Improving landfill monitoring programs with the aid of geoelectrical imaging techniques and geographical information systems

KEVIN HINE
Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master's Thesis 2005:22

Hönö Wind Resource Assessment
A statistical report on Chalmers wind turbine station data

Koushik Madapati
Magnus Ellsén

Division of Electric Power Engineering
Department of Energy & Environment
Chalmers University of Technology
Göteborg, Sweden, 2014
Hönö Wind Resource Assessment

A statistical report on Chalmers wind turbine station data

Koushik Madapati
Magnus Ellsén

Division of Electric Power Engineering
Department of Energy & Environment
Chalmers University of Technology
Göteborg, Sweden, 2014

Cover picture photographed at Chalmers wind turbine station in Hönö during summer 2013.
Different names for wind in Sanskrit written in Telugu script. The above names in English script can be written as

Svasanah Sparsanah Vayuh Maatarishwah Sadagatih
Prushadaswah Gandhavah Gandhavaah Anilah
Aasuguh Sameerah Maaruthah Maruthah Jagatpraanah
Sabhaswah Vathah Pavanah Paavamaanah Prabhanjanah

To my parents...
Preface

This report concerns documentation of the anemometer installations and analysis of wind data acquired from the Chalmers wind turbine station located north-west of Göteborg, in an island Hönö, within the Öckerö archipelago.
Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Magnus Ellsén for believing in me and giving me the opportunity to perform this project. He was very patient and supportive throughout. Discussions with him helped me to gain innumerable knowledge on wind engineering. I would like to thank Professor Ola Carlson for providing the financial support for this project. I would like to thank Asst. Professor Peiyuan Chen for his support during this project. I would also like to acknowledge the support and help from my sister Saipriya Thalluri and brother-in-law Dr. Gopala Krishna Thalluri throughout my Master studies and also during this project. I also would like to thank my friends Ajay, Murali Kommuri, Naga VishnuKanth, Seshendra, Swathi Kiranmayee for their cooperation and support. Furthermore, I would like to thank everyone at the division of electric power engineering for providing with a very good working environment.

Sai Venkata Ganesh Koushik Madapati
Göteborg, Sweden, 2014
Contents

Nomenclature .. xiv

1 Introduction ... 2
 1.1 Description of the site 2
 1.2 Meteorological Mast-1 4
 1.2.1 Factors Effecting Anemometer Readings 7
 1.3 Meteorological Mast-2 9
 1.3.1 Factors Effecting WXT510 Readings 10
 1.4 Wind Data Correction 11
 1.4.1 WST Correction 11
 1.4.1.1 Friction Calibration 11
 1.4.1.2 Mast wake correction 11
 1.4.2 WSO Correction 11
 1.4.2.1 Mast wake correction 11
 1.4.3 WSX Correction 12
 1.4.3.1 Mast wake correction 12
 1.5 Wind Statistics Evaluation 12
 1.6 Meteorological Statistics from WXT510 13
 1.6.1 Data Availability 13
 1.6.2 Precipitation 15
 1.6.3 Air Temperature 16
 1.6.4 Air Pressure 20
 1.6.5 Relative Humidity 23
 1.7 Wind Statistics 27
 1.8 WXT510 Statistics 31
 1.8.1 2008 Annual Statistics 31
 1.8.1.1 2008 Monthly Statistics 34
 1.8.2 2009 Annual Statistics 40
 1.8.2.1 2009 Monthly Statistics 44
 1.8.3 2010 Annual Statistics 60
 1.8.3.1 2010 Monthly Statistics 64
 1.8.4 2011 Annual Statistics 82
 1.8.4.1 2011 Monthly Statistics 85
C Results & Observations 296
 C.1 Mast Wake Identification 299
 C.1.1 WST Mast Wake Identification 299
 C.1.2 WSO Mast Wake Identification 301
 C.2 WSO wake on WST 302

D Hönö Data Guide 304
 D.1 Hönö Data Folder 304
 D.1.1 Gill Folder 304
 D.1.2 Others Folder 304
 D.1.3 Anemometer Folders 305

E Mathematical Formulations 307
 E.1 Mean of Wind Direction 307
 E.2 Meteorological Conversions 308
 E.2.1 Precipitation 308

F Processing of Gill Anemometer Files 309
 F.1 Data Representation & Layout 309
 F.2 Stage-1 310
 F.3 Stage-2 311
 F.4 Stage-3 312

G Theoretical WST Mast Wake Identification 314

H Wind Rose 316
 H.1 WRPLOT 316
 H.2 Hydrognomon 319
 H.3 MathWorks 320

I Matlab Programs 322
 I.1 Turbulence Intensity 322
 I.2 Weibull Probability Distribution Function and Wind Speed Distribution 322
 I.2.1 Wind Direction Average 323
 I.2.2 Wind Speed Average 323
 I.3 Process WXT510 Files 324
 I.4 Process WST Files 333
 I.5 Stage-1 342
 I.6 Stage-2 343
 I.7 Stage-3 344
 I.7.1 Stage-3a 344
 I.7.2 Stage-3b 346
 I.8 WRPLOT 348
 I.9 Hydrognomon 351
Nomenclature

Abbreviations

DAV Data Availability
DNA Data Not Available
NA Not Applicable
TI Turbulence Intensity
WDM Wind Direction from Gill Wind Master anemometer
WDO Wind Direction from Gill Wind Observer anemometer
WDX Wind Direction from Vaisala sensor
WSM Wind Speed from Gill Wind Master anemometer,
 also used synonymous to WSM anemometer
WSO Wind Speed from Gill Wind Observer anemometer,
 also used synonymous to WSO anemometer
WST Wind Speed from Theis anemometer,
 also used synonymous to WST anemometer
WSX Wind Speed from Vaisala sensor,
 also used synonymous to WXT510 anemometer

Symbols

C Scale factor of Weibull probability distribution function, ms$^{-1}$
K Shape factor of Weibull probability distribution function, dimension-less
List of Figures

1.1 Bird view of the Chalmers wind turbine site (Source: Bing Maps) 3
1.2 Meteorological mast-1, Wind Master on top spar, Wind Observer on a 3 meter boom, Cup anemometer on 1.4 meter boom and also 6 guy wires that support mast-1 4
1.3 WSO and WST on their booms at about 20 m pointing towards Northwest about 318\degree pointing towards Öckerö community church. Tangential view from the mast-1 5
1.4 WSO and WST on their booms, view from WSO. In the background is Chalmers wind turbine and buildings towards Hönö ferry station ... 6
1.5 Gill wind master anemometer (source: Gill Instruments) .. 7
1.6 Top view schematic of sectors around WST anemometer .. 8
1.7 Meteorological mast-2, Vaisala weather transmitter at around 9 meters, 3 guy wires that support mast-2 and at the back to left: sea water towards Öckerö and to right sea water towards Björkö and Hisingen ... 9
1.8 Top view schematic of sectors around WSX anemometer .. 10
1.9 Data availability of meteorological data from WXT510 for different years 14
1.10 Data availability of meteorological data for different years .. 15
1.11 Total precipitation for different years; DAV: 1.9 ... 15
1.12 Total precipitation for different years and months; DAV: 1.10 .. 16
1.13 Temperature variation for different years; DAV: 1.9 ... 16
1.14 Temperature variation for different months during 2008; DAV: 1.10 17
1.15 Temperature variation for different months during 2009; DAV: 1.10 17
1.16 Temperature variation for different months during 2010; DAV: 1.10 18
1.17 Temperature variation for different months during 2011; DAV: 1.10 18
1.18 Temperature variation for different months during 2012; DAV: 1.10 19
1.19 Temperature variation for different months during 2013; DAV: 1.10 19
1.20 Air Pressure variation for different years; DAV: 1.9 .. 20
1.21 Air Pressure variation for different months during 2008; DAV: 1.10 20
1.22 Air Pressure variation for different months during 2009; DAV: 1.10 21
1.23 Air Pressure variation for different months during 2010; DAV: 1.10 21
1.24 Air Pressure variation for different months during 2011; DAV: 1.10 22
1.25 Air Pressure variation for different months during 2012; DAV: 1.10 22
1.26 Air Pressure variation for different months during 2013; DAV: 1.10 23
1.27 Relative humidity variation for different years; DAV: 1.9 . . . 23
1.28 Relative humidity for different months during 2008; DAV: 1.10 24
1.29 Relative humidity for different months during 2009; DAV: 1.10 24
1.30 Relative humidity for different months during 2010; DAV: 1.10 25
1.31 Relative humidity for different months during 2011; DAV: 1.10 25
1.32 Relative humidity for different months during 2012; DAV: 1.10 26
1.33 Relative humidity for different months during 2013; DAV: 1.10 26
1.34 Data availability of different anemometers for different years . 27
1.35 Mean wind speed of different anemometers for different years 28
1.36 Mean wind speed of different anemometers during 2008 ... 28
1.37 Mean wind speed of different anemometers during 2009 ... 29
1.38 Mean wind speed of different anemometers during 2010 ... 29
1.39 Mean wind speed of different anemometers during 2011 ... 30
1.40 Mean wind speed of different anemometers during 2012 ... 30
1.41 Mean wind speed of different anemometers during 2013 ... 31
1.42 Annual wind speed distribution of WSX, 2008 32
1.43 Annual wind speed distribution of WSX, 2008 32
1.44 Annual wind rose of WSX, 2008 33
1.45 Turbulence intensity of WSX, 2008 33
1.46 September 2008 probability distribution function 34
1.47 September 2008 Wind Rose 35
1.48 September 2008 turbulence intensity 35
1.49 October 2008 probability distribution function 36
1.50 October 2008 Wind Rose 36
1.51 October 2008 turbulence intensity 37
1.52 November 2008 probability distribution function 37
1.53 November 2008 Wind Rose 38
1.54 November 2008 turbulence intensity 38
1.55 December 2008 probability distribution function 39
1.56 December 2008 Wind Rose 39
1.57 December 2008 turbulence intensity 40
1.58 Annual wind speed distribution of WSX, 2009 41
1.59 Annual wind speed distribution of WSX, 2009 41
1.60 Annual wind rose of WSX, 2009 42
1.61 Turbulence intensity of WSX, 2009 42
1.62 January 2009 probability distribution function 44
1.63 January 2009 Wind Rose 44
1.64 January 2009 turbulence intensity 45
1.65 February 2009 probability distribution function 45
1.66 February 2009 Wind Rose 46
LIST OF FIGURES

1.67 February 2009 turbulence intensity 46
1.68 March 2009 probability distribution function 47
1.69 March 2009 Wind Rose ... 47
1.70 March 2009 turbulence intensity 48
1.71 April 2009 probability distribution function 48
1.72 April 2009 Wind Rose .. 49
1.73 April 2009 turbulence intensity 49
1.74 June 2009 probability distribution function 50
1.75 June 2009 Wind Rose .. 50
1.76 June 2009 turbulence intensity 51
1.77 July 2009 probability distribution function 51
1.78 July 2009 Wind Rose ... 52
1.79 July 2009 turbulence intensity 52
1.80 August 2009 probability distribution function 53
1.81 August 2009 Wind Rose .. 53
1.82 August 2009 turbulence intensity 54
1.83 September 2009 probability distribution function 54
1.84 September 2009 Wind Rose ... 55
1.85 September 2009 turbulence intensity 55
1.86 October 2009 probability distribution function 56
1.87 October 2009 Wind Rose .. 56
1.88 October 2009 turbulence intensity 57
1.89 November 2009 probability distribution function 57
1.90 November 2009 Wind Rose .. 58
1.91 November 2009 turbulence intensity 58
1.92 December 2009 probability distribution function 59
1.93 December 2009 Wind Rose .. 59
1.94 December 2009 turbulence intensity 60
1.95 Annual wind speed distribution of WSX, 2010 61
1.96 Annual wind speed distribution of WSX, 2010 61
1.97 Annual wind rose of WSX, 2010 62
1.98 Turbulence intensity of WSX, 2010 62
1.99 January 2010 probability distribution function 64
1.100 January 2010 Wind Rose .. 64
1.101 January 2010 turbulence intensity 65
1.102 February 2010 probability distribution function 65
1.103 February 2010 Wind Rose .. 66
1.104 February 2010 turbulence intensity 66
1.105 March 2010 probability distribution function 67
1.106 March 2010 Wind Rose .. 67
1.107 March 2010 turbulence intensity 68
1.108 April 2010 probability distribution function 68
1.109 April 2010 Wind Rose .. 69
1.110 April 2010 turbulence intensity 69
1.111May 2010 probability distribution function 70
1.112May 2010 Wind Rose ... 70
1.113May 2010 turbulence intensity 71
1.114June 2010 probability distribution function 71
1.115June 2010 Wind Rose .. 72
1.116June 2010 turbulence intensity 72
1.117July 2010 probability distribution function 73
1.118July 2010 Wind Rose .. 73
1.119July 2010 turbulence intensity 74
1.120August 2010 probability distribution function 74
1.121August 2010 Wind Rose .. 75
1.122August 2010 turbulence intensity 75
1.123September 2010 probability distribution function 76
1.124September 2010 Wind Rose .. 76
1.125September 2010 turbulence intensity 77
1.126October 2010 probability distribution function 77
1.127October 2010 Wind Rose .. 78
1.128October 2010 turbulence intensity 78
1.129November 2010 probability distribution function 79
1.130November 2010 Wind Rose ... 79
1.131November 2010 turbulence intensity 80
1.132December 2010 probability distribution function 80
1.133December 2010 Wind Rose ... 81
1.134December 2010 turbulence intensity 81
1.135Annual wind speed distribution of WSX, 2011 82
1.136Annual wind speed distribution of WSX, 2011 83
1.137Annual wind rose of WSX, 2011 83
1.138Turbulence intensity of WSX, 2011 84
1.139January 2011 probability distribution function 85
1.140January 2011 Wind Rose .. 86
1.141January 2011 turbulence intensity 86
1.142February 2011 probability distribution function 87
1.143February 2011 Wind Rose ... 87
1.144February 2011 turbulence intensity 88
1.145March 2011 probability distribution function 88
1.146March 2011 Wind Rose ... 89
1.147March 2011 turbulence intensity 89
1.148April 2011 probability distribution function 90
1.149April 2011 Wind Rose ... 90
1.150April 2011 turbulence intensity 91
1.151May 2011 probability distribution function 91
1.152May 2011 Wind Rose .. 92
1.153May 2011 turbulence intensity 92
1.154June 2011 probability distribution function 93
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.155</td>
<td>June 2011 Wind Rose</td>
<td>93</td>
</tr>
<tr>
<td>1.156</td>
<td>June 2011 turbulence intensity</td>
<td>94</td>
</tr>
<tr>
<td>1.157</td>
<td>July 2011 probability distribution function</td>
<td>94</td>
</tr>
<tr>
<td>1.158</td>
<td>July 2011 Wind Rose</td>
<td>95</td>
</tr>
<tr>
<td>1.159</td>
<td>July 2011 turbulence intensity</td>
<td>95</td>
</tr>
<tr>
<td>1.160</td>
<td>August 2011 probability distribution function</td>
<td>96</td>
</tr>
<tr>
<td>1.161</td>
<td>August 2011 Wind Rose</td>
<td>96</td>
</tr>
<tr>
<td>1.162</td>
<td>August 2011 turbulence intensity</td>
<td>97</td>
</tr>
<tr>
<td>1.163</td>
<td>September 2011 probability distribution function</td>
<td>97</td>
</tr>
<tr>
<td>1.164</td>
<td>September 2011 Wind Rose</td>
<td>98</td>
</tr>
<tr>
<td>1.165</td>
<td>September 2011 turbulence intensity</td>
<td>98</td>
</tr>
<tr>
<td>1.166</td>
<td>October 2011 probability distribution function</td>
<td>99</td>
</tr>
<tr>
<td>1.167</td>
<td>October 2011 Wind Rose</td>
<td>99</td>
</tr>
<tr>
<td>1.168</td>
<td>October 2011 turbulence intensity</td>
<td>100</td>
</tr>
<tr>
<td>1.169</td>
<td>November 2011 probability distribution function</td>
<td>100</td>
</tr>
<tr>
<td>1.170</td>
<td>November 2011 Wind Rose</td>
<td>101</td>
</tr>
<tr>
<td>1.171</td>
<td>November 2011 turbulence intensity</td>
<td>101</td>
</tr>
<tr>
<td>1.172</td>
<td>December 2011 probability distribution function</td>
<td>102</td>
</tr>
<tr>
<td>1.173</td>
<td>December 2011 Wind Rose</td>
<td>102</td>
</tr>
<tr>
<td>1.174</td>
<td>December 2011 turbulence intensity</td>
<td>103</td>
</tr>
<tr>
<td>1.175</td>
<td>Annual wind speed distribution of WSX, 2012</td>
<td>104</td>
</tr>
<tr>
<td>1.176</td>
<td>Annual wind speed distribution of WSX, 2012</td>
<td>104</td>
</tr>
<tr>
<td>1.177</td>
<td>Annual wind rose of WSX, 2012</td>
<td>105</td>
</tr>
<tr>
<td>1.178</td>
<td>Turbulence intensity of WSX, 2012</td>
<td>105</td>
</tr>
<tr>
<td>1.179</td>
<td>January 2012 probability distribution function</td>
<td>107</td>
</tr>
<tr>
<td>1.180</td>
<td>January 2012 Wind Rose</td>
<td>107</td>
</tr>
<tr>
<td>1.181</td>
<td>January 2012 turbulence intensity</td>
<td>108</td>
</tr>
<tr>
<td>1.182</td>
<td>February 2012 probability distribution function</td>
<td>108</td>
</tr>
<tr>
<td>1.183</td>
<td>February 2012 Wind Rose</td>
<td>109</td>
</tr>
<tr>
<td>1.184</td>
<td>February 2012 turbulence intensity</td>
<td>109</td>
</tr>
<tr>
<td>1.185</td>
<td>March 2012 probability distribution function</td>
<td>110</td>
</tr>
<tr>
<td>1.186</td>
<td>March 2012 Wind Rose</td>
<td>110</td>
</tr>
<tr>
<td>1.187</td>
<td>March 2012 turbulence intensity</td>
<td>111</td>
</tr>
<tr>
<td>1.188</td>
<td>April 2012 probability distribution function</td>
<td>111</td>
</tr>
<tr>
<td>1.189</td>
<td>April 2012 Wind Rose</td>
<td>112</td>
</tr>
<tr>
<td>1.190</td>
<td>April 2012 turbulence intensity</td>
<td>112</td>
</tr>
<tr>
<td>1.191</td>
<td>May 2012 probability distribution function</td>
<td>113</td>
</tr>
<tr>
<td>1.192</td>
<td>May 2012 Wind Rose</td>
<td>113</td>
</tr>
<tr>
<td>1.193</td>
<td>May 2012 turbulence intensity</td>
<td>114</td>
</tr>
<tr>
<td>1.194</td>
<td>June 2012 probability distribution function</td>
<td>114</td>
</tr>
<tr>
<td>1.195</td>
<td>June 2012 Wind Rose</td>
<td>115</td>
</tr>
<tr>
<td>1.196</td>
<td>June 2012 turbulence intensity</td>
<td>115</td>
</tr>
<tr>
<td>1.197</td>
<td>July 2012 probability distribution function</td>
<td>116</td>
</tr>
<tr>
<td>1.198</td>
<td>July 2012 Wind Rose</td>
<td>116</td>
</tr>
<tr>
<td>Figure Reference</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>1.199</td>
<td>July 2012 turbulence intensity</td>
<td>117</td>
</tr>
<tr>
<td>1.200</td>
<td>August 2012 probability distribution function</td>
<td>117</td>
</tr>
<tr>
<td>1.201</td>
<td>August 2012 Wind Rose</td>
<td>118</td>
</tr>
<tr>
<td>1.202</td>
<td>August 2012 turbulence intensity</td>
<td>118</td>
</tr>
<tr>
<td>1.203</td>
<td>September 2012 probability distribution function</td>
<td>119</td>
</tr>
<tr>
<td>1.204</td>
<td>September 2012 Wind Rose</td>
<td>119</td>
</tr>
<tr>
<td>1.205</td>
<td>September 2012 turbulence intensity</td>
<td>120</td>
</tr>
<tr>
<td>1.206</td>
<td>October 2012 probability distribution function</td>
<td>120</td>
</tr>
<tr>
<td>1.207</td>
<td>October 2012 Wind Rose</td>
<td>121</td>
</tr>
<tr>
<td>1.208</td>
<td>October 2012 turbulence intensity</td>
<td>121</td>
</tr>
<tr>
<td>1.209</td>
<td>November 2012 probability distribution function</td>
<td>122</td>
</tr>
<tr>
<td>1.210</td>
<td>November 2012 Wind Rose</td>
<td>122</td>
</tr>
<tr>
<td>1.211</td>
<td>November 2012 turbulence intensity</td>
<td>123</td>
</tr>
<tr>
<td>1.212</td>
<td>December 2012 probability distribution function</td>
<td>123</td>
</tr>
<tr>
<td>1.213</td>
<td>December 2012 Wind Rose</td>
<td>124</td>
</tr>
<tr>
<td>1.214</td>
<td>December 2012 turbulence intensity</td>
<td>124</td>
</tr>
<tr>
<td>1.215</td>
<td>Annual wind speed distribution of WSX, 2013</td>
<td>125</td>
</tr>
<tr>
<td>1.216</td>
<td>Annual wind speed distribution of WSX, 2013</td>
<td>126</td>
</tr>
<tr>
<td>1.217</td>
<td>Annual wind rose of WSX, 2013</td>
<td>126</td>
</tr>
<tr>
<td>1.218</td>
<td>Turbulence intensity of WSX, 2013</td>
<td>127</td>
</tr>
<tr>
<td>1.219</td>
<td>August 2013 probability distribution function</td>
<td>128</td>
</tr>
<tr>
<td>1.220</td>
<td>August 2013 Wind Rose</td>
<td>129</td>
</tr>
<tr>
<td>1.221</td>
<td>August 2013 turbulence intensity</td>
<td>129</td>
</tr>
<tr>
<td>1.222</td>
<td>September 2013 probability distribution function</td>
<td>130</td>
</tr>
<tr>
<td>1.223</td>
<td>September 2013 Wind Rose</td>
<td>130</td>
</tr>
<tr>
<td>1.224</td>
<td>September 2013 turbulence intensity</td>
<td>131</td>
</tr>
<tr>
<td>1.225</td>
<td>October 2013 probability distribution function</td>
<td>131</td>
</tr>
<tr>
<td>1.226</td>
<td>October 2013 Wind Rose</td>
<td>132</td>
</tr>
<tr>
<td>1.227</td>
<td>October 2013 turbulence intensity</td>
<td>132</td>
</tr>
<tr>
<td>1.228</td>
<td>November 2013 probability distribution function</td>
<td>133</td>
</tr>
<tr>
<td>1.229</td>
<td>November 2013 Wind Rose</td>
<td>133</td>
</tr>
<tr>
<td>1.230</td>
<td>November 2013 turbulence intensity</td>
<td>134</td>
</tr>
<tr>
<td>1.231</td>
<td>December 2013 probability distribution function</td>
<td>134</td>
</tr>
<tr>
<td>1.232</td>
<td>December 2013 Wind Rose</td>
<td>135</td>
</tr>
<tr>
<td>1.233</td>
<td>December 2013 turbulence intensity</td>
<td>135</td>
</tr>
<tr>
<td>1.234</td>
<td>Annual wind speed distribution of WST, 2008</td>
<td>136</td>
</tr>
<tr>
<td>1.235</td>
<td>Annual wind speed distribution of WST, 2008</td>
<td>137</td>
</tr>
<tr>
<td>1.236</td>
<td>Annual wind rose of WST, 2008</td>
<td>137</td>
</tr>
<tr>
<td>1.237</td>
<td>Turbulence intensity of WST, 2008</td>
<td>138</td>
</tr>
<tr>
<td>1.238</td>
<td>November 2008 probability distribution function</td>
<td>139</td>
</tr>
<tr>
<td>1.239</td>
<td>November 2008 Wind Rose</td>
<td>139</td>
</tr>
<tr>
<td>1.240</td>
<td>November 2008 turbulence intensity</td>
<td>140</td>
</tr>
<tr>
<td>1.241</td>
<td>December 2008 probability distribution function</td>
<td>140</td>
</tr>
<tr>
<td>1.242</td>
<td>December 2008 Wind Rose</td>
<td>141</td>
</tr>
</tbody>
</table>
1.243 December 2008 turbulence intensity .. 141
1.244 Annual wind speed distribution of WST, 2009 142
1.245 Annual wind speed distribution of WST, 2009 143
1.246 Annual wind rose of WST, 2009 ... 143
1.247 Turbulence intensity of WST, 2009 .. 144
1.248 January 2009 probability distribution function 145
1.249 January 2009 Wind Rose .. 146
1.250 January 2009 turbulence intensity ... 146
1.251 February 2009 probability distribution function 147
1.252 February 2009 Wind Rose .. 147
1.253 February 2009 turbulence intensity ... 148
1.254 March 2009 probability distribution function 148
1.255 March 2009 Wind Rose ... 149
1.256 March 2009 turbulence intensity ... 149
1.257 April 2009 probability distribution function 150
1.258 April 2009 Wind Rose ... 150
1.259 April 2009 turbulence intensity .. 151
1.260 June 2009 probability distribution function 151
1.261 June 2009 Wind Rose ... 152
1.262 June 2009 turbulence intensity .. 152
1.263 July 2009 probability distribution function 153
1.264 July 2009 Wind Rose ... 153
1.265 July 2009 turbulence intensity .. 154
1.266 August 2009 probability distribution function 154
1.267 August 2009 Wind Rose .. 155
1.268 August 2009 turbulence intensity ... 155
1.269 September 2009 probability distribution function 156
1.270 September 2009 Wind Rose .. 156
1.271 September 2009 turbulence intensity 157
1.272 October 2009 probability distribution function 157
1.273 October 2009 Wind Rose .. 158
1.274 October 2009 turbulence intensity .. 158
1.275 November 2009 probability distribution function 159
1.276 November 2009 Wind Rose .. 159
1.277 November 2009 turbulence intensity 160
1.278 December 2009 probability distribution function 160
1.279 December 2009 Wind Rose .. 161
1.280 December 2009 turbulence intensity 161
1.281 Annual wind speed distribution of WST, 2010 162
1.282 Annual wind speed distribution of WST, 2010 163
1.283 Annual wind rose of WST, 2010 .. 163
1.284 Turbulence intensity of WST, 2010 .. 164
1.285 January 2010 probability distribution function 165
1.286 January 2010 Wind Rose .. 166
1.287 January 2010 turbulence intensity 166
1.288 February 2010 probability distribution function 167
1.289 February 2010 Wind Rose 167
1.290 February 2010 turbulence intensity 168
1.291 March 2010 probability distribution function 168
1.292 March 2010 Wind Rose 169
1.293 March 2010 turbulence intensity 169
1.294 July 2010 probability distribution function 170
1.295 July 2010 Wind Rose 170
1.296 July 2010 turbulence intensity 171
1.297 August 2010 probability distribution function ... 171
1.298 August 2010 Wind Rose 172
1.299 August 2010 turbulence intensity 172
1.300 September 2010 probability distribution function . 173
1.301 September 2010 Wind Rose 173
1.302 September 2010 turbulence intensity 174
1.303 October 2010 probability distribution function ... 174
1.304 October 2010 Wind Rose 175
1.305 October 2010 turbulence intensity 175
1.306 November 2010 probability distribution function .. 176
1.307 November 2010 Wind Rose 176
1.308 November 2010 turbulence intensity 177
1.309 December 2010 probability distribution function .. 177
1.310 December 2010 Wind Rose 178
1.311 December 2010 turbulence intensity 178
1.312 Annual wind speed distribution of WST, 2011 179
1.313 Annual wind speed distribution of WST, 2011 ... 180
1.314 Annual wind rose of WST, 2011 180
1.315 Turbulence intensity of WST, 2011 181
1.316 January 2011 probability distribution function .. 182
1.317 January 2011 Wind Rose 183
1.318 January 2011 turbulence intensity 183
1.319 February 2011 probability distribution function ... 184
1.320 February 2011 Wind Rose 184
1.321 February 2011 turbulence intensity 185
1.322 March 2011 probability distribution function ... 185
1.323 March 2011 Wind Rose 186
1.324 March 2011 turbulence intensity 186
1.325 April 2011 probability distribution function 187
1.326 April 2011 Wind Rose 187
1.327 April 2011 turbulence intensity 188
1.328 May 2011 probability distribution function 188
1.329 May 2011 Wind Rose 189
1.330 May 2011 turbulence intensity 189
LIST OF FIGURES

