu-
tations of B).

AdvD(BB, Perm(B)) 6
q(q− 1)

2b+1

where B = {0, 1}b and q is the number of queries D can make to the oracle.
Thus, the best way of distinguishing a prp from a prf is to query it a large
number of times and look for collisions.

Given that, we can obtain a bound on expression AdvD
E (F, BB) from

Theorem 4.1. From the definition of Adv we have the inequality:

AdvED (F, BB) 6 AdvED (F, Perm(B)) + AdvED (Perm(B), BB)

Now we can bound AdvED (Perm(B), BB) using the Switching Lemma:

AdvED (BB, F) 6 AdvED (F, Perm(B)) +
q(q− 1)

2b+1

thesis March 27, 2014 10:04 Page 118 �
�	

�
�	 �
�	

�
�	

118 iii : Splittable Pseudorandom Number Generators . . .

To bound AdvED (F, Perm(B)), we have to invoke our assertion that F is a
good block cipher. It is reasonable to assume that the best attacks on F are
by key search [Bellare and Rogaway, 2005].

AdvED (F, Perm(B)) 6 2−b
(

q +
t′

Time(F)

)
Finally

AdvED (F, BB) 6 2−b
(

q +
t′

Time(F)
+

q(q− 1)
2

)
Now invoking Theorem 4.1, we get:

AdvD(F∗, BB∗) 6

2−bql
(

q +
t + cq(l + k + b)(Time(F) + log q)

Time(F)
+

q(q− 1)
2

)
After simplification and omitting insignificant terms we obtain the final
bound:

AdvD(F∗, BB∗) 6 2−b
(

q3l
2

+ c1q2l2(1 + log q) +
c2tql

Time(F)

)
For example for a 256-bit block cipher, if program performs at most 250

queries, each of at most 230 blocks, then the discrepancy can be bounded
by 2−70, provided that the run time is bounded by 290. We assume that the
constants are small (c2/ Time(F) < 210).

5 Linear generation

We presented only a simplified version of splittable pseudorandom number
generators with split and rand operations. Splittable generators in Haskell
also support linear generation, which is possible with a modified api:

split :: Rand -> (Rand, Rand)

next :: Rand -> (Word32, Rand)

Operation next replaces rand and, in addition to returning a random num-
ber, also returns a new generator state. Calling next repeatedly allows
generating a sequence of random numbers. The api does not allow calling
both split and next on the same generator state, similarly as in the original
api presented earlier.

Replacing rand with next does not give any additional expressiveness to
the api, as next can be implemented on top of the old api in the following
way:

thesis March 27, 2014 10:04 Page 119 �
�	

�
�	 �
�	

�
�	

5 L inear generation 119

a

b

c

e

d

h(〈0〉, 1)

h(〈1010〉, 1)

h(〈110〉, 1)h(〈00〉, 2)

Figure 3.4: Splittable prng with next operation. Snake arrows () lead to
states derived using next operation.

next g = (rand g1, g2)

where

(g1, g2) = split g

However, having next allows implementing linear random number gener-
ation more efficiently by counting the number of next operations on the
path (which takes only O(log n) bits), in addition to keeping the sequence
of right and left operations. Figure 3.4 presents encodings of paths from
the initial state a to several derived generator states (marked in black). For
example, path to state d is encoded as (〈110〉, 1), because it contains one
occurrence of next and the remaining operations on the path form the
sequence right, right, left. Observe that it is possible for another path
to be encoded as (〈110〉, 1). However, reaching both that other state and d
would require calling both split and next on some state, and thus violating
the api requirement.

The used encoding (e1) is defined below. We formally show its unique-
ness, together with a stronger property, which is of interest for creating
more advanced encodings.

Definition 5.1. Encoding e1 is a function that maps a path of three oper-
ations: right, left and next to a pair of a sequence of bits and a number.
The number is equal to the number of next operations and the sequence of
bits represents the sequence of right and left.

The following definition captures the requirement that must be satisfied
by programs using the splittable prng api.

Definition 5.2. A program run that uses the api is valid iff, for any two
distinct generator states queried in a single program run, the following
holds. Let paths c1 and c2 represent the two states. Let cp be their longest

thesis March 27, 2014 10:04 Page 120 �
�	

�
�	 �
�	

�
�	

120 iii : Splittable Pseudorandom Number Generators . . .

common prefix, and c′1 and c′2 be the respective remainders of c1 and c2.
The following condition must be satisfied

c′1 = 〈〉 ∧ c′2 = 〈next, . . .〉
∨ c′1 = 〈next, . . .〉 ∧ c′2 = 〈〉
∨ c′1 = 〈right, . . .〉 ∧ c′2 = 〈left, . . .〉
∨ c′1 = 〈left, . . .〉 ∧ c′2 = 〈right, . . .〉

(5.1)

where 〈〉 denotes the empty path, and ‘. . .’ any remainder of a path.

To be able to state the main property of encoding e1 we define relation
m. Let p1 and p2 be sequences; then p1 m p2 means that one of p1 and p2 is
a prefix of the other one. That is,

p1 m p2 iff p1 � p2 ∨ p2 � p1.

Note that � is reflexive, hence m is also reflexive. We will use m as a
relation on both, sequences of bits and sequences of blocks.

The uniqueness of encoding e1 for all states reachable from a single
program run is implied by the following, stronger property.

Proposition 5.3. If a program run is valid by Definition 5.2, then, for any two
distinct generator states queried in the run, the following holds. Let paths c1 and
c2 represent the two states, and (p1, n1) and (p2, n2) be their encodings using
encoding e1. Then

p1 6m p2 ∨ n1 6= n2 (5.2)

Proof. Consider a program run that is valid according to Definition 5.2.
Then, if c1 and c2 are paths to two queried states, then c′1 and c′2 defined
as in Definition 5.2 satisfy Condition 5.1. We perform case analysis on the
alternatives of that condition.

If any of the two initial alternatives is satisfied, then there is at least
one more occurrence of next in one of c1 and c2 compared to the other one,
hence n1 6= n2, which means that the second alternative of Condition 5.2 is
satisfied.

If any of the two final alternatives is satisfied, then p1 6m p2.

5.1 Concrete encoding

We use the following scheme (e2) to encode the bit sequence and the
counter, obtained from encoding e1, into a sequence of blocks. Zero or
more initial blocks are devoted to encoding the bit sequence, while the last
block encodes the counter. The following diagram shows the data layout of
a sequence of blocks that encodes a path.

thesis March 27, 2014 10:04 Page 121 �
�	

�
�	 �
�	

�
�	

5 L inear generation 121

bseq1 0 · · · bseqn 0 ctr 1

The bit sequence runs through the bseqi regions from front to back and is
padded with ‘0’s in the last region if it does not occupy the whole of it. The
region in the last block marked ctr contains a binary number representing
the counter. The last bit of the last block is set to ‘1’ and to ‘0’ for all other
blocks.

We ignore the situation where the value of the counter is too large to
be represented by the ctr field, and leave the encoding undefined in that
case. We deal with overflow in a more complex encoding that is presented
in Appendix A.

Note that linear random number generation using next requires only one
iteration of the hash function as only the value of the counter is changing,
which requires changing only the last block. This way, when next is called
repeatedly, the block cipher used as the compression function is effectively
run in counter mode for generating random numbers. Splitting, on the
other hand, requires rehashing two blocks at the end. The more efficient
encoding that is presented in Appendix A usually requires updating only
the last block on during splitting.

5.2 Compatibility with hash function

To be compatible with the hash function presented in Section 3.1, the
encoding must transform any set of paths, which are reachable in a single
program run that satisfies the restriction imposed by the api, into a prefix-
free set of blocks. Below, we show that this property holds for paths for
which the encoding is defined.

Recall that, from Proposition 5.3, if (p1, n1) and (p2, n2) are two different
paths that are inspected in the same program run encoded with e1, then
the following holds:

p1 6m p2 ∨ n1 6= n2

We must show that if (p1, n1) and (p2, n2) satisfy the above condition,
then their encodings with e2 are not each other’s prefixes. We prove this
fact by contrapositive. Without loss of generality, we assume that s1 � s2,
where s1 = e2 (p1, n1) and s2 = e2 (p2, n2). The last bit of each block of s1
and s2 is set to ‘0’, except for the last block, where it is set to ‘1’. Therefore,
the last block of s1 cannot be equal to a non-terminal block of s2, hence
s1 = s2. The counter is uniquely determined by the ctr region, therefore
n1 = n2. The sequence of bits encoded with e2 is also uniquely determined,
except for a number of possible trailing ‘0’, which are indistinguishable

thesis March 27, 2014 10:04 Page 122 �
�	

�
�	 �
�	

�
�	

122 iii : Splittable Pseudorandom Number Generators . . .

from padding. Thus, p1 and p2 differ only by the amount of trailing zeroes,
hence p1 m p2, which gives us ¬(p1 6m p2 ∨ n1 6= n2).

5.3 n-way split

The design of the generator suggested one more primitive operation splitn:

splitn :: Rand -> Word32 -> Rand

Calling splitn g yields 232 new generator states derived from g, which
can be accessed by applying the resulting function to numbers 0 . . . 232 −
1. Consistently with the original api, we require that only one of the
operations next, split and splitn can be called on a given generator state.

The n-way split operation can be used to efficiently create many derived
generator states when their number is known in advance. For example, an
array of random numbers can be efficiently generated using splitn. Another
scenario when splitn might be useful is generating random functions
in QuickCheck, which uses a sequence of split operations to derive a
generator state, which is uniquely determined by an argument that was
applied to the random function.

Semantically, splitn can be expressed in terms of a sequence of 32 split

operations, and selecting one of the 232 possible derived states, determined
by the splitn argument. An efficient implementation, however, would
instead add all 32 bits at once to the bit sequence that encodes the path to
the generator state.

6 Performance

Cryptographic techniques have long been known for producing high-quality
random numbers. However, their perceived low performance has been a
barrier for their adoption. The original goal for this work has been to assess
whether a splittable prng based on a block cipher can give acceptable
performance so that it can be proposed to be the default prng in Haskell.

The proposed prng (Section 3), whose implementation we will refer
to as TFGen in this section, uses a cryptographic block cipher to generate
random numbers. We chose the 256-bit ThreeFish [Ferguson et al., 2010]
block cipher, which is efficiently implementable in software. Despite the
large block size, the encryption of a single block takes less time than for
128-bit aes, which is a standard contemporary block cipher. In addition,
ThreeFish does not require an additional costly key setup phase, which is
required by aes when a new encryption key is used. The actual imple-
mentation of the cipher used is a simplified version of the one from the

thesis March 27, 2014 10:04 Page 123 �
�	

�
�	 �
�	

�
�	

6 Performance 123

Skein c reference implementation6, which is accessed from Haskell using
the Foreign Function Interface.

The encoding used in TFGen is the one presented in Appendix A. We
chose to use 64 bits for the bit sequence in each block (bseqi) and another
64 bits for the counter (ctri), leaving 128 bits unused. Choosing 64 bits for
the bit sequence means that rehash is needed every 64 splits, which brings
the cost of doing that to below 2%7 in split-intensive benchmarks. Similarly,
overflow of a 64 bit counter will happen very rarely and have a negligible
impact on performance. Using more bits for representing the bit sequence
or the counter would, on the other hand, likely cause more overhead than
give benefits.

One difference between the benchmarked code and the encoding from
Appendix A is that if next is called repeatedly, it returns subsequent words
from a single generated block, generating a new block every 8 calls. Imple-
menting this particular feature requires only small changes to the encoding.

6.1 QuickCheck

The primary application that we considered for the proposed prng is
random testing tool QuickCheck. Currently, QuickCheck uses the de-
fault splittable prng in Haskell, StdGen, for generating random test data.
QuickCheck’s random data generators make heavy use of splitting, in order
to avoid generating parts of values that are never inspected.

