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SUMMARY

The temperature changes of land-fast ice covers will give
rise to loads against shores and hydraulic structures. The
magnitude and frequency of such thermal ice pressures are

important with respect to the design of hydraulic structures.

A numerical model is proposed that calculates the thermal
pressure in ice covering a lake for observed ice and snow
cover characteristics and observed weather. Other methods

are reviewed and compared with the proposed new method.

A complete energy budget is set up for the ice cover, in-
cluding sensible and latent heat transfer as well as radi-
ation fluxes. The input data are supposed to be the stan-
dard weather observations: air temperature, wind speed,

cloudiness, and air vapour pressure.

The thermal diffusion in the ice cover is calculated by an
implicit difference scheme with the time increment 3600 s
and slightly more weight on the later time step because of
stability problems at the boundary. The coefficient of dif-
fusion is, on the other hand, set to the rather low constant
value of 1.15 - 1070 mz/s.

The following conclusions are drawn concerning the tempera-

ture calculations:

o In spring, solar radiation has a great influence on the
rate of change of temperature even on the latitudes
60 to 70°N.

o The energy exchange between the ice cover and the at-
mosphere is too complex to allow the ice surface tem-
perature to be set equal to the air temperature. Such
a practice would lead to overestimates of the rate of
change of temperature. One should either use some
method based on the total energy balance or a method,

which takes into account the surface thermal resistance.
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o} Rather rough methods can be used for the calculations,
because the calculation of the pressure does not demand
great accuracy of calculated temperature only that the

temperatures of the profiles are given at about every 5 cm.

o The choice of values or functions for properties like the
coefficients of thermal diffusion, conductivity, heat trans-
fer or wind-speed function etc is less important than the
choice between different boundary conditions. If reason-
able assumptions are made errors in the rate of change
of temperature caused by different choices of properties

should not amount to more than 10 %.

The lateral expansion of the ice cover is assumed to be com-
pletely restricted, and a constant coefficient of thermal expan-
sion is adopted. For the ice deformation a model composed
of a linear elastic element in series with a non-linear creep
element is used. The creep rate is set proportional to the
stress to a power of 3.65. Both elasticity and creep are func-

tions of temperature. The conclusion is:

o The proposed rheological model is capable of reproducing
the course of stress for a given course of deformation or
temperature, until accelerated or tertiary creep starts.
The model is also rather simple to integrate, although it
is non-linear. The resulting accuracy matches the qual-
ity of the values on deformation moduli and thermal prop-

erties.

For a specified change of air temperature it is shown that the
proposed numerical model gives 40 % greater total ice pressure
(N/m) that the method proposed by Drouin and Michel (1971).
Tor the doubling of the ice cover thickness from 0.45 to 0.90 m
the increase in total pressure is 65 % for the proposed method,
20 % for Drouin and Michel s method, and 100 % for the Soviet
Norm 76-66. ' '



Finally, the calculated highest maximum ice pressures for
some lakes in Sweden during 12 or 16 years are listed to-
gether with ice cover characteristics and weather observa-
tions. At 68.3°N the calculated figure is 437 kN/m and

at 57.1°N 189 kN/m.

It is believed that the proposed method gives reasonable
estimates of possible thermal ice pressures for given ice
covers and weather situations. It gives a correct descrip-
tion of the rate of change of temperature for given ambient
conditions, without either grossly understating or over-
stating the rate of change. On the other hand, it produces
pressures that cannot be reached in every ice cover because

of crystal orientation and irregularities in the ice cover.

III






PREFACE

In 1968, the late Professor Lennart Rahm initiated ice
engineering research in the Department of Hydraulics.
Since 1969 the thermal ice pressure against the walls
of reservoirs have been studied. During the winters
69/70 and 70/71 field measurements of the temperature
in an ice cover with and without snow were performed.
The years 1972 to 1974 some few laboratory experi-
ments were done in order to verify the mechanics of
thermal pressures. The field and laboratory experi-

ments are reported in Appendices II and III of this book.

The theoretical studies have been running parallel with
the experiments, and seem to be roughly verified by the
experiments. Background material is reviewed in the
report: ''"Physics of Ice and Snow as Affects Thermal Ice /
Pressure' (Bergdahl 1977). In the present report older
investigations are reviewed, and a new method is proposed
and compared with some of them. The proposed method
has been used for calculating hypothetical ice pressures
for ice observations and weather records covering 12 or
16 years for five lakes in Sweden. From the calculated
pressures the frequency of extreme pressures have been
estimated. The result is reported in '"Calculated and
Expected Thermal Ice Pressures in Five Swedish Lakes"
(Bergdahl and Wernersson, 1978).

July 1978

Lars Bergdahl
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1. INTRODUCTION

When a land-fast ice cover has been formed on a lake or on

an enclosed part of the sea, stresses will arise in it because
of its thermal expansion or contraction caused by the changing
weather. The stresses will exert forces against shores, dams

or other structures.

It is rather complicated to calculate such forces for design pur-
poses because of the nonlinearity of the deformation of the ice,
the irregularity of ice covers, the variation of ice properties,

and the difficulty to define probability of extreme situations.

The purpose of this study is to show that a reasonable estimate
can be made on thermal ice pressure for a given weather and ice
situation. Farlier investigations are briefly reviewed, and some
of them are compared with a proposed new method. Finally, a
method to estimate return periods of extreme pressures is re-

ported.

The mechanics and physics of ice in general are not discussed in
this study, but reference is made to Bergdahl (1977). A detailed
account of an attempt to calculate the recurrence of extreme
thermal ice pressure on five Swedish lakes is given by Bergdahl

and Wernersson (1978).



1.1 The Origin of Thermal Ice Pressure

A very thin sheet of ice has a temperature of close to 0°C. When
such a sheet grows in thickness, the temperature of its surface
decreases due to the low air temperature. The upper layers of

the ice contract, but since the temperature at the lower boundary
still is OOC, the contraction causes tension, creep, and cracks in
the ice. The growth rate of the ice cover is mostly rather slow,

so that, with the exception of the first few centimetres, the ice has
time to creep without the formation of tensile cracks, that is, if

the ice increases in thickness at a constant temperature of its upper

surface.

If, however, at a time when the ice cover already has been formed
and has increased in thickness at constant weather conditions, the
air temperature suddenly falls considerably, the upper surface of
the ice quickly assumes a new temperature of equilibrium, and after
some time a new steady state gradient will be established in the ice
cover. The upper surface will contract fast, but the lower boundary
will keep its length since it is at the constant freezing-point tempera-

ture.

Now, the ice is floating on a horizontal water surface, and thus the
free bending of the ice cover is restricted. Instead, the effect will
be a bending moment in the ice cover, and the stresses will mostly
be released in forming deep cracks. (SeeFigure 1.1). If the change

of temperature is very slow,the ice may deform viscously without

the formation of cracks.

— e

Figure 1.1 The bending and cracking of a floating ice
cover due to a fast change of temperature
in its upper surface.



The formation of the cracks is often sudden and is followed by a
strong wave motion, which is felt if you are standing on the ice.

You can also hear the cracks propagating across the ice cover,

and it is clearly visible how they are spaced out at intervals of

10 to 20 m. Between these wide parallel cracks, there is a system
of thin surface cracks. The cracks will sooner or later be filled

by water and drifting snow. Also cracks not extending all through
the ice cover will partly be filled by snow and rime. The snow will
be packed and recrystallized, and the water will freeze in the crevices.
The freezing will sometimes cause pressure in the ice cover because
of the increase of volume from water to ice. This pressure is, how-

ever, smaller than the extreme thermal pressures.

Later, if the ice cover is warmed due to mild weather or water
finding its way on to the ice, the upper layers will again expand.
Depending on the steepness of the shores, the thickness of the ice,
and the rate of change of temperature, pressure will develop in the
ice and may be followed by a shove up onto a beach or folding of

the ice cover against banks and in zones of weakness.(See Figure 1.2).

Figure 1.2 Examples of expanding ice covers

a) shoving up onto a beach
b) folding out on a lake
c¢) folding at a shore



The magnitude of the ice pressure in the ice cover depends on the
rate of change of temperature in the ice, the coefficient of thermal
expansion, the rheology of ice, the extent to which the cracks have
been filled, the thickness of the ice cover, and the degree of restric-

tion from the shores.

Of course, the rate of change of temperature in an ice cover depends
on the change of weather conditions such as wind speed, air tempera-

ture, solar radiation, and the depth of the snow cover.

Expected magnitudes of ice pressures due to thermal expansion at
a certain lake arethus obviouslyafunction not only of ice and snow
properties but also of the local climate, ice conditions and lake con-

figuration.

1.2 Partaking Physical Processes

A survey of the different processes considered when calculating ice
pressures due to the thermal expansion of an ice cover is given

below.

Thermal diffusion

Internal

The equation of thermal diffusion can be used to describe the rate
of change of temperature within the ice if appropriate boundary

conditions are given.

20,20, pix 1) )
0x p
where t = time coordinate
X = vertical coordinate
0 = temperature at (x, t)
a = coefficient of thermal diffusion
Cp = gpecific heat capacity
P = bulk density
p = energy source per unit volume and unit time at (x,t).
a = A/Cop S (1.2)

where A = gpecific heat conductivity
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External

Heat is conveyed to the upper surface by the air, which

simplified can be written

q = A AQ, ... (1.3)
where ¢ = heat flow per unit area

A = coefficient of heat transfer

A8 = temperature difference between the air and

the ice surface

Radiation at the surface and the absorption of short-wave radiation
within the ice will add to the external energy exchange. The long-
wave radiation absorbed at the surface can simply be included by
adding the absorbed radiation to Equation (1.3), whereas the internal
short-wave energy absorption must be included in Equation (1. 1) by

for example,

px,t) = kJ(x,t), co. (1.4)
where p = energy source per unit volume and unit time at (x, t)

k = absorption coefficient

J = the intensity of penetrating short-wave radiationat (x, t)

A snow cover on the ice will change the external energy flow because
of its low thermal conductivity and because of the change in radiation
balance and its reflexion of short-wave radiation. Sometimes its weight
will cause the ice cover to sink below the water table, that is, the

cover will be flooded with water.

Thermal expansion

Thermal expansion of ice is usually written

de = o -dO, ... (1.5)
where de = expansion per unit length caused by de
a = linear coefficient of thermal expansion

de = temperature change



Sometimes it is more convenient to use the density as a function
of temperature, especially for saline ice,where the expansion
coefficient is a discontinuous function because of the crystalliza-

tion of salts, while the density is a continuous function.

Rheology

The mechanics of ice is very complicated,and there are several
ways of constructing mathematical models of the deformation. For
each model the coefficients or moduli must then be evaluated from
literature or experiments by curve fitting. A possible three-parame-

ter model is for example,

: _ 1 d n

€ ‘—E'~G+KD(O') ..(16)
where € = rate of deformation, de/dt

g = gtress rate, dg/dt

E = modulus of elasticity

K.n = coefficients for viscous deformation

D = gelf diffusion coefficient for the molecules in ice

Nearly all the parameters above are functions of ice type and
temperature. The absorption coefficient and radiation balance
are also functions of wave length. The coefficient of heat trans-

fer is a function of wind-speed and humidity.



2. PREVIOUS INVESTIGATIONS

Below are some brief summaries of investigations that have been
devoted to solving the problem of thermal ice pressure, some of
them focuéing on the ice rheology, others on the thermal diffusion,
and still others trying to span the whole phenomenon. Some aspects
on the works are given directly, while more detailed comparisons
are made in later chapters treating the separate parts of the problem.
Mostly the original systems of units and sign rules are used in this

chapter, however confusing they might be.

Investigations that treat some special aspect of the physics of ice
without aiming at solving the problem of thermal ice pressure are
not included in this chapter even if their results are used in the final
design proposal of this work. The physics of ice is treated in another
study (Bergdahl 1977).

Literature reviews have been made earlier by Korzhavin (1962),
Drouin and Michel (1971),and Kjeldgaard (1977),from which many

remarks are quoted.

2.1 Royen (1922)

Royen published a method of calculating thermal ice pressure

in 1922. The method was based on deformation experiments with

paraffin wax and lake ice. His fundamental deformation equation was
c O tl/‘3

€ = —— L. (2.7)
a + 0

where = compressive stirain

= stress (kp/cm?)

€

o)

t = duration of load (hours)

0 = ice temperature (OC, absolute value)
c

and a constants

6-100% < ¢ <9-107% °C em?/(kp - nY/3)

(o]

a = 17C



The relation implies that € o< o, while later experiments have
shown that € ©<C o™ with n varying from 1 to 5 for different
types of ice and strain rates. The strain rate de /dt ©€ ‘5‘2/S
according to Equation (2.7). This is not a good approximation

either, because for secondary creep, which is the ordinary design

case, € is constant and for tertiary creep the creep accelerates.
The nonrestricted thermal expansion of ice can be written

de _ de

T - Yar ... (2.8)

Royen differentiated (2.7) with respect to t keeping & and o

constant and equated the result with that of (2.8). This gives

30 23 de
g = -—*é-— (a+Q)t —a't—, (29)

but the act is a violation of the rules of differentiation as botho and
0 are used as functions of time below. Royen justified the approxi-

mation.by its agreement with experimental values.

Finally, the temperature of the ice is assumed to increase linearly

with time,

0(t)= 0. -0 -t, ... (2.10)

mean temperature of the ice (OC, absolute value)

g
=
o
=
o
©
=
1

initial mean temperature (°C, absolute value)

1

the constant mean temperature increase (OC/h)

]

The substitution of Equation (2. 10) into Equation (2. 9) and differen-
tiation of o with respect to time finally gives the maximum stress
2
(kp/cm®)
3/ 2

o = 0.9772 2 (a+e0.)30(a+0,)
[&] 1 1

max (2.11)



at the point of time (hours)

tmax =5 é/(Z (a+91))- oL (2.12)

-5 0,-1

-4 o C™" the

With ¢ = 6 - 10 C em?/(kp W'/3) and o =5.5.10

usual form of Royen’s equation becomes

3/ 2

Pmax = 0.9 d(@i+a) 0 (Qi+ a) . (2.13)
P = force (tonnes/m)

max
d = jice thickness (m)

For Sweden Royen assumed a minimum temperature of the air to
~400C, which was presumed to produce a mean initial temperature
of -12°C in the ice. The maximuam ice thickness was assumed to be
1.0 m. If the ice temperature should rise linearly to 0°c during
100, 170, and 360 h the corresponding values of Pmax would be 32,
27 and 21 tonnes/m (310, 260 and 200 kN/m). Allowing for some
elastic deformation, Royen ended up with a maximum value of 30

tonnes/m for an ice cover biaxially restrained.

Some short-comings of the theory are

that the thermal analysis does not take into account the tran-
sient character of the problem, and therefore the maximum

force is directly proportional to the thickness of the ice cover.
that the inital temperature is somewhat arbitrary.

that the elasticity of the ice is ignored.

that the creep of ice is not well described by the used
equation.
that the difference between uniaxial and biaxial load cases

is not discussed.
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2.2 USSR Norm SN 76-59 (1959)

The Soviet norm SN (76-59), operative till 1967, was founded on
Royen s theory with some modifications.(See Korzhavin 1962). The
initial mean temperature in an ice cover free from snow was set to

the empirical value

. (2.14)

s

8. = 0.3580
i a

where Qa is the mean air temperature during the preceding 48 hours.

The rate of change of temperature is also set to an empirical expression,

namely

éi = 0.3540_/At, ... (2.15)

where AQa is the maximum increase in air temperature during a

period of time At within the considered period.

The composite coefficient 0.9772 o f¢ = 1629 a =0.09 of Royen’s
expression for g % is exchanged for an empirical formula
0.78 - lQal -0.88 g origin is not stated. The changes result in the

following form of Royen’s equation for the force in tonnes /m.

(0.35(0, [+ 2% ae 13
P =5.50d a a

max lgalO.88 (At - (2.16)

When there is snow on the ice, with a depth ds, the value of

Pmax should be multiplied by a factor of

o= d___ CL(2.17)

d+9.1dg

If the extent of the ice cover is more than 50 m, Pmax should be

multiplied by a factor of 0.9 to 0.6.
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It is difficult to judge the Soviet norm 76-59 because the reasons
for the coefficient 0,78 ]9a| -0.88

Section 2.3). Fundamentally, the norm is based on the same

are not well known, (Compare

rheological equation as Royen’s original equation, and therefore
most of the short-comings remain. The initial temperature is,
however, more clearly stated, and the transient might be in-

directly taken into account.

2.3 Proskouriakov (1967)

In a paper to the XIIth congress of IAHR in Colorado, Proskouriakov
made some comments on the different Soviet norms and Royen’s
method. He pointed out that the norm 3440-46 was founded on Royen’s
mistake of using the partial derivative of Equation (2.7) instead of

the total derivative (See Peschanskii 1963 or Drouin and Michel 19771).
The result is that the final expression for the maximum pressure is

divided by three. It may be noted that the coefficient ¢ is empirical.

Regarding the norm SN 76-59 (See Section 2. 2) he wrote that it was
based on the viscosity of ice under load, and that the coefficients of
viscosity are well established by Veinberg (1940). He continued to
state that in the norm SN 76-66 this method of calculation is developed
and perfected for all types of pressure but concluded by proposing a

new formula for the ice viscosity N put up by Voitkovsky

n:f‘_i;—_% .. (2.18)
Kt

where
= temperature (absolute value?)

9
o
a =1 C a constant
n and K are unspecified constants
T

= ghear stress

Korzhavin (1972) states that Proskouriakov has made the most com-
prehensive studies. He also lists contributors like Petrunichev,
Berdennikov, Pekhovich, Irchenko and Yakunin. Unfortunately,
none of these contributions are available in a Western European

language.
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2.4 Brown and Clarke {1932)

For the purpose of ascertaining the design thermal pressure of the
dam at Island Falls on the Churchill River, Brown and Clarke made

a series of laboratory experiments.

In the two final experiments,3-inch ice cubes were subjected to an
intended linear temperature rise, while two opposite cube faces
were loaded as much as needed tg counteract the thermal expansion
of the ice. The result of the experiments was given as the rate of
change of pressure (1b/sqft/h) as a function of the rate of change of
temperature (OB‘/h). The function was originally based on three
experimental points, of which two came from the same experimental

run. (See Figure 2.1 below.)

The results are few, the experimental equipment was not accurate
enough to realize the intended experiment, and finally the test cubes
were taken from a large block of river ice supplied by an ice dealer,
and therefore the crystal structure or the orientation between load
axes and ice growth directions was not under control. The result

is not consistent with the notion of creep or viscosity of ice, in
which case the rate of deformation for longer load durations must

ap roach a function of the stress itself. When Lé&fquist (1954) plotted
hi: experimental values in the same diagram, he consequently got a

cu ‘ve with a positive curvature.

When the found relation was applied to the problem of thermal
pressure at Island Falls, the temperature of the ice was presumed
to vary linearly with the air temperature at the air-ice interface
and to be at the freezing point at the ice-water interface. In the
calculations the upper half of the ice cover was taking the whole
temperature variation and stress as an approximation. The biaxial
nature of the problem was acknowledged, but no advice was given

as to how to account for it in the calculations.



Rate of temperature rise {°F/h)

Rate of pressure increase (tonnes/mzlh)
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Figure 2.1 The continuous curve is the curve of Brown and
Clarke (1932), showing the relation between tem-
perature rise per hour and pressure rise per hour.
Filled circles: A-C original points, D-I from
shorter parts of the same two experiments. The
lower circles, crosses, and dashed curve are
from the experiments of Léfquist (1954).

It may be summarized

that the deformation relation found by Brown and Clarke is
quite incapable of describing the stress-strain relation of

ice. It does not even give the right magnitudes.

that the temperature change is too summarily treated.

Rate of temperature rise (°C/h)



14,

2.5 Rose (1947)

Rose improved the work of Brown and Clarke by introducing a correct
description of the thermal diffusion in the ice. For pressure, however,
he accepted their relationship shown in Figure 2.1 and made an exten-
sion of it based on other tests on continuous yielding of ice under
sustained load. He also multiplied the result by a factor of 1/(1-V)

to apply it to a completely restricted ice cover with v = 0. 365.

We have already noted that Brown and Clarke ‘s relation does not

give a description of the stresses developing duringthe thermal expan-
sion of the ice. Consequently,the results of Rose s method must be

as inaccurate, however accurate his treatment of the thermal part

of the phenomenon might be.

Rose used the Schmidt difference scheme to describe the variation in

ice temperature, and the assumptions of the analysis were as follows

1. Initially a linear thermal gradient with the air temperature
(—4OOF) at the surface and freezing point temperature (+32OF)

at the lower surface.

2. Linear rise of air temperature from the initial temperature
(-40°F) to the freezing point temperature (+32°C) where it

remains constant.

3. The surface temperature is set equal to the air temperature.
4. The thickness of the ice sheet remains constant.
5. The diffusivity constant, a, is set to 0.0434 (ft)2/h

(=1.12 - 108 m?/s).

The computed solutions are correct and their accuracy is adequate.
The profiles are of the same type as displayed in Figure I-5 of
Appendix I, and a comparison with the Fourier series solution
gives a close concordance. One of Rose s figures is shown in

Figure 2.2.