1.331 June 2011 probability distribution function 190
1.332 June 2011 Wind Rose . 190
1.333 June 2011 turbulence intensity 191
1.334 July 2011 probability distribution function 191
1.335 July 2011 Wind Rose . 192
1.336 July 2011 turbulence intensity 192
1.337 August 2011 probability distribution function 193
1.338 August 2011 Wind Rose . 193
1.339 August 2011 turbulence intensity 194
1.340 September 2011 probability distribution function 194
1.341 September 2011 Wind Rose 195
1.342 September 2011 turbulence intensity 195
1.343 October 2011 probability distribution function 196
1.344 October 2011 Wind Rose . 196
1.345 October 2011 turbulence intensity 197
1.346 November 2011 probability distribution function 197
1.347 November 2011 Wind Rose . 198
1.348 November 2011 turbulence intensity 198
1.349 December 2011 probability distribution function 199
1.350 December 2011 Wind Rose . 199
1.351 December 2011 turbulence intensity 200
1.352 Annual wind speed distribution of WST, 2012 200
1.353 Annual wind speed distribution of WST, 2012 201
1.354 Annual wind rose of WST, 2012 201
1.355 Turbulence intensity of WST, 2012 202
1.356 January 2012 probability distribution function 203
1.357 January 2012 Wind Rose . 204
1.358 January 2012 turbulence intensity 204
1.359 February 2012 probability distribution function 205
1.360 February 2012 Wind Rose . 205
1.361 February 2012 turbulence intensity 206
1.362 March 2012 probability distribution function 206
1.363 March 2012 Wind Rose . 207
1.364 March 2012 turbulence intensity 207
1.365 April 2012 probability distribution function 208
1.366 April 2012 Wind Rose . 208
1.367 April 2012 turbulence intensity 209
1.368 May 2012 probability distribution function 209
1.369 May 2012 Wind Rose . 210
1.370 May 2012 turbulence intensity 210
1.371 June 2012 probability distribution function 211
1.372 June 2012 Wind Rose . 211
1.373 June 2012 turbulence intensity 212
1.374 July 2012 probability distribution function 212
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.375</td>
<td>July 2012 Wind Rose</td>
<td>213</td>
</tr>
<tr>
<td>1.376</td>
<td>July 2012 turbulence intensity</td>
<td>213</td>
</tr>
<tr>
<td>1.377</td>
<td>August 2012 probability distribution function</td>
<td>214</td>
</tr>
<tr>
<td>1.378</td>
<td>August 2012 Wind Rose</td>
<td>214</td>
</tr>
<tr>
<td>1.379</td>
<td>August 2012 turbulence intensity</td>
<td>215</td>
</tr>
<tr>
<td>1.380</td>
<td>September 2012 probability distribution function</td>
<td>215</td>
</tr>
<tr>
<td>1.381</td>
<td>September 2012 Wind Rose</td>
<td>216</td>
</tr>
<tr>
<td>1.382</td>
<td>September 2012 turbulence intensity</td>
<td>216</td>
</tr>
<tr>
<td>1.383</td>
<td>October 2012 probability distribution function</td>
<td>217</td>
</tr>
<tr>
<td>1.384</td>
<td>October 2012 Wind Rose</td>
<td>217</td>
</tr>
<tr>
<td>1.385</td>
<td>October 2012 turbulence intensity</td>
<td>218</td>
</tr>
<tr>
<td>1.386</td>
<td>Annual wind speed distribution of WSO, 2012</td>
<td>219</td>
</tr>
<tr>
<td>1.387</td>
<td>Annual wind speed distribution of WSO, 2012</td>
<td>220</td>
</tr>
<tr>
<td>1.388</td>
<td>Annual wind rose of WSO, 2012</td>
<td>220</td>
</tr>
<tr>
<td>1.389</td>
<td>Turbulence intensity of WSO, 2012</td>
<td>221</td>
</tr>
<tr>
<td>1.390</td>
<td>September 2012 probability distribution function</td>
<td>222</td>
</tr>
<tr>
<td>1.391</td>
<td>September 2012 wind rose</td>
<td>222</td>
</tr>
<tr>
<td>1.392</td>
<td>September 2012 turbulence intensity</td>
<td>223</td>
</tr>
<tr>
<td>1.393</td>
<td>October 2012 probability distribution function</td>
<td>223</td>
</tr>
<tr>
<td>1.394</td>
<td>October 2012 wind rose</td>
<td>224</td>
</tr>
<tr>
<td>1.395</td>
<td>October 2012 turbulence intensity</td>
<td>224</td>
</tr>
<tr>
<td>1.396</td>
<td>November 2012 probability distribution function</td>
<td>225</td>
</tr>
<tr>
<td>1.397</td>
<td>November 2012 wind rose</td>
<td>225</td>
</tr>
<tr>
<td>1.398</td>
<td>November 2012 turbulence intensity</td>
<td>226</td>
</tr>
<tr>
<td>1.399</td>
<td>Annual wind speed distribution of WSO, 2013</td>
<td>226</td>
</tr>
<tr>
<td>1.400</td>
<td>Annual wind speed distribution of WSO, 2013</td>
<td>227</td>
</tr>
<tr>
<td>1.401</td>
<td>Annual wind rose of WSO, 2013</td>
<td>227</td>
</tr>
<tr>
<td>1.402</td>
<td>Turbulence intensity of WSO, 2013</td>
<td>228</td>
</tr>
<tr>
<td>1.403</td>
<td>January 2013 probability distribution function</td>
<td>229</td>
</tr>
<tr>
<td>1.404</td>
<td>January 2013 wind rose</td>
<td>230</td>
</tr>
<tr>
<td>1.405</td>
<td>January 2013 turbulence intensity</td>
<td>230</td>
</tr>
<tr>
<td>1.406</td>
<td>February 2013 probability distribution function</td>
<td>231</td>
</tr>
<tr>
<td>1.407</td>
<td>February 2013 wind rose</td>
<td>231</td>
</tr>
<tr>
<td>1.408</td>
<td>February 2013 turbulence intensity</td>
<td>232</td>
</tr>
<tr>
<td>1.409</td>
<td>March 2013 probability distribution function</td>
<td>232</td>
</tr>
<tr>
<td>1.410</td>
<td>March 2013 wind rose</td>
<td>233</td>
</tr>
<tr>
<td>1.411</td>
<td>March 2013 turbulence intensity</td>
<td>233</td>
</tr>
<tr>
<td>1.412</td>
<td>April 2013 probability distribution function</td>
<td>234</td>
</tr>
<tr>
<td>1.413</td>
<td>April 2013 wind rose</td>
<td>234</td>
</tr>
<tr>
<td>1.414</td>
<td>April 2013 turbulence intensity</td>
<td>235</td>
</tr>
<tr>
<td>1.415</td>
<td>August 2013 probability distribution function</td>
<td>235</td>
</tr>
<tr>
<td>1.416</td>
<td>August 2013 wind rose</td>
<td>236</td>
</tr>
<tr>
<td>1.417</td>
<td>August 2013 turbulence intensity</td>
<td>236</td>
</tr>
<tr>
<td>1.418</td>
<td>September 2013 probability distribution function</td>
<td>237</td>
</tr>
<tr>
<td>Figure Ref.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.419</td>
<td>September 2013 wind rose</td>
<td>237</td>
</tr>
<tr>
<td>1.420</td>
<td>September 2013 turbulence intensity</td>
<td>238</td>
</tr>
<tr>
<td>1.421</td>
<td>October 2013 probability distribution function</td>
<td>238</td>
</tr>
<tr>
<td>1.422</td>
<td>October 2013 wind rose</td>
<td>239</td>
</tr>
<tr>
<td>1.423</td>
<td>October 2013 turbulence intensity</td>
<td>239</td>
</tr>
<tr>
<td>1.424</td>
<td>November 2013 probability distribution function</td>
<td>240</td>
</tr>
<tr>
<td>1.425</td>
<td>November 2013 wind rose</td>
<td>240</td>
</tr>
<tr>
<td>1.426</td>
<td>November 2013 turbulence intensity</td>
<td>241</td>
</tr>
<tr>
<td>1.427</td>
<td>Annual wind speed distribution of WSM, 2012</td>
<td>242</td>
</tr>
<tr>
<td>1.428</td>
<td>Annual wind speed distribution of WSM, 2012</td>
<td>243</td>
</tr>
<tr>
<td>1.429</td>
<td>Annual wind rose of WSM, 2012</td>
<td>243</td>
</tr>
<tr>
<td>1.430</td>
<td>Turbulence intensity of WSM, 2012</td>
<td>244</td>
</tr>
<tr>
<td>1.431</td>
<td>September 2012 probability distribution function</td>
<td>245</td>
</tr>
<tr>
<td>1.432</td>
<td>September 2012 Wind Rose</td>
<td>245</td>
</tr>
<tr>
<td>1.433</td>
<td>September 2012 turbulence intensity</td>
<td>246</td>
</tr>
<tr>
<td>1.434</td>
<td>October 2012 probability distribution function</td>
<td>246</td>
</tr>
<tr>
<td>1.435</td>
<td>October 2012 Wind Rose</td>
<td>247</td>
</tr>
<tr>
<td>1.436</td>
<td>October 2012 turbulence intensity</td>
<td>247</td>
</tr>
<tr>
<td>1.437</td>
<td>November 2012 probability distribution function</td>
<td>248</td>
</tr>
<tr>
<td>1.438</td>
<td>November 2012 Wind Rose</td>
<td>248</td>
</tr>
<tr>
<td>1.439</td>
<td>November 2012 turbulence intensity</td>
<td>249</td>
</tr>
<tr>
<td>1.440</td>
<td>Annual wind speed distribution of WSM, 2013</td>
<td>249</td>
</tr>
<tr>
<td>1.441</td>
<td>Annual wind speed distribution of WSM, 2013</td>
<td>250</td>
</tr>
<tr>
<td>1.442</td>
<td>Annual wind rose of WSM, 2013</td>
<td>250</td>
</tr>
<tr>
<td>1.443</td>
<td>Turbulence intensity of WSM, 2013</td>
<td>251</td>
</tr>
<tr>
<td>1.444</td>
<td>January 2013 probability distribution function</td>
<td>252</td>
</tr>
<tr>
<td>1.445</td>
<td>January 2013 Wind Rose</td>
<td>253</td>
</tr>
<tr>
<td>1.446</td>
<td>January 2013 turbulence intensity</td>
<td>253</td>
</tr>
<tr>
<td>1.447</td>
<td>February 2013 probability distribution function</td>
<td>254</td>
</tr>
<tr>
<td>1.448</td>
<td>February 2013 Wind Rose</td>
<td>254</td>
</tr>
<tr>
<td>1.449</td>
<td>February 2013 turbulence intensity</td>
<td>255</td>
</tr>
<tr>
<td>1.450</td>
<td>March 2013 probability distribution function</td>
<td>255</td>
</tr>
<tr>
<td>1.451</td>
<td>March 2013 Wind Rose</td>
<td>256</td>
</tr>
<tr>
<td>1.452</td>
<td>March 2013 turbulence intensity</td>
<td>256</td>
</tr>
<tr>
<td>1.453</td>
<td>April 2013 probability distribution function</td>
<td>257</td>
</tr>
<tr>
<td>1.454</td>
<td>April 2013 Wind Rose</td>
<td>257</td>
</tr>
<tr>
<td>1.455</td>
<td>April 2013 turbulence intensity</td>
<td>258</td>
</tr>
<tr>
<td>1.456</td>
<td>August 2013 probability distribution function</td>
<td>258</td>
</tr>
<tr>
<td>1.457</td>
<td>August 2013 Wind Rose</td>
<td>259</td>
</tr>
<tr>
<td>1.458</td>
<td>August 2013 turbulence intensity</td>
<td>259</td>
</tr>
<tr>
<td>1.459</td>
<td>September 2013 probability distribution function</td>
<td>260</td>
</tr>
<tr>
<td>1.460</td>
<td>September 2013 Wind Rose</td>
<td>260</td>
</tr>
<tr>
<td>1.461</td>
<td>September 2013 turbulence intensity</td>
<td>261</td>
</tr>
<tr>
<td>1.462</td>
<td>October 2013 probability distribution function</td>
<td>261</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1.463 October 2013 Wind Rose 262
1.464 October 2013 turbulence intensity 262
1.465 November 2013 probability distribution function 263
1.466 November 2013 Wind Rose 263
1.467 November 2013 turbulence intensity 264
1.468 December 2013 probability distribution function 264
1.469 December 2013 Wind Rose 265
1.470 December 2013 turbulence intensity 265

2.1 Comparison of WSO and WST 10 min. averaged data 267
2.2 Ratio of wind speeds of WSO and WST for different directions 268
2.3 Flow chart to calculate WST correction factor for friction and wake .. 269
2.4 Friction and non friction samples of WSO and WST wind speed ratios for different directions 270
2.5 Wind speed ratio of WSO and WST after filtering friction samples .. 271
2.6 Wind speed ratio of WSO and WST for different directions excluding mast wake sector and friction samples 272
2.7 Curve fitting of filtered data 273
2.8 Ratio of wind speed of WSO and WST corr 274
2.9 Comparison of WSM and WST corr for all directions 275
2.10 Wind speed ratio of WSM and WST corr for different directions excluding mast wake sector 276
2.11 Wind speed ratio of WSM and WST wake corr for different directions ... 278

3.1 Comparison of WSM and WSO 10 min. averaged data 280
3.2 Ratio of wind speeds over different directions 281
3.3 Binned plot of wind speed ratio over different directions ... 282
3.4 Wind speed ratio of WSM and WSO wake over different directions .. 283

4.1 Comparison of WSM and WSX 10 min. averaged data 284
4.2 Ratio of wind speeds over different directions 285
4.3 Binned plot of wind speed ratio over different directions ... 286
4.4 Binned plot of wind speed ratio over different directions ... 287
4.5 Wind speed ratio of WSM and corrected WSX over different directions .. 288

A.1 Map of chalmers wind turbine station site at Hönö and its surroundings (Source: Bing Maps) 292

C.1 Wind speed ratio of WSM and WST to analyse the mast wake sector of WST ... 299
C.2	Wind speed ratio of WSM and WST to analyse the mast wake sector of WST after filtering WST mast wake sector	300
C.3	Wind speed difference of WSM and WST to analyse the mast wake sector of WST after filtering WST mast wake sector	300
C.4	Wind speed difference of WSM and WSO to analyse the mast wake sector of WSO	301
C.5	Approximate schematic drawing of WSO and WST anemometers on mast-1 to represent theoretical and practical mast wake sector [Drawing to scale]	302
C.6	Wind speed difference of WSO and WST over different directions before WST correction	303
D.1	Data treatment and data flow for different anemometers	306
F.1	Filenames of data to be analysed	310
F.2	Layout of the file	310
F.3	Filenames after stage-1	311
F.4	Internal layout of files after stage-1	311
F.5	Explorer view of files after stage-2	312
F.6	Internal layout of files after stage-2	312
F.7	Explorer view of files after stage-3	313
F.8	Internal layout of files after stage-3	313
G.1	Geometry of WST and Met. mast-1	314
G.2	Geometry of WST and Met. mast-1	315
H.1	Screenshot of WRPLOT window	317
H.2	Screen shot of excel file created	318
H.3	Screenshot of Hydrognomon window	319
H.4	Screen-shot of Hydrognomon window	320
List of Tables

1.1 Description of different anemometers 4
1.2 Mean wind speed and data availability for different years, more detailed month wise statistics given in Tables C.2 C.3 . 27
1.3 Meteorological parameters, 2008 31
1.4 Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2008 34
1.5 Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2008 .. 34
1.6 Meteorological parameters, 2009 40
1.7 Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2009 43
1.8 Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2009 .. 43
1.9 Meteorological parameters, 2010 60
1.10 Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2010 63
1.11 Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2010 .. 63
1.12 Meteorological parameters, 2011 82
1.13 Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2011 84
1.14 Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2011 .. 85
1.15 Meteorological parameters, 2012 103
1.16 Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2012 106
1.17 Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2012 .. 106
1.18 Meteorological parameters, 2013 125
1.19 Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2013 127
1.20 Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2013 .. 128
1.21 Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2008 138
1.22 Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2008 .. 138
1.23 Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2009 144
1.24 Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2009 .. 145
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2010</td>
</tr>
<tr>
<td>1.26</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2010</td>
</tr>
<tr>
<td>1.27</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2011</td>
</tr>
<tr>
<td>1.28</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2011</td>
</tr>
<tr>
<td>1.29</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2012</td>
</tr>
<tr>
<td>1.30</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2012</td>
</tr>
<tr>
<td>1.31</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2013</td>
</tr>
<tr>
<td>1.32</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2013</td>
</tr>
<tr>
<td>1.33</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2013</td>
</tr>
<tr>
<td>1.34</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2013</td>
</tr>
<tr>
<td>1.35</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2012</td>
</tr>
<tr>
<td>1.36</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2012</td>
</tr>
<tr>
<td>1.37</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2013</td>
</tr>
<tr>
<td>1.38</td>
<td>Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2013</td>
</tr>
<tr>
<td>B.1</td>
<td>File names and no. of samples considered for analysing WSO mast wake in Chapter 3</td>
</tr>
<tr>
<td>B.2</td>
<td>File names and no. of samples considered for analysing WSO mast wake in Chapter 3</td>
</tr>
<tr>
<td>B.3</td>
<td>File names and no. of columns of WSO and WST considered for correction factor of WST in Chapter 2</td>
</tr>
<tr>
<td>C.1</td>
<td>Wind speed scattered ratio of WSO and WST and their corresponding wind speeds in sector 180°-360°, to analyse the effect of friction on WST readings</td>
</tr>
<tr>
<td>C.2</td>
<td>Wind statistics summary of all years and months from 2008-2010, empty cells indicate unavailability of data</td>
</tr>
<tr>
<td>C.3</td>
<td>Wind statistics summary of all years and months from 2010-2013, empty cells indicate unavailability of data</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Description of the site

The Chalmers wind turbine owned by the department of energy and environment and division of electric power engineering, Chalmers University was started/installed in 1984. It is located on the island Hönö within Öckerö community which is situated about 15 kilometres north-west of Göteborg. At the site there is an experimental 30 kW wind turbine along with two meteorological masts. This site serves as a demonstration facility for various wind power related studies. Every year students of electric power engineering Masters program visit this site as a part of their curriculum to perform wind power calculations. Many candidate workers also perform wind power studies on the data acquired from the Chalmers wind turbine station. This site is open for general public during Göteborg science festival (Vetenskapsfestivalen), where people meet wind power experts and learn various aspects of wind power. This wind turbine station is managed by Magnus Ellsén.

Bird’s eye view of the Chalmers wind turbine station is shown in Figure 1.1. Meteorological mast-1 is located on the north-west of Chalmers turbine. North of the site is relatively open, with the sea water towards Öckerö island. Towards north-east of the site, at about 150 meters distance there is a 660kW Vestas commercial wind turbine. Different anemometers at the site and their corresponding heights are shown in Table 1.1. The heights of the anemometers are with reference to the Chalmers wind turbine base plate. Map of Hönö and its surrounding geography is shown in Appendix A.
1.1 Description of the site

Figure 1.1: Bird view of the Chalmers wind turbine site (Source: Bing Maps)
Table 1.1: Description of different anemometers

<table>
<thead>
<tr>
<th>Manufacturer Type</th>
<th>Acronym</th>
<th>Height [m]</th>
<th>Mast</th>
<th>Boom orientation</th>
<th>Mast wake sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaisala, WXT510/520</td>
<td>WSX</td>
<td>10</td>
<td>2</td>
<td>240°</td>
<td>50°-90°</td>
</tr>
<tr>
<td>Thies</td>
<td>WST</td>
<td>18.5</td>
<td>1</td>
<td>~318°</td>
<td>100°-150°</td>
</tr>
<tr>
<td>Gill, Wind observer</td>
<td>WSO</td>
<td>18.5</td>
<td>1</td>
<td>~317°</td>
<td>110°-142°</td>
</tr>
<tr>
<td>Gill, Wind master</td>
<td>WSM</td>
<td>28</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thies</td>
<td>WSNA</td>
<td>20</td>
<td>Nacelle</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

1.2 Meteorological Mast-1

Figure 1.2: Meteorological mast-1, Wind Master on top spar, Wind Observer on a 3 meter boom, Cup anemometer on 1.4 meter boom and also 6 guy wires that support mast-1
Lattice mast-1 has a triangular footprint. There are 6 guy wires that support the lattice mast-1, 3 guy wires above 18.5 meters and 3 guy wires below 18.5 meters of height. These guy wires hang from the vertices of the masts along the vertex and are clamped to the ground. Meteorological mast-1 has 3 anemometers installed at different heights. WST is the mechanical cup anemometer manufactured by Theis and is installed on a boom at about 20 meters height with respect to the Chalmers wind turbine base plate. The length of WST boom is approximately 1.4 meters. It is one of the old anemometers which is in use since several years. It is interfaced to the measurement computer by a LabView program and has a sample acquisition rate of 1 Hz. This anemometer is out of operation from November 2012.

Figure 1.3: WSO and WST on their booms at about 20 m pointing towards Northwest about 318° pointing towards Öckerö community church, Tangential view from the mast-1

WSO is a sonic anemometer manufactured by Gill instruments and is
installed on a boom around the same height as WST, it came into operation since the end of September 2012. It has a sample acquisition rate of 10 Hz and was at first interfaced to the measurement computer by a logging program, WindView from Gill instruments. Later, the interface to WSO was implemented in the LabView measurement system. These two anemometer’s booms are aligned towards Northwest direction approximately 318° with respect to the mast-1 and are at about the hub height of the Chalmers wind turbine. Figure 1.3 shows the actual view of the two anemometers from the point their booms originate from the mast. There is a slight difference in the orientation of WSO boom and WST boom with respect to mast-1 which can be seen from Figure 1.4. For simplicity, it is assumed that the orientation of these two anemometers is the same while deriving anemometer correction factors.

Figure 1.4: WSO and WST on their booms, view from WSO. In the background is Chalmers wind turbine and buildings towards Hönö ferry station
Meteorological mast-1 is also equipped with another sonic anemometer, WSM manufactured by Gill instruments which is installed on the top of lattice mast-1 at a height of about 28.5 meters as shown in the Figure 1.2. This sensor has a sample acquisition rate of 20 Hz and was also first interfaced to the measurement computer by a logging program, WindView from Gill instruments and was later replaced by LabView measurement system. WindMaster anemometer is shown in the Figure 1.5.

1.2.1 Factors Effecting Anemometer Readings

Figure 1.6 shows the top view schematic of WST installation on met. mast-1 and sectors around it. WST in Sector-1 (S1) could experience turbulence from nearby Vestas wind turbine. Towards North and north west the terrain is largely free from obstacles with sea water towards Öckerö. Sector-2 (S2) is a disturbed sector, considering the data recorded by WST. This is because the wind blowing in this sector hits initially WSO before reaching WST. This turbulence can contribute to erroneous data recordings in WST. Sector-3 (S3) contains buildings of height about 11 meters, which may cause turbulence in WST readings. Sector-4 (S4) would experience wake effect due to met. mast-1 lattice tower. In addition to the disturbed sectors, WST could experience friction during lower wind speeds.
WSO anemometer would also have similar disturbed sectors as WST, except that its mast wake sector would be less than WST and it do not have friction effect. The 3 top guy wires hanged from mast-1 could also interfere with the readings of WSO and WST.
1.3 Meteorological Mast-2

In addition to meteorological mast-1 there is another meteorological mast (mast-2) which has one weather transmitter sensor (WXT510). The weather sensor is mounted on a 1.4 meter boom at about 9 meters height. The boom is mounted towards south-west at approximately 240° with respect to mast-2 as shown in the Figure 1.7. The lattice mast-2 also has a triangular footprint and similar dimensions, but not the same height as mast-1. There are three guy wires that support the lattice mast-2. These guy wires hang from
a height below the wind sensor. This sensor is manufactured by Vaisala corporation. This is a combined sensor measuring six different weather parameters- wind speed, wind direction, barometric pressure, temperature, rainfall and relative humidity. Wind speed and direction are measured by ultrasonic signals sent between three transmitters. This sensor does not have moving parts which making it maintenance free [1]. Figure 1.7 shows the Vaisala weather transmitter sensor installed on mast-2. This sensor is in use from past several years.

1.3.1 Factors Effecting WXT510 Readings

WSX sensor could experience turbulence from near-by buildings and trees due to its lower height. The terrain towards North and few parts of north-east sector are obstacle free and therefore the readings from these directions are expected to be less disturbed. Figure 1.8 shows the top view schematic of sectors around WSX anemometer. Sector-1 (S1) is in the mast wake of mast-2. Part of Sector-2 (S2) is under the wake of Vestas turbine. Sector-3 (S3) is mostly undisturbed with water towards Öckerö island. Sector-4 (S4) contains buildings which would effect the sensor readings.

Figure 1.8: Top view schematic of sectors around WSX anemometer
1.4 Wind Data Correction

Raw data is acquired from the measurement computer located in the control station at the Höö. The readings are monitored by Magnus Ellsén, remotely from the division of electric power engineering. As mentioned in the above sections, the wind readings are disturbed in different sectors for different anemometers. Hence, the following corrections are applied to the raw data of different anemometers.

1.4.1 WST Correction
1.4.1.1 Friction Calibration
The raw data from WST anemometer is of 1 Hz precision. The raw data from WSO anemometer is of 10 Hz precision. WSO data is processed to have 1 Hz precision. The data from both these anemometers is compared to calibrate WST anemometer. Table C.1 shows the impact of friction on WST readings during low wind speeds. A calibration factor for WST friction is obtained which is given in Section 2.1.1.

1.4.1.2 Mast wake correction
Calibrated WST data is compared to processed WSM data of 1 Hz precision to identify the mast wake sector of WST, which is given in Section 2.2. The samples within the mast wake sector for both the anemometers are then discarded and a correction factor for WST is calculated. The correction factor thus obtained is applied to 1 Hz WST data and the statistics are presented. The correction factor for WST anemometer is given in Chapter 2.

1.4.2 WSO Correction
1.4.2.1 Mast wake correction
The raw data from WSO anemometer is of 10 Hz precision. To identify the mast wake sector of WSO, the raw data is converted to 1 Hz precision and then compared to WSM data which also have 1 Hz precision. The samples that lies within the mast wake sector are discarded for both the anemometers and a correction factor for WSO anemometer within the mast wake sector is calculated. The correction factor obtained is applied to the 10 Hz WSO data, and the statistics are presented. The correction factor for WSO anemometer is given in Chapter 3.
1.4.3 WSX Correction

1.4.3.1 Mast wake correction

The raw data from WXT510 sensor is of 1 Hz precision. This data is compared to processed WSM data to identify the mast wake sector. The samples within the mast wake sector is discarded for both the anemometers and a correction factor of WSX within mast wake sector is then calculated. The correction factor thus obtained is applied to 1 Hz WXT510 data and the statistics are presented. The correction factor for WXT510 anemometer is given in Chapter 4.

WST anemometer do not have wind direction sensor. Wind direction readings from the WXT510 weather sensor are used in conjugation with WST wind speed readings to present WST statistics. The vertical heights of these anemometers are different also the placement of these two weather sensors are different. This could lead to slight differences in wind rose sectors and mast wake sectors. In wind statistics evaluation, 10 minute average data is considered. This resolution is the standard resolution that is followed in many wind resource assessment reports published.

1.5 Wind Statistics Evaluation

To present the statistics of wind data, the following parameters are calculated from the measurement data files. Their mathematical formulation is as follows

Turbulence intensity is defined as the ratio of standard deviation of wind speed to the mean value of wind speed. It is expressed mathematically as \[2\]

\[
ti = \frac{\sigma}{\bar{\omega}}
\]

(1.1)

where:

- \(\sigma\) is the standard deviation of wind speed
- \(\bar{\omega}\) is the mean wind speed

Matlab program that calculates 10 minute average turbulence intensity vector from vector of one second wind speed values is given in Section I.1.

Weibull distribution is a probability distribution function that models the wind speed distribution at a given site. It is characterised by two parameters scale factor (C) and shape factor (K). Weibull function for a wind speed of \(\omega\) is mathematically expressed as \[3\]
1.6 Meteorological Statistics from WXT510

\[f(w) = \frac{K}{C} \left(\frac{\omega}{C} \right)^{K-1} \times \exp\left[-\left(\frac{w}{C} \right)^K \right] \] (1.2)

\[C = \frac{\omega}{\gamma(1+\frac{1}{K})} \] (1.3)

Scale factor and shape factors defines the nature of Weibull distribution plot. Scale factor determines how windy the given site is. Scale factor is measured in m/s. Shape factor is a dimension less parameter that determines the wind variations. K=1,2,3 corresponds to high, moderate and consistent winds respectively [4]. To obtain a the above parameters in Matlab, a built in function \textit{wblfit} is used. The input to this function is wind speed data and the output is shape and scale factor. Matlab program that plots wind speed distribution and Weibull probability distribution function from a vector of wind speed values is given in Section I.2.

Data availability is calculated based on the following mathematical expression

\[D = \frac{\text{Recorded 10 mins. data in the interval}}{\text{Total 10 mins. in the interval}} \times 100 \] (1.4)

1.6 Meteorological Statistics from WXT510

1.6.1 Data Availability

Negative data availability represents the unavailability of data or non-existence of anemometers. One minute averages are considered for the meteorological data analysis. The bar graphs showing the statistics could be misleading when the data availability is low, therefore data availability should be taken into account while evaluating the statistics. In the caption of the bar graphs a hyper link is given which points towards its respective data availability (DAV).
Figure 1.9: Data availability of meteorological data from WXT510 for different years
1.6 Meteorological Statistics from WXT510

1.6.2 Precipitation

Figure 1.10: Data availability of meteorological data for different years

Figure 1.11: Total precipitation for different years; DAV: 1.9
1.6 Meteorological Statistics from WXT510

1.6.3 Air Temperature

Figure 1.12: Total precipitation for different years and months; DAV: 1.10

Figure 1.13: Temperature variation for different years; DAV: 1.9
Figure 1.14: Temperature variation for different months during 2008; DAV: 1.10

Figure 1.15: Temperature variation for different months during 2009; DAV: 1.10
1.6 Meteorological Statistics from WXT510

Figure 1.16: Temperature variation for different months during 2010; DAV: 1.10

Figure 1.17: Temperature variation for different months during 2011; DAV: 1.10
Figure 1.18: Temperature variation for different months during 2012; DAV: 1.10

Figure 1.19: Temperature variation for different months during 2013; DAV: 1.10
1.6.4 Air Pressure

Figure 1.20: Air Pressure variation for different years; DAV: 1.9

Figure 1.21: Air Pressure variation for different months during 2008; DAV: 1.10
Figure 1.22: Air Pressure variation for different months during 2009; DAV: 1.10

Figure 1.23: Air Pressure variation for different months during 2010; DAV: 1.10
Figure 1.24: Air Pressure variation for different months during 2011; DAV: 1.10

Figure 1.25: Air Pressure variation for different months during 2012; DAV: 1.10
1.6 Meteorological Statistics from WXT510

1.6.5 Relative Humidity

![Relative Humidity Chart]

Figure 1.27: Relative humidity variation for different years; DAV: 1.9
Figure 1.28: Relative humidity for different months during 2008; DAV: 1.10

Figure 1.29: Relative humidity for different months during 2009; DAV: 1.10
Figure 1.30: Relative humidity for different months during 2010; DAV: 1.10

Figure 1.31: Relative humidity for different months during 2011; DAV: 1.10
Figure 1.32: Relative humidity for different months during 2012; DAV: 1.10

Figure 1.33: Relative humidity for different months during 2013; DAV: 1.10
1.7 Wind Statistics

Negative wind data availability in the bar graphs represents the unavailability of data or non-existence of anemometers. In the caption of the bar charts is the link to respective data availability bar graphs. Table 1.2 shows the wind speed mean of different anemometers for different years. DNA represents data non-availability, DAV represents data availability.

Table 1.2: Mean wind speed and data availability for different years, more detailed month wise statistics given in Tables C.2 C.3

<table>
<thead>
<tr>
<th>Year</th>
<th>WSM DAV</th>
<th>WSM Mean</th>
<th>WSO DAV</th>
<th>WSO Mean</th>
<th>WST DAV</th>
<th>WST Mean</th>
<th>WSX DAV</th>
<th>WSX Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA</td>
<td>13.35</td>
<td>5.83</td>
<td>DNA</td>
<td>25.18</td>
</tr>
<tr>
<td>2009</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA</td>
<td>88.09</td>
<td>5.63</td>
<td>DNA</td>
<td>85.2</td>
</tr>
<tr>
<td>2010</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA</td>
<td>63.9</td>
<td>5.51</td>
<td>DNA</td>
<td>96.34</td>
</tr>
<tr>
<td>2011</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA</td>
<td>99.61</td>
<td>5.82</td>
<td>DNA</td>
<td>99.67</td>
</tr>
<tr>
<td>2012</td>
<td>6.4</td>
<td>7.58</td>
<td>6.4</td>
<td>7.07</td>
<td>83.24</td>
<td>5.64</td>
<td>DNA</td>
<td>95.64</td>
</tr>
<tr>
<td>2013</td>
<td>51.32</td>
<td>6.64</td>
<td>31.92</td>
<td>5.62</td>
<td>DNA</td>
<td>DNA</td>
<td>31.27</td>
<td>5.35</td>
</tr>
</tbody>
</table>

Figure 1.34: Data availability of different anemometers for different years
Figure 1.35: Mean wind speed of different anemometers for different years

Figure 1.36: Mean wind speed of different anemometers during 2008
1.7 Wind Statistics

Figure 1.37: Mean wind speed of different anemometers during 2009

Figure 1.38: Mean wind speed of different anemometers during 2010
1.7 Wind Statistics

Figure 1.39: Mean wind speed of different anemometers during 2011

Figure 1.40: Mean wind speed of different anemometers during 2012
1.8 WXT510 Statistics

Matlab program used to obtain the statistics in this section is given in Section 1.3

1.8.1 2008 Annual Statistics

Table 1.3: Meteorological parameters, 2008

<table>
<thead>
<tr>
<th>Month</th>
<th>Air Temperature [°C]</th>
<th>Air Pressure [hPa]</th>
<th>Relative Humidity</th>
<th>Precipitation [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Sept</td>
<td>10.40</td>
<td>11.88</td>
<td>13.10</td>
<td>985.70</td>
</tr>
<tr>
<td>Oct</td>
<td>2.00</td>
<td>10.71</td>
<td>14.30</td>
<td>980.10</td>
</tr>
<tr>
<td>Nov</td>
<td>-2.60</td>
<td>5.95</td>
<td>11.40</td>
<td>982.46</td>
</tr>
<tr>
<td>Dec</td>
<td>-3.70</td>
<td>2.95</td>
<td>8.80</td>
<td>985.75</td>
</tr>
</tbody>
</table>
Figure 1.42: Annual wind speed distribution of WSX, 2008

Figure 1.43: Annual wind speed distribution of WSX, 2008
Figure 1.44: Annual wind rose of WSX, 2008

Figure 1.45: Turbulence intensity of WSX, 2008
Table 1.4: Monthly wind speed $[\text{ms}^{-1}]$ parameters of 1 sec. raw data, 2008

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>0.20</td>
<td>4.51</td>
<td>13.70</td>
</tr>
<tr>
<td>October</td>
<td>0.10</td>
<td>6.09</td>
<td>24.80</td>
</tr>
<tr>
<td>November</td>
<td>0.10</td>
<td>6.10</td>
<td>25.10</td>
</tr>
<tr>
<td>December</td>
<td>0.10</td>
<td>4.50</td>
<td>25.30</td>
</tr>
</tbody>
</table>

Table 1.5: Monthly wind speed $[\text{ms}^{-1}]$ parameters of 10 min. averaged data, 2008

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>4.79</td>
<td>2.04</td>
<td>4.51</td>
<td>9.27</td>
<td>3.53</td>
<td>5.00</td>
</tr>
<tr>
<td>October</td>
<td>99.40</td>
<td>0.22</td>
<td>6.09</td>
<td>14.73</td>
<td>2.72</td>
<td>6.83</td>
</tr>
<tr>
<td>November</td>
<td>100.00</td>
<td>0.45</td>
<td>6.10</td>
<td>15.98</td>
<td>2.13</td>
<td>6.91</td>
</tr>
<tr>
<td>December</td>
<td>96.53</td>
<td>0.29</td>
<td>4.50</td>
<td>16.37</td>
<td>1.93</td>
<td>5.09</td>
</tr>
</tbody>
</table>

1.8.1.1 2008 Monthly Statistics

![Figure 1.46: September 2008 probability distribution function](image-url)

Figure 1.46: September 2008 probability distribution function
Figure 1.47: September 2008 Wind Rose

Figure 1.48: September 2008 turbulence intensity
Figure 1.49: October 2008 probability distribution function

Figure 1.50: October 2008 Wind Rose
Figure 1.51: October 2008 turbulence intensity

Figure 1.52: November 2008 probability distribution function
Figure 1.53: November 2008 Wind Rose

Figure 1.54: November 2008 turbulence intensity
Figure 1.55: December 2008 probability distribution function

Figure 1.56: December 2008 Wind Rose
Figure 1.57: December 2008 turbulence intensity