Figure 3.5 shows the relative performance of some typical properties that
test implementations of an ordered set (S.*) and heap (H.*) data structures,
taken from the examples folder in the QuickCheck distribution. In addition,
two last properties used randomly generated functions, whose generators
are also provided in QuickCheck. The set and heap properties execute
3–11% slower (8% slower on average) with TFGen, compared to StdGen. The
two last properties, on the other hand, execute about 9% quicker.

The likely explanation for this is that QuickCheck’s random function
generators perform a large number of splits. As micro benchmarks pre-
sented in Figure 3.6 suggest, split is executed 2.3x faster by TFGen than by
StdGen.

On the other hand, operation next is over 30% slower with TFGen (micro
0) when it is called for isolated states, and never called twice in a sequence.
Such a situation occurs often in QuickCheck generators, which can explain
the slow down in the properties. However, executing subsequent next

operations is much less expensive in TFGen as it only requires reading the

6http://www.schneier.com/skein.html
7All measurements were performed using ghc 7.6.2 targeting x86-64 architecture on Intel

xeon E5620 processor (Westmere-ep) clocked at 2.4 GHz.

http://www.schneier.com/skein.html

thesis March 27, 2014 10:04 Page 124 �
�	

�
�	 �
�	

�
�	

124 iii : Splittable Pseudorandom Number Generators . . .

H.prop_RemoveMin
H.prop_Size
H.prop_Merge
S.prop_Invariant
S.prop_Size
S.prop_Insert
S.prop_Delete
S.prop_Union
S.prop_FromList
S.prop_ToSortedList
prop_functions1
prop_functions2

-5% 0% 5% 10%

Figure 3.5: Relative slowdown (speedup) of example QuickCheck properties
using TFGen compared to baseline runs with StdGen (). Black bars ()
indicate how much time has been spent in the ThreeFish cipher by TFGen.

micro 0

micro 5

micro 10

micro_4 0

micro_4 5

micro_4 10
0 5 10 15 20 25 30 35(ms)

Figure 3.6: Run times of micro benchmarks for StdGen () and TFGen ().
Benchmark micro n executes 20k next operations and (n + 1)20k split

operations. Benchmark micro_4 is the same, except that it runs 4 next

operations in sequence instead of one in each case.

next word from the block, and regenerating the block once every 8 words,
which is confirmed by the micro_4 benchmark.

Benchmarks using QuickCheck (Figure 3.5) also contain an estimation
of the percentage of time consumed by computing the ThreeFish block
cipher. The estimation has been obtained by running the properties with a
modified version of TFGen, which runs the block cipher four times, instead
of one, and discards three of the results. As can be seen from the figure,
the cost of running ThreeFish is very low for all of the properties, which
indicates that the run time cannot be improved much by speeding up the
cipher.

thesis March 27, 2014 10:04 Page 125 �
�	

�
�	 �
�	

�
�	

6 Performance 125

Arith 0.99

Bools 0.48

Composition 1.55

Heaps 55.51

Lists 70.74

-10% -5% 0% 5%

Figure 3.7: Run times of QuickSpec (in s) on its example problems with
StdGen and relative TFGen performance ().

6.2 QuickSpec

QuickSpec [Claessen et al., 2010] is a tool that discovers an equational
specification of Haskell code based on the behaviour it observes through
random testing. Testing is performed with the use of QuickCheck’s random
data generators, and usually consumes a significant portion of total run
time of QuickSpec.

Figure 3.7 shows run times of QuickSpec version 0.9 on examples from
its examples folder. As seen in the figure, Arith and Bools perform the
same with both generators, Lists and Composition are about 13–15% faster
with TFGen, and Heaps is are about 5% slower with it. QuickSpec relies on
generating random valuation functions for testing, which require executing
many split operations. This is likely to have equalised the advantage
StdGen has over TFGen. In addition, Composition and Lists examples contain
higher-order functions in their signatures, necessitating random generation
of even more functions.

6.3 Linear generation

The standard StdGen generator is considered to be very slow for linear
random number generation. Its slowness to a large extent comes from
using standard Random instances, which serve as high-level primitives for
generating random values of different types using the numbers returned by
the random generator. On top of that, code using StdGen usually uses the
Haskell lazy list as the intermediate data structure, which adds additional
overhead.

To benchmark linear generation we decided to sidestep the Random in-
stances and generate numbers directly using next. To remove the overhead
caused by using lists we used the vector8 package, which allows for efficient
generation of unboxed vectors.

8http://hackage.haskell.org/package/vector

http://hackage.haskell.org/package/vector

thesis March 27, 2014 10:04 Page 126 �
�	

�
�	 �
�	

�
�	

126 iii : Splittable Pseudorandom Number Generators . . .

StdGen

TFGen

TFGen no-op
random-mwc

0 2 4 6 8 (ms)

Figure 3.8: Run time of generating a vector of 100k 32-bit integers (in ms)
using next (), and functions native for each generator ().

Figure 3.8 shows run times for generating an unboxed vector of 100k
32-bit random numbers. The grey () bars show results for code that used
the next method from RandomGen class, implemented by both generators.
StdGen returns Int values from range 0–2147483562. TFGen, on the other
hand, generates the full range of Word32 values, which are then transformed
into Int values from StdGen’s range, in order to be able to benchmark it
with Random instances, which were written for StdGen. Results shown in
black () were obtained using code that directly generated Word32 values.

As shown in the figure, TFGen is marginally faster than StdGen at gen-
erating numbers using next. However, TFGen performs almost twice as
fast when directly generating Word32 values. The observed difference is
most likely due to the code that transforms the results into the smaller
range, which is simple, and yet appears to prevent some optimisations to be
performed by the compiler, such as fusion [Leshchinskiy, 2009]. We did not
see the need to improve that code, as its only function was benchmarking
that also used the Random instances, which themselves impose considerable
overhead. However, it suggests that much performance is to be gained by
giving that code, and the Random instances, some attention.

We chose the random-mwc package, which is considered to be the fastest
linear prng for Haskell, as the baseline for comparing the ‘raw’ random
generation speed. As shown in the figure, TFGen is slower by 65% than
random-mwc in generating 32-bit random numbers. The fastest reported
performance for random-mwc is still higher than the one measured by us,
at 16.7 ns per 32-bit number (with an unreported cpu)9, which would
correspond to 1.67 ms in the figure.

The entry marked ‘TFGen no-op’ in the figure is the run time of the
TFGen generator with the code running the actual cipher replaced by a
very cheap operation (xor). This version of TFGen is only slower by 1.41

ms, suggesting that the generator’s performance is heavily affected by
book-keeping computations.

9http://www.serpentine.com/blog/2011/03/18/a-little-care

http://www.serpentine.com/blog/2011/03/18/a-little-care

thesis March 27, 2014 10:04 Page 127 �
�	

�
�	 �
�	

�
�	

7 D iscussion and future work 127

6.4 Conclusion

We found that an implementation of a high-quality splittable prng based
on a cryptographic block cipher can have competitive performance with
respect to traditional prngs. We found our implementation (TFGen) to
be, on average, 8% slower than StdGen on typical QuickCheck properties
and about 9% faster on properties involving random functions, and we
observed a similar speedup with QuickSpec. We found that linear random
number generation with TFGen is slower by 65% than with random-mwc, a
state-of-the-art linear random number generator for Haskell.

Measurements performed by us suggest that it will be possible to im-
prove the performance of TFGen in the future by optimising the Random

instances and making sure that the generator’s code gets properly opti-
mised together with the code that uses it.

7 Discussion and future work

Splittable prngs are keyed hash functions We showed that a splittable
prng can be constructed using a keyed hash function in a straightforward
way. The crucial observation that allowed this was that the property that is
expected from keyed hash functions, that they are indistinguishable from
random mappings to computationally-bounded programs, is exactly the
property we need for splittable prngs. Similarly, a keyed hash function
can be constructed based on a splittable prng with a reasonable efficiency
by mapping each possible input to the hash function to a unique sequence
of prng operations. In that case, the security of the keyed hash function
would depend on the pseudorandomness of the prng. Based on this
observation, both these constructions appear to solve the same problem.

Bounds As shown in Section 4, the presented splittable prng construc-
tion has a bound on the order of 2−b(q3l + q2l2 + tql). In contrast, the
bound for a linear prng based on a block cipher running in the ctr mode
is 2−b(q2 + tq) [Rogaway, 2011], which can be shown using the Switch-
ing Lemma, mentioned in Section 4.3. Thus, by using a splittable prng

we have to trade a worse bound for the flexibility that splitting provides.
The bound on the splittable prng used as a linear generator trivialises to
2−b(q3 + tq), which is a worse result than the bound derived directly. It
may be possible to improve our analysis and get a better bound for the
generator.

Analysis performed in [Bellare et al., 1996] for the Merkle-Damgård
construction shows that the best bound that can be achieved with this con-
struction is on the order of 2−blq2, if the compression function is modelled

thesis March 27, 2014 10:04 Page 128 �
�	

�
�	 �
�	

�
�	

128 iii : Splittable Pseudorandom Number Generators . . .

as a pseudorandom function. However, other similar constructions can
provide better bounds (see below).

Alternative hashing constructions Thanks to basing a splittable prng

on hashing, any keyed hash function can be used for its construction.
Keyed hash functions are commonly used as Message Authentication Codes
(macs), and there is a large variety of constructions available.

One construction that we considered is cbc -mac [Bellare et al., 2005],
which is a standard way of creating a mac on top of a block cipher. Its
mode of operation is very similar to the construction used by us, and it
also requires a prefix-free set of inputs. The main difference from our
construction is that the intermediate state of cbc -mac contains both a
block with the result of previous block cipher run, and the key, which needs
to be kept during the entire computation. In practical terms, this would
mean that the state of the generator would have to keep one more pointer
to the key that would be shared by all states. On the other hand, a better
bound has been proved for cbc -mac than for our construction, namely
on the order of 2−blq2 [Bellare et al., 2005] (when l < 2b/3). Therefore, the
trade-off between slightly slower performance and better bound should be
explored.

A variation of this construction, called ecbc -mac, has even better
bound 2−blo(1)q2, where l < 2b/4 and o(1) is a diminishing function. How-
ever, ecbc -mac requires an extra encryption step at the end of hashing,
which would impose large overhead in a splittable prng.

Prefix-freedom Another design choice that we considered was whether
to use a hash function, which requires the set of its inputs queried in one
run to be prefix-free, or a hash function that does not have this requirement.
Hash functions that do not require this are, in general, less efficient (for
example ecbc -mac), and usually need to perform more work at the end
of hashing, which makes them less suitable for our application.

A related issue concerns the api requirement that next and split can-
not be called on the same state. This requirement results in the set of
paths to states queried in one program run to be prefix-free. Relaxing
this requirement would be possible, but would require another, possibly
less efficient encoding. However, we found that this api requirement is
reasonable for the reason of compositionality, not performance. Consider
a composable random data generator [Claessen and Hughes, 2000] that
generates random lists given a generator for their elements, and another
generator for integers:

myList :: Gen a -> Gen [a]

thesis March 27, 2014 10:04 Page 129 �
�	

�
�	 �
�	

�
�	

8 Related work 129

myInt :: Gen Int

Generator myList will internally perform some number of split operations,
which may depend on random numbers that it had consumed itself. Then
it will use its argument generator to generate elements of the list, giving
a different generator state to it each time. Now consider that the api

requirement has been dropped, and that of two different states given to the
argument generator, one may be derived from the other. If the argument
generator also performs the split operation, as would be the case when we
call myList (myList myInt), then two equal states may be used in different
places of the program, leading to the same numbers being generated.

Thus, to be safe myList must make sure that it does not call the argument
generator with states that may have been derived from each other. The
easiest way to ensure that is to never call split on a state which is passed
to a subcomputation, which is essentially the strategy used for satisfying
the original api requirement. It is thus likely that compositional use of the
api was the reason for this requirement to be created.

