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Abstract

Hybrid vehicles play an important role in reducing energy consumption

and pollutant emissions of ground transportation. The increased mechatronic

system complexity, however, results in a heavy challenge for efficient com-

ponent sizing and power coordination among multiple power sources. This

chapter presents a convex programming framework for the combined design

and control optimization of hybrid vehicles. An instructive and straight-

forward case study of design and energy control optimization for a fuel

cell/supercapacitor hybrid bus is delineated to demonstrate the effectiveness

and the computational advantage of the convex programming methodology.

Convex modeling of key components in the fuel cell/supercapactior hybrid

powertrain is introduced, while a pseudo code in CVX is also provided to

elucidate how to practically implement the convex optimization. The gen-

eralization, applicability, and validity of the convex optimization framework
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are also discussed for various powertrain configurations (i.e., series, parallel,

and series-parallel), different energy storage systems (e.g., battery, super-

capacitor, and dual buffer), and advanced vehicular design and controller

synthesis accounting for the battery thermal and aging conditions. The pro-

posed methodology is an efficient tool that is valuable for researchers and

engineers in the area of hybrid vehicles to address realistic optimal control

problems.

Keywords: Hybrid Electric Vehicle, Component Sizing, Energy

Management, Convex Optimization, Optimal Control, Fuel Cell, Energy

Storage System

1. Introduction

Rising fuel prices and the risk of global warming has stimulated devel-

opment towards increasingly energy efficient vehicles. This ongoing devel-

opment has led to improved energy efficiency of combustion engines, and

reduced aerodynamic drag and rolling resistance due to more streamlined

vehicle design and improved tires.

In addition to engine efficiency, aerodynamic drag and rolling friction,

the two main contributors to the overall losses in a vehicle are braking losses

and engine idling losses. Hybrid vehicles reduce these losses by including

an energy buffer in the powertrain, making it possible to regenerate braking

energy and turn off the engine at part load. For a detailed overview on hybrid

vehicles, see e.g. Guzzella and Sciarretta (2013).

Besides stimulating the development towards increasingly energy efficient

vehicles, the rising fuel prices and the risk of global warming has led to
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an increased interest for electrification of road transport. Electrified vehi-

cles are being introduced to the market, such as Hybrid Electric Vehicles

(HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and pure Electric Vehi-

cles (EVs). An example is a PHEV public transportation system that uses

electric charging infrastructure installed along densely trafficked city bus lines

(Volvo Group, 2013; TOSA, 2013). The PHEV public transportation system

thus offers a flexible crossbreed between an HEV city bus and a trolley-bus.

In Volvo Group (2013), the PHEV city bus is equipped with a high-energy

battery that is charged at the beginning of the bus line, whereas the bus

in TOSA (2013) is equipped with a high-power battery that is charged with

very high power at several supercapacitor docking stations along the bus line.

The high power charging allows the bus to drive a significant part of the bus

line electrically, even though the charging infrastructure might be sparsely

distributed and charging durations might be short.

The development of increasingly energy efficient vehicles and the electri-

fication of road transport mean that the world is on the verge of a change

in both commercial and personal transportation. This global change brings

significant industrial challenges, as well as new business opportunities for the

manufactures that lead the development. However, the development of new

technology requires substantial investments. It is therefore crucial to assess

the competitiveness of a new vehicle concept early on in the development

process.

Assessing the potential of a hybrid vehicle is not trivial. This is due to

increased complexity of hybrid powertrains, and the complex interplay be-

tween electrified vehicles and the charging infrastructure. Moreover, when
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assessing hybrid vehicles the energy efficiency depends on how well adapted

the energy/power management controller is to driving conditions (Johan-

nesson et al., 2009; Larsson et al., 2012; Sciarretta and Guzzella, 2007). In

(P)HEVs the energy management controller interprets the pedal position as

a torque/power demand that is to be delivered from the powertrain, and

decides the operating point of the primary power unit, e.g. combustion en-

gine or fuel cell system. As a consequence, the controller decides the rate of

charge/discharge of the energy buffer. In a simulation study that evaluates

a hybrid powertrain concept, a badly tuned energy management control may

lead to wrong conclusions and potentially bad investments (Sundström et al.,

2010; Murgovski et al., 2012c; Hu et al., 2013). It is therefore of high inter-

est to develop software for simulation studies of hybrid vehicles that can find

the best powertrain configuration and simultaneously tune/design the energy

management controller. These tools need to be computationally efficient to

assess many possible variants, which arise when studying the interplay be-

tween the powertrain and the infrastructure for different combinations of

price scenarios for fuel, infrastructure and powertrain components.

The problem of combined plant design and control optimization can be

approached in different ways. Typically, the problem is handled by decou-

pling the plant and controller, and then optimizing them sequentially or

iteratively (Assanis et al., 1999; Galdi et al., 2001; Wu et al., 2011; Fathy

et al., 2004; Peters et al., 2013). A well known iterative procedure formulates

the optimization problem as a bi-level program, i.e., an optimization prob-

lem constrained by a collection of other interrelated optimization problems

(Conejo et al., 2006; Mnguez et al., 2013). Bi-level programs are non-convex
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by nature, but at certain cases they can be solved within satisfactory accuracy

(Bertsekas and Sandell, 1982). However, sequential and iterative strategies

generally fail to achieve global optimality (Reyer and Papalambros, 2002).