1.8.2 2009 Annual Statistics

Table 1.6: Meteorological parameters, 2009

<table>
<thead>
<tr>
<th>Month</th>
<th>Air Temperature [°C]</th>
<th>Air Pressure [hPa]</th>
<th>Relative Humidity</th>
<th>Precipitation [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Jan</td>
<td>-9.10</td>
<td>1.35</td>
<td>6.40</td>
<td>975.80</td>
</tr>
<tr>
<td>Feb</td>
<td>-7.40</td>
<td>-0.52</td>
<td>4.70</td>
<td>984.30</td>
</tr>
<tr>
<td>Mar</td>
<td>-1.90</td>
<td>2.96</td>
<td>9.20</td>
<td>985.62</td>
</tr>
<tr>
<td>Apr</td>
<td>0.10</td>
<td>7.71</td>
<td>19.80</td>
<td>403.34</td>
</tr>
<tr>
<td>May</td>
<td>0.10</td>
<td>7.71</td>
<td>19.80</td>
<td>403.34</td>
</tr>
<tr>
<td>Jun</td>
<td>13.14</td>
<td>17.67</td>
<td>24.20</td>
<td>499.23</td>
</tr>
<tr>
<td>Jul</td>
<td>13.14</td>
<td>17.67</td>
<td>24.20</td>
<td>499.23</td>
</tr>
<tr>
<td>Aug</td>
<td>12.40</td>
<td>17.35</td>
<td>23.60</td>
<td>999.22</td>
</tr>
<tr>
<td>Sept</td>
<td>7.10</td>
<td>14.82</td>
<td>21.30</td>
<td>984.40</td>
</tr>
<tr>
<td>Oct</td>
<td>1.30</td>
<td>7.84</td>
<td>13.40</td>
<td>975.21</td>
</tr>
<tr>
<td>Nov</td>
<td>1.44</td>
<td>6.76</td>
<td>11.80</td>
<td>980.65</td>
</tr>
<tr>
<td>Dec</td>
<td>-7.40</td>
<td>0.98</td>
<td>7.00</td>
<td>981.70</td>
</tr>
</tbody>
</table>
Figure 1.58: Annual wind speed distribution of WSX, 2009

Figure 1.59: Annual wind speed distribution of WSX, 2009
Figure 1.60: Annual wind rose of WSX, 2009

Figure 1.61: Turbulence intensity of WSX, 2009
Table 1.7: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2009

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.10</td>
<td>5.12</td>
<td>28.20</td>
</tr>
<tr>
<td>February</td>
<td>0.10</td>
<td>3.86</td>
<td>23.68</td>
</tr>
<tr>
<td>March</td>
<td>0.10</td>
<td>4.96</td>
<td>33.50</td>
</tr>
<tr>
<td>April</td>
<td>0.10</td>
<td>3.73</td>
<td>26.20</td>
</tr>
<tr>
<td>June</td>
<td>0.10</td>
<td>4.93</td>
<td>24.27</td>
</tr>
<tr>
<td>July</td>
<td>0.10</td>
<td>4.53</td>
<td>20.37</td>
</tr>
<tr>
<td>August</td>
<td>0.10</td>
<td>4.72</td>
<td>18.30</td>
</tr>
<tr>
<td>September</td>
<td>0.10</td>
<td>5.62</td>
<td>21.70</td>
</tr>
<tr>
<td>October</td>
<td>0.10</td>
<td>5.64</td>
<td>23.50</td>
</tr>
<tr>
<td>November</td>
<td>0.20</td>
<td>6.04</td>
<td>21.40</td>
</tr>
<tr>
<td>December</td>
<td>0.10</td>
<td>5.24</td>
<td>21.12</td>
</tr>
</tbody>
</table>

Table 1.8: Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2009

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>100.00</td>
<td>0.14</td>
<td>5.12</td>
<td>13.23</td>
<td>1.93</td>
<td>5.76</td>
</tr>
<tr>
<td>February</td>
<td>100.00</td>
<td>0.15</td>
<td>3.86</td>
<td>10.39</td>
<td>2.34</td>
<td>4.36</td>
</tr>
<tr>
<td>March</td>
<td>99.96</td>
<td>0.19</td>
<td>4.96</td>
<td>19.94</td>
<td>2.09</td>
<td>5.60</td>
</tr>
<tr>
<td>April</td>
<td>58.82</td>
<td>0.22</td>
<td>3.73</td>
<td>15.79</td>
<td>2.09</td>
<td>4.21</td>
</tr>
<tr>
<td>June</td>
<td>95.16</td>
<td>0.20</td>
<td>4.93</td>
<td>16.86</td>
<td>2.04</td>
<td>5.57</td>
</tr>
<tr>
<td>July</td>
<td>100.00</td>
<td>0.29</td>
<td>4.53</td>
<td>12.89</td>
<td>2.27</td>
<td>5.13</td>
</tr>
<tr>
<td>August</td>
<td>100.00</td>
<td>0.24</td>
<td>4.72</td>
<td>13.87</td>
<td>2.31</td>
<td>5.33</td>
</tr>
<tr>
<td>September</td>
<td>99.98</td>
<td>0.17</td>
<td>5.62</td>
<td>15.74</td>
<td>2.27</td>
<td>6.34</td>
</tr>
<tr>
<td>October</td>
<td>99.98</td>
<td>0.18</td>
<td>5.64</td>
<td>17.25</td>
<td>1.99</td>
<td>6.38</td>
</tr>
<tr>
<td>November</td>
<td>100.00</td>
<td>1.75</td>
<td>6.04</td>
<td>14.51</td>
<td>3.29</td>
<td>6.73</td>
</tr>
<tr>
<td>December</td>
<td>70.39</td>
<td>0.36</td>
<td>5.24</td>
<td>14.01</td>
<td>2.22</td>
<td>5.93</td>
</tr>
</tbody>
</table>
1.8.2.1 2009 Monthly Statistics

![Figure 1.62: January 2009 probability distribution function](image1)

![Figure 1.63: January 2009 Wind Rose](image2)
Figure 1.64: January 2009 turbulence intensity

Figure 1.65: February 2009 probability distribution function
Figure 1.66: February 2009 Wind Rose

Figure 1.67: February 2009 turbulence intensity
Figure 1.68: March 2009 probability distribution function

Figure 1.69: March 2009 Wind Rose
Figure 1.70: March 2009 turbulence intensity

Figure 1.71: April 2009 probability distribution function
Figure 1.72: April 2009 Wind Rose

Figure 1.73: April 2009 turbulence intensity
Figure 1.74: June 2009 probability distribution function

Figure 1.75: June 2009 Wind Rose
Figure 1.76: June 2009 turbulence intensity

Figure 1.77: July 2009 probability distribution function
Figure 1.78: July 2009 Wind Rose

Figure 1.79: July 2009 turbulence intensity
Figure 1.80: August 2009 probability distribution function

Figure 1.81: August 2009 Wind Rose
Figure 1.82: August 2009 turbulence intensity

Figure 1.83: September 2009 probability distribution function
Figure 1.84: September 2009 Wind Rose

Figure 1.85: September 2009 turbulence intensity
1.8 WXT510 Statistics

Figure 1.86: October 2009 probability distribution function

Figure 1.87: October 2009 Wind Rose
Figure 1.88: October 2009 turbulence intensity

Figure 1.89: November 2009 probability distribution function
Figure 1.90: November 2009 Wind Rose

Figure 1.91: November 2009 turbulence intensity
Figure 1.92: December 2009 probability distribution function

Figure 1.93: December 2009 Wind Rose
1.8.3 2010 Annual Statistics

Table 1.9: Meteorological parameters, 2010

<table>
<thead>
<tr>
<th>Month</th>
<th>Air Temperature [°C]</th>
<th>Air Pressure [hPa]</th>
<th>Relative Humidity</th>
<th>Precipitation [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Jan</td>
<td>-13.46</td>
<td>-4.60</td>
<td>2.90</td>
<td>984.20</td>
</tr>
<tr>
<td>Feb</td>
<td>-15.17</td>
<td>-3.75</td>
<td>5.20</td>
<td>983.30</td>
</tr>
<tr>
<td>Mar</td>
<td>-9.20</td>
<td>1.72</td>
<td>12.80</td>
<td>982.50</td>
</tr>
<tr>
<td>Apr</td>
<td>0.20</td>
<td>6.41</td>
<td>13.20</td>
<td>996.04</td>
</tr>
<tr>
<td>May</td>
<td>3.60</td>
<td>10.26</td>
<td>19.60</td>
<td>992.28</td>
</tr>
<tr>
<td>Jun</td>
<td>10.30</td>
<td>14.39</td>
<td>21.86</td>
<td>991.20</td>
</tr>
<tr>
<td>Jul</td>
<td>13.61</td>
<td>18.43</td>
<td>25.40</td>
<td>992.96</td>
</tr>
<tr>
<td>Aug</td>
<td>9.60</td>
<td>17.04</td>
<td>24.50</td>
<td>983.61</td>
</tr>
<tr>
<td>Sept</td>
<td>6.70</td>
<td>13.23</td>
<td>18.90</td>
<td>982.29</td>
</tr>
<tr>
<td>Oct</td>
<td>1.40</td>
<td>8.70</td>
<td>15.30</td>
<td>989.13</td>
</tr>
<tr>
<td>Nov</td>
<td>-7.49</td>
<td>3.46</td>
<td>10.80</td>
<td>965.81</td>
</tr>
<tr>
<td>Dec</td>
<td>-12.40</td>
<td>-4.29</td>
<td>4.40</td>
<td>984.33</td>
</tr>
</tbody>
</table>
Figure 1.95: Annual wind speed distribution of WSX, 2010

Figure 1.96: Annual wind speed distribution of WSX, 2010
Figure 1.97: Annual wind rose of WSX, 2010

Figure 1.98: Turbulence intensity of WSX, 2010
Table 1.10: Monthly wind speed [ms⁻¹] parameters of 1 sec. raw data, 2010

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.10</td>
<td>4.72</td>
<td>22.50</td>
</tr>
<tr>
<td>February</td>
<td>0.10</td>
<td>4.41</td>
<td>32.89</td>
</tr>
<tr>
<td>March</td>
<td>0.10</td>
<td>4.24</td>
<td>23.70</td>
</tr>
<tr>
<td>April</td>
<td>0.10</td>
<td>5.03</td>
<td>20.90</td>
</tr>
<tr>
<td>May</td>
<td>0.10</td>
<td>4.64</td>
<td>20.44</td>
</tr>
<tr>
<td>June</td>
<td>0.10</td>
<td>4.33</td>
<td>20.60</td>
</tr>
<tr>
<td>July</td>
<td>0.10</td>
<td>4.32</td>
<td>24.70</td>
</tr>
<tr>
<td>August</td>
<td>0.10</td>
<td>4.75</td>
<td>21.60</td>
</tr>
<tr>
<td>September</td>
<td>0.10</td>
<td>5.37</td>
<td>18.90</td>
</tr>
<tr>
<td>October</td>
<td>0.10</td>
<td>5.01</td>
<td>31.50</td>
</tr>
<tr>
<td>November</td>
<td>0.10</td>
<td>6.50</td>
<td>50.50</td>
</tr>
<tr>
<td>December</td>
<td>0.10</td>
<td>4.70</td>
<td>20.20</td>
</tr>
</tbody>
</table>

Table 1.11: Monthly wind speed [ms⁻¹] parameters of 10 min. averaged data, 2010

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>78.43</td>
<td>0.13</td>
<td>4.72</td>
<td>16.02</td>
<td>2.52</td>
<td>5.31</td>
</tr>
<tr>
<td>February</td>
<td>100.00</td>
<td>0.35</td>
<td>4.41</td>
<td>13.12</td>
<td>2.08</td>
<td>4.99</td>
</tr>
<tr>
<td>March</td>
<td>99.66</td>
<td>0.26</td>
<td>4.24</td>
<td>10.95</td>
<td>2.49</td>
<td>4.77</td>
</tr>
<tr>
<td>April</td>
<td>99.98</td>
<td>0.19</td>
<td>5.03</td>
<td>12.58</td>
<td>2.34</td>
<td>5.68</td>
</tr>
<tr>
<td>May</td>
<td>100.00</td>
<td>0.17</td>
<td>4.64</td>
<td>13.44</td>
<td>2.02</td>
<td>5.24</td>
</tr>
<tr>
<td>June</td>
<td>100.00</td>
<td>0.25</td>
<td>4.33</td>
<td>12.62</td>
<td>2.07</td>
<td>4.90</td>
</tr>
<tr>
<td>July</td>
<td>98.23</td>
<td>0.20</td>
<td>4.32</td>
<td>10.77</td>
<td>2.45</td>
<td>4.88</td>
</tr>
<tr>
<td>August</td>
<td>99.98</td>
<td>0.16</td>
<td>4.75</td>
<td>16.04</td>
<td>2.05</td>
<td>5.36</td>
</tr>
<tr>
<td>September</td>
<td>100.00</td>
<td>0.30</td>
<td>5.37</td>
<td>13.23</td>
<td>2.28</td>
<td>6.07</td>
</tr>
<tr>
<td>October</td>
<td>100.00</td>
<td>0.28</td>
<td>5.01</td>
<td>24.02</td>
<td>1.85</td>
<td>5.65</td>
</tr>
<tr>
<td>November</td>
<td>89.12</td>
<td>0.24</td>
<td>6.50</td>
<td>27.08</td>
<td>2.01</td>
<td>7.33</td>
</tr>
<tr>
<td>December</td>
<td>91.20</td>
<td>0.21</td>
<td>4.70</td>
<td>12.48</td>
<td>2.03</td>
<td>5.31</td>
</tr>
</tbody>
</table>
1.8 WXT510 Statistics

1.8.3.1 2010 Monthly Statistics

Figure 1.99: January 2010 probability distribution function

Figure 1.100: January 2010 Wind Rose
Figure 1.101: January 2010 turbulence intensity

Figure 1.102: February 2010 probability distribution function
Figure 1.103: February 2010 Wind Rose

Figure 1.104: February 2010 turbulence intensity
Data Availability: 99.66%

WSX\text{min} : 0.26
WSX\text{max} : 10.95
WSX : 4.24

Figure 1.105: March 2010 probability distribution function

Figure 1.106: March 2010 Wind Rose
Figure 1.107: March 2010 turbulence intensity

Figure 1.108: April 2010 probability distribution function
Figure 1.109: April 2010 Wind Rose

Figure 1.110: April 2010 turbulence intensity
Figure 1.111: May 2010 probability distribution function

Figure 1.112: May 2010 Wind Rose
Figure 1.113: May 2010 turbulence intensity

Figure 1.114: June 2010 probability distribution function
Figure 1.115: June 2010 Wind Rose

Figure 1.116: June 2010 turbulence intensity
Figure 1.117: July 2010 probability distribution function

Figure 1.118: July 2010 Wind Rose
Figure 1.119: July 2010 turbulence intensity

Figure 1.120: August 2010 probability distribution function
Figure 1.121: August 2010 Wind Rose

Figure 1.122: August 2010 turbulence intensity
Figure 1.123: September 2010 probability distribution function

Figure 1.124: September 2010 Wind Rose
1.8 WXT510 Statistics

Figure 1.125: September 2010 turbulence intensity

Figure 1.126: October 2010 probability distribution function
Figure 1.127: October 2010 Wind Rose

Figure 1.128: October 2010 turbulence intensity
Figure 1.129: November 2010 probability distribution function

Figure 1.130: November 2010 Wind Rose
Figure 1.131: November 2010 turbulence intensity

Figure 1.132: December 2010 probability distribution function
Figure 1.133: December 2010 Wind Rose

Figure 1.134: December 2010 turbulence intensity
1.8 WXT510 Statistics

1.8.4 2011 Annual Statistics

<table>
<thead>
<tr>
<th>Month</th>
<th>Air Temperature [°C]</th>
<th>Air Pressure [hPa]</th>
<th>Relative Humidity</th>
<th>Precipitation [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Jan</td>
<td>-9.00</td>
<td>-0.32</td>
<td>4.80</td>
<td>987.50</td>
</tr>
<tr>
<td>Feb</td>
<td>-10.80</td>
<td>-1.41</td>
<td>5.80</td>
<td>979.80</td>
</tr>
<tr>
<td>Mar</td>
<td>-2.90</td>
<td>2.11</td>
<td>8.10</td>
<td>982.90</td>
</tr>
<tr>
<td>Apr</td>
<td>2.30</td>
<td>8.80</td>
<td>17.60</td>
<td>996.99</td>
</tr>
<tr>
<td>May</td>
<td>1.70</td>
<td>11.32</td>
<td>20.90</td>
<td>998.80</td>
</tr>
<tr>
<td>Jun</td>
<td>11.20</td>
<td>15.54</td>
<td>25.50</td>
<td>995.00</td>
</tr>
<tr>
<td>Jul</td>
<td>12.90</td>
<td>18.07</td>
<td>24.50</td>
<td>990.90</td>
</tr>
<tr>
<td>Aug</td>
<td>12.10</td>
<td>17.14</td>
<td>23.80</td>
<td>990.60</td>
</tr>
<tr>
<td>Sept</td>
<td>9.80</td>
<td>14.67</td>
<td>22.70</td>
<td>987.10</td>
</tr>
<tr>
<td>Oct</td>
<td>4.30</td>
<td>10.70</td>
<td>16.40</td>
<td>986.61</td>
</tr>
<tr>
<td>Nov</td>
<td>0.80</td>
<td>7.56</td>
<td>12.60</td>
<td>975.49</td>
</tr>
<tr>
<td>Dec</td>
<td>0.00</td>
<td>5.34</td>
<td>10.40</td>
<td>968.55</td>
</tr>
</tbody>
</table>

Figure 1.135: Annual wind speed distribution of WSX, 2011
Figure 1.136: Annual wind speed distribution of WSX, 2011

Figure 1.137: Annual wind rose of WSX, 2011
Figure 1.138: Turbulence intensity of WSX, 2011

Table 1.13: Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2011

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.10</td>
<td>4.50</td>
<td>38.51</td>
</tr>
<tr>
<td>February</td>
<td>0.10</td>
<td>5.55</td>
<td>35.30</td>
</tr>
<tr>
<td>March</td>
<td>0.10</td>
<td>4.70</td>
<td>21.05</td>
</tr>
<tr>
<td>April</td>
<td>0.10</td>
<td>4.15</td>
<td>21.90</td>
</tr>
<tr>
<td>May</td>
<td>0.10</td>
<td>4.72</td>
<td>20.00</td>
</tr>
<tr>
<td>June</td>
<td>0.10</td>
<td>4.41</td>
<td>18.00</td>
</tr>
<tr>
<td>July</td>
<td>0.10</td>
<td>4.43</td>
<td>15.90</td>
</tr>
<tr>
<td>August</td>
<td>0.10</td>
<td>4.19</td>
<td>16.90</td>
</tr>
<tr>
<td>September</td>
<td>0.10</td>
<td>5.21</td>
<td>21.00</td>
</tr>
<tr>
<td>October</td>
<td>0.10</td>
<td>5.88</td>
<td>20.50</td>
</tr>
<tr>
<td>November</td>
<td>0.10</td>
<td>4.50</td>
<td>32.10</td>
</tr>
<tr>
<td>December</td>
<td>0.10</td>
<td>6.69</td>
<td>28.60</td>
</tr>
</tbody>
</table>
Table 1.14: Monthly wind speed [m s\(^{-1}\)] parameters of 10 min. averaged data, 2011

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>100.00</td>
<td>0.14</td>
<td>4.50</td>
<td>21.72</td>
<td>1.88</td>
<td>5.07</td>
</tr>
<tr>
<td>February</td>
<td>100.00</td>
<td>0.48</td>
<td>5.55</td>
<td>22.90</td>
<td>2.18</td>
<td>6.29</td>
</tr>
<tr>
<td>March</td>
<td>100.00</td>
<td>0.25</td>
<td>4.70</td>
<td>12.90</td>
<td>2.30</td>
<td>5.30</td>
</tr>
<tr>
<td>April</td>
<td>100.00</td>
<td>0.17</td>
<td>4.15</td>
<td>15.49</td>
<td>1.72</td>
<td>4.68</td>
</tr>
<tr>
<td>May</td>
<td>100.00</td>
<td>0.51</td>
<td>4.72</td>
<td>11.98</td>
<td>2.53</td>
<td>5.32</td>
</tr>
<tr>
<td>June</td>
<td>100.00</td>
<td>0.27</td>
<td>4.41</td>
<td>10.97</td>
<td>2.20</td>
<td>5.00</td>
</tr>
<tr>
<td>July</td>
<td>99.84</td>
<td>0.26</td>
<td>4.43</td>
<td>9.93</td>
<td>2.45</td>
<td>5.01</td>
</tr>
<tr>
<td>August</td>
<td>100.00</td>
<td>0.24</td>
<td>4.19</td>
<td>12.74</td>
<td>2.05</td>
<td>4.74</td>
</tr>
<tr>
<td>September</td>
<td>96.23</td>
<td>0.35</td>
<td>5.21</td>
<td>13.24</td>
<td>2.15</td>
<td>5.90</td>
</tr>
<tr>
<td>October</td>
<td>100.00</td>
<td>0.59</td>
<td>5.88</td>
<td>13.89</td>
<td>2.56</td>
<td>6.63</td>
</tr>
<tr>
<td>November</td>
<td>100.00</td>
<td>0.33</td>
<td>4.50</td>
<td>22.56</td>
<td>1.73</td>
<td>5.08</td>
</tr>
<tr>
<td>December</td>
<td>99.89</td>
<td>0.60</td>
<td>6.69</td>
<td>18.34</td>
<td>2.30</td>
<td>7.55</td>
</tr>
</tbody>
</table>

1.8.4.1 2011 Monthly Statistics

![January 2011 probability distribution function](image)

Figure 1.139: January 2011 probability distribution function
Figure 1.140: January 2011 Wind Rose

Figure 1.141: January 2011 turbulence intensity
Figure 1.142: February 2011 probability distribution function

Figure 1.143: February 2011 Wind Rose
Figure 1.144: February 2011 turbulence intensity

Figure 1.145: March 2011 probability distribution function
Figure 1.146: March 2011 Wind Rose

Figure 1.147: March 2011 turbulence intensity
Figure 1.148: April 2011 probability distribution function

Figure 1.149: April 2011 Wind Rose
1.8 WXT510 Statistics

Figure 1.150: April 2011 turbulence intensity

Figure 1.151: May 2011 probability distribution function
Figure 1.152: May 2011 Wind Rose

Figure 1.153: May 2011 turbulence intensity
1.8 WXT510 Statistics

Figure 1.154: June 2011 probability distribution function

Figure 1.155: June 2011 Wind Rose
1.8 WXT510 Statistics

Figure 1.156: June 2011 turbulence intensity

Figure 1.157: July 2011 probability distribution function
1.8 WXT510 Statistics

Figure 1.158: July 2011 Wind Rose

Figure 1.159: July 2011 turbulence intensity
Figure 1.160: August 2011 probability distribution function

Figure 1.161: August 2011 Wind Rose
Figure 1.162: August 2011 turbulence intensity

Figure 1.163: September 2011 probability distribution function
Figure 1.164: September 2011 Wind Rose

Figure 1.165: September 2011 turbulence intensity
Figure 1.166: October 2011 probability distribution function

Figure 1.167: October 2011 Wind Rose
Figure 1.168: October 2011 turbulence intensity

Figure 1.169: November 2011 probability distribution function
Figure 1.170: November 2011 Wind Rose

Figure 1.171: November 2011 turbulence intensity
Figure 1.172: December 2011 probability distribution function

Figure 1.173: December 2011 Wind Rose
1.8 WXT510 Statistics

1.8.5 2012 Annual Statistics

Table 1.15: Meteorological parameters, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Air Temperature [°C]</th>
<th>Air Pressure [hPa]</th>
<th>Relative Humidity</th>
<th>Precipitation [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Jan</td>
<td>-7.30</td>
<td>1.88</td>
<td>7.80</td>
<td>963.13</td>
</tr>
<tr>
<td>Feb</td>
<td>-12.80</td>
<td>-0.53</td>
<td>8.50</td>
<td>984.94</td>
</tr>
<tr>
<td>Mar</td>
<td>-0.80</td>
<td>4.81</td>
<td>11.30</td>
<td>994.50</td>
</tr>
<tr>
<td>Apr</td>
<td>-1.50</td>
<td>6.03</td>
<td>15.10</td>
<td>987.26</td>
</tr>
<tr>
<td>May</td>
<td>4.80</td>
<td>12.22</td>
<td>24.90</td>
<td>992.66</td>
</tr>
<tr>
<td>Jun</td>
<td>6.90</td>
<td>13.23</td>
<td>21.40</td>
<td>995.20</td>
</tr>
<tr>
<td>Jul</td>
<td>12.10</td>
<td>16.65</td>
<td>24.50</td>
<td>996.40</td>
</tr>
<tr>
<td>Aug</td>
<td>11.30</td>
<td>17.15</td>
<td>22.70</td>
<td>998.93</td>
</tr>
<tr>
<td>Sept</td>
<td>7.20</td>
<td>13.60</td>
<td>18.80</td>
<td>991.62</td>
</tr>
<tr>
<td>Oct</td>
<td>1.00</td>
<td>9.16</td>
<td>15.00</td>
<td>990.85</td>
</tr>
<tr>
<td>Nov</td>
<td>-1.86</td>
<td>6.71</td>
<td>10.40</td>
<td>978.68</td>
</tr>
<tr>
<td>Dec</td>
<td>-9.10</td>
<td>-4.29</td>
<td>0.50</td>
<td>991.90</td>
</tr>
</tbody>
</table>
Figure 1.175: Annual wind speed distribution of WSX, 2012

Figure 1.176: Annual wind speed distribution of WSX, 2012
Figure 1.177: Annual wind rose of WSX, 2012

Figure 1.178: Turbulence intensity of WSX, 2012
Table 1.16: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.10</td>
<td>5.44</td>
<td>25.70</td>
</tr>
<tr>
<td>February</td>
<td>0.10</td>
<td>4.87</td>
<td>20.70</td>
</tr>
<tr>
<td>March</td>
<td>0.10</td>
<td>5.06</td>
<td>22.50</td>
</tr>
<tr>
<td>April</td>
<td>0.10</td>
<td>4.63</td>
<td>37.40</td>
</tr>
<tr>
<td>May</td>
<td>0.10</td>
<td>4.48</td>
<td>20.50</td>
</tr>
<tr>
<td>June</td>
<td>0.10</td>
<td>4.59</td>
<td>24.10</td>
</tr>
<tr>
<td>July</td>
<td>0.10</td>
<td>4.11</td>
<td>18.20</td>
</tr>
<tr>
<td>August</td>
<td>0.10</td>
<td>3.84</td>
<td>16.00</td>
</tr>
<tr>
<td>September</td>
<td>0.10</td>
<td>6.21</td>
<td>19.40</td>
</tr>
<tr>
<td>October</td>
<td>0.10</td>
<td>5.01</td>
<td>25.20</td>
</tr>
<tr>
<td>November</td>
<td>0.10</td>
<td>5.92</td>
<td>18.80</td>
</tr>
<tr>
<td>December</td>
<td>0.10</td>
<td>5.48</td>
<td>21.53</td>
</tr>
</tbody>
</table>

Table 1.17: Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>100.00</td>
<td>0.13</td>
<td>5.44</td>
<td>17.94</td>
<td>1.83</td>
<td>6.13</td>
</tr>
<tr>
<td>February</td>
<td>100.00</td>
<td>0.14</td>
<td>4.86</td>
<td>14.54</td>
<td>2.01</td>
<td>5.50</td>
</tr>
<tr>
<td>March</td>
<td>100.00</td>
<td>0.24</td>
<td>5.06</td>
<td>15.67</td>
<td>1.83</td>
<td>5.71</td>
</tr>
<tr>
<td>April</td>
<td>100.00</td>
<td>0.18</td>
<td>4.63</td>
<td>15.37</td>
<td>2.02</td>
<td>5.23</td>
</tr>
<tr>
<td>May</td>
<td>100.00</td>
<td>0.15</td>
<td>4.48</td>
<td>11.85</td>
<td>2.10</td>
<td>5.06</td>
</tr>
<tr>
<td>June</td>
<td>100.00</td>
<td>0.20</td>
<td>4.59</td>
<td>12.83</td>
<td>2.29</td>
<td>5.19</td>
</tr>
<tr>
<td>July</td>
<td>100.00</td>
<td>0.12</td>
<td>4.11</td>
<td>11.86</td>
<td>2.27</td>
<td>4.64</td>
</tr>
<tr>
<td>August</td>
<td>99.96</td>
<td>0.26</td>
<td>3.84</td>
<td>10.89</td>
<td>2.01</td>
<td>4.35</td>
</tr>
<tr>
<td>September</td>
<td>99.72</td>
<td>0.80</td>
<td>6.21</td>
<td>14.17</td>
<td>2.69</td>
<td>7.00</td>
</tr>
<tr>
<td>October</td>
<td>100.00</td>
<td>0.16</td>
<td>5.01</td>
<td>18.37</td>
<td>1.89</td>
<td>5.66</td>
</tr>
<tr>
<td>November</td>
<td>99.56</td>
<td>0.35</td>
<td>5.92</td>
<td>13.34</td>
<td>2.86</td>
<td>6.65</td>
</tr>
<tr>
<td>December</td>
<td>49.26</td>
<td>0.33</td>
<td>5.48</td>
<td>12.86</td>
<td>2.17</td>
<td>6.21</td>
</tr>
</tbody>
</table>
1.8.5.1 2012 Monthly Statistics

Figure 1.179: January 2012 probability distribution function

Figure 1.180: January 2012 Wind Rose
Figure 1.181: January 2012 turbulence intensity

Figure 1.182: February 2012 probability distribution function
1.8 WXT510 Statistics

Figure 1.183: February 2012 Wind Rose

Figure 1.184: February 2012 turbulence intensity
1.8 WXT510 Statistics

Figure 1.185: March 2012 probability distribution function

![Probability Distribution Function](image)

Figure 1.186: March 2012 Wind Rose

![Wind Rose](image)
Figure 1.187: March 2012 turbulence intensity

Figure 1.188: April 2012 probability distribution function
Figure 1.189: April 2012 Wind Rose

Figure 1.190: April 2012 turbulence intensity
Figure 1.191: May 2012 probability distribution function

Figure 1.192: May 2012 Wind Rose
Figure 1.193: May 2012 turbulence intensity

Figure 1.194: June 2012 probability distribution function
Figure 1.195: June 2012 Wind Rose

Figure 1.196: June 2012 turbulence intensity
Figure 1.197: July 2012 probability distribution function

Figure 1.198: July 2012 Wind Rose
Figure 1.199: July 2012 turbulence intensity

Figure 1.200: August 2012 probability distribution function
Figure 1.201: August 2012 Wind Rose

Figure 1.202: August 2012 turbulence intensity
1.8 WXT510 Statistics

Figure 1.203: September 2012 probability distribution function

Figure 1.204: September 2012 Wind Rose
Figure 1.205: September 2012 turbulence intensity

Figure 1.206: October 2012 probability distribution function
1.8 WXT510 Statistics

Figure 1.207: October 2012 Wind Rose

Figure 1.208: October 2012 turbulence intensity
Figure 1.209: November 2012 probability distribution function

Figure 1.210: November 2012 Wind Rose
1.8 WXT510 Statistics

Figure 1.211: November 2012 turbulence intensity

Figure 1.212: December 2012 probability distribution function
1.8 WXT510 Statistics

Figure 1.213: December 2012 Wind Rose

Figure 1.214: December 2012 turbulence intensity
1.8.6 2013 Annual Statistics

Table 1.18: Meteorological parameters, 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Air Temperature [°C]</th>
<th>Air Pressure [hPa]</th>
<th>Relative Humidity</th>
<th>Precipitation [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min Mean Max</td>
<td>Min Mean Max</td>
<td>Min Mean Max</td>
<td>Min Mean Max</td>
</tr>
<tr>
<td>Aug</td>
<td>15.80 17.68 19.60</td>
<td>1014.40 1018.59</td>
<td>48.30 65.89 81.86</td>
<td>0.00</td>
</tr>
<tr>
<td>Sept</td>
<td>5.90 13.72 21.90</td>
<td>985.04 1010.74</td>
<td>35.16 71.62 92.60</td>
<td>42.96</td>
</tr>
<tr>
<td>Oct</td>
<td>4.00 10.67 15.40</td>
<td>966.60 1010.57</td>
<td>42.68 79.41 94.40</td>
<td>98.08</td>
</tr>
<tr>
<td>Nov</td>
<td>0.40 7.20 11.60</td>
<td>978.04 1006.76</td>
<td>41.55 76.84 93.40</td>
<td>67.57</td>
</tr>
<tr>
<td>Dec</td>
<td>-0.80 5.98 9.80</td>
<td>960.82 1006.15</td>
<td>37.53 81.95 94.80</td>
<td>157.00</td>
</tr>
</tbody>
</table>

Figure 1.215: Annual wind speed distribution of WSX, 2013
1.8 WXT510 Statistics

Figure 1.216: Annual wind speed distribution of WSX, 2013

Figure 1.217: Annual wind rose of WSX, 2013
Figure 1.218: Turbulence intensity of WSX, 2013

Table 1.19: Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>August</td>
<td>0.20</td>
<td>4.86</td>
<td>11.50</td>
</tr>
<tr>
<td>September</td>
<td>0.10</td>
<td>3.73</td>
<td>18.20</td>
</tr>
<tr>
<td>October</td>
<td>0.10</td>
<td>5.14</td>
<td>28.60</td>
</tr>
<tr>
<td>November</td>
<td>0.10</td>
<td>5.53</td>
<td>20.10</td>
</tr>
<tr>
<td>December</td>
<td>0.10</td>
<td>6.60</td>
<td>33.80</td>
</tr>
</tbody>
</table>
Table 1.20: Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>August</td>
<td>2.26</td>
<td>2.04</td>
<td>4.86</td>
<td>7.44</td>
<td>3.71</td>
<td>5.41</td>
</tr>
<tr>
<td>September</td>
<td>76.44</td>
<td>0.23</td>
<td>3.73</td>
<td>11.58</td>
<td>2.11</td>
<td>4.22</td>
</tr>
<tr>
<td>October</td>
<td>95.14</td>
<td>0.32</td>
<td>5.14</td>
<td>20.59</td>
<td>2.52</td>
<td>5.79</td>
</tr>
<tr>
<td>November</td>
<td>100.00</td>
<td>0.30</td>
<td>5.53</td>
<td>14.24</td>
<td>2.27</td>
<td>6.25</td>
</tr>
<tr>
<td>December</td>
<td>100.00</td>
<td>0.29</td>
<td>6.60</td>
<td>24.41</td>
<td>2.17</td>
<td>7.46</td>
</tr>
</tbody>
</table>