8 Related work

Splittable prngs based on a Linear Congruential Generator (lcg) proposed
by [Frederickson et al., 1984] ensured that a number of right-sequences of
bounded length starting from a single left-sequence are disjoint. Mascagni
et al. discuss a number of traditional prngs (lcgs and others) that can be
used as parallel generators. However, none of these two works supports
unlimited on-demand splitting.

[Burton and Page, 1992] discuss a number of splittable prngs for
Haskell, based on an lcg. The ideas include (1) distributing halves of the
random sequence, which would exhaust the sequence very fast, (2) using a
non-deterministic solution, and (3) randomly jumping in the sequence on
split. The last solution looks promising, but the only statistical argument
presented in favour of it is the measured lack of local state collisions. We
implemented the last solution and found it to be slower than our generator.

The idea about using a block cipher to implement a splittable prng has
appeared on the Haskell-Cafe mailing list [Peyton-Jones et al., 2010]. The
proposed design keeps a block cipher’s key and a counter and implements
split as follows, by regenerating the key in the right derived state at split
operation.

split (k, n) = ((k, n + 1), (enck (n), 0))

The rationale behind it is that the randomness of block cipher encryption
will carry over to the whole construction. However, it is not formally

thesis March 27, 2014 10:04 Page 130 �
�	

�
�	 �
�	

�
�	

130 iii : Splittable Pseudorandom Number Generators . . .

justified why it is the case, or how many splits can be executed without
compromising the randomness. In our view the scheme is correct, since
in fact it is an instance of the generator proposed by us, using a suitable
encoding, and thus is covered by our correctness argument. Its disadvantage
is the high cost of split due to having to run the block cipher for each right
derived generator state.

Random number generators specified in nist sp 800 -90a [Barker
and Kelsey, 2012] are designed to provide unpredictable random input
for cryptographic applications. The generators have pseudorandom cores
(drbgs10), each of which is based on a different cryptographic primitive,
such as a block cipher, a keyed hash function (hmac), a non-keyed hash
function or Eliptic Curves (ec).

The generators can be seeded using other generators’ pseudorandom
output, which been used for implementing splitting in the crypto-api Hack-
age package11. Unfortunately, while all the generators appear to be correct,
the nist publication does not formalise or prove any aspects of any of
them. The pseudorandom parts of the hmac and ec generators have been
analysed elsewhere [Brown and Gjøsteen, 2007, Hirose, 2009], however the
proofs do not cover seeding one generator using another generator’s output.
Furthermore, purely deterministic (up to initial seeding) functionality is
likely not to be the main focus of these generators, as cryptographic ap-
plications require frequent reseeding with external entropy [Barker and
Kelsey, 2012].

Micali and Schnorr [1991] present a prng based on the rsa cryptosys-
tem, which is provably random and supports n-way splitting. However,
the randomness proofs are asymptotic, which means that they do not
indicate what parameters to choose to achieve a particular level of indistin-
guishability, or whether the generator can practically achieve reasonable
randomness [Chatterjee et al., 2012, Sidorenko and Schoenmakers, 2005].

Leiserson et al. [2012] propose a prng for deterministic parallel ran-
dom number generation. Their generator is integrated with the mit Cilk
platform, which tracks the call path of the current program location, which
is then used to generate random numbers in a way that is independent of
thread scheduling. To generate random numbers, the generator hashes the
call path using a specially-constructed hash function. The hash function
first compresses the path minimising the likelihood of collisions, and then
applies a mixing operation. The compressing function ensures that the
probability of collisions is low, while the mixing function provides randomi-
sation. It is only the former of these properties that is formally stated and

10Deterministic Random Bit Generators
11http://hackage.haskell.org/packages/archive/crypto-api/0.12.2.1/doc/html/

Crypto-Random.html

http://hackage.haskell.org/packages/archive/crypto-api/0.12.2.1/doc/html/Crypto-Random.html
http://hackage.haskell.org/packages/archive/crypto-api/0.12.2.1/doc/html/Crypto-Random.html

thesis March 27, 2014 10:04 Page 131 �
�	

�
�	 �
�	

�
�	

9 Conclusion 131

proved. The quality of the generated random numbers obviously depends
on the quality of the mixing function, but it is hard to say what level of
randomness it provides, especially that the presented results of statistical
tests include failures.

The generator supports paths of length up to 100 (or similar value), due
to the fact that the whole path must hashed when a random number is
requested, and that a vector of random ‘seed’ values of the same length as
the path is required. Thus, the general construction could not be considered
to use bounded space, although the paper considers adapting it into an
incremental one, as well as using alternative methods for path compression.

Salmon et al. [Salmon et al., 2011] present a high-performance prng

based on a block cipher running in ctr mode. Their generator is parallelis-
able, but does not support splitting on demand. Their proposed generator
solves two problems of traditional prngs, namely that they are difficult to
parallelise and that their quality is unproven, and often low. The proposed
generator is correct, but the randomness claims are only stated informally.
The authors consider a number of block ciphers, such as ThreeFish and
aes, but also their weakened versions, which offer higher performance.
Finally, they propose a parallel random number generation api, which
separates keeping track of counters from random number generation. The
generator does not provide functionality equivalent to on-demand splitting,
as it is the application that is responsible for ‘distributing’ the independent
random streams.

9 Conclusion

In this paper, we show that cryptographic keyed hash functions are at-
tractive means for implementing splittable prngs. While the general
construction of a splittable prng shown by us can be based on any keyed
hash function, we propose using a well-known and efficient keyed hash
function based on a cryptographic block cipher.

The hash function itself is based on a provably secure construction,
which is guaranteed to yield high-quality randomness under the assump-
tion that a secure block cipher is used. Our Haskell implementation is only
marginally slower than Haskell’s default splittable prng, which makes it a
promising drop-in replacement.

The proposed design also suggests a new operation splitn, which would
speed up some of the split-intensive code, and could be added to the api

of splittable prngs in Haskell.

thesis March 27, 2014 10:04 Page 132 �
�	

�
�	 �
�	

�
�	

132 iii : Splittable Pseudorandom Number Generators . . .

Acknowledgements

This research has been supported by the Resource Aware Functional Pro-
gramming (raw fp) grant awarded by the Swedish Foundation for Strategic
Research.

A Appendix. Definitions and Proofs

We present an efficient encoding of paths containing the next operation.
The encoding uses the general idea of keeping the bit sequence and counter
separate, as does e1.

We use the following scheme (e4) to encode the bit sequence and the
counter in a sequence of blocks. Each block has a fixed region for encoding
part of the bit sequence and another one for encoding the counter. The
following diagram shows the data layout of a sequence of blocks that
encodes a path.

bseq1 ctr1 bseq2 ctr2 · · · bseqm ctrm

Regions marked ctri contain binary numbers ranging from 0 to N. Regions
marked bseqi contain B-bit segments of a bit sequence, except the last
segment, which may be shorter. The main part of the encoding is defined
inductively, as a function e3 mapping a path into a sequence of pairs of
numbers and sequence of bits, each pair representing a block. The following
definition assumes that e3 (c) = 〈. . . , (b, n)〉 for recursive cases.

e3 (〈〉) = (〈〉, 0) (A.3a)

e3 (c‖ 〈left〉) =

{
〈. . . , (b‖ 〈0〉, n)〉 if |b| < B,
〈. . . , (b, n), (〈0〉, 0)〉 otherwise.

(A.3b)

e3 (c‖ 〈right〉) =
{
〈. . . , (b‖ 〈1〉, n)〉 if |b| < B,
〈. . . , (b, n), (〈1〉, 0)〉 otherwise.

(A.3c)

e3 (c‖ 〈next〉) =

〈. . . , (b, n + 1)〉 if n < N′,

〈. . . , (b‖ 〈1〉, 0)〉 if n = N′ and
|b| < B,

〈. . . , (b, N), (〈〉, 0)〉 otherwise.

(A.3d)

Adding an operation at the end of the path changes only the last block of
the resulting sequence and possibly adds another one after it. Operations
left and right add one bit to the segment in the last block. If the segment

thesis March 27, 2014 10:04 Page 133 �
�	

�
�	 �
�	

�
�	

is full, a new block is started. Operation next increments the counter in the
last block. Valid values of the counter are 0 . . . N′ = N − 1. In the event
of an overflow, bit ‘1’ is added to the last segment. If the segment is full,
special value N is used as the counter and a new block is added.

The result of the function is transformed into actual sequence of blocks
by encoding the numbers in binary and putting the segments verbatim. The
last incomplete segment is zero-padded. Let to_block be the function that
turns a pair into a block. We omit it’s definition, but we note the important
property that we require from it.

Proposition A.1. Let (b1, n1) and (b2, n2) be two inputs to to_block func-
tion. If n1 6= n2 or b1 ≺ b2 and b2 6= b1 ‖ 〈0, . . . , 0〉12 or b1 6m b2 then
to_block (b1, n1) 6= to_block (b2, n2).

Note that linear random number generation using next requires only one
iteration of the hash function for most random numbers as only the counter
in the last block is changing. This way, when next is called repeatedly, the
block cipher used as the compression function is effectively run in counter
mode for generating random numbers. Similarly, splitting usually requires
updating only the last block.

12We use the shorthand b2 6= b1 ‖ 〈0, . . . , 0〉 to denote that b2 is not b1 extended with some
number of zeroes.

thesis March 27, 2014 10:04 Page 134 �
�	

�
�	 �
�	

�
�	

thesis March 27, 2014 10:04 Page 135 �
�	

�
�	 �
�	

�
�	

Paper IV

Ranking Programs
using Black Box Testing

Koen Claessen John Hughes Michał H. Pałka
Nick Smallbone Hans Svensson

This in a revised version of a paper that appeared in the International
Workshop on Automation of Software Test (AST), 2010.

thesis March 27, 2014 10:04 Page 136 �
�	

�
�	 �
�	

�
�	

thesis March 27, 2014 10:04 Page 137 �
�	

�
�	 �
�	

�
�	

Paper IV: Ranking Programs
using Black Box Testing

Abstract

We present an unbiased method for measuring the relative quality
of different solutions to a programming problem. Our method is
based on identifying possible bugs from program behaviour through
black-box testing. The main motivation for such a method is its use in
experimental evaluation of software development methods. We report
on the use of our method in a small-scale such experiment, which was
aimed at evaluating the effectiveness of property-based testing vs. unit
testing in software development.

1 Introduction

Property-based testing is an approach to testing software against a formal
specification, consisting of universally quantified properties which supply
both test data generators and test oracles. QuickCheck is a property-based
testing tool first developed for Haskell [Claessen and Hughes, 2000], and
which forms the basis for a commercial tool developed by Quviq [Arts
et al., 2006]. As a simple example, using QuickCheck, a programmer could
specify that list reversal is its own inverse like this,

prop_reverse (xs :: [Integer]) =

reverse (reverse xs) == xs

which defines a property called prop_reverse which is universally quan-
tified over all lists of integers xs. Given such a property, QuickCheck
generates random values for xs as test data, and uses the body of the
property as an oracle to decide whether each test has passed. When a
test fails, QuickCheck shrinks the failing test case, searching systematically
for a minimal failing example, in a way similar to delta-debugging [Zeller

137

thesis March 27, 2014 10:04 Page 138 �
�	

�
�	 �
�	

�
�	

138 iv : Ranking Programs using Black Box Testing

and Hildebrandt, 2002]. The resulting minimal failing case usually makes
diagnosing a fault easy. For example, if the programmer erroneously wrote

prop_reverse (xs :: [Integer]) =

reverse xs == xs

then QuickCheck would report the minimal counterexample [0,1], since at
least two different elements are needed to violate the property, and the two
smallest different integers are 0 and 1.

