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Generating Constrained Random Data
with Uniform Distribution

Koen Claessen, Jonas Duregård, and Michał H. Pałka

Chalmers University of Technology
{koen,jonas.duregard,michal.palka}@chalmers.se

Abstract. We present a technique for automatically deriving test data generators
from a predicate expressed as a Boolean function. The distribution of these gen-
erators is uniform over values of a given size. To make the generation efficient
we rely on laziness of the predicate, allowing us to prune the space of values
quickly. In contrast, implementing test data generators by hand is labour intensive
and error prone. Moreover, handwritten generators often have an unpredictable
distribution of values, risking that some values are arbitrarily underrepresented.
We also present a variation of the technique where the distribution is skewed in a
limited and predictable way, potentially increasing the performance. Experimental
evaluation of the techniques shows that the uniform derived generators are much
easier to define than hand-written ones, and their performance, while lower, is
adequate for some realistic applications.

1 Introduction

Random property-based testing has proven to be an effective method for finding bugs
in programs [1, 4]. Two ingredients are required for property-based testing: a test data
generator and a property (sometimes called oracle). For each test, the test data generator
generates input to the program under test, and the property checks whether or not the
observed behaviour is acceptable. This paper focuses on the test data generators.

The popular random testing tool QuickCheck [4] provides a library for defining
random generators for data types. Typically, a generator is a recursive function that at
every recursion level chooses a random constructor of the relevant data type. Relative
frequencies for the constructors can be specified by the programmer to control the
distribution. An extra resource argument that shrinks at each recursive call is used to
control the size of the generated test data and ensures termination.

The above method for test generation works well for generating structured, well-
typed data. But it becomes much harder when our objective is to generate well-typed
data that satisfies an extra condition. A motivating example is the random generation of
programs as test data for testing compilers. In order to successfully test different phases
of a compiler, programs not only need to be grammatically correct, they may also need
to satisfy other properties such as all variables are bound, all expressions are well-typed,
certain combinations of constructs do not occur in the programs, or a combination of
such properties.

In previous work by some of the authors, it was shown to be possible but very tedious
to manually construct a generator that (a) could generate random well-typed programs



data Expr
= Ap Expr Expr Type
| Vr Int
| Lm Expr

data Type = A | B | C
| Type :→ Type

check :: [Type]→ Expr→ Type→ Bool
check env (Vr i) t = env !! i == t
check env (Ap f x tx) t =

check env f (tx :→ t) && check env x tx
check env (Lm e) (ta :→ tb) = check (ta : env) e tb
check env = False

Fig. 1: Data type and type checker for simply-typed lambda calculus. The Type in the Ap
nodes represents the type of the argument term.

in the polymorphic lambda-calculus, and at the same time (b) maintain a reasonable
distribution such that no programs were arbitrarily excluded from generation.

The problem is that generators mix concerns that we would like to separate: (1)
what is the structure of the test data, (2) which properties should it obey, and (3) what
distribution do we want.

In this paper, we investigate solutions to the following problem: Given a definition
of the structure of test data (a data type definition), and given one or more predicates
(functions computing a boolean), can we automatically generate test data that satisfies
all the predicates and at the same time has a predictable, good distribution?

To be more concrete, let us take a look at Fig. 1. Here, a data type for typed
lambda expressions is defined, together with a function that given an environment, an
expression, and a type, checks whether or not the expression has the stated type in
the environment. From this input alone, we would like to be able to generate random
well-typed expressions with a good distribution.

What does a ‘good’ distribution mean? First, we need to have a way to restrict the
size of the generated test data. In any application, we are only ever going to generate a
finite number of values, so we need a decision on what test data sizes to use. An easy
and common way to control test data size is to control the depth of a term. This is for
example done in SmallCheck [10]. The problem with using depth is that the cardinality
of terms of a certain depth grows extremely fast as the depth increases. Moreover, good
distributions for, to give an example, the set of trees of depth d are hard to find, because
there are many more almost full trees of depth d than there are sparse trees of depth
d, which may lead to an overrepresentation of almost full trees in randomly generated
values.

Another possibility is to work with the set of values of a given size n, where size is
understood as the number of data constructors in the term. Previous work by one of the
authors on FEAT [5] has shown that it is possible to efficiently index in, and compute
cardinalities of, sets of terms of a given size n. This is the choice we make in this paper.

