
Chalmers Publication Library

Calculating restart states using reset transitions

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE International Conference on Robotics and Automation (ICRA)

Citation for the published paper:
Bergagård, P. ; Fabian, M. (2014) "Calculating restart states using reset transitions". IEEE
International Conference on Robotics and Automation (ICRA)

Downloaded from: http://publications.lib.chalmers.se/publication/195816

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/195816

Calculating restart states using reset transitions*

Patrik Bergagård1, Student member, IEEE and Martin Fabian1, Member, IEEE

Abstract— This paper presents a supervisory control theory
based offline approach for calculating restart states in a man-
ufacturing control system. Given these precalculated restart
states, an operator can be given instructions for how to cor-
rectly resynchronize the control system and the manufacturing
resources during the online restart phase, as part of the error
recovery process. Restarting from a restart state guarantees that
all requirements on the nominal and the restarted productions
are fulfilled. The paper includes an empirical comparison
showing that the proposed approach enables restart states
calculation for systems of sizes that could not be handled using
an earlier presented approach.

I. INTRODUCTION

Downtime due to errors is costly in flexible automated
manufacturing systems [1], [2]. It is therefore desirable to
perform a quick and correct recovery in order to resume the
production after an error.

Error recovery in manufacturing systems is, however, a
complicated task [3], often divided into three major activ-
ities [4]: detection of discrepancies between the intended
behavior of the control system and the actual behavior of
the physical system, diagnosis to find the original fault
causing the observed error leading to an unsynchronization
between the control and the physical systems, and recovery
of the systems to continue the production. Recovery is further
partitioned into error correction to remove underlying faults
and restart to resynchronize the control system and the
physical system such that the production can be resumed [5].
The focus of this paper is on the restart phase.

The restart phase is complicated due to the existence
of reexecution requirements specifying under what circum-
stances the manufacturing operations can be reexecuted in the
restarted system [6], [7]. These requirements are for example
related to the physical product(s). The second complication
is the industrial desire to enable restart after unforeseen, non-
modeled, errors [6].

To overcome these issues, different methods to manage
the restart have been proposed in the literature. Extensive
overviews are given in [4], [6], [8]. The main workload in
a restart method is either online during the restart phase or
offline before the start of production [6]. Offline methods
have advantages over online methods since beforehand cal-
culations enable the control system to be designed for restart
already when the production in the manufacturing system is

*This work has been carried out at the Wingquist Laboratory VINN
Excellence Centre within the Production Area of Advance at Chalmers.
It has been supported by the European 7th FP, grant agreement number
213734 (FLEXA) and Vinnova. The support is gratefully acknowledged.

1Department of Signals and Systems, Chalmers University of Technology
{patrikm,fabian}@chalmers.se

planned. Moreover, most industrial control systems are not
powerful enough for methods that require heavy calculation
online [6].

In earlier work, [9] and [10], an offline restart method
has been proposed that handles reexecution requirements and
unforeseen errors. The method is a generalization of the work
presented in [3] and [6]. Supervisory control theory [11] is
used to calculate restart states in the control system, that
is, states from where it is valid to restart the system after
an error such that the requirements on the nominal and the
restarted productions are fulfilled. The online restart phase
is then reduced to a process where the operator updates the
state of the control system to a precalculated restart state
and thereafter places the physical system in a corresponding
physical state. The production may continue directly after
the operator involvement, without any reduced start-up pace.

In [9], [10], an automata model of the control system
is used during the beforehand calculation. Restart in the
states that are to be evaluated as restart states are modeled
by transitions from the potential error states, that is, the
states where it is assumed that an error can be detected.
These transitions modeling the restart are called placement
transitions. Synthesis [11] is then used to derive which of
the placement transitions that model restart in valid restart
states. The major benefit with modeling restart by placement
transitions is the direct connection between the valid restart
states for each potential error state. The drawback, however,
is that the number of transitions grows exponentially with the
size of the control system model. Thus, in practice only the
restart states for moderate sized systems can be calculated
as the models quickly become intractable due to size.