Ut

0 —
A
e
\C L1/
éofﬁo 40
/ 180 Asg
\ / Time (h)
| A\
© =10°F/h N ﬂ/
40

-40 30 20 <10 0 10 20 30 40 2 4 6 8 10
Ternperature (°F) Pressure {kips/ft2)

<}
N

g
o

]

lce thickness (ft)
=i
3
D
AN
-
A

(28]
o

Figure 2.2 Ice temperature curves and resulting pressure
curves. After Rose (1947). The dashed line
is a solution calculated according to Appendix I-5
for 20 h.

Point 3 is a drawback of the method as it does not take into account
the thermal surface resistance or the long-wave radiation balance
of the surface. (See Appendices II-6 and III-5 for measured pro-
files). Point 4 can be shown to have little influence on the problem
(See Appendix I-3). As regards point 5, the value of 1.12 mz/s
might be a little too low. 1.15-1.25 mz/s would be more reason-
able. The variation of the diffusivity constant with temperature

can be neglected as is also shown in Appendix I-3.

Rose also introduced the solar radiation into the calculations of the
rate of change of temperature. In order to do that he put forward

some additional assumptions:

6. The latitude is 40°.
7. The time of the vernal equinox is considered.
8. The coefficient of atmospheric transmission to solar

radiation is set to 0.9, based on a clear atmosphere of

low humidity at a fairly high elevation.
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9. A coefficient of heat transfer of 2 BTU/(hOF ft2) is assumed

to allow for surface losses of solar energy.

Rose did not specify how these calculations were made. He referred
to F'W Taylor for different solutions. (See Monfore and Taylor, 1948.)
Especially it is difficult to understand the concept of a coefficient of
heat transfer for the solar radiation only. According to assumption 3,
the surface temperature is equal to the air temperature, and conse-
quently there should be no other losses. In Appendix III-5 a graphical
Schmidt-solution is used that takes into account both the heat trans-
fer coefficient and the short wave radiation absorbed in the ice. There
the absorbed radiation is included by addition of the absorbed energy
in the form of equivalent temperature rises after each time step at the

different levels in the ice.

Credit should be given to Rose for treating the thermal part of the
problem correctly. His final ice forces are, however, far from satis-
factory although they, according to Drouin and Michel (1971),have

been widely used in North America.

2.6 Monfore (1947-1954)

In 1947 a major research programme was started at the US Bureau
of Reclamation. The programme included theoretical considerations
of the thermal response of the ice cover (Monfore and Taylor, 1948),
field measurements of temperature and pressures (Monfore 1949),
and laboratory investigations of ice deformation properties (Monfore
1951). A summary of the results is given by Monfore in an ASCE

symposium on ice pressures against dams 1954.

In the first mentioned contribution Monfore and Taylor (1948) gives
the course of temperature in the ice cover as expansions in charac-
teristic functions of a type presented in Appendix 1-8. The given solu-
tions are probably correct although they are difficult to survey. (The

heat transfer coefficient is incorrectly named emissivity). The solu-
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tions take into account the transfer of energy from the air, absorp-
tion of part of the solar energy at the upper surface, and absorption
of part of that portion of solar energy transmitted through the ice.
Because of the modern development of high-speed computors and
less complex difference methods the solutions have probably lost

in importance.

The most important contribution by Monfore has proved to be the
laboratory investigation of the ice properties.(Monfore 1951). The
experiments were based on the same concept of nil expansion as the
ones by Brown and Clarke, but the equipment was better. Small
cylindrical specimens 4 x 4 inches were used, taken from two re-
servoirs with approximately 45 cm thick ice covers, and cut with
the axes horizontally oriented in the ice cover. The strain rate was
measured with gauges in direct contact with the specimens. The
temperature of the specimens was controlled by an air circulation
system, and the temperature was measured in both the periphery

and the center of the specimens.

Before the start of each experiment the specimen was kept at constant
initial temperature for some time. Then the temperature of the ice
was made to increase at the predetermined rate. The load was first
ajusted to give zero total deformation every 5 minutes, but after half

an hour every 15 minutes only.

The initial temperatures were -30, -20, -10, 0, 10 and 20°F. The
rates of change of temperature were 2, 5, 10 and 150F/h. The results
of the experiments were curves over the necessary stress for nil de-
formation as a function of time. The curves have approximately the
same shape, with first a nearly linear increase of stress,then curved

to a maximum, and decreased. See Figure 2. 3.

Check tests were run on several specimens to determine the repro-

ducibility of the technique. The average deviation of the maximum

pressures for duplicate tests on a given specimen was 6 %.
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Figure 2.3 a) Average pressure-time curve.

b) Air and ice temperature for typical laboratory
test.

After Monfore (1954).

Much larger variations, an average of 25 %, were found in the
maximum pressures reached by different ice specimens tested

under the same conditions.

The small scatter in the duplicate tests can be taken as a measure
of the quality of the test technique. The scatter between values from
tests with different specimens can be caused by variations of the

crystal structure of the ice, which was also confirmed by Monfore.

The results of the experiments were summarized in two diagrams
Figures 2.4 a and b showing the maximum pressure and the time to
reach the maximum as functions of the rate of change of ice tempera-

ture for different initial temperatures.

The steps in computing thrusts from ice temperatures is as follows.
For each level in the ice the rate of change of temperature to be used
is decided. From Figure 2.4a the maximum pressure is read and
from Figure 2.4b the available time is checked. The maximum press-

ures from the different levels are then added to a total ice thrust.
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The weaknesses of Monfores method are

that uniaxial tests are used for biaxially restricted ice

covers

that the crystal structure was not considered as a para-

meter when evaluating the tests

that the phase lag of temperature (or stress) at different
levels are not included in the method (although the diffusion

problem was solved in principle).

In spite of these remarks Monfore s experiments brought the under-
standing of ice rheology a great step forward., Later will be shown
that the form of Monfore s experimental curves can be rather well

described by the rheological model recommended in this report.
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2.7 Lofquist (1954)

Léfquist (1954) introduced a new concept for studying thermal ice
pressure. He reproduced a part of an ice cover in a cylindrical
concrete basin diameter 50 cm with an insulated wall. The experi-
ment was of the same type as described in Appendix III, with tempera-

ture and pressure gauges embedded in the ice.

During the experiments the ice was allowed to grow to some thickness,
whereafter the temperature of the room was raised. In the first two
experiments the cracks that developed in the ice when growing was

too narrow or shallow to be filled by water welling up. In the final
experiment a double cylindrical skirt was placed in the basin, so that
the ice could contract freely without adhering to the wall. Before
raising the temperature,the gap in between the steel skirts was care-
fully filled with water that froze to ice. This procedure is important,
and the experiments described in Appendix III or Drouin and Michel “s
similar experiments became partly failures because the filling of

cracks was not controlled.

When the temperature of the room was raised,the temperature of the
ice surface was rising approximately exponentially from -30° to 0°C
during 15 hours. The course of temperature in the ice is shown in

-

Figure 2.5 as given by Lofquist.

/77 7
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Figure 2.5 Temperature distributions in test No 4.
After Ldfquist (1954).
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The measured pressure profiles at 10, 14 and 17 hours are shown

in Figure 2. 6. As the temperature increase penetrated through

the ice,the stress profile developed into the shape of a half pear,with
a maximum moving down through the ice some hours delayed with
respect to the minimum of the temperature curve. The maximum
total ice thrust was measured to 20 tonnes/m at about 14 hours after

the start of the temperature increase.
Pressure, in Kilograms per Sq Cm
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Figure 2.6 Pressure distribution in a cross section
of the ice. (L.6fquist, 1954).

In the paper describing his experiment, Lé&fquist also sketched a
method to calculate an upper bound for the pressure caused by
plastic buckling. He introduced a bulk stiffness modulus, F,
which included both the lateral restraint, plastic and elastic
deformation. The bulk modulus should replace E/(1- \)2) in the
buckling formula (Equation 4.9). F was set proportional to ne-
gative ice temperature -6 and inversely proportional to the third
root of the load duration t. (1/F = 1/E + C t1/3 /( 1°C-9)).

I.6fquist remarked that the measured pressure was reduced by the

facts
that the concrete basin must have been deformed by

the load from the ice cover.

that the concrete itself has a linear coefficient of thermal
expansion approximately 25 % of the value for the ice
itself

that there were some cracks in the uppermost part of

the ice cover.
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2.8 Assur (1959)

Assur proposed some steps towards a solution of the problem of
thermal ice pressure at the eighth Congress of IAHR in Montreal
1959, He started off with a quasi-linear model for the rheology,
later used in another form by Lindgren (1968), completed this

model with a temperature and stress dependent creep law, later used
by Ramseier (1971), Drouin and Michel (1971), and Ramseier and
Dickins (1972). Assur solved the equation for constant rate of

change of temperature, and finally he formulated a differential
equation for the elastic buckling of the ice cover when not loaded

symmetrically. Plastic buckling was discussed by L ofquist (1954).

Although his presentation is somewhat sketchy, its basic concepts
will be referred below, because they are reflected later in the
works of others. The creep deformation of ice under a load was
approximately described by a rheological model with a Maxwell
and a Kelvin unit in series.(See Bergdahl 1977.) A solution for a

constant load is
t

€=, + 0 20 - e't/to)+ﬁt_ . (2.19)
1 SL'2 1
where © is compressive stress
t time from the load application
to = E2/ Ny relaxation time for elastic lag
E1 and E2 elastic moduli
ny and n 9 viscosity moduli
m a factor depending on the load case
S a function of temperature and siress

1 and 2 indices for the Maxwell and Kelvin unit respectively.

For the uniaxial case m = 2(1 + v ), and for the biaxial case m = 2/ v,
where V= 0.5 for the case of viscous flow.
T/T

2 ... (2.20)

gsinh T/ T

S = exp (Q/RT)
(o]

is the activation energy for creep

Q
R the universal gas constant
T the absolute temperature
T = 0/m

T = cT

c is a constant
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The differential equation for 0 = f(t) was given as, neglecting the
elastic lag (the first term within the brackets of Equation 2. 19):
E,

. o N o
(5+ m “(XEQ

. (2.21)

which actually is very equal to Equation (1. 6) for the rate of de-

formation € =00,

The maximum ice pressure Omax was calculated from Equation
(2.21) for 0 =0.

O'IIIE).X = %m noexp (QC/RT)SIQ) (2.22)

where S (o /mcT)sinh ( ©

1 - max max/mCT)
is unit for low stresses
0  the linear coefficient of thermal expansion

0 the rate of warming

Assur gave values equivalent to N O=O.4172 . 10—10 (tonnes h/mz),

Q, = 81 kJ/mol, R = 8,31 J/(mol - K), c = 0.154 tonnes/(m”K),
@ =51.5.10"%°"1 ana E, = 0.65 106 tonnes/mz.

Assur also gave a nondimensional solution of the complete function
0 = f(t) for a constant rate of change of temperature 0 by linearizing
Equation (2.21).

An empirical Equation for maximum pressure Omax was found by

searching unknown functions with an electronic computor

Opay = ~20,(1-b0_)(0+0,) ... (2.23)

where QO is the initial temperature

a, b and él constants

1

with a = 0.33964 tonnes/(m? °C), b =0.010137 °C”! and 0, =

21. 1OC/h. The agreement with test results given by Monfore was
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said to be excellent with a correlation coefficient of 0.9986 for
0 »2.5°C/n.

Assur pointed out that the total lateral force to a considerable degree
depends on the depth of penetration of the warming wave and is limi-
ted by the buckling,if the ice cover is thin. He criticized the use of
the assumption of an axial load at half the depth of the ice cover,
and he proposed a corrected equation probably based on an assumed

unfavourable stress distribution.

As will be seen later most of Assur’ s concepts are still acceptable.
One may regret that he has not published his ideas in a more pedago-

gical and precise form. The drawbacks are further

that he only discussed constant rates of change of

temperature of the ice.

that he did not follow up the rheological study by calculating

the integrated pressure for some case.

that he did not explicitely solve the buckling load or discussed

viscoelastic buckling.

2.9 Lindgren (1968)

Lindgren (1968, 1970) made laboratory experiments to determine the
rheological properties of ice under both uniaxial and biaxial load. He
also utilized his results in a method to calculate the thermal ice

pressure in an ice cover for a prescribed air-temperature variation.

The uniaxial tests were performed with ice prisms 7 x 7 x 20 cm,
that were loaded with constant weights, at -10°C equivalent to 2,6, 8,
10 and 14 kp/cmz, and at -0.5, -5 and -20°C equivalent to 6 kp/cmz.

The deformation as a function of time was measured.

A diagram from his uniaxial experiments is shown in Figure 2.7.
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Figure 2.7 Uniaxial creep tests. Experiment No 6.
Deformation as a function of time for different
stress levels. Specimens unloaded after 3 or 4
hours. (Lindgren, 1968).

Biaxial experiments with restricted thermal expansion were also
made with circular ice-plates, diameter 80 cm, thickness 7 cm,that
were placed in a steel ring, where the small space between the ice
and ring was filled by water. Starting from a low temperature the
temperature was raised at different rates. The temperature and

the force in the ring were measured with thermocouples and strain
gauges respectively as functions of time. The relative deformation
of the ice was calculated from the ring force and thermal expansion
of the steel ring and ice plate. The expansion coefficients were set

to @, =52.0-10"° °c! and a =12-10"%%"1 A
steel

ice
result from his biaxial experiments is given in Figure 2. 8.
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Figure 2.8 Biaxial thermal pressure test. Experiment No 7.

Ice temperature, ice pressure and the relative
deformation between the ice plate and the steel
ring as functions of time. (Lindgren 1968).

Lindgren useda linear visco-elastic model with a Maxwell and a

Kelvin unit in series to evaluate the test results. Its differential

equation is given by e.g. Bergdahl (1977 p. 103) and a solution for,

the case of constant-load tests is

E

o+

_ O o] 2 o0t
€= E—+E— (1 - exp (- "TT_)H'TW_‘ ... (2.24)
1 2 2 1
Compare Equation (2.19).

El and E2
n, and n,

€

Here

(¢

are elastic moduli
are viscosity moduli
strain

stress



index for the Maxwell unit

2 index for the Kelvin unit -

Lindgren remarked that Equation (2.24) is not a good description for
ice, which does not behave linearly. To make up for that, he investi-
gated the dependence on stress and time of the moduli, and thus

violated the assumption of the solution (2.24) that the moduli are con-

stant.

Lindgren gave the following values from his experiments

E, = 66000 (1 - 0.012 0) kp/cm®
E2 = 70000 kp/cm2 0.5
) -1 ) t V0. 8 2
ny 18.5 08 (0.20 20.08 0) (55pp) °10° kps/cm (2. 25)
g = 1.1-10 kps/cm

The fact that n 1 is a function of stress does not interfere with the
validity of (2.24), for the tests, because 0 is constant for each test,

but the dependence on time t is a violation.

From the biaxial tests Lindgren estimated the same values of E‘1 and
E2 as for the uniaxial tests with the assumption that Poisson’s modulus
was 0.36. The value of n2 was assumed to be the same while a new

equation was put up for T 1

i . 0.25 g Ly
Ny =81 077 (0.30 - 0.070)(5g5;) - 10° kps/em®... (2.26)

on condition that Poisson’s modulus was 0.5 for the viscous deforma-

tion (last part of experiment).

In his thermal analysis Lindgren established that the influence of the
growing of the ice cover on the thermal gradient can be disregarded.
Compare Appendix I-3. For the calculation of the temperature profile
in the ice for arbitrary changes of air temperature he used a graphical
variant of the Schmidt difference scheme,which also included the ther-
mal resistance at the surface neglected by most other authors (except
by the Soviet norm SN 76-66). Examples of such calculations can

be seen in Figures III-7 and III-8 of Appendix III.
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For the found relationship of ne< o1 the used model is no longer linear
and the solution of O for a given rate of deformation must be solved by
numerical integration. The creep element of the model gives the rate
of creep to €oeo”  Lindgren s Equation (2.26) was set up for

0.5 < 0 < 1.6 MPafor the range of which it does not give rates that
deviates much from the model proposed by the author or from Drouin

and Michel s experiments (1971).

Criticism of Lindgren’s work can be based on the fact that the experi-
mental results are very scattered. Lindgren s own comment is: .. ..
calculations of the values of maximum ice pressure are somewhat un-
reliable. With this in mind, rough estimates can be used to assess

maximum ice pressure''.

2.10 Reeh (1970)

Reeh published a paper on the thermal stress in a visco-elastic plate
of simple extension in 1970. The first part of the paper dealt with the
temperature response of a plate subjected to a linear temperature
change at one of its surfaces, while the temperature of the other sur-
face was kept constant. Approximate solutions were given for the
dimensionless time ta/hzs 0.3. (See Figure I-2 Appendix I.) The
solutions were based on a solution for the semi-infinite space, but

a correction term was added. (Compare Drouin and Michel, Section 2.11.

The second part dealt with the stress response of a plate in simple
extension to the temperature response deduced in the first section,

assuming the plate to consist of a linear Maxwell material.

The temperature profile solution did not shed much new light on the
understanding of the problem, and as the rheological model was far
too simplified,the paper was more of an elegant display of mathematics

than a contribution to the solving of the problem of thermal ice pressure.

2.11 Drouin and Michel (1971)

Drouin and Michel (1971, Drouin 1972) made a great contribution to the
solving of the problem of thermal ice pressure. Their work spanned

over the whole problem from the weather fluctuations to the ice thrust.
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They made exhaustive and critical reviews of former works on the
problem. They gave a thorough treatment of the thermal diffusion
problem in the ice cover for both transient and stationary condi-
tions, including the effect of snow insulation, but neglecting the
question of thermal surface resistance. The air temperature varia-
tions in the Quebec area were studied statistically as to the rate of
change of temperature and the shape of the curves of temperature

increases.

The most valuable part of their work is the study of uniaxial de-
formation of ice and biaxially restricted expansion tests of the same
type as made by Lindgren (1968) but with better controlled condi-
tions. They also tried to make an improved experiment of the same
type as Léfquist (1954) but did not succeed because of difficulties with

their sophisticated equipment,

Some aspects of Drouin and Michel s work will be taken up below. The
thermal properties of ice and snow is not discussed herebutitis referred
to Bergdahl (1977), where also the mechanical properties of ice are

discussed more fundamentally.

Drouin and Michel derived the deviation of the temperature from the
linear gradient because of the variation of conductivity with temperature.
They concluded that the temperature in the ice is a little higher than

is given by the linear gradient. This conclusion must be wrong as is
shown in Appendix I-3. The thermal conductivity of ice increases with
decreasing temperature, which means that the thermal gradient close

to the upper surface of the ice must not be as steep as deeper in the ice
to drive the same heat flux. The equally small deviation caused by the

growth of the ice cover was not discussed. See Appendix [-3 Eq(I-28),

The variation of temperature in an ice cover more than 40 cm thick due
to a cyclic temperature variation at the surface was approximated by
the Fourier -solution for a semi-infinite space. This gives satisfactory
solutions for the said cyclic variation, but Drouin and Michel used the
result for a single sinusoidal rise from one constant temperature to

another (Appendix I-7), which is not acceptable. It will be shown in
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Chapter 3 that this gives underestimates of both the rate of
change of temperature and the total temperature rise of the ice
cover. The approximation, as used, was probably the cause to
the peculiar fact that the faster the temperature rise is the
smaller the thermal thrust, which is true only for a cyclic varia-

tion.

The uniaxial tests were performed as constant strain rate tests.
Examples of graphs from such tests are shown in Figure 2. 9.
Tests were performed with artificial snow ice, with ice mono-
crystals taken from an ice cover with mostly vertical c-axes

(Ice S1), and with nucleated columnar ice of preferentially small-

diameter crystals with horizontal c-axes (Ice S2).
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The test specimens were made as circular cylinders length 7. 62
diameter 2. 54 cm and loaded axially at constant temperature. They
were cut with their axes horizontally in respective ice cover. The
test results from the tests on the snow ice and the mononcrystals (S1)
showed comparitively little scatter when evaluated by the composite
mechanical model used by Drouin and Michel. The specimens of the
S2 ice were, however, too small compared to the grain size why the
test result became too dubious. Only two tests with bigger speci-

mens were performed.

The typical curves of Figure 2.7 show a nearly constant rate of in-
crease of stress during the first period of time. Then the slope dimin-
ishes and a maximum is reached. For the monocrystals (S1) the de-
crease is rather abrupt, for the snow ice and S2-ice only gradually

decreasing.

The rheological equation used by Drouin and Michel for evaluating the

tests is

d9 - (B - 28 E, ((%9+ &) - "g: )(—Z‘ig’)n.l.. (2.27)
where O is stress

€ strain rate

t time

E apparent elastic modulus

n, initial number of dislocations

B rate of multiplication of dislocations

b Burgers s vector

P a constant

m a constant

The complex Equation (2.27) is capable of reproducing the decrease
of stress after the maximum is reached for snow ice and S2-ice
because of the inclusion of €t. For the monocrystals the equation
is valid only slightly beyond the maximum pressure. A simpler
model can reproduce the most interesting case of an S-1 ice cover

equally well.