The simplest useful and predictable distribution that does not arbitrarily exclude
values from a set is the uniform distribution, which is why we chose to focus on uniform
distributions in this paper. We acknowledge the need for other distributions than uniform
in certain applications. However, we think that a uniform distribution is at least a useful
building block in the process of crafting test data generators. We anticipate methods for



controlling the distribution of our generators in multiple ways, but that remains future
work.

Our first main contribution in this paper is an algorithm that, given a data type defini-
tion, a predicate, and a test data size, generates random values satisfying the predicate,
with a perfectly uniform distribution. It works by first computing the cardinality of the set
of all values of the given size, and then randomly picking indices in this set, computing
the values that correspond to those indices, until we find a value for which the predicate
is true. The key feature of the algorithm is that every time a value x is found for which
the predicate is false, it is removed from the set of values, together with all other values
that would have lead to the predicate returning false using the same execution path as x.

Unfortunately, even with this optimisation, uniformity turns out to be a very costly
property in many practical cases. We have also developed a backtracking-based generator
that is more efficient, but has no guarantees on the distribution. Our second main contri-
bution is a hybrid generator that combines the uniform algorithm and the backtracking
algorithm, and is ‘almost uniform’ in a precise and predictable way.

2 Generating Values of Algebraic Datatypes

In this section we explain how to generate random values of an algebraic data type
(ADT) uniformly. Our approach is based on a representation of sets of values that allows
efficient indexing, inspired by FEAT [5], which is used to map random indices to random
values. In the next section we modify this procedure to efficiently search for values that
satisfy a predicate.

Algebraic Data Types (ADTs) are constructed using units (atomic values), disjoint
unions of data types, products of data types, and may refer to their own definitions
recursively. For instance, consider these definitions of Haskell data types for natural
numbers and lists of natural numbers:

data Nat = Z | Suc Nat
data ListNat = Nill | Cons Nat ListNat

In general, ADTs may contain an infinite number of values, which is the case for both data
types above. Our approach for generating random values of an ADT uniformly is to gen-
erate values of a specific size, understood as the number of constructors used in a value.
For example, all of Cons (Suc (Suc Z)) (Cons Z Nill), Cons (Suc Z) (Cons (Suc Z) Nill)
and Cons Z (Cons Z (Cons Z Nill)) are values of size 7. As there is only a finite number
of values of each size, we can create a sampling procedure that generates a uniformly
random value of ListNat of a given size.

2.1 Indexing

Our method for generating random values of an ADT is based on an indexing function,
which maps integers to corresponding data type values of a given size.

indexS,k : {i ∈ N | i < |Sk|} → Sk



Here, S is the data type, and Sk is the set of k-sized values of S. The intuitive idea behind
efficient indexing is to quickly calculate cardinalities of subsets of the indexed set. For
example, when S = T ⊕U is a sum type, then indexing is performed as follows:

indexT⊕U,k(i) =

{
indexT,k(i) if i < |Tk|
indexU,k(i−|Tk|) otherwise

When S = T ⊗U is a product type, we need to consider all ways size k can be divided
between the components of the product. The cardinality of the product can be computed
as follows:

|(T ⊗U)k|= ∑
k1+k2=k

|Tk1 ||Uk2 |

When indexing (T ⊗U)k using index i, we first select the division of size k1 + k2 = k,
such that:

0≤ i′ < |Tk1 ||Uk2 | where i′ = i− ∑
l1<k1

l1+l2=k

|Tl1 ||Ul2 |

Then, elements of Tk1 and Uk2 are selected using the remaining part of the index i′.

indexT⊗U,k(i) = (indexT,k(i′ div |Uk2 |), indexU,k(i′ mod |Uk2 |))

In the rest of this section, we outline how to implement indexing in Haskell.

2.2 Representation of Spaces

We define a Haskell Generalized Algebraic Data Type (GADT) Space to represent ADTs,
and allow efficient cardinality computations and indexing.

data Space a where
Empty :: Space a
Pure :: a → Space a
( :+: ) :: Space a → Space a→ Space a
( :∗ : ) :: Space a → Space b→ Space (a,b)
Pay :: Space a → Space a
( :$ : ) :: (a→ b)→ Space a→ Space b

Spaces can be built using four basic operations: Empty for empty space, Pure for unit
space, ( :+: ) for a sum of two spaces and ( :∗ : ) for a product. Spaces also have an
operator Pay which represents a unit cost imposed by using a constructor. The last
operation ( : $ : ), applies a function to all values in the space. We assume that spaces
are constructed in such a way that all their elements are unique. If this is not the case, a
‘uniform’ sampling procedure would return repeated elements more often than unique
ones.

