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Abstract

This thesis deals with a mathematical model used in the context of social in-
teraction in large groups, introduced by Deffuant et al. in 2000. Each individual
holds an opinion and shares it with others in random pairwise encounters. If the
difference in opinions of two interacting agents is less than a given threshold,
the discussion will lead to an update of their opinions towards a compromise.
If the difference is too large, however, they will ignore each other and separate
with their opinions staying unchanged.

Many results on long-time behavior of this opinion formation process –
mainly dealing with whether a common consensus is reached or not – were es-
tablished using computer simulations (for different underlying network topolo-
gies; interactions can only take place between neighboring individuals).

In the two papers this thesis is based on, we study the model on integer
lattices analytically, using geometric arguments and probabilistic tools as well
as concepts from statistical physics. While the first paper focusses on univari-
ate opinions but considers also higher-dimensional lattices as well as infinite
percolation clusters as underlying network graphs, the second one sticks to the
infinite line graph as topology and deals with multivariate opinions instead.

Keywords: Deffuant model, consensus formation, opinion dynamics, sociophysics,

vector-valued opinions, percolation
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1
Introduction

In the 19th century, when James Clerk Maxwell and Ludwig Boltzmann elab-
orated the ideas of Daniel Bernoulli to describe the kinetic dynamics in gases
not by focussing on each single particle but by characterizing the whole system
with a set of parameters and their distributions among the particles, the field of
modern statistical physics was born.

There were two main reasons for other disciplines to get interested in this
idea: The significant progress in the study of collective phenomena in physics
and the fact that many complex systems are of statistical nature, i.e. a large
number of similar microscopic elements form a macroscopic object, which has
properties that are formed by the collective but the contribution of any individ-
ual particle is negligible.

In the second half of the 20th century social sciences became one of those
disciplines. Even though the idea of statistics has its origin in the attempt to
get a quantitative understanding of large groups of human beings (e.g. birth and
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2 INTRODUCTION

death rates), it was not until the appearance of the article titled ‘The value of
statistical laws in physics and social sciences’ [19] in 1942, written by theoret-
ical physicist Ettore Majorana, that the relevance of statistical laws for studies
in social sciences was spelled out. However, the fact that the article was written
in Italian and moreover found and published after Majorana’s disappearance by
his brother (as reported in [20]) resulted in very little attention by other scholars
and so an additional delay of several decades for Majorna’s ideas to be applied.

One of the first to do so was Wolfgang Weidlich [27] in 1971. He used sta-
tistical models that were originally designed for the description of the dynamic
development of an ensemble of interacting particle spins to study the structure
of opinion formation in a social group of individuals mutually influencing each
other.

Throughout the last two decades more and more physicists and mathemati-
cians started similar attempts to analyze the opinion dynamics in large groups
of individuals by using a simplistic interaction model and applying qualitative
and quantitative methods from statistical physics to it. The fact that new so-
cial phenomena which arose with the advancement of the internet – like e-mail
correspondences for example – feature large groups of individuals, simple in-
teractions and allow for a computational treatment of the corresponding large
datasets contributed substantially to this evolution.



2
Statistical physics and social

dynamics

Even though the idea became increasingly popular to model social interactions
using simplified mathematical models derived from those used in statistical
physics, there are glaring differences between the two fields of application.
Possibly most important is the contrasting complexity of the elementary compo-
nents: In physical applications the systems consist of relatively simple objects,
usually atoms and molecules, the behavior of which is relatively well under-
stood; hence the complex evolution of the collective arises from the interaction
patterns. In social science, however, the collective consists of a large number of
human beings and the behavior of each single individual is already the outcome
of a complex interplay between physiology and psychology of which only very
little is understood. Especially the fact that in all common models for social
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4 STATISTICAL PHYSICS AND SOCIAL DYNAMICS

dynamics the individuals are presupposed to behave adaptively, that is react-
ing to influences, and not strategically, in other words following a certain plan
they have in mind, seems to be an unrealistic assumption. So even though Ma-
jorana [19] tried to motivate these simplifications of human decision behavior
by philosophical reflections about whether human consciousness and free will
might be reducible to quantum effects in the brain, the reduction of humans to
simplistic elements in a large system is still a controversial issue.

One might come to the conclusion that reducing the complexity on micro-
scopic level to such an extent that the system makes a treatment using tools
from statistical physics possible without changing the essential macroscopic
phenomenology is a hopeless task.