The tests are probably the best ones performed and they are made

within a relevant range of deformation rates.
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Biaxial experiments were also conducted in approximately the same
way as was done by Lindgren (1968). The ice specimens were discs of
ice, diameter 15 or 30 cm,thickness 5 cm. They were placed in rings
of invar instead of steel. In the tests the temperature was raised from
different initial values to 0°C so that the rate of relative deformation

became approximately constant,

Five tests were performed with snow ice,eight each with ice types S1
and S2. For each case the Equation (2. 27) was used to calculate the
stress that would have develbped in uniaxial cases with the same
histories of strain and temperature as the discs. The maximum calcu-
lated and measured stresses were compared by the ratio between
experimental and calculated stresses.

For snow ice:

0 (max, biaxial, measured)

0 (max, uniaxial, calculated)

The ratios were 1.81, 1.51, 1.83, 1.72, 1.56, which gives the
Poisson moduli 0.45, 0.34, 0.45, 0.42, and 0.36. TFor plastic
deformation V = 0.50 and for isotropic elastic materials usually
around 0.30. Mean and standard deviation of the ratios were 1.69
and 0.15.

For S1 ice

0(max, biaxial, measured)

o(max, uniaxial, calculated)

The ratios ranged from 1.00 to 1.97, mean 1.33 standard deviation
0.35. The great variation was probably caused by the variation of the
direction of the optical axes in the biaxial case. The uniaxial tests
were performed with monocrystals, while the discs of the biaxial tests
consisted of several crystals. For tests with high ratios the crystal
axes were found to be more perfectly vertically oriented, while larger

deviations were found for tests with a low ratio.
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Nine of the twelve biaxial experiments by Lindgren (1968) were com-~
pared in the same way by Drouin and Michel. The ratios ranged from
0.92 to 1.07, mean 0.95 standard deviation 0.10. The diameter of
Lindgren’s discs were 80 ¢m and, their thickness 7 cm, and conse-
quently they were 7 and 28 times bigger than the ones used by Drouin and

Michel. The number of crystals with inclined axes is therefore greater.

The following conclusion was drawn: In nature, it is not possible that
all crystals in an ice cover have a vertical orientation. For this
reason, the determination of thermal ice pressure in ordinary (not
seeded) columnar ice covers for a biaxially restricted case might be
based on the results of maximum pressures obtained for uniaxially
restricted specimens (monocrystals) deformed perpendicular to their

optical axes.

For S2 ice

Too few (two) results from uniaxial tests were received to make a

basis for comparison. Therefore the following ratio was formed

0 (max, biaxial, S2, measured)

0 (max, uniaxial, S1, calculated)

The value of this ratio ranged from 0.83 to 1.16, mean 1. 02 and
standard deviation 0. 11 (one test excluded). A conclusion is that
the seeded columnar ice (S2) cannot attain higher values of thermal

stress than an ice cover with preferentially vertical c-axes (S1).

On the basis of the tests, and using the results of uniaxial (S1) tests
directly, Drouin and Michel presents graphs over the maximum of

total thermal ice pressure of an ice cover as functions of cover thick-
ness, with initial surface (or air) temperature and time for the
increase (half period of the sinusoidal variation) as parameters. See
Figure 2.10. Note, that the longer the time for the increase the greater
the pressures. This was explained by the term et of Eq. (2.27)

by Drouin and Michel.
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Figure 2.10

. thickness for different initial surface temperatures
and times t for the increase to 0°C.

ﬁroum and Michel, 1971).

The deformation tests of Drouin and Michel seem to make an
excellent foundation for the calculation of thermal ice pressure,
and their test results are used for the creep element in the mathe-
matical model proposed in this work. The work of Drouin and

Michel may be criticized by the facts

that the thermal boundary layer at the ice surface is

completely neglected.

that the rheological Equation (2.27) is unnecessarily compli-
cated. This is a drawback when calculating continuous

records.

that the given model parameters seem to depend on the

method of integration and the length of its time increments.

Pressure (kips/ft)
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that the error in the thermal calculations gives rise fo a
very weird dependence of time (See Figure 2. 8)k
with lower pressure for faster rates of change of

temperature of the upper surface.

2.12 Jumppanen (1973)

Jumppanen (1973) made a study on thermal ice pressure for the Saima
Canal. He tried to find the compliance function J(t) directly from creep
tests by fitting curves to the test results. Then he used the compliance
function in a folding integral to calculate the pressure. See e.g. Flugge
(1975)..

Cylindrical specimens, diameter 9 cm length 15 cm, were loaded

axially at the stress levels 3, 7 and 12 kp/cm2 at -2, -5, -12 and
-25°C. The specimens were cut with their axes horizontal and paral-
lel to the c-axes of the grains. (The ice cover ought then to have been
of type S2 with ordered crystals or very big crystals). The specimens
were taken from artificial ice covers produced from tap water, density

870-910 kg/m3 and from an ice cover in the Saima Canal, p=920 kg/’m?

For a linear material the creep compliance J(t) is a monotonously in-
creasing function for t # 0, and for t< 0 J(t)= 0. For a constant stress
a, applied to a material obeying the same differential equation as the
one used by Lindgren (1968),the deformation & as a function of time

t can be written

- - 1 1 -t/t t
E'OQJ(t)“’o'ﬁ‘LE“(l'e 0)+ﬁ— ... (2.28)
1 2 1
Here El’ Ez, to and T)l are constant. Compare Equation (2. 19)

or (2.24). The compliance function found by Jumppanen in the tests

was

J(t)=a+bt" ... (2.29)
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with t in hours

-5

a (A0) = (1.17 + 0.036 A0) - 107° em? /kp

-5

b (AB) = (24.5+ 0.5 A8) - 10 cmz/kp,artificial ice.

b (AQ) = (12 + 0.25 A0) 10°° cm? /kp,Saima Canal ice.
n=2~0.3
AQ = 0 +25°C -25°%Cc < o <0°C

Creep curves for artificial ice are shown in Figure 2.11.

T T ]

P

——
//@/

A\

\

0 4 8 2 % 20 t(h) 24

Figure 2.11 Creep curves for artificial ice at different tempera-
tures at the stress level 0.3 MPa

1 0=-2° o= 3.08 kp/cm®
2 _5 3.21

3 -12 3.16

4 -25 3.2

The instantaneous elastic deformation is according to (2.29) 00- a
which implicates that a #~ 1/E.For @ = -25°C thus E = 8.55 GPa
which is in the usual range of values given for ice. (See Bergdahl,
1977). Note that the exponent n = 0.3 is close to the 1/3 used by
Royen (1922), Equation (2.7).

The value of b(A8)was quite different for the artificial ice and the
Saima Canal ice. This was accordingto Jumppanen probably caused by
the air content of the artificial ice, and by the fact that the canal ice

had earlier been loaded by temperature changes of the ice cover.
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The compliance function was finally used for calculating the expansion
of a circular ice plate, a square ice plate, and an ice plate in a long
trough. The solution did not involve the calculation of temperatures

in an ice cover. The plates were supposed to be warmed linearly from
some initial temperature to 0°C. For the biaxial calculations Poisson’s
modulus is set to vV (8) = 0.4 + 0.004 9.

During the winter 1972/73 some measurements were done in the Saima
Canal. An example and comparison with theory at the depth 8 cm in the

ice is given in Figure 2.12.

+10
e |rc)
/1
0 @ ©) 7
- JL“}:‘- ‘‘‘‘‘‘ = e s
oA O
/
-20
0 4 8 ° 16 20 2% t{h) 28
P | (kp/erd)
P
L2
1 /,’l/ QC“ ————— ="
0

4 ] 12 16 20 2, t(h) 28

Figure 2.12  Values of ice pressure at the Saima Canal:
1 air temperature, 2 ice temperature at
the depth 8 cm, 3 approximated ice tempera-
ture for the calculations, 4 measured ice
pressure at the same depth, 5 calculated ice
pressure. (Jumppanen 1973),

The short-comings of Jumppanen s theory are

that the tests showed weak nonlinearity at 0.7 MPa and
strong nonlinearity at 1.2 MPa. Thus the method
- cannot be used for compressive stresses greater than

around 1 MPa which is quite ordinary for design pressure,

that his tests are quite few, and there seems to be some

mistake as concerns ice types and crystal directions.



38.

3. CALCULATION OF ICE TEMPERATURES

The basis for the calculation of the stress in the ice is a rheological
equation like Equation (1. 6), where the rate of strain, €, is given as
a function of stress, o0, and rate of change of stress, 0. The rate of
strain is a function of the rate of change of ice temperature 6, Eq.(1.5).

For a completely restricted ice cover
ué=é=~}%é+KDOn ... (3.0

A first step towards the estimation of thermal ice pressure is thus

to calculate the ice temperature or its time derivative.

This chapter is devoted to the calculation of the rate of change of
temperature in the ice by accounting for the energy balance of and
the thermal diffusion in the ice cover. Physical constants for ice
and snow are not discussed in general but it is referred to Bergdahl
(1977). A complete solution is given and comparisons between this
and simplified solutions are performed as \;vell as comparisons with

some of the solutions given by the scientists reviewed in Chapter 2.

3.1 Energy Balance of an Ice Cover

The energy balance of ice or snow covers have mostly been studied
in order to evaluate their growth or decay. Although such studies
have often been performed with sophisticated methods, they work
with daily, weekly or monthly mean values, why they can seldom
be used directly for the calculation of the fast temperature fluctu-

ations that are responsible for thermal ice pressure.

Studies aiming at thermal ice pressures tend, however, to over-
simplify the energy balance of the surface by simply setting the
surface temperature equal to the air temperature or only calcu-
lating advective heat transfer. On one hand, the omission of the
thermal surface resistance means overestimation of the rate of
change of temperature. On the other hand, the omission of radi-
ation fluxes means underestimation, because the short-wave radi-

ation increases the rate of change of temperature in the mornings,
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especially at clear weather, and because the long-wave back radiation
can cause a considerable depression of the ice surface temperature,

which is especially noticeable in clear mornings.

Below follows a list on the terms of the energy flux to the ice or snow
surface. The energy flux from underneath is commented in Paragraph

3.4. The terms taken up here are the fluxes of

net solar radiation (+) (irradiation-reflexion)

o

o long-wave radiation from the atmosphere (+)

o emitted long-wave radiation (-)

o heat transfer because of different temperature in the air
and on the surface (sensible heat) (+ or -)

o heat transfer due to vapour transport in the air and con-

densation (+) or sublimation (-) on the surface (latent heat)

The different terms are only given not evaluated below. For
evaluations of heat balance functions it is referred to Paily et
al (1974) or Sweers (1976), and for a discussion of the balance
of ice or snow fields to Pounder (1965), Liljequist (1962) or
Bengtsson (1976). Coefficients and equations are mostly taken
from Paily et al (1974), and the given expressions are assumed

to give the best available descriptions of the energy balance.

3.2 Heat Transfer

Tatent Heat Transfer

The convective heat transfer from the air to the surface consists ot
sensible heat, because of the temperature difference between the air
and the surface, and latent heat, because of the vapour transport to
the surface and condensation on it. The latent heat transfer is often
written

qe:f(u\(ea—e) R B B
where

e is the vapour pressure of the air
2 m above the surface

e the saturation vapour pressure at the ice surface

The saturation vapour pressure over an ice surface is a function of
the surface temperature and is in this study approximated by a linear

function
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e - al(l +bo) -32°C<0<0 ... (3.3)
where a = 610 Pa
- (32°c)7! = 0. 031°¢7!

0 = the ice surface temperature

A wind function recommended by Paily et al (1974) is the Rymsha-

Donchenko function

f(u):pI,Sa(l + bu + c(6-0a)) ... (3.4
where a = 2.42 J1070] m /(s Pa)

b =0.49 s/m

¢ =4.36-1072 ¢!

p = 1000 kg/m3 the density of water

LS = 2. 82-106 J/kg the specific heat of sublimation
{condensation + fusion)

u the wind speed at 2 m above the surface
0 the surface temperature

Qa the air temperature at 2 m

Sensible Heat Transfer

The sensiblé heat transfer and the latent heat transfer are
usually considered proportional to each other. The ratio

between the two types of heat transfer is called Bowen s ratio
B = v (0_-0) /(e -e) ... (3.5)
where Y~ 61 Pa/°C is the psycrometric ''constant'.

The sensible heat transfer can then be written

qS=qu—f(u)Y(Qa—9) (3.6)
where qg is given by Equation (3.2)

B - (3.5)

f(u) - (3.4)

Finally, the total convective heat transfer to the surface is

4, = dg +ag = f(w) [le -e) + v (6_-0)] (30
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3.3 Radiation Fluxes

Emitted Long-Wave Radiation

The emitted long-wave radiation from the ice surface can be
calculated by the Stefan-Boltzmann law of radiation with due

respect to the emissivity of the ice or snow surface

4

where O = 5.6697 -10°° VV/m2 K" is the Stefan

Boltzmann constant
T  the absolute temperature of the ice surface

€ the emissivity of the surface

In many temperature calculations it is convenient to linearize
Equation (3.8). In implicit difference schemes it is necessary.
The fourth-order binomial expansion of (3.8) for T = TO+ 0 gives,
if two terms are considered:

= EG(T4

3
O+4T09) .. (3.9

Ay

where TO: 273.15 K

0 = the temperature of the ice surface in °c

Absorbed I.ong-Wave Radiation

The atmosphere can also be considered a gray body that emits radiation

at the rate

= €a 0 T, ... (3.10)
where €, is the emissivity of the atmosphere

o the Stefan-Boltzmann constant

Ta the absolute temperature of the atmosphere

While the emission of the surface, Equation (3.8) is rather well defined
by the temperature and emissivity of the surface, these quantities are
not as easily established for the atmosphere, The air temperature and
humidity, which governs the emissivity, are mostly measured 2 m above
the ground, but as the air is rather transparent to the considered radi-
ation { X ®10 pm) the incoming radiation originates from higher alti-

tudes at least at clear weather. By clear, calm and cold weather the
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difference in air temperature between the ground level and 5 or 10 m
level can be 10 to 20°C or more. At Maudheim (71°8) midnight,

July 2, 1950 the temperature at 10 m was measured to -30°C but at
ground level to -44°C.  This was not unusual. If such a strong
inversion was broken up by a strong wind the temperature often rose

10°C and sometimes 20°C (Liljequist, 1962).

Another problem is to approximate the emissivity of the atmosphere,
which is mainly a function of its content of water vapour and water,
that is, humidity and cloud cover. A relation for the emissivity of

the ﬁngstrém type is

Ea,=a~bexp(—cea) .. (3011
where
a =0.806
b =0.236
_ -3 -1
¢ =1.15-10 " Pa
e, is the water vapour pressure at 2 m above ground

The influence from the cloud cover can be taken into account by

1 +kC2) .. (3.12)

Qe = Ya (
where k = 0.0027

C = the cloud cover in eights

The absorbed long-wave radiation flux from the atmosphere is

finally
4

a . (3.13)

2
q2:€8a0(1+kC)T

where € is the emissivity of the ice or snow surface.

The emissivity of ice and snow can be set to & = 0. 97.
See Bergdahl 1977.
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Absorbed Solar Radiation

The incoming short-wave radiation is composed of the direct solar
irradiation, 0.9 kW/mz, calculated on an area normal to the sun’s
rays, and diffuse sky radiation 0.1 kW/m2. The flux through a hori-

zontal surface from a clear sky can then be approximately written

qCL:(a~sin0t+b\ L. (3014
where a =0,9 kW/m2

b =0.1kW/m?

o is the altitude of the sun

The altitude of the sun can be approximated by

o = arc sin (sin@- sin 6+ cos® cos 8§ cos h) ... (3.15)
where & is the declination of the sun
@ the latitude
h

the local solar angle of the sun

The declination is written

§ =0.409 cos ( (172-D) 27/365) rad ... (3.16)

where D is the number of the day in a year with

D =1 for January 1.

The local solar angle of the sun

h =(H - a) v/a rad . (3017

where a =12 h

H is the solar time of the day 0L H<24 h
If the sun is below the horizon (sin® <0), the short-wave radiation

is set to zero, ey, © 0.

The solar radiation is reduced by cloud covers. Approximately this

is written

de = agg, (0.35+0.65 (1-C/8)) ... (3.18)
where der, is the radiation from a clear sky, Bq. (3.14)

C is the cloud cover in eighths.

The Equation (3. 18) is probably correct only for the mean value over
a day, while the short term fluctuations are much greater when clouds

intermittently pass the sun.
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The incoming short-wave radiation is approximately contained in
different wave-length bands so that 50 % of the energy flux lies
between 350-700 nm, 25 % between 700-1200 nm, and 25 % between
1200 and 4000 nm (IL.yons and Stoiber, 1959, Pounder 13965).

Some of the incident light is reflected from the snow or ice cover,
The absorbed radiation is for an optically rough surface (snow,

snow ice, candled ice etc) calculated according to

qg = (1-1) g Lo (3.19)
where qde is the incident radiation, Eq (3.18)

r the reflexion coefficient or albedo

In Table 3.1 below are rough values given for the coefficients of

reflexion. More details are given by Bergdahl (1977).

Table 3.1 Proposed coefficients of reflexion for ice and snow surfaces
Wave-length bands (nm) Snow Snow Ice

350 - 700 0.9 0.05

700 - 1200 0.7 0.05

1200 - 4000 0.6 0.05

Fo ' clear ice the direct light can be calculated as reflected against

a rolished surface. If the angle of incidence is 0, and the angle of

1
re:lexion is B, the coefficient of reflexion is calculated as
2
1 sin2 (Otl—ﬁ) tan® (a]-B)
r=s + ... (3.20)

sin2 (0¢1+B) ta112 (061+B)

where sin 0, = 1.31 sin B

0< B <oy

o, =m/2-q

0 ig the altitude of the sun. For notations, see sketch

Figure 3. 1.
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Figure 3.1 Definition sketch of angles.

For the diffuse light the coefficient is set to 0.02, and consequently

the absorbed radiation flux for a clear -ice surface can be written

qg = ((1-r) asina+0.98 b)(0.35+0. 65(1-C/8)) ... (3.21)
where a =0.9 kW/mZ

b =0.1kW/m?

C = the cloud cover in eighths

r = the reflexion coefficient according to Eq. (3.20)

3.4 Approximations of the Energy Balance

For stationary conditions the energy balance equation can approxi-

mately be written

Ay, ~d. tag-ap tag ... (3.22)
where A is energy flux used to melting
q the total convective heat transfer BEq (3.7)
c
qy atmospheric long-wave radiation flux, Eq (3.13)
ap long-wave back radiation flux, Eq (3.8)
qq net short-wave radiation flux, Bq (3.21) or (3.19

When the surface temperature of the ice is below the freezing point,
the melting term A only consists of the freezing at the lower
boundary of the ice, where the temperature is 0°C. Then the melting

term can approximately be written
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4y, = - A@/h .. (3.23)

where A is the conductivity of the ice
0 the surface temperature (OC)

h the depth of the ice cover

The assumption is approximately true if the growth of the ice
cover is not too fast. In the discussion in this paragraph we.

will further disregard the solar radiation flux dg-

In Figures 3.2 solutions for the temperature profiles in ice covers of
different thickness are shown for two slightly different stationary
weather situations. Only the cloudiness is different between the

gituations a) and b).

water

Figure 3.2 Temperatures in ice covers free from snow:

air temperature a) -10°C b) -10°C
wind speed 2 m/s 2m/s
vapour pressure 300 Pa 300 Pa
cloudiness in octas 0/8 8/8
short-wave radiation 0 0

(night conditions)
Depth of the ice covers 0.10, 0.20 and 0.40 m.

Now, there are mainly three different approximations proposed for the
calculations of ice pressures let aside the short wave radiation:

1. Equal surface and air temperature for example Drouin

and Michel (1971), Rose (1947), Brown and Clarke (1932).
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2. A heat exchange coefficient defined by the simple
relation (1.3) g = A < A8 or possibly with A as a

function of wind speed,for example Lindgren (1968).

3. Some initial mean temperature at semi-stationary
conditions before the sudden rise of air temperature:
Sovietic norm SN 76-59, (1959) Qi =0.35 Qa.

Approximation 1_ 8 =6,

For the stationary cases considered in this paragraph it is seen that
the approximation 1 means underestimates of the temperature in the
ice for three out of the six cases in Figure 3.2, and overestimates

in two cases. Only one case is properly represented. For two of

the cases the potential for temperature rises is thus underestimated
and this coincides with the thickest ice covers 0.40 m. The approxi-
mation 1 also causes overestimation of the rate of change of tempera-
ture, why the suitability of the approximation for thermal ice pressure

cannot be evaluated from this stationary case.

Approximation2 ~ q = A(6, - 6)
If the value of the heat-exchange coefficient in the approximation 2 is
evaluated by Equation (3.24) below, its value will vary considerably

for the same wind speed and air temperature. See Table 3.2. On the
other hand, if the surface temperatures are solved from Equation (3.24)
with A according to Equation (3.25a) (u = 2 m/s), the temperatures
would be overestimated for all the cases. See Table 3.3. The poten-
tial for temperature rises is thus underestimated, which would result

in too small figures of ice pressure.