Therefore, in this paper this static modeling of restart
resulting in an overflow of placement transitions, is replaced
by a modular modeling approach, still preserving the mer-
its of the overall restart method presented in [9]. In the
underlying automata model, the potential error states are
connected to the states that are to be evaluated as restart
states by sequences of transitions. Since the same transition
can occur in many sequences, less transitions are required
for the restart modeling than the corresponding number
of placement transitions. Prototype implementations show
that this proposed modeling approach enables restart states
calculation for significantly larger control system models
than what could be handled by [9], [10].

The cost for this modular approach is the absence of
the direct connection between the potential error states and
the restart states. The synthesized model must therefore be
searched, using only the newly introduced sequences of
transitions, to identify these connections.

This paper is organized as follows: Preliminaries are
given in Section II. Online error recovery is discussed
in Section III. Section IV presents the proposed approach
for deriving the valid restart states. The approach is then
compared to the approach presented in [9] in Section V.
Section VI gives some concluding remarks and ideas about
future work.

II. PRELIMINARIES

First in this section, the modeling formalism is presented.
Thereafter, this formalism is used to model the operations
for a manufacturing system.

A. Automata and the supervisory control theory

Definition 1: Finite automaton A finite automaton is a
5-tuple: A :=

〈
QA,ΣA, δA, q

0
A, Q

m
A

〉
where QA is a non-

empty finite set of states; ΣA is a non-empty finite set of
events (the alphabet); δA : QA × ΣA → QA is the partial
transition function; q0

A ∈ QA is the initial state; and Qm
A ⊆

QA is the set of marked states.
A transition 〈q, e, p〉 ∈ δA is said to be fireable when the

active state of the automaton A coincides with the source
state q. When the transition is fired the active state of A
is updated to the target state p. The initial active state is
the initial state q0

A. Interaction of two automata B and C is
modeled by full synchronous composition (FSC) [12] and is
denoted B||C. The FSC operator is associative.

The set of all finite sequences of events over an alphabet
ΣA including the empty sequence, ε, is denoted Σ∗A. An
element s ∈ Σ∗A is called a string. For two strings t ∈ Σ∗A and
u ∈ Σ∗A the concatenation tu is also in Σ∗A. The transition
function δA is extended to strings, such that δA

(
q, ε

)
= q,

and δA
(
q, es

)
= δA

(
δA

(
q, e

)
, s
)
. A state q ∈ QA is then

reachable in A if ∃s ∈ Σ∗A such that δA
(
q0
A, s

)
= q.

The supervisory control theory [11] is a model-based
framework for automatic calculation of discrete event con-
trollers. Given a set of automata

{
P1, . . . , Pn

}
, a supervi-

sor S may be synthesized, such that at least one marked
state is reachable from every state in the supervised system
P1|| . . . ||Pn||S.

Among others, [13] presents a method for specifying
forbidden state combinations locally for a set of automata
such that the combination of these states are never reached
in the supervised system. This specification technique is
exploited in Section IV.

B. Operations

The processes and tasks that are to be executed in order to
refine a product are modeled by a set of operations, denoted
Ω. The operations are (physically) realized by resources in
the manufacturing system. The basic assumption is that all
operations are executed in parallel. This parallel execution
of the operations can be restricted by dependencies [14].

An operation k ∈ Ω may formally be modeled by an
automaton, a so called operation automaton.

Definition 2: Operation automaton The automaton for
an operation k is denoted Ak where QAk

:=
{
ik, ek, ck

}
;

ΣAk
:=

{
↑k, ↓k

}
; δAk

:=
{
〈ik, ↑k, ek〉, 〈ek, ↓k, ck〉

}
;

q0
Ak

:= ik; and Qm
Ak

:=
{
ik, ck

}
.

The automaton Ak is shown in Figure 1. The three states
denote that the operation is initial (not started), executing,
and completed. Marked states are shaded in gray. The two
events in ΣAk

are called operation events.

ik ek ck
↑k ↓k

Fig. 1. Automaton model of an operation k.

Given the automaton for a single operation, the FSC of all
automata for the operations in Ω can be defined. Note that,
from a practical point of view an explicit representation of
the complete state-space during synthesis is to be avoided.

Definition 3: FSC of operation automata The FSC of
all automata for the operations in Ω is defined as AΩ :=
||k∈Ω Ak.