Nevertheless, there is a striking structural similarity in the dynamics of opin-
ion formation in a group and physical systems that suggests a meaningful rela-
tion between the two. Just like the spins in an ensemble of interacting particles,
the individual opinions might be in a chaotic state at first – meaning that no
large scale structure exists – but then gradually align through interaction and
finally undergo a transition from disorder to order in the sense that the system
exhibits large scale regularities in the long run (which in the physical context
correspond to a state of low energy). When it comes to social interactions, the
drive towards order is due to the tendency of interacting individuals to become
more alike, an effect called social influence. If we stick to the metaphor, or-
dered low energy states in physics correspond to consensus or uniformity in the
context of opinion dynamics and disordered states of higher energy in turn to
fragmentation or disagreement. One of the main questions in social dynamics
is – similarly to the situation in statistical physics – under which circumstances
the microscopic interactions will lead to such a transition, since if there were no
interactions, in both contexts heterogeneity would prevail.

There is another important argument that alleviates the problem of reduc-
ing humans to particles: In statistical physics most of the qualitative properties
of a system on a larger scale do not depend on the microscopic details of the
dynamics but instead on global properties like symmetries, dimensionality or
conservation laws. In this respect it is at least justifiable that modelling a few
of the most important properties of single individuals will capture the essen-
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tial driving forces of the evolution and thereby give meaningful results when it
comes to qualitative features of the model’s large scale behavior.

2.1 A first connection: the Ising model

With these considerations in mind, it is no longer surprising that Weidlich sug-
gested in a physics colloquium in 1969 to compare the interactions within a
group of individuals holding opposing attitudes towards a certain topic with the
magnetization process. In a ferromagnetic material the atoms have elementary
magnetic dipoles, called spins, that are fluctuating at random at high tempera-
ture. If the temperature drops below a critical threshold, the cooperative interac-
tion of the spins dominates and leads to first local then global alignment, finally
magnetizing the material on a macroscopic scale. Two years later he published
this idea in the article ‘The statistical description of polarization phenomena in
society’ [27] in which he elaborated how the mathematical model introduced
by Ernst Ising [14] in 1925 to describe ferromagnetism in statistical mechanics
can be interpreted in a sociological context.

In the Ising model, a collection of n atoms is considered, each holding a spin
state which can be either +1 or −1. Each atom’s spin is energetically pushed
to align with the ones of its nearest neighbors in the following sense: The total
energy of a spin configuration σ ∈ {−1,+1}n is defined by

H(σ) = −J
∑

〈i,j〉
σiσj ,

where the sum is taken over all pairs 〈i, j〉 of nearest neighbors in the atomic
lattice and J models the interaction strength (J > 0 corresponding to a ferro-
magnetic interaction). One of the most common models for the dynamics is
the so-called Metropolis-Hastings algorithm, a rejection sampling method, in
which a single move is the flip of a randomly chosen spin that is accepted with
probability min{exp(− ∆H

kBT
), 1}, where ∆H is the invoked change of the to-

tal energy, kB a (positive) physical constant and T the temperature (in degree
Kelvin). In the ferromagnetic regime, flipping the spin at site v might be re-
jected if the majority of neighbors agrees with the current spin as this will lead
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to ∆H being positive. Hence a low temperature will drive the system towards
one of the two homogeneous states – all spins being +1 or −1.

For this model, it was found that there exists a critical temperature Tc above
which the spins only correlate on a small spatial scale. For a temperature lower
than the critical value, however, the ordered domains grow in some kind of
coarsening process until one of them is dominating and spreads over all sites.
This type of phase transition is a characteristic feature of both many systems
considered in statistical physics and collective dynamics of large social groups,
in which a common language is formed or a consensus about a specific issue is
reached.

Weidlich suggested to consider the spins as attitudes towards a given yes-no
question, the parameter J to be reinterpreted as the willingness of an individual
to adopt the attitude of the majority among its neighbors and the temperature as
a model parameter for the social pressure exerted on each individual (low tem-
perature corresponding to high social pressure). He already suggested natural
extensions of this connection between social dynamics and statistical physics,
for instance an external magnetic field (shaping some preference of one attitude
over the other, shared by all individuals), the consideration of more than two
possible attitudes and letting the transition probability to flip the spin at v de-
pend not only on its current value, but also on its history – introducing a sense
of tradition or stubbornness.

In 1982, Galam et al. [11] used the Ising model to shape the collective be-
havior in a plant where dissatisfied workers might start a strike. They redis-
covered the phase transition described above and interpreted the regime of high
temperature as an individual phase (mutual influences are very limited) and low
temperature as a collective one (the group behaves coherently), separated by a
critical phase in which small changes in the system can lead to drastic changes
in the group. In contrast to the application of the Ising model to a collection
of atoms forming a regular lattice, it is reasonable to consider the interaction
pattern among workers in a plant to be all-to-all, meaning that every worker can
actually influence all his fellow workers, which suggests the complete graph
Kn as underlying interaction network.