If the thermal gradient in the ice is considered linear, Approximation
2 gives

-Ao/h+A(0,-0)=0 ... (3.24)

Here A= 2,24 W /m °C thermal conductivity of ice

h = ice thickness
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i

ice surface temperature

[=2
1

air temperature

>
1

heat exchange coefficient

Table 3.2 The heat exchange coefficient A in Eq. (3.24) evaluated

for the six hypothetical cases of Figure 3.2.

Ice thickness (m) Cloudiness Coefficient A (W /m2 OC)
0.10 0/8 50. 9
8/8 35.7
0.20 0/8 ®
8/8 100. 8
0.40 0/8 -28.17
8/8 -60.0

Table 3.3 Surface temperatures of the ice cover for the three different
ice thicknesses calculated with A according to Eq. (3.25), with
q according to Eq.(3.26), and with the total energy balance.

Surface temperature (OC)

h Cloudiness BEq. (3.25) BEq. (3.26) Energy balance
0.10 0/8 b) -6.0 -6.17 -6.9
8/8 a) -5.5 - -6.1
0.20 0/8 b) -7.5 -8.4 -10.0
8/8 a) -7.1 ——- -9.0
0.40 0/8 b) -8.5 -9.6 -12.4
8/8 a) -8.3 ——- -11.0

The method might not be as insecure as indicated by the hypothetical
example above. Field measurements by the author reported in Appendix
II gave A = 9.8 W/(m2 ©C) with the standard deviation toow /(m2 °c)
for no wind. Field measurements by Wold (1957) evaluated in the same
way by the author gave A = 12.0 5.2 \?V/(m2 °C). Extensive measure-

ments onwet surfaces of heated roads at neégative air temperatures by
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Magnusson (1977) gave total values for wet surfaces of

16.0 (140,34 u) W/ (m2 °C) overcast

2
>
1

b) A =22.5 (1+0.24u) W/ (m? °C) clear sky

u<4.5m/s at elevation 2 m,

The coefficient of u has been recalculated for the elevation 2 m
by the author. See Table 3.3 for estimated surface temperatures.
The heat flow was found to be well estimated at overcast sky, but
the deviation was great for clear sky for the case of which the
radiation is important even if the temperature difference is small.
For this latter case a better approximation was found by using an

expression of the type

q=a(l+bu)(e, -6)-q, .. (3.26)
with

a=22.5W/(m® °C)

b=0.24 s/m

q, = 40 W/m2

The result of calculations of the surface temperature using
Eq. (3.26) is also shown in Table 3.3. The estimate is better

with a clear difference between clear sky and overcast.

Approximation 3 Gi =0.35 Ga

The approximation that the mean initial temperature is 0.35 Sa
means that with a linear gradient the surface temperature is
6 =0.7 Ga. For all the cases in Figure 3.2 then the surface
temperature would be -7 °C which accordingly lies in a probable

range but does not account for extreme situations.

3.5 Equilibrium Temperature

If the solar radiation is excluded and the expressions (3.7), (3.13)
and (3. 8) for the total convective heat transfer, long-wave sky
radiation, and the long-wave back radiation respectively are in-

serted, Equation (3.22) gives



q, = f [ (e -e) +Y(6_-6)]
vee ot (14 kC?) e o1t .. (3.27)

Further the linearization (3.9) is performed:

ay, = fw [(e -e) + V(6 -0)] +

+ec4T03[ e (1+k c2) T [4+6,)- (T [4+6)] . (3.28)

Finally, the saturation vapour pressure is approximated by Eq (3.3)
which gives a,, asa linear function of the surface temperature and
the weather variables: wind speed, air vapour pressure, air tempera-

ture atmospheric emissivity, cloudiness.

Now, it is possible to define an equilibrium temperature of the ice
for which there is no net energy transport, that is, at zero gradient

in the ice cover,

0=1fwle -a (1+b8 ) +¥(6,-6 )]+
+e0 47 [€ (14k c?) (T /4+8,) - T [4+6 ] ... (3.29)

= [ i
And thus Ge f (u, e (‘)a, ~ C). The subtraction of 0 from A

now gives

a4, =t [an(e -6) + y(ee_e)]+ 504T2 (0,-6) =

= (8,-0) [t(w) (ab+y) +e0 4T ] ... (3.30)

The expression within the parentheses is a kind of coefficient of
heat transfer, but through the introduction of the equilibrium
temperature it does not involve any rough approximations as does
Ay = A(Ga—e). The coefficient of Eq. (3.30) can be reached al-
ternatively by derivating Eq. (3.28) with respect to 8. Its value
is, for the functions given here and if the wind-speed function is

supposed to be independent of the ice temperature:
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aqm/aeéAe=a(1+bu) ... (3.31)
where

a = 10.1 W/(m? °C)

b =

0.26 s/m

The use of the energy balance equation in the form of Equation (3. 30)
orq = Ae (Qe - 8) is, of course, equivalent to using the original
expression. The heat exchange coefficients A and Ae must not be

mixed up.

3.6 Calculation of Non-Stationary Temperature Distributions

The non-stationary temperature distributions or the rate of change of
temperature in the ice cover at different depths can be calculated by

several methods.

be used for the case of a prescribed surface temperature which is
demonsirated in Appendix I-4 to I-8. Such a solution was applied by
Drouin and Michel (1971).

b) Other types of_ezg_ailgiggs_i_n__c_h_a_r:g_c_tgr_is;ti_c_f»yg@@_gg can be used
for special cases, like the calculations performed by Monfore and
Taylor (1948) for an application with a constant heat transfer coeffi-

cient. See Appendix I-8.

c) I_E_}g_)_l_i_c_i’t_(_i_if_fgr_;egge__r_n_gt_h_o_cl_g are mostly more convenient to use.
One method is the Schmidt method used by Rose (1947) and by Lindgren
(1968) which is rather conveniently calculated by hand or graphically.
For calculations of long series, however, explicit difference methods
are rather expensive to use if one wishes to have good resolution near
the surface, as the methods demand time steps proportional to the
geometrical differences squared in order to retain numerical stability
and sufficient accuracy. Different types of boundary conditions and
internal heating by penetrating solar radiation are easily incorporated

in the computer based schemes.
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Crank-Nicholson s scheme the problem of stability is overcome as

such a scheme is unconditionally stable for internal points. The length
of time and length differences can be chosen with respect only to the
needed accuracy of the result. Boundary conditions can cause instability,

which must be observed for every new application.

Below the equation of thermal diffusion along with initial temperatures
and boundary conditions are presented. Then follows a short description

of the implicit method used by the author.

The equation of thermal diffusion is used to describe the rate of change
of temperature within the ice.

00 2”0 p (x,t)

5 < 5 . (3.32)

g

where
t is the time
the vertical coordinate
the temperature at (x,t)
coefficient of thermal diffusion
2120 J/kgK the specific heat capacity
the bulk density

the effect source per unit volume at (x,t)

U o AP © X
1]

- )\/Cp o ... (3.33)

where A is the specific thermal conductivity.
The bulk density p is given the following values

snow 250 kg/m3
snow ice 890 kg/m3

columnar ice  916.8 kg/m3

The thermal conductivity is set to the following constant values for

the three used materials
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Snow 0.3 W/mK
snow ice 2.14 W/mK

columnar ice  2.24 W/mK

The long-wave radiation and the heat transfer at the upper surface of
the ice are included in the source term p. The short wave radiation
must be separately considered as it is absorbed not only in the upper

surface of the ice but throughout the thickness of the ice cover.

For an internal layer at the depth x from the upper surface of the ice

the quantity p(x,t) is absorbed

kex . (3.34)

p (x,t) = qsken
where dg is the solar radiation that penetrates into the ice,
equation (3.19) or (3.21). ag is a function of time.
the time
x depth in the ice cover

k absorption coefficient

The used absorption coefficients for the three different materials and

the three wave-length bands are given in the table below.

Table 3.4 Absorption coefficients k(m—l) given for different

wave-length bands

wave length (nm) 350-700 700-1200 1200-4000
Snow 120 200 10 000
snow ice 30 50 10 000
columnar ice 0.2 2 5 000

For the uppermost layer of the ice the source term is now written

p(0,1)dx = q -q,*aq, +a ke dx S (3.35)

where ¢ is the absorbed long wave radiation from the

atmosphere, Equation (3.13)

de the total convective heat transfer to the surface,
Equation (3.7)

a, emitted long-wave radiation, Equation (3. 8)
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At the lower boundary of the ice heat is supposed to be taken only
from the freezing of water. The heat diffusion in the underlying
water is thus neglected, and the source term at the lower boundary

is written

kxdx+Lp%}% ... (3.36)

p(h,t) dx = dg ke
where h is the thickness of the ice cover

I, = 3.34 - 10° J/kg is the specific heat of fusion

p = 916. Skg/rn3 the density of ice

The equation of thermal diffusion is solved numerically with the help

of the implicit difference scheme described below.

Difference Scheme

The temperatures in the ice cover are calculated by the help of an
implicit difference scheme (Crank-Nicholson). The implicit scheme
was chosen so as to be able to make a rather free internal division
into intervals, as this scheme gives unconditionally stable calcula-
tions for the internal points. The boundary conditions at the upper
surface introduced instability, however, which was overcome by

giving more weight to the later timestep. The weight given is B = 0. 6.

The equation of diffusion

“ng: 39_29_ ... (3.37)
ox

is fundamentally approximated by the difference equation
0 (x,t+ At) =0 (x,1)

At

a2 [(1-8) {0 (x+ax,t) - 20(x1)+0(x-Ax, 1))
Ax

+ B {0 (x+Ax, t+At) -20 (x, t+AL) +0 (x - Ax, t+At) }] ... (3.38)
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where the searched temperature (%, t+At) is a function of known

temperatures at the point of time, t, and of unknown temperatures
in the neighbour points, x + Ax and x-Ax, at t+At. The equation
(10. 2) must thus be solved for all points in the ice simultaneously

and this is done by a double sweep method (Gauss elimination).

If the weight B = 0 is given to the later time step Equation (3. 38) will
give an explicit scheme where the searched temperature is given by

known temperatures directly:
0 (x, t+At) = 0(x,t) +

+ a2l {0(xtax, 1) -20(x,1)+0 (x- Ax, 1) ) . (3.39)

Ax

If further aAt/sz = 1/2 the Schmidt method will emerge:

0c, t+A1) = 210 (x+A%, 1) +0 (x - Ax, 1)) ... (3.40)

In this last method the searched temperature is simply given by the
arithmetic mean of the temperatures in the neighbour points at the

previous time step.

The diffusion equation has not the simple form (3.37) but contains
also the source term, p, due to absorption of short-wave radiation

in internal points (Eq. 3.34), as well as the energy input to the upper-
most element (Eq. 3.35) and the heat of fusion at the lower boundary
(Eq. 3.38). A detailed description of how these source terms can be
incorporated into the implicit difference scheme is given by Bergdahl

and Wernersson (1978), and shall not be repeated here.

The system of equations that develops, when all difference expressions

for the elements are gathered,is of the type

A’I’2 = BT1+ D ... (3.41)
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where A and B are tridiagonal matrices

T. the column vector of new (unknown) temperatures
Qi(t'i-At), i=1,2....

T. the eolumn vector of old (known) temperatures
0, (1), i=1,2....

D vector of terms that do not depend on ice temperatures
but on the weather conditions only.

The right hand side of Equation (3.41) consists of known quantities only
why C = BT1 +D can be calculated and finally the double sweep method

gives the solution:

T, = A~ C ... (3.42)

The accuracy of the used scheme can for internal points be estimated by
expansion in Taylor series. If first B is neglected it is found that the
difference approximation of the right hand side of the equation of thermal

diffusion (10.1) has a truncation error of
Ax? 12 - 0%0 Jox* + 0 (ax? ... (3.43)

and the approximation of the left hand side has a truncation error of

2

At/2 - 8%0/0x% + O(AL?) ... (3.44)

The errors due to B ~ 0.5 is also of the same order as (3.44).

It can be shown by the von Neuman criterion that the used implicit scheme
is unconditionally stable for all choices of length and time intervals. It
proved, however, to be necessary to put slightly more weight ( B =0.6) on

the later time step,because of problems introduced at the upper boundary.



57.

3.7 Comparisons between Some Solutions

Complete case without and with solar radiation. In Figure 3.3 solutions
for two cases without and with solar radiation are compared. The initial
air temperature is -30°C and rises as a single cosine half wave to 0°c
in 5 h. The ice thickness is 0.4 m. The wind speed is constant u = 2 m/s,
the sky is clear C = 0, and the vapour pressure is 80 % of the saturation
vapour pressure of the air. The first case, continuous curves, is for
night condition starting at 18.00 Dec. 21. The second case, dashed
curves, takes solar radiation into-account, for which the latitute is set

to 60°N and the time is the vernal equinox. This latter case starts at

6.00 March 21.

The difference between the two cases is remarkable and the faster rate
of change of temperature for the spring day is reflected in the calculated
pressures. The maximum pressure is reached at 13,00 (7 h after start)
and amounts to 435 kN/m. The maximum pressure of the winter night
is calculated to 374 kN/m and is reached 4. 00 (9 h after start).

Oh

Temperature (°C)
_29

8

(w) yideg

Figure 3.3a Temperature profiles in an ice cover for a case
without solar radiation, continuous curves, and
for a case with solar radiation, dashed curves.
The same course of air temperature, air vapour
pressure and wind speed.

a=1.15-10"% m?/s.
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Snow cover

In Figure 3. 3b temperature profiles are shown for an ice cover
covered with 0.20 m of snow. The temperature again varies
along a half cosine wave from -30°C to 0°C in 5 h. The starting
time of the example is 06. 00 March 21 conditions as before: clear
sky, wind 2 m/s and vapour pressure 80 % of saturation vapour
pressure. It is well illustrated that the temperature char;ge in the
ice is much smaller than in the cases with ice covers free from
snow, in spite of the fact that the coefficient of thermal diffusion
of the snow is assumed rather high 0.57 - 1078 mZ/s. The total
maximum pressure amounts to 142 kN/m and is not reached until
35 h after the start of increase of temperature, that is at 17. 00 the
next day. In reality it is very likely that the night temperature in
between is a little lower, especially at the considered clear and

rather calm weather.

Oh 3h >5h
Temperature (°C)
. 2 i
» : ; %
10h
Snow 5h 101
20h

ice

105

06

Figure 3.3b Temperature profiles in a snowcovered ice cover
for a case with solar radiation. The same
ambient conditions as for the dashed curves of
Figure 3. 3a.
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Different boundary conditions

In Figure 3.4 temperature profiles for the complete case above without
solar radiation, continuous curves, are compared to profiles received
with a coefficient of heat transfer A, dashed curves, and with the air
temperature equal to the surface temperature, dotted curves.

A =33.3 W/m2 according to Equation (3.25) for u = 2 m/s.

It is clearly seen how exaggerated the assumption is, that the tempera-
ture of the ice surface should be equal to the temperature of the air.
The use of a heat exchange coefficient is better. Coincidentally its
initial steady state profile is equal to the one of the complete case.

The increase and the rate of increase is however greater. This is
partly caused by the fact that the final linear profile of the complete
case has an ice-surface temperature of -BOC, while it is 0°C for the
other two methods. If the final air temperature is +4°C or the weather

turns windy this difference will partly vanish.

Temperature (°C)

NG SRt 1010 o
. . N\ I o D
. \ \\ | - °
'.-,"".. Q \‘i o
SERNRN lo20 3
.'.'.’n .:\'.\ -
NN
Na
.. \\ b 030

040

Figure 3.4 Temperature profiles in an ice cover for the
complete case of Fig. 3.3, continuous line,
for a case with A = 33.3 W/m2 O¢, dashed
line, and for a case with air and ice surface
temperature equal, dotted line.

a=1.15.10"° mz/s.
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Di fferent methods of calculation

In Figure 3.5 temperature profiles are shown that are calculated

in three different ways for the case with the ice surface tempera-
ture rising from -30°C to 0° along a half cosine wave. The
different methods are the Fourier series solution Equation (I-47)
and (1-48) (Appendix I), continuous line, the Schmidt scheme,
dash-dot line, and the expression of Drouin and Michel, dashed line.

If one compares the profiles for the same points of time, it is seen
that the Schmidt scheme and the Fourier series solution give prac-
tically the same results, while Drouin and Michel s expression lags

behind. The Fourier series gives the most accurate profiles.

Temperature (°C)
Oh 2h 3h 5h

1010

) YideqQ

1020 2

+0.30

040

Figure 3.5 Temperature profiles calculated in three different
ways for the same boundary condition, ice surface
temperature equal to air temperature. Continuous
line: Fourier series solution. Dash-dot line: Schmidt
scheme. Dashed line: Drouin and Michel s expression.

a=1.15-10"% m?/s.
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The approximation used by Drouin and Michel is constructed by adding
the solution for a periodic fluctuation in an infinitely thick ice cover

(Eq. I-41) to the initial linear gradient:

0(x,t) = Qo(l—x/h)+A e~kX (1 - cos (0t - kx))
7 ... (3.45)

0(x,t) = Go(l-x/h) for t <kx/w

there QO is the initial ice surface temperature
X the vertical distance from the ice surface
h the ice thickness
k the attenuation factor k = (W /2&)1/2
w the angular frequency

the coefficient of thermal diffusion

> ®

the amplitude of the surface variation

The equation is a good approximation for cyclic changes of the ice surface
temperature if the ice cover thickness is greater than 0.4 m for periods
up to around 24 h. For cases where the temperature rises from QO to
QO+2A along a half cosine wave and stays there (Appendix I-7), it gives
far too low estimates of both the magnitude and the rate of change of

temperature in the ice cover,

The total increase of temperature is given as 2A exp (-kx) while it
asymptotically attaing 2A (1- x/h). For cycles of 5 h, 10h and 24 h this
means 9, 34 and 50 % respectively of the correct value. At the end of

the 5 h shown in Figure 3.5 the temperature increase according to Equa-
tion (3.45) is 78% of the correct value at x = 0.25h and 51 % atx = 0.5 h,

The used expression is probably the reason why the ice pressure per unit

length as calculated by Drouin and Michel is inversely proportional to the
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time of increase (T/2). (See Figure 2.10). The attenuation with depth
exp (-kx) = exp (—\[ r/aT - x) ... (3.46)

is namely relatively more pronounced for shorter periods why the under-

estimation is most severe for fast changes.

One of Rose s (1947) solutions has alsobeen checked by the Fourier series
solution. See Figure 2,2. The agreement is excellent. The graphical
method proposed by Lindgren (1968) takes the surface thermal resistance
into account, and should be preferred because of that. In Figure 3.6
below, a comparison is made with an explicit difference solution. The

difference between the solutions is negligible.

Temperature (°C)

Oh 2h 3h 5h
30 ?O ~]p 0 0
|
\ |\ // 101 o
NS | @D
\ 3
>
10273
103
04

Figure 3.6 Temperature profiles calculated by the graphical
method proposed by Lindgren (1968) 2aAt = Ax2,
continuous line, and with a numerical difference
solution 6aAt = Ax2, dashed line. Ax~0.05 m.

A=333W/m?°%. a=1.15-10% m?/s.
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Different Values of the Coefficient of Thermal Diffusion

In Figure 3.7 temperature profiles are shown for a case calculated with

the coefficient a = 1.15 - 10~

6

mz/s and with a = 1.36 - 1

06 mz/s.

The former value has beén used by Bergdahl and Wernersson (1978) and
the latter value by Drouin and Michel (1971). The value 1.15 - 10"6 mz/s

corresponds to the diffusivity at 0°C and 1.36 - 10

-6

mz/s to the diffusi-

vity at -20°C. For the rather extreme case the difference of temperature

change is a maximum of 16% at x = 0.5h at the end of the rise (5h). The

average difference over the depth is approximately only a half of the maxi-

mum.

to the truth.

An averaged coefficient of 1.25 - 1070 mz/s might be close

It might then be concluded that the fault amounts to

around 5 % if either of the two values 1.15 or 1.36 mz/s is used.

Temperature (°C)
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\ { rid
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&
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Figure 3.7 Temperature profiles for a case calculated

with two different thermal diffusivities
a=1.15.10"8 m?/s, continuous line, and
a=1.36-.10-6 m?2/s, dashed line.
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3.9 Comparisons with Measurements

In Appendix II comparisons are made between measured temperatures
in a lake ice cover and temperatures calculated with an explicit
difference method. The heat transfer coefficient was set to

A =10.4(1+0.40u) W/(rn2 °C) for u<s m/s, which gave rea-

sonably good agreement.

In Appendix IIT comparisons are performed for profiles measured
in a laboratory experiment for which it proved necessary to use
A =14 W/(m? ©

ments and calculations.

C) in order to get good agreement between measure-

3.10 Conclusions

The most important conclusions to be drawn from this chapter are

as follows.

In spring solar radiation has a great influence on the rate of change

of temperature even on the latitudes 60 to 70°N.