1.8.6.1 2013 Monthly Statistics

Figure 1.219: August 2013 probability distribution function
Figure 1.220: August 2013 Wind Rose

Figure 1.221: August 2013 turbulence intensity
Figure 1.222: September 2013 probability distribution function

Figure 1.223: September 2013 Wind Rose
Figure 1.224: September 2013 turbulence intensity

Figure 1.225: October 2013 probability distribution function
Figure 1.226: October 2013 Wind Rose

Figure 1.227: October 2013 turbulence intensity
Figure 1.228: November 2013 probability distribution function

Figure 1.229: November 2013 Wind Rose
Figure 1.230: November 2013 turbulence intensity

Figure 1.231: December 2013 probability distribution function
Figure 1.232: December 2013 Wind Rose

Figure 1.233: December 2013 turbulence intensity
1.9 WST Statistics

Matlab program used to obtain the statistics of WST anemometer is given in Section 1.4

1.9.1 2008 Annual Statistics

![Annual wind speed distribution of WST, 2008](image)

Figure 1.234: Annual wind speed distribution of WST, 2008
Figure 1.235: Annual wind speed distribution of WST, 2008

Figure 1.236: Annual wind rose of WST, 2008
Table 1.21: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2008

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>0.06</td>
<td>7.87</td>
<td>26.78</td>
</tr>
<tr>
<td>December</td>
<td>0.06</td>
<td>4.65</td>
<td>28.80</td>
</tr>
</tbody>
</table>

Table 1.22: Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2008

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>59.98</td>
<td>0.20</td>
<td>7.87</td>
<td>19.58</td>
<td>2.11</td>
<td>8.88</td>
</tr>
<tr>
<td>December</td>
<td>99.55</td>
<td>0.20</td>
<td>4.65</td>
<td>20.20</td>
<td>1.62</td>
<td>5.20</td>
</tr>
</tbody>
</table>

Figure 1.237: Turbulence intensity of WST, 2008
1.9 WST Statistics

1.9.1.1 2008 Monthly Statistics

Figure 1.238: November 2008 probability distribution function

Figure 1.239: November 2008 Wind Rose
1.9 WST Statistics

Figure 1.240: November 2008 turbulence intensity

Figure 1.241: December 2008 probability distribution function
Figure 1.242: December 2008 Wind Rose

Figure 1.243: December 2008 turbulence intensity
1.9.2 2009 Annual Statistics

Figure 1.244: Annual wind speed distribution of WST, 2009
1.9 WST Statistics

Figure 1.245: Annual wind speed distribution of WST, 2009

Figure 1.246: Annual wind rose of WST, 2009
Figure 1.247: Turbulence intensity of WST, 2009

Table 1.23: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2009

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.06</td>
<td>5.44</td>
<td>23.87</td>
</tr>
<tr>
<td>February</td>
<td>0.05</td>
<td>3.84</td>
<td>17.39</td>
</tr>
<tr>
<td>March</td>
<td>0.06</td>
<td>5.23</td>
<td>23.15</td>
</tr>
<tr>
<td>April</td>
<td>0.06</td>
<td>3.99</td>
<td>17.98</td>
</tr>
<tr>
<td>June</td>
<td>0.08</td>
<td>5.45</td>
<td>21.39</td>
</tr>
<tr>
<td>July</td>
<td>0.09</td>
<td>5.72</td>
<td>23.44</td>
</tr>
<tr>
<td>August</td>
<td>0.07</td>
<td>5.88</td>
<td>20.65</td>
</tr>
<tr>
<td>September</td>
<td>0.08</td>
<td>7.02</td>
<td>23.63</td>
</tr>
<tr>
<td>October</td>
<td>0.06</td>
<td>6.39</td>
<td>28.48</td>
</tr>
<tr>
<td>November</td>
<td>0.31</td>
<td>7.26</td>
<td>25.92</td>
</tr>
<tr>
<td>December</td>
<td>0.05</td>
<td>5.48</td>
<td>21.99</td>
</tr>
</tbody>
</table>
Table 1.24: Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2009

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>99.98</td>
<td>0.19</td>
<td>5.44</td>
<td>15.93</td>
<td>1.61</td>
<td>6.03</td>
</tr>
<tr>
<td>February</td>
<td>100.00</td>
<td>0.19</td>
<td>3.84</td>
<td>11.89</td>
<td>1.84</td>
<td>4.31</td>
</tr>
<tr>
<td>March</td>
<td>99.15</td>
<td>0.20</td>
<td>5.23</td>
<td>14.97</td>
<td>1.96</td>
<td>5.88</td>
</tr>
<tr>
<td>April</td>
<td>94.93</td>
<td>0.20</td>
<td>3.99</td>
<td>13.49</td>
<td>1.88</td>
<td>4.49</td>
</tr>
<tr>
<td>June</td>
<td>95.19</td>
<td>0.21</td>
<td>5.45</td>
<td>14.59</td>
<td>1.97</td>
<td>6.15</td>
</tr>
<tr>
<td>July</td>
<td>100.00</td>
<td>0.24</td>
<td>5.72</td>
<td>16.26</td>
<td>2.09</td>
<td>6.47</td>
</tr>
<tr>
<td>August</td>
<td>100.00</td>
<td>0.21</td>
<td>5.88</td>
<td>15.25</td>
<td>2.12</td>
<td>6.63</td>
</tr>
<tr>
<td>September</td>
<td>99.88</td>
<td>0.17</td>
<td>7.02</td>
<td>18.20</td>
<td>2.13</td>
<td>7.90</td>
</tr>
<tr>
<td>October</td>
<td>99.96</td>
<td>0.20</td>
<td>6.39</td>
<td>21.10</td>
<td>1.83</td>
<td>7.19</td>
</tr>
<tr>
<td>November</td>
<td>100.00</td>
<td>1.28</td>
<td>7.26</td>
<td>16.63</td>
<td>3.28</td>
<td>8.09</td>
</tr>
<tr>
<td>December</td>
<td>70.39</td>
<td>0.20</td>
<td>5.48</td>
<td>16.16</td>
<td>1.92</td>
<td>6.20</td>
</tr>
</tbody>
</table>

1.9.2.1 2009 Monthly Statistics

Figure 1.248: January 2009 probability distribution function
Figure 1.249: January 2009 Wind Rose

Figure 1.250: January 2009 turbulence intensity
Figure 1.251: February 2009 probability distribution function

Figure 1.252: February 2009 Wind Rose
1.9 WST Statistics

Figure 1.253: February 2009 turbulence intensity

Figure 1.254: March 2009 probability distribution function
Figure 1.255: March 2009 Wind Rose

Figure 1.256: March 2009 turbulence intensity
1.9 WST Statistics

Figure 1.257: April 2009 probability distribution function

Figure 1.258: April 2009 Wind Rose
Figure 1.259: April 2009 turbulence intensity

Figure 1.260: June 2009 probability distribution function
Figure 1.261: June 2009 Wind Rose

Figure 1.262: June 2009 turbulence intensity
Figure 1.263: July 2009 probability distribution function

Figure 1.264: July 2009 Wind Rose
Figure 1.265: July 2009 turbulence intensity

Figure 1.266: August 2009 probability distribution function
Figure 1.267: August 2009 Wind Rose

Figure 1.268: August 2009 turbulence intensity
Figure 1.269: September 2009 probability distribution function

Figure 1.270: September 2009 Wind Rose
1.9 WST Statistics

Figure 1.271: September 2009 turbulence intensity

Figure 1.272: October 2009 probability distribution function
Figure 1.273: October 2009 Wind Rose

Figure 1.274: October 2009 turbulence intensity
Figure 1.275: November 2009 probability distribution function

Figure 1.276: November 2009 Wind Rose
Figure 1.277: November 2009 turbulence intensity

Figure 1.278: December 2009 probability distribution function
Figure 1.279: December 2009 Wind Rose

Figure 1.280: December 2009 turbulence intensity
1.9.3 2010 Annual Statistics

![Annual wind speed distribution of WST, 2010](image)

Figure 1.281: Annual wind speed distribution of WST, 2010
1.9 WST Statistics

Figure 1.282: Annual wind speed distribution of WST, 2010

Figure 1.283: Annual wind rose of WST, 2010
Figure 1.284: Turbulence intensity of WST, 2010

Table 1.25: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2010

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.05</td>
<td>4.82</td>
<td>20.56</td>
</tr>
<tr>
<td>February</td>
<td>0.05</td>
<td>4.45</td>
<td>18.79</td>
</tr>
<tr>
<td>March</td>
<td>0.06</td>
<td>4.20</td>
<td>17.54</td>
</tr>
<tr>
<td>July</td>
<td>0.09</td>
<td>5.28</td>
<td>19.87</td>
</tr>
<tr>
<td>August</td>
<td>0.08</td>
<td>5.68</td>
<td>23.99</td>
</tr>
<tr>
<td>September</td>
<td>0.08</td>
<td>6.24</td>
<td>23.38</td>
</tr>
<tr>
<td>October</td>
<td>0.07</td>
<td>5.88</td>
<td>33.69</td>
</tr>
<tr>
<td>November</td>
<td>0.06</td>
<td>7.40</td>
<td>27.55</td>
</tr>
<tr>
<td>December</td>
<td>0.06</td>
<td>4.94</td>
<td>24.44</td>
</tr>
</tbody>
</table>
Table 1.26: Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2010

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>78.38</td>
<td>0.17</td>
<td>4.82</td>
<td>12.25</td>
<td>2.19</td>
<td>5.43</td>
</tr>
<tr>
<td>February</td>
<td>100.00</td>
<td>0.19</td>
<td>4.45</td>
<td>14.56</td>
<td>1.78</td>
<td>5.02</td>
</tr>
<tr>
<td>March</td>
<td>56.32</td>
<td>0.16</td>
<td>4.20</td>
<td>12.85</td>
<td>1.96</td>
<td>4.71</td>
</tr>
<tr>
<td>July</td>
<td>53.14</td>
<td>0.21</td>
<td>5.28</td>
<td>13.12</td>
<td>2.47</td>
<td>5.95</td>
</tr>
<tr>
<td>August</td>
<td>100.00</td>
<td>0.18</td>
<td>5.68</td>
<td>17.81</td>
<td>1.86</td>
<td>6.39</td>
</tr>
<tr>
<td>September</td>
<td>100.00</td>
<td>0.23</td>
<td>6.24</td>
<td>15.51</td>
<td>2.19</td>
<td>7.05</td>
</tr>
<tr>
<td>October</td>
<td>100.00</td>
<td>0.23</td>
<td>5.88</td>
<td>25.91</td>
<td>1.77</td>
<td>6.60</td>
</tr>
<tr>
<td>November</td>
<td>89.12</td>
<td>0.18</td>
<td>7.40</td>
<td>18.04</td>
<td>2.01</td>
<td>8.32</td>
</tr>
<tr>
<td>December</td>
<td>91.17</td>
<td>0.19</td>
<td>4.94</td>
<td>17.23</td>
<td>1.83</td>
<td>5.54</td>
</tr>
</tbody>
</table>

1.9.3.1 2010 Monthly Statistics

Figure 1.285: January 2010 probability distribution function
Figure 1.286: January 2010 Wind Rose

Figure 1.287: January 2010 turbulence intensity
1.9 WST Statistics

Data Availability: 100.00%

\[\text{WST}_\text{min} : 0.19 \]
\[\text{WST}_\text{max} : 14.56 \]
\[\text{WST} : 4.45 \]

Figure 1.288: February 2010 probability distribution function

Figure 1.289: February 2010 Wind Rose
Figure 1.290: February 2010 turbulence intensity

Figure 1.291: March 2010 probability distribution function
1.9 WST Statistics

Figure 1.292: March 2010 Wind Rose

Figure 1.293: March 2010 turbulence intensity
Figure 1.294: July 2010 probability distribution function

Figure 1.295: July 2010 Wind Rose
Figure 1.296: July 2010 turbulence intensity

Figure 1.297: August 2010 probability distribution function
1.9 WST Statistics

Figure 1.298: August 2010 Wind Rose

Figure 1.299: August 2010 turbulence intensity
Figure 1.300: September 2010 probability distribution function

Figure 1.301: September 2010 Wind Rose
Figure 1.302: September 2010 turbulence intensity

Figure 1.303: October 2010 probability distribution function
1.9 WST Statistics

Figure 1.304: October 2010 Wind Rose

Figure 1.305: October 2010 turbulence intensity
Figure 1.306: November 2010 probability distribution function

Figure 1.307: November 2010 Wind Rose
1.9 WST Statistics

Figure 1.308: November 2010 turbulence intensity

Figure 1.309: December 2010 probability distribution function
Figure 1.310: December 2010 Wind Rose

Figure 1.311: December 2010 turbulence intensity
1.9.4 2011 Annual Statistics

Figure 1.312: Annual wind speed distribution of WST, 2011
Figure 1.313: Annual wind speed distribution of WST, 2011

Figure 1.314: Annual wind rose of WST, 2011
Table 1.27: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2011

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.05</td>
<td>4.88</td>
<td>21.76</td>
</tr>
<tr>
<td>February</td>
<td>0.06</td>
<td>6.06</td>
<td>26.26</td>
</tr>
<tr>
<td>March</td>
<td>0.06</td>
<td>5.56</td>
<td>21.26</td>
</tr>
<tr>
<td>April</td>
<td>0.07</td>
<td>4.71</td>
<td>23.43</td>
</tr>
<tr>
<td>May</td>
<td>0.08</td>
<td>5.90</td>
<td>23.78</td>
</tr>
<tr>
<td>June</td>
<td>0.10</td>
<td>5.40</td>
<td>20.60</td>
</tr>
<tr>
<td>July</td>
<td>0.09</td>
<td>4.97</td>
<td>21.52</td>
</tr>
<tr>
<td>August</td>
<td>0.08</td>
<td>4.98</td>
<td>19.06</td>
</tr>
<tr>
<td>September</td>
<td>0.09</td>
<td>6.59</td>
<td>24.69</td>
</tr>
<tr>
<td>October</td>
<td>0.08</td>
<td>7.16</td>
<td>25.99</td>
</tr>
<tr>
<td>November</td>
<td>0.06</td>
<td>5.37</td>
<td>35.36</td>
</tr>
<tr>
<td>December</td>
<td>0.20</td>
<td>8.29</td>
<td>34.96</td>
</tr>
</tbody>
</table>
Table 1.28: Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2011

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>100.00</td>
<td>0.15</td>
<td>4.88</td>
<td>15.96</td>
<td>1.63</td>
<td>5.40</td>
</tr>
<tr>
<td>February</td>
<td>100.00</td>
<td>0.20</td>
<td>6.06</td>
<td>18.86</td>
<td>1.94</td>
<td>6.81</td>
</tr>
<tr>
<td>March</td>
<td>100.00</td>
<td>0.19</td>
<td>5.56</td>
<td>15.17</td>
<td>1.99</td>
<td>6.24</td>
</tr>
<tr>
<td>April</td>
<td>100.00</td>
<td>0.21</td>
<td>4.71</td>
<td>17.04</td>
<td>1.69</td>
<td>5.29</td>
</tr>
<tr>
<td>May</td>
<td>100.00</td>
<td>0.44</td>
<td>5.90</td>
<td>16.20</td>
<td>2.39</td>
<td>6.66</td>
</tr>
<tr>
<td>June</td>
<td>100.00</td>
<td>0.23</td>
<td>5.40</td>
<td>14.10</td>
<td>2.06</td>
<td>6.11</td>
</tr>
<tr>
<td>July</td>
<td>99.84</td>
<td>0.24</td>
<td>4.97</td>
<td>12.57</td>
<td>2.37</td>
<td>5.61</td>
</tr>
<tr>
<td>August</td>
<td>100.00</td>
<td>0.21</td>
<td>4.98</td>
<td>13.71</td>
<td>2.04</td>
<td>5.61</td>
</tr>
<tr>
<td>September</td>
<td>95.44</td>
<td>0.22</td>
<td>6.59</td>
<td>17.06</td>
<td>2.04</td>
<td>7.45</td>
</tr>
<tr>
<td>October</td>
<td>100.00</td>
<td>0.57</td>
<td>7.16</td>
<td>15.82</td>
<td>2.64</td>
<td>8.06</td>
</tr>
<tr>
<td>November</td>
<td>100.00</td>
<td>0.20</td>
<td>5.37</td>
<td>25.09</td>
<td>1.60</td>
<td>6.02</td>
</tr>
<tr>
<td>December</td>
<td>99.96</td>
<td>0.39</td>
<td>8.29</td>
<td>24.76</td>
<td>2.15</td>
<td>9.36</td>
</tr>
</tbody>
</table>

1.9.4.1 2011 Monthly Statistics

![January 2011 probability distribution function](image-url)

Figure 1.316: January 2011 probability distribution function
1.9 WST Statistics

Figure 1.317: January 2011 Wind Rose

Figure 1.318: January 2011 turbulence intensity
Figure 1.319: February 2011 probability distribution function

Figure 1.320: February 2011 Wind Rose
Figure 1.321: February 2011 turbulence intensity

Figure 1.322: March 2011 probability distribution function
Figure 1.323: March 2011 Wind Rose

Figure 1.324: March 2011 turbulence intensity
1.9 WST Statistics

Figure 1.325: April 2011 probability distribution function

Figure 1.326: April 2011 Wind Rose
1.9 WST Statistics

Figure 1.327: April 2011 turbulence intensity

Figure 1.328: May 2011 probability distribution function
Figure 1.329: May 2011 Wind Rose

Figure 1.330: May 2011 turbulence intensity
1.9 WST Statistics

Figure 1.331: June 2011 probability distribution function

Figure 1.332: June 2011 Wind Rose
Figure 1.333: June 2011 turbulence intensity

Figure 1.334: July 2011 probability distribution function
Figure 1.335: July 2011 Wind Rose

Figure 1.336: July 2011 turbulence intensity
1.9 WST Statistics

![Graph showing the probability distribution function of wind speed in August 2011.](image)

Figure 1.337: August 2011 probability distribution function

![Wind Rose chart showing the distribution of wind direction and speed in August 2011.](image)

Figure 1.338: August 2011 Wind Rose
Figure 1.339: August 2011 turbulence intensity

Figure 1.340: September 2011 probability distribution function
Figure 1.341: September 2011 Wind Rose

Figure 1.342: September 2011 turbulence intensity
Figure 1.343: October 2011 probability distribution function

Figure 1.344: October 2011 Wind Rose
Figure 1.345: October 2011 turbulence intensity

Figure 1.346: November 2011 probability distribution function
Figure 1.347: November 2011 Wind Rose

Figure 1.348: November 2011 turbulence intensity
Figure 1.349: December 2011 probability distribution function

Figure 1.350: December 2011 Wind Rose
1.9.5 2012 Annual Statistics

Figure 1.352: Annual wind speed distribution of WST, 2012
Figure 1.353: Annual wind speed distribution of WST, 2012

Figure 1.354: Annual wind rose of WST, 2012
Figure 1.355: Turbulence intensity of WST, 2012

Table 1.29: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.20</td>
<td>6.09</td>
<td>34.90</td>
</tr>
<tr>
<td>February</td>
<td>0.19</td>
<td>5.63</td>
<td>22.86</td>
</tr>
<tr>
<td>March</td>
<td>0.21</td>
<td>5.64</td>
<td>22.28</td>
</tr>
<tr>
<td>April</td>
<td>0.20</td>
<td>5.09</td>
<td>20.76</td>
</tr>
<tr>
<td>May</td>
<td>0.22</td>
<td>5.28</td>
<td>23.09</td>
</tr>
<tr>
<td>June</td>
<td>0.22</td>
<td>5.36</td>
<td>19.89</td>
</tr>
<tr>
<td>July</td>
<td>0.21</td>
<td>5.10</td>
<td>20.46</td>
</tr>
<tr>
<td>August</td>
<td>0.22</td>
<td>4.59</td>
<td>18.78</td>
</tr>
<tr>
<td>September</td>
<td>0.19</td>
<td>7.79</td>
<td>21.98</td>
</tr>
<tr>
<td>October</td>
<td>0.21</td>
<td>5.85</td>
<td>25.27</td>
</tr>
</tbody>
</table>
Table 1.30: Monthly wind speed [ms\(^{-1}\)] parameters of 10 min. averaged data, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>99.10</td>
<td>0.20</td>
<td>6.09</td>
<td>21.70</td>
<td>1.72</td>
<td>6.82</td>
</tr>
<tr>
<td>February</td>
<td>100.00</td>
<td>0.20</td>
<td>5.63</td>
<td>16.49</td>
<td>1.86</td>
<td>6.33</td>
</tr>
<tr>
<td>March</td>
<td>100.00</td>
<td>0.22</td>
<td>5.64</td>
<td>17.66</td>
<td>1.79</td>
<td>6.34</td>
</tr>
<tr>
<td>April</td>
<td>100.00</td>
<td>0.22</td>
<td>5.09</td>
<td>16.39</td>
<td>1.96</td>
<td>5.74</td>
</tr>
<tr>
<td>May</td>
<td>100.00</td>
<td>0.22</td>
<td>5.28</td>
<td>15.45</td>
<td>1.92</td>
<td>5.95</td>
</tr>
<tr>
<td>June</td>
<td>100.00</td>
<td>0.23</td>
<td>5.36</td>
<td>13.77</td>
<td>2.39</td>
<td>6.04</td>
</tr>
<tr>
<td>July</td>
<td>100.00</td>
<td>0.23</td>
<td>5.10</td>
<td>15.12</td>
<td>2.08</td>
<td>5.77</td>
</tr>
<tr>
<td>August</td>
<td>100.00</td>
<td>0.23</td>
<td>4.59</td>
<td>13.17</td>
<td>1.84</td>
<td>5.18</td>
</tr>
<tr>
<td>September</td>
<td>99.75</td>
<td>0.22</td>
<td>7.79</td>
<td>15.51</td>
<td>3.04</td>
<td>8.72</td>
</tr>
<tr>
<td>October</td>
<td>100.00</td>
<td>0.23</td>
<td>5.85</td>
<td>18.85</td>
<td>1.85</td>
<td>6.58</td>
</tr>
</tbody>
</table>

1.9.5.1 2012 Monthly Statistics

![Figure 1.356: January 2012 probability distribution function](image-url)
Figure 1.357: January 2012 Wind Rose

Figure 1.358: January 2012 turbulence intensity
Figure 1.359: February 2012 probability distribution function

Figure 1.360: February 2012 Wind Rose
Figure 1.361: February 2012 turbulence intensity

Figure 1.362: March 2012 probability distribution function
1.9 WST Statistics

Figure 1.363: March 2012 Wind Rose

Figure 1.364: March 2012 turbulence intensity
Figure 1.365: April 2012 probability distribution function

Figure 1.366: April 2012 Wind Rose
Figure 1.367: April 2012 turbulence intensity

Figure 1.368: May 2012 probability distribution function
Figure 1.369: May 2012 Wind Rose

Figure 1.370: May 2012 turbulence intensity
Figure 1.371: June 2012 probability distribution function

Figure 1.372: June 2012 Wind Rose
Figure 1.373: June 2012 turbulence intensity

Figure 1.374: July 2012 probability distribution function
Figure 1.375: July 2012 Wind Rose

Figure 1.376: July 2012 turbulence intensity
1.9 WST Statistics

Figure 1.377: August 2012 probability distribution function

Figure 1.378: August 2012 Wind Rose
Figure 1.379: August 2012 turbulence intensity

Figure 1.380: September 2012 probability distribution function
Figure 1.381: September 2012 Wind Rose

Figure 1.382: September 2012 turbulence intensity
Figure 1.383: October 2012 probability distribution function

Figure 1.384: October 2012 Wind Rose
Figure 1.385: October 2012 turbulence intensity
1.10 WSO Statistics

1.10.1 2012 Annual Statistics

Figure 1.386: Annual wind speed distribution of WSO, 2012
Figure 1.387: Annual wind speed distribution of WSO, 2012

Figure 1.388: Annual wind rose of WSO, 2012
1.10 WSO Statistics

Figure 1.389: Turbulence intensity of WSO, 2012

Table 1.31: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>1.13</td>
<td>7.68</td>
<td>20.33</td>
</tr>
<tr>
<td>October</td>
<td>0.00</td>
<td>6.88</td>
<td>24.65</td>
</tr>
<tr>
<td>November</td>
<td>0.80</td>
<td>7.51</td>
<td>19.14</td>
</tr>
</tbody>
</table>

Table 1.32: Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>9.17</td>
<td>3.49</td>
<td>7.68</td>
<td>15.23</td>
<td>3.04</td>
<td>8.60</td>
</tr>
<tr>
<td>October</td>
<td>55.65</td>
<td>0.33</td>
<td>6.88</td>
<td>18.21</td>
<td>2.22</td>
<td>7.76</td>
</tr>
<tr>
<td>November</td>
<td>11.44</td>
<td>2.26</td>
<td>7.51</td>
<td>13.06</td>
<td>3.69</td>
<td>8.33</td>
</tr>
</tbody>
</table>

221
1.10 WSO Statistics

1.10.1.1 2012 Monthly Statistics

![Figure 1.390: September 2012 probability distribution function](image1.png)

![Figure 1.391: September 2012 wind rose](image2.png)
1.10 WSO Statistics

Figure 1.392: September 2012 turbulence intensity

Figure 1.393: October 2012 probability distribution function
1.10 WSO Statistics

<table>
<thead>
<tr>
<th>Wind Direction</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>West</td>
<td>5%</td>
</tr>
<tr>
<td>East</td>
<td>10%</td>
</tr>
<tr>
<td>South</td>
<td>15%</td>
</tr>
<tr>
<td>North</td>
<td>10%</td>
</tr>
</tbody>
</table>

Figure 1.394: October 2012 wind rose

Figure 1.395: October 2012 turbulence intensity
1.10 WSO Statistics

Figure 1.396: November 2012 probability distribution function

Figure 1.397: November 2012 wind rose
1.10 WSO Statistics

1.10.2 2013 Annual Statistics

Figure 1.398: November 2012 turbulence intensity

Figure 1.399: Annual wind speed distribution of WSO, 2013
Figure 1.400: Annual wind speed distribution of WSO, 2013

Figure 1.401: Annual wind rose of WSO, 2013
1.10 WSO Statistics

Figure 1.402: Turbulence intensity of WSO, 2013

Table 1.33: Monthly wind speed \([\text{ms}^{-1}]\) parameters of 1 sec. raw data, 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.03</td>
<td>8.21</td>
<td>23.04</td>
</tr>
<tr>
<td>February</td>
<td>0.00</td>
<td>5.15</td>
<td>21.01</td>
</tr>
<tr>
<td>March</td>
<td>0.00</td>
<td>5.99</td>
<td>20.79</td>
</tr>
<tr>
<td>April</td>
<td>0.01</td>
<td>5.11</td>
<td>18.37</td>
</tr>
<tr>
<td>August</td>
<td>0.74</td>
<td>5.99</td>
<td>12.29</td>
</tr>
<tr>
<td>September</td>
<td>0.00</td>
<td>4.51</td>
<td>20.29</td>
</tr>
<tr>
<td>October</td>
<td>0.05</td>
<td>6.50</td>
<td>28.14</td>
</tr>
<tr>
<td>November</td>
<td>2.48</td>
<td>9.38</td>
<td>18.11</td>
</tr>
</tbody>
</table>
Table 1.34: Monthly wind speed [\text{ms}^{-1}] parameters of 10 min. averaged data, 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>3.27</td>
<td>0.94</td>
<td>8.23</td>
<td>16.85</td>
<td>2.54</td>
<td>9.24</td>
</tr>
<tr>
<td>February</td>
<td>31.87</td>
<td>0.48</td>
<td>5.14</td>
<td>10.98</td>
<td>2.33</td>
<td>5.77</td>
</tr>
<tr>
<td>March</td>
<td>99.24</td>
<td>0.23</td>
<td>5.99</td>
<td>14.02</td>
<td>2.42</td>
<td>6.76</td>
</tr>
<tr>
<td>April</td>
<td>71.85</td>
<td>0.24</td>
<td>5.11</td>
<td>12.71</td>
<td>2.20</td>
<td>5.77</td>
</tr>
<tr>
<td>August</td>
<td>1.57</td>
<td>3.21</td>
<td>5.98</td>
<td>8.66</td>
<td>3.79</td>
<td>6.66</td>
</tr>
<tr>
<td>September</td>
<td>77.31</td>
<td>0.33</td>
<td>4.51</td>
<td>13.56</td>
<td>2.10</td>
<td>5.10</td>
</tr>
<tr>
<td>October</td>
<td>98.25</td>
<td>0.37</td>
<td>6.50</td>
<td>21.32</td>
<td>2.59</td>
<td>7.32</td>
</tr>
<tr>
<td>November</td>
<td>0.42</td>
<td>8.66</td>
<td>9.38</td>
<td>10.08</td>
<td>25.44</td>
<td>9.57</td>
</tr>
</tbody>
</table>

1.10.2.1 2013 Monthly Statistics

Figure 1.403: January 2013 probability distribution function
1.10 WSO Statistics

Figure 1.404: January 2013 wind rose

Figure 1.405: January 2013 turbulence intensity
1.10 WSO Statistics

Figure 1.406: February 2013 probability distribution function

Figure 1.407: February 2013 wind rose
1.10 WSO Statistics

Figure 1.408: February 2013 turbulence intensity

Figure 1.409: March 2013 probability distribution function
Figure 1.410: March 2013 wind rose

Figure 1.411: March 2013 turbulence intensity
1.10 WSO Statistics

Figure 1.412: April 2013 probability distribution function

Figure 1.413: April 2013 wind rose
1.10 WSO Statistics

Figure 1.414: April 2013 turbulence intensity

Figure 1.415: August 2013 probability distribution function
Figure 1.416: August 2013 wind rose

Figure 1.417: August 2013 turbulence intensity
1.10 WSO Statistics

![Figure 1.418: September 2013 probability distribution function](image1)

![Figure 1.419: September 2013 wind rose](image2)
Figure 1.420: September 2013 turbulence intensity

Figure 1.421: October 2013 probability distribution function
Figure 1.422: October 2013 wind rose

Figure 1.423: October 2013 turbulence intensity
1.10 WSO Statistics

![Probability Distribution Function](image1.png)

Figure 1.424: November 2013 probability distribution function

![Wind Rose](image2.png)

Figure 1.425: November 2013 wind rose
Figure 1.426: November 2013 turbulence intensity
1.11 WSM Statistics

1.11.1 2012 Annual Statistics

Figure 1.427: Annual wind speed distribution of WSM, 2012
1.11 WSM Statistics

Figure 1.428: Annual wind speed distribution of WSM, 2012

Figure 1.429: Annual wind rose of WSM, 2012
Figure 1.430: Turbulence intensity of WSM, 2012

Table 1.35: Monthly wind speed [ms$^{-1}$] parameters of 1 sec. raw data, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>1.16</td>
<td>8.24</td>
<td>20.43</td>
</tr>
<tr>
<td>October</td>
<td>0.02</td>
<td>7.35</td>
<td>26.25</td>
</tr>
<tr>
<td>November</td>
<td>0.93</td>
<td>8.15</td>
<td>19.47</td>
</tr>
</tbody>
</table>

Table 1.36: Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2012

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>9.19</td>
<td>3.70</td>
<td>8.24</td>
<td>15.94</td>
<td>3.18</td>
<td>9.20</td>
</tr>
<tr>
<td>October</td>
<td>55.62</td>
<td>0.53</td>
<td>7.36</td>
<td>18.99</td>
<td>2.27</td>
<td>8.29</td>
</tr>
<tr>
<td>November</td>
<td>11.44</td>
<td>2.71</td>
<td>8.15</td>
<td>12.89</td>
<td>3.92</td>
<td>9.03</td>
</tr>
</tbody>
</table>
1.11.1.1 2012 Monthly Statistics

Figure 1.431: September 2012 probability distribution function

Figure 1.432: September 2012 Wind Rose
1.11 WSM Statistics

Figure 1.433: September 2012 turbulence intensity

Figure 1.434: October 2012 probability distribution function
Figure 1.435: October 2012 Wind Rose

Figure 1.436: October 2012 turbulence intensity
1.11 WSM Statistics

Figure 1.437: November 2012 probability distribution function

Figure 1.438: November 2012 Wind Rose
1.11.2 2013 Annual Statistics

Figure 1.440: Annual wind speed distribution of WSM, 2013
Figure 1.441: Annual wind speed distribution of WSM, 2013

Figure 1.442: Annual wind rose of WSM, 2013
Table 1.37: Monthly wind speed [ms\(^{-1}\)] parameters of 1 sec. raw data, 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.12</td>
<td>8.74</td>
<td>23.88</td>
</tr>
<tr>
<td>February</td>
<td>0.05</td>
<td>6.01</td>
<td>32.14</td>
</tr>
<tr>
<td>March</td>
<td>0.03</td>
<td>6.27</td>
<td>20.31</td>
</tr>
<tr>
<td>April</td>
<td>0.01</td>
<td>5.47</td>
<td>19.27</td>
</tr>
<tr>
<td>August</td>
<td>0.92</td>
<td>5.95</td>
<td>13.17</td>
</tr>
<tr>
<td>September</td>
<td>0.04</td>
<td>4.89</td>
<td>21.40</td>
</tr>
<tr>
<td>October</td>
<td>0.03</td>
<td>6.91</td>
<td>28.16</td>
</tr>
<tr>
<td>November</td>
<td>0.01</td>
<td>7.15</td>
<td>22.62</td>
</tr>
<tr>
<td>December</td>
<td>0.06</td>
<td>8.70</td>
<td>36.88</td>
</tr>
</tbody>
</table>
Table 1.38: Monthly wind speed [ms$^{-1}$] parameters of 10 min. averaged data, 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Data Availability(%)</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>4.19</td>
<td>1.11</td>
<td>8.76</td>
<td>17.30</td>
<td>2.91</td>
<td>9.78</td>
</tr>
<tr>
<td>February</td>
<td>50.42</td>
<td>0.52</td>
<td>6.01</td>
<td>22.87</td>
<td>2.09</td>
<td>6.78</td>
</tr>
<tr>
<td>March</td>
<td>99.24</td>
<td>0.34</td>
<td>6.27</td>
<td>15.12</td>
<td>2.46</td>
<td>7.07</td>
</tr>
<tr>
<td>April</td>
<td>71.85</td>
<td>0.20</td>
<td>5.47</td>
<td>14.24</td>
<td>2.18</td>
<td>6.18</td>
</tr>
<tr>
<td>August</td>
<td>8.67</td>
<td>3.13</td>
<td>5.95</td>
<td>9.45</td>
<td>3.53</td>
<td>6.64</td>
</tr>
<tr>
<td>September</td>
<td>83.31</td>
<td>0.39</td>
<td>4.89</td>
<td>14.48</td>
<td>2.11</td>
<td>5.54</td>
</tr>
<tr>
<td>October</td>
<td>99.73</td>
<td>0.36</td>
<td>6.91</td>
<td>22.23</td>
<td>2.55</td>
<td>7.79</td>
</tr>
<tr>
<td>November</td>
<td>100.00</td>
<td>0.35</td>
<td>7.15</td>
<td>16.85</td>
<td>2.45</td>
<td>8.07</td>
</tr>
<tr>
<td>December</td>
<td>100.00</td>
<td>0.66</td>
<td>8.70</td>
<td>26.01</td>
<td>2.61</td>
<td>9.79</td>
</tr>
</tbody>
</table>

1.11.2.1 2013 Monthly Statistics

Figure 1.444: January 2013 probability distribution function
Figure 1.445: January 2013 Wind Rose

Figure 1.446: January 2013 turbulence intensity
1.11 WSM Statistics

Figure 1.447: February 2013 probability distribution function

Figure 1.448: February 2013 Wind Rose
Figure 1.449: February 2013 turbulence intensity

Figure 1.450: March 2013 probability distribution function
Figure 1.451: March 2013 Wind Rose

Figure 1.452: March 2013 turbulence intensity
1.11 WSM Statistics

Figure 1.453: April 2013 probability distribution function

Figure 1.454: April 2013 Wind Rose
1.11 WSM Statistics

Figure 1.455: April 2013 turbulence intensity

Figure 1.456: August 2013 probability distribution function
1.11 WSM Statistics

Figure 1.457: August 2013 Wind Rose

Figure 1.458: August 2013 turbulence intensity
Figure 1.459: September 2013 probability distribution function

Figure 1.460: September 2013 Wind Rose
1.11 WSM Statistics

Figure 1.461: September 2013 turbulence intensity

Figure 1.462: October 2013 probability distribution function
Figure 1.463: October 2013 Wind Rose

Figure 1.464: October 2013 turbulence intensity
Figure 1.465: November 2013 probability distribution function

Figure 1.466: November 2013 Wind Rose
1.11 WSM Statistics

Figure 1.467: November 2013 turbulence intensity

Figure 1.468: December 2013 probability distribution function
Figure 1.469: December 2013 Wind Rose

Figure 1.470: December 2013 turbulence intensity
Chapter 2

Comparison of WST with WSO & WSM

WST is a mechanical cup anemometer and hence frictional effects, particularly at lower wind speeds would contribute to inaccuracy in wind speed readings. This inaccuracy is corrected with the help of WSO anemometer data. WSO is a sonic anemometer which is at almost the same height as the WST anemometer. This sonic anemometer is a newly installed and does not have any moving parts, and is assumed to be accurate. WST anemometer stopped working during November 2012 when one of its cup was broken. Both WSO and WST anemometers were under parallel operation during end of October 2012. Therefore the concurrent data availability of both the anemometers is very limited. Both these anemometers experience mast wake of meteorological mast-1.