The idea of testing code against general properties, rather than spe-
cific test cases, is an appealing one which also underlies Tillmann and
Schulte’s parameterized unit tests [Tillmann and Schulte, 2005] and the Pex
tool [Tillmann and de Halleux, 2008] (although the test case generation
works differently). We believe firmly that it brings a multitude of benefits to
the developer, improving quality and speeding development by revealing
problems faster and earlier. Yet claims such as this are easy to make, but
hard to prove. And it is not obvious that property-based testing must be
superior to traditional test automation. Among the possible disadvantages
of QuickCheck testing are:

• it is often necessary to write test data generators for problem-specific
data structures—code which is not needed at all in traditional testing.

• the developer must formulate a formal specification, which is conceptu-
ally more difficult than just predicting the correct output in specific
examples.

• randomly generated test cases might potentially be less effective at
revealing errors than carefully chosen ones.

Thus an empirical comparison of property-based testing against other
methods is warranted.

Our overall goal is to evaluate property-based testing as a development
tool, by comparing programs developed by students using QuickCheck for
testing, against programs developed for the same problem using HUnit
[Herington, 2010]—a unit testing framework for Haskell similar to the
popular JUnit tool for Java programmers [JUnit.org, 2010]. We have not
reached this goal yet—we have carried out a small-scale experiment, but
we need more participants to draw statistically significant conclusions.
However, we have identified an important problem to solve along the
way: how should we rank student solutions against each other, without
introducing experimental bias?

Our intention is to rank solutions by testing them: those that pass the
most tests will be ranked the highest. But the choice of test suite is critical.

thesis March 27, 2014 10:04 Page 139 �
�	

�
�	 �
�	

�
�	

2 The Experiment 139

It is tempting to use QuickCheck to test student solutions against our own
properties, using the proportion of tests passed as a measure of quality—but
this would risk experimental bias in two different ways:

• By using one of the tools in the comparison to grade solutions, we
might unfairly bias the experiment to favour that tool,

• The ranking of solutions could depend critically on the distribution
of random tests, which is rather arbitrary.

Unfortunately, a manually constructed set of test cases could also introduce
experimental bias. If we were to include many similar tests of a particular
kind, for example, then handling that kind of test successfully would carry
more weight in our assessment of solutions than handling other kinds of
test.

Our goal in this paper, thus, is to develop a way of ranking student
solutions by testing that leaves no room for the experimenter’s bias to affect
the result. We will do so by generating a set of test cases from the submissions
themselves, based on a simple ‘bug model’ presented in section 3, such that
each test case tests for one bug. We then rank solutions by the number of
bugs they contain. QuickCheck is used to help find this set of test cases,
but in such a way that the distribution of random tests is of almost no
importance.

Contribution The main contribution of this paper is the ranking method
we developed. As evidence that the ranking is reasonable, we also present
the results of our small-scale experiment, in which solutions to three differ-
ent problems are compared in this way.

The remainder of the paper is structured as follows. In the next section
we briefly describe the experiment we carried out. In section 3 we explain
and motivate our ranking method. Section 4 analyses the results obtained.
In section 5 we discuss related work, and we conclude in section 6.

2 The Experiment

We designed an experiment to test the hypothesis that “Property-based testing
is more effective than unit testing, as a tool during software development”, using
QuickCheck as the property-based testing tool, and HUnit as the unit
testing tool. We used a replicated project study[Basili et al., 1986], where
in a controlled experiment a group of student participants individually
solved three different programming tasks. We planned the experiment in
accordance to best practice for such experiments; trying not to exclude

thesis March 27, 2014 10:04 Page 140 �
�	

�
�	 �
�	

�
�	

140 iv : Ranking Programs using Black Box Testing

participants, assigning the participants randomly to tools, using a variety
of programming tasks, and trying our best not to influence the outcome
unnecessarily. We are only evaluating the final product, thus we are not
interested in process aspects in this study.

In the rest of this section we describe in more detail how we planned
and executed the experiment, we also motivate the choice of programming
assignments given to the participants.

2.1 Experiment overview

We planned an experiment to be conducted during one day. Since we
expected participants to be unfamiliar with at least one of the tools in the
comparison, we devoted the morning to a training session in which the
tools were introduced to the participants. The main issue in the design
of the experiment was the programming task (or tasks) to be given to the
participants. Using several different tasks would yield more data points,
while using one single (bigger) task would give us data points of higher
quality. We decided to give three separate tasks to the participants, mostly
because by doing this, and selecting three different types of problems, we
could reduce the risk of choosing a task particularly suited to one tool
or the other. All tasks were rather small, and require only 20-50 lines of
Haskell code to implement correctly.

To maximize the number of data points we decided to assign the tasks
to individuals instead of forming groups. Repeating the experiments as a
pair-programming assignment would also be interesting.

2.2 Programming assignments

We constructed three programming assignments. We tried to choose prob-
lems from three separate categories; one data-structure implementation
problem, one search/algorithmic problem, and one slightly tedious string
manipulation task.

Problem 1: E-mail anonymizer In this task the participants were asked
to write a sanitizing function anonymize which blanks out E-mail addresses
in a string. For example,

anonymize "pelle@foretag.se" ==

"p____@f______.s_"

anonymize "Hi johnny.cash@music.org!" ==

"Hi j_____.c___@m____.o__!"

thesis March 27, 2014 10:04 Page 141 �
�	

�
�	 �
�	

�
�	

2 The Experiment 141

The function should identify all e-mail addresses in the input, change them,
but leave all other text untouched. This is a simple problem, but with a lot
of tedious cases.

Problem 2: Interval sets In this task the participants were asked to im-
plement a compact representation of sets of integers based on lists of
intervals, represented by the type IntervalSet = [(Int,Int)], where for
example the set {1, 2, 3, 7, 8, 9, 10} would be represented by the list
[(1,3),(7,10)]. The participants were instructed to implement a family 7of
functions for this data type (empty, member, insert, delete, merge). There are
many special cases to consider—for example, inserting an element between
two intervals may cause them to merge into one.

Problem 3: Cryptarithm In this task the students were asked to write a
program that solves puzzles like this one:

SEND

MORE

-----+

MONEY

The task is to assign a mapping from letters to (unique) digits, such that
the calculation makes sense. (In the example M = 1, O = 0, S = 9, R = 8,

E = 5, N = 6, Y = 2, D = 7). Solving the puzzle is complicated by the fact
that there might be more than one solution and that there are problems
for which there is no solution. This is a search problem, which requires an
algorithm with some level of sophistication to be computationally feasible.

2.3 The participants

Since the university (Chalmers University of Technology, Gothenburg, Swe-
den) teaches Haskell, this was the language we used in the experiment. We
tried to recruit students with (at least) a fair understanding of functional
programming. This we did because we believed that too inexperienced pro-
grammers would not be able to benefit from either QuickCheck or HUnit.
The participants were recruited by advertising on campus, email-messages
sent to students from the previous Haskell-course and announcements in
different ongoing courses. Unfortunately the only available date collided
with exams at the university, which lowered the number of potential par-
ticipants. In the end we got only 13 participants. This is too few to draw
statistically significant conclusions, but on the other hand it is a rather
manageable number of submissions to analyze in a greater detail. Most of

thesis March 27, 2014 10:04 Page 142 �
�	

�
�	 �
�	

�
�	

142 iv : Ranking Programs using Black Box Testing

the participants were at a level where they had passed (often with honor) a
10-week programming course in Haskell.

2.4 Assigning the participants into groups

We assigned the participants randomly (by lot) into two groups, one group
using QuickCheck and one group using HUnit.

2.5 Training the participants

The experiment started with a training session for the participants. The
training was divided into two parts, one joint session, and one session for
the specific tool. In the first session, we explained the purpose and the
underlying hypothesis for the experiment. We also clearly explained that
we were interested in software quality rather than development time. The
participants were encouraged to use all of the allocated time to produce the
best software possible.

In the second session the groups were introduced to their respective
testing tools, by a lecture and practical session. Both sessions lasted around
60 minutes.

2.6 Programming environment

Finally, with everything set up, the participants were given the three dif-
ferent tasks with a time limit of 50 minutes for each of the tasks. The
participants were each given a computer equipped with ghc (the Haskell
compiler) [The GHC Team, 2010], both the testing tools, and documentation.
The computers were connected to the Internet, but since the participants
were aware of the purpose of the study and encouraged not to use other
tools than the assigned testing tool it is our belief this did not affect the
outcome of the experiment.1

2.7 Data collection and reduction

From the experiments we collected the implementations as well as the
testing code written by each participant.

Manual grading of implementations Each of the three tasks were graded
by an experienced Haskell programmer. We graded each implementation
on a scale 0-10, just as we would have graded an exam-question. Since the

1Why not simply disconnect the computers from the Internet? Because we used an on-line
submission system, as well as documentation and software from network file systems.

thesis March 27, 2014 10:04 Page 143 �
�	

�
�	 �
�	

�
�	

3 Evaluation Method 143

tasks were reasonably small, and the number of participants manageable,
this was feasible. To prevent any possible bias, the grader was not allowed
to see the testing code and thus he could not know whether each student
was using QuickCheck or HUnit.

Automatic ranking The implementations of each problem were subjected
to an analysis that we present in section 3.

We had several students submit uncompileable code.2 In those cases, we
made the code compile by for example removing any ill-formed program
fragments. This was because such a program might be partly-working, and
deserve a reasonable score; we thought it would be unfair if it got a score
of zero simply because it (say) had a syntax error.

Grading of test suites We also graded participants’ testing code. Each
submission was graded by hand by judging the completeness of the test
suite—and penalised for missing cases (for HUnit) or incomplete specifica-
tions (for QuickCheck). As we did not instruct the students to use TDD,
there was no penalty for not testing a function if that function was not
implemented.

Cross-comparison of tests We naturally wanted to automatically grade
students’ test code too—not least, because a human grader may be biased
towards QuickCheck or HUnit tests. Our approach was simply to take each
student’s test suite, and run it against all of the submissions we had; for
every submission the test suite found a bug in, it scored one point.

We applied this method successfully to the interval sets problem. How-
ever, for the anonymizer and cryptarithm problems, many students per-
formed white box testing, testing functions that were internal to their
implementation; therefore we were not able to transfer test suites from
one implementation to another, and we had to abandon the idea for these
problems.

3 Evaluation Method

We assume we have a number of student answers to evaluate, A1. . . An, and
a perfect solution A0, each answer being a program mapping a test case to
output. We assume that we have a test oracle which can determine whether
or not the output produced by an answer is correct, for any possible test
case. Such an oracle can be expressed as a QuickCheck property—if the

2Since we asked students to submit their code at a fixed time, some students submitted in
the middle of making changes.

thesis March 27, 2014 10:04 Page 144 �
�	

�
�	 �
�	

�
�	

144 iv : Ranking Programs using Black Box Testing

correct output is unique, then it is enough to compare with A0’s output,
otherwise something more complex is required. Raising an exception, or
falling into a loop3, is never correct behaviour. We can thus determine, for
an arbitrary test case, which of the student answers pass the test.

We recall that the purpose of our automatic evaluation method is to find
a set of test cases that is as unbiased as possible. In particular, we want to
avoid counting multiple test cases that are equivalent, in the sense that they
trigger the same bug.

Thus, we aim to ‘count the bugs’ in each answer, using black-box testing
alone. How, then, should we define a ‘bug’? We cannot refer to errors at
specific places in the source code, since we use black-box testing only—
we must define a ‘bug’ in terms of the program behaviour. We take the
following as our bug model:

• A bug causes a program to fail for a set of test cases. Given a bug
b, we write the set of test cases that it causes to fail as BugTests(b).
(Note that it is possible that the same bug b occurs in several different
programs.)

• A program p will contain a set of bugs, Bugs(p). The set of test cases
that p fails for will be

FailingTests(p) =
⋃

b ∈ Bugs(p)
BugTests(b)

It is quite possible, of course, that two different errors in the source code
might manifest themselves in the same way, causing the same set of tests to
fail. We will treat these as the same bug, quite simply because there is no
way to distinguish them using black-box testing.