A very convenient operator on spaces is the lifted application operator, that takes a
space of functions and a space of parameters and produces a space of all applications of
the functions to the parameters:



(<∗>) :: Space (a→ b)→ Space a→ Space b
s1 <∗> s2 = (λ (f ,a)→ f a) :$ : (s1 :∗ : s2)

With the operators defined above, the definition of spaces mirror the definitions of data
types. For example, spaces for the Nat and ListNat data types can be defined as follows:

spaceNat :: Space Nat
spaceNat = Pay (Pure Z :+: (Suc :$ : spaceNat))
spaceListNat :: Space ListNat
spaceListNat = Pay (Pure Nill :+: (Cons :$ : spaceNat <∗> spaceListNat))

Unit constructors are represented with Pure, whereas compound constructors are mapped
on the subspaces of the values they contain. In this example, Pay is applied each time we
introduce a constructor, which makes the size of values equal to number of constructors
they contain, and is the usual practice. However, the user may choose to use another way
of assigning costs, which would change the sizes of individual values and, as a result, the
distribution of the generated values. The only rule that must be followed when assigning
costs is that all recursion is guarded by at least one Pay operation, otherwise the sets of
values of a given size might be infinite, which would lead to non-terminating cardinality
computations.

2.3 Indexing on Spaces

Indexing on spaces can be reduced to two subproblems: Extracting the finite set of
values of a particular set, and indexing into such finite sets. Assume we have some data
type for finite sets constructed by combining the empty set ({}), singleton sets ({a}),
disjoint union (]) and Cartesian product (×). From the definition of such a finite set, its
cardinality can be computed as follows:

|{}| = 0
|{a}|= 1

|a×b|= |a| ∗ |b|
|a]b| = |a|+ |b|

Using this function it is possible to define an indexing function on the type:

indexFin {a} 0 = a
indexFin (a]b) i | i < |a|= indexFin a i
indexFin (a]b) i | i > |a|= indexFin b (i−|a|)
indexFin (a×b) i = (indexFin a (i÷|b|), indexFin b (i mod |b|))

With these definitions at hand, all we have to do to index in spaces is to define a function
sized which extracts the finite set of values of a given size k from a space.

sized Empty k = {}
sized (Pure a) 0 = {a}
sized (Pure a) k = {}
sized (Pay a) 0 = {}

sized (Pay a) k = sized a (k−1)
sized (a :+: b) k = sized a k] sized b k
sized (f :$ : a) k = {f x : x ∈ sized a k}



We define sized Pure to be empty for all sizes except 0, since we want values of an exact
size. For Pay we get the values of size k−1 in the underlying space. Union and function
application translate directly to union and application on sets. Selecting k-sized values
of a product space requires dividing the size between its components. Thus, we can
consider the set as a disjoint union of the k+1 different ways of dividing size between
the components:

sized (a :∗ : b) k =
⊎

k1+k2=k
sized a k1× sized b k2

Knowing how to index in finite sets, we can implement an indexing function on spaces
by composing the sized function with the indexFin function.

indexSized :: Space a→ Int→ Integer→ a
indexSized s k i = indexFin (sized s k) i

Computing cardinalities and indexing requires arbitrarily large integers, which are
provided by Haskell’s Integer type. Calculating cardinalities can be computationally
intensive, and to be practical requires memoising cardinalities of recursive data types,
which is implemented using another constructor of the Space a data type not shown here.

3 Predicate-Guided Indexing

Having solved the problem of generating members of algebraic data types, we extend
the problem with a predicate that all generated values must satisfy.

A first approach for uniform generation is to choose a size, generate values of that
size, test them against the predicate and keep the ones for which the predicate is True.
This works well for cases where the proportion of values that satisfy the predicate is
large enough, for example larger than 1%, but is far too inefficient in many practical
situations.

In order to speed up random generation of values satisfying a given predicate, we
use the lazy behaviour of the predicate to know its result on sets of values, rather than
individual values, similarly to [10]. For instance, consider a predicate that tests if a list is
sorted by checking the inequality of each pair of consecutive elements in turn starting
from the front. Applying the predicate to 1 : 2 : 1 : 3 : 5 : [ ] will yield False after the pair
(2,1) is encountered, before the predicate looks at the later elements, which means that it
will return False for all lists starting with 1,2,1. Once we have computed a set of values
for which the predicate is going to return false, we remove all of these values from our
original set.