The energy balance of an ice cover is too complicated to allow the ice
surface temperature to be set equal to the air temperature. Such a
practice would lead to overestimates of the rate of change of tempera-
ture. One should either use some method based on the total energy
balance or a method, which takes into account the surface thermal

resistance.

Any correct analytical, numerical or graphical method may be used
for the calculations. The calculation of the pressure does not demand
great accuracy, only that the temperatures of the profiles are given

for around every 5 cm.

The choice of values or functions for properties like the coefficients

of thermal diffusion, conductivity, heat transfer or wind-speed function
ete. is léss important than the choice between different boundary con-
ditions. If reasonable assumptions are made faults in the rate

of change of temperature caused by different choices of properties

may not amount to more than 10 %.
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4. STRESS-STRAIN RELATIONSHIPS

It has been acknowledged by inter alii Glen and Stephens (1958), Drouin
and Michel (1971), Ramseier (1971), and Jumppanen (1973) that linear
visco-elastic models give an unsatisfactory description of the stress-
strain relationship of ice. Some fundamentals on the deformation

behaviour of ice is given by Bergdahl (1977).

4.1 The Proposed Model

Here a rather simple model is proposed,and it has been used for the cal-
culation of design ice pressure by Bergdahl and Wernersson (1978). The
model is composed of a linear spring in series with a nonlinear dashpot.

See Figure 9.4.

E K,D,n
S 5o 1 o0l
= A F A
Linear spring Nonlinear dashpot

Figure 4.1 The used nonlinear rheological model. E is the
elasticity modulus. K, D and n is defined by
Fquations (4.1) and (4. 3).

The differential equation of the model is

é=_1E_6+ KD o" (4
where K and n are functions of strain rate and temperature and E and

D functions of temperature.

The modulus of elasticity is based on the results by Lindgren (1968) and

Gold (1958) whose results are in reasonable agreement.
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E =(1-c¢0)-6.1 GPa ... (4.2)

oc-l

where c = 0.012
The thermal activity in ice is reflected by the diffusion of whole water mole-
cules within the solid. The diffusion coefficient D, which is used as a

parameter in Equation (4.1), is written

D= Do exp (—QS/RT) ... (4.3)
where D_ = (9.13 ¥ 0.57) - 1074 m?/s

QS = 59.8 kJ/mol, the activation energy for self diffusion

R = 8.31 J/(mol - K), the universal gas constant

T = the absolute temperature

The values of DO and QS are taken from Ramseier (1967 a,b) and seem

to be very firmly based.

The basis for the values of K and n is the experiments by Drouin and
Michel (1971) on ice monocrystals loaded parallel to the basal planes.
The constant strain rate tests have been evaluated for the maximum stress

when 6 =0 of Equation (4. 1). The result is

~-16 -2 —n)

K=4.40 - 10°"° (m™ Pa

i

]

n 3.651

for the temperature compensated creep rate range

7 9 -2

2-100 < ¢/D <8-10° m
In the calculations the coefficients are used even below this range. For
sixteen years and five Swedish lakes the upper limit was not exceeded

once (Bergdahl and Wernersson, 1978).

The proposed model is rather close to the one used by Drouin and Michel

(1971). This latter model can be written

. ) m
£ =f%;+2b(no+6(s-§—))(9ﬁ) o (4.4)

a
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where b, B , n,, m are constants, p is a function of temperature and
strain rate. Obviously Ea corresponds to E, 2b (n0+ B(e -0 /Ea)) to
K, and p to D.

The most apparent difference is that the creep rate is proportional to
the viscous deformation (€ - ¢/ Ea ) which should be avoided in order
not to make the use of the model too difficult. See further Bergdahl (1977).

Another difficulty is that the apparent modulus of elasticity is given as

£ 0079 ovp (1335/T) .. (4.5)

E_ = const -
a
which makes it impossible to calculate the pressure for cases where
€ = 0, which must be very common when the temperature in the upper
part of the ice cover has reached the melting point temperature. Some

extra condition must be added for this case.

Both models must be integrated numerically,and because of the unlineari-
ties the result depends on the chosen time steps, but the complex

model Equation (4.4) is more sensitive. Its parameters are by Michel

and Drouin given for a numerical time increment of 3 minutes. The correct-
ness of a calculation with the simpler model can easily be checked for the

maximum pressure, for which ¢ =0and o max - ( ?—:/KD)I/D.

The advantages of using the simpler model seem great, and the experimen-
tal basis as concerns biaxial thermal pressure in an ice cover is not broad
enough to justify the use of the more complicated one. Remember the basis
for using the same constants for a biaxial pressure in an ice cover as for
ice monocrystals in uniaxial compression. The maximum pressures were
compared between uniaxial and biaxial experiments performed by Lindgren

(1968) and Drouin and Michel (1971).See Paragraph2.11. The conclusionwas:

In nature it is not possible that all crystals in an ice cover have a vertical
orientation. For this reason, the determination of thermal ice pressure
in ordinary (not seeded) columnar ice covers for a biaxially restricted
-case might be based on the results of maximum pressures obtained for
uniaxially restricted specimens (monocrystals) deformed perpendicular
to their optical axes. For seeded ice covers or columnar ice covers with
horizontal optical axes (S2) the pressure was found not to exceed the

pressure in ordinary (S1) ice covers.
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4.2 Pressure Calculations

The calculated temperature profile can be used to calculate the
thermal ice pressure for each depth interval separately. The
pressures are then integrated over the depth of the ice which gives

the total ice pressure (N/m).

The rate of deformation is the coefficient of linear thermal expansion

times the rate of change of temperature

Q.

€
t

€ = =0

|

= 08 ... (4.8)

[oF
Sk

which with Equation (4.1) gives

o do =de = (do/dt E + KDo ) dt (4.7

This is written on difference form as

_ n n, At
ag wO'k'*']'BIn(AE— (DkKO'k +Dk+] 0k+1 )—z—} (4:8)

k+1
where Ok is the stress at the point of time t = kAt
is the stress at t+At = (k+1) At
-0, =AC

Okr1

k+1 k
E_, elasticity of the ice for 6 = (8(t) + B(t+At)) /2
D, is the self diffusion for 8(t)

o)

k
1 -
Dk+1 —_— O(t+At)
The equation is of the n:th degree of the unknown O i and because

of this unlinearity, a special iterative procedure is used to solve it.
The procedure is described by Bergdahl and Wernersson (1978). The
coefficient of thermal expansion is set to o=4,83 - ]0“5 OC_1 in the

calculations.

The stresses are integrated over the depth of the ice cover, and if
the integrated ice pressure is greater than an elastic buckling load,
the thermal ice pressure is set to that lower value. The limiting

load is set to

S

Pb=2\/DWgEh3/12(]-\)2) . (4.9)
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where
DW is the density of water
g the earth acceleration
E the elastic modulus of of ice at the mean depth of
the ice cover, Eq. (4.2)
h the thickness of the cover

V=0 Poisson s modulus

Equation (4. 9) may be criticized because it does not take into account
the excentric loading (Assur, 1959),and the buckling should be calcu-

lated as viscous or plastic (L&fquist, 1954).

For the extreme cases calculated by Bergdahl and Wernersson (1978)
the ice covers were too strong to buckle according to Equation (4. 9).
Note, however, that there always are zones of weakness in an ice
cover, or that pressure ridges can develop along cracks where the

equation is not valid,

4.3 Comparisons between Some Models

Below comparisons are made between some models described in

Chapter 2 and the proposed model. The comparisons are made for

a) deformation at constant load
b) stress at constant strain rate

c) stress at constant rate of change of temperature

Deformation as a function of time

In Figures 4.2a and b the deformation as a function of time for
constant load is drawn for Royen’s (1922), Assur s (1959), Lindgren’s
(1968), and Jumppanen's (1973) models and for Equation (4.1). The
constant stresses are 1.0 and 2. 0 MPa respectively. It is seen that
for 0 = 1 MPa Royen's and Jumppanen s models give much greater
deformation than Assur s and Lindgren’s models, while Eq. (4.1)

describes a much stiffer behaviour.

For o= 2 MPa the picture is quite different with the yield according
to Equation (4.1) a little greater than according to Lindgren. Assur’s

model is now the stiffest while Royen’s and Jumppanen”s still show
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the greatest yield. The stiff or order is caused by the fact that the
creep element in Equation (4.1) is proportional to 04, in Lindgren's

model to 0’2 and in Assur s too.

€(%0) €1%00)

1.5 3.0
Jumppanen _./ Jumppanen
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e .
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‘/ P s .~ Lindgren
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L / .
/ // e Assur ] - Lo Assur
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Equation (41}
0 0
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Figure 4.2 Deformation asa function of time for the
constant stresses
a)od=1MPa and b) 2 MPa.
Ice temperature - 10°C and two-axial
deformation.

Stress for Constant Strain Rate

In Figure 4.3 the stress as a function of time for the constant strain
rate 1.45 - 1()_8 s_1 is drawn for the temperatures -10°C and
-20°C. Only the proposed model and Drouin and Michel s model are
compared in this figure. It is seen that Drouin and Michel s model
has a much smaller slope at the origin which depends on the low
modulus of elasticity used by them. See further below. The same
magnitude of pressure is, however, reached after 20 hours of de-

formation.

Another interesting property is that Drouin and Michel s model
gives a decreasing pressure after the maximum is reached. The

proposed model reaches rather fast a constant pressure which is
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maintained indefinitely long. So does the model proposed by
Assur (1959), while Lindgren's model gives a slowly increasing

pressure with time, because the viscosity modulus increases

with to' 25.
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Figure 4.3 Stress as a function of timeafor 1constam’c
rate of strain €= 1.45 . 107" g™ ".

a) at -10°C, b) at -20°C.
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In Figure 4.4 the stress in an ice plate subjected to different constant
rates of increase of temperature is shown as a function of time accord-
ing to Monfore’s, Drouin and Michel s, and Lindgren’s models, and
according to Equation (4.1). The ice plate is completely restricted in
its plane and the rates of change of temperature are 1, 2 and 2.5 0C/h
in Figures a, b and ¢ respectively. The initial temperatures are

chosen so as to get the final temperature 0°c.

The most apparent feature is that Monfore s original method gives
much smaller pressures than Lindgren’s or the proposed model.
This depends primarily on the fact that his method is based on uni-
axial pressure. If Poisson’ s modulus is assumed to be 0.36 his

method would give the shown "corrected' curves.

Also here, it is evident that Drouin and Michel s model gives quite
another slope at the origin. This is again caused by the fact that
they use an apparent modulus of elasticity that is nearly one order
of magnitude smaller than what is ordinarily expected for ice. For
-10°C it is given to 1.5 GPa, while for example Equation (4.2) gives
6.8 GPa. The pressures in the experiments of Appendix III cannot

be explained if the lower value is used.

It should also be pointed out that Monfore s and Drouin’s curves
end after a certain time. Monfore s curve ends because he did not
sketch it longer than 1.25 times the time from the start to maximum
stress. Drouin s curve ends, because Equation (4.5) gives Ea:O
when the temperature has become constant 0°c. Lindgren”s model

or the proposed model have no such limitation.
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4.4 Comparisons with Experiments

In Appendix III the stresses from two biaxial  experiments conducted
by the author are compared to stresses calculated with Equation (4.8).
Here comparisons are made for two arbitrary experiments from Drouin

and Michel (1971) and for two of Lindgren’s experiments (1968).

The author s own experiments give the same order of magnitude as the
proposed model Equation (4.1). See Figures III-11 and 12. The experi-

ments are, however, not of very good quality.

The fit to the first shown experiment Figure 4.5a by Drouin and Michel
is very good until the ice plate fails to sustain the load from the
confining ring. If the corresponding deformation was forced on an
intact plate the stress must amount to 1.7 MPa, In Figure 4.5b the
calculated curve gives a higher stress level right through the experi-
ment. The slope at the origin is still in good agreement why at least

the elasticity of the ice is accurately given.

The experiment shown in Figure 4. 6a performed by Lindgren gives a
nearly perfect agreement with the calculated pressure, while again
the theory gives too high stress level in the experiment shown in
Figure 4. 6b.

The proposed model Equation (4.1) seems to give an upper bound for
the thermal pressure reached in the plate experiments. In a thick

ice cover such high pressure levels could be reached more often, but in
in a vast ice cover there ought to be other factors that limit the press-
ures.
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4.5 Conclusion

The proposed rheological model is capable of reproducing the
course of stress for a given course of deformation or tempera-
ture, until accelerated or tertiary creep starts. The model is
also rather simple to integrate although it is unlinear, if the
approximate expression Equation (4.8) is used. The resulting
accuracy matches the quality of the values on deformation

moduli, and thermal properties.
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5. CALCULATION OF ICE PRESSURE

5.1 Simplifying Assumptions

Below some examples will be given on thermal ice pressure, but first

some simplifying assumptions will be pointed out.

When the ice cover is contracted because of low air temperatures it is
supposed to crack up till it becomes free from tension. The cracks
are assumed to be completely filled with water that freezes to ice be-
fore the temperature rises again in the ice cover. The assumptions
are conservative, because a great many cracks will be dry and do not
extend to the underside of the ice cover. There may also be some
tension left in the ice cover. On the other hand, the water that freezes
in the slots can cause pressure that could partly compensate for the

tension and dry surface cracks.

When the ice cover expands it is supposed that there is complete
restriction from the shores. This is true only for steep shores.

Often the ice is seen to shove up on beaches or gently sloping rubble
shores. The pressure may also not be able to rise to its maximum
because of buckling or local defects in the ice cover. In the used
program elastic buckling is considered. This is much too conservative
but is supposed not to interfere with values on the greatest pressures
at ice thicknesses from a half to one meter. Leads and old cracks

are not considered at all.

The named simplifications are used in most methods for calculating
_ice pressures. The proposed method includes, however, a complete
energy balance and takes insulation by snow into account. The rheo-
logical model and temperature calculations are combined into one
numerical model that calculates continuous records of ice temperature
and pressure, if ice and snow thickness and weather information are

fed into it.

5.2 Stress Profiles for Three Cases

In Figure 5.1a and b calculated stress profiles are shown for the same

cases whose temperature profiles are illustrated in Figure 3.3a. For
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both cases the air temperature rises from -30°C to 0°C along a half
cosine curve during 5 hours, the wind speed is 2 m/s,and the air
vapour pressure is 80 % of the saturation vapour pressure. In case
5.1a, a midwinter eveningthere isno solar radiation, but case 5.7b
starts at 06. 00 March 21,a clear day. It is seen how the pressure
profiles penetrates faster in the ice cover subjected to solar radi-
ation. The maximum pressure in the ice cover subjected to solar
radiation is reached 7h after the start of rise of temperature and

it is 435 kN/m while the corresponding figures for the other case
are 9h and 374 kN/m. The pressure is 16 % greater for the spring
day than for the winter night.

In Figure 5.2 stress profiles are shown for the spring day in an ice
cover covered by 0.20 m of snow. The pressure that in this case
only amounts to 142 kN/m reaches its maximum 35 hours after start.
The stresses are only one third of the stresses in the corresponding

uncovered ice cover.

Pressure (MPa)

1.0 2.0
00 +
01
E
=
502
Max tolal pressure
Sh from starl
0.3 37 kN/m
0.4
Pressure (MPa)
0 1.0 20
¢]
0.1
E
£02
[s%
8
Max total pressure
0.3 7h from start
435KN/m
0.4

Figure 5.1 Stress profiles for ice covers subjected to the temperature
changes shown in Figure 3.3. Figure a) is for an ice cover
not subjected to solar radiation and Figure b) for one sub-
jected to solar radiation.
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Figure 5.2 Stress profiles in a snow covered ice cover
subjected to the same ambient conditions as
the ice cover of Figure 5.1b. Its temperature
profiles are shown in Figure 3. 3b.

5.3 Maximum Pressure, Comparison between Methods

In his paper ''State of research on ice thermal thrust' Drouin (1970)
makes a comparison between some methods of calculating thermal
ice pressure for two hypothetical cases: one with the ice cover thick-
ness 0.45 m, and the other with the thickness 0. 90 m, both subjected

to the same ambient conditions:

The initial air temperature is set to -40°C and is made to rise
2.8°C/n to 0°C. No solar energy is absorbed.

Drouin calculates the pressure with Rose” s theory, Monfore s experi-
mental result and the USSR norm SN 76-59. Kjeldgaard (1977) went
on calculating the pressures according to Drouin and Michel s (1971)
results for S1 and snow ice, and according to the latest USSR norm

SN 76-66.

The author has extended the calculations with pressure figures

according to the method proposed in this work.
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It should be noticed that all calculations are performed for a linear
rise of temperature, while Drouin and Michel s original graphs are
given for a sinusoidal rise. For Rose’s, Monfore s and Drouin and
Michel” s methods the surface temperature is supposed to be equal
to the air temperature. The temperatures in both Monfore s and
Drouin and Michel s method are calculated according to Drouin”s
method. The norm SN 76-59 is calculated according to Paragraph
2.2, while the norm SN 76-66 incorporates some wind-speed func-
tion for the thermal transfer. The proposed method is calculated
with the complete energy balance assuming clear sky, no solar
radiation, and vapour pressure 80 % of the saturation vapour press-

ure of the air.

In Table 5.1 below the results are listed. Notice that Rose’s,
Monfore s, and Drouin and Michel” s values are founded on uniaxial
cases. The values for S1 ice (monocrystals) are recommended for
biaxially restricted ordinary ice. The USSR norms and the proposed

method are supposed to be valid for biaxially restricted ice covers,

Table 5,1 Ice pressures for ice covers of two thicknesses
for the hypothetical conditions stated in the text.
A comparison between different methods.

Values of thermal
pressure kN/m

Ice thickness 0.45 m 0.90 m
Method Origin
Rose (1947) Drouin (1970) 47 86
Monfore (1954) - 222 232
SN 76-59 (1959) . 128 255
Drouin and Michel (1971):
S1 ice Kjeldgaard (1977) 330 390
Snow ice - 220 270
SN 76-66 0 m/s - 30 80
- 5 " = 310 440
e 20 " - 410 580
Proposed method:
Om/s 459 752
5m/s 502 830

20 m/s 531 829
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It is immediately noted that the method proposed in this work gives
much higher pressures than the others. At no wind and 0.45 m ice
cover it gives 40 % greater pressure than Drouin and Michel s
method. If a correct method were to be used for calculating the tem-
perature in Drouin and Michel s case, their pressure would probably
be a little higher. For the thicker ice cover this is still more pro-

nounced.

For their cases the total pressure is only 20 % greater in the thicker
ice cover, while the difference is 65 % according to the proposed
method. The Soviet norms give 100 % difference. Monfore s method
as used by Drouin also show very little difference. Probably the

difference would be greater if correct temperatures were used.

Concerning the dependence on wind speed, it can be noted that the
Soviet norm SN-76-66 gives a very great difference between no wind

and a rather moderate wind of 5 m/s. This is not the case with the
proposed method, although the calculated total pressures are

greater. The cases are calculated for constant wind speed during
the whole course of temperature change. The rate of change of
temperature in the ice would be greater if the wind speed increased
during the temperature rise, as this would increase the change of
energy flux. In the tables of Appendix IV it is seen that combina-
tions of air temperature rise, wind increase, and increase of
cloudiness have produced the most severe conditions for thermal
ice pressure during the 12 or 16 years considered for five lakes

in Sweden.

5.4 Conclusion

It is believed that the proposed method gives reasonable estimates of
maximum possible thermal ice pressures for a certain case. It
gives a correct description of the rate of change of temperature for
given ambient conditions, without either grossly understating or
overstating the rate of change. On the other hand, it produces
pressures that cannot be reached in every ice cover because of
crystal orientation and irregularities in the ice cover. In Chapter 4
it was shown that for some small ice plates such high pressures are
reached. It might be reasonable to reduce the values of the highest
pressures, because in vast ice covers the conditions may be less

favourable for high pressures.



83.

6. DESIGN THERMAL PRESSURE

The occurrenceof thermal ice pressure in a lake depends on ice
and snow properties, ice and snow cover thickness, and weather
fluctuations. The level of maximum pressure depends on some
special combination of ice cover configuration and change of

weather.

A rational way of calcnlating the recurrence of extreme pressures
ought then to be to calculate time series of possible ice pressure

for combinations of recorded ice cover characteristics and weather
observations. This has been done by Bergdahl and Wernersson (1978)
for five Swedish lakes between 68.3°N and 57.1°N.

From the calculated time series of maximum pressures annual-
maximum series and peaks over a threshold series were formed
for the lakes. Different distributions were fitted to the series, and
reasonable estimates of the expected pressures with the return
periods 100, 500 and 1000 years were finally found as given in
Table 6.1 below for the five lakes.

In Appendix IV the weather conditions, and ice and snow thicknesses
are given for the calculated highest maximum pressure for each
lake during the treated 12 or 16 years. From north to south these
pressures were 437, 357, 236, 161 and 189 kN/m. For further

information see Bergdahl and Wernersson (1978),

Table 6.1  Expected thermal ice pressures in kN/m for
some return periods of annual maxima.