It is also possible that two different bugs in combination might ‘cancel
each other out’ in some test cases, leading a program containing both bugs
to behave correctly, despite their presence. We cannot take this possibility
into account, once again because black-box testing cannot distinguish cor-
rect output produced ‘by accident’ from correct output produced correctly.
We believe the phenomenon, though familiar to developers, is rare enough
not to influence our results strongly.

Our approach is to analyze the failures of the student answers, and use
them to infer the existence of possible bugs Bugs, and their failure sets.
Then we shall rank each answer program Ai by the number of these bugs
that the answer appears to contain:

rank(Ai) = |{b ∈ Bugs | BugTests(b) ⊆ FailingTests(Ai)}|
3detecting a looping program is approximated by an appropriately chosen timeout

thesis March 27, 2014 10:04 Page 145 �
�	

�
�	 �
�	

�
�	

3 Evaluation Method 145

In general, there are many ways of explaining program failures via a set
of bugs. The most trivial is to take each answer’s failure set FailingTests(Ai)
to represent a different possible bug; then the rank of each answer would
be the number of other (different) answers that fail on a strictly smaller set
of inputs. However, we reject this idea as too crude, because it gives no
insight into the nature of the bugs present. We shall aim instead to find a
more refined set of possible bugs, in which each bug explains a small set of
‘similar’ failures.

Now, let us define the failures of a test case to be the set of answers that
it provokes to fail:

AnswersFailing(t) = {Ai | t ∈ FailingTests(Ai)}

We insist that if two test cases t1 and t2 provoke the same answers to fail,
then they are equivalent with respect to the bugs we infer:

AnswersFailing(t1) = AnswersFailing(t2) =⇒
∀b ∈ Bugs. t1 ∈ BugTests(b)⇔ t2 ∈ BugTests(b)

We will not distinguish such a pair of test cases, because there is no evidence
from the answers that could justify doing so. Thus we can partition the
space of test cases into subsets that behave equivalently with respect to our
answers. By identifying bugs with these partitions (except, if it exists, the
partition which causes no answers to fail), then we obtain a maximal set
of bugs that can explain the failures we observe. No other set of bugs can
be more refined than this without distinguishing inputs that should not be
distinguished.

However, we regard this partition as a little too refined. Consider two
answers A1 and A2, and three partitions B, B1 and B2, such that

∀t ∈ B. AnswersFailing(t) = {A1, A2}
∀t ∈ B1. AnswersFailing(t) = {A1}
∀t ∈ B2. AnswersFailing(t) = {A2}

Clearly, one possibility is that there are three separate bugs represented
here, and that

Bugs(A1) = {B, B1}
Bugs(A2) = {B, B2}

But another possibility is that there are only two different bugs represented,
B′1 = B ∪ B1 and B′2 = B ∪ B2, and that each Ai just has one bug, B′i . In
this case, test cases in B can provoke either bug. Since test cases which
can provoke several different bugs are quite familiar, then we regard the
latter possibility as more plausible than the former. We choose therefore to

thesis March 27, 2014 10:04 Page 146 �
�	

�
�	 �
�	

�
�	

146 iv : Ranking Programs using Black Box Testing

ignore any partitions whose failing answers are the union of those of a set of other
partitions; we call these partitions redundant, and we consider it likely that
the test cases they contain simply provoke several bugs at once. In terms
of our bug model, we combine such partitions with those representing the
individual bugs whose union explains their failures. Note, however, that if
a third answer A3 only fails for inputs in B, then we consider this evidence
that B does indeed represent an independent bug (since {A1, A2, A3} is
not the union of {A1} and {A2}), and that answers A1 and A2 therefore
contain two bugs each.

Now, to rank our answers we construct a test suite containing one test
case from each of the remaining partitions, count the tests that each answer
fails, and assign ranks accordingly.

In practice, we find the partitions by running a very large number of
random tests. We maintain a set of test cases Suite, each in a different
partition. For each newly generated test case t, we test all of the answers to
compute AnswersFailing(t). We then test whether the testcase is redundant
in the sense described above:

Redundant(t, Suite)=̂
AnswersFailing(t) =

⋃
| t′ ∈ Suite,

AnswersFailing(t′) | AnswersFailing(t′) ⊆
| AnswersFailing(t)

Whenever t is not redundant, i.e. when Redundant(t, Suite) evaluates to
False, then we apply QuickCheck’s shrinking to find a minimal tmin that
is not redundant with respect to Suite—which is always possible, since if
we cannot find any smaller test case which is irredundant, then we can
just take t itself. Then we add tmin to Suite, and remove any t′ ∈ Suite such
that Redundant(t′, (Suite− t′) ∪ {tmin}). (Shrinking at this point probably
helps us to find test cases that provoke a single bug rather than several—
‘probably’ since a smaller test case is likely to provoke fewer bugs than a
larger one, but of course there is no guarantee of this).

We continue this process until a large number of random tests fail to
add any test cases to Suite. At this point, we assume that we have found
one test case for each irredundant input partition, and we can use our test
suite to rank answers.

Note that this method takes no account of the sizes of the partitions
involved—we count a bug as a bug, whether it causes a failure for only
one input value, or for infinitely many. Of course, the severity of bugs in
practice may vary dramatically depending on precisely which inputs they
cause failures for—but taking this into account would make our results
dependent on value judgements about the importance of different kinds of

thesis March 27, 2014 10:04 Page 147 �
�	

�
�	 �
�	

�
�	

4 Analysis 147

input, and these value judgements would inevitably introduce experimental
bias.

In the following section, we will see how this method performs in
practice.

4 Analysis

We adopted the statistical null hypothesis to be that there is no difference
in quality between programs developed using QuickCheck and programs
developed using HUnit. The aim of our analysis will be to establish whether
the samples we got are different in a way which cannot be explained by
coincidence.

We collected solutions to all three tasks programmed by 13 students, 7

of which were assigned to the group using QuickCheck and the remaining
6 to one using HUnit. In this section we will refer to the answers (solutions
to tasks) as A1 to A13. Since the submissions have been anonymized,
numbering of answers have also been altered and answers A1 to different
problems correspond to submissions of different participants. For each
task there is also a special answer A0 which is the model answer which we
use as the testing oracle. For the anonymizer, we also added the identity
function for comparison as A14, and for the interval sets problem we added
a completely undefined solution as A14.

4.1 Automatic Ranking of Solutions

We ranked all solutions according to the method outlined in section 3.
The ranking method produced a test-suite for each of the three tasks and
assigned the number of failing tests to each answer of every task. The final
score that we used for evaluation of answers was the number of successful
runs on tests from the test-suite. The generated test suites are shown in
Table 4.1. Every test in the test suite causes some answer to fail; for
example delete 0 [] is the simplest test that causes answers that did not
implement the delete function to fail. These test cases have been shrunk by
QuickCheck, which is why the only letter to appear in the anonymizer test
cases is ’a’, and why the strings are so short4.

Figures 4.1 to 4.3 visualize the test results. Each node represents a set
of answers which pass precisely the same tests. An arrow from one node
to another means that the answers at the target of the arrow pass a subset
of the tests that the answers at the source of the arrow pass. Arrows are

4Because Haskell encourages the use of dynamic data-structures, then none of the solutions
could encounter a buffer overflow or other error caused by fixed size arrays. As a result, there
is no need for tests with very long strings.

thesis March 27, 2014 10:04 Page 148 �
�	

�
�	 �
�	

�
�	

148 iv : Ranking Programs using Black Box Testing

Anon IntSet Crypt

"" member 0 [] b+b=c

"\n" member 0 [(-2,2)] a+a=a

"@" member 2 [(1,1)] a+b=ab

"a" member 0 [(-3,-3),(0,4)] aa+a=bac

"&@" insert 0 []

".@" insert -1 [(1,1)]

"@@" insert 0 [(-2,0)]

".@@" insert 1 [(-2,0)]

"@_a" insert 2 [(0,0)]

"@a=" delete 0 []

"_ &" delete 0 [(0,0)]

"a@a" delete 0 [(0,1)]

"#@&@" merge [] []

".a@#" merge [] [(-1,0)]

"a@_a" merge [(0,0)] [(0,0)]

"a@aa" merge [(-1,0),(2,3)] [(-1,0)]

Table 4.1: Generated test suites.

labelled with a test case that distinguishes the source and target, and the
number of other such test cases in brackets. For instance, we can read from
Figure 4.1 that A2 fails three more tests than A7, and that it fails on the
input string "@" whereas A7 succeeds on it. Thus these figures visualize a
‘correctness partial order’ on the submitted answers.

The top node of each graph represents the entirely correct solutions,
including the model answer A0. The bottom node represents incomplete so-
lutions, in which the main functions were not defined—and which therefore
fail all tests. Interestingly, our analysis distinguishes all other answers—no
two partially correct submissions were equivalent. Moreover, there is a
non-trivial partial ordering of answers in each case: some answers really are
strictly better than others. We conclude that our analysis is able to classify
partially correct answers in an interesting way. (We also conclude that the
cryptarithm problem was too hard to solve in the time available, since more
than half of the submissions failed every test).

The final score assigned to each answer is shown in figure 4.4. In order
to assign better answers a higher score, we show the number of tests passed
by each answer, rather than the number of test failures—i.e. bugs. A0 is the
model answer in each case, and answers coming from the group assigned
to using QuickCheck are marked with stars(*).

thesis March 27, 2014 10:04 Page 149 �
�	

�
�	 �
�	

�
�	

4 Analysis 149

A1, A10, A6

A13

A9

"&@" (+ 5)

A7

A4

".@" (+ 2)

A2

"@" (+ 2)

"" (+ 8)

"" (+ 6)

A12

"" (+ 9)

A0, A8

"\n" (+ 2) "a" (+ 5)

A11

"@_a" (+ 1)

A5

"\n" (+ 5)

A14

"\n"

A3

"@" (+ 6)

"a@aa"

"" (+ 5)

"" (+ 9)

"" (+ 8)

Figure 4.1: Relative correctness of anonymizer answers.

The following table shows a statistical analysis of scores from the au-
tomatic ranking. To determine whether there is a statistical difference
between samples coming from the two groups we applied Welch’s t-test
(which tests whether two collections of data have the same mean) and got
the values visible in the P-value row (which we shall explain below).

Anon IntSet Crypto

All - Avg (Sdev) 8.15 (5.38) 9.69 (4.15) 1.15 (1.63)
QC - Avg (Sdev) 9.86 (5.01) 9.71 (4.39) 0.86 (1.57)
HU - Avg (Sdev) 6.17 (5.53) 9.67 (4.27) 1.50 (1.76)
P-value 0.2390 0.9846 0.5065

For the anonymizer example, we can see that solutions developed using
QuickCheck scored higher than those developed using HUnit, for interval
sets the scores were about the same, and for the cryptarithm example,
then solutions developed using QuickCheck fared worse. The P-value is
the probability of seeing the observed (or lower) difference in scores by
sheer chance, if there is no difference in the expected score using HUnit
and QuickCheck (the null hypothesis). For the anonymizer problem then
the null hypothesis can be rejected with a confidence of 76%—which is

thesis March 27, 2014 10:04 Page 150 �
�	

�
�	 �
�	

�
�	

150 iv : Ranking Programs using Black Box Testing

A
1

4

A
3

m
em

b
er 0

 [] (+
 6

)

A
7

m
em

b
er 0

 [] (+
 3

)

A
1

m
em

b
er 0

 [] (+
 3

)

A
8in

sert 0
 []

A
2

A
5

in
sert -1

 [(1
,1

)] (+
 3

)

A
6m

em
b

er 2
 [(1

,1
)] (+

 1
)

m
em

b
er 0

 [(-3
,-3

),(0
,4

)] (+
 4

)

in
sert -1

 [(1
,1

)] (+
 3

)

A
1

0in
sert 2

 [(0
,0

)] (+
 3

)
d

elete 0
 [] (+

 5
)

A
0

, A
9

m
erg

e [(0
,0

)] [(0
,0

)]

A
1

2

in
sert 1

 [(-2
,0

)] (+
 2

)

A
1

3

in
sert 1

 [(-2
,0

)] (+
 1

)
A

4

in
sert -1

 [(1
,1

)] (+
 3

)

in
sert -1

 [(1
,1

)] (+
 5

)
in

sert -1
 [(1

,1
)] (+

 6
)

A
1

1

m
em

b
er 0

 [(-2
,2

)] (+
 4

)

m
em

b
er 0

 [(-3
,-3

),(0
,4

)] (+
 2

)

in
sert 0

 [(-2
,0

)] (+
 1

)

m
em

b
er 2

 [(1
,1

)] (+
 4

)
m

em
b

er 0
 [(-3

,-3
),(0

,4
)] (+

 7
)

in
sert 0

 [(-2
,0

)] (+
 6

)

m
em

b
er 0

 [] (+
 8

)

Figure
4.