The progress for a system may then be given through the
states in AΩ.

Definition 4: Progress of operations For each state q ∈
QAΩ

, three disjoint sets for the progress of operations, the
set of operations in their respective initial, executing, and
completed state, denoted Ωi

q , Ωe
q , and Ωc

q , are defined as
Ωx

q :=
{
k ∈ Ω | xk ∈ q

}
for x ∈

{
i, e, c

}
.

The relation between two states is now defined, captured
by the definition of upstream states.

Definition 5: Upstream states1 The set of upstream states
for a state p ∈ QAΩ

is defined as Qus
p :=

{
q ∈ QAΩ

| ∃s ∈
Σ∗AΩ

: δAΩ

(
q, s

)
= p

}
.

It follows from Definition 2 that each operation automaton
contains a straight sequence of operation events. The two
states p and q in Definition 5 must be connected through
a string of operation events. Thus, all operations that are
initial in the state p are initial in the upstream state q. With
the same argument, the operations that are executing in p
can either be initial or executing in q, and the operations
that are completed in p can be initial, executing, or remain
completed in q. This upstream states definition will be useful
in the restart modeling.

III. ERROR RECOVERY IN A MANUFACTURING SYSTEM

This section presents the online error recovery process
using restart states according to the method presented in [9].
The offline calculation of these restart states, described in
Section IV, differs from the approach in [9]. The online use
of the calculated restart states is, however, the same.

A. The nominal production

Let the control system for a manufacturing system be
modeled by a set of operations Ω. The nominal production,
i.e. production according to the original production plan, can
then be represented by a string of operation events between

1In [9] the upstream states definition contains an extra requirement on the
completed operations. In this paper, this extra requirement will be included
in the static control state definition given in Section III-A.

an initial state, denoted , where none of the operations have
started to a completed state, denoted , where a (user-defined)
subset of the operations have completed. A control state
corresponds to a state along such a string of operation events,
and is thus a composition of operation states. Similarly to an
automaton, at all times during the production, a single control
state is active in the control system. When the operations are
executed, the active state of the control system is updated.

For the sake of control and supervision, it is assumed that
the physical system, i.e. the resources and the product(s) in
the manufacturing system, can be abstracted into a set of
physical states. The physical states capture aspects such as
the processing level of the product(s) and the positions of
the resources, but disregard aspects such as if a fan in a
control-cabinet is on or off, or the aging of the resources.

Each control state corresponds to one or more physical
states. If no errors occur during production, the active control
state evolves in synchrony with the corresponding physical
states, meaning that the physical system is always in a
physical state corresponding to the active control state. Thus,
the control system and the physical system are synchronized.
In Figure 2 this synchronization is visualized by a solid line
aligned with a dashed line representing the intended progress
during nominal production in the control and the physical
systems, respectively.

Fig. 2. The solid and the dashed lines illustrate the intended progress
during the production in the control and the physical systems, respectively.

During production, resources and products are in motion
only when the operations are executed. Thus, a control state
containing only non-executing operations corresponds to a
single physical state. Such a control state q ∈ QAΩ

where
Ωe

q = ∅ is called a static control state.
The production will, however, not always execute as

intended. A wide variety of possible faults may cause er-
rors that result in failures in a manufacturing system [4].
For example, a part may be badly positioned in a fixture.
Resources may stop working due to faulty sensors and/or
actuators, such as worn out cutting tools and broken weld
guns. Typical manufacturing system errors are listed by [6],
[15], [16], among others. To deal with these situations, the
remainder of this section presents a method for online error
recovery in manufacturing systems.

B. Detection, diagnosis, and correction of errors

The online error recovery starts when an error is detected,
the system is stopped, and the underlying fault causing the
detected error is diagnosed. The arisen situation is illustrated
in Figure 3. The thick lines visualize the progress of the
two systems. As in [5] among others, it is assumed in this
paper that an error may be seen as a physical state that
does not correspond to the active control state . Thus, the

control system and the physical system are unsynchronized,
illustrated by the non-aligned lines. The active control state
when an error is detected is referred to as the error state.

Fig. 3. An error causes an unsynchronization between the control system
and the physical system. The thick lines visualize the progress.