To detect this we can exploit Haskell’s call-by-need semantics by applying the
predicate to a partially-defined value. In this case, observing that our predicate returns
False when applied to a partially-defined list 1 : 2 : 1 :⊥, can lead us to conclude that ⊥
can be replaced with any value without affecting the result. Thus, we could remove all
lists that start with 1,2,1 from the space. For many realistic predicates this removes a
large number of values with each failed generation attempt, improving the chances of
finding a value satisfying the predicate next time.



We implement this by using the function valid, that determines whether a given
predicate needs to investigate its argument or not in order to produce its result. The
function valid returns Nothing if the predicate needed its argument, and Just b if the
predicate returns b regardless of its argument.

valid :: (a→ Bool)→Maybe Bool

For example valid (λa→ True) == Just True, valid (λa→ False) == Just False,
valid (λx→ x+1>x) == Nothing. Implementing valid involves applying the predicate
to ⊥ and catching the resulting exception if there is one. Catching the exception is an
impure operation in Haskell, so the function valid is also impure (specifically, it breaks
monotonicity).

The function valid is used to implement the indexing function, which takes the
predicate, the space, the size and a random index.

index :: (a→ Bool)→ Space a→ Int→ Integer→ Space a

It returns a space of values containing at least the value at the given index, and any
number of values for which the predicate yields the same result. When the returned
space contains values for which the predicate is false, the top level search procedure (not
shown here) removes all these values from the original enumeration and retries with a
new index in the now smaller enumeration.

The function index is implemented by recursion on its Space a argument, and com-
posing the predicate with traversed constructor functions, until its result is independent
of which value from the current space is chosen. In particular, index on a function
application ( : $ : ) returns the current space if the predicate p′ returns the same result
regardless of its argument, which is determined by calling valid p′. Otherwise, it calls
index recursively on the subspace, composing the predicate with the applied function.

index p (f :$ : a) k i = case valid p′ of
Just → f :$ : a
Nothing→ f :$ : index p′ a k i
where p′ = p◦ f

3.1 Predicate-Guided Refinement Order

When implementing index for products, it is no longer possible to choose a division of
size between the components, as was the case for indexing in Section 2. Determining the
size of components early causes problems when generalising to sets of partial values, as
the same partial value may represent values where size is divided in different ways.

We solve this problem using the algebraic nature of our spaces to eliminate products
altogether. Disregarding the order of values when indexing, spaces form an algebraic
semi-ring, which means that we can use the following algebraic laws to eliminate
products.

a⊗ (b⊕ c)≡ (a⊗b)⊕ (a⊗ c) [distributivity]
a⊗ (b⊗ c)≡ (a⊗b)⊗ c [associativity]
a⊗1 ≡ a [identity]
a⊗0 ≡ 0 [annihilation]



Expressing these rules on our Haskell data type is more complicated, because we need to
preserve the types of the result, i.e. we only have associativity of products if we provide
a function that transforms the left associative pair back to a right associative one, etc.
The four rules defined on the Space data type expressed as a transformation operator
(∗∗∗) are as follows:

a∗∗∗ (b :+: c) = (a :∗ : b) :+: (a :∗ : c) [distributivity]
a∗∗∗ (b :∗ : c) = (λ ((x,y),z)→ (x,(y,z))) :$ : ((a :∗ : b) :∗ : c) [associativity]
a∗∗∗ (Pure x) = (λy→ (y,x)) :$ : a [identity]
a∗∗∗Empty = Empty [annihilation]

In addition to this, we need two laws for eliminating Pay and function application.

a∗∗∗ (Pay b) = Pay (a :∗ : b) [lift-pay]
a∗∗∗ (f :$ : b) = (λ (x,y)→ (x, f y)) :$ : (a :∗ : b) [lift-fmap]

The first law states that paying for the component of a pair is the same as paying for
the pair, the second that applying a function f to one component of a pair is the same as
applying a modified (lifted) function on the pair. If recursion is always guarded by a Pay,
we know that the transformation will terminate after a bounded number of steps.