Return Period (years)

Lake Position 100 500 1000
Torne trisk 68.3°N 19.5°E | 507 550 569
Stora Bygdetrisket | 64.3°N 20.5°R | 453 532 568
Runn 60.6°N 15.6°E | 410 475 500
Glan 58.6°N 16.0°® | 419 507 543

Vidéstern 57.1°N 14.0°E | 330 380 400
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APPENDIX T

ANALYTICAL SOLUTIONS OF TEMPERATURE PROFILES
IN AN ICE COVER.
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I-1 The Equation of Thermal Diffusion

The mathematics of the conduction of heat in solids has long been
studied by mathematicians, and therefore a great many tools exist

for the solution of thermal diffusion problems. This appendix will
not give anything like a complete review of these tools, but some
analytical solutions will be given that are relevant to the conduction
of heat in an ice cover. For basic mathematics it is referred to
Hildebrand: Advanced Calculus for Applications (1962) and for special-

ized solutions to Carslaw and Jaeger: Conduction of Heat in Solids (1959).

5] N

I~
\\\\\\\\\\\\\\\-B(X,t+dﬂ

q( = {ii:q> qO
e(x,t)
X  X+dx X
0 0
Figure I-1. Thermal diffusion through a thin layer dx of a

solid, whose temperature distribution is changing
from 6(x,t) to 8(x,t+dt) during the time interval
dt because of the difference in incoming and out-
going energy flux 9;-4,-

Considering the heat budget of a thin layer of a solid, shown in
Figure I-1, the equation of thermal diffusion can be established.

The heat flux into the layer at x is

- .y 08 -
q; = A = ees (I-1)

where A is the thermal conductivity and © the temperature.

The flux out of the layer at x+dx is

- -y 2 28 -
9y =~ A gy (8 + 5=dx) ve. (I-2)

provided the thermal conductivity is constant.
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The difference in incoming and outgoing heat flux gives rise to an

increase of temperature in the layer per unit time, and thus

2
- o 3~ B B
pr 89/812 = ql qO = A —5—{{2 (I 3)

where Cp is the specific heat capacity and p the density.

If heat is produced within the layer for example by the absorption of
radiation a productive term must be added to the right hand side of

Equation (I-3), and the equation that appears is
2 2
96/9t =ad706/3x" + p(x) Lo (I8

where a = X/Cpp is the thermal diffusivity

and P(X) produced energy per unit volume and unit time divided by
Cp.
p

If the density, thermal conductivity and specific heat capacity cannot

be considered constant, Equation (I-3) must be written
CppBB/Bt = 3/3x (A38/08%) ... (I-5)

I-2 Boundary and Initial Conditions

Interface Ice-Water

At an interface between ice and water, for example at the lower bound-
ary of an ice cover, it can be stated that the temperature should
remain at the freezing point of water throughout the course of tempera-
ture change. If h is the ice thichness, and x denotes the vertical
coordinate and is defined positive downwards with its origin in the
upper surface of the ice cover, the condition can be written

8 = 0%

x = h (1-6)

The heat flux at the boundary is thus only bounded by the temperature

gradient which is permissible as the thermal resistance at the inter-

face is small.
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The heat flow to the interface must be compensated by a heat flow

down through the underlying water or by melting at the boundary

{ - A8/80 7 + Lop an/ae = - a0 (-7
X = h
where +/- is just below/above the interface

A the thermal conductivity of ice

AW the thermal conductivity of water

6 the temperature

L the latent heat of fusion

p the density of the ice

h the thichness of the ice cover

x vertical coordinate

t time
The interface will thus move vertically at the rate dh/dt.

dh/dt = [A<ae/ax>“ -AW(BG/BX)+ /L p e (1-8)

L

Mostly this growth of the ice cover will be disregarded below, as it is
unimportant when deciding the fast temperature fluctuations, see para-

graph I-3 below.

Interface Ice = Air

At the interface between ice or snow and air, that is, at the upper
boundary, conditions are a little more complicated. The heat rate
through the boundary is a result of several processes, namely: con-—
vection by wind, sun and sky radiation, black body back radiation,

and sublimation.

If we only consider convection a simple boundary condition can be

formed

- A (38/3x) " = - A (8-6)
x =0

(1-9)
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Here A is the transfer coefficient of heat. It can be considered
to be a function of windspeed, or windspeed and air stability. ea

is the temperature of the air.

Analytical solutions of the equétion of thermal diffusion Eq. I-4
with the boundary conditions (I-6) and (I-9) are given by Carslaw
and Jaeger (1959) in the form of Fourier series and hereditary in-
tegrals which must be evaluated numerically. For a complete case
with varying air temperature and solar radiation it is therefore
more convenient to solve the equation directly by means of differ-—
ence methods. For speical cases, however, analytical solutions can
offer good illustrations of the course of temperature and probably

may give a better understanding of the involved processes.

In most illustrations below the hypothetical boundary condition of

a prescribed surface temperature is used. That is

6 =06 (t)
X =0

... (I-10)

Initial Conditions

It is important to state the initial conditions for the solutions of
the equation of thermal diffusion. That is, the temperature preceding
a fast rise in air temperature must be clearly stated and the found
solution, O©(x,t), has to satisfy the conditions, 6(x,0). Otherwise

the calculated pressures can be misleading.

It is usually assumed that the greatest thermal ice pressures arise
when the air temperature increases suddenly after a long cold period.
At the beginning of the increase of air temperature the distribution
of the temperature in the ice can then be considered stationary, with
the equilibrium temperature at the upper surface and zero temperature
at the lower interface. In the next paragraph it is shown that the

distribution can be considered linear as well.
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I-3 Initial Temperature Distributions

As an initial condition for the analytical solutions of the different
cases in the following paragraphs, a linear temperature distribution
will be used. Such acondition is,however, only an approximation of the
true steady state condition because partly the conductivity is a func-
tion of temperature and partly the ice cover grows in thickness. The

magnitudes of these approximations are estimated below.

Steady state and constant conductivity give the problem, (Equations (I-3),

(I-6) and (I-10))

30/0t = a 920/3x> =
0 (0,t) = 0 . (1-1D)
0 (h,t) =

I
o

which by integrating twice gives the idealized solution:

0 (x,t) = 68 (1 - x/h) e (I-12)
If the variation of the conductivity with temperature is considered,
Equation (I-5) has to be used. Letting A(0) = AO(1+08) will give the

problem

Cpp 96 /ot = B/BX(AO(1+GG)BG/BX) =0

0 (0,t)=6S

o (h,t)= 0°C (1-13)
which also by integration gives the solution

6(2+a8) = OS (2+a08)(1—x/h) el (I-18

The thermal conductivity of ice increases linearly with decreasing
temperature and the constant can be approximated by O = -4.8'10_3/0C.
This means that the thermal gradient 96/9x close to the cold upper
surface of the ice is smaller than at the ice-water interface, and

consequently the mean temperature of the ice is a little lower than
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that given by a linear gradient, Eg. (I-12). A comparison at half the

depth, x/h = 1/2, at the extreme surface temperature 68 = -30°, gives
Eq. (12) 6 (x = h/2) = -15.0°C
Eq. (14) 8 (x = h/2) = -15.5°C

The difference is thus only 3% and the mean difference over the depth

is approximately 2%. This difference is without any practical importance.

The Growth of an Ice Cover

The growth or melting of the ice cover at the ice-water interface also
distorts the linear temperature profile, although when growing this
causes the ice temperature to be higher than is given by the linear

profile.
The problem can be formulated by the following set of equations;if the
initial conditions are, a very thin layer of ice and a water tempe-

rature 0°c throughout.

Initial condition:

h 0

(1-15 a)
t =20
Diffusion in the ice: Eq. (I-4)
30/3t = a 3°6/0x" e (B)
Boundary conditions: Eq. (I-6) and (I-10)
air-ice 06(0,t) = SS . ()
ice-water 8(h,t) = Si = 0°¢ Lo (d)

Growth condition Eq. (I-7)

Lo dh/dt = A(96/9x)
x = h™ ... (e)
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As the temperature in the water is assumed to be O C the temperature

gradient and heat flux in the water are also identically zero.

93.

Solutions for this set of equations are presented by Carslaw and Jaeger

(1959) and have been used by Janson (1963) to calculate frost depth

in soils. The solutions are expressed with the aid of the error func-

tion.

p:8
erf () =20 & % a .. (1-16)
(o]

This integral is tabulated in Abramowitz and Stegun (1972), and it is

of fundamental interest for the solution of diffusion problems.

Two key values are erf (0) = 0 and erf (») = 1, and an important pro-

perty is that

erf (- x) = —erf (x) e (I-17)

Sometimes it is also convenient to use the notation

erfc (x) = 1 - erf (%) .. (1I-18)

A particular solution of Eq. (I-15 b) can now be written

6 =A+ B erf (x/ Véat) . (I-19)

The boundary condition (I-15 c) gives A = SS and thus the interface con-

dition (I-15 d) yields

1

Since B, Bg and@iare constants, also erf (h/ Véat) must be a constant

if Eq. (I-20) should be valid, that is

0, = GS + B erf (h/\4at) ... (I-20)

h=mt Lo (I-21)

where m is a proportionality factor.
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The value of B can be solved out of Eq. (I-20) as a function of m.
6. -0
i s

T erf (m/ V& a) - (1722)

. o . . . . . . .
Finally, for Oi = 0 C the temperature distribution in the ice is given

by the equation
0 =0 {1 - erf (x/ Vhat)/erf (m/ /ZE)} L. (I-23)

The factor m must be solved from the remaining condition (I-15), with

(I-21) and (I-23) substituted. From (I-21)

1/2

dh/dt = 1/2 m t_ (1-24)
and from (I-23)

(36/3%) _ ==20 / VThat-exp (-h’/4at)/erf(m/ V4d) ... (1-25)
The substitution in (I-15) gives

Lp mvra erf (m/ Yé4a) = -2)88 exp (—mzlha) ... (I-26)
which can be written

2
o e erf u=- CPGS/LVﬁﬂ ce. (I-27)

where U stands for m/Via.

It is seen by the equation that m is a function of the surface tempera-

ture Gq and material properties only. Solving for the following values

on these properties M was found to be 0.297 and m = 6.37 - 10-4 msul/z.
6_ = - 30°%
s 3
cp = 2,12 *+ 10" J/kg K

3.34- 10° J/kg
a =1.1510 %n?/s

=
i



Furthermore, at any point of time, t > 0, the temperature at half
the depth of the ice cover, x/h = 1/2, will be given by the Equa-
tions (I-23) and (I-21) to

0(x = h/2) = 0_(1 - erf L/erfy) oo, (1-28)
Thus for GS = -30°C and = 0.297

0 (x = h/2) = - 14.7°¢C
and the deviation from a linear gradient is consequently very small.
Taking into account both the growth of the ice cover and the varia-
tion of the conductivity with temperature the deviation will be
still smaller as the two approximations give errors that counter-

act each other.

I-4 The Answer to a Step Rise of Surface Temperature

After having settled that a linear temperature profile is a fairly
good approximation for tue temperature in an ice cover after an
enduring period of cold, the rate of change of temperature in the

ice shall be described for a varying surface temperature.

The temperature in the ice cover in the unsteady state can be de-
scribed by a superposition integral, using the fundamental solution
for the case where the temperature is initially zero throughout
the ice cover but whose surface temperature, 6 (0,t) is raised
by a unit step at the point of time t =0. See Hildebrand (1962)

or Carslaw and Jaeger (1959).

This fundamental solution for an ice cover with the thickness h,
where the lower surface is kept at 0, can be written

2 nmTx —nzﬂzat/h2
o sin 22 ¢ s £=20... (I-29)

The first two terms of Equation (I-29) are the asymptotic steady
state gradient while the last term is a transient that gradually
vanishes as t -+ ®. The problem and solution (I-29) is illustrated

in Figure I-2.

95.
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1
Figure I-2. The "temperature', F, in an ice cover initially

at zero temperature when the temperature of the
upper surface is raised by a unit step at the
point of time t = 0. The parameter is the dimen-

. . 2
sionless time t a/h”.

Thus if the surface temperature is raised by the step A at the

point of time t = T, the temperature is given by

0 (x,t)
6 (x,t)

0 t<T

(1I-30)

it

AT (x,t-7) t>»T

Equation (I-29) gives us the possibility to estimate how long the
surface temperature must be constant in order that we can regard
the temperature gradient as steady. For an ice cover 0.5 m thick
the deviation is negligible after 30 h (ta/h2 = 0.50). For 0.25

m thickness the corresponding time is 7.5 h and so on.

I-5 The Folding Integral for Variations of Surface Temperature

It can be shown, see for example Hildebrand (1962), that for any
prescribed variation of the surface temperature 6(0,t) the sol-
ution to the internal temperature can be calculated by the help
of Eq. (I-30) by the folding or superposition integral

t
0(x,t) = [00,7) EELETD) 4 . (1531

[e]

The initial temperature is accounted for by adding the solution

to the problem.
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36/9t = a 5°6/dx>

6(0,t) =0
I..
6(h,t) = 0 (1-32)
0(x,0) = £ (x) 0g x<h
where f (x) is the initial distribution. The solution to (I-32)
can be written
% nmx —anznzt/h2
6(x,t) = 2, A sin — e ... (I-33)
n=l n h
where the Fourier coefficients Arl are given by
2 h nmx
An =4 J' f(x) sin . dx ... (I-34)

With the aid of the equations (I-29) through (I-33) it is possible
to describe the course of temperature in an ice cover, initially
with a linear temperature distribution f(x) and exposed to a sudden

rise, A, of the surface temperature. The problem can be formulated as

30/5t = ad’6/dx’
6(0,t) = 90 + Aj £20

8 (h,t) = 0 (1-35)

0 (x,0) = f (x) = (1 - x/h) 90
The corresponding An is given by Eq. (I-34) as

2 h nmnx 260

An =4 g. (1 - x/h) 60 sin —= dx == ... (1I-36)

and the entire solution is by virtue of (I-29), (I-31) and (I-33)
2 2 2
0(x,t) = (B8 + A)(L - x/h) - 5 Z& g AIX 0T at/h™ o L (1-37)
[} n=1l nm h >

Also in this equation the solution is thus composed of a steady state
solution for the final temperature profile and a transient part that
is gradually vanishing with the lapse of time. The solution (I-37)

is illustrated in Figure 3 below for 90 = -3000, A = 20%C
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Figure I-3. The temperature § in an ice cover with an initially

linear temperature profile at a rise of surface
temperature from -30°C to -10°C at t = 0. The
parameter ta/h2 is dimensionless time. If h =
0.5 m, at/h2 = 0.0166 corresponds to lh for ice
with a = 1.15 mz/s. The figure corresponds to Eq.
(I-37).

I-6 Linear Growth of Surface Temperature

0f course, the temperature of the ice surface does not rise in-
stantaneously from one constant temperature to another, but the
rise takes its time. Drouin and Michel (1971) have, for example,
found that air temperature rises in the area of Quebec, Canada,
can be described by linear or sinusoidal functions of time. The
growth of ice surface temperature should approximately follow
functions of the same shape but with different amplitudes. Drouin
and Michel assumed that ice surface temperatures and air tempera-

tures are equal.

A linear growth of the surface temperature of an ice cover from
one constant surface temperature 80 to another constant tempera-
ture 60 + bT during the space of time T is illustrated in Figure

I-4,
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Temperature 6 {0,t)

8, *bT +
B
[} T Time t
Figure I1-4. Linear growth of the ice surface temperature from

one constant temperature to another. Compare Equa-

tion (I-38).

The internal temperature of the ice cover is given by the solution

to the following problem.

(96/3t = 4920/ 9x°
000.t) = 90 + bt OgtgT

26(0,t) = 60 + bT t>T ... (I-38)
0(h,t) =0
6(z,0) = (1 - x/W)6_ t<0

L

The solution is for t<T

O(x,t) = (1 - x/B)(8_ + bt) ,

... (I-39)

2 2.2 2

® 2 bh -n" 7" at/h .

vl Ty (e ~1)sin nmx/h
n=ton mTmoa

For t>T the temperature is given by

0(x,t) = (1 - X/h)(eo + bT)
®© 2 2 2 2
+ & 2 bh  -n"rrat/h ce. (I-40)

) sin nmx/h

The solution (I-39, I-40) is illustrated in Figure I-5 for 80 =
= -30°9C b = 60C/h and T = 5h.
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Figure I-5. Temperature profiles in an ice cover at different

points of time for the initial surface temperature
60 = -30°C and rate of change b = 60C/h during T =
= 5h. (Five hours correspond to the dimensionless

time 0.083).

1-7 Sinusoidally Varying Surface Temperature

If the surface temperature follows a periodic function, the tempera-
ture in the ice will exhibit the same period but there will be

a phase lag at some depth in the ice cover. After the initial
temperature has lost its influence, the solution will be given

by a steady periodic solution. For a very thick ice cover this

periodic solution is for example given by

B(x,0) = B+ A e cos (@t - o) oo (14D
when the surface temperature is given by

0(0,t) = 60 + A cos Wt .. (I-42)

where © is the angular frequency
_ow 1/2

k = (Za)
kx the phase lag at depth x

the attenuation factor
a the thermal diffusivity

The amplitude of the temperature variation thus decreases with
depth. In an ice cover of finite thickness h this decrease is even
more pronounced. For the same surface temperature as above the

solution will be given by



B(x,t) = 6, (1 - x/h) + AB cos (wt + )

Here

cosh 2k(h - x) - cos 2k(h 1/2

cosh 2kh - cos 2kh

- x)

and the phase lag

tanh kh tan k(h - x) - tan kh tanh k(h - x)
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(1I-43)

. (I-44)

tan ¢ = tanh kh tanh (h - x) - tan kh tan k(h - x)

The solution (I-43) is most conveniently found by the use of

(I-45)

com—

plex numbers, i e by seeking solutions of the type C exp (rx - iwt).

See Carslaw and Jaeger (1959).

The solution can be used in order to estimate the influence of

daily temperature variations in an ice cover. For an ice cover

0.5 m thick the temperature amplitude and phase lag as a fun
of depth is illustrated in Figur I-6.

Temperature (°C)
-30 ‘320 Phase lag ¢ {rad)

-10 -n

ction

0
\\\
~ 1 0.05
S | 01
~o \ 010 -
\\\ \ 015
N \ 0.20 02
~ \
AN \ 0.25 X
~\ X
NN 0.30 03
N \Y
AN 035
N 0.10 04
\ . )
0.45
0.50m 05m
Figure I-6. Temperature for wt=2nm (solid line), temperature

amplitude (dash line) and phase lag as a function

of depth for a 0.5 m thick ice cover, when the sur-

face temperature varies as (-20+10 cos wt)OC

the period 24 h.

with

For the case when the surface temperature increases from a constant

surface temperature 60 to another constant temperature 60 + 2A along

a half sinewave, the temperature variations can be calculated with

the same technique as before. In Figure I-7 the surface tempeia&urei

is sketched.
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Temperature

6+ 2A

Figure I-7.

T Time

Lt

Sinusoidal growth of the ice surface tempera-

ture from one constant temperature to another.

The problem can be formulated by the following set of conditions.

(9673t = a 3%0/0x°
0(0,t) = 6_ + A (L-coswt) 0g ts% =T
ée(o,t)=eo+2A t>T
6(h,t) = 0
‘9(2,0) = (1 - x/ln)@o t<0

For points of time t<T the solution is given by

0(x,t) = (60 + A)(1 - x/h)

ol
® 2A n w . . nmx
- n§1 E’ﬁ *—2—2— (COS wt + a__ sSin Lut) sin T
o W n
n
2
- ¥ A _o e sin 20X
n=1 nT un2+ug h
where o, = nzﬂza/h2
For points of time t> T
B(x,t) = (8, + 24)(1 - x/h)
2
o, o (T-t)
S F B 2 (cos wT + L osin wm)|e P
n=1l nW o 2: 2 a
n +W n
- 5 24 w2 oot . nlx
Ly T sin ——
n=1l nm an2+hg h

(I-46)

(1-47)

(1-48)
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In Figur I-8 the temperature profiles in an ice cover subject to
. . . o
the sinusoidal rise of temperature of the surface from -30 C to

-10°C during 5 h is shown.

o e
-30C -20 -10 00
0 (2 1
56 2
8 oo
X
0,5m
Figure I-8. Temperature profiles inanice cover at different

points of time for initial surface temperature
o = -30%, "double amplitude" of change 2A =
° o

= 20°C and half period 5 h.

1-8 How to Treat Boundary Conditions Analytically

Most authors on thermal ice pressures halt at the problem of giving
analytical solutions for realistic boundary conditions. The analyti-
cal solutions given above have, for example, been founded on pre-
scribed temperatures at the upper and lower boundary of the ice.

A more realistic boundary condition formulated in paragraph I-2

is the condition for forced convection by wind
-A38/9x = - A(B ~ 6); x=0 cen (I—49)

It is possible to give solutions to the equation of thermal
diffusion for such a boundary condition in the form of an

expansion in the characteristic functions of the problem:

90/3t = a 320/ 9x>

A38/3x = -A8; x = ... (1I-50)

li
o

6=0 x = h
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These characteristic functions or eigenfunctions are of the type

_ 2 A . -
6n = exp (- aBn t) (cos an g sin an) ... (I-51)

n

where the characteristic values or eigenvalues Bn are the conse-—

cutive positive roots of

AB = +A tanfh .. (I-52)
Solutions would then be of the form

9 = ? A B ... (I-53)

whose coefficients are chosen to satisfy the initial condition

0 =f (x) for t = 0.