Clearly the topology, i.e. the structure of the interaction network, is a very
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important aspect in social dynamics. Under the assumption that the interac-
tion is all-to-all, often termed homogeneous mixing, it is possible to use another
tool coming from statistical physics, the so-called mean field approximation. In
most cases this makes an analytical treatment possible, in the sense that solving
the corresponding differential equations will give insights about the long-term
behavior. However, already in the globalized companies of today this assump-
tion is hardly realistic – not to mention the extremely sparse networks of e-mail
correspondences and the like.

For that reason, all of the models we are about to review in the next section
were mainly considered on sparser networks, for example lattices or realiza-
tions of random graphs like the well-known Erdős-Rényi model or the Barabási-
Albert model. The latter is based on preferential attachment – that means it is
built incrementally from a core of m fully connected individuals by adding new
nodes one by one, each choosing m older nodes to connect to with a proba-
bility proportional to their degree – and produces a scale-free network, which
turns out to be a realistic model for e-mail networks or friendship graphs, both
popular objects of study in the branch of social network analysis.

Figure 2.1: A typical Barabási-Albert network for m = 1 of small size (n = 70).

The lack of analytical means that could be applied to the common models for
social dynamics as well as the increasing computational power resulted in nu-
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merous simulation-based analyses during the last two decades. On the one hand
this surely complements the analytical study of such models based on tools from
statistical physics, on the other hand this approach is limited to a rather small
number of individuals and even if this seems to be sufficient for an examina-
tion of the opinion formation in social groups, the concept of order-disorder
phase transitions is rigorously defined only in the limit of a system with in-
finitely many particles. A number of individuals that is not sufficiently large
might therefore cause finite size effects that invalidate conclusions drawn from
a comparison with analog systems in physics, in which the number of interact-
ing particles is commonly by far larger than in a social group. In this respect
it is of vital importance to be able to figure out which macroscopic features
are robust with respect to changes in the number of interacting individuals by
analyzing the used model for different orders of magnitude of the system’s size.

2.2 Opinion dynamics

Since there are many situations in everyday life where it is necessary for a
social group to reach a consensus in order to make a shared decision, it has
always been a major focus of social science to understand the opinion forma-
tion process in larger groups. Inspired by statistical physics, and particularly
Weidlich’s sociological reinterpretation of the Ising model, various models for
opinion dynamics arose in the sequel. All of them share similar ideas as well as
the common aim to define opinion states of a population and to determine what
kind of changes in the elementary interactions invoke a transition between such
states. Depending on the nature of the random variables representing the opin-
ion values, the interpretation of such variables varies from case to case: While
a binary variable might stand for the attitude towards a given yes-no question or
if the individual has been reached by a rumor or not, a continuously distributed
opinion value on the positive real numbers might embody each individual’s be-
lief regarding the age of the universe, for instance. In all cases the dynamics
tend to reduce the variability of the initial opinion values which may lead to a
consensus state in the long run.

In this section we will shortly introduce a few of the most common models
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for opinion dynamics and refer the reader to the comprehensive survey article
‘Statistical physics of social dynamics’ [3] by Castellano, Fortunato and Loreto
for a more detailed discussion and further references.

(a) Voter model
This model was introduced by Clifford and Sudbury [4] in 1973 as a model
for two competing species and later named for its natural interpretation
in terms of opinion dynamics among voters. Its definition is very simple:
Each individual holds an opinion given by a {−1,+1}-valued variable. At
every time step, one individual is selected at random and will then adopt
the opinion of another agent, picked uniformly among its neighbors. On
regular lattices the evolution of this model is to some extent similar to the
Ising model – in one dimension, that is on the line graph Z, it actually
corresponds exactly to the limiting case of the Ising model with zero tem-
perature.

Variants include the multitype voter model (analyzed in [22] for example),
in which more than two opinion values are possible, as well as the con-
strained voter model introduced by Vazquez et al. [26]: Each agent is in
one of three states (left, right or center) and interactions as described above
can only occur involving at least one centrist (as the extremists ‘left’ and
‘right’ are assumed not to interact with each other). This behavior is a dis-
crete analog of the so-called bounded confidence principle (see below).

(b) Majority rule model
A finite collection of n individuals is considered, a fraction p+ of which
initially holds opinion +1, all others the opinion −1. At each iteration a
random group of individuals is chosen, and all group members then adopt
the majority opinion inside the group. In the simplest version, the size of
the chosen groups is a fixed odd number. But there are various variants
with random size and different ways to resolve a tie in a group consisting
of an even number of individuals. The model was introduced in [10] and
proposed to describe public debates.