Using these laws we could define index on products by applying the transformation,
so index p (a :∗ : b) = index p (a∗∗∗b). This is problematic, because ∗∗∗ is a right-first
traversal, which means that for our generators the left component of a pair is never
generated before the right one is fully defined. This is detrimental to generation, since
the predicate may not require the right operand to be defined. To guide the refinement
order by the evaluation order of the predicate, we need to ‘ask’ the predicate which
component should be defined first. We define a function similar to valid that takes a
predicate on pairs:

inspectsRight :: ((a,b)→ Bool)→ Bool

The expression inspectsRight p is True iff p evaluates the right component of the pair
before the left. Just like valid, inspectsRight exposes some information of the Haskell
runtime, which can not be observed directly.

To define indexing on products we combine inspectsRight with another algebraic law:
commutativity of products. If the predicate ‘pulls’ at the left component, the operands of
the product are swapped before applying the transformation for the recursive call.

index p (a :∗ : b) k i = if inspectsRight p
then index p (a∗∗∗b) k i
else index p (swap :$ : (b∗∗∗a)) k i
where swap (a,b) = (b,a)

The end result is an indexing algorithm that gradually refines the value it indexes to,
by expanding only the part that the predicate needs in order to progress. With every
refinement, the space is narrowed down until the predicate is guaranteed to be true or
false for all values in the space. In the end the algorithm removes the indexed subspace
from the search space, so no specialisations of the tested value are ever generated.



Note that the generation algorithm is still uniform because we only remove values
for which the predicate is false from the original set of values. The uniformity is only
concerned with the set of values for which the predicate is true.

3.2 Relaxed Uniformity Constraint

When our uniform generator finds a space for which the predicate is false, the algorithm
chooses a new index and retries, which is required for uniformity. We have implemented
two alternative algorithms.

The first one is to backtrack and try the alternative in the most recent choice. Such
generators are no longer uniform, but potentially more efficient. Even though the al-
gorithm start searching at a uniformly chosen index, since an arbitrary number of
backtracking steps is allowed the distribution of generated values may be arbitrarily
skewed. In particular, values satisfying the predicate that are ‘surrounded’ by many
values for which it does not hold may be much more likely to be generated than other
values.

The second algorithm also performs backtracking, but imposes a bound b for how
many values the backtracking search is allowed to skip over. When the bound b is
reached, a new random index is generated and the search is restarted. The result is an
algorithm which has an ‘almost uniform’ distribution in a precise way: the probabilities
of generating any two values differ at most by a factor b+1. So, if we pick b = 1000,
generating the most likely value is at most 1001 times more likely than the least likely
value.

The bounded backtracking search strategy generalises both the uniform search (when
the bound b is 0) and the unlimited backtracking search (when the bound b is infinite).

We expected the backtracking strategy to be more efficient in terms of time and space
usage than the uniform search, and the bounded backtracking strategy to be somewhere
in between, with higher bounds leading to results closer to unlimited backtracking. Our
intention for developing these alternative algorithms was that trading the uniformity
of the distribution for higher performance may lead to a higher rate of finding bugs.
Section 4 contains experimental verification of these hypotheses.

3.3 Parallel Conjunction

It is possible to improve the generation performance by introducing the parallel conjunc-
tion operator [10], which makes pruning the search space more efficient. Suppose we
have a predicate p x= q x && r x. Given that && is left-biased, if valid r == Just False
and valid q == Nothing then the result of valid p will be Nothing, even though we
expect that refining q will make the conjunction return False regardless of what q x
returns.

We can define a new operator &&& for parallel conjunction with different behaviour
when the first operand is undefined: ⊥&&& False == False. This may make the
indexing algorithm terminate earlier when the second operand of a conjunction is false,
without needing to perform refinements needed by the first operand at all. Similarly, we
can define parallel disjunction that is True when either operand is True.



4 Experimental Evaluation

We evaluated our approach in four benchmarks. Three of them involved measuring the
time and memory needed to generate 2000 random values of a given size satisfying
a predicate. The fourth benchmark compared a derived simply-typed lambda term
generator against a hand-written one in triggering strictness bugs in the GHC compiler.
Some benchmarks were also run with a naı̈ve generator that generates random values
from a space, as in Section 2, and filters out those that do not satisfy a predicate.

4.1 Trees

Our first example is binary search trees (BSTs) with Peano-encoded natural numbers as
their elements, defined as follows.

data Tree a = L
| N a (Tree a) (Tree a)

isBST :: Ord a⇒ Tree a→ Bool
data Nat = Z | Suc Nat

instance Ord Nat where
<Z = False

Z <Suc = True
Suc x<Suc y = x< y

The isBST predicate (omitted) decides if the tree is a BST, and uses a supplied lazy
comparison function for type Nat for increased laziness.