2.1 Comparison of WST with WSO

The raw WSO files have 10 Hz precision and contains different file lengths. They are processed to have 1 file/day with 1 Hz precision, so that they can be compared to raw WST files with 1 Hz precision. Number of lines/rows in the processed WSO files vary. In an ideal case there should be 86399 lines/rows recorded. However due to lag in writing/saving raw WSO data files and other disturbances in the measurement computer, the number of lines differs. In this differed no. of lines/rows scenario, lines/rows that is a minimum of the two is considered.

For example, as shown in Table B.3, WSO processed file dated October 4 contains 84452 columns compared to 86399 columns in corresponding WST file. In this case 84452 samples are considered in both WSO and WST files. Table B.3 shows the files that are considered for the analysis. The rest of the files in the month are not available for WSO files and so the corresponding
WST are not considered.

Number of lines recorded for different anemometer files for the same day have slight differences. The hardware card that interfaces WST anemometer with the measurement computer samples the data at 5000 Hz before they are averaged to 1 Hz by a LabView program. LabView program then writes the 1 Hz data into LabView measurement files (.lvm) onto the system hard disk, this writing is synchronized to the operating system clock. There could be a lag or lead in the above tasks that could possibly cause slight variations in the number of rows recorded. Gill sonic anemometers are equipped with an internal clock that samples data at 10 Hz. They are stored on the measurement computer initially with a WindView program. They are then processed with a LabView program to make them loadable in Matlab environment. WSO and WST presented in the table B.3 are concatenated in increasing order of their date and are averaged to 10 minute resolution. Figure 2.1 shows the 10 minute averaged WSO and WST data.

![Graph showing comparison of WSO and WST 10 min. averaged data](image)

Figure 2.1: Comparison of WSO and WST 10 min. averaged data

Figure 2.3 shows the ratio of wind speeds of WSO and WST over different directions. It can be observed that in the sector spanning from 0°-180°, has
a significant scatter since a part of this sector is under the wake of met.
mast-1. This sector could also experience wake of nearby Chalmers wind

turbine. Sector from 180°-360° is relatively undisturbed compared to the

previous sector and as a result the wind ratio samples ranges between 0.45

and 5 while the mean is 1.11.

Figure 2.2: Ratio of wind speeds of WSO and WST for different directions
2.1 Comparison of WST with WSO

2.1.1 Correction Factor of WST for Friction

Load 10 minute samples of WSM, WSO & WST

Filter WST samples for friction, Figure 2.4

Identify WST mast wake sector by comparing with WSM, Figures C.1 C.2 C.3

Filter WST and WSO samples within mast wake sector, Figure 2.6

Calculate correction factor of WST with WSO, Equation 2.2

Apply the correction factor to WST, including mast wake sector and excluding friction samples, corrected WST is WSTcorr, Figure 2.8

Compare WSTcorr with WSM for all the directions, Figure 2.9

Filter the mast wake sector and calculate correction factor of WSTcorr with WSM, Figure 2.10

Within the mast wake sector calibrate WSTcorr with WSM, Equation 2.8

Figure 2.3: Flow chart to calculate WST correction factor for friction and wake
2.1 Comparison of WST with WSO

Mechanical cup anemometer (WST) during lower speeds could experience friction from the rotating parts and thereby could record inaccurate wind speeds. Therefore an assumption is made that WST could experience friction during wind speeds lower than 2 ms$^{-1}$. This assumption can be partly motivated from the Table C.1. To filter the scatter, an assumption that WSO records accurate data is also made. This assumption can be motivated from the fact that WSO does not have moving parts and also that it is a newly installed anemometer. Samples of WSO that are greater than 2 ms$^{-1}$ are considered. This filter is also applied to WST samples. Table C.1 shows the scatter points ratio higher than 1.3 speed ratio and their corresponding anemometer speed readings in sector 180°-360°. For the scatter ratio less than 1.4, WST records values lower than 2 ms$^{-1}$. As scatter ratio decreases, an increasing trend for the WST reading is observed. This suggests that a higher scatter is observed when WST records values lower than 2 ms$^{-1}$. Wind speed ratio of WSO and WST is filtered for friction in WST as shown Figure 2.4. Filtered friction samples are 191, while the considered samples for further analysis are 2902.

![Figure 2.4: Friction and non friction samples of WSO and WST wind speed ratios for different directions](image-url)
Figure 2.5 shows the wind speed ratio of WSO and WST after friction samples are filtered. The wind speed ratio varies between 0.59 and 4.34 while the mean of wind speed ratio is 1.08.

The possible mast wake sector of WST and WSO should also be identified and samples within this sector should be discarded in order to calibrate WST with WSO. This is because the samples within mast wake sector experience as mentioned before. Anemometers in the mast wake record low wind speeds as shown in the Figures C.3 C.4. Neglecting them in the calibration would contribute to a more accurate WST correction factor. The angle of mast wake of the anemometers is identified practically in Section C.1 and theoretically in Section G. Figure 2.6 shows the wind speed ratio of WSO and WST excluding possible mast wake sector of 110°-148°.
A linear curve fitting function is applied to the binned data after mast wake filtration as shown in the Figure 2.7. The curve fitting yielded a mathematical relation between WST and WSO as:

\[
WST = 0.96 \times WSO - 0.1, \forall 0^\circ \leq \theta \leq 110^\circ, 148^\circ \leq \theta \leq 360^\circ \tag{2.1}
\]

Changing the subject of the Equation 2.1

\[
WST^{\text{corr}} = 1.03 \times WST + 0.14, \forall 0^\circ \leq \theta \leq 110^\circ, 148^\circ \leq \theta \leq 360^\circ \tag{2.2}
\]
2.1 Comparison of WST with WSO

Correction factor of WST is applied to WST samples excluding friction samples. Figure 2.8 shows the wind speed ratio of WSO and WSTcorr for different directions. The scatter is considerably reduced after correction, compared to the Figure 2.5 before correction. Wind speed ratio ranges between 0.57 and 3.66 while the mean of wind speed ratio is 1.02.

Figure 2.7: Curve fitting of filtered data
2.1 Comparison of WST with WSO

![Graph of WSO/WSTcorr](image)

Figure 2.8: Ratio of wind speed of WSO and WST\(^{corr}\)

The following are the observations that are worth pointing about the correction factor of WST:

- It is assumed that WST and WSO anemometer booms are oriented in the same angle with respect to mast-1. In practice, as it appears from Figure 1.4, they differ slightly. If say, WST is orientated at 318° then WSO is oriented less than 318° with respect to mast-1. This difference could lead to slightly different mast wake sectors for WST and WSO.

- When correcting WST for friction, the correction is derived such that WST should record the same wind speed as WSO, considering their same height. The wake of WSO on WST is neglected here for simplicity in calculation and also due to the lack of concurrent data for WSO and WST anemometers.

- WST is close to mast-1 and has a larger/wider mast wake sector compared to that of mast wake sector of WSO. WST mast wake sector samples are discarded in calculating WST correction and the same filter is applied to WSO data. This means that even though WSO has a slightly different mast wake, this filter could compensate for this difference.
• When correcting WST for mast wake, the correction is derived in a way such that the wind speed ratio of WSM and WST would be the same in all directions. This is based on the Wind profile power law which mentions that the wind speed changes with height. As heights of WSO and WST are different they cannot be equated directly but can be corrected to have the same wind speed ratio for all wind directions.

2.2 Comparison of WST with WSM

Mast wake sector of WST is slightly wider compared to that of the mast wake sector of WSO. This is due to WST being closer to mast compared to that of WSO. This scenario can be understood from the Figure C.5. WST within the mast wake sector is corrected with respect to WSM. Before WST is corrected with WSM, it is calibrated with WSO excluding the mast wake sector.

![Comparison of WSM and WST](image)

Figure 2.9: Comparison of WSM and WSTcorr for all directions

The mast wake sector of WST needs to be corrected with WSM. WSM is the top anemometer located at around 28.5 meters without any known obstacles around it. Hence data from WSM is compared to that of WST, to
2.2 Comparison of WST with WSM

calculate the correction factor for WST within mast wake. This correction is required to know the accurate annual power production from the WST anemometer height. Figure 2.9 shows the wind speed ratio of WSM and WST$^{\text{corr}}$ over different directions.

Mast wake sector should be discarded as WST$^{\text{corr}}$ within this sector still need to be corrected. Figure 2.10 shows the wind speed ratio of WSM and WST$^{\text{corr}}$ excluding the mast wake sector. Number of samples after filtering those corresponding to the mast wake are 3008 and the mean of the wind speed ratio is 1.07 while the samples ranging between 0.5 and 4.78.

![Figure 2.10: Wind speed ratio of WSM and WST$^{\text{corr}}$ for different directions excluding mast wake sector](image)

2.2.1 Correction Factor of WST for Mast Wake

WST in the mast wake should not be corrected with WSM anemometer readings. This is because the anemometers are at different heights and hence there bound to be a wind speed difference. However, the wind speed ratio of WSM and WST in the mast wake and no mast wake regions should be equal. This assumption forms the basis for correcting WST in the mast wake sector. The wind speed ratio of WSM and WST in other than the mast

276
wake region should be equal to the wind speed ratio of WSM and WST in
the mast wake region. Wind speed ratio of WSM and WST outside mast
wake region is 1.09. The following mathematical procedure furnishes the
calculation of correction factor of WST in the mast wake, so that within the
mast wake region the wind speed ratio of WSM and WST is changed from
1.5 to ratio close to 1.09.

\[
\frac{\text{WSM}}{\text{WST}^{\text{corr}}} = 1.09 \text{, Excluding mast wake and friction samples} \quad (2.3)
\]

\[
\frac{\text{WSM}_{\text{wake}}}{\text{WST}^{\text{corr}}_{\text{wake}}} = 1.5 \text{, Excluding friction samples} \quad (2.4)
\]

let, \(\frac{\text{WSM}}{k \times \text{WST}^{\text{corr}}_{\text{wake}}} = 1.09 \quad (2.5) \)

where, \(k \) is correction factor of \(\text{WST}^{\text{corr}} \) within mast wake sector, solving
for \(k \)

\[
k = \frac{\text{WSM}}{1.09 \times \text{WST}^{\text{corr}}_{\text{wake}}} \quad (2.6)
\]

Mast wake sector of WST (110°-148°) is further divided into smaller
sectors and correction factor (\(k \)) is obtained in these smaller sectors. Figure 2.11
shows the wind speed ratio of WSM and WST after WST is corrected within
the mast wake. Four sector are considered within the mast wake sector and
correction factor is obtained as following

\[
\frac{\text{WSM}}{\text{WST}^{\text{corr}}} = 1.45, 1.58, 1.54, 1.29 \quad (2.7)
\]

\(k_1 = 1.28, k_2 = 1.39, k_3 = 1.36, k_4 = 1.16 \) \quad (2.8)

\[
\frac{\text{WSM}}{\text{WST}^{\text{corr}}_{\text{wake}}} = 1.13, 1.14, 1.14, 1.12 \quad (2.9)
\]

\[
\frac{\text{WSM}}{\text{WST}^{\text{corr}}_{\text{wake}}} = 1.13 \quad (2.10)
\]
Figure 2.11: Wind speed ratio of WSM and WSTcorr_wake for different directions
Chapter 3

Comparison of WSO with WSM

In this chapter data of WSO anemometer is compared with WSM anemometer data to identify the mast wake sector. A correction factor for WSO anemometer within the mast wake sector is then calculated. The mast wake correction of WSO anemometer is calculated in the same way as in the case of WST anemometer. The theoretical mast wake sector of WSO anemometer is approximately between 130°-138°. Data chosen for this analysis is presented in the Table B.1 B.2.
3.1 Correction Factor of WSO for Mast Wake

Figure 3.1: Comparison of WSM and WSO 10 min. averaged data

Figure 3.1 shows the 10 minute averaged time series plot for wind speed and wind direction from WSM and WSO anemometers for different directions. Total number of samples considered for this analysis are 13236.

3.1 Correction Factor of WSO for Mast Wake

Figure 3.2 shows the ratio of wind speed of WSM and WSO for different directions. The mean of the wind speed ratio is 1.0974. Wind speed ratio ranges between 0.35 and 3.32.
Figure 3.2: Ratio of wind speeds over different directions
Figure 3.3 shows the binned plot of WSM and WSO wind speed ratio. The mast wake sector spans approximately from 100°-150°. The mean wind speed ratio within mast wake sector is 1.28 compared to wind speed ratio of 1.06 outside mast wake sector. The mast wake correction factor for WSO anemometer is calculated as in the case of WST anemometer mast wake corrections as follows

\[
\frac{\text{WSM}}{\text{WSO}} = 1.06, \quad \text{Excluding mast wake samples} \tag{3.1}
\]

\[
\frac{\text{WSM}_{\text{wake}}}{\text{WSO}_{\text{wake}}} = 1.28 \tag{3.2}
\]

let, \[\frac{\text{WSM}_{\text{wake}}}{k \times \text{WSO}_{\text{wake}}} = 1.06 \tag{3.3} \]

where, \(k \) is correction factor of WSO within mast wake sector, solving for \(k \)

\[
k = \frac{\text{WSM}_{\text{wake}}}{1.06 \times \text{WSO}_{\text{wake}}} \tag{3.4}
\]
3.1 Correction Factor of WSO for Mast Wake

Mast wake sector of WSO (100°-150°) is further divided into smaller sectors and correction factor (k) is obtained in these smaller sectors. Figure 3.4 shows the wind speed ratio of WSM and WSO after WSO is corrected within the mast wake sector. Five sectors are considered within the mast wake sector and the correction factor is obtained as

\[
\frac{\text{WSM}}{\text{WSO}_{\text{wake}}} = 1.17, 1.34, 1.45, 1.3, 1.15
\]

(3.5)

\[
k_1 = 1.1, \ k_2 = 1.25, \ k_3 = 1.37, \ k_4 = 1.19, \ k_5 = 1.07
\]

(3.6)

\[
\frac{\text{WSM}}{\text{WSO}_{\text{wake}}} = 1.07, 1.06, 1.05, 1.08, 1.07
\]

(3.7)

\[
\frac{\text{WSM}}{\text{WSO}_{\text{wake}}} = 1.06
\]

(3.8)

Figure 3.4: Wind speed ratio of WSM and WSO\textsubscript{wake} over different directions
Chapter 4

Comparison of WSX with WSM

In this chapter wind data from Vaisala wind sensor is compared with Gill wind master anemometer to identify the mast wake sector of Vaisala wind sensor (WXT510/WXT520). This weather sensor is installed at a height of about 10 meters. Due to its low height, this weather sensor could probably experience higher turbulence due to the surrounding obstacles/structures compared to the other anemometers. Correction factor of WSX within the mast wake sector is calculated.

Figure 4.1: Comparison of WSM and WSX 10 min. averaged data
4.1 Correction Factor of WSX for Mast Wake

Figure 4.1 shows the time series plot of 10 min averaged data of wind direction and wind speed from WSM anemometer and the WSX sensor. The time series spans from 2013-09-08 to 2013-11-28 with a total of 81 days. Number of samples are therefore 1164 (81×144) without any data loss.

4.1 Correction Factor of WSX for Mast Wake

Figure 4.2 shows the wind speed ratio of WSM anemometer and WSX sensor. The mean wind speed ratio is 1.35. Wind speed ratio ranges between 0.26 and 3.39. Wind speed ratio is highly disturbed due to the low height of WSX Vaisala weather sensor as mentioned in the previous section. Sector from 270° - 50° seems to be relatively undisturbed compared to other sectors. This is because the sector 270° - 50° toward the north contains a water body towards Öckero which is largely obstacle free. WSX weather sensor is oriented at approximately 240° with respect to Met. mast-2. The wake of Met. mast-2 approximately spans from 60° - 76° theoretically. In practice, this wake sector could increase because of the approximations in calculations.

Figure 4.2: Ratio of wind speeds over different directions

Mast wake sector identified from the the Figure 4.3 shows the wake spanning from 50° - 100°. After the wake ceases, the WSX weather sen-
4.1 Correction Factor of WSX for Mast Wake

Sensor starts experiencing the turbulence caused by the surrounding buildings which spans until 270°. Figure 4.3 shows the binned wind speed ratio of WSM and WSX.

![Figure 4.3: Binned plot of wind speed ratio over different directions](image)

Mast wake correction is obtained for WSX sensor as in the case of WSO anemometer. WSX sensor does not have any moving parts unlike WST anemometer, so filtering friction samples is not required. Samples in mast wake sector are filtered to obtain the mean wind speed ratio of WSM and WSX readings as shown in the Figure 4.4. Number of samples after filtering wake are 11305 and wind speed ratio ranges between 0.51 and 3.32.

The binned curve shown in Figure 4.4 gives a better approximation of the nature of wind speed ratio. The mean wind speed ratio of binned plot after filtering mast wake is 1.28 compared to the wind speed ratio of binned plot including wake of 1.35.

$$\frac{WSM}{WSX} = 1.28, \text{ Excluding mast wake samples} \quad (4.1)$$
From Figure 4.4 it can be seen that WXT510 experiences disturbance from other sectors in addition to the mast wake. This translates to the mean wind speed ratio of WSM and WSX within the mast wake sector more or less equal to mean wind speed ratio out of mast wake. This could yield a correction factor equal to 1 which is not practical. Therefore sectors around WXT510 which are relativity undisturbed are considered in calculating the correction factor. In the Figure 4.4, sectors 280°-40° are considered as less disturbed. Wind speed ratio in this undisturbed sector is

\[
\frac{\text{WSM}}{\text{WSX}} = 1.1, \text{ Excluding mast wake samples, turbulent sectors} \quad (4.2)
\]

\[
\frac{\text{WSM}_{\text{wake}}}{\text{WSX}_{\text{wake}}} = 1.35 \quad (4.3)
\]

let, \[
\frac{\text{WSM}_{\text{wake}}}{k \times \text{WSX}_{\text{wake}}} = 1.1 \quad (4.4)
\]

where, \(k \) is correction factor of WSX within mast wake sector, solving for \(k \)
4.1 Correction Factor of WSX for Mast Wake

\[k = \frac{\text{WSM}}{1.1 \times \text{WSX}} \]

(4.5)

Mast wake sector of WSX (50°-90°) is further divided into smaller sectors and correction factor \(k\) is obtained in these smaller sectors. Figure 3.4 shows the wind speed ratio of WSM and WSX after WSX is corrected within the mast wake. Five sectors are considered within the mast wake sector and correction factor is obtained as

\[\frac{\text{WSM}}{\text{WSX}} = 1.25, 1.4, 1.42, 1.31 \]

(4.6)

\[k_1 = 1.14, k_2 = 1.28, k_3 = 1.29, k_4 = 1.19 \]

(4.7)

\[\frac{\text{WSM}}{\text{WSO}} = 1.01, 1.09, 1.09, 1.10 \]

(4.8)

\[\frac{\text{WSM}}{\text{WSO}_{\text{corr}}} = 1.09 \]

(4.9)

Figure 4.5: Wind speed ratio of WSM and corrected WSX over different directions
Chapter 5

Suggestions for New Measurement Logging System

The following are few of the specifications for a new measurement logging system at Höno, which would produce the kind of statistics that are included in this report.

- There should be single clock synchronization for different types of anemometer files. This would ensure 1 sample per second for 1 Hz files and exactly 10 samples per second for 10 Hz files and 20 samples per second for 20 Hz files. In the present system, the 10 Hz, 20 Hz sampled data files contain different number of samples than the stipulated amount of samples. This means either the last 1 second averaging interval could have more samples or all the extra samples should be disregarded.

- All the files should have the same start time and end time. This would be helpful in comparing the data for different anemometers. In case when an anemometer undergoes maintenance or recovers from an error, the data file should be ended by 23:59:59 and a new day should always start with a new file.

When the above implementation fails, it could be useful to have time stamp in data files (either as 1st column or end column) that does not start at 00:00:00 and ends at 23:59:59. This would ensure that the data is not lost and the data in pieces can be comparable. But this would mean that the data file will have one extra column (time stamp column) compared to the regular files.

- Time stamp including seconds information (HH:MM:SS) for the cre-
ation of raw data file should be included within its file name. This would save the computation time in processing the data files. Without the time stamp on the file name, it consumes a lot of computation to know the date and time of creation of raw file.

- The file names should have a similar format for all the anemometers. This could reduce a lot of computing time when comparing file name strings to get similar month or similar year data files.

Example:
Anemometername_height_samplingrate_YYYY-MM-DD_HHmmss.lvm

- The precision of data with the data files could be decreased compared to the existing data files precision; this would save memory and also the computation time.

- There should be few conditions to avoid writing erroneous values in the data files, for any reason the program tries to write them.

Examples of conditions could be: Negative wind directions, wind directions greater than 360°, negative wind speeds, very high wind speeds, and also invalid cases for meteorological data.

- The program should also calculate 10 min averages (one month files) of the wind data for different anemometers. Also the processing of meteorological data should also be done simultaneously. A suitable folder structure should be sorted out initially, to ensure uniformity in data organization.
Appendix A

Hönö Map

The map of Hönö and its surrounding locations in the Göteborg archipelago is shown in the Figure A.1. Marker B in Figure A.1 represents the Chalmers test station. Chalmers wind turbine station is located adjacent to Hönö ferry station and is about 15 km Northwest of Göteborg. The place where the Chalmers wind turbine station is located is called “Pinan” and is known for being windy. East of the site is sea water towards Hisingen, the largest island of the Göteborg archipelago. To the west and south is the Hönö island. Towards North is Öckerö island.

The approximate geographic details of Meteorological mast-1 are

Latitude 57° 41′ 59.15″ N
Longitude 11° 39′ 41.78″ E
Figure A.1: Map of chalmers wind turbine station site at Höö and its surroundings (Source: Bing Maps)
Appendix B

Data Chosen for Mast Wake Analysis

Table B.1: File names and no. of samples considered for analysing WSO mast wake in Chapter 3

<table>
<thead>
<tr>
<th>WSO File name (.txt)</th>
<th>No. of lines</th>
<th>WSO File name (.txt)</th>
<th>No. of lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>WindMaster28m_13-01-30</td>
<td>14413</td>
<td>WindMaster28m_13-01-31</td>
<td>15469</td>
</tr>
<tr>
<td>WindMaster28m_13-02-01</td>
<td>2155</td>
<td>WindMaster28m_13-02-02</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-03</td>
<td>2155</td>
<td>WindMaster28m_13-02-04</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-06</td>
<td>2155</td>
<td>WindMaster28m_13-02-07</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-08</td>
<td>2155</td>
<td>WindMaster28m_13-02-09</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-10</td>
<td>2155</td>
<td>WindMaster28m_13-02-11</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-12</td>
<td>2155</td>
<td>WindMaster28m_13-02-13</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-14</td>
<td>2155</td>
<td>WindMaster28m_13-02-15</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-16</td>
<td>2155</td>
<td>WindMaster28m_13-02-17</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-18</td>
<td>2155</td>
<td>WindMaster28m_13-02-19</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-20</td>
<td>2155</td>
<td>WindMaster28m_13-02-21</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-22</td>
<td>2155</td>
<td>WindMaster28m_13-02-23</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-24</td>
<td>2155</td>
<td>WindMaster28m_13-02-25</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-26</td>
<td>2155</td>
<td>WindMaster28m_13-02-27</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-28</td>
<td>2155</td>
<td>WindMaster28m_13-02-29</td>
<td>2151</td>
</tr>
<tr>
<td>WindMaster28m_13-02-30</td>
<td>2155</td>
<td>WindMaster28m_13-02-31</td>
<td>2151</td>
</tr>
</tbody>
</table>

293
<table>
<thead>
<tr>
<th>WSM File names (.txt)</th>
<th>No. of lines</th>
<th>WSO File names (.txt)</th>
<th>No. of lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>WindMaster28m_13-03-04</td>
<td>86477</td>
<td>WindObserver20m_13-03-04</td>
<td>86399</td>
</tr>
<tr>
<td>WindMaster28m_13-03-05</td>
<td>86471</td>
<td>WindObserver20m_13-03-05</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-03-06</td>
<td>86479</td>
<td>WindObserver20m_13-03-06</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-03-07</td>
<td>86485</td>
<td>WindObserver20m_13-03-07</td>
<td>86399</td>
</tr>
<tr>
<td>WindMaster28m_13-03-08</td>
<td>86484</td>
<td>WindObserver20m_13-03-08</td>
<td>86399</td>
</tr>
<tr>
<td>WindMaster28m_13-03-09</td>
<td>86470</td>
<td>WindObserver20m_13-03-09</td>
<td>86398</td>
</tr>
<tr>
<td>WindMaster28m_13-03-10</td>
<td>86451</td>
<td>WindObserver20m_13-03-10</td>
<td>86394</td>
</tr>
<tr>
<td>WindMaster28m_13-03-11</td>
<td>86453</td>
<td>WindObserver20m_13-03-11</td>
<td>86394</td>
</tr>
<tr>
<td>WindMaster28m_13-03-12</td>
<td>86469</td>
<td>WindObserver20m_13-03-12</td>
<td>86398</td>
</tr>
<tr>
<td>WindMaster28m_13-03-13</td>
<td>86467</td>
<td>WindObserver20m_13-03-13</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-03-14</td>
<td>86461</td>
<td>WindObserver20m_13-03-14</td>
<td>86396</td>
</tr>
<tr>
<td>WindMaster28m_13-03-15</td>
<td>86473</td>
<td>WindObserver20m_13-03-15</td>
<td>86396</td>
</tr>
<tr>
<td>WindMaster28m_13-03-16</td>
<td>86467</td>
<td>WindObserver20m_13-03-16</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-03-17</td>
<td>86467</td>
<td>WindObserver20m_13-03-17</td>
<td>86399</td>
</tr>
<tr>
<td>WindMaster28m_13-03-18</td>
<td>86466</td>
<td>WindObserver20m_13-03-18</td>
<td>86397</td>
</tr>
<tr>
<td>WindMaster28m_13-03-19</td>
<td>86461</td>
<td>WindObserver20m_13-03-19</td>
<td>86394</td>
</tr>
<tr>
<td>WindMaster28m_13-03-20</td>
<td>86450</td>
<td>WindObserver20m_13-03-20</td>
<td>86394</td>
</tr>
<tr>
<td>WindMaster28m_13-03-21</td>
<td>86462</td>
<td>WindObserver20m_13-03-21</td>
<td>86399</td>
</tr>
<tr>
<td>WindMaster28m_13-03-22</td>
<td>86463</td>
<td>WindObserver20m_13-03-22</td>
<td>86394</td>
</tr>
<tr>
<td>WindMaster28m_13-08-27</td>
<td>16612</td>
<td>WindObserver20m_13-09-09</td>
<td>86397</td>
</tr>
<tr>
<td>WindMaster28m_13-08-29</td>
<td>23535</td>
<td>WindObserver20m_13-09-10</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-02</td>
<td>3528</td>
<td>WindObserver20m_13-09-02</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-06</td>
<td>34416</td>
<td>WindObserver20m_13-09-06</td>
<td>86396</td>
</tr>
<tr>
<td>WindMaster28m_13-09-07</td>
<td>86496</td>
<td>WindObserver20m_13-09-07</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-08</td>
<td>86496</td>
<td>WindObserver20m_13-09-08</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-09</td>
<td>86496</td>
<td>WindObserver20m_13-09-09</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-10</td>
<td>86494</td>
<td>WindObserver20m_13-09-10</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-11</td>
<td>86496</td>
<td>WindObserver20m_13-09-11</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-12</td>
<td>86490</td>
<td>WindObserver20m_13-09-12</td>
<td>86404</td>
</tr>
<tr>
<td>WindMaster28m_13-09-13</td>
<td>86491</td>
<td>WindObserver20m_13-09-13</td>
<td>86404</td>
</tr>
<tr>
<td>WindMaster28m_13-09-14</td>
<td>86496</td>
<td>WindObserver20m_13-09-14</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-15</td>
<td>86491</td>
<td>WindObserver20m_13-09-15</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-16</td>
<td>86487</td>
<td>WindObserver20m_13-09-16</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-17</td>
<td>86495</td>
<td>WindObserver20m_13-09-17</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-18</td>
<td>86494</td>
<td>WindObserver20m_13-09-18</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-19</td>
<td>86492</td>
<td>WindObserver20m_13-09-19</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-20</td>
<td>86496</td>
<td>WindObserver20m_13-09-20</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-21</td>
<td>86496</td>
<td>WindObserver20m_13-09-21</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-22</td>
<td>86492</td>
<td>WindObserver20m_13-09-22</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-23</td>
<td>86496</td>
<td>WindObserver20m_13-09-23</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-24</td>
<td>25568</td>
<td>WindObserver20m_13-09-24</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-25</td>
<td>39520</td>
<td>WindObserver20m_13-09-25</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-26</td>
<td>86496</td>
<td>WindObserver20m_13-09-26</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-27</td>
<td>86490</td>
<td>WindObserver20m_13-09-27</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-28</td>
<td>86495</td>
<td>WindObserver20m_13-09-28</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-29</td>
<td>86494</td>
<td>WindObserver20m_13-09-29</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-09-30</td>
<td>86485</td>
<td>WindObserver20m_13-09-30</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-01</td>
<td>86496</td>
<td>WindObserver20m_13-10-01</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-02</td>
<td>86503</td>
<td>WindObserver20m_13-10-02</td>
<td>86407</td>
</tr>
<tr>
<td>WindMaster28m_13-10-03</td>
<td>86496</td>
<td>WindObserver20m_13-10-03</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-04</td>
<td>86489</td>
<td>WindObserver20m_13-10-04</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-05</td>
<td>86483</td>
<td>WindObserver20m_13-10-05</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-06</td>
<td>86496</td>
<td>WindObserver20m_13-10-06</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-07</td>
<td>86496</td>
<td>WindObserver20m_13-10-07</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-08</td>
<td>86492</td>
<td>WindObserver20m_13-10-08</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-09</td>
<td>86492</td>
<td>WindObserver20m_13-10-09</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-10</td>
<td>86496</td>
<td>WindObserver20m_13-10-10</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-11</td>
<td>86496</td>
<td>WindObserver20m_13-10-11</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-12</td>
<td>86495</td>
<td>WindObserver20m_13-10-12</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-13</td>
<td>86496</td>
<td>WindObserver20m_13-10-13</td>
<td>86400</td>
</tr>
<tr>
<td>WindMaster28m_13-10-14</td>
<td>88564</td>
<td>WindObserver20m_13-10-14</td>
<td>88521</td>
</tr>
</tbody>
</table>
Table B.3: File names and no. of columns of WSO and WST considered for correction factor of WST in Chapter 2