After the detection and diagnosis phases, the manufactur-
ing system is to be corrected. As pointed out in [6], errors
that cannot be foreseen often require manual intervention
during the correction phase. It may sometimes be advanta-
geous to place a faulty resource in a state that facilitates
correction. After the correction phase, the manufacturing
system is to be restarted in order to continue the production.

Mechanisms to detect, diagnose, and correct errors are
outside the scope of this paper. In the following discussion,
it is therefore assumed that such mechanisms exist in the
manufacturing system. Detection and diagnosis are among
others discussed by [17].

C. The restart phase

Since neither the error nor the physical state after the error
are known beforehand [6], the aim of the restart phase is
to update the control system to a control state from where
the production may continue and eventually complete, and
to place the physical system into a corresponding physical
state. From now on, the control state from where the control
system is restarted is referred to as a restart state denoted .
Note that, these restart states are not related to the specific
errors that have been detected. Thus, restart after unforeseen
errors is handled.

As a consequence of an error, the intended nominal
production may not have been performed; the control and
physical systems could have been unsynchronized for some
time before the error was detected. Thus, it may be desirable
to reexecute some of the operations. Moreover, the static
control states enable unambiguous synchronization points
between the control and the physical systems. Thus, restart
in restart states that are static control states upstream of the
error state enables reexecution of operations and placement
of the physical system in definite physical states.

With the restart states precalculated, the online restart
phase is reduced to four steps. Figure 4 illustrates how
these steps affect the control and the physical systems. The
restarted production is pictured in the uppermost plane.

In the first step, the operator selects a restart state from
the precalculated ones. The restart states can for example
be stored in a database connected to the control system.
Second, the active control state is updated to the selected
restart state, illustrated by the straight line from to . Third,
the operator places the physical system in the physical state
corresponding to the selected restart state , illustrated by the
dashed line from to . The operator is beneficially guided by

instructions for how to reach this physical state. Finally, the
production can be (re)started by the operator.

Fig. 4. The online restart phase. The control and the physical systems are
resynchronized in the restart state with the corresponding physical state .
The restarted production is pictured in the upper plane.

For clarity of presentation, Figure 4 shows a simplified
view of the restart phase. As outlined in [9], a restart
state need not be a control state passed through during the
nominal production up to the error state. In some systems,
some restart states are unreachable from the initial control
state. Moreover, the restarted production need not follow
the nominal production. To satisfy the requirements on the
operations in the restarted production, it can sometimes be
necessary to execute the operations in another order than the
nominal.

Finally, there is the issue of potential error states, that
is, the control states in which it is assumed that an error
can be detected. In [6] all control states, except the initial
control state, are potential error states. This is in contrast
to [5] and [9] where it is assumed that an error can only
occur when at least one resource (operation) is executing.
As will be seen, the restart modeling presented in this paper
supports both approaches and will thus leave to the user the
decision of which approach to use.

IV. CALCULATING RESTART STATES USING RESET
TRANSITIONS

This section presents how to offline calculate restart states
for a given set of operations Ω respecting their dependencies
and reexecution requirements. As motivated in the introduc-
tion, the approach resembles the approach presented in [9]
but with major differences in how the restart is modeled
and how the valid restart states are derived. In the proposed
approach, restart in upstream states from potential error
states is modeled by sequences of transitions, so called reset
transitions, in an automata model of the control system,
the so called control system model. However, due to de-
pendencies and reexecution requirements, not all upstream
states are valid as restart states. Therefore, a supervisor [11]
is synthesized for the control system model, and the valid
restart states for each potential error state can be derived
by searching the sequences of reset transitions that are
enabled by the supervised system. These valid restart states
can thereafter be used online as described in the preceding
section.

The overall aim is to derive all valid restart states for all
potential error states. With such an open approach, different
postprocessing can be applied on the result to meet different

needs. For instance, in [3] the set of valid restart states are
minimized with the constraint that all potential error states
have at least one valid restart state. For other systems it can
be desirable to select one valid restart state for each potential
error state, such that the operator action to place the physical
system in a corresponding physical state becomes as simple
as possible, according to some appropriate metric. Thus, by
aiming at all valid restart states, the overall method is flexible
and can be tailored to different types of systems and needs.