We measured the time and space needed to generate 2000 trees for each size from
a range of sizes, allowing at most 300 s of CPU time and 4 GiB of memory to be used.
Derived generators based on three different search strategies (see Section 3.2) were used:
One performing uniform sampling (uniform), one bounded backtracking allowed to skip
at most 10k values (backtracking 10k), and one performing unbounded backtracking
(backtracking). A naı̈ve generate-and-filter generator was also used for comparison.

Both backtracking 10k and backtracking generators produce non-uniform distri-
butions of values. The skew of the backtracking 10k generator is limited, as the least
likely values are generated at most 10k times less likely than the most common ones, as
mentioned in Section 3.2.

Fig. 2 shows the time and memory consumed the runs with resource limits marked
by dotted lines in the plots. Run times for all derived generators rise sharply with the
increased size of generated values and seem to approach exponential growth for larger
sizes. The backtracking generator performs best of all, and has a slower exponential
growth rate for large sizes than the other derived generators. The backtracking 10k
generator achieved similar performance as the uniform one when generating values that
are about 11 size units larger. The generate-and-filter generator was not able to complete
any of the runs in time, and is omitted from the graphs.

4.2 Simply-typed Lambda Terms

Generating random simply-typed lambda terms was our motivating application. Simply-
typed lambda terms can be turned into well-typed Haskell programs and used for testing
compilers. Developing a hand-written recursive generator for them requires the use
of backtracking, because of the inability of predicting whether a given local choice
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Fig. 3: Run times (left) and memory consumption (right) of derived generators generating
2000 simply-typed lambda terms depending on the size of generated terms.

can lead to a successful generation, and because typing constraints from two distant
parts of a term can cause conflict. Achieving satisfactory distribution and performance
requires careful tuning, and it is difficult to assess if any important values are severely
underrepresented [9].

On the other hand, obtaining a generator that is based on our framework requires
only the definitions from Fig. 1, and a relatively simple space definition, which we omit
here. The code for the type checker is standard and uses a type stored in each application
node (tx in Ap f x tx) to denote the type of the argument term for simplicity.

To evaluate the generators, we generated 2000 terms with a simple initial environment
of 6 constants. The derived generator with three search strategies and one based on
generate-and-filter were used. Fig. 3 shows the results. The uniform search strategy is
capable of generating terms of size up to 23. For larger sizes, the generator exceeded the
resource limits (300 s and 4 GiB, marked w/ dotted lines). The generator that used limited
backtracking allowed generating terms up to size 28, using 9 times less CPU time and over
11 times less memory than the uniform one at size 23. Unlimited backtracking improved



Generator Hand-written Derived (size 30)

Terms per ctr ex. (k) 18.6 52.5
Gen. CPU time per ctr ex. (min) 1.7 14.0
Test CPU time per ctr ex. (min) 1.8 10.4
Tot. CPU time per ctr ex. (min) 3.5 24.4

Table 1: Performance of the reference hand-written term generator compared to a derived
generator using backtracking with size 30. We compare the average number of terms
that have to be generated before a counterexample (ctr ex.) is found, and how much CPU
time the generation and testing consumes per found counterexample.

memory consumption dramatically, up to 30-fold, compared to limited backtracking. The
run time is improved only slightly with unlimited backtracking. Finally, the generator
based on generate-and-filter exceeded the run times for all sizes, and is not included in
the plots.

4.3 Testing GHC

Discovering strictness bugs in the GHC optimising Haskell compiler was our prime
reason for generating random simply-typed lambda terms. To evaluate our approach, we
compared its bug finding power to a hand-written generator that had been developed
before [9] using the same test property that had been used there.

Random simply-typed lambda terms were used for testing GHC by first generating
type-correct Haskell modules containing the terms, and then using them as test data.
In this case, we generated modules containing expressions of type [Int ]→ [Int ] and
compiled them with two different optimisation levels. Then, we tested their observable
behaviour and compared them against each other, looking for discrepancies.

We implemented the generator using a similar data type as in Fig. 1 extended with
polymorphic constants and type constructors. For efficiency reasons we avoided having
types in term application constructors, and used a type checker based on type inference,
which is more complex but still easily implementable. It allows generators to scale up to
larger effective term sizes because not having types in the term representation increases
the density of well-typed terms.