Another model based on the majority rule is the so-called majority-vote
model introduced by Liggett [17]. Just like in the Ising model, spins are
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updated one at a time. At each step, the spin to be updated takes on the value
of the majority of its neighbors with probability 1 − q, the minority value
with probability q and is chosen uniformly from {−1,+1} if there is a tie.
For q = 0 this corresponds again to the Ising model with zero temperature.
Several studies (focussing on different interaction networks) showed that
the majority-vote model exhibits an order-disorder phase transition when q
is increased.

(c) Hierarchical majority rule model
A structurally different model using the majority rule was proposed by
Galam [9]: A group of n = rk individuals (r, k ∈ N), which are equipped
with identically distributed {−1,+1}-valued opinions, is considered. Let
p0 denote the common probability for the opinion to be +1.

Instead of forming a consensus by interacting, they elect a representative for
the whole group in the following way: In the first round, all individuals are
randomly divided into groups of size r. In every group a representative is
chosen among the members sharing the majority opinion of the group – uni-
formly among all members if r is even and there is a tie in the group. This
procedure is then iterated among the representatives until a single leader is
elected in the kth round. If pi denotes the probability that a representative
on hierarchical level i holds opinion +1, the recursion is given by

pi+1 =

r∑

l= r+1
2

(
r

l

)
pli (1− pi)r−l if r is odd and

pi+1 =
1

2

(
r
r
2

)
p

r
2
i (1− pi)

r
2 +

r∑

l= r
2 +1

(
r

l

)
pli (1− pi)r−l if r is even.

(d) Sznajd model
There are different versions of this model sharing the same basic interaction
principle. The following is not the one originally introduced by Sznajd-
Weron and Sznajd [25] although the most popular variant. The individuals
are considered to occupy the sites of a graph (shaping the interaction net-
work) and to hold again {−1,+1}-valued opinions. A pair of neighboring
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agents is picked and if they agree, all their neighbors adopt this opinion
as well. If they disagree, however, nothing happens. The Sznajd model is
designed to incorporate the typical human behavior to be influenced more
easily by a group of people that agree on a certain topic compared to the
influence of single individuals. Variants of the Sznajd model have in fact
been applied in order to model and understand voting behavior in elections.

+1
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Figure 2.2: Update rule in the Sznajd model: If the two neighbors picked (black) agree,

they impose their opinion on all other individuals linked to them (gray).

The three models considered so far feature binary variables, partly having gen-
eralizations to a finite number of possible opinion values. As the dynamics
have to be defined in such a way that this property is maintained, all three do
not preserve local averages when elementary particles interact – a principle that
is found in many physical systems. In that sense considering continuous opin-
ions can be quite different, also because concepts like ‘equality of opinions’ or
‘majority opinion’ do not have equivalents in the continuous setting.

Unlike the models that are closely related to the Ising model, the so-called
bounded confidence models involve a rational aspect in the interaction behav-
ior that can not be found in the interaction of physical particles: When two
individuals meet, they will only influence one another if their present opinion
values are not too far apart from each other. In other words, there exists a pa-
rameter θ ≥ 0 shaping the tolerance of the individuals: If the current opinion
value of an agent is η ∈ R, other agents holding opinions outside of the interval
[η− θ, η+ θ] will just be ignored. The bounded confidence models below have
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also been reviewed in [18].

(d) Deffuant model
Besides the tolerance θ, this model features another parameter µ ∈ (0, 1

2 ]

that embodies the willingness of an individual to approach the opinion
of the other in a compromise. Encounters always happen in pairs, so if
agents u and v meet at time t, holding opinions a, b ∈ R respectively, the
update rule reads as follows:

(ηt(u), ηt(v)) =

{
(a+ µ(b− a), b+ µ(a− b)) if |a− b| ≤ θ,
(a, b) otherwise,

where ηt(u) denotes the opinion of agent u at time t. The idea behind this
is simple: When two individuals interact and discuss the topic in question,
they will only rate the opinion encountered as worth considering if it is
close enough to their own personal belief. If this is the case, however, they
will have a constructive debate and their opinions will symmetrically get
closer to each other – in the special case µ = 1

2 they will separate having
come to a complete agreement at the average of the opinions they hold
before the interaction.

In this manner, groups of compatible agents concentrate more and more
around certain opinion values (their initial average) and once each such
cluster of individuals is sufficiently far from the others, the final opinions
are formed and all groups will from then on only become more homoge-
neous by internal interactions.