A. The control system model

The control system model is a composition of submodels,
each modeled by automata. First, a nominal model where
the operations with their dependencies model the nominal
behavior of the control system. Second, a restart model that
models the restart of the control system. And finally, a re-
execution model that describes the reexecution requirements
on the operations, that is, how many times and under what
circumstances the operations can be reexecuted.

1) The nominal model: The nominal model is modeled
as proposed in [9]. Thus, each operation is modeled by an
operation automaton, Definition 2, and each dependency is
modeled by a set of forbidden state combinations [13]. In
an operation automaton both the initial and the completed
states are marked. At least one marked state is reachable from
every state in the supervised system [11], thus by removing
the marking from the initial state, an operation is forced to
eventually reach its completed state in the supervised system.

Three types of dependencies are supported by the mod-
eling approach proposed in [9]; precedence, alternative,
and arbitrary order dependencies. In this context of de-
pendencies, each forbidden state combination specifies a
combination of two, or more, operation states that violate
a dependency. For example, two operations with an arbitrary
order dependency must not be executing at the same time,
thus the executing states of the two operations are specified
as a forbidden state combination and simultaneous execution
of the two operations are thereby avoided in the supervised
system.

2) The restart model: As motivated in the preceding sec-
tion, restart updates the active control state from a potential
error state to a static upstream state. From the definitions
of upstream states, Definition 5, and static control states,
Section III-A, this state update is accomplished by resetting
to their initial states operations that are executing and/or
completed in the potential error state. Thus, restart in the
control system model can be modeled by transitions that reset
operations.

This paper proposes that this reset of operations is modeled
locally in each operation automaton such that restart in
the control system model is modeled by a sequence of
local operation resets. Since a non-initial operation is either
executing or completed, two transitions are added to each op-
eration automaton to model the local reset. These additional
transitions are called reset transitions. The reset transitions
for an operation k ∈ Ω are then given as 〈ek,←↩k, ik〉 and
〈ck,←↩k, ik〉, where ←↩k is a controllable event [11] that is

unique for each operation. The event is called a reset event.
Thus, the restart model is a set of reset transitions that are
added to the operation automata in the nominal model.

3) The reexecution model: Examples of automata that
model different types of reexecution requirements are given
in [9]. Most of these automata contain only operation events
and are thus independent of the restart model. Thus, these
automata can also be used together with the restart model
proposed in this paper. Any further analysis of reexecution
requirements is outside the scope of this paper.

B. An example system

The control system model for a system with two operations
k1 and k2 and the precedence dependency that k1 must be
completed before k2 starts to execute is shown in Figure 5.
The dependency is modeled by four forbidden state com-
binations. These combinations are crossed out in Figure 5.
For clarity, the reset transitions are dotted. This example will
be used throughout this section to illustrate the restart state
calculation.

ii ei ci ce cc

ieie eeee

icic

ecec

↑k1 ↓k1

↑k1

↓k1

↑k1

↓k1

↑k2

↓k2

↑k2

↓k2

↑k2 ↓k2

←↩k1
←↩k1

←↩k1

←↩k1

←↩k1←↩k1

←↩k2

←↩k2

←↩k2

←↩k2

←↩k2
←↩k2

Fig. 5. Control system model for two operations k1 and k2 with a
precedence dependency.

C. Synthesis

Given a control system model Acsm, a supervisor is
synthesized to derive the enabled reset transitions in Acsm

that respect all dependencies and all reexecution require-
ments. Let the supervised system be denoted Asup

csm. Note,
the presented modeling approach poses a general supervi-
sory control theory problem. Thus, any synthesis algorithm
can be used, such as compositional [18] and/or symbolic
synthesis [19].

An automaton representation of the supervised system for
the example system is given in Figure 6. The forbidden state
combinations are removed.

ii ei ci ce cc
↑k1 ↓k1 ↑k2 ↓k2

←↩k1
←↩k1 ←↩k2

←↩k2

Fig. 6. The supervised system for the control system model with the two
operations k1 and k2.