A generator based on this data type was capable of generating terms containing 30
term constructors, and was able to trigger GHC failures. Table 1 shows the results of
testing GHC both with the hand-written simply-typed lambda term generator and our
derived generator. The hand-written generator used for comparison generated terms
of sizes from 0 to about 90, with most terms falling in the range of 20–50. It needed
the least total CPU time to find a counterexample, and the lowest number of generated
terms. The derived generator needs almost 7 times more CPU time per failure than the
hand-written one.

The above results show that a generator derived from a predicate can be used to
effectively find bugs in GHC. The derived generator is less effective than a hand-written
one, but is significantly easier to develop. Developing an efficient type-checking predicate



Predicates Backtracking Backtracking c/o

1, 2, 3, 4, 5 13 15
1, 3, 4, 5 13 30
1, 3, 5 31 30

Table 2: Maximum practical sizes of values generated by derived program generators
that use unlimited backtracking and backtracking with cut-off of 10k.

required for the derived generator took a few days, whereas the development and tuning
of the hand-written generator took an order of months.

4.4 Programs

The Program benchmark is meant to simulate testing of a simple compiler by generating
random programs, represented by the following data type.

type Name = String
data Program = New Name Program | Name :=Expr | Skip

| Program :>>Program | If Expr Program Program
| While Expr Program

data Expr = Var Name | Add Expr Expr

The programs contain some common imperative constructs and declarations of new
variables using New, which creates a new scope.

A compiler may perform a number of compilation passes, which would typically
transform the program into some kind of normal form that may be required by the
following pass. Our goal is to generate test data that satisfy the precondition in order to
test the code of each pass separately. We considered 5 predicates on the program data
type that model simple conditions that may be required by some compilation phases: (1)
boundProgram saying that the program is well-scoped, (2) usedProgram saying that all
bound variables are used, (3) noLocalDecls requiring all variables to be bound on the
top level, (4) noSkips forbidding the redundant use of :>> and Skip, and (5) noNestedIfs
forbidding nested if expressions.

Table 2 shows maximum value sizes that can be practically reached by the derived
generators for the program data type with different combinations of predicates. All
runs were generating 2000 random programs with resource limits (300 s and 4 GiB).
When all predicates were used, the generators performed poorly being able to reach
at most size 15. When the usedProgram predicate was omitted, the generator that
uses limited backtracking improved considerably, whereas the one using unlimited
backtracking remained at size 13. Removing the noSkips predicate turns the tables on
the two generators improving the performance of the unlimited backtracking generator
dramatically.

A generator based on generate-and-filter was also benchmarked, but did not terminate
within the time limit for the sizes we tried.



4.5 Summary

All derived generators performed much better than ones based on generate-and-filter in
three out of four benchmarks. In the fourth one, testing GHC, using a generator based
on generate-and-filter was comparable to using our uniform or near-uniform derived
generators, and slower than a derived generator using backtracking. In that benchmark
the backtracking generator was the only that was able to find counterexamples, and yet
it was less effective than a hand-written generator. However, as creating the derived
generators was much quicker, we believe that they are still an attractive alternative to a
hand-written generator.

The time and space overhead of the derived generators appeared to rise exponentially,
or almost exponentially with the size of generated values in most cases we looked at,
similarly to what can be seen in Figures 2 and 3.

In most cases the backtracking generator provided the best performance, which means
that sometimes we may have to sacrifice our goal of having a predictable distribution.
However, we found the backtracking generator to be very sensitive to the choice of the
predicate. For example, some combinations of predicates in Section 4.4 destroyed its
performance, while having less influence on the uniform and near-uniform generators.
We hypothesise that this behaviour may be caused by regions of search space where
the predicates evaluate values to a large extent before returning False. The backtracking
search remain in such regions for a long time, in contrast to the other search that gives
up and restarts after a number of values have been skipped.

Overall, the performance of the derived generators is practical for some applications,
but reaching higher sizes of generated data might be needed for effective bug finding. In
particular, being able to generate larger terms may improve the bug-finding performance
when testing for GHC strictness bugs.

5 Related Work

Feat. Our representation of spaces and efficient indexing is based on FEAT (Functional
Enumeration of Algebraic Types) [5]. The practicalities of computing cardinalities and
the deterministic indexing functions are described there. The inability to deal with
complex data type invariants is the major concern for FEAT, which is addressed by this
paper.