An alternative is a nested optimization strategy, where an outer loop opti-

mizes system’s objective over the set of feasible plants, and an inner loop

generates optimal controls for plants chosen by the outer loop (Fathy et al.,

2004). This approach delivers the globally optimal solution, but it may in-

duce heavy computational burden (when, e.g., dynamic programming is used

to optimize the energy management), or may require substantial modeling

approximations (Filipi et al., 2004; Kim and Peng, 2007; Sundström et al.,

2010). High computational efficiency could be achieved, if the plant design

and control are optimized simultaneously, by, e.g., formulating and solving

the problem as a convex program (Boyd and Vandenberghe, 2004).

This chapter addresses the need for an efficient software tool by giving a

tutorial on how to formulate the (P)HEV assessment and powertrain sizing

problem as a convex optimization problem. The key element in the convex

optimization framework is to find modeling approximations and relaxations

that allow the convex optimization techniques and convex solvers to be ap-

plied. The convex problems can be solved efficiently using standard convex

optimization solvers and high level optimization modelling languages, such

as CVX (Grant and Boyd, 2010) and YALMIP (Löfberg, 2004).

The application of convex optimization to hybrid powertrain energy man-

agement control has been known for some time (Tate and Boyd, 2000; Back

et al., 2002; Terwen et al., 2004; Koot et al., 2005; Beck et al., 1997). In

these articles, convex optimization was used to compute the optimal energy
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management control, either over an entire driving cycle, or in a receding

horizon predictive control over a limited time horizon. A more recent de-

velopment is the use of convex optimization to solve the combined problem

of simultaneous optimization of energy management and component sizing

(Murgovski et al., 2011, 2012c). The short computational time of this method

requires limited computational resources for detailed investigations of a wide

range of price-case scenarios for fuel, electricity, charging infrastructure and

powertrain components.

The tutorial presented in this chapter is centered on a case study of

a fuel cell hybrid city bus which uses a supercapacitor as energy buffer.

The purpose of the example is to introduce the main modelling assumptions

required to formulate the powertrain assessment and sizing problem as a

convex optimization problem. The code example is presented both as a CVX

pseudo code (Grant and Boyd, 2010) and a complete, publicly accessible

Matlab code (Murgovski, 2014).

The chapter is organized as follows. The case study for the fuel cell hy-

brid bus is presented in Section 2. Section 3 describes how to generalize the

convex optimization framework to various powertrain configurations, differ-

ent energy storage systems, and advanced vehicular design and controller

synthesis accounting for battery thermal and aging conditions. The chapter

is ended with a conclusion.
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Figure 1: Fuel cell hybrid powertrain. The vehicle is propelled by an electric machine

(EM), which obtains energy from a fuel cell system (FCS), or an electric buffer (battery

or supercapacitor). When EM operates as a generator, mechanical energy from the wheels

is converted to (and stored as) electrical energy in the buffer.

2. Case study: optimal control and sizing of a fuel cell hybrid

vehicle

In order to show utilization of convex optimization, this section considers

the optimization problem of sizing a hybrid city bus. The bus is driven by an

electric machine that obtains electrical energy from a fuel cell system (FCS)

and an electric buffer, as illustrated in Figure 1.

Fuel cells allow direct conversion of chemical energy to electrical en-

ergy. This has several advantages compared to ICE driven vehicles. Vehicles

equipped with fuel cells have higher well-to-wheel efficiency, lower noise emis-

sion, and lower (or zero) environmental pollution (Xu et al., 2009; Eberle

et al., 2012). Additionally, a fuel cell vehicle hybridized with an electric

buffer, typically a battery or a supercapacitor, may further improve vehicle’s

energy efficiency. This can be achieved by 1) recuperating braking energy

that can be stored in the buffer for a later use, and 2) allowing the FCS
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to operate at higher efficiency by carefully splitting demanded power be-

tween the FCS and the electric buffer. Furthermore, fuel cell hybrid vehicles

(FCHVs) may allow 1) reduction in weight and cost by downsizing the FCS,

2) prolonged lifetime of the FCS, 3) faster dynamic response of the vehicle, 4)

shorter warm-up time (Feroldi et al., 2009). FCHVs, however, are more com-

plicated than non-hybrid vehicles. Hence, the problem of sizing an FCHV

powertrain, to be introduced in the following section, is non-trivial.

2.1. The problem of sizing an FCHV powertrain

City busses are considered an interesting application of vehicle hybridiza-

tion, due to the high potential for improvement in fuel economy (Murgovski,

2012). In this example a fuel cell hybrid electric bus is studied, which uses

hydrogen as a chemical fuel, and supercapacitor pack as an electric buffer.

The bus follows a certain time schedule and velocity/acceleration trajectory

in order to comply with traffic limitations, passengers’ comfort requirements

and driveability. Then, a bus line can be described by the desired velocity

profile, road altitude, and information about average stand-still intervals at

bus stops or traffic stops. An example of a bus line is depicted in Figure

2, where the bus starts and ends the route at zero speed and equal alti-

tude, thus conserving vehicle’s kinetic and potential energy. Furthermore,

to purely study operational efficiency of the city bus, it is also required that

buffer energy at the final time is equal to the initial amount of energy. Then,