2:R
elative

correctness
of

intervalset
answ

ers.

thesis March 27, 2014 10:04 Page 151 �
�	

�
�	 �
�	

�
�	

4 Analysis 151

A1, A11, A12, A2, A3, A4, A7, A8

A10

A9

a + b = a b

a + a = a (+ 1)

A6

b + b = c (+ 1)

A0, A13, A5

b + b = c a + b = a b (+ 1)

Figure 4.3: Relative correctness of cryptarithm answers.

Answer Anon IntSet Crypto

A0 16 16 4

A1 0* 4* 0*
A2 9* 11* 0

A3 6 7* 0*
A4 9* 12* 0*
A5 10 7 4*
A6 0 9 2*
A7 12* 4 0*
A8 16* 5* 0

A9 7 16 2

A10 0 15* 3

A11 14 9 0*
A12 10* 13 0

A13 13* 14* 4

Figure 4.4: Results of automatic grading.

encouraging, but falls short of statistical significance (which would require
a confidence of 95% or higher).

4.2 Stability of the automatic bug measure

Because our bug analysis does perform a random search in the space of test
cases to construct its test suite, it is possible that we select a different set of
tests, and thus assign a different rank to the same program in different runs.
To investigate this, we ran the bug analysis ten times on the solutions to
each of the three problems. We found that the partial ordering on solutions

thesis March 27, 2014 10:04 Page 152 �
�	

�
�	 �
�	

�
�	

152 iv : Ranking Programs using Black Box Testing

that we inferred did not change, but the size of test suite did vary slightly.
This could lead to the same answer failing a different number of tests
in different runs, and thus to a different rank being assigned to it. The
table below shows the results for each problem. Firstly, the number of
consecutive tests we ran without refining the test suite before concluding
it was stable. Secondly, the sizes of the test suites we obtained for each
problem. Once a test suite was obtained, we assigned a rank to each answer,
namely the number of tests it failed. These ranks did differ between runs,
but no answer was assigned ranks different by more than one in different
runs. The last rows show the average and maximum standard deviations of
the ranks assigned to each answer.

Anon IntSet Crypto

Number of tests 10000 10000 1000

Sizes of test suite 15,16 15,16 4

Avg std dev of ranks 0.08 0.06 0

Max std dev of ranks 0.14 0.14 0

We conclude that the rank assignment is not much affected by random
choices made as we construct the test suite.

4.3 Manual Grading of Solutions

In the table below we present that average scores (and their standard
deviations) from the manual grading for the three problems. These numbers
are not conclusive from a statistical point of view. Thus, for the manual
grading we can not reject the null hypothesis. Nevertheless, there is a
tendency corresponding to the results of the automatic grading in section
4.1. For example, in the E-Mail anonymizer problem the solutions that use
QuickCheck are graded higher than the solutions that use HUnit.

Anon IntSet Crypto

All - Avg (Sdev) 4.07 (2.78) 4.46 (2.87) 2.15 (2.91)
QC - Avg (Sdev) 4.86 (2.67) 4.43 (2.88) 1.86 (3.23)
HU - Avg (Sdev) 3.17 (2.86) 4.50 (3.13) 2.50 (2.74)

To further justify our method for automatic ranking of the solutions, we
would like to see a correlation between the automatic scores and the manual
scores. However, we can not expect them to be exactly the same since the
automatic grading is in a sense less forgiving. (The automatic grading
measure how well the program actually works, while the manual grading

thesis March 27, 2014 10:04 Page 153 �
�	

�
�	 �
�	

�
�	

4 Analysis 153

measure ‘how far from a correct program’ the solution is.) If we look in
more detail on the scores to the E-Mail anonymizer problem, presented in
the table below, we can see that although the scores are not identical, they
tend to rank the solutions in a very similar way. The most striking difference
is for solution A7, which is ranked 4th by the automatic ranking and 10th
by the manual ranking. This is caused by the nature of the problem. The
identity function (the function simply returning the input, A14) is actually a
rather good approximation of the solution functionality-wise. A7 is close to
the identity function—it does almost nothing, getting a decent score from
the automatic grading, but failing to impress a human marker.

Answer Auto Manual Auto rank Manual rank

A1 0 3 11 8

A2 9 3 7 8

A3 6 2 10 10

A4 9 5 7 4

A5 10 4 5 5

A6 0 0 11 13

A7 12 2 4 10

A8 16 9 1 1

A9 7 4 9 5

A10 0 1 11 12

A11 14 8 2 2

A12 10 4 5 5

A13 13 8 3 2

4.4 Assessment of Students’ Testing

As described in section 2.7, we checked the quality of each student’s test
code both manually and automatically (by counting how many submissions
each test suite could detect a bug in). Figure 4.5 shows the results.

The manual scores may be biased since all the authors are QuickCheck
afficionados, so we would like to use them only as a ‘sanity check’ to make
sure that the automatic scores are reasonable. We can see that, broadly
speaking, the manual and automatic scores agree.

The biggest discrepancy is that student 9 got full marks according to
our manual grading but only 5/11 according to the automatic grading. The
main reason is that his test suite was less comprehensive than we thought:
it included several interesting edge cases, such as an insert that ‘fills the
gap’ between two intervals and causes them to become one larger interval,

thesis March 27, 2014 10:04 Page 154 �
�	

�
�	 �
�	

�
�	

154 iv : Ranking Programs using Black Box Testing

Student number
QuickCheck 1 2 3 4 5 6 7

Manual grading 0 0 0 3 9 9 12

Automatic grading 0 0 0 0 8 10 11

Student number
HUnit 8 9 10 11 12 13

Manual grading 3 12 6 3 6 9

Automatic grading 0 5 5 6 7 8

Figure 4.5: Manual vs automatic grading of test suite quality.

but left out some simple cases, such as insert 2 (insert 0 empty). In this
case, the automatic grader produced the fairer mark.

So, the automatically-produced scores look reasonable and we pay no
more attention to the manual scores. Looking at the results, we see that
four students from the QuickCheck group were not able to detect any bugs
at all. (Three of them submitted no test code at all5, and one of them just
tested one special case of the member function.) This compares to just one
student from the HUnit group who was unable to find any bugs.

However, of the students who submitted a useful test suite, the worst
QuickCheck test suite got the same score as the best HUnit test suite! All of
the HUnit test suites, as it happens, were missing some edge case or other.6

So, of the students who were using QuickCheck, half failed to submit
any useful test-suite at all, and the other half’s test suites were the best ones
submitted. There may be several explanations for this: perhaps QuickCheck
properties are harder to write but more effective than unit tests; or perhaps
QuickCheck is only effective in the hands of a strong programmer; or
perhaps QuickCheck properties are ‘all-or-nothing’, so that a property will
either be ineffective or catch a wide range of bugs; or perhaps it was
just a coincidence. This is something we will aim to find out in our next
experiment.

5 Related Work

Much work has been devoted to finding representative test-suites that would
be able to uncover all bugs even when exhaustive testing is not possible.

5Of course, this does not imply that these students did not test their code at all—just
that they did not automate their tests. Haskell provides a read-eval-print loop which makes
interactive testing quite easy.

6Functions on interval sets have a surprising number of edge cases; with QuickCheck,
there is no need to enumerate them.

thesis March 27, 2014 10:04 Page 155 �
�	

�
�	 �
�	

�
�	

6 Conclusions 155

When it is possible to divide the test space into partitions and assert that any
fault in the program will cause one partition to fail completely it is enough
select only a single test case from each partition to provoke all bugs. The
approach was pioneered by Goodenough and Gerhart[Goodenough and
Gerhart, 1975] who looked both at specifications and the control structure
of tested programs and came up with test suites that would exercise all pos-
sible combinations of execution conditions. Weyuker and Ostrand[Weyuker
and Ostrand, 1980] attempted to obtain good test-suites by looking at ex-
ecution paths that they expect to appear in an implementation based on
the specification. These methods use other information to construct test
partitions, whereas our approach is to find the partitions by finding faults
in random testing.

Lately, test-driven development has gained in popularity, and in a
controlled experiment from 2005 [Erdogmus et al., 2005] Erdogmus et. al.
compare its effectiveness with a traditional test-after approach. The result
was that the group using TDD wrote more test cases, and tended to be more
productive. These results are inspiring, and the aim with our experiment
was to show that property-based testing (using QuickCheck) is a good way
of conducting tests in a development process.

In the design of the experiments we were guided by several texts on
empirical research in software engineering, amongst which [Basili et al.,
1986, Kitchenham et al., 2002, Wohlin et al., 2000] were the most helpful.

6 Conclusions

We have designed an experiment to compare property-based testing and
conventional unit testing, and as part of the design we have developed
an unbiased way to assess the ‘bugginess’ of submitted solutions. We
have carried out the experiment on a small-scale, and verified that our
assessment method can make fine distinctions between buggy solutions,
and generates useful results. Our experiment was too small to yield a
conclusive answer to the question it was designed to test. In one case, the
interval sets, we observed that all the QuickCheck test suites (when they
were written) were more effective at detecting errors than any of the HUnit
test suites. Our automated analysis suggests, but does not prove, that in
one of our examples, the code developed using QuickCheck was less buggy
than code developed using HUnit. Finally, we observed that QuickCheck
users are less likely to write test code than HUnit users—even in a study of
automated testing—suggesting perhaps that HUnit is easier to use.

The main weakness of our experiment (apart from the small number
of subjects) is that students did not have enough time to complete their

thesis March 27, 2014 10:04 Page 156 �
�	

�
�	 �
�	

�
�	

156 iv : Ranking Programs using Black Box Testing

answers to their own satisfaction. We saw this especially in the cryptarithm
example, where more than half the students submitted solutions that passed
no tests at all. In particular, students did not have time to complete a test
suite to their own satisfaction. We imposed a hard deadline on students
so that development time would not be a variable. In retrospect this was
probably a mistake: next time we will allow students to submit when they
feel ready, and measure development time as well.