By modeling the dependencies by forbidden state com-
binations it is guaranteed that the supervised system will
only enable restart transitions having target states that are

valid with respect to all dependencies and all reexecution
requirements. For all these target states, a string of operation
events leads to a marked state. This is a key observation that
is exploited in the last step of the restart states calculation,
presented next.

D. Deriving the restart states from the supervised system

The sequences of reset transitions that are enabled by
the supervised system correlates to the edges in a graph
representation of the transitive closure [20] for the supervised
system. Thus, the restart states are derived from the super-
vised system by constructing the transitive closure for Asup

csm

using only reset transitions. In the graph representation of the
transitive closure, the states QAsup

csm
constitute the vertices and

all transitive states/vertices are connected by an edge. The
set of valid restart states for a potential error state will then
correlate to the set of adjacent vertices for the vertex mapping
this potential error state. The directed graph in Figure 7 is
the transitive closure graph for the example system, using
only reset transitions.

ii ei ci ce cc

Fig. 7. The transitive closure for the supervised system for the example
system using only reset transitions.

Let the subset of potential error states in the supervised
system be denoted Qer

Asup
csm

, where Qer
Asup

csm
⊂ QAsup

csm
, and let

the set of valid restart states for a potential error state ∈
Qer

Asup
csm

be denoted Qrs, where Qrs ⊂ QAsup
csm

. Coming back
to the discussion in the end of Section III, when all control
states, except the initial state, are considered as potential
error states then Qer

Asup
csm

=
{
ei, ci, ce, cc

}
, and if only those

states where at least one resource is executing are considered
as potential error states then Qer

Asup
csm

=
{
ei, ce

}
. From the

adjacent vertices in Figure 7, the valid restart states for these
potential error states are given as: Qrs

ei = Qrs
ci =

{
ii
}

and
Qrs

ce = Qrs
cc =

{
ci, ii

}
.

V. EMPIRICAL COMPARISON

For comparison, the restart states for a parameterized
control system model are calculated using the restart model
proposed in this paper and the restart model presented
in [9] with the reduction preprocess proposed in [10]. As
mentioned in the introduction, in the restart model used
in [9], restart is modeled by so called placement transitions
from the potential error states. In this paper, on the other
hand, restart is modeled by sequences of reset transitions.

The parameterized model contains a set of operations in
straight parallel sequences, where the number of sequences
and operations in each sequence can be varied. The example
system introduced in Section IV-B contains, for example, one
sequence with two operations.

Figure 8 shows the maximum number of operations |Ω|
that can be equally distributed among a number of se-
quences | ≡|, such that the restart states can be calculated with
the current implementations. As an example, when using
reset transitions for the case with 3 sequences, some 54/3=18
operations can be included in each sequence, see the dotted
lines in Figure 8. In the current implementation, synthesis
is performed in Supremica2 and the transitive closure for
the supervised systems are constructed using depth-first
search. The model contains no reexecution requirements and
a control state is considered as a potential error state if it
contains one or more executing operations.

2 4 6 8 10
101

102

103

| ≡|

|Ω|

reset
placement

Fig. 8. Size of control system models such that the restart states can be
calculated with current implementations. Solid and dashed lines represent
restart modeled by reset and placement transitions, respectively.

In the calculation using placement transitions, the limiting
factor is the number of such placement transitions that can
be calculated according to the preprocess proposed in [10],
before memory exception. When reset transitions are used,
the limiting factor is the construction of the transitive closure
for the supervised system, before memory exception. The
trend in Figure 8 is clearly in favor of using reset transitions.
Thus, the proposed restart modeling approach enables restart
states calculation for models that could not be handled using
placement transitions.

VI. CONCLUSION

An approach for restart states calculation for manufac-
turing control systems has been presented. These restart
states are states in the control system from where it is
correct to restart the manufacturing system, guaranteeing that
product and process requirements for both the nominal and
the restarted productions are fulfilled.

Specifically, this paper shows how to model the control
system for a manufacturing system by automata, given the
set of manufacturing operations describing the production,
such that the restart states respecting all product and process
requirements are derived. In two steps, these restart states
are derived using supervisory control theory synthesis and
transitive closure calculation. An included empirical compar-
ison shows that this proposed approach enables restart states

2A tool for formal verification and synthesis of discrete event systems.
www.supremica.org

calculation for systems of sizes that could not be handled
using an earlier presented approach.