When Deffuant et al. introduced this model in [6], it was considered on a
finite number of agents having i.i.d. initial opinions uniformly distributed
on [0, 1]. The encounters occurred in discrete time by picking at each
time step a pair of agents uniformly at random from the edge set of the
underlying interaction network graph. They ran computer simulations in
order to figure out for which values of the parameters θ and µ the group
will end up in one opinion cluster (corresponding to a consensus) or split
into several clusters (fragmentation).

Stauffer et al. [24] introduced a discretized version of the model, in which
the opinions can take on values from the set {1, 2, . . . , q}, q ∈ N and are
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rounded to the nearest integer after an update of the form described above.
There have also been attempts to analyze the model with the tolerance
parameter varying from individual to individual, revealing that in such a
generalization it is the individuals with largest tolerance that ultimately
determine the system’s behavior.

(e) Hegselmann-Krause model
The model introduced in [13] is quite similar to the Deffuant model, just
the rule for encounters (again they happen in discrete time) is different:
Given a graph (modelling the interaction network) at every time step each
individual interacts with all its compatible neighbors at once and takes
the average as its new opinion. If we let ∼ denote the reflexive adjacency
relation, i.e. u ∼ v if u = v or u and v are neighbors in the graph, and
ηt(u) once more the opinion of agent u at time t, we can write the update
rule as follows:

ηt+1(v) =
1

Nt(v)

∑

u∼v
|ηt(u)−ηt(v)|≤θ

ηt(u) for all v,

where the sum runs over the set of agents that consists of v plus its com-
patible neighbors and Nt(v) =

∣∣{u : u ∼ v, |ηt(u) − ηt(v)| ≤ θ}
∣∣ is

the size of this set at time t. Note that in contrast to the Deffuant model,
the mean opinion is not conserved over time.

When it comes to simulations of the model, the major disadvantage of the
Hegselmann-Krause model compared to the one introduced by Deffuant
et al. is that for a dense network graph averages of large groups of agents
have to be calculated. This makes the running time until a meaningful
structure – in order to decide whether the system approaches consensus
or fragmentation – emerges rather long. On the other hand, for a finite
number of individuals the system converges to a stable state in finite time:
Once the opinion clusters are formed and all agents in one fixed cluster
are compatible with one another, they will completely agree after one
more time step making further changes of their opinions impossible.
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2.3 Results for the Deffuant model

Having put the model proposed by Deffuant et al. into the broader context of
other common models for opinion formation processes, we now want to give
a short overview of the results that have been achieved in the analysis of the
Deffuant model.

The findings in the original paper [6] were threefold. The authors tried
to shed light on the influence of the model parameters θ and µ as well as the
underlying network topology: In their computer simulations of the homoge-
neous mixing case (that means the interaction network is the complete graph)
with n = 1000 individuals – initially holding i.i.d. unif([0, 1]) opinions – Def-
fuant et al. noted that for a confidence parameter θ = 1

2 the system most likely
converges to a consensus at the mean opinion 1

2 , whereas θ = 1
5 leads to a

fragmentation into two finally homogeneous groups, whose opinion values lie
roughly at 0.25 and 0.75. Besides this dichotomy of regimes, by varying the
model parameters they found that the convergence parameter µ and the number
of individuals n influence the convergence time only, not the qualitative dy-
namics which primarily depend on θ. The persistent opinions were arranged
equidistantly and their number scaled roughly like b 1

2θ c.
When they tried to track the opinion evolution of single agents from their

initial opinions to one of the several persistent ones in the fragmentation case,
they observed that the overlap of ranges (in terms of initial opinions) that fi-
nally led to one of the persistent opinions strongly depends on µ. For µ = 1

2

agents holding initial opinions in regions between two persistent ones could end
up in either one of the groups, while for smaller values (e.g. µ = 1

20 ) almost
every individual joined the group, whose final opinion was closest to its initial
opinion value. So in a sense, the parameter µ determines how conservative the
individuals are – both in microscopic interactions and overall.

In addition, they simulated the model also for agents occupying the sites of a
square lattice (of size 29× 29). Here, essentially the same qualitative behavior
was found: for θ > 0.3 a large group consensus around 1

2 with few extrem-
valued outliers and no consensus for smaller values of θ. In the fragmentation
case, however, the variety of scattered opinions was way bigger than in the
setting of homogeneous mixing as groups of individuals holding opinions that
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are close together could be separated spatially and in that way be prevented
from interacting.