Such expansions are given by Monfore and Taylor (1948) for an ice
cover as well as by Carslaw and Jaeger (1959). Presently it is more
convenient to solve these problems by difference methods, because

expansions in (I-51) have rather complicated coefficients An.

I-9 Short-Wave Radiation

That part of the solar radiation that has short wave lengths will
penetrate into the ice cover where it is absorbed as heat. The
absorbed energy per unit of volume and time will correspond to a
termperature "release", M, at different depths, x, in the ice

cover

k ~kx

J
M (x) = EO e . (I-54)

N
P
where Jo is the intensity of short wave radiation passing the
upper surface
the coefficient of absorption
the specific heat capacity of ice

o] the density of ice
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An instantaneous '"release" of temperature M(n) dn dt, at x =p
and t = T in a region initially at zero temperature and bounded
by two parallel planes kept at zero temperature will give the

temperature distribution

M(M) dn dt_

9 = .
QW
'nzim exp (-(x - n-2 nh)2/43(t~T))~exp(~(x+ﬂ—2nh)2/4a(t-—T)) ...(I-55)

This equation is received by the method of sources and sinks, see

for example Carslaw and Jaeger (1959).

By integration of (I-55) over the depth of the ice cover and over
time a solution for the temperature distribution is formed that
is not very convenient, but alternative solutions expressed in
Fourier series or the series (I-53) are not much easier, and ac—
tually even this problem is best solved by a difference method.
The complexity is partly compensated for by the fact that good

accuracy is established by using only a few of the terms or images

of the series.

I-10 Conclusions

For every idealized case of heat conduction it is probably possible

to find an analytical solution. For the unsteady state cases con-—
sidered in this dissertation all solutions will, however, be expressed
in ionfinite series or tabulated functions, and it has been shown that
especially the boundary conditions and internal procuction of heat will

lead to complicated expressions.

Some of the displayed solutions are relevant for the discussion of

the temperature transient and comparison with the results of others.

The solution of a real case including surface thermal resistance,
condensation, short and long wave radiation, varying temperature
etc. will, on the other hand, be best solved by a numerical diffe-

rence method.
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APPENDIX II

FIELD MEASUREMENTS OF TEMPERATURE PROFILES
IN AN ICE COVER
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II-1 Introduction

During the winters 69/70 and 70/71 field measurements of the tempera-
tures in the ice cover of a Swedish lake were performed. The lake,
Angsjdn, is situated in southern Sweden (12°48'E 5¢052'N) at an altitude
of 273 m. Angsjdn is 4 km long in the direction SE-NW and it is

300 m wide. As the ultimate goal of the measurements was to relate

the rate of change of temperature to thermal ice pressure, efforts

was also done to measure the ice pressure during the winter 69/70.

The field measurements were sponsored by the Swedish Natural

Science Research Council and Chalmers Univeristy of Technology.

I1-2 Field Measurements

The following parameters were observed

o temperature at differet depths in the ice

o horizontal pressure at three depths in the ice (only
1969/70)

o ice deformation at the surface (only 1969/70)

o air temperature

o wind speed

o ice thickness

o snow depth

The measurements were performed in different ways the two winters,
why measuring arrangements and weather conditions are described
for each measuring term separately below. The results and compari-

son with calculations are, however, reported together in paragraph

II-6.

Originally the purpose of the measurements was to verify the whole
complicated course of events taking place when an ice-sheet is
heated and expands. It proved to be very difficult to measure the
deformations of the ice cover. Furthermore, there was very much
snow on the ice covers both winters during the measurements, so
that only small ice pressures and consequently small deformations
could develop. Because of this, the efforts of the second winter

were devoted to mapping the course of temperature only.



I1I-3 The Winter 1969/70

In late January 1970 the experimental site was erected on Angsjdn.
On an open peninsula a place was arranged for the measuring of the
weather parameters, and out on the ice cover probes for tempera-

ture and pressure were placed in the ice.

On the peninsula a standardized thermometer cage was placed. It
contained calibrated thermometers for temperature, maximum tempera-—
ture and minimum temperature. At a small distance to the cage a
small mast, 2 m, was placed for measuring the wind speed. Probes
for radiation balance and solar irradiation was also placed on
masts 1.5 m above ground. The radiation fluxes were insignificant

during the observed periods over the snow cover.

At three places on the lake ice cover, probes were placed to
measure the temperatures in the ice. The probes were placed in
the 35 cm thick columnar ice by gently chiselling pitches 25 cm
deep, where the lowest probes were laid on the bottom and covered
with a few cm of water. When this water had frozen the next probe
was positioned and a new layer of water was poured into the pitch.
The vertical distance between the ice surface and the probes were

measured.

The probes were thermocomples, and six were placed in each verti-

cal at intervals of 5 to 10 cm.

The pressure probes were placed close to one of the sets of ther-
mocouples in the middle of the lake. They were arranged so that
three of them senced the pressure at three depths in W-E-direc-
tion and the other three in S-N-direction. On this place also the
deformation at the surface was measured with a mechanical deforma-
tion meter. The results from these last measurements proved to be
very inaccurate. The pressure was insignificant during the periods
observed. The results from the pressure and deformation measure-

ments are not reported because of their bad quality.

On February 4, water started to leak up on to the ice cover along

its shores, On February 24, after repeated snowfalls, the water

had spread all over the lake.



The measurements were, because of the water leaking on to the
ice, restricted to the period February 17-23. Only the place
situated centrally on the lake was dry at this occasion. The
snow had been transported away form the place earlier, but was
shovelled back during the measurments. A try to get more values
was done in the middle of april, when the snow cover had melted
completely. The weather was, however, too mild during this

period why the ice rottened fast.

II-4 The Winter 1970/71

On December 21, 1970 six sets of thermocouples with six couples
each were placed in the ice cover of Angsjdn. This time 5 cm
wide slots were sawn in the ice cover, and the thermocouples

were hung in the slots. At this occasion the ice was clean from
snow and the temperature approximatedly -ZOOC, why the slots very
soon froze over, and already the next day water could be filled

to the original ice-surface.

By this means good accuracy was attained in the relative position-
ing of the thermocouples. However, there was a mild period around
new year, why the ice thawed at its upper surface and the distance
from the upper surface may have decreased from 5.0 cm to between

3 and 4 cm.

On February 15 the weather station was erected. This time on the
ice conveniently close to the thermocouples. The temperature of
the air stayed, however, between +1.3°C and -1.4° up till February

23 when the observations were postponed to March 1.

Between March 1 and 7 the weather was suitable and a thin snow
cover covered the places with the thermocouples. The snow was
removed from some of the groups of thermocouples, so that compari-
sons between temperatures in snow covered and bare ice could be

done. On March 7 the temperature of the ice was above 0% again.

In early March a new attempt to measure was done, but the weather
was above freezing at this occasion, and the ice was covered by
12 cm of snow slush and 12 cm of wet compact snow. The measure-—

ments were stopped for the season.



II-5 Computer Programme

A simple Fortran-programme was done for the calculation of the
temperatures in an ice cover. The programme used an explicit dif-
ference scheme, and took into account the variation of air tempera-

ture, wind-speed and the snow cover.

The influence on the temperatures from the growth in thickness

of the ice cover was neglected as this influence is very small,
see Appendix I. The solar irradiation was insignificant during
the periods of measurement. The radiation balance was measured
over the snow field and proved to be negligibly small. The radi-
ation balance over the black ice might not have been negligible.
In the computer programme the solar irradiation is neglected com~
pletely and the long-wave radiation balance is partly included

in the coefficient of heat transfer. See paragraph II-6 below.

The degree of concord between the calculated values and the meas-
ured values depens not only on a correct weather input and chosen
thermal properties but also on the accuracy of the used scheme
for calculation. In the computer programme a method with central
differences and ice differences dx of 0.04 m were used. The time
intervals dt were chosen with the help of the optimum condition

at = dx’/(6a).

The ice could have been divided into thinner ice differences to
increase the accuracy of calculations. The accuracy of the con-—
tained parameters and the measured values is, however, not good

enough to motivate a greater accuracy.

II-6 Comparison Between Measured and Calculated Values

In Figures IT-1 and IT-2 calculated and measured temperature pro—
files are shown. Figure II:1 shows the temperature profile at three
consecutive times of measuring at the same place. The air tempera-
ture and wind-speed varied from time to time according to the

following table.
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Figure II-1. Temperature profiles in the ice cover of Angsjon,
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Place first freed from snow then

17.40.
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‘ cover of Angsjdn at the same océasion, March 4, 1971, 23.00.

Places first covered by snow, but freed from snow at different

points of time.



Date and Time Air Temp. Wind Speed Comments

70-02-18 08.25 -29.6°C 0 m/s Sunny
70-02-18 12.30 -15.2°C 0 m/s Sunny
70-02-19 08.25 -15.8°C 0.3 m/s Snowing

The rise of temperature in the ice between morning and noon Feb.

18 is due to the rise of air temperature. The rise between noon

and morning the next day is however caused by increased insulation
by snow. The place was shovelled over with 26 cm of snow at approxi-

mately 17.40 the first day.

Figure II-2 shows temperature profiles measured at the same time,
23.00 March 4 1971, but at six places. Four of the places were
covered with snow all the time while the other two had been freed

from snow two days(vertical 6) and one day (vertical 5) in advance.

Figures II-3 and II-4 shows the calculated and measured positions
of the isotherms for -3, -5, and -7%. Figure I1:3 is from the
vertical covered manually with snow Feb. 18, 1970. Figure II:4

is taken from a vertical freed from snow March 3, 1970.

From all Figures II:1 through II:4 it can be seen how important a
factor the snow insulation is. Actually the 14 em thick snow
cover of March 1971 is enough to prevent the weather variations
to influence the ice cover beneath the snow to any significant

degree.

In order to get as good an accordance as possible between the
calculated and the measured values the programme has been run with
a series of values on the coefficient of thermal diffusion of the
ice. The runs did not give significant improvements of the con-

cordance.
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Variations of the coefficient of heat transfer between air and

ice or air and snow give, however, decisive changes of the tempera-
ture profile. The coefficient of heat transfer was finally set to
A =10.4 (1 + 0.40 u) W/ (m? °C) for the wind u < 5 m/s and A = 4.2
(1 +1.8u O'78) W/(m2 0C) for u > 5 m/s. The function includes the
effect of condensation and back radiation. The function is originally
taken from Bygg I (1961) although 4.2 W/(m2 °C) was added to make a

better fit to the measured profiles. For wet road surfaces Magnusson

found 16.0 W/(m2 K) at calm weather (u =0 m/s). See Eq. (3.25).

For a few occasions with almost steady state conditions the coefficient
of heat transfer was estimated from the measurements, Table II-1. The
heat flux was estimated from the thermal gradient in the ice, the con-
ductivity of which was set to 2.24 W/(m K). Compare Appendix III-5.
The arithmetric mean was found to 9.8 W/(m2 K) and the standard devi-
atidn to 2.9 W/(mzK). Some measurements by Wold (1957) on Maridalsvatn

. +
in Norway were used the same way for comparison. They gave 12.0 - 5.2 W/(mzK)

Table II-1. Estimated coefficient of heat transfer for some
occasions with approximately steady state conditions:

Mean 9.8 W/(mzK), standard deviation 2.9 W/(mzK).

Date Hour Air Temp (OC) Wind Speed (m/s) A (W/(mzK))
70-02-17 12.50 -14.5 0 11.83
15.30 -17.1 0 11.83
17.55 -21.2 0 9.00
70-02-18 8.25 -29.6 0 10.58
14.25 -14.8 0 14.54
71-03-04 18.50 -19.6 0 5.92
71-03-05 12.30 - 8.1 1.8 5.32
15.10 - 6.2 0.9 9.85
71-03-06 8.30 -15.6 0 9.58



119.

The total heat flux by radiation, convection, and conduction has
thus been calculated as A-AD where AD is the difference between
the temperature of the air at the level 2 m and the temperature
of the ice surface. The chosen function give rather good agree-’
ment between measured and calculated profiles during the after-

noons.

In the diagrams of Figure II-4 the accordance seem to be bad in
the mornings. This can be caused by the thermocouples lying closer
to the upper surface than estimated. The ice had melted a little
beacuse of mild weather. Another reason could be that the back
radiation from an ice surface is not negligible although the

measurements over the snow gave this result.

For the periods when the ice was covered by snow it has proven
impossible to get the calculated profiles to agree with the meas-—
ured profiles. This is partly due to the fact that the thermal
conductivity of the snowvaries strongly with packing and struc-—
ture of the snow. At cold and windy weather the snow depth varies
fast at a site as the snow is drifting like dunes over the ice.
For the calculations 1969/70 the conductivity of the snow was

set to 0.34 and 1970/71 to 0.23 W/(mOC). The density was set to
350 and 250 kg/m3 respectively, and therefore the coefficients of
thermal diffusion are approximately equal 4_5.10_7 mz/s.

The places were covered and cleared of snow with a shovel. This
could of cause not be done momentarily, why the agreement between
calculated and measured values a few hours afterwards should not

be expected to be to good.
I1-7 Conclusions

The field measurements showed that the influence from the solar
irradiation and the long-wave back radiation on the rate of change
of temperature in the ice should have been investigated further.
The agreement between measured and calculated course of tempera-

ture in the ice could be considered good under the circumstances.
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It was judged impractical to carry through field measurements of
thermal ice pressures and deformations in order to improve the
theory. It is difficult to control the conditions for the experi-
ment as to weather, shore lines, ice movements, evenness of ice

and snow cover, etc.

In this context my reported field experiments offer the experience
that the conditions for thermal ice pressures on Angsjdn, during
the winters 1969/70 to 1971/72, were very small. The winter of
1969/70 and 1971/72 the ice was covered very early by insulating
snow. In February 1970 and March 1972 the snow cover was so heavy
that it pressed the ice under the water and the temperature of
the ice was probably around 0°C till the breaking-up of the ice.
The winter of 1970/71 the ice was bare till mid December. Then

it was 0.25 m thick. Before the mild weather arrived soon after
new year it had been covered by 5 cm of loose snow. This ought

to have been the most suitable occasion for thermal ice pressure

during the tree winters.

In order to give a judgement on the probalities of ice pressure
of certain magnitudes in a lake, ice observations over several
years must be combined with weather records into a model for ice

cover expansion.
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APPENDIX III

A LABORATORY EXPERIMENT ON THERMAL ICE PRESSURE
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III-1  Imtroduction
During 1973 and 1974 some few experiments on thermal ice pressure
were conducted in the freezing laboratory at the Department of
Hydraulics. The aim for the experiments was to verify the whole

course of events for the development of thermal ice pressure, why

the ice cover was allowed to form in an experimental basin. The ice

cover was then subjected to temperature changes and its internal

pressure, internal temperature, and expansion was measured.

Two similar experiments have been reported earlier by Lofquist
(1954) and by Drouin and Michel (1971). The former grossly veri-
fied the course of events. He measured temperature profiles and
horizontal pressures in a concrete basin, but did not control
the horizontal expansion of the ice, why he could not properly
test any stress—strain relationship. Drouin and Michel on the
other hand did not succeed in reproducing natural conditions,
first because the water did not fill the cracks in the ice,
secondly because the walls of their invar basin was not strong

enough to resist the horizontal expansion appreciably.

The present experiments did verify the temperature profiles

of an ice cover subjected to a variation of the air temperature,
the cracking of the ice when the surface temperature decreases,
the expansion of the ice when the cracks are filled with water
from underneath, and the expansion when the ice cover is heated.
The pressures and deformation due to the two types of expansions

were measured, but the accuracy should have been better.

The experiments were granted by Chalmers University of Technology
and the research basin, a piece of water pipe of prestressed con-
crete 1.4 m ioner diameter, was given by AB Tryckrdr, Malmé. The
pipe has withstood the internal pressure of 900 kPa at its upper

end without any visible damage or leakage.

I11-2 Experimental Arrangement

The experiments were performed in a standing circular tube, inner
diameter 1.40 m and outer diameter 1.60 m, see Figure III-1 and

title page of Appendix. The tube was 1.50 m high and its lower

123.
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Figure III-1.

Experimental arrangement.
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end was sealed to the floor with a two-component elastic seal so
that the floor made the bottom of the basin. The wall of the tube
was insulated by 0.40 m of mineral wool in order that the heat flow
be mainly vertical. Although the floor of the lab is weakly heated,
it proved to be necessary to heat the lower end of the tube by means
of a hose with slowly running tap water, otherwise the basin froze
from the bottom too. On the bottom of the basin a lamp was placed to

make possible a view of the ice cover.

Water Table

The water table in the basin was kept constant by an arrangement with

a plastic hose that was led through the wall near the bottom of the
basin to a reference level in the control room of the freezing labora-
tory. There surplus water was allowed to spill over,when the ice

cover expanded downwards in the basin. Water was also filled and

tapped this way and could be adjusted for the evaporation in the

initial stage before the ice covers formed.

Ice Thickness

The thichness of the ice cover was measured at six points along a
diameter by wires of constantan hanging through the ice with weights
at their lower ends. When one measured, they were heated electrically
by 24 V DC so as to melt loose from the ice and it was then possible
to 1ift the weights against the underside of the ice cover and
measure the thickness with a carpenter's rule. See figure III-1 and

ITI-2.

The temperature was measured in the center of the basin at every 5
cm to the depth of 1 m and then at every 10 cm to the bottom, Figure
III-1. On the inside and outside of the wall the temperature was also
measured in two diametrical verticals. The outer probes were placed
on the strain probes described below, Fig. III-3. The temperature of
the air was measured at two points above the basin, and the tempera-
ture of the heating hose was measured as well. In all,the tempera-

ture was measured at 51 points.
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The temperature probes consisted of copper—constantan thermocouples
which were made with Quicktip connections and dipped in silicone
rubber. The reference temperature was arranged with a mixture of ice
and water in a thermos flask which in its turn was placed in an
insulated picnic box also filled with a mixture of ice and water.
In this way the risk of incorrect temperatures near the walls of
the thermos flask was eliminated. The differential voltage was
measured with a precision voltmeter which gave a reading accuracy
corresponding to * 0.15°C. The accuracy of the thermocouples were
checked to be % O.lOC, and the over all accuracy was estimated to
around + 0.2°C. The thermocouples were connected to the volmeter
via a double multichannel switch that switched both ends of the

circuits of the thermocouples.

Figure III-2, Radiation-balance meter and solarimeter mounted above
the basin. Upper end of ice thickness meters. As soon
as the first few cm of ice had formed the board was taken
away. The first thermo-couple is seen just below the board,

and the second together with the first pressure probe.
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Figure III-3. The basin before insulation. The strain gauges are
covered by the plastic tape. The details show the

arrangement of the strain wires and thermocouples.

Figure III-4. Arrangement of sodium lamps above the experimental

basin. Radiation flux 250 w/mz.
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Short-Wave Radiation

For the purpose of separating the influence of heating by short wave
radiation from the heating by conduction, an arrangement of sodium
lamps was put up above the experimental basin. Thirteen lamps; each

270 W,was distributed evenly on a board coated with aluminium foil.
See the title page of this appendix and Figure III-4., The radiation
balance was measured by a radiation balance meter (Ph. Schenk GmbH)
and the short-wave irradiction by a solarimeter (Kipp et Zcnen). See
Figure I1I-2. Although the transformers for the lamps were placed out-
side the laboratory the temperature could not be kept constant because
of the low capacity of the freezer system. As a consequence the influence
of the short-wave radiation could not be calculated properly. Approxi-
mately 10% of the electrical input was registered as short-wave radia-

tion directed towards the ice surface.

Deformation

The lateral expansion of the ice cover was estimated indirectly by
measuring the expansion of the basin at six levels at a division of

10 cm from the surface of the ice. See Figure ITI-1 and III-3. The
deformation meters consisted of wires of the alloy, nicrothal-lx. They
were gently stretched in approximately three rounds at each level on a
plastic tape and covered by another tape. On each wire gauge two thermo-

couples were placed diametrically opposite to each other.

In this way the average deformation at each level could be measured,
and expected cracks in the concrete tube could not distort the measured
values or destroy strain gauges that happended to be placed across a
crack. Each gauge was roughly connected to give a resistance of 120 @
but was balanced with the help of a shunt resistance of 15 or 33 k@
which was placed in the control room. The change in resistance was
measured with a 5 kHz AC-bridge and the deformation was calculated
from given material constants and registered temperatures. The theory

for the calculations is given in paragraph III-3.



Pressure

The internal pressure in the ice was measured with Gldtzl-probes,
that were placed at six levels with 0.10 m intervals and the first
one 0.05 m below the uppermost thermo couple, Figure III-1 and III-2.
The probes consist of two thin steel membranes that are pressed apart
with a hydraulic exchange system to balance the ice pressure when
measuring. Pressures below an 'opening-pressure' level cannot be
measured. The level is different for every probe but around 200

kPa. The accuracy when frozen into the solid ice may be guessed to

+ 30 kPa. There was a tendency of falling pressure if the pumping
operation was continued for more than half a minute, probably because

the ice yielded to the pressure from the membranes.