<table>
<thead>
<tr>
<th>WSO File names (.txt)</th>
<th>No.of lines</th>
<th>WST File names (.lvm)</th>
<th>No.of lines</th>
<th>No. of lines Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-09-29_Gill30min_WindObserver20m</td>
<td>86488</td>
<td>H4_1Hz_12-09-29_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-09-30_Gill30min_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-09-30_0000</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>2012-10-01_Gill30min_WindObserver20m</td>
<td>86492</td>
<td>H4_1Hz_12-10-01_0000</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>2012-10-02_Gill30min_WindObserver20m</td>
<td>86493</td>
<td>H4_1Hz_12-10-02_0000</td>
<td>86411</td>
<td>86410</td>
</tr>
<tr>
<td>2012-10-03_Gill30min_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-03_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-10-04_Gill30min_WindObserver20m</td>
<td>84452</td>
<td>H4_1Hz_12-10-04_0000</td>
<td>86400</td>
<td>84452</td>
</tr>
<tr>
<td>2012-10-05_Gill30min_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-05_0000</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>2012-10-06_Gill30min_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-06_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-10-07_Gill30min_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-07_0000</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>2012-10-08_Gill30min_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-08_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-10-09_Gill30min_WindObserver20m</td>
<td>86490</td>
<td>H4_1Hz_12-10-09_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-10-10_Gill30min_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-10_0000</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>2012-10-25_Gill30minB_WindObserver20m</td>
<td>86489</td>
<td>H4_1Hz_12-10-25_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-10-26_Gill30minB_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-26_0000</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>2012-10-27_Gill30minB_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-27_0000</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>2012-10-28_Gill30minB_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-28_0000</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>2012-10-29_Gill30minB_WindObserver20m</td>
<td>86466</td>
<td>H4_1Hz_12-10-29_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-10-30_Gill30minB_WindObserver20m</td>
<td>86496</td>
<td>H4_1Hz_12-10-30_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-10-31_Gill30minB_WindObserver20m</td>
<td>86492</td>
<td>H4_1Hz_12-10-31_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-11-01_Gill30minB_WindObserver20m</td>
<td>86485</td>
<td>H4_1Hz_12-11-01_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-11-02_Gill30minB_WindObserver20m</td>
<td>86486</td>
<td>H4_1Hz_12-11-02_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
<tr>
<td>2012-11-03_Gill30minB_WindObserver20m</td>
<td>86494</td>
<td>H4_1Hz_12-11-03_0000</td>
<td>86399</td>
<td>86399</td>
</tr>
</tbody>
</table>
Appendix C

Results & Observations

Table C.1: Wind speed scattered ratio of WSO and WST and their corresponding wind speeds in sector 180°-360°, to analyse the effect of friction on WST readings

<table>
<thead>
<tr>
<th>Wind speed ratio</th>
<th>WSO</th>
<th>WST</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.79</td>
<td>0.33</td>
<td>0.09</td>
</tr>
<tr>
<td>2.99</td>
<td>0.45</td>
<td>0.15</td>
</tr>
<tr>
<td>2.52</td>
<td>0.60</td>
<td>0.24</td>
</tr>
<tr>
<td>2.36</td>
<td>0.85</td>
<td>0.35</td>
</tr>
<tr>
<td>2.31</td>
<td>0.68</td>
<td>0.3</td>
</tr>
<tr>
<td>2.06</td>
<td>0.74</td>
<td>0.36</td>
</tr>
<tr>
<td>2.01</td>
<td>0.71</td>
<td>0.35</td>
</tr>
<tr>
<td>1.97</td>
<td>0.69</td>
<td>0.35</td>
</tr>
<tr>
<td>1.88</td>
<td>0.84</td>
<td>0.45</td>
</tr>
<tr>
<td>1.86</td>
<td>0.86</td>
<td>0.46</td>
</tr>
<tr>
<td>1.83</td>
<td>0.76</td>
<td>0.41</td>
</tr>
<tr>
<td>1.74</td>
<td>0.89</td>
<td>0.52</td>
</tr>
<tr>
<td>1.64</td>
<td>0.7</td>
<td>0.43</td>
</tr>
<tr>
<td>1.62</td>
<td>0.91</td>
<td>0.56</td>
</tr>
<tr>
<td>1.59</td>
<td>0.86</td>
<td>0.54</td>
</tr>
<tr>
<td>1.55</td>
<td>0.8</td>
<td>0.52</td>
</tr>
<tr>
<td>1.54</td>
<td>1.09</td>
<td>0.71</td>
</tr>
<tr>
<td>1.5</td>
<td>1.28</td>
<td>0.85</td>
</tr>
<tr>
<td>1.48</td>
<td>0.93</td>
<td>0.62</td>
</tr>
<tr>
<td>1.48</td>
<td>0.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1.42</td>
<td>1.41</td>
<td>0.99</td>
</tr>
<tr>
<td>1.41</td>
<td>1.08</td>
<td>0.76</td>
</tr>
<tr>
<td>1.4</td>
<td>1.15</td>
<td>0.82</td>
</tr>
<tr>
<td>1.39</td>
<td>1.64</td>
<td>1.16</td>
</tr>
<tr>
<td>1.37</td>
<td>1.59</td>
<td>1.16</td>
</tr>
<tr>
<td>1.34</td>
<td>1.58</td>
<td>1.17</td>
</tr>
<tr>
<td>1.34</td>
<td>1.46</td>
<td>1.09</td>
</tr>
<tr>
<td>1.32</td>
<td>1.53</td>
<td>1.15</td>
</tr>
<tr>
<td>1.32</td>
<td>1.55</td>
<td>1.17</td>
</tr>
<tr>
<td>1.31</td>
<td>1.38</td>
<td>1.05</td>
</tr>
<tr>
<td>1.31</td>
<td>1.53</td>
<td>1.17</td>
</tr>
<tr>
<td>1.31</td>
<td>1.69</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Table C.2: Wind statistics summary of all years and months from 2008-2010, empty cells indicate unavailability of data

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>WSM DAV</th>
<th>WSM Mean</th>
<th>WSO DAV</th>
<th>WSO Mean</th>
<th>WST DAV</th>
<th>WST Mean</th>
<th>WSX DAV</th>
<th>WSX Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Jan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>4.79</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept</td>
<td>4.79</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>6.09</td>
<td>6.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>7.87</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>99.4</td>
<td>6.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Jan</td>
<td>4.45</td>
<td>4.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>3.84</td>
<td>4.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>5.32</td>
<td>4.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>3.99</td>
<td>3.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>4.96</td>
<td>4.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>5.48</td>
<td>5.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td>4.72</td>
<td>4.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>5.28</td>
<td>5.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept</td>
<td>5.62</td>
<td>5.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>5.64</td>
<td>5.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>6.04</td>
<td>6.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>5.24</td>
<td>5.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Jan</td>
<td>4.82</td>
<td>4.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>4.45</td>
<td>4.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>4.2</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>4.75</td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>5.37</td>
<td>5.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>6.33</td>
<td>6.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td>5.88</td>
<td>5.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>5.68</td>
<td>5.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept</td>
<td>5.37</td>
<td>5.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>5.01</td>
<td>5.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>6.5</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>4.7</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table C.3: Wind statistics summary of all years and months from 2010-2013, empty cells indicate unavailability of data

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>WSM DAV</th>
<th>Mean</th>
<th>WSO DAV</th>
<th>Mean</th>
<th>WST DAV</th>
<th>Mean</th>
<th>WSX DAV</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Jan</td>
<td>100</td>
<td>4.88</td>
<td>100</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>100</td>
<td>6.06</td>
<td>100</td>
<td>5.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>100</td>
<td>5.56</td>
<td>100</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>100</td>
<td>4.71</td>
<td>100</td>
<td>4.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>100</td>
<td>5.9</td>
<td>100</td>
<td>4.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>100</td>
<td>5.4</td>
<td>100</td>
<td>4.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td>99.84</td>
<td>4.97</td>
<td>99.84</td>
<td>4.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>100</td>
<td>4.98</td>
<td>100</td>
<td>4.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept</td>
<td>95.44</td>
<td>6.59</td>
<td>96.23</td>
<td>5.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>100</td>
<td>7.16</td>
<td>100</td>
<td>5.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>100</td>
<td>5.37</td>
<td>100</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>99.96</td>
<td>8.29</td>
<td>99.89</td>
<td>6.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Jan</td>
<td>99.1</td>
<td>6.09</td>
<td>100</td>
<td>5.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>100</td>
<td>5.63</td>
<td>100</td>
<td>4.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>100</td>
<td>5.64</td>
<td>100</td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>100</td>
<td>5.09</td>
<td>100</td>
<td>4.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>100</td>
<td>5.28</td>
<td>100</td>
<td>4.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>100</td>
<td>5.36</td>
<td>100</td>
<td>4.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td>100</td>
<td>5.1</td>
<td>100</td>
<td>4.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>100</td>
<td>4.59</td>
<td>99.96</td>
<td>3.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept</td>
<td>9.19</td>
<td>8.24</td>
<td>9.17</td>
<td>7.68</td>
<td>99.75</td>
<td>7.79</td>
<td>99.72</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>55.62</td>
<td>7.36</td>
<td>55.65</td>
<td>6.88</td>
<td>100</td>
<td>5.85</td>
<td>100</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>11.44</td>
<td>8.15</td>
<td>11.44</td>
<td>7.51</td>
<td>99.56</td>
<td>5.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>49.26</td>
<td>5.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Jan</td>
<td>4.19</td>
<td>8.76</td>
<td>3.27</td>
<td>8.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>50.42</td>
<td>6.01</td>
<td>31.87</td>
<td>5.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>71.85</td>
<td>5.47</td>
<td>71.85</td>
<td>5.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>8.67</td>
<td>5.95</td>
<td>1.57</td>
<td>5.98</td>
<td>2.26</td>
<td>4.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept</td>
<td>83.31</td>
<td>4.89</td>
<td>77.31</td>
<td>4.51</td>
<td>76.44</td>
<td>3.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>99.73</td>
<td>6.91</td>
<td>98.25</td>
<td>6.5</td>
<td>95.14</td>
<td>5.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>100</td>
<td>7.15</td>
<td>0.42</td>
<td>9.38</td>
<td>100</td>
<td>5.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>100</td>
<td>8.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.1 Mast Wake Identification

C.1.1 WST Mast Wake Identification

From the following figures WST mast wake sector can be identified.

Figure C.1: Wind speed ratio of WSM and WST to analyse the mast wake sector of WST
C.1 Mast Wake Identification

Figure C.2: Wind speed ratio of WSM and WST to analyse the mast wake sector of WST after filtering WST mast wake sector

Figure C.3: Wind speed difference of WSM and WST to analyse the mast wake sector of WST after filtering WST mast wake sector
It can be seen from that, the wake sector of WST anemometer lies approximately from 110°-148°.

C.1.2 WSO Mast Wake Identification

Figure C.4 shows the wind speed difference of WSM and WSO. It can be seen, the mast wake sector of WSO anemometer lies approximately from 100°-150°.

![Wind speed difference of WSM and WSO](image)

Figure C.4: Wind speed difference of WSM and WSO to analyse the mast wake sector of WSO

WST is closer to mast compared to WSO, therefore WST has higher mast wake compared to WSO which can also be understood from the schematic shown in the Figure C.5
C.2 WSO wake on WST

Figure C.5: Approximate schematic drawing of WSO and WST anemometers on mast-1 to represent theoretical and practical mast wake sector [Drawing to scale]

C.2 WSO wake on WST

Figure C.6 show wind speed difference between WSO and WST. In ideal case the difference should be zero, however due to the disturbances in various sectors the wind speed difference is not constant. Wind speed difference between 300°-320° has a higher peak. This means in this WSO anemometer records higher values than WST anemometer. The orientation of WST and WSO anemometers are appropriately 318° with respect to lattice mast-1 as shown in the Figure 1.3. In the range of 300°-320° wind initially hits the WSO anemometer before the WST cup anemometer.
Figure C.6: Wind speed difference of WSO and WST over different directions before WST correction
Appendix D

Hönö Data Guide

D.1 Hönö Data Folder

This folder Hönö_Data consists of raw data from different anemometers. Each anemometer has a unique folder. In addition to the anemometer folders, there are two miscellaneous folders Gill and Others.

D.1.1 Gill Folder

Gill folder contains two folders, Raw and Intermediate_Stages. Raw folder contains the raw data from Gill anemometers. This initial set of data from Gill anemometers is in different lengths and of different variations in file-names. The precision of raw WSO files is 10 Hz while the precision of raw WSM files is 20 Hz. These files are treated in different stages based on their raw file-names which are given in Intermediate_Stages folder. The final set of processed data files are located in folders WSMp, WSOp for WSM and WSO anemometer data respectively. The intermediate stages of data file are explained in detailed in the report. The files in folders WSMp, WSOp contains one second averaged data from the higher resolution files. Subscript p refers to processed.

D.1.2 Others Folder

Others folder contains data which was used in calculations concerning correction factors of the anemometers. WS2_WSO_Comp folder contains data used in calculating friction calibration factor and mast wake correction for WST and WSO anemometers by comparing with WSM data. The data is concurrent data from WSM, WSO and WST anemometers and having a resolution of 1 Hz. WSM_WXT510_Comp contains concurrent 1 Hz data files from WSM and WSX anemometers which were used in calculations concerning mast wake correction of WSX.
D.1.3 Anemometer Folders

The anemometer folders contain two folders *Raw* and *Processed*. These folders are further divided into two different sub folders based on their years. The resolution of the files in *Raw* and *Rawp* folders is 1 Hz with wind direction as column-1 and wind speed as column-2. The *Processed* subfolders in all the anemometer folders contain data classified with respect to their years. These yearly anemometer data sub folders contain two folders *Day files* and *Month files*. The resolution of these files are 10 min averages with wind direction as column-1 and wind speed as column-2. The shorter processed (less than day/month span) files do not obey time series principle. The data treatment and data flow for different anemometers is shown in the Figure D.1
D.1 Hönö Data Folder

Figure D.1: Data treatment and data flow for different anemometers
Appendix E

Mathematical Formulations

E.1 Mean of Wind Direction

Wind direction cannot be averaged right away since it sometimes jumps back and forth between 359° and 1° (north) the average would then be around south but in reality it is 0° or 360°. The following mathematical formulation is used to compute mean of angles

- Let θ_1, θ_2 are the angles
- Convert angles into radians
 \[\omega_1 = \theta_1 \times \frac{\pi}{180}; \omega_2 = \theta_2 \times \frac{\pi}{180} \] \hspace{1cm} (E.1)
- Convert the angles into exponential form
 \[\omega_1 = e^{\omega_1} + ie^{j\omega_1}; \omega_2 = e^{\omega_2} + ie^{j\omega_2} \] \hspace{1cm} (E.2)
- Find the mean
 \[\omega_m = \frac{\omega_1 + \omega_2}{2} \] \hspace{1cm} (E.3)
- Convert the angle back to degrees
 \[\theta_m = \omega_m \times \frac{180}{\pi} \] \hspace{1cm} (E.4)
- Locate the quadrant of resultant mean angle
 \[\theta_m = \theta_m + 360 \forall \theta_m < 0 \] \hspace{1cm} (E.5)
E.2 Meteorological Conversions

E.2.1 Precipitation

Precipitation is recorded by the Vaisala weather sensor (WXT510) in mm/h is converted into minute averages by the following mathematical formulation:

- Convert precipitation in mm/h to mm/sec

 \[p_1 = \frac{P}{60 \times 60} \]

 \[(E.6) \]

- Sum precipitation in mm/sec for a minute

 \[P = \int_{0}^{60} p_1(t) \, dt \]

 \[(E.7) \]

Where \(t \) in seconds, \(P \) is precipitation in mm/min, \(p_1 \) is precipitation in mm/sec.
Appendix F

Processing of Gill Anemometer Files

WSO and WSM files are processed to have 1 Hz sample rate. The files that are generated by the LabView program initially have 10 minutes data and later changed to 30 have minutes data to reduce the number of files. The sampling rate of the files for WSO and WSM are 10 Hz and 20 Hz respectively. The Matlab programs in this chapter will modify these files to have 1 Hz sampling rate so that they can be compared to WST files with H4_1Hz file series having a sample rate of 1 Hz.

F.1 Data Representation & Layout

Gill anemometers are interfaced to the measurement computers by WindView program. WindView program generates ASCII files which contain a mix of numbers and letters on each row. These files cannot be loaded into Matlab environment. To overcome this problem, a LabView program has been developed that interprets the WindView files and writes the result to new ASCII files which are more easily loadable into Matlab environment. The conversion program also calculates some statistical data of each file. The statistics is written in the beginning of each output file. Gill WindObserver writes the following data into the text file

- **WD1_20** Wind Direction, Mast 1, 20 m height [degrees]
- **WS1_20** Wind Speed, Mast 1, 20m height (Horizontal wind speed) [m/s]
- **SoS1_20** Speed of Sound, Mast 1, 20m height [m/s]
- **AIRT_20** AIR Temperature, Mast 1, 20m height [degrees Celsius]

Filenames in the file directory is shown in Figure F.1. The layout of data in the text documents are as shown in Figure F.2. In each file there is short statistics written at the beginning.
F.2 Stage-1

In this stage, files in the previous section are loaded in Matlab environment to process and synthesize them to simple version. Matlab program shown in Section I.5 process these text files to text files as shown in the figure F.3. The filenames are modified such that there is file start time stamp and date on them. The start time and date are taken from the contents of the files prior to stage-1. This will simplify to organize/process the files further as it is difficult to open the file to know the date and time stamp. The filename apart from the date and time stamp remains the same as pre stage-1 filename.
F.3 Stage-2

In this stage files from the previous stage are further reduced to have one sec average data, meaning each row represents one second value. Files after stage-2 contains only selected columns, wind direction and wind speed. Matlab program used during stage-2 is given in the Section I.6. The filenames remain unchanged. Initially the program is tested for October 1 - October 10. Explorer view of files after stage-2 are shown in the Figure F.5, internal layout of files within folder after stage-2 is shown in the Figure F.6
In this section the files are grouped according to the day, each text file per day containing one second average values of wind direction and wind speed. The programming logic is heavy because the files structure is not in order until now. The day start from a previous day file and have around 48 files in a particular day. File layout and explorer view of files after stage-3 are shown in the Figure F.7, Figure F.8 respectively. Program used for this stage is given in Section I.7.
Figure F.7: Explorer view of files after stage-3

Figure F.8: Internal layout of files after stage-3
Appendix G

Theoretical WST Mast Wake Identification

Figure G.1 represents the approximate schematic drawing of WST and met. mast-1. \(\beta \) or sector AOB represents the mast wake of Met. mast-1 on WST. Mast-1 in reality is close to a triangle with all the sides measuring equal, however vertices of the mast-1 are not pointed instead they have a curvature. The approximation that the mast-1 is an equilateral triangle is thus motivated. Hence \(\triangle ABC \) is an equilateral triangle with all sides measuring 0.4 m and all angles \(\theta_1, \theta_2, \theta_3 \) measuring 60\(^\circ\).

Figure G.1: Geometry of WST and Met. mast-1
O represents the centre of WST anemometer. The possible mast wake on WST will be within south east direction. The following are the dimensions of the drawings in Figure G.1.

\[\theta_1 = \theta_2 = \theta_3 = 60^\circ \]

Since WST boom is oriented at 318° with respect to mast-1, which means boom OAC is at 138° with respect to point O and thereby

\[\alpha = 42^\circ \]

\[AB = BC = CA = 0.4 \text{ meters} \]

\[\angle OAC = \angle OAB + \angle CAB = 180^\circ \]

\[\angle OAC = \angle OAB + \angle 60^\circ = 180^\circ \]

\[\angle OAB = 120^\circ \]

As OAB triangle is obtuse angled triangle, and length of OA is 1 meter and length of AB is 0.4 meter and the rest of the triangle parameters are calculated

\[\angle AOB = \beta = 16.1^\circ \]

Figure G.2: Geometry of WST and Met. mast-1
Appendix H

Wind Rose

A wind rose is a graphical representation of wind availability and distribution in different directions over a particular location. Wind rose uses a polar coordinate system to represent the direction. The length of rose petals/spokes represents the availability of particular wind speed class over the measured horizon. The concept of wind rose is basically derived from the compass roses. Wind rose is widely used in aviation, meteorology and power sectors. The concept of wind rose can be extended to plot wind regimes like frequency rose, velocity rose, energy rose. There are a lot of software available to plot wind rose. However, three of the freeware are evaluated in this project which are as follows:

- WRPLOT View™ 7.0.0 by Lakes Environmental [5].
- Hydrognomon 4.1.0.26 by National Technical University of Athens [6].
- Wind Resource Assessment by The MathWorks, Inc. [7].

H.1 WRPLOT

WRPLOT is a freeware developed by Lakes Environmental software that can analyse wind data and can plot wind rose, wind speed distribution. WRPLOT accepts variety of input data formats, most of them are difficult to generate by Matlab. There is an option in WRPLOT where an excel file can be converted to formats that WRPLOT accepts. It has a simple user interface can export wind rose in a structured way. There is also an option to increase the wind direction bins from 8 - 36 to have a more precise view of wind availability over different directions. The working of WRPLOT can be explained in the following steps

1. Matlab program given in Section I.8 generates a excel file that contains one hour average value of wind speed and direction. The input to this
program is raw H4.1Hz.XXX.lvm file series that contains 33 columns and 86400 rows. The program is tested for entire 2011 year data. Figure H.1 shows the window of WRPLOT software.

2. The excel file shown in the Figure H.2 is then imported into WRPLOT and is converted into one of the format that WRPLOT can directly handle. The excel file is converted to SAMSON format which has an extension filename.sam.
3. Once the excel file is created WRPLOT can be used to convert into SAMSON format. This can be done by clicking

Tools → Import from Excel → Import Surface Data from (Excel File):

Open the excel file and load into the WRPLOT. The excel file will be loaded with the same layout as in Microsoft excel spreadsheet. Now select the number of rows for analysis, as the first row is the header row it should be discarded.

4. In the Data Fields tab write the columns name for the corresponding year, month etc. as in loaded excel file. Then check the Unit in Excel file menu to enter the right unit system of measurement.

5. Beside the Data Fields tab there is another tab Station Information where the station information should be entered. This is a mandatory field, by specifying latitude and longitude of the measurement site the wind rose can be exported to Google earth to plot on the geographic location. The geographic coordinated of met mast-1 is approx 57° 41’ 59.15” N & 11° 39’ 41.78” E

6. After the details of station are entered click on Import to import it to SAMSON file and save it. SAMSON file can be viewed with any
default Microsoft word editors.

7. Once the SAMSON file is created move to the WRPLOT main window and click on Add File and then select the created SAMSON file. The Data File Info tab provides the overview of loaded data, when entire data is imported properly without any errors or missing data, the data availability would be 100% and Incomplete/Missing Records would be 0%.

8. When the SAMSON file is loaded we can navigate to different menus Frequency Count, Frequency Distribution, Wind Rose, Graph to directly see them. Units tab in the main window should be matched to the unit system of measurement. To export the wind rose into Google maps, Google earth freeware should be installed in the computer. And the wind rose on the geographical site can be plotted according to

Wind Rose → Export, A window Export To Google Earth pops up where the location can be verified/changed and also the style of the plot can be customized, and then click Export.

H.2 Hydrognomon

Hydrognomon is freeware developed by National Technical University of Athens primarily designed to analyse and process hydrological data in the form of time series. It has a simple user interface and accepts the data in the format filename.hts. These .hts files are created using Matlab program given in the Section I.9.

Figure H.3: Screenshot of Hydrognomon window

1. The Matlab program generates two files Input_1.hts with time series, wind direction & Input_2.hts with time series, wind speed. Time
series in both the files should be identical before they can be imported into Hydrognomon. The input to the Matlab program is raw H4_1Hz_XXX.lvm file series that contains 33 columns and 86400 rows. The program is tested for entire January 2011 month data.

2. These input files can be directly opened or can be dragged into Hydrognomon window.

3. Once the input files are loaded into Hydrognomon window, follow: View → Rose diagram... A window pops up named Time series selections for processes which has two menus namely Available time series: and Time series selections: as shown in the Figure. Drag the direction and speed series to time series selections of degrees and speed respectively and click OK.

4. There are a lot of customizations available on the Rose diagram window.

Figure H.4: Screen-shot of Hydrognomon window

H.3 MathWorks

wind_rose is a Matlab function file given in Mathworks file exchange [7]. There is also a supplement webinar video to know the working of this file and also wind resource assessment in general which can be viewed in reference [8].
The input to this file is array of wind direction and wind speed. Wind direction (θ) should be converted to mathematical angles (θ_1) before they are processed by the following equation

$$\theta_1 = (90 - \theta, 360)$$ \hspace{1cm} (H.1)
Appendix I

Matlab Programs

I.1 Turbulence Intensity

% Input to TI_calc function are input array and length of the
% input array and o/p is TI_calc array
function[TI_calc]=TI_calc(ip1,nLines)
lim=round(nLines/600); % No of 10 minutes averages that can be
% calculated input array in one second resolution
for j=0:1:lim
 if j<lim-1 % j=1 to 143
 mv1=(ip1(j*600+1:600*(j+1)));
 TI_calc(1,j+1)=std(mv1)/mean(mv1); %#ok<AGROW>
 else % j=144 or j=lim
 mv1=(ip1(j*600+1:end));
 TI_calc(1,j+1)=std(mv1)/mean(mv1); %#ok<AGROW>
 end
end

I.2 Weibull Probability Distribution Function and
Wind Speed Distribution

%Plot Weibull distribution and Wind Speed Distribution
wbl_param=wblfit(ip1); % wblfit calculates scale and shape factor for
% input array (ip1), i.e wind speed array
C1=wbl_param(1); K1=wbl_param(2); % Scale and shape factor
val2=wblpdf(ip1,C1,K1); % Calculates probability for each bins of
ip1
[nelements,centers]=hist(ip1,min(ip1):1:max(ip1)); % nelements are
% length of bars & centers are x axis values of bar plot
fig_PDF=figure;
bar(centers,nelements,'b'); grid on; % Plot wind speed
distribution
xlim([min(ip1)-0.5 max(centers)+2]); ylim([0 max(nelements)+max(nelements)/20])
I.2 Weibull Probability Distribution Function and Wind Speed Distribution

```matlab
xlabel('Wind Speed [m/s^{-1}]');
ylabel('No. of samples');
set(gca,'XTick',ceil(min(ip1)):floor(max(ip1)))
ha = gca; ha_pos = get(ha,'Position');
hax = axes('Position',ha_pos);
plot(ip1,val2,'Marker','*','LineStyle','none',
     'Color',[1 0.5 0.2]); % Plot probability distribution function
     % on the same graph as wind speed distribution
set(hax,'YAxisLocation','right','Color','none','XTickLabel',[]);

centers_xlim = get(hax,'XLim'); % store x-axis limits of first axes
set(hax,'XLim',centers_xlim) % specify x-axis limits of second axes
ylabel('Probability');
saveas(fig_PDF,'Prob_dis_func','emf'); % Save the fig in emf file format
```

I.2.1 Wind Direction Average

```matlab
lim1=round(nLines1/600);
for j=0:1:lim1-1
   if j<lim1-1 % for j=1-142
      angles=(ia(j*600+1:600*(j+1)));
      ar=angles*pi/180;
      ae=mean(exp(1i*ar));
      mean_angle=(angle(ae)*180/pi);
      if mean_angle < 0
         mean_angle=360+mean_angle;
      end
      ia_avg(1,j+1)=mean_angle; %#okAGROW
   else % j=143 or j=lim
      angles=ia(j*600+1:end); % mv1=(ip1(j*600+1:end));
      ar=angles*pi/180;
      ae=mean(exp(1i*ar));
      mean_angle=(angle(ae)*180/pi);
      if mean_angle < 0
         mean_angle=360+mean_angle;
      end
      ia_avg(1,j+1)=mean_angle; %#okAGROW
   end
end
```

I.2.2 Wind Speed Average

```matlab
lim=round(nLines/600);
for j=0:1:lim-1
   if j<lim-1 % j=1-142 or j=1-lim
      mv1=(ip1(j*600+1:600*(j+1)));
      call_avg(1,j+1)=sum(mv1)/length(mv1); %#okAGROW
   else % j=143 or j=lim
```
I.3 Process WXT510 Files

```matlab
mv1=(ip1(j*600+1:end));
call_avg(1,j+1)=sum(mv1)/length(mv1); %#ok
end
end
```

I.3 Process WXT501 Files

% Place the program in a folder containing WXT501 1 second files
% Apply correction factor and process all WXT501 files
% This program generates 1, 2, 3, 4.
% Ensure the following matlab programs in the working directory
% before running the program
% binkv3 % To simultaneous bin two vectors (order of vectors
% should be DIRECTION, WIND SPEED, NO.OF BINS)
% call_avg % To average one second wind speed values to 10 min avgs
% dir_avg % To average one second wind dir values to 10 min avgs
% TI_calc % To calculate turbulence intensity of 10 min. wind speeds
% wind_rose % To plot wind rose

tic; clc; clear all; close all;
year=2011; % Year array (MANUALLY ENTER YEARS, either one year at a time)

%% STAGE-1 (Process & apply correction)
year=str2num(year(3:4));
allfilenames=dir(fullfile('*lvm')); % Get files with lvm extn. in the directory
filenames={allfilenames.name}'; % Get file names

% Generalize the format of filenames Ex:WXT501_1s_mv_11-01-01_0000.lvm
e1=’\WXT(\d+)’; % WXT501
e2=’(\d+)s’; % 1s
e3=’mv’; % mv
e4=’(\d+)\-’; % year
e5=’(\d+)\-’; % month
e6=’(\d+)\-’; % date
e7=’(\d+).lvm$’; % time
e8=’\-’;
e9=’\’;

mkdir(strcat(year,’_WXT501_files’)); % Make a directory in current
working directory for storing proc. files
mkdir(strcat(year,’_WXT501_figures’)); % Make a directory in current
working directory for storing proc. figs

```

324
% Correction factor
lim_r1=50; lim_r2=60; lim_r3=70; lim_r4=80; lim_r5=90; % Limits of
sectors in degrees
cf_r1=1.1418; cf_r2=1.2875; cf_r3=1.2977; cf_r4=1.1961; %
Correction factor of sectors

% Other useful variables
Month WD av=[]; Month WS av=[];
WS 1sec=[]; WS cor 1sec=[]; WD 1sec=[];
Monthly WS 1sec matrix=[]; Monthly WS 10min matrix=[]; Monthly TI av
=-[];

expr=strcat(e1,e2,e3,ya,ex,e4,e6,e7); % Concatenate the
strings to form generalized ip_filename
filedata=regexp(filenames,expr,'tokens'); % Find tokens that
matches the expression (expr)
index=˜cellfun('isempty',filedata); % Find index of
matches
filedata=[filedata{index}];
filedata = vertcat(filedata{:}); % Format token data
year = filenames(index); % Group all the
similar year files in 'year'
ma1=filedata(1:size(filedata,1),3); % Know the months in
the year cell
ma2=unique(ma1); % Delete the duplicate
entries
ma=str2num(cell2mat(ma2)); %#ok

% Available months in the selected year
for mi=1:length(ma)
x2=ma2{mi(1)}; % Select the first
month in the year
expr2=strcat(e1,e2,e3,ya,ex,x2,ex,e6,e7); % Concatenate the
strings to form generalized ip_filename with the selected
month
fdm=regexp(year,expr2,'tokens'); % Find tokens that
matches the expression (expr2) with selected month
idm=˜cellfun('isempty',fdm); % Find index of
matches
fdm=[fdm{idm}];
fdm=vertcat(fdm{:});
da1=fdm{1:(size(fdm,1)),3};
da2=unique(da1); % Delete the
duplicate entries
da=str2num(cell2mat(da2)); %#ok

% Available days in the selected month
for di=1:length(da)
x5=da2(di); % Select the first
date in the month
expr3=strcat(e1,e2,e3,ya,ex,x2,ex,x5,eya,e7); %
Concatenate the strings to form generalized
ip_filename with the selected month and date
I.3 Process WXT510 Files