In conclusion, our results are encouraging and suggest that a larger
experiment could demonstrate interesting differences in power between the
two approaches to testing. We look forward to holding such an experiment
in the future.

thesis March 27, 2014 10:04 Page 157 �
�	

�
�	 �
�	

�
�	

Bibliography

ISO C Standard 1999. Technical report, ISO, 1999. ISO/IEC 9899:1999 draft.
→ 1 citation on page: 68

J. Almström Duregård. Agata: Random generation of test data. Master’s
thesis, Chalmers University of Technology, Dec. 2009.
→ 1 citation on page: 74

J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu. Random test run length
and effectiveness. In Proc. International Conference on Automated Software
Engineering 2008, pages 19–28, Washington, DC, USA, 2008. IEEE. ISBN
978-1-4244-2187-9.
→ 1 citation on page: 11

T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms software
with Quviq QuickCheck. In Proc. Erlang Workshop 2006, pages 2–10, New
York, NY, USA, 2006. ACM. ISBN 1-59593-490-1.
→ 3 citations on 3 pages: 4, 79, and 137

L. Augustsson. Announcing Djinn, version 2004-12-11, a coding
wizard. http://permalink.gmane.org/gmane.comp.lang.haskell.general/
12747, 2005.
→ 1 citation on page: 72

L. Augustsson, M. Rittri, and D. Synek. Functional pearl: On generating
unique names. J. Funct. Program., 4:117–123, 1 1994.
→ 1 citation on page: 107

E. Barker and J. Kelsey. nist Special Publication 800-90a: Recommendation
for random number generation using deterministic random bit generators,
2012.
→ 3 citations on 2 pages: 104 and 130

V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in software
engineering. IEEE Trans. Softw. Eng., 12(7):733–743, 1986.
→ 2 citations on 2 pages: 139 and 155

157

http://permalink.gmane.org/gmane.comp.lang.haskell.general/12747
http://permalink.gmane.org/gmane.comp.lang.haskell.general/12747

thesis March 27, 2014 10:04 Page 158 �
�	

�
�	 �
�	

�
�	

158 B ibliography

B. Beizer. Software Testing Techniques. International Thomson Computer
Press, 2nd edition, June 1990.
→ 3 citations on 2 pages: 1 and 4

B. Beizer. Black-Box Testing: Techniques for Functional Testing of Software and
Systems. Wiley, 1st edition, 1995. ISBN 0471120944.
→ 1 citation on page: 3

M. Bellare and P. Rogaway. Code-based game-playing proofs and the
security of triple encryption. Cryptology ePrint Archive, Report 2004/331,
2004. http://eprint.iacr.org/2004/331.
→ 3 citations on 2 pages: 114 and 117

M. Bellare and P. Rogaway. Introduction to modern cryptography, 2005.
http://www.cs.ucsd.edu/~mihir/cse207/classnotes.html.
→ 5 citations on 3 pages: 108, 114, and 118

M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited:
the cascade construction and its concrete security. In Proc. Foundations
of Computer Science, pages 514–523, Los Alamitos, CA, USA, 1996. IEEE.
ISBN 0-8186-7594-2.
→ 10 citations on 8 pages: 12, 103, 104, 108, 110, 114, 116, and 127

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security
treatment of symmetric encryption. In Proc. Foundations of Computer
Science, 1997, pages 394–403, 1998.
→ 1 citation on page: 117

M. Bellare, K. Pietrzak, and P. Rogaway. Improved security analyses for
CBC MACs. In Proc. Advances in Cryptology — CRYPTO 2005, LNCS 3621,
pages 527–545. Springer-Verlag, 2005.
→ 2 citations on page: 128

M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput., 13(4):850–864, Nov. 1984.
→ 1 citation on page: 108

O. Bodini, D. Gardy, and B. Gittenberger. Lambda terms of bounded unary
height. In Proc. 8th Workshop on Analytic Algorithmics and Combinatorics,
2011. ISBN 978-0-898719-33-8.
→ 3 citations on 2 pages: 21 and 73

E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of con-
straints: Whitebox fuzz testing in production. In Proc. ICSE 2013, pages
122–131, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3.
→ 1 citation on page: 11

http://eprint.iacr.org/2004/331
http://www.cs.ucsd.edu/~mihir/cse207/classnotes.html

thesis March 27, 2014 10:04 Page 159 �
�	

�
�	 �
�	

�
�	

B ibliography 159

C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based
on java predicates. In Proc. 2002 Inl. Symp. Software Testing and Analysis
(ISSTA ’02), pages 123–133. ACM, 2002. ISBN 1-58113-562-9.
→ 2 citations on 2 pages: 96 and 97

D. R. L. Brown and K. Gjøsteen. A security analysis of the nist sp 800-90

elliptic curve random number generator. In Proc. Advances in Cryptology
— CRYPTO ’07, pages 466–481. Springer-Verlag, 2007. ISBN 3-540-74142-9,
978-3-540-74142-8.
→ 1 citation on page: 130

F. W. Burton and R. L. Page. Distributed random number generation. J.
Funct. Program., 2(2):203–212, 1992.
→ 6 citations on 6 pages: 101, 103, 105, 106, 107, and 129

S.-j. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S. Paul, and L. E.
Bassham. Third-Round Report of the SHA-3 Cryptographic Hash Algorithm
Competition. nist, 2012.
→ 1 citation on page: 109

S. Chatterjee, A. Menezes, and P. Sarkar. Another look at tightness. In Proc.
Selected Areas in Cryptography (SAC’11), LNCS. 7118, pages 293–319, 2012.
→ 2 citations on 2 pages: 104 and 130

J. Christiansen and S. Fischer. Easycheck: test data for free. In FLOPS’08,
pages 322–336. Springer, 2008.
→ 1 citation on page: 96

K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random
testing of haskell programs. In Proc. ICFP 2000, pages 268–279, New York,
NY, USA, 2000. ACM. ISBN 1-58113-202-6.
→ 12 citations on 9 pages: 4, 5, 23, 35, 70, 79, 102, 128, and 137

K. Claessen and J. Hughes. Testing monadic code with QuickCheck. In Proc.
Haskell Workshop 2002, pages 65–77, New York, NY, USA, 2002. ACM.
ISBN 1-58113-605-6.
→ 1 citation on page: 72

K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing formal
specifications using testing. In Proc. Tests and Proofs, TAP’10, pages 6–21.
Springer-Verlag, 2010. ISBN 3-642-13976-0, 978-3-642-13976-5.
→ 1 citation on page: 125

J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård revis-
ited: How to construct a hash function. In Proc. Advances in Cryptology —
CRYPTO 2005, LNCS 3621, pages 430–448. Springer-Verlag, 2005.

thesis March 27, 2014 10:04 Page 160 �
�	

�
�	 �
�	

�
�	

160 B ibliography

→ 1 citation on page: 110

I. Damgård. A design principle for hash functions. In Proc. Advances in
Cryptology — CRYPTO ’89, LNCS 435, pages 416–427. Springer, 1990.
→ 1 citation on page: 110

B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of refac-
toring engines. In Proc. European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2007.
ACM, 2007.
→ 1 citation on page: 72

N. A. Danielsson and P. Jansson. Chasing bottoms: A case study in program
verification in the presence of partial and infinite values. In Mathematics
of Program Construction, pages 85–109. Springer, 2004.
→ 1 citation on page: 52

E. W. Dijkstra. EWD249: Notes on structured programming. Circulated
privately, August 1969.
→ 1 citation on page: 1

D. Drienyovszky, D. Horpácsi, and S. Thompson. QuickChecking refactor-
ing tools. In Proc. Erlang Workshop 2010. ACM, 2010. ISBN 978-1-4503-
0253-1.
→ 1 citation on page: 71

J. Duregård, P. Jansson, and M. Wang. Feat: functional enumeration of
algebraic types. In Proc. 2012 Haskell Symposium, pages 61–72. ACM, 2012.
ISBN 978-1-4503-1574-6.
→ 4 citations on 4 pages: 5, 81, 82, and 95

R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal
of Symbolic Logic, 57(3), 1992.
→ 1 citation on page: 72

H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness of
the test-first approach to programming. IEEE Transactions on Software
Engineering, 31:226–237, 2005.
→ 1 citation on page: 155

A. Faigon. Testing for zero bugs. At http://www.yendor.com/testing/, 2005.
→ 2 citations on page: 4

R. Feldt and S. Poulding. Finding test data with specific properties via
metaheuristic search. In Proc. International Symposium Software Reliability
Engineering, ISSRE 2013, pages 350–359. IEEE, 2013.

http://www.yendor.com/testing/

thesis March 27, 2014 10:04 Page 161 �
�	

�
�	 �
�	

�
�	

B ibliography 161

→ 1 citation on page: 96

N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker. The Skein hash function family, 2010. http:

//www.schneier.com/skein.pdf.
→ 2 citations on 2 pages: 109 and 122

S. Fischer, O. Kiselyov, and C. chieh Shan. Purely functional lazy nondeter-
ministic programming. J. Funct. Program., 21(4-5):413–465, 2011.
→ 2 citations on page: 96

R. Fischlin and C. Schnorr. Stronger security proofs for rsa and rabin bits. In
W. Fumy, editor, Proc. Advances in Cryptology — EUROCRYPT ’97, LNCS
1233, pages 267–279. Springer, 1997. ISBN 978-3-540-62975-7.
→ 1 citation on page: 104

P. Frederickson, R. Hiromoto, T. L. Jordan, B. Smith, and T. Warnock.
Pseudo-random trees in monte carlo. J. Parallel Computing, 1(2):175–180,
Dec. 1984.
→ 2 citations on 2 pages: 103 and 129

A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation.
In Proc. Functional Programming Languages and Computer Architecture, FPCA
’93, pages 223–232, New York, NY, USA, 1993. ACM. ISBN 0-89791-595-X.
→ 1 citation on page: 67

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 33(4):792–807, Aug. 1986.
→ 4 citations on 3 pages: 103, 108, and 114

J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection.
In Proc. International Conf. on Reliable Software, pages 493–510, New York,
NY, USA, 1975. ACM.
→ 1 citation on page: 155

K. Grygiel and P. Lescanne. Counting and generating lambda terms. J.
Funct. Program., 23:594–628, 9 2013.
→ 1 citation on page: 97

R. F. Guilmette. TGGS: A flexible system for generating efficient test case
generators. Technical report, RG Consulting, 1995.
→ 1 citation on page: 73

J. Gustavsson and D. Sands. Possibilities and limitations of call-by-need
space improvement. In Proc. ICFP 2001, pages 265–276, New York, NY,
USA, 2001. ACM. ISBN 1-58113-415-0.

http://www.schneier.com/skein.pdf
http://www.schneier.com/skein.pdf

thesis March 27, 2014 10:04 Page 162 �
�	

�
�	 �
�	

�
�	

162 B ibliography

→ 1 citation on page: 61

C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs. In
Proc. Advances in Cryptology — CRYPTO ’98, LNCS 1462, pages 370–389.
Springer-Verlag, 1998.
→ 1 citation on page: 117

R. Hamlet. Random testing. In Encyclopedia of Software Engineering, pages
970–978. Wiley, 1994. ISBN 978-0-471-54004-5.
→ 4 citations on 2 pages: 4 and 6

K. V. Hanford. Automatic generation of test cases. IBM Syst. J., 9(4):242–257,
Dec. 1970.
→ 1 citation on page: 70

D. Herington. HUnit: A unit testing framework for haskell.
http://hackage.haskell.org/package/HUnit-1.2.2.1, January 2010.
→ 1 citation on page: 138

D. R. C. Hill, C. Mazel, J. Passerat-Palmbach, and M. K. Traore. Distribu-
tion of random streams for simulation practitioners. Concurrency and
Computation: Practice and Experience, 2012.
→ 1 citation on page: 102

S. Hirose. Security analysis of drbg using hmac in nist sp 800-90. In K.-
I. Chung, K. Sohn, and M. Yung, editors, Information Security Applications,
pages 278–291. Springer-Verlag, 2009. ISBN 978-3-642-00305-9.
→ 1 citation on page: 130

J. Hughes. QuickCheck testing for fun and profit. In M. Hanus, editor, Proc.
PADL 2007, LNCS 4354, pages 1–32. Springer Berlin / Heidelberg, 2007.
ISBN 978-3-540-69608-7.
→ 2 citations on 2 pages: 70 and 72

J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom
generator from any One-way function. SIAM Journal on Computing, 28:
12–24, 1999.
→ 3 citations on 2 pages: 103 and 108