Lazy SmallCheck and Korat. Lazy SmallCheck [10] uses laziness of predicates to
get faster progress in an exhaustive depth-limited search. Our goal was to reach larger,
potentially more useful values than Lazy SmallCheck by improving on it in two direc-
tions: using size instead of depth and allowing random search in sets that are too large to
search exhaustively. Korat is a framework for testing Java programs [2]. It uses similar
techniques to exhaustively generate size-bounded values that satisfy the precondition of
a method, and then automatically check the result of the method for those values against
a postcondition.



EasyCheck: Test Data For Free. EasyCheck is a library for generating random test
data written in the Curry functional logic programming language [3]. Its generators
define search spaces, which are enumerated using diagonalisation and randomising
local choices. In this way values of larger sizes have a chance of appearing early in the
enumeration, which is not the case when breadth-first search is used. The Curry language
supports narrowing, which can be used by EasyCheck to generate values that satisfy
a given predicate. The examples that are given in the paper suggest that, nonetheless,
micro-management of the search space is needed to get a reasonable distribution. The
authors point out that their enumeration technique has the problem of many very similar
values being enumerated in the same run.

Metaheuristic Search. In the GödelTest [6] system, so-called metaheuristic search
is used to find test cases that exhibit certain properties referred to as bias objectives.
The objectives are expressed as fitness metrics for the search such as the mean height
and width of trees, and requirements on several such metrics can be combined for a
single search. It may be possible to write a GödelTest generator by hand for well typed
lambda terms and then use bias objectives to tweak the distribution of values in a desired
direction, which could then be compared to our work.

Lazy Nondeterminism. There is some recent work on embedding non-determinism
in functional languages [7]. As a motivating example an isSorted predicate is used to
derive a sorting function, a process which is quite similar to generating sorted lists from
a predicate. The framework defined in [7] is very general and could potentially be used
both for implementing SmallCheck style enumeration and for random generation.

Generating Lambda Terms. There are several other attempts at enumerating or gen-
erating well typed lambda terms. One such attempt uses generic programming to ex-
haustively enumerate lambda terms by size [11]. The description focuses mainly on the
generic programming aspect, and the actual enumeration appears to be mainly proof of
concept with very little discussion of the performance of the algorithm. There has been
some work on counting lambda terms and generating them uniformly [8]. This includes
generating well typed terms by a simple generate-and-filter approach.

6 Discussion

Performance of Limiting Backtracking. The performance of our generators depends
on the strictness and evaluation order of the used predicate. The generator that performs
unlimited backtracking was especially sensitive to the choice of predicate, as shown
in Section 4.4. Similar effects have been observed in Korat [2], which also performs
backtracking.

We found that for most predicates unbounded backtracking is the fastest. But un-
expectedly, for some predicates imposing a bound on backtracking improves the run
time of the generator. This also makes the distribution more predictable, at the cost of
increased memory consumption. We found tweaking the degree of backtracking to be a



useful tool for improving the performance of the generators, and possibly trading it for
distribution guarantees.

In-place Refinement. We experimented with a more efficient mechanism for observing
the evaluation order of predicates, which avoids repeated evaluation of the predicate. For
that we use an indexing function that attaches a Haskell IO-action to each subcomponent
of the generated value. When the predicate is applied to the value, the IO-actions will fire
only for the parts that the property needs to inspect to determine the outcome. Whenever
the indexing function is required to make a choice, the corresponding IO-action records
the option it did not take, so after the predicate has finished executing the refined search
space can be reconstructed. Guiding the evaluation order is handled automatically by the
Haskell run time system, which has call-by-need built into it.

In-place refinement is somewhat more complicated than the procedure described
in Section 3. Also, defining parallel conjunction for this type of refinement is difficult,
because inspecting the result of a predicate irreversibly makes the choices required to
compute the result. For this reason our implementation of in-place refinement remains a
separate branch of development and a topic of future work.

Conclusion. Our method aims at preserving the simplicity of generate-and-filter type
generators, but supporting more realistic predicates that accept only a small fraction of
all values. This approach works well provided the predicates are lazy enough.

Our approach reduces the risk of having incorrect generators, as coming up with
a correct predicate is usually much easier than writing a correct dedicated generator.
Creating a predicate which leads to an efficient derived generator, on the other hand, is
more difficult.

Even though performance remains an issue when generating large test cases, experi-
mental results show that our approach is a viable option for generating test data in many
realistic cases.
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