In another article published by essentially the same group of authors [28]
they added an investigation concerning heterogeneous confidence bounds. Sim-
ulating the homogeneous mixing case with 200 individuals, 8 of which have a
confidence bound of θ = 2

5 , all the rest θ = 1
5 instead, revealed an interest-

ing combination of the fragmentation and consensus case over the course of
time: On the short run clustering depends on the lower confidence bound, on
the long run it depends on the higher bound. First two opinion clusters at dis-
tance larger than 1

5 were formed, then the few ‘open-minded’ agents acted as
mediators between the groups which finally led to a global consensus – not at 1

2

though as distinct confidence bounds cause pairwise interactions in which the
mean of opinions is not preserved leading to such a drift. The transition time
from one regime to the other depended largely on the proportion of individuals
with larger confidence bound.

In addition to that, Deffuant et al. also simulated the model with confidence
bounds decreasing in time (which can be seen to describe the realistic process
of positions hardening with time). In the simplest fragmentation case this led to
major opinion clusters at values of about 0.60 and 0.42 – closer to each other
than in the case of constant confidence bounds. Clearly, this arises from the fact
that the opinions gather in a convergence movement first before the confidence
bounds become to small and they split.

A different approach to the original model with fully mixed population, i.e.
everybody interacts with everybody else, was pursued by Ben-Naim et al. [2].
Using the mean field approximation – which is called thermodynamical limit in
statistical physics – they considered not the agent based model, but (assuming
that the number of individuals is large) a density based model, in which P (x, t)

describes the density of agents at opinion x at time t. If µ is fixed to be 1
2 , the

following rate equation arises:

∂

∂t
P (x, t) =

∫∫

|x1−x2|≤θ

P (x1, t)P (x2, t)
[
δ(x− x1+x2

2 )−δ(x−x1)
]

dx1 dx2,

where δ(.) denotes the Dirac delta function. For i.i.d. unif([0, 1]) initial opin-
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ions and θ > 1
2 they showed that the density converges to a delta function at the

initial mean 1
2 . For θ < 1

2 , however, the rate equation is no longer analytically
solvable. By numerically solving it, Ben-Naim and his co-workers discovered
interesting facts about the persistent opinion clusters in the case of fragmen-
tation. In this regime the density converges to a finite weighted sum of delta
functions, i.e.

P (∞, x) =

r∑

i=1

mi δ(x− xi),

where x1, . . . , xr are the persistent opinions (at pairwise distance larger than θ)
andmi, 1 ≤ i ≤ r, the masses of (that is the fraction of agents ending up in) the
corresponding clusters. The conservation laws (for mass and mean) obviously
force

r∑

i=1

mi = 1 and
r∑

i=1

mi xi = 1
2 .

Furthermore, they found that there occur three types of persistent opinion clus-
ters: major (mass > θ), minor (mass < θ

100 ) and a central cluster located at
opinion value 1

2 . All of them are generated (and the central cluster annihilated)
by a periodic sequence of bifurcations as θ is decreased. Actually they consid-
ered θ = 1 to be fixed, the initial opinions instead to be i.i.d. unif([−∆,∆])

with variable ∆, but a simple rescaling translates their results to the original
model.

Laguna et al. [15] discovered another feature of the long-term behavior in
the Deffuant model with homogeneous mixing which is governed by the con-
vergence parameter µ: The fraction of agents that end up in the two most ex-
treme opinion clusters (which Ben-Naim et al. already showed to be minor but
of larger order compared to the other minor clusters) is scaling with µ. For
θ < 1

2 and larger values of µ, the formation of central opinions is fast enough
to seclude many agents holding extreme initial opinions from the unification
process. If µ is comparably small, however, those extremists have enough time
to become more moderate in order to be included in one of the major opinion
clusters later on. In this sense, even if it may seem counterintuitive, for θ < 1

2

consensus formation in the population actually benefits from a slower pace in
the dynamics.
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Stauffer and Meyer-Ortmanns [23] were among the first ones to follow up
on the idea by Deffuant et al. to consider the model with an interaction topology
other than the homogeneous mixing. They used random graphs generated by the
Barabási-Albert model as underlying network – the usual undirected version
(described above in Section 2.1) as well as a directed one. Their computer
simulations suggest that the transition from fragmentation to consensus happens
for the value of θ being about 0.4 (on both the directed and undirected network).
Unlike the case of a fully mixed population, the number of persistent opinions
in the non-consensus case not only depends on θ but also on n, the number
of individuals (for the same reason as in the case of a square lattice). They
estimated the dependence of the number of clusters on n (with θ fixed) to be
linear.