```matlab
fd3 = regexp(year, expr3, 'tokens'); % Find tokens that matches the expression (expr3) with selected month and date
id3 = ~cellfun('isempty', fd3);
fd3 = [fd3, id3];
fd3 = vertcat(fd3{:});
filez = year(id3); % ip_filename to read the data

if length(filez) > 1 % When a day contains MORE than one LVM file
 WD = [];
 WS = [];
 for u = 1:length(filez)
 ip_filename = filez{u};
 % Overwrite comma with point
 filex = memmapfile(ip_filename, 'writable', true);
 comma = uint8(',');
 point = uint8('.');
 filex.Data(transpose(filex.Data == comma)) = point;
 fid = fopen(ip_filename, 'r');
 matdata = textscan(fid, '%f %f %f %f %f %f %f');
 matdata = cell2mat(matdata);
 fclose(fid);
 % Load the selected columns
 WSu = matdata(:, 2); % Wind Speed WS [m/s]
 WDU = matdata(:, 1); % Wind Direction Vaisala WXT510 [degrees]
 WD = vertcat(WD, WDU); %#ok<AGROW>
 WS = vertcat(WS, WSu); %#ok<AGROW>
 end
else % When a day contains ONLY one LVM file
 ip_filename = filez{:};
 % Load the i/p file data into matdata
 filex = memmapfile(ip_filename, 'writable', true);
 comma = uint8(',');
 point = uint8('.');
 filex.Data(transpose(filex.Data == comma)) = point;
 fid = fopen(ip_filename, 'r'); % Open the file in read mode
 matdata = textscan(fid, '%f %f %f %f %f %f %f'); % Load the data from i/p files containing 7 columns
 matdata = cell2mat(matdata); % Convert cell to array
 fclose(fid);
 % Load the selected columns
 WS = matdata(:, 2); % Wind Speed WS [m/s]
```

326
I.3 Process WXT510 Files

WD=matdata(:,1); % Wind Direction Vaisala
WXT510 [degrees]
end

% Skip NaN values
tk1=isnan(mean(WD(:))); % When WD contains NaN
tk2=isnan(mean(WS(:))); % When WS contains NaN

if tk1==1 % WD
    Ind_nan1=find(isnan(WD));
    WD(Ind_nan1)=[]; %#ok
end

if tk2==1 % WS
    Ind_nan2=find(isnan(WS));
    WS(Ind_nan2)=[]; %#ok
end

% Check for negative wind direction values and apply the correction (Magnus Logic)
tk3=find(WD<0);
if ~isempty(tk3) % Enter loop if WD records atleast one negative value
    WD(tk3)=mod(WD(tk3),360); %#ok
end

% Check for negative wind speeds values and delete them
Ind_neg=find(WS<=0);
if ~isempty(Ind_neg)
    WD(Ind_neg)=[]; %#ok
    WS(Ind_neg)=[]; %#ok
end

nLines=length(WS);
if ~isempty(WD) % Enter the loop if WD is not a empty array
    WS_cor=WS;
    % Apply correction factor 2 (Mast wake)
    ind_r1=find(WD > lim_r1 & WD <= lim_r2); % Region 1
    WS_cor(ind_r1)=cf_r1*WS(ind_r1);
    ind_r2=find(WD > lim_r2 & WD <= lim_r3); % Region 2
    WS_cor(ind_r2)=cf_r2*WS(ind_r2);
    ind_r3=find(WD > lim_r3 & WD <= lim_r4); % Region 3
    WS_cor(ind_r3)=cf_r3*WS(ind_r3);
    ind_r4=find(WD > lim_r4 & WD <= lim_r5); % Region 4
    WS_cor(ind_r4)=cf_r4*WS(ind_r4);

    % Make 10 min avg
    WS_av=call_avg(WS_cor,nLines);
    WD_av=dir_avg(WD,nLines);

327
I.3 Process WXT510 Files

\[ TI_{av} = TI_{calc}(WS_{cor}, nLines); \]

\[ op\_filename = strcat(yay, ip\_filename(16:21), '\_\_n', ip\_filename(1:7), '10minavg', '.txt'); \] % Create o/p filename

\[ op\_filepath\_1 = strcat(files\_path, op\_filename); \] % Save the file (10 min average day files)

\[ dlmwrite(op\_filepath\_1, [WD\_av' WS\_av'], 'delimiter', '\t'); \]

% Create 10 min average array of all days in a month
\[ Month\_WD\_av = [Month\_WD\_av WD\_av]; \] % Concatenate all 10 min avgs of WD into a month variable
\[ Month\_WS\_av = [Month\_WS\_av WS\_av]; \] % Concatenate all 10 min avgs of WS into a month variable
\[ Month\_TI\_av = [Month\_TI\_av TI\_av]; \] % Concatenate all 10 min avgs of TI into a month variable

% Create 1 sec raw array of all days in a month
\[ WS\_cor\_1sec = [WS\_cor\_1sec WS\_cor']; \] % Concatenate all 1 sec corrected WS values into a month variable to calculate 1 sec min, max values of wind speed

\[ end \]

\[ xx = [min(WS\_cor\_1sec) max(WS\_cor\_1sec) mean(WS\_cor\_1sec)]; \] % min, max, mean of corr 1 sec values
\[ Monthly\_WS\_1sec\_matrix = [Monthly\_WS\_1sec\_matrix; xx]; \] % Save 10 min WD avg array into a yearly cell

\[ yy = [min(Month\_WS\_av) max(Month\_WS\_av) mean(Month\_WS\_av)]; \] % min, max, mean of corr 10 min values
\[ Monthly\_WS\_10min\_matrix = [Monthly\_WS\_10min\_matrix; yy]; \] % Save corr 10 min WS avg array into a yearly cell

% Write 10 min average array of all days in a month in a text file
\[ op\_filename\_2 = strcat(yay, ip\_filename(16:18), '\_\_n', ip\_filename(1:7), '10minavg', '.txt'); \]
\[ op\_filepath\_2 = strcat(files\_path, op\_filename\_2); \]

% Save the file (10 min average day files)
\[ dlmwrite(op\_filepath\_2, [Month\_WD\_av' Month\_WS\_av'], 'delimiter', '\t'); \]

\[ Monthly\_WD\{\_mi\} = Month\_WD\_av; \] % Save 10 min WD avg array into a yearly cell
\[ Monthly\_WS\{\_mi\} = Month\_WS\_av; \] % Save corr 10 min WS avg array into a yearly cell
I.3 Process WXT510 Files

```matlab
Monthly_TI{mi}=Month_TI_av; %#ok<SA> % Save 10 min TI avg array into a yearly cell
Month_WD{av}=[]; Month_WS{av}=[]; Month_TI{av}=[];
WS_cor_{sec}=[];
end
save(strcat(yay,'\','WXT510'),'Monthly_WD','Monthly_WS','
Monthly_TI',
'ma','Monthly_WS_{sec}_matrix','Monthly_WS_{10min}_matrix'); % Save the above parameters to plot graphs in stage-2

%% STAGE-2 (Plot graphs)
clearvars -except yay1 files path figures path fig export format

yay=num2str(yay1);
year=yay(3:4);
numbins=180; % Used in binning the data
load(strcat(yay,'_WXT50.mat'));
Month_list={\'January\',\'February\',\'March\',\'April\',\'May\',\'June\'
\'July\',\'August\',\'September\',\'October\',\'November\',\'December\'};
mlm={\'Jan\',\'Feb\',\'Mar\',\'Apr\',\'May\',\'Jun\',\'Jul\',\'Aug\',\'Sept\',\'Oct\',\'Nov\',\'Dec\'};
Monthly_C=[]; Monthly_K=[]; Rec_data_{avail}=[]; Mean_{mon_WS}=[];
Months_{rec_WS}=[];
csk=0.6; % Scale factor in the compass plot

% Know which months are recorded
mal=(ma('{_isempty\}',Monthly_WS)); Rec_{Month}=Month_list(mal);
mlm=mlm(mal);

% Remove empty month cells
Monthly_WS=Monthly_WS('{_isempty\}',Monthly_WS);
Monthly_WD=Monthly_WD('{_isempty\}',Monthly_WD);
Monthly_TI=Monthly_TI('{_isempty\}',Monthly_TI);

% Assign 1 sec values
WS1min=Monthly_WS_{sec}_matrix(:,1); WS1max=Monthly_WS_{sec}_matrix(:,2);
WS1mn=Monthly_WS_{sec}_matrix(:,3);

% Monthly Stats
for k =1:length(Rec_{Month})
 WD=Monthly_WD{k}; WS=Monthly_WS{k}; % Convert cell to array
 % Calculate data availability
 days=eomday(str2num(strcat('20',year)),mal(k)); %#ok<ST2NM>
 Calculate no. of days in the month (mal(k))
tot10mins=days*144; % Total 10 mins in a month
 rec10mins=length(WD); % Recorded 10 mins in a month
 data_{avail}=(rec10mins/tot10mins)*100; % Data availability
 Rec_data_{avail}=Rec_data_{avail} data_{avail}); %#ok<AR>

 % Writes emf month emf figure with speed distribution and probability distribution
```

329
I.3 Process WXT510 Files

% Plot Weibull distribution and Wind Speed Distribution
wbl_param=wblfit(WS); % wblfit calculates scale and shape
factor for input array (WS), i.e wind speed array
C1=wbl_param(1); K1=wbl_param(2); % Scale and shape factor
val2=wblpdf(WS,C1,K1); % Calculates probability for each bins
of WS
[nelements,centers]=hist(WS,min(WS):1:max(WS)); % nelements
are length of bars & centers are x axis values of bar plot
fig_PDF=figure;
bar(centers,nelements,'b'); grid on; % Plot wind speed
distribution
xlim([min(WS)-0.5 max(centers)+2]); ylim([0 max(nelements)+max
(nelements)/20])
xlabel('Wind Speed [ms^{-1}]');
ylabel('No. of samples');
set(gca,'XTick',ceil(min(WS)):floor(max(WS)))
set(hAxes2,'YAxisLocation','right','Color','none','XTickLabel'
,'[]');
set(hAxes2,'XLim',centers_xlim) % specify x-axis limits of
second axes
xlabel('Probability');
saveas(fig_PDF,op_figurepath1,fig_export_format); % Save the
fig in emf file format
set(wrf,'Visible','off');

% Plot wind rose
WD1=mod(90-WD,360); % Convert met angles to math angles
wrf=figure; wind_rose(WD1,WS,'di',[0:2:24],',labellegend','(m/s)
); % 24 m/s is given to scale all the wind roses, legend is given
in % steps of 2
set(wrf,'InvertHardCopy','off');
set(wrf,'InvertHardCopy','off');
saveas(wrf,op_figurepath2,fig_export_format);
set(wrf,'Visible','off');

% Plot Turbulence Intensity rose
T1=Monthly_T1[k];
I.3 Process WXT510 Files

```matlab
[WDrbin, TIbin] = binkv3(WD, TI, numbins);
WD = WDrbin * pi/180;
[x, y] = pol2cart(WDrbin, TIbin);
tipf = figure;
h = compass(csk); hold on
tipf1 = compass(x, y, 'r');
set(h, 'Visible', 'off');
for i = 1:length(tipf1) % the last line on the axes
 xData = get(tipf1(i), 'XData');
 yData = get(tipf1(i), 'YData');
 set(tipf1(i), 'XData', xData(1:2), 'YData', yData(1:2))
end % for
az = 90; % azimuth i.e. rotate around z-axis horizontally by 90 degrees
el = -90; % elevation negative, effectively looking beneath plot
view(az, el);
op_figurename_3 = strcat(yay, '_WXT510', ',', Rec Month{k}, '_Turbulence_intensity');
op_figurepath_3 = strcat(figures_path, op_figurename_3);
saveas(tipf, op_figurepath_3, fig_export_format)
set(tipf, 'Visible', 'off');
Mean_mon_WS = [Mean_mon WS mean(WS)]; %#ok<AGROW>
end
Months_rec_WS = [Months_rec WS; mal'];
Monthly_param = horzcat(Rec_dataavail', Monthly_WS 10min matrix, Monthly_C', Monthly_K'); % 10 min WS matrix with shape & scale factors

% Yearly Stats
% Wind Rose
WD = cell2mat(Monthly WD);
WS = cell2mat(Monthly WS);
TIYC = cell2mat(Monthly TI);

% Availability for the year
totdays = yeardays(str2num(strcat('20', year)));
tot10mins = 144 * totdays;
rec10mins = length(WS);
year_avail = (rec10mins / tot10mins) * 100;
dav = strcat('Data Availability: ', sprintf('%.2f', year_avail), '%'); %

% Wind rose for year
WDn = mod(90 - WD, 360); % Convert met angles to math angles
pFR = figure;
set(pFR, 'InvertHardCopy', 'off');
wind_rose(WDn, WS, 'di', [0:2:24], 'lablegend', '(m/s)'); %, 'lablegend ', 'Wind Speed (m/s)');
op_figurename_4 = strcat(yay, '_WXT510_Wind_rose');
op_figurepath_4 = strcat(figures_path, op_figurename_4);
saveas(pFR, op_figurepath_4, fig_export_format);
set(pFR, 'Visible', 'off');
```
% Plot Histogram of monthly means in a year

% fH=figure;
% axes1 = axes('Parent',fH,...
% 'XTickLabel',mlm,...
% 'XTick',1:length(mlm)); box(axes1,'on');
hold(axes1,'all');
bar(Monthly_mean); grid on;
xlabel('{\text{Months}'},'interpreter','latex');

op_figname5=strcat(yay,'WXT510 Monthly mean wind speed histogram');
op_fignopath5=strcat(figures_path,op_figname5);
saveas(fH,op_fignopath5,fig_export_format);
set(fH,'Visible','off');

% Plot Weibull distribution and Wind Speed Distribution

wbl_param=wblfit(WS); % wblfit calculates scale and shape factor
for input array (WS), i.e wind speed array
C1=wbl_param(1); K1=wbl_param(2); % Scale and shape factor
val2=wblpdf(WS,C1,K1); % Calculates probability for each bins of WS
[nelements,centers]=hist(WS,min(WS):1:max(WS)); % nelements are
length of bars & centers are x axis values of bar plot

fig_PDF=figure;
bar(centers,nelements,'b'); grid on; % Plot wind speed
distribution
xlim([min(WS)-0.5 max(centers)+2]); ylim([0 max(nelements)+max(nelements)/20])
xlabel('Wind Speed [ms^{-1}]');</xlabel)
ylabel('No. of samples');

set(gca,'XTick',ceil(min(WS)):floor(max(WS)))

hAxes = gca; hAxes2 = axes('Position',hAxes_pos);
plot(WS,val2,'Marker','*','LineStyle','none',
'Color',[1 0.5 0.2]); % Plot probability distribution function
on the same graph as wind speed distribution
set(hAxes2,'YAxisLocation','right','Color','none','XTickLabel',
'');

centers_xlim = get(hAxes,'XLim'); % store x-axis limits of first axes
set(hAxes2,'XLim',centers_xlim) % specify x-axis limits of second axes

ylabel('Probability');

op_figname6=strcat(yay,'WXT510 Probability distribution function');
op_fignopath6=strcat(figures_path,op_figname6);
saveas(fig_PDF,op_fignopath6,fig_export_format); % Save the fig
in emf file format
set(fig_PDF,'Visible','off');

% Turbulence intensity rose

[WDyrbin,TIyrbin]=binkv3(WD,TIYC,numbins);
WDrC = WDyrbin * pi/180;
I.4 Process WST Files

[xx, yy] = pol2cart(WDrC, T1yrbin);
trf = figure;
h = compass(csk); hold on
trf1 = compass(xx, yy, ‘*’); % Turbulence rose figure
set(h, ‘Visible’, ’off’);
for i = 1:length(trf1) % the last line on the axes
    xData = get(trf1(i), ’XData’);
yData = get(trf1(i), ’YData’);
    set(trf1(i), ’XData’, xData(1:2), ’YData’, yData(1:2))
end % for
az = 90; % azimuth i.e. rotate around z–axis horizontally by 90
degrees
el = –90; % elevation negative, effectively looking beneath plot
view(az, el);

op_figurename_7 = strcat(yay, ’.WXT510’, ’.Turbulence_intensity’);
op_figurepath_7 = strcat(figures_path, op_figurename_7);
saveas(trf, op_figurepath_7, fig_export_format)
close all
toc

I.4 Process WST Files

% Place the program in a folder containing WS2 1 second files
% Apply correction factor and process all WS2 files
% Ensure the following matlab programs in the working directory
% before running the program
% binkv3 % To simultaneous bin two vectors (order of vectors
% should be WIND DIRECTION, WIND SPEED, NO. OF BINS)
% call_avg % To average one second wind speed values to 10 min
% avgs
% dir_avg % To average one second wind dir values to 10 min avgs
% TI_calc % To calculate turbulence intensity of 10 min. wind
% speeds
% wind_rose % To plot wind rose

tic; clc; clear all; close all;
yay1 = 2011; % Year array (MANUALLY ENTER YEARS, one at a time)
yay = num2str(yay1);
ya = yay(3:4);
allfilenames = dir(fullfile('*lvm')); % Get files with LVM
    extn. in the directory
filenames = {allfilenames.name}; % Get file names WST
    series

% Generalize the format of filenames
el = ’H\(\d+\)’; % H4
e2 = ’(\d+)Hz\(\d+\)’; % 1Hz
e3 = ’(\d+)\(\d+\)’; % year
e4 = ’(\d+)\(\d+\)’; % month
e5 = ’(\d+).lvm$’; % date
e6 = ’(\d+).lvm$’; % time
ex = ’\(\d+\)’;
I.4 Process WST Files

eya='\.';

mkdir(strcat(yay,'_WS2_files')); % Make a directory in current
working directory for storing proc. files
mkdir(strcat(yay,'_WS2_figures')); % Make a directory in current
working directory for storing proc. figs
files_path=strcat(pwd,'\',yay,'_WS2_files\');
figures_path=strcat(pwd,'\',yay,'_WS2_figures\');
fig.export_format='emf'; % Figure export format

% Correction factor
lim_r1=110; lim_r2=120; lim_r3=130; lim_r4=140; lim_r5=148; %
Limits of sectors in degrees
cf_r1=1.2848; cf_r2=1.3910; cf_r3=1.3572; cf_r4=1.1562; %
Correction factor of sectors

% Other useful parameters
Month_WD510_av=[]; Month_WST_av=[];
WST1sec=[]; WST_cor1sec=[]; WD510_lsec=[];
Monthly_WST1sec_matrix=[]; Monthly_WST10min_matrix=[];
Month_TI_av=[];

%% Formulation
expr=strcat(e1,e2,ya,ex,e4,e5,e6); % Concatenate the
strings to form generalized ip_filename
filedata=regexp(filenames,expr,'tokens'); % Find tokens that
matches the expression (expr)
index=˜cellfun('isempty',filedata); % Find index of
matches
filedata = [filedata{index}];
filedata = vertcat(filedata{:}); % Format token data
year = filenames(index); % Group all the
similar year files in 'year'
ma1=filedata(1:size(filedata,1),3); % Know the months in
the year cell
ma2=unique(ma1); % Delete the duplicate
entries
ma=str2num(cell2mat(ma2)); %#ok<ST2NM> % Months
in the selected year

for mi=1:length(ma)
x2=ma2{mi(1)}; % Select the first
month in the year
expr2=strcat(e1,e2,ya,ex,x2,ex,e5,e6); % Concatenate the
strings to form generalized ip_filename with the selected
month
fdm=regexp(year,expr2,'tokens'); % Find tokens that
matches the expression (expr2) with selected month
idm=˜cellfun('isempty',fdm); % Find index of
matches
fdm=[fdm{idm}];
fdm=vertcat(fdm{:});
da1=fdm(1:(size(fdm,1),3));
da2=unique(da1);  % Delete the duplicate entries
da=str2num(cell2mat(da2));  %#ok<*ST2NM>  % Available days in the selected month

for di=1:length(da)
x5=da2(di);  % Select the first date in the month
expr3=strcat(e1,e2,ex,x2,ex,x5,eya,e6);  % Concatenate the strings to form generalized ip_filename with the selected month and date
fd3=regexp(year,expr3,'tokens');  % Find tokens that matches the expression (expr3) with selected month and date
id3=˜cellfun('isempty',fd3);
fd3=[fd3{id3}];
fd3=vertcat(fd3{:});
filez=year(id3);  % ip_filename to read the data

if length(filez)>1  % When a day contains more than one LVM file
    WDS10=[];  WST=[];
    for u=1:length(filez)
        ip_filename=filez{u};
        fid=fopen(ip_filename,'r');
        matdata=textscan(fid, '%f %f %f') ;
        matdata=cell2mat(matdata);
        fclose(fid);

        %Load the selected columns
        WSTu=matdata(:,19);  % Wind Speed WST [m/s]
        WDS10u=matdata(:,27);  % Wind Direction Vaisala WXT510 [degrees]

        WST=vertcat(WST,WSTu);  %#ok<AGROW>
        WDS10=vertcat(WDS10,WDS10u);  %#ok<AGROW>
    end
else  % When a day contains ONLY one LVM file
    ip_filename=filez{:};

    % Load the file data into matdata
    fid=fopen(ip_filename,'r');
    matdata=textscan(fid, '%f %f %f') ;
    matdata=cell2mat(matdata);
    fclose(fid);

    % Load the selected columns

335
I.4 Process WST Files

WST=matdata(:,19); % Wind Speed WST [m/s]
WD510=matdata(:,27); % Wind Direction Vaisala
  WXT510 [degrees]
end

% Skip NaN values
tk1=isnan(mean(WD510(:))); % When WD510 contains NaN
tk2=isnan(mean(WST(:))); % When WST contains NaN
if tk1==1 % WD510
  Ind_nan1=find(isnan(WD510));
  WD510(Ind_nan1)=[]; %#ok<SAGROW>
  WST(Ind_nan1)=[];
end
if tk2==1 % WST
  Ind_nan2=find(isnan(WST));
  WD510(Ind_nan2)=[]; %#ok<SAGROW>
  WST(Ind_nan2)=[]; %#ok<SAGROW>
end
% Check for negative wind direction values and apply the
% correction (Magnus Logic)
tk3=find(WD510<0);
if ~isempty(tk3) % Neglect
  WD510(tk3)=mod(WD510(tk3),360); %#ok<SAGROW>
end
% Check for negative wind speeds values
Ind_neg=find(WST<0);
if ~isempty(Ind_neg)
  WD510(Ind_neg)=[];
  WST(Ind_neg)=[];
end
nLines=length(WST);
if ~isempty(WD510)==1 % Enter the loop if WD510 is not a
  empty array
  % Apply correction factor 1 (from WSO)
  WST_cor=1.035.*WST+0.1426;
  % Apply correction factor 2 (Mast wake)
  ind_r1=find(WD510 > lim_r1 & WD510 <= lim_r2); % Region 1
  WST_cor(ind_r1)=cf_r1*WST_cor(ind_r1);
  ind_r2=find(WD510 > lim_r2 & WD510 <= lim_r3); % Region 2
  WST_cor(ind_r2)=cf_r2*WST_cor(ind_r2);
  ind_r3=find(WD510 > lim_r3 & WD510 <= lim_r4); % Region 3
  WST_cor(ind_r3)=cf_r3*WST_cor(ind_r3);

336
I.4 Process WST Files

```matlab
ind_r4=find(WD510 > lim_r4 & WD510 <= lim_r5); % Region 4
WST_cor(ind_r4)=cf_r4*WST(ind_r4);

% Make 10 min avg
WST_av=call_avg(WST_cor,nLines);
WD510_av=dir_avg(WD510,nLines);
TI_av=TI_calc(WST_cor,nLines);

op_filename=strcat(yay,ip_filename(1:20),'_','10minav','.txt'); % o/p ip_filename
op_filepath_1=strcat(files_path,op_filename); % concatenate file path and ip_filename

% Save the file (10 min average day files)
dlmwrite(op_filepath_1,[WD510_av' WST_av'],'delimiter' ,'
');

% Create 10 min average array of all days in a month
Month_WD510_av=[Month_WD510_av WD510_av]; %#ok<AGROW>
% Concatenate all 10 min avgs of WD into a month variable
Month_WST_av=[Month_WST_av WST_av]; %#ok<AGROW>
% Concatenate all 10 min avgs of WS into a month variable
Month_TI_av=[Month_TI_av TI_av]; %#ok<AGROW>
% Concatenate all 10 min avgs of TI into a month variable

% Create 1 sec raw array of all days in a month
WST_cor_1sec=[WST_cor_1sec WST_cor']; %#ok<AGROW>
% Concatenate all 1 sec corrected WS values into a month variable to calculate 1 sec min, max values of wind speed

end
end
if˜(isempty(Month_WD510_av) && isempty(Month_WST_av))==1 % Enter the loop if WD510 is not a empty array
xx=[min(WST_cor_1sec) max(WST_cor_1sec) mean(WST_cor_1sec)]; % min, max, mean of corr 1 sec values
Monthly_WST_1sec_matrix=[Monthly_WST_1sec_matrix; xx]; %#ok<AGROW>

yy=[min(Month_WST_av) max(Month_WST_av) mean(Month_WST_av)]; % min, max, mean of corr 10 min values
Monthly_WST_10min_matrix=[Monthly_WST_10min_matrix; yy]; %#ok<AGROW>

% Write 10 min average array of all days in a month in a text file
op_filename_2=strcat(ip_filename(1:7),'20',ip_filename(8:9),'_',ip_filename(11:12),'_','10minav','.txt');
op_filepath_2=strcat(files_path,op_filename_2);
```
% Save the file (10 min average day files)
dlmwrite(op_filepath,'Month_WD510_av' Month_WST_av'),'
delimiter',','t');

Monthly_WD510{mi}=Month_WD510_av; %#ok<SGROW> % Save 10
min WD avg array into a yearly cell
Monthly_WST{mi}=Month_WST_av; %#ok<SGROW> % Save corr
10 min WS avg array into a yearly cell
Monthly_TI{mi}=Month_TI_av; %#ok<SGROW> % Save 10
min TI avg array into a yearly cell
Month_WD510_av=[]; Month_WST_av=[];Month_TI_av=[];

% Save the above parameters to plot graphs in stage-2

%% STAGE−2 (Plot graphs)
clearvars —except yay1 files_path figures_path fig_export_format

yay=num2str(yay1);
year=yay(3:4);
numbins=180; % Used in binning the data 360 means 1 value for 1
degree bin, 180 is one value for 2 degree bin
load(strcat(yay,'WS2.mat'));
Month.list={‘January’,’February’,’March’,’April’,’May’,’June’...
’,’July’,’August’,’September’,’October’,’November’,’December’};
mlm={‘Jan’,’Feb’,’Mar’,’Apr’,’May’,’Jun’,’Jul’,’Aug’,’Sept’,’Oct’,
’Nov’,’Dec’};
Monthly_C=[]; Monthly_K=[]; Rec_data_avail=[];
csk=0.6; % Compass scale factor in the plot to plot turbulence
intensity rose

% Know which months are recorded
mal=(ma(‘cellfun(’isempty’,Monthly_WST)))); Rec_Month=Month.list(

mal);
mlm=mlm(mal);

% Remove empty month cells
Monthly_WS=Monthly_WST(‘cellfun(’isempty’,Monthly_WST));
Monthly_TI=Monthly_TI(‘cellfun(’isempty’,Monthly_TI));

% Assign 1 sec values
WS1min=Monthly_WST_1sec_matrix(:,1); WS1max=
Monthly_WST_1sec_matrix(:,2);
WS1nn=Monthly_WST_1sec_matrix(:,3);

% Monthly Stats
for k =1:length(Rec_Month)
    WD=Monthly_WD{k}; WS=Monthly_WS{k}; % Convert cell to array
I.4 Process WST Files

% Calculate data availability

\[
\text{days} = \text{eomday} \left( \text{str2num(\text{'20',} \text{year} \text{)}, \text{mal(k)} \right); \quad \# \text{ok<ST2NM>}
\]
Calculate no. of days in the month (mal(k))

\[
\text{tot10mins} = \text{days} \times 144; \quad \% \text{Total 10 mins in a month}
\]

\[
\text{rec10mins} = \text{length(WD)}; \quad \% \text{Recorded 10 mins in a month}
\]

\[
\text{data avail} = \left( \frac{\text{rec10mins}}{\text{tot10mins}} \right) \times 100; \quad \% \text{Data availability}
\]

\[
\text{Rec data avail} = \left[ \text{Rec data avail data avail} \right]; \quad \# \text{ok<AGROW>}
\]

% Writes emf month emf figure with speed distribution and probability distribution

\[
\text{op\_figurename} = \text{strcat('20', \text{\_year}, '_WS2', '_', \text{Rec\_Month\{k\}}, '_Probability\_distribution\_function');}
\]

\[
\text{op\_figurepath} = \text{strcat(figures\_path, \text{op\_figurename});}
\]

% Plot Weibull distribution and Wind Speed Distribution

\[
\text{wbl\_param} = \text{wblfit(WS)}; \quad \% \text{wblfit calculates scale and shape factor for input array (WS), i.e wind speed array}
\]

\[
\text{C1 = wbl\_param(1); K1 = wbl\_param(2);} \quad \% \text{Scale and shape factor}
\]

\[
\text{val2 = wblpdf(WS, C1, K1);} \quad \% \text{Calculates probability for each bins of WS}
\]

\[
[\text{nelements, centers}] = \text{hist(WS, min(WS):1:max(WS))}; \quad \% \text{nelements are length of bars & centers are x axis values of bar plot}
\]

\[
\text{fig\_PDF} = \text{figure;}
\]

\[
\text{bar(centers, nelements, 'b'); grid on;} \quad \% \text{Plot wind speed distribution}
\]

\[
\text{xlim([min(WS) - 0.5 max(centers) + 2]); ylim([0 max(nelements) + max(nelements)/20])}
\]

\[
\text{xlabel('Wind Speed [ms\textsuperscript{-1}]); ylabel('No. of samples');}
\]

\[
\text{set(gca, 'XTick', ceil(min(WS)):floor(max(WS)));
\]

\[
\text{hAxes = gca; hAxes\_pos = get(hAxes,'Position');}
\]

\[
\text{hAxes2 = axes('Position',hAxes\_pos);
\]

\[
\text{plot(WS, val2, 'Marker','*','LineStyle','none','Color',[1 0.5 0.2]);} \quad \% \text{Plot probability distribution function on the same graph as wind speed distribution}
\]

\[
\text{set(hAxes2,'YAxisLocation','right','Color','none','XTickLabel',[]);
\]

\[
\text{centers\_xlim = get(hAxes,'XLim');} \quad \% \text{store x-axis limits of first axes}
\]

\[
\text{set(hAxes2,'XLim',centers\_xlim)} \quad \% \text{specify x-axis limits of second axes}
\]

\[
\text{ylabel('Probability');}
\]

\[
\text{saveas(fig\_PDF, op\_figurepath, fig\_export\_format);} \quad \% \text{Save the fig in emf file format}
\]

\[
\text{set(fig\_PDF, 'Visible','off');}
\]

\[
\text{Monthly\_C = [Monthly\_C C1]; Monthly\_K = [Monthly\_K K1];} \quad \# \text{ok<AGROW>}
\]

% Plot wind rose

\[
\text{WD1 = mod(90 - WD, 360);} \quad \% \text{Convert met angles to math angles}
\]

\[
\text{wrf\_figure; wind\_rose(WD1, WS, 'di', [0:2:24], 'label\_legend', '(m/s)');}
\]

\[
\text{24 m/s is given to scale all the wind roses, legend is given in}
\]

339
I.4 Process WST Files

% steps of 2
set(wrf,'InvertHardCopy','off');

% Figure name and figure path
figurename_2=strcat(yay,'WS2',',',Rec_Month{k}','_Wind_rose');
figurepath_2=strcat(figures_path,figurename_2);
saveas(wrf,figurepath_2,fig_export_format);
set(wrf,'Visible','off');

% Plot Turbulence Intensity rose
TI=Monthly_TI{k};
[WDbins,TIbins]=binkv3(WD,TI,numbins);
WDrbins=WDbins*pi/180;
[x,y]=pol2cart(WDrbins,TIbins);
tipf=figure;
h=compass(csk); hold on
tipf1=compass(x,y,'*');
set(h,'Visible','off');
for i =1:length(tipf1) %the last line on the axes
    xData = get(tipf1(i),'XData');
    yData = get(tipf1(i),'YData');
    set(tipf1(i),'XData',xData(1:2),'YData',yData(1:2))
end %for

az = 90; % azimuth i.e. rotate around z–axis horizontally by 90 degrees
el = -90; % elevation negative, effectively looking beneath plot
view(az, el);

% Figure name and figure path
figurename_3=strcat(yay,'WS2',',',Rec_Month{k}','_Turbulence_intensity');
figurepath_3=strcat(figures_path,figurename_3);
saveas(tipf,figurepath_3,fig_export_format);
set(tipf,'Visible','off');
end

Monthly.param=horzcat(Rec_data_avail',Monthly.WST.10min_matrix,
Monthly.C',Monthly.K'); %10 min WS matrix with shape & scale factors

% Yearly Stats
% Wind Rose
WD=cell2mat(Monthly.WD);
WS=cell2mat(Monthly.WS);
TIYC=cell2mat(Monthly.TI);

totdays=yeardays(str2num(strcat('20',year))); %#ok
<ST2NM>
tot10mins=144*totdays;
rec10mins=length(WS);
year_avail=(rec10mins./tot10mins)*100;
dav=strcat('Data Availability: ',sprintf('%.2f',year_avail),')');

% Wind rose for year

### YEAR FIG-1 ###
WDn=mod(90–WD,360); % Convert met angles to math angles
pfR=figure;
set(pfR,'InvertHardCopy','off');
I.4 Process WST Files