For future research, the results presented in Section V
builds on a monolithic supervisor representation. Instead,
it is probably computationally more efficient to derive the
sequences of reset transitions, and thereby the restart states,
from a modular representation.

REFERENCES

[1] C. Baydar and K. Saitou, “Off-line error prediction, diagnosis and
recovery using virtual assembly systems,” Journal of Intelligent Man-
ufacturing, vol. 15, no. 5, pp. 679–692, 2004.

[2] K. Goh, B. Tjahjono, T. Baines, and S. Subramaniam, “A Review
of Research in Manufacturing Prognostics,” in IEEE International
Conference on Industrial Informatics, pp. 417–422, 2006.

[3] K. Andersson, B. Lennartson, P. Falkman, and M. Fabian, “Generation
of restart states for manufacturing cell controllers,” Control Engineer-
ing Practice, vol. 19, no. 9, pp. 1014–1022, 2011.

[4] P. Loborg, “Error recovery in automation - an overview,” in AAAI
Spring Symposium on Detecting and Resolving Errors in Manufactur-
ing Systems, 1994.

[5] P. Loborg and A. Törne, “Towards error recovery in sequential
control applications,” in International Symposium on Robotics and
Manufacturing, (Montpellier), pp. 377–383, 1996.

[6] K. Andersson, B. Lennartson, and M. Fabian, “Restarting Manufac-
turing Systems; Restart States and Restartability,” IEEE Transactions
on Automation Science and Engineering, vol. 7, no. 3, pp. 486–499,
2010.

[7] P. Loborg and A. Törne, “Manufacturing Control System Principles
supporting Error Recovery,” in AAAI Spring Symposium on Detecting
and Resolving Errors in Manufacturing Systems, (Stanford), 1994.

[8] E. Adamides, E. Yamalidou, and D. Bonvin, “A systemic framework
for the recovery of flexible production systems,” International Journal
of Production Research, vol. 34, no. 7, pp. 1875–1893, 1996.

[9] P. Bergagård and M. Fabian, “Calculating Restart States for Systems
Modeled by Operations Using Supervisory Control Theory,” Machines,
vol. 1, no. 3, pp. 116–141, 2013.

[10] P. Bergagård and M. Fabian, “Derivation of placement transitions for
offline calculation of restart states,” in IEEE International Conference
on Emerging Technologies and Factory Automation, 2013.

[11] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[12] C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall
International Series in Computer Science, 1985.

[13] P. Magnusson, M. Fabian, and K. Åkesson, “Modular specification
of forbidden states for supervisory control,” in Workshop on Discrete
Event Systems, pp. 412–417, 2010.

[14] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian,
P. Falkman, and K. Åkesson, “Sequence Planning for Integrated
Product, Process and Automation Design,” IEEE Transactions on
Automation Science and Engineering, vol. 7, no. 4, pp. 791–802, 2010.

[15] M. Zhou and F. Dicesare, “Adaptive design of Petri net controllers for
error recovery in automated manufacturing systems,” IEEE Transac-
tions on Systems, Man and Cybernetics, vol. 19, no. 5, pp. 963–973,
1989.

[16] N. G. Odrey and G. Mejia, “An augmented Petri Net approach for error
recovery in manufacturing systems control,” Robotics and Computer-
Integrated Manufacturing, vol. 21, no. 4-5, pp. 346–354, 2005.

[17] L. Chiang, E. Russell, and R. Braatz, Fault Detection and Diagnosis
in Industrial Systems. Advanced Textbooks in Control and Signal
Processing, Springer, 1 ed., 2001.

[18] S. Mohajerani, On Compositional Supervisor Synthesis for Discrete
Event Systems. Licentiate Thesis, Chalmers University of Technology,
Signals and Systems, 2012.

[19] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based Ap-
proach for Modeling Plant and Supervisor by Extended Finite Au-
tomata,” IEEE Transactions on Control Systems Technology, vol. 20,
no. 6, pp. 1421–1435, 2012.

[20] S. Pemmaraju and S. Skiena, Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica. Cambridge
University Press, 2003.