In 2004, Fortunato [7] finally investigated the threshold for complete con-
sensus among the agents – as opposed to previous notions of consensus describ-
ing the formation of a widely adapted main stream opinion neglecting single
outliers. He simulated the Deffuant model on a complete graph, a square lattice
with perodic boundary conditions as well as two random graphs – those orig-
inating from the Barabási-Albert and the Erdős-Rényi model. In the latter, a
graph on n vertices is built by including each of the

(
n
2

)
possible edges inde-

pendently with probability p. As this leads to an average degree of (n − 1)p,
Fortunato chose to adapt the parameter p in order to keep np constant for dif-
ferent values of n.

He made two central observations: Firstly, the critical value for θ above
which a complete consensus is formed is in all four social topologies 1

2 , ir-
respectively of µ. Secondly, on each of the four networks the probability of
complete consensus converges to a step function at θ = 1

2 if the number of indi-
viduals is increased. However, it has to be mentioned that he performed update
steps as ordered sweeps over the population: In each round every individual
gets – one after the other – the opportunity to interact with a randomly selected
neighbor. This is different from the original update rule where the edge along
which the next potential interaction takes place is picked uniformly at random.

The first result for the Deffuant model on an infinite graph was published
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by Lanchier [16] in 2011. Using quite intricate geometric arguments he proved
the following result for the standard Deffuant model on the infinite line graph:

Theorem 2.1. Consider the Deffuant model on the graph G = (V,E), where
V = Z and E = {〈v, v + 1〉, v ∈ Z}. If µ ∈ (0, 1

2 ] is arbitrary but fixed, the
initial opinions are i.i.d. unif([0, 1]) and {ηt(v)}v∈Z denotes the opinion profile
at time t, then the following holds:

(i) For θ > 1
2 , all neighbors are eventually compatible in the sense that for

all ε > 0, v ∈ Z :

lim
t→∞

P(|ηt(v)− ηt(v + 1)| ≤ ε) = 1.

(ii) For θ < 1
2 , with probability 1 there will be infinitely many v ∈ Z with

lim
t→∞

|ηt(v)− ηt(v + 1)| > θ.

Häggström [12] used different techniques to reprove and slightly sharpen
this result – showing that in the consensus regime (i), all opinions actually con-
verge to the mean 1

2 of the initial distribution. The crucial idea in his proof
resides in the connection of the Deffuant dynamics to a non-random interaction
process on Z which he dubbed Sharing a drink procedure.

This idea could in fact be employed to tackle initial opinion distributions
other than unif([0, 1]) as was done in Paper A (see below) and by Shang [21]
simultaneously and independently.

2.4 Cultural dynamics

In parallel to the advances in the field of opinion dynamics, a growing interest
in the natural extension to vector-valued opinions arose. Axelrod [1] was one
of the first who published an article focussed on higher-dimensional opinions
as opposed to earlier publications considering opinions to be scalar variables.
He coined the notion of cultural dynamics interpreting the opinion vector as
‘culture’ of an individual, comprising “the set of individual attributes that are
subject to social influence”. The border between opinion and cultural dynamics
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is not sharp and many similarities exist. However, there are models featuring
multidimensional opinions that do not have counterparts in opinion dynamics
and are therefore qualitatively different from the ones we have presented so far.

(a) Axelrod model
The model proposed in [1] was actually the first one introducing the concept
of bounded confidence. However here, the probability of interaction decays
gradually with respect to the distance of the two opinions involved:

Think of the individuals again as nodes of a network, each endowed with
an opinion vector in {1, 2, . . . , q}d, where each coordinate is understood to
represent one of d cultural features and q is the number of possible traits
per feature. In that sense, the opinion vector η(i) = (η1(i), . . . , ηd(i))

is modelling the current beliefs and attitudes of agent i with respect to d
interrelated topics.

In an elementary step of the dynamics an individual i and a neighboring
one, say j, are randomly selected and interact with probability

pi,j =
1

d

d∑

k=1

1{ηk(i)=ηk(j)},

which is scaling with the number of shared attitudes. If they interact, one
of the features in which they disagree (i.e. k such that ηk(i) 6= ηk(j)) is
chosen uniformly at random and the neighbor j assumed to be convinced
by the arguments of i, in other words ηk(j) is set to be equal to ηk(i).

This model became quite popular among social scientists for the fact that
it includes two principles that were found to be typical in cultural assimi-
lation: social influence, i.e. interacting makes people more alike, and ho-
mophily – humans tend to interact more frequently with others that share
essential beliefs, attitudes and behaviors. Obviously, there are two kinds of
absorbing states: Either all opinions are the same (consensus) or any two
neighboring opinions do not share one single trait (fragmentation).

Following the initial paper of Axelrod [1] – who focussed on i.i.d. initial
opinion vectors being uniform on {1, 2, . . . , q}d and finite square lattices
as network – several analyses based on numerical simulations have been
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performed and show that the value of q determines whether the final state
reached will be consensus or fragmentation, for different networks and ini-
tial distributions.