```matlab
wind_rose(WDn,WS,'di',[0:2:24],'lablegend','(m/s)'); %,'lablegend '
',\'Wind Speed (m/s)\');
op_figurename_4=strcat(strcat(yay,'_WS2_Wind_rose'));
op_figurepath_4=strcat(figures_path,op_figurename_4);
saveas(pfR,op_figurepath_4,fig_export_format);
set(pfR,'Visible','off');

% Plot Histogram of monthly means in a year ### YEAR FIG-2 ###
Monthly_mean=Monthly_param(:,4);
fH=figure;
axes1 = axes('Parent',fH,...
 'XTickLabel',mlm,...
 'XTick',1:length(mlm)); box(axes1,'on');
hold(axes1,'all');
bar(Monthly_mean); grid on;
xlabel('\{\text{Months}\}','interpreter','latex');
op_figurename_5=strcat(yay,'_WS2_Monthly_mean_wind_speed_histogram ');
op_figurepath_5=strcat(figures_path,op_figurename_5);
saveas(fH,op_figurepath_5,fig_export_format);
set(fH,'Visible','off');

% Plot Weibull distribution and Wind Speed Distribution ### YEAR FIG-3 ###
wbl_param=wblfit(WS); % wblfit calculates scale and shape factor
 for input array (WS), i.e wind speed array
 C1=wbl_param(1); K1=wbl_param(2); % Scale and shape factor
 val2=wblpdf(WS,C1,K1); % Calculates probability for each bins of WS
 [nelements,centers]=hist(WS,min(WS):1:max(WS)); % nelements are
 length of bars & centers are x axis values of bar plot
 fig_PDF=figure;
 bar(centers,nelements,'b'); grid on; % Plot wind speed
distribution
 xlim([min(WS)−0.5 max(centers)+2]); ylim([0 max(nelements)+max{
 nelements)/20])
 xlabel('Wind Speed [\text{ms}^{\text{-1}}]');
 ylabel('No. of samples');
 set(gca,'XTick',ceil(min(WS)):floor(max(WS)))
 hAxes = gca; hAxes_pos = get(hAxes,'Position');
 hAxes2 = axes('Position',hAxes_pos);
 plot(WS,val2,'Marker','*','LineStyle','none',
 'Color',[1 0.5 0.2]); % Plot probability distribution function
 on the same graph as wind speed distribution
 set(hAxes2,'YAxisLocation','right','Color','none','XTickLabel',[]);
 centers_xlim = get(hAxes,'XLim'); % store x-axis limits of first
 axes
 set(hAxes2,'XLim',centers_xlim) % specify x-axis limits of second
 axes
 ylabel('Probability');
op_figurename_6=strcat(yay,'_WS2_Probability_distribution_function ');
op_figurepath_6=strcat(figures_path,op_figurename_6);
```
I.5 Stage-1

```matlab
saveas(fig_PDF, op.figurepath_5, fig_export_format); % Save the fig in emf file format
set(fig_PDF, 'Visible', 'off');

% Turbulence intensity rose ### YEAR FIG-4

[WDrC, TIyrbin]=binkv3(WD, TIYC, numbins);
WDrC = WDrC * pi/180;
[xx, yy] = pol2cart(WDrC, TIyrbin);
trf=figure;
h=compass(csk); hold on
trf1=compass(xx, yy, '*-r'); % Turbulence rose figure
set(h, 'Visible', 'off');
for i = 1:length(trf1) % the last line on the axes
 xData = get(trf1(i), 'XData');
 yData = get(trf1(i), 'YData');
 set(trf1(i), 'XData', xData(1:2), 'YData', yData(1:2))
end % for
az = 90; % azimuth i.e. rotate around z-axis horizontally by 90 degrees
el = -90; % elevation negative, effectively looking beneath plot
view(az, el);

I.5 Stage-1

cic; clear all; close all;
root='C:\Users\madapati\Documents\My Box Files\Wind_Data_Analysis\Version_2\Task_4a';
path1='C:\H\Data\Gill\Raw\WindObserver20m';
path2='C:\H\Data\Gill\Intermediate_Stages\WindObserver20m_Stage1';
cd(path1);
dirData=dir(fullfile(cd, '*txt')); %# Get text files in the directory
filenames = {dirData.name}'; %# Get file names

% I/P File Types
% 2012-09-27 14:24;11_Gill Log [WindObserver20m]-0;Matlab.txt
% 2012-09-28 14:57:47;47_Gill30min [WindObserver20m]-0;Matlab.txt
% 2012-10-23 23:19;51_Gill30minB [WindObserver20m]-603;Matlab.txt
% 2013-01-23 10:09;39_Gill130minD [Anemometer 2]-0;Matlab.txt

for fn=1:length(filenames)
 filename=filenames(fn);
 fName=strcat(path1, filename);
 fid1 = fopen(fName, 'r');
```

342
% Detect no.of lines
nLines = 0;
while (fgets(fid1) != −1),
    nLines = nLines+1;
end
fclose(fid1);

opfName=filename;
cond1=strcmp(filename(1:8), 'Gill Log') | strcmp(filename(1:11), 'Gill30min [');
cond2=strcmp(filename(1:10), 'Gill30minB') | strcmp(filename(1:10), 'Gill30minD');

if cond1==1
    % Collect strings to print file name
    datetime = readline(fName,12); % Reads line 12:
    date=datetime(18:27); hr= datetime(29:30); min=datetime(32:33); sec=datetime(35:36);
    us='.'; ds=';';
    datevec=strcat(date,us,hr,ds,min,ds,sec);
    opfName=strcat(path2,datevec,us,filename);
    saveascii(readline(fName,18:nLines,1),opfName); % Save the new file
end

if cond2==1
    % Collect strings to print file name
    datetime = readline(fName,6); % Reads line 6:
    date=datetime(18:27); hr= datetime(29:30); min=datetime(32:33); sec=datetime(35:36);
    us='.'; ds=';';
    datevec=strcat(date,us,hr,ds,min,ds,sec);
    opfName=strcat(path2,datevec,us,filename);
    saveascii(readline(fName,12:nLines,1),opfName); % Save the new file
end

end
cd(root)
toc

% Create 1Hz/s files from 10Hz/s files from Gill wind obesrver
% I/P file ex: 2012-09-30_23;57;55_Gill30min [WindObserver20m]-114_Matlab.txt
% O/P file ex: 2012-10-01_00;27;55_Gill30min [WindObserver20m]-115_Matlab.txt
% O/P file contains only two columns wd and ws and 86399 rows,
% date and timesstamp on the filename
tic
I.7 Stage-3

root='C:\Users\madapati\Documents\My Box Files\Wind Data Analysis\Version_2\Task_4b';
path2='C:\WS2_WS0_Com\WSO'; % Contains selected day files (October 1-10)
path3='C:\WS2_WS0_Com\WSO_1s';

for fn=1:length(filenames)
    filename=filenames(fn);
    fName=strcat(path2,filename);
    fid1 = fopen(fName, 'r');
    matdata=load(fName);
    nLines = 0; % Detect no. of lines
    while (fgets(fid1) ~= -1),
        nLines = nLines+1;
    end
    fclose(fid1);
    wd=matdata(:,1);
    ws=matdata(:,2);
    dv=matdata(:,5);
    cd(root);
    if any(dv==0) || any(dv==1) % Condition to know if the data is valid
        wd_sec=dir_avg2(wd,nLines); % Direction
        ws_sec=call_avg2(ws,nLines); % Speed
    else
        errordlg('One of the data sample is invalid','Invalid Data ');
        return
    end
    opf=strcat(path3,filename);
    fid1= fopen(opf, 'w'); % Open the o/p file
    fprintf(fid1,'%f %f
',[wd_sec ws_sec]);
    fprintf(fid1,'
');
    fclose(fid1);
end
toc

I.7 Stage-3
I.7.1 Stage-3a

clc; clear all; close all;
root='C:\Users\madapati\Documents\My Box Files\Wind Data Analysis\Version_2\Task_4c';;
path2='C:\WS2\WSO\Comp\WSO_1s\'; % Location of i/p files
path3='C:\WS2\WSO\Comp\WSOp\'; % Location of o/p files
cd(path2);
dirData=dir(fullfile(cd, '*txt')); %# Get text files in the
directory
filenames = {dirData.name}'; %# Get file names
buff.ws=[]; buff.wd=[];

typ1='2012-09-28_14;57;47_Gill30min [WindObserver20m]\0_Matlab.txt'; % From 1-10 OCT

typ2='2012-10-24_23;49;51_Gill30minB [WindObserver20m]-604 _Matlab.txt'; % From 25-31 OCT

for fn=481:length(filenames)
    filename=filenames(fn);
    filename=filename{2}:
    cond1=strcmp(typ1(21:30),filename(21:30));
    cond2=strcmp(typ2(21:30),filename(21:30));
    if cond1==1
        fName=strcat(path2,filename);
        fid1 = fopen(fName, 'r');
        matdata=load(fName); % Load the i/p file in matdata
        nLines = 0; % Detect no. of lines
        while (fgets(fid1) ˜=
            nLines = nLines+1;
        end
        fclose(fid1);
        wd=matdata(:,1); % Wind direction is first column
        ws=matdata(:,2); % Wind speed is second column
        opfName=strcat(filename(1:10),',',filename(21:29),',',filename(31:47),'.txt'); % Create a string o/p filename
        opf=strcat(path3,opfName); % Concatenate strings o/p file
        path and o/p filename
        if str2num(filename(12:13))==0 && str2num(filename(15))<=2
            %&ok<ST2NM> Check if the file is first file in a day
            val= isempty(buff.ws) && isempty(buff.wd);
            if val ==0
                wd=vertcat(buff.wd,wd);
                ws=vertcat(buff.ws,ws);
            end
        end
        fid1= fopen(opf,'w'); % Open the o/p file
        fprintf(fid1,'%f %f
',[wd ws]);
        fclose(fid1);
        buff.ws=[]; buff.wd=[];
    elseif str2num(filename(12:13)) == 23 && str2num(filename
        (15:16))+str2num(filename(18:19)) > 100 %&ok<ST2NM> % Last file in the day
I.7 Stage-3

```matlab
I.7 Stage-3

date1=strcat(filename(12:13),',',filename(15:16),',',filename(18:19)); % Date on the file name
endtime='23,59,59';
date=strcat(filename(1:4),',',filename(6:7),',',filename(9:10));
date2=strcat(date,',',endtime);
dn1=datenum(str2num(date1)); %#ok
<ST2NM>
dn2=datenum(str2num(date2)); %#ok<ST2NM>
secdiff=etime(datevec(dn2),datevec(dn1));
last_ws=ws(1:secdiff); last_ws=wd(1:secdiff);
del_ind =1:secdiff; % Indices to be removed
ws(del_ind) = []; % remove
wd(del_ind)=[];
buff_ws=ws;
buff_wd=wd;

fid1= fopen(opf,'a'); % Open the o/p file
fprintf(fid1,'%f %f
',[last_ws last_ws]);
fclose(fid1);

else
 fid1= fopen(opf,'a'); % Open the o/p file
 fprintf(fid1,'%f %f
',[wd ws]);
fclose(fid1);
end
end
toc
```

I.7.2 Stage-3b

% Creates one sec file per DAY with wind direction (wd) and wind speed (ws) from unsorted gill 1sec files with wind direction (wd) and wind speed (ws)
% approx single output file should contain 86399 rows and 2 columns
% I/P file ex: 2012−09−30_23;57;55_Gill30min [WindObserver20m]=114_Matlab.txt
% O/P file ex: 2012−10−01_Gill30min [WindObserver20m].txt
tic
clear all; close all;
root='C:\Users\madapati\Documents\My Box Files\Wind_Data_Analysis\Version_2\Task_4c';
path2='C:\WS2_WSO_Comp\WSO_1s\'; % Location of i/p files
path3='C:\WS2_WSO_Comp\WSOp\'; % Location of o/p files
cd(path2);
dirData=dir(fullfile(cd, '*txt')); %# Get text files in the directory
filenames = {dirData.name}'; %# Get file names
buff_ws=[]; buff_wd=[];
```
for fn=481:length(filenames)
 filename=filenames(fn);
 filename=filename{1};

 cond1=strcmp(typ1(21:30),filename(21:30));
 cond2=strcmp(typ2(21:30),filename(21:30));

 if cond2==1
 fName=strcat(path2,filename);
 fid1 = fopen(fName, 'r');
 matdata=load(fName); % Load the i/p file in matdata
 nLines = 0; % Detect no. of lines
 while (fgets(fid1) ~= -1),
 nLines = nLines+1;
 end
 fclose(fid1);
 wd=matdata(:,1);% Wind direction is first column
 ws=matdata(:,2); % Wind speed is second column
 opfName=strcat(filename(1:10),'.txt'); % Create a string of o/p filename from i/p file name
 opf=strcat(path3,opfName); % Concatenate strings o/p file path and o/p filename

 if str2num(filename(12:13))==0 && str2num(filename(15))<=2 % Check if the file is first file in a day
 val= isempty(buff_ws) && isempty(buff_wd);
 if val ==0
 wd=vertcat(buff_wd,wd);
 ws=vertcat(buff_ws,ws);
 end
 end
 fid1= fopen(opf,'w'); % Open the o/p file
 fprintf(fid1,'%f %f
',[wd ws]);
 fclose(fid1);
 buff_ws=[]; buff_wd=[];
 elseif str2num(filename(12:13)) == 23 && str2num(filename (15:16))>= 100 % Last file in the day
 date1=strcat(filename(12:13),',',filename(15:16)); % Date on the file name
 endtime='23,59,59';
 date=strcat (filename(1:4),',',filename(6:7));
 d1=datenum(str2num(date1));
 d2=datenum(str2num(date2)); % Date on the file name
 endtime='23,59,59';
 date=strcat (filename(1:4),',',filename(6:7));
secdiff = etime(datevec(dn2), datevec(dn1));
last_ws = ws(1:secdiff); last_wd = wd(1:secdiff);
del_ind = 1:secdiff; % Indices to be removed
ws(del_ind) = []; % remove
wd(del_ind) = [];
buff_ws = ws;
buff_wd = wd;

fid1 = fopen(opf, 'a'); % Open the o/p file
fprintf(fid1, '%f %f
', [last_wd last_ws]);
fclose(fid1);

else
fid1 = fopen(opf, 'a'); % Open the o/p file
fprintf(fid1, '%f %f
', [wd ws]);
fclose(fid1);
end
end
toc

I.8 WRPLOT

tic; clear all; close all;
root = 'C:\Users\madapati\Documents\My Box Files\Wind Data Analysis\Version 1\Task_WRPLOT\';
ya = [11]; % Year array (Enter the years present in the folder 2011−11)
path = 'C:\Raw_1s\'; % Path for i/p files
cd(path);
files path
dirData1 = dir(path); % Loads all the file names in a cell format
dirData = dir(fullfile(cd, '*lvm')); % Get lvm files in the directory
filenames = {dirData.name}'; % Get file names
z = '0'; % Useful during string comparison
e1 = '\H\d+\'; % H4
e2 = '\d+\Hz\'; % 1Hz
e3 = '\d+\'; % year
e4 = '\d+\'; % month
e5 = '\d+\'; % date
e6 = '\d+.lvm$'; % time
ex = '\-';
exl = '\.';

% Standard File Format
expr = '\H\d+\Hz\d+\d+\d+\d+\d+\d+.lvm$'
H4_1Hz_10−07−15_1320.1vm
for yi=1:length(ya)
 x1=ya(yi); % year
 x1=num2str(x1);
 expr1=strcat(e1,e2,x1,ex,e4,e5,e6);
 filedata = regexp(filenames,expr1,'tokens'); % Find tokens
 index = ~cellfun('isempty',filedata); % Find index of
 matches
 filedata = [filedata(index)];
 filedata = vertcat(filedata{:}); % Format token
data
 year = filenames(index); % Group all the
 similar year files in 'year'
 ma=filedata(1:(size(filedata,1)),3); % Know the months
 in the year cell
 ma=unique(ma); % Months in the
 selected year

 for mi=1:length(ma)
 x2=ma{mi(1,1)}; % Selected
 month
 x2=num2str(x2); % Convert to
 string
 expr2=strcat(e1,e2,x1,ex,x2,ex,e5,e6); % Make a
 standard expression
 fdm = regexp(year,expr2,'tokens'); % Find tokens
 matching above expr
 idm = ~cellfun('isempty',fdm); % Find index of
 matches
 fdm = [fdm{idm}]; % Remove non-
 matches
 fdm = vertcat(fdm{:}); % Format token data
 da = fdm(1:(size(fdm,1)),3); % Group all the
 similar year,month files in 'dates'

 for di=1:length(da)
 x5=da(di); % Selected
 month
 expr3=strcat(e1,e2,x1,ex,x2,ex,x5,ex1,e6); % Make a
 standard expression
 fd3 = regexp(year,expr3,'tokens'); % Find tokens
 id3 = ~cellfun('isempty',fd3); % Find index of
 matches
 fd3 = [fd3{id3}]; % Remove non-
 matches
 fd3 = vertcat(fd3{:}); % Format token
data
 file=year(id3);
 filename=file{:};
 filepath=strcat(path,filename);

 % Load File and concatenate
 fName=filepath;
 fid1 = fopen(fName, 'r');
 if fid1<0
 matdata=load(filepath);
 else

 end
 end
end
I.8 WRPLLOT

matdata = textscan(fid1, '%f %f %f');
matdata = cell2mat(matdata);
end
fclose(fid1);

% Choose the selected columns
WSNA=matdata(:,18); % (mean) [m/s]
WS2=matdata(:,19); % (mean) [m/s]
WD510=matdata(:,27); % Wind Direction Vaisala
WXT510 [degrees]
WS510=matdata(:,28); % Wind Speed Vaisala
WXT510 [m/s]

% Skip NaN values from the selected columns
WSNA=WSNA(isfinite(WSNA(:, 1)), :);
WS2=WS2(isfinite(WS2(:, 1)), :);
WD510=WD510(isfinite(WD510(:, 1)), :);
WS510=WS510(isfinite(WS510(:, 1)), :);

dd1=filename(8:9); % Detect the YEAR from each file name, Ex-H4_1Hz_10-07-17_0000.lvm
dd2=filename(11:12); % Detect the MONTH from each file name
dd2=str2num(dd2);
dd2=num2str(dd2);
dd3=filename(14:15); % Detect the DAY from each file name
dd3=str2num(dd3);
dd3=num2str(dd3);
ddx1=strcat(32,dd1);
ddx2=strcat(32,dd2);
ddx3=strcat(ddx1,ddx2,ddx3);

ddx1=strcat(32,dd1);
ddx2=strcat(32,dd2);
ddx3=strcat(ddx1,ddx2,ddx3);

cd(root) % To call the func "dir_avg_total"
WSNA=(call_avg(WSNA,size(WSNA,1)))'; % Func format call_avg(ip1,nLines)
WS2=(call_avg(WS2,size(WS2,1)))';
WD510=(dir_avg(WD510,size(WD510,1)))';
WS510=(call_avg(WS510,size(WS510,1)))';
hr=1:size(WSNA,1);
pr=zeros(1,size(WSNA,1));
dd1m=repmat(str2num(dd1),1,size(WSNA,1));
dd1m=repmat(str2num(dd1),1,size(WSNA,1));
dd1m=repmat(str2num(dd1),1,size(WSNA,1));

dd1m=repmat(str2num(dd1),1,size(WSNA,1));
dd1m=repmat(str2num(dd1),1,size(WSNA,1));
dd1m=repmat(str2num(dd1),1,size(WSNA,1));

dd1m=repmat(str2num(dd1),1,size(WSNA,1));
dd1m=repmat(str2num(dd1),1,size(WSNA,1));
dd1m=repmat(str2num(dd1),1,size(WSNA,1));

matr=[dd1m;dd2m;dd3m;hr;WD510';WS510';pr]';
% matrix=[year month day hour direction velocity Precipitation];
if mi==1 && di==1

350
I.9 Hydrognomon

```matlab
 tic
clc; clear all; close all;
root='C:\Users\madapati\Documents\My Box Files\Wind_Data_Analysis\Version 1\Matlab_Hydrognomon\';
 ya=[11]; % Year Array % GIVE THE YEARS OF DATA PRESENT (I/P)
 path='C:\Raw_Ls\';
cd(path);
dirData1 = dir(path);
dirData=dir(fullfile(cd, '*lvm')); %# Get lvm files in the directory
 filenames = {dirData.name}; %# Get file names
 z='0'; % Useful during string comparison
 e1='ˆH(\d+); % H4
 e2='(\d+)Hz; % 1Hz
 e3='(\d+)\−; % year
 e4='(\d+)\−; % month
 e5='(\d+)\−; % date
 e6='(\d+).lvm$'; % time
 ex='\−;'
ex1='\−';
 % Standard File Format expr= '"H(\d+)\−(\d+)Hz\−(\d+)\−(\d+)\−(\d+)\−(\d+)\−(\d+).lvm$'; % H4_1Hz_10−07−15_1320.lvm
 % Know the years in folder for yi=1:length(ya)
x1=ya(yi); % year
x1=num2str(x1);
expr1=strcat(e1,e2,x1,ex,e4,e5,e6);
filedata = regexp(filenames,expr1,'tokens'); %# Find tokens
end
end
toc
```

I.9 Hydrognomon
I.9 Hydrognomon

```matlab
index = cellfun('isempty', filedata); %# Find index of matches
filedata = {filedata(index)};  %# Format token data
tokendata = vertcat(filedata{:});
year = filenames(index);  %# Group all the similar year files in 'year'
ma = filedata(1:(size(filedata,1)),3);  %# Know the months in the year cell
ma = unique(ma);  %# Months in the selected year
for mi=1:length(ma)
x2 = ma{mi(1,1)};  % selected month
x2 = num2str(x2);
expr2 = strcat(e1, e2, x1, _, x2, _, e5, e6);
fdm = regexp(year, expr2, 'tokens'); %# Find tokens
idm = cellfun('isempty', fdm);  %# Find index of matches
fdm = {fdm(idm)};
fdm = vertcat(fdm{:});  %# Remove non-matches
fdm = vertcat(fdm{:});  %# Group all the similar year,month files in 'dates'
dates = fdm(1:(size(fdm,1)),3);  %# Group all the similar year,month files in 'dates'
WSNATotal = [];  WS2Total = [];  WD510Total = [];  WS510Total = [];  WD510TotalO = [];
for di=1:length(dates)
x5 = dates(di);
WS2 = matdata(:,19); % (mean) [m/s]

WD510 = matdata(:,27); % Wind Direction Vaisala

WXT510 [degrees]

WS510 = matdata(:,28); % Wind Speed Vaisala

WXT510 [m/s]

% Skip NaN values from the selected columns

WSNA = WSNA(isfinite(WSNA(:, 1)), :);

WS2 = WS2(isfinite(WS2(:, 1)), :);

WD510 = WD510(isfinite(WD510(:, 1)), :);

WS510 = WS510(isfinite(WS510(:, 1)), :);

% Calculate 10 min average of all channels

cd(root) % To call the func "dir"

call_avg = (call_avg(WSNA, size(WSNA, 1)))'; % Func format

call_avg = (call_avg(WS2, size(WS2, 1)))';

WD510 = (dir_avg(WD510, size(WD510, 1)))';

WS510 = (call_avg(WS510, size(WS510, 1)))';

% Create hts file

dd1 = filename(8:9); % Detect the YEAR from each file name, Ex−H4_1Hz_10−07−17_0000.lvm

dd2 = filename(11:12); % Detect the MONTH from each file name

dd3 = filename(14:15); % Detect the DAY from each file name

dd6 = '−';

dd7 = '0';

hu = ':';

D1 = strcat('20', dd1, dd6, dd2, dd6, dd3); % Create a time column with above year, month, date

ts = 0:1:143;

dr = datestr(ts ./ (24 * 6), 'HH:MM');

dr = strcat(D1, 32, dr);

Tim = strcat('Timezone=CET', 32, '('UTC+0100')');

if di == 1

d1l = fopen('Input1.hts', 'w'); % Open the o/p file

fprintf(d1l, '%s

Version =2', 'Unit=m/s', 'Count=149', 'Title=WD510', 'Tim', 'Variable=Wind speed', 'Precision=9'); % Print the header in the output file

fprintf(d1l, '

n');

fclose(d1l);

for p = 1:length(WD510)

d1l = fopen('Input1.hts', 'a');

fprintf(d1l, '%s%s%d%s', dr(p,:), ',', WD510(p,1) , ',');

fclose(d1l);
end
else
    for p=1:length(WD510)
        fid1 = fopen('Input_1.hts','a');
        fprintf(fid1,'%s%s%d%s',dr(p,:),',',WD510(p,1)
        ,',');
        fprintf(fid1,\n');
        fclose(fid1);
    end
    if di==1
        fid2 = fopen('Input_2.hts','w'); % Open the o/
        fprintf(fid2,'%s\n%s\n%s\n%s\n%s\n%s',
        'Version=2','Unit=m/s','Count=149','Title=WS510',Tim,'Variable=Wind speed','
        Precision=9'); % Print the header in the
output file
        fprintf(fid2,\n');
        fclose(fid2);
        for p=1:length(WD510)
            fid = fopen('Input_2.hts','a');
            fprintf(fid2,'%s%s%d%s',dr(p,:),',',WS510(p,1),',');
            fprintf(fid2,\n');
            fclose(fid2);
        end
    else
        for p=1:length(WD510)
            fid2 = fopen('Input_2.hts','a');
            fprintf(fid2,'%s%s%d%s',dr(p,:),',',WS510(p,1),',');
            fprintf(fid2,\n');
            fclose(fid2);
        end
    end
    end
end
toc

I.10  WST & WSO comparison

tic
clc; clear all; close all;
root='C:\Users\madapati\Documents\My Box Files\Wind Data Analysis\Version_2\Task_4e\';
path1='C:\WS2_WSO_Comp\WS2\';
path2='C:\WS2_WSO_Comp\WSOP\';
cd(path1);

354
```matlab
I.10 WST & WSO comparison

dirData1=dir(fullfile(cd, '*lvm')); %# Get text files in the
directory
filenames1 = {dirData1.name}'; %# Get file names WS2/H4

cd(path2);
dirData2=dir(fullfile(cd, '*txt')); %# Get text files in the
directory
filenames2 = {dirData2.name}'; %# Get file names WSO/Gil

wso=[]; ws2=[]; wd=[];

wso=
10= []; ws2=
10= []; wd=
10= [];

Lines=[];

if length(filenames1) == length(filenames2) % Enters the loop when
both folders have same no.of text files

for fn=1:length(filenames1)
 filename1=filenames1(fn); filename1=
{:};
 filename2=filenames2(fn); filename2=
{:};
 fName1=strcat(path1,filename1); fName2=strcat(path2,
filename2);

 % Detect no.of lines in the i/p txt file
 fid1=fopen(fName1,'r');
 matdata1=load(fName1);
 nLines1 = 0;
 while (fgets(fid1) ~ = -1),
 nLines1 = nLines1+1;
 end
 fclose(fid1);

 fid2=fopen(fName2,'r');
 matdata2=load(fName2);
 nLines2 = 0;
 while (fgets(fid1) ~ = -1),
 nLines2 = nLines2+1;
 end
 fclose(fid2);

 nLines=[nLines1 nLines2];
 Lines=[Lines nLines]; %#ok<AGROW>

 % Load the data from the i/p txt file
 wd_wso=matdata2(:,1); % Wind direction from wind observer
 ws_wso=matdata2(:,2); % Wind speed from wind observer
 ws_wso2=matdata1(:,19); % Wind speed from wind anemometer
 WS2

 wd=[wd wd_wso(1:86397)']; %#ok<AGROW>
 wso=[wso ws_wso(1:86397)']; %#ok<AGROW>
 ws2=[ws2 ws_wso2(1:86397)'];

cd(root)
```

355
I.10 WST & WSO comparison

```
% 10 min average
wd_wso_av_10=dir_avg(wd_wso,nLines2);
ws_wso_av_10=call_avg(ws_wso,nLines2);
ws_wso_av_10=call_avg(ws_wso,nLines1);
wd_10=[wd_10 wd_wso_av_10]; %#ok<AGROW>
ws_10=[ws_10 ws_wso_av_10]; %#ok<AGROW>
ws2_10=[ws2_10 ws_wso_av_10]; %#ok<AGROW>

% 1 min average
wd_wso_av_1=dir_avg1min(wd_wso,nLines2);
ws_wso_av_1=call_avg1min(ws_wso,nLines2);
ws_wso_av_1=call_avg1min(ws_wso,nLines1);
wd_1=[wd_1 wd_wso_av_1]; %#ok<AGROW>
ws_1=[ws_1 ws_wso_av_1]; %#ok<AGROW>
ws2_1=[ws2_1 ws_wso_av_1]; %#ok<AGROW>

frac_10=(wso_10./ws2_10); % 10 min average
frac_1=(wso_1./ws2_1); % 1 min average
frac=wso./ws2; % 1 sec ratio
toc
```

I.10.1 WST Friction Calibration Factor

```
clc; clear all; close all;
load('avg10.mat'); % Loads wd_10, ws2_10, wso_10 values
frac_10=(wso_10./ws2_10);
frac_1=(wso_1./ws2_1);
frac=wso./ws2;

% Analysis of 180−360
figure; plot(wd_10b,frac_10b,'.k'); ylim([0.8 2.6]);
hold on; plot(wd_10b,1,'.-r');
xlabel('Wind Direction [°]', 'interpreter','latex');
ylabel('WSO/WS2', 'interpreter','latex');
legend('WSO/WS2', 'Ideal');
cftool(wso_10b,ws2_10b);
lim_b=1;
ind_b1=find(wso_10b>lim_b);
fill_frac_10b=frac_10b(ind_b1); wd_10b1=wd_10b(ind_b1); ws2_10b1=ws2_10b(ind_b1); wso_10b1=wso_10b(ind_b1);
figure; plot(wd_10b1,ws2_10b1./wso_10b1,'.k'); ylim([0.8 2.6]);
hold on; plot(wd_10b1,mean(wso_10b1./ws2_10b1),'.-r');
xlabel('Wind Direction [°]', 'interpreter','latex');
ylabel('WSO/WS2', 'interpreter','latex');
lim_b2x=2;
ind_b2x=find(wso_10b<lim_b2x);
```
I.10 WST & WSO comparison

```matlab
fil frac 10b2x=frac 10b(ind_b2x); wd 10b2x=wd 10b(ind_b2x); ws2 10b2x=ws2 10b(ind_b2x); wso 10b2x=wso 10b(ind_b2x);
% figure; plot(wd 10b2x,wso 10b2x./ws2 10b2x,'.m'); ylim([0.8 2.6]); hold on; plot(wd 10b2,mean(wso 10b2./ws2 10b2),'.-r')
M_leftout=[wso 10b2x' ws2 10b2x'];
lim_b2=2;
ind_b2=find(wso 10b>lim_b2);
fil frac 10b2=frac 10b(ind_b2); wd 10b2=wd 10b(ind_b2); ws2 10b2=ws2 10b(ind_b2); wso 10b2=wso 10b(ind_b2);
% figure; plot(wd 10b2,wso 10b2./ws2 10b2,'.k'); ylim([0.8 2.6]); hold on; plot(wd 10b2,mean(wso 10b2./ws2 10b2),'.-r')
figure % Combined points
plot(wd 10b2x,wso 10b2x./ws2 10b2x,'*r'); ylim([0.8 2.6]); hold on;
plot(wd 10b2,wso 10b2./ws2 10b2,'.k'); ylim([0.8 2.6]); hold on;
plot(wd 10b2,mean(wso 10b2./ws2 10b2),'.-m'); grid on;
legend('Filtered samples','Considered samples','Mean of considered samples')
xlabel('Wind Direction [\circ]','interpreter','latex');
ylabel('WSO/WS2','interpreter','latex');
```
Bibliography