IT1I-3 Strain Gauge Evaluation
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The change of length of the strain gauges is constituted of the thermal

expansion 0-d0-% and the strain de-2&, where & is the length of the
gauge, o the coefficient of expansion, 0 the temperature and e the
strain. The change of length of the gauge is equal to the change of

length of the circumference of the basin dEO-Q. This gives

de = dEO - odb el (I1I-1)

The area of the crossection of the wire, A, increases due to the
thermal expansion and decreases because of the contraction by the

tension. Consequently

dA = A(1+0d0)2 - A + A(l-vde)’ - A o (I11-2)

where v is Poisson's modulus. If the squares of the small quantities

adB and vde are neglected the relative change of wire area is received

as

— = 2(0d6 - vde) .. (I11-3)

The electrical resistance, R, of the wire can be written

R = cl/A vo. (II1-4)
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where ¢ is the coefficient of resistance of the wire material. Equation
II1-4 can be written in natural logarithms and be differentiated with

respect to temperature, €, and strain, €:

1nR = lnc + 1Inl - InA ’ ce. (ITI-5)
- % %% a8 - % g% de ... (I11-6)

Using the fact that 0¢/£36 = o, 3%/% 3¢ = 1 and Eq. (T11-3), this is

reduced to

dR _ (1 de _ L e -
T " (C 56 a)do + (C 5z + 1 + 2v) de ... (I11-7)

and if finally de is substituted as given by Eq. (III-1) the change

of resistance can be written as

dR

g = kdb &g de v .. (I11-8)

where the probe factor

g =124y . (111-9)

o€

0=

was given to 2.4 by the manufacturer, and

3
£~au@) ... (ITI-10)

0=

6 oc—l

According to the manufacturer AB Kanthal (1/c) 3c/30 = 5.10
and o = 11-10° °¢™1. Thus k had the value -32.4-107° °¢71,
Finally the relative change of geometrical circumference or diameter

of the basin was calculated by

_ _k
dEO = —‘-' = do oo (ITII-11)

The first term on the right hand side was read directly from the bridge.
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I11-4 General Observations

The experiments were started by the water being cooled down by the air
in the freezing laboratory. When the ice formed at the surface of the
basin the temperature in its bottom was still around +4°C which was caused
by the warming of its lower edge. Typical temperature profiles are given

in Figure III-5 below for approximately steady state conditions.

The ice started to form as a coarse mesh over the surface of the water.
Because of the rather strong temperature gradient below the surface the
resulting crystals had mostly vertical c-axes. They could be observed to
be rather course. Once the hoarfrost pattern on the ice indicated a
crystal that covered an area of 200x50 mm. Against the wall of the basin
needle-like crystals were formed. The c-axes were probably directed hori-
zontally and parallel to the wall. Near the ice surface there was only a
thin layer, the thickness of which grew to about 5 cm at a greater depth
in the ice. These deviating crystals were not supposed to influence the

over-all deformation of the ice cover. The bulk of the ice consisted of

ice type Sl: coarse crystals and vertical c-axes.

4 I

Temperature [°C )
-20 -10 0 +f, <10

X 74-05-06 . 10.25
©  74-05-13 9.50
v 74-0515  18.58

1.0m

1.5m |

Figure III-5 Measured temperature profiles at three occasions

in the same experimental run.



The growth of the ice cover was rather even over the width of the
basin. Close to the wall the ice tended to be a little thicker, but
within the area where the thickness was measured, that is, from 0.20
m from the wall and inwards the deviations were only * 1 cm from the

mean thickness.

The reinforced concrete wall seemed to be a better conductor of heat
than the ice, why its upper end was warmer and its lower end colder
than the ice. See Figure I1I1-6. If the temperature deficit in level
with the underside of the ice cover had been caused by bad insulation,
the brim of the basin should also have been colder than the ice. The
thermal conductivity of concrete is given to 1.74 W/ (mK) in Bygg I
(1961) which is smaller than the value for ice 2.24 W/(mK). Probably

the steel in the concrete makes up for this.

When the ice cover increased in thichness cracks developed in its
surface. When the temperature in the laboratory was kept at -10°¢
the cracks were fine and sometimes very little pressure developed
when the temperature was raised. When the temperature was kept at
vQOOC or below, the cracks were wider and pressure always developed
when the temperature was raised. Sometimes pressure was read on the
pressure meters even before the temperature increase had started.
Probably because water was freezing in the cracks. To check this
hypothesis an ice cover were formed at -10°C for a considerable
time and thereafter the temperature was lowered as fast as possible
down below -20°C. Then the ice cracked abruptly and water was seen
to £fill the formed cracks to a great extent. This was followed by

a pressure around 300 kPa in the upper part of the ice cover.

When the actual experiment started the thermostat of the laboratory
was adjusted manually every hour. For fast rises an electrical heater
was put into the room. Unfortunately, the regulating system of the
room was only working with a regulating amplitude of # 10C, and

when the defrosters of the freezing elements worked the temperature
suddenly rose 2-8°C for some minutes. Of course this affected the

possibilities to get appropriate measurements.
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Temperature (°C)
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Figure ITI-6 Temperature profiles in the center of the ice cover
and on the inside and outside of the wall of the basin.

1974-05~15 0.05.

As a rough check on the mechanism of the development of thermal
pressure the experimental equipment worked out. The experiment is
probably too realistic, however, to give correct figures on ice
deformation properties or the highest possible pressure for completely
stiff walls and completely filled cracks. Perhaps such cases must be
calculated from realistic assumptions about ice properties and heat
transfer or the technique used by Ldfquist (1954), with a manually

filled crack, must be used. See Paragraph 2.7.

III-5 Temperature

Coefficient of heat transfer

In the experiments the coefficient of heat transfer was estimated for
the ice cover when the temperature of the room had been kept constant
for at least 24 hours in advance. The coefficient was evaluated from
equating the heat flux in the ice with the flux through the surface.
Radiation and evaporation was neglected, that is, they were included

in the resulting figures.
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A (Ga - OS) = %Ss/h co. (IIT-12)
there A = the coefficient of heat transfer
Ga = air temperature 50 cm above the ice surface
GS = temperature of the ice surface, linearly extrapolated

from below

>
n

2.24 W/ (mK) the conductivity of ice

=y
il

the thickness of the ice cover

. . . o
The temperature at the ice-water interface is set to 0°C. Values from

the laboratory is given in Table ITI-1 below.

The measured outgoing radiation contributed with 1.3 W/(mK) as an
average. The received arithmetic mean 12.3 W/(mK) should then be
reduced by 1.3 if the radiation is included in another way. The
figure is higher than what is usually used. Magnusson (1977), however,
gives 16.0 W/(mK) for wet road surfaces at no wind. This figure is

a result of numerous measurements in field. In the field experiments

of Appendix II 10.4 W/(mK) was used for no wind.

20 «
n 1
e @ Temperature (°C)
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I I -10 = -5 0
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Figure III-7 Ice temperature calculated from the air temperature.
Schmidt—graph: Ax = 0.091 m, At = 3600 s. a = 1.15-10‘6 mz/s.
A = 14 W/mK. Plotted points are measured temperatures.
Decreasing temperature. Initial and final air temperature

-10.6 and -22.0°C.



Table III-1. Values on the coefficient of heat transfer, A, estimated
from the laboratory experiments with Eq. III-12. Arithmetic mean 12.3
W/(mZK), standard deviation 4.5 W/(mzK).

Date Hour Ga(oc) BS(OC) A/ (mK) h(m)
73-06-10  8.06 -20.9 -12.4 9.36 0.35
73-06-28  9.01 -20.1 -11.3 9.58 0.30
73-07-01  23.26 -20.0 -13.9 15.28 0.33
73-07-05  10.11 -29.9 -18.4 10.42 0.34
12.18 -29.3 -18.4 10.58 0.36
13.13 -29.4 -18.1 9.42 0.38
15.G3 -29.8 -18.5 9.82 0.40
8.05 -31.2 -20.0 9.51 0.42
73-07-25  13.37 -30.3 -11.1 7.18 0.18
74-05-06  10.25 -10.3 - 6.3 15.1 0.235
16.35 - 9.5 - 6.4 19.27 0.24
74-05-07  8.25 -10.0 - 6.6 18.12 0.24
16.43 -11.3 - 6.8 13.54 0.25
74-05-13  11.02 -10.6 - 7.1 13.98 0.325
74-05-15  10.04 -22.9 -16.8 15.82 0.39
74-05-16  08.07 -23.7 -16.3 12.03 0.41
74-06-16  21.07 - 9.5 - 7.3 23.23 0.32
74-06-18  20.00 -27.6 -16.8 10.67 0.36
74-07-10  14.48 -25.1 - 7.8 4.93 0.205
74-07-11  10.03 -25.4 -12.4 7.63 0.28

Thermal Diffusion

Comparisons between the measured temperatures and ice temperatures cal-
culated by the graphic Schmidt method are shown in Figures III-7 and
III-8 for decreasing and increasing temperatures. To get a good fit

in those examples a coefficient of heat transfer as high as 14 W/(mK)
had to be used. Compare Table III-1. With respect to the fact that the
pressure depends on the rate of change of temperature over several time
steps such a coarse solution is quite satisfactory. In Figure III-9 a
comparison with an explicit numerical solution is made for thée same

case as in Figure III-8.
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Figure III-8.

Ice temperature calculated from the
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Figure III-9.

Ice temperature calculated from

the air temperature. Explicit 040
numerical solution Ax=0.05 m,

At=Ax2/6a, a=1.15'10_6 mz/s, A=14 W/ (mK) .

Plotted points are measured temperatures.

Rising temperature. The same experiment as

in Figure III-8.
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Short—Wave Radiation

Tn Figure III-10 a comparison is made between measured and calculated
temperature in an experiment with radiation penetrating into the ice.
During the first three hours of the experiment the short-wave irra-
diation was 132 w/m2 and the total 'balance' 132 W/m2 thereafter

257 and 252 respectively. If all emitted radiation is supposed to

be of frequencies registered by the solarimeter (short waves) this
would mean that in the beginning almost all radiation was absorbed

in the experimental basin and that as the temperature of the ice
cover increased the back radiation increased also. This is mere
speculation since the reflected short-wave radiation was not meas-

ured separately.

For the calculations it was supposed that all irradiation was short-
wave radiation and that the absorption coefficient was 2 m_l. This
meant an increase of 0.8, 0.7 and O.6OC/h at the depths 0.045, 0.136
and 0.227 m respectively at the later part of the experiment. As

can be seen from the figure this is probably too much.

Unfortunately, it proved impossible to hold the temperature in the
room at the same level so as to get a steady state. It was also diffi-
cult to measure a definite air temperature. In the former experiments
the thermocouples in the air and just above the ice surface showed
approximately the same temperature. One of the thermo couples above
the ice was shielded by a piece of paper. For the shown experiment

at the height of 0.30 m the shielded thermocouple showed -19.0%

and the bare one -14.5, and the couple just 1 cm above the ice sur-
face showed -15.4°C. Under such circumstances its difficult to inter-—

pret the measured temperature profiles.
I1I-6  Pressure

Pressure developed in the ice cover when the temperature was raised
in the freezing laboratory due to the expansion of the ice,but some-
times pressure was observed even for constant or decreasing tempera-—

tures because of expansion in the cracks when the water fused there.
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Figure III-10 Ice temperature calculated from the air temperature
and short-wave radiation flux. Schmidt graph
Ax=0.091 m, At=3600 s, a=1.15 m>/s, A=14 W/(mK).
Plotted points are measured temperatures. Initial
and final temperature -24.4°C and -16.4°C.
Short-wave radiation flux 130 W/m2 to 260 W/mz.

Coefficient of absorption 2 m_1

To check what happened when water froze in the cracks special experi-
ments were run. The ice cover was allowed to grow in thickness under

a constant temperature in the air. Then the temperature was set down

as fast as possible, and the ice cracked distinctly after two or three
hours. This was followed by a gradual increase in pressure that some-
times was lower than the opening pressure of the pressure probes. Some-
times it reached a level that could be calculated from an estimated

crack width in the following way.
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If one assumes that the cracks are widened from the temperature 0%c

at formation to the actual temperature when the pressure is observed,
the restricted expansion must approximately be the product of the diffe~-
rence in thermal contraction and the relative expansion of the water

when freezing. Thus the pressure is bounded by

0 = . - e [—
G(alce acon)gf E (I11-13)
where 06 is the ice temperature
ice = 4.82'10~5 OC_1 linear coefficient of expansion for ice
= 1.2-1()_5 OC“1 ditto for concrete
con
€ = relative expansion when freezing

E = 6.1 GPa elasticity of ice

1f the ice is supposed to expand only laterally because it is fused to
the walls of the cracks, €. will equal the volume expansion 0.09. Eq.
(I11-13) then gives for 8 = -10°C, 0 = 0.2 MPa and for 8 = -20°C, O =
= 0.4 MPa. The pressure probes could not measure pressures below 0.1

to 0.2 MPa, but in some of the experiments the pressure rose to between
0.25 and 0.33 MPa. Sometimes the pressure did not runup to expected
values, probably because the water table had been too low so that the
cracks had healed at the underside of the ice cover. This was not

selfregulating as the ice could hang on the rough concrete walls.

Thermal Pressure

For the ordinary experiments the air temperature was kept constant

for some days in advance in order to get steady state conditions.

Then the temperature of the freezing laboratory was increased manually
by changing the thermostat on the wall once an hour at the wanted rate.
This caused an increase of the temperatures in the ice, examples of
which are shown previously in Figure III-8 and III-9. The ice and basin

expanded and pressure was measured by the Glotzl-probes.

The measured pressures were compared to pressures calculated from the
measured deformation of the experimental basin. The deformation was
measured and calculated according to the description in paragraph III-3.

This deformation was assumed to be equal to the total horizontal expan-
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sion of the ice cover. If the cracks in the ice were incompletely filled
by water at the start of an experiment, this would mean that the ice could
expand more than measured, and pressures estimated from the measured

total expansion would be greater than the measured ones, especially, at

the beginning of the experiments.

The pressure in the ice was then estimated from the equation

¢ =G/E + KD o e (III-14)
with K= 4.40-10 0 n7? pa®
n = 3.651

& = do/dt the rate of change of stressy

= de/de " " " " "deformation ¢

Ul
|

The elasticity of the ice was calculated by

(1 - cB) 6.1 GPa .o (III-15)

=
1

6 = the ice temperature

0.012°%¢7 1

(e}
il

and the diffusion counstant

D=0D - exp("QS/R T) ... (I11-16)

where  D_ = 9.13-10™* n?/s

R = 0.31 J/(mol-K) the universal gas constant

QS = 59.8 kJ/mol, the activation energy for self diffusion
T

= the absolute temperature of the ice

The deformation de of the ice during the time dt was calculated as
the difference between the estimated unrestricted deformation of
the ice, o df, and the total deformation of the experimental basin,

that is:

de = a d6 - deo .. (I11-17)
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where o = S.l‘lO_S/K

d8 = change of ice temperature during dt

dso = according to Eq. (III-11)

The differentials of Eq. (II1I-14) were exchanged for their differences

and the equation was solved for each time step by the same iterative

procedure as described by Bergdahl and Wernersson (1978). Two examples

from the experiments are shown in Figures III-11 and ITI-12 below.
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Figure III-11 Measured pressure o and calculated pressure x as

functions of time. t= 0 s corresponds to 73-06-10

09.02. At the depth of five cm in the ice cover.
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Figure III-12. Measured pressure o and calculated pressure x as
functions of time. t = 0 s corresponds to
73-06-28 09.01. At the depth of five cm in the

ice cover.

I11-7 Conclusions

The thermal conduction in the ice is adequately calculated by using
a constant coefficient of diffusion of 1.15 - 10—6 m2/s. In the
laboratory the use of an ordinary coefficient of heat transfer also
seems to be satisfactory. For the conditions in the used freezing
laboratory the coefficient was measured to 12.3 * 4.5 W/(m2 °c) for
stationary conditions, but for non-stationary conditions 14 W/(m2 °0)

gave a better result.

The attempt to measure the influence from the short wave radiation
did not succeed because of the insufficient cooling capacity of the

laboratory. Such an experiment should be performed.

The used pressure gauges did not work very well. The read values

depended to a considerable degree on how the pumping was done when



143.

measuring. A few of them were damaged in the ice of unknown reasons.

Better equipment should be used. (See Metge et al. 1975).

The used way of measuring the deformations of the ice cover was sound
for a concrete wall, as it was avoided to measure local deformations
over cracks or between cracks in the concrete. A drawback was that
one could not calibrate them, but had to use the manufacturer”s fig-
ures on its properties. A better concept could be to stretch steel
bands around the basin and to applicate smaller prefabricated and
temperature compensated strain gauges on the bands. Another problem
with the used gauges was that, as soon as the temperature reached

the melting point, the moisture on the gauges made the resistance

drop disastrously.

The most important experience 1s that it is very difficult to pro-
duce thermal pressure in a small diameter basin in the same way as in
a vast floating ice cover. Often the developed cracks will not be
filled by water. If one wishes to get reproducible results one must
arrange this filling in some controlled way, for example by Lofquist™s
method with double walls. (See Section 2.7.). Another experience is
that the walls must be rather stiff so as to make the development of
the pressure possible and so that the pressure profile is correctly
reproduced. If the walls deform too much at the surface of the ice
cover the expansion on lower levels will not be enough to produce
appreciable pressures, before the ice at the surface has crept a con-
siderable time. The pressure for a completely restricted ice cover

is not reproduced under such conditions.
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APPENDIX IV

TABLES OVER WEATHER OBSERVATIONS PRECEDING
CALCULATED MAXIMUM ICE PRESSURES
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LLIST OF NOTATIONS

Most notations used in Chapter 2 are not listed. Sometimes
the same notation is used, but the units in Chapter 2 may not
be SI-units unlike in the rest of the report. Forces in

Chapter 2 may for example be given in kgf, kp, tonnes, 1lbs.

This is stated for each case separately.

A Amplitude of sinusoidal
temperature variation °c
A tridiagonal matrix
A coefficient of heat transfer W/(m2 °c)
A constants
A, coefficient of heat transfer for \"V/(m2 °c)
equilibrium temperature concept
An Fourier coefficients
a coefficient of thermal diffusion m2/5
a constants
B Bowen s ratio -
B tridiagonal matrix
B constants
b Burgers s vector m
b constants
C cloud cover eighths
C column vector
Cp specific heat capacity J/ (kg °c)
c constants
D number of a day in a year -
with D=1 for January 1.
column vector
coefficient of self diffusion for m2/s

molecules of ice



J(t)

K

constant

differential operator

moduli of elasticity

apparent elastic modulus
time average elastic modulus

saturation vapour pressure
at the ice surface

vapour pressure of the air
wind-speed function

solar time of the day

local solar angle of the day
ice cover thickness

intensity of short-wave
radiation

compliance function

coefficient for viscous
deformation

absorption coefficient

attenuation factor, wave number

index for point of time
specific latent heat of fusion

specific heat of sublimation

exponent for 0 in creep law, Drouin

ditto proposed model
summation index

initial number of dislocations
per unit area

buckling load
model parameter

energy source per unit
volume and unit time

rad

157.
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fos)

H o\ = =3 A A s

ot

activation energy for creep
activation energy for self diffusion
heat flux, energy flux

emitted long-wave radiation flux
incident radiation at cloudy weather

short-wave irradiation from a
clear sky

total convective heat transfer
latent heat transfer

incoming energy flux

absorbed long-wave radiation
long-wave atmospheric radiation

atmospheric long-wave radiation
for cloudy weather

energy flux used to melting
outgoing radiation

constant

sensible heat transfer

absorbed short-wave radiation
the universal gas constant
reflection coefficient

absolute temperature

absolute temperature of the air
273.15 K, 0°C

column vectors of temperatures
period

time for increase of temperature
time, duration of load
relaxation time for elastic lag

wind speed

J/mol
J/mol
W/m2
W /m?
VV/m2

W/m2

W /m?



> < ™ W W

<

Pw

vertical coordinate
altitude of the sun

coefficient of linear thermal
expansion

constant

angle of incidence

angle of refraction

rate of increase of dislocations
weighting factor

the psycrometric constant
difference operator

declination of the sun

strain, expansion, deformation
per unit length

emissivity

emissivity of the atmosphere
viscosity moduli

integration help variable
temperature

air temperature

initial temperature

initial surface temperature
ice surface temperature
thermal conductivity
thermal conductivity of water
Poisson’s modulus

density

density of water

Stefan Boltzmann s constant

rad

Ns/m

© o o o©
Q Q o o O

&}

W /{m °0)

W/(m ~C)

kg/m3
kg/m3

W/(m2 K™)
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g stress Pa

T integration help variable s

@ latitude rad

@ phase lag rad

w angular frequency rad/s
9 differential operator —

3/3t first derivative with —
respect to time

. 52 / 9t2 second derivative —
with respect to time
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