D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006. ISBN 0262101149.
→ 2 citations on page: 10

JUnit.org. JUnit.org resources for test driven development.
http://www.junit.org/, January 2010.
→ 1 citation on page: 138

thesis March 27, 2014 10:04 Page 163 �
�	

�
�	 �
�	

�
�	

B ibliography 163

B. W. Kernighan and P. J. Plauger. The Elements of Programming Style.
McGraw-Hill, Inc., New York, NY, USA, 2nd edition, 1982. ISBN
0070342075.
→ 1 citation on page: 2

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,
K. E. Emam, and J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on Software Engineering,
28:721–734, 2002.
→ 1 citation on page: 155

C. Klein, M. Flatt, and R. B. Findler. The racket virtual machine and
randomized testing. Available from http://plt.eecs.northwestern.edu/

racket-machine/, 2010a.
→ 2 citations on 2 pages: 17 and 20

C. Klein, M. Flatt, and R. B. Findler. Random testing for higher-order,
stateful programs. In Proc. OOPSLA 2010. ACM, 2010b. ISBN 978-1-4503-
0203-6.
→ 2 citations on 2 pages: 20 and 71

C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt,
J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. Run
your research: On the effectiveness of lightweight mechanization. In
Proc. POPL 2012, pages 285–296, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1083-3.
→ 1 citation on page: 72

P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of
random number generators. ACM Trans. Math. Softw., 33(4), 2007.
→ 2 citations on 2 pages: 12 and 103

Y. Lei and J. H. Andrews. Minimization of randomized unit test cases. In
Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering, ISSRE ’05, pages 267–276, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2482-6.
→ 1 citation on page: 11

C. E. Leiserson, T. B. Schardl, and J. Sukha. Deterministic parallel random-
number generation for dynamic-multithreading platforms. In Proc. Symp.
on Principles and Practice of Parallel Programming, pages 193–204. ACM,
2012. ISBN 978-1-4503-1160-1.
→ 3 citations on 3 pages: 102, 104, and 130

http://plt.eecs.northwestern.edu/racket-machine/
http://plt.eecs.northwestern.edu/racket-machine/

thesis March 27, 2014 10:04 Page 164 �
�	

�
�	 �
�	

�
�	

164 B ibliography

X. Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.
→ 3 citations on 3 pages: 17, 18, and 20

R. Leshchinskiy. Recycle your arrays! In Proc. Practical Aspects of Declarative
Languages, PADL ’09, pages 209–223. Springer-Verlag, 2009. ISBN 978-3-
540-92994-9.
→ 1 citation on page: 126

C. Lindig. Random testing of C calling conventions. In Proc. 6th International
Symposium on Automated Analysis-Driven Debugging. ACM, 2005. ISBN
1-59593-050-7.
→ 3 citations on 3 pages: 4, 20, and 69

D. Marinov. Automatic Testing of Software with Structurally Complex Inputs.
PhD thesis, Massachusetts Institute of Technology, 2005.
→ 3 citations on 2 pages: 10 and 11

S. Marlow. Haskell 2010 language report. http://www.haskell.org/

definition/haskell2010.pdf, 2010.
→ 3 citations on 3 pages: 51, 61, and 63

S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore
haskell. In Proc. ICFP 2009, pages 65–78, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-332-7.
→ 2 citations on 2 pages: 63 and 64

M. Mascagni, S. A. Cuccaro, D. V. Pryor, and M. L. Robinson. Recent
developments in parallel pseudorandom number generation. In SIAM
Conf. on Parallel Processing for Scientific Computing, volume i i, pages 524–
529, 1993.
→ 1 citation on page: 103

B. D. McCullough. The Accuracy of Econometric Software, pages 55–79. John
Wiley & Sons, Ltd, 2009. ISBN 9780470748916.
→ 2 citations on 2 pages: 6 and 103

W. M. McKeeman. Differential testing for software. Digital Technical Journal,
10(1):100–107, December 1998.
→ 8 citations on 7 pages: 4, 8, 9, 19, 20, 50, and 69

S. Micali and C. P. Schnorr. Efficient, perfect polynomial random number
generators. J. Cryptology, 3:157–172, 1991.
→ 3 citations on 3 pages: 103, 104, and 130

http://www.haskell.org/definition/haskell2010.pdf
http://www.haskell.org/definition/haskell2010.pdf

thesis March 27, 2014 10:04 Page 165 �
�	

�
�	 �
�	

�
�	

B ibliography 165

B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability
of UNIX utilities. Commun. ACM, 33(12):32–44, Dec. 1990.
→ 3 citations on 2 pages: 4 and 9

A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs
Technical Journal, 5:169–180, 2000.
→ 1 citation on page: 2

M. Moczurad, J. Tyszkiewicz, and M. Zaionc. Statistical properties of simple
types. Mathematical. Structures in Computer Science, 10, Oct. 2000.
→ 1 citation on page: 73

G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. Wiley, 3rd
edition, 2012.
→ 10 citations on 4 pages: 1, 2, 4, and 11

S. Peyton Jones. Haskell 98 Language and Libraries: the Revised Report. Cam-
bridge University Press, 2003.
→ 1 citation on page: 27

S. Peyton Jones, A. Reid, F. Henderson, T. Hoare, and S. Marlow. A
semantics for imprecise exceptions. In Proc. PLDI 1999, pages 25–36, New
York, NY, USA, 1999. ACM. ISBN 1-58113-094-5.
→ 2 citations on 2 pages: 61 and 64

S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewriting
as a practical optimization technique in GHC. In Proc. Haskell Workshop
2001, pages 203–233, Sept. 2001.
→ 1 citation on page: 67

S. Peyton-Jones, B. Smith, et al. Splittable random numbers. Mailing
list discussion, 2010. http://www.haskell.org/pipermail/haskell-cafe/

2010-November/085959.html.
→ 2 citations on 2 pages: 104 and 129

S. L. Peyton Jones. Compiling Haskell by program transformation: a report
from the trenches. In Proc. ESOP. Springer-Verlag, 1996.
→ 2 citations on page: 18

B. C. Pierce. Types and programming languages. MIT Press, Cambridge, MA,
USA, 2002. ISBN 0-262-16209-1.
→ 4 citations on 3 pages: 18, 23, and 39

J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case
reduction for c compiler bugs. In Proc. PLDI 2012, pages 335–346, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9.

http://www.haskell.org/pipermail/haskell-cafe/2010-November/085959.html
http://www.haskell.org/pipermail/haskell-cafe/2010-November/085959.html

thesis March 27, 2014 10:04 Page 166 �
�	

�
�	 �
�	

�
�	

166 B ibliography

→ 2 citations on 2 pages: 9 and 11

J. S. Reich, M. Naylor, and C. Runciman. Lazy generation of canonical test
programs. In A. Gill and J. Hage, editors, Proc. IFL 2011, LNCS 7257,
pages 69–84. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34406-0.
→ 1 citation on page: 11

A. Rodriguez Yakushev and J. Jeuring. Enumerating well-typed terms
generically. In Approaches and Applications of Inductive Programming (AAIP
2009), LNCS 5812. Springer Berlin / Heidelberg, 2010.
→ 3 citations on 3 pages: 21, 73, and 97

P. Rogaway. Evaluation of some blockcipher modes of operation. Unpub-
lished manuscript, 2011.
→ 3 citations on 3 pages: 108, 117, and 127

C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy smallcheck:
Automatic exhaustive testing for small values. In Proc. Haskell Symposium
2008, pages 37–48, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
064-7.
→ 7 citations on 6 pages: 10, 11, 81, 86, 89, and 96

J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random
numbers: as easy as 1, 2, 3. In Proc. High Performance Computing, Network-
ing, Storage and Analysis, pages 1–12. ACM, 2011. ISBN 978-1-4503-0771-0.
→ 3 citations on 3 pages: 103, 108, and 131

A. Sidorenko and B. Schoenmakers. Concrete security of the Blum-Blum-
Shub pseudorandom generator. In Cryptography and Coding 2005, LNCS
3796, pages 355–375, 2005.
→ 2 citations on 2 pages: 104 and 130

J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In Proceedings of the 2005 International Workshop on Mining Software
Repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005. ACM. ISBN
1-59593-123-6.
→ 1 citation on page: 1

I. Sommerville. Software Engineering. Addison-Wesley, Harlow, England, 9

edition, 2010. ISBN 978-0-13-703515-1.
→ 4 citations on 3 pages: 1, 2, and 3

G. Tassey. The economic impacts of inadequate infrastructure for software
testing. Technical report, National Institute of Standards and Technology,
2002.
→ 2 citations on 2 pages: 1 and 18

thesis March 27, 2014 10:04 Page 167 �
�	

�
�	 �
�	

�
�	

B ibliography 167

The GHC Team. The Glasgow Haskell Compiler. http://www.haskell.org/
ghc/, January 2010.
→ 1 citation on page: 142

N. Tillmann and J. de Halleux. Pex—white box test generation for .NET. In
Tests and Proofs, volume 4966 of Lecture Notes in Computer Science, pages
134–153. Springer Berlin / Heidelberg, 2008. ISBN 978-3-540-79123-2.
→ 1 citation on page: 138

N. Tillmann and W. Schulte. Parameterized unit tests. SIGSOFT Softw. Eng.
Notes, 30(5):253–262, 2005.
→ 1 citation on page: 138

D. Vytiniotis and A. J. Kennedy. Functional pearl: every bit counts. In Proc.
ICFP 2010. ACM, 2010. ISBN 978-1-60558-794-3.
→ 3 citations on 3 pages: 21, 72, and 74

J. Wang. Generating random lambda calculus terms. Technical report,
Boston University, 2005.
→ 3 citations on 2 pages: 21 and 73

E. J. Weyuker and T. J. Ostrand. Theories of program testing and the
application of revealing subdomains. ieee Trans. Softw. Eng., 6(3):236–
246, 1980.
→ 1 citation on page: 155

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering: an introduction. Kluwer Academic
Publishers, Norwell, MA, USA, 2000. ISBN 0-7923-8682-5.
→ 1 citation on page: 155

X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs
in C compilers. In Proc. PLDI 2011, pages 283–294, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0663-8.
→ 9 citations on 5 pages: 4, 9, 20, 21, and 68

A. C. Yao. Theory and application of trapdoor functions. In Proc. Symp.
Foundations of Computer Science, pages 80–91. ieee, 1982.
→ 2 citations on 2 pages: 103 and 108

A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann, Oct. 2005. ISBN 1558608664.
→ 9 citations on 4 pages: 1, 2, 3, and 4

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/

thesis March 27, 2014 10:04 Page 168 �
�	

�
�	 �
�	

�
�	

168 B ibliography

A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Trans. Softw. Eng., 28(2):183–200, Feb. 2002.
→ 3 citations on 3 pages: 9, 71, and 137

	Contents
	Introduction
	Paper I: Testing an Optimising Compiler by Generating Random Lambda Terms
	1 Introduction
	2 Related work
	3 Structure
	4 Generation method
	5 Shrinking
	6 Applications
	7 Related Work
	8 Future work
	9 Conclusions

	Paper II: Generating Constrained Random Data with Uniform Distribution
	1 Introduction
	2 Generating Values of Algebraic Datatypes
	3 Predicate-Guided Indexing
	4 Experimental Evaluation
	5 Related Work
	6 Discussion

	Paper III: Splittable Pseudorandom Number Generators using Cryptographic Hashing
	1 Introduction
	2 Splittable prngs
	3 Proposed construction
	4 Correct hashing
	5 Linear generation
	6 Performance
	7 Discussion and future work
	8 Related work
	9 Conclusion
	A Appendix. Definitions and Proofs

	Paper IV: Ranking Programs using Black Box Testing
	1 Introduction
	2 The Experiment
	3 Evaluation Method
	4 Analysis
	5 Related Work
	6 Conclusions

	Bibliography