In the original Axelrod model, the actual values of the coordinates are mere
labels: It does not make a difference if two neighbors have traits that differ
by 1 or q−1. In [5] a more metric variant of the model has been considered
in the sense that the interaction probability is changed to

pi,j =
1

d

d∑

k=1

(
1− |ηk(i)− ηk(j)|

q − 1

)
.

Yet another variant of the Axelrod model was suggested in the paper by
Deffuant et al. [6] as a multidimensional counterpart of the Deffuant model:
They considered the traits to be binary variables (corresponding to q = 2

above) and neighbors interact only if the number of features they disagree
on does not exceed a given threshold. So the interaction probability be-
comes a step function at some given confidence bound. Also the interaction
itself was defined slightly different, since once the random feature i and j
disagree on is selected, j is not convinced of ηk(i) by default but adapts
with probability µ ∈ (0, 1

2 ].

(b) Multivariate Deffuant and Hegselmann-Krause model
The models introduced by Deffuant et al. as well as Hegselmann and Krause
for opinion dynamics, as described in Section 2.2, can be transferred to
vector-valued opinions without any further changes – only the notion of dis-
tance has to be specified in order to determine the confidence ranges around
a given opinion vector. The vectorial version of both models was studied for
instance in [8] – on the complete graph with opinion vectors from the unit
square [0, 1]2, using both square and circular confidence ranges. The gen-
eralization of the Deffuant model on the line graph Z to higher-dimensional
opinion spaces using the Euclidean as well as other metrics as notions of
distance is the object of investigation in Paper B (see below).



3
Summary of appended papers

Paper A: Further results on consensus formation in the Def-
fuant model

(co-authored with Olle Häggström)

The contribution of this paper to the analysis of long-time behavior in the Def-
fuant model on infinite graphs can be broken down into three parts. The first one
– as alluded to in Section 2.3 – is the extension of the statement from Theorem
2.1 to more general initial distributions. It turns out that for i.i.d. initial opinions
in the model on Z being distributed according to the law L(η0), there exists a
critical value θc (which can be infinite) for the parameter θ that marks a sharp
transition from fragmentation (different persistent opinions) to complete con-
sensus (all opinions converge almost surely to E η0). This holds under the weak
assumption that not both E η+

0 and E η−0 are infinite. The value of θc depends
on the distribution L(η0) only, more precisely on the radius of and gaps in its

21
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support. We point out, how these results still hold for special ergodic sequences
of initial opinions that are not necessarily i.i.d.

In the second part, the model is considered on higher-dimensional integer
lattices Zd, d ≥ 2. Although the idea of proof from dimension one does not
transfer to higher dimensions, elaborating some of its arguments allows to prove
at least a partial result, namely that if the marginal distribution of the i.i.d. initial
opinions is bounded and θ large enough (strictly larger than 3

4 in the case of
initial opinions that are uniform on [0, 1]), the opinion of any agent will still a.s.
converge to the mean of the initial distribution. In addition to this, on the one
hand we show that the opinions converge in distribution for any θ and on the
other hand discuss a generalization to transitive, amenable graphs.

In the last part, we consider the Deffuant model on the infinite cluster of
supercritical i.i.d. bond percolation on Zd, d ≥ 2. In this setting one can re-
trieve the results derived for the full grid and on top of that we were able to
show that for small values of θ the opinions of the agents belonging to the infi-
nite cluster cannot converge to one fixed value. Neighboring individuals could,
however, still become finally compatible without their opinions converging to a
deterministic limit.

Paper B: The Deffuant model on Z with higher-dimensional
opinion spaces

This paper deals with the generalization of the Deffuant model on Z to vector-
valued opinions – as mentioned in Section 2.4. First we generalize the findings
for univariate opinions from Paper A to multivariate opinions – which how-
ever requires a more involved reasoning based on geometric arguments – taking
the Euclidean norm as natural replacement for the absolut value (which was
taken to measure the distance between two opinions in the case of real-valued
opinions). In the course of this we gather information about the support of the
opinion distribution L(ηt) for times t > 0, based on the properties of the initial
distribution. Especially the notion of a gap in the support of L(η0) has to be
properly defined and analyzed in higher dimensions in order to play the same
role as for univariate distributions.

In the second part, we allow for more general metrics ρ to be employed
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as measures of distance – determining if the opinions of two agents are close
enough for them to interact. We are able to transfer the results from the Eu-
clidean setting if ρ satisfies appropriate extra conditions. By considering several
examples we show the necessity of those additional assumptions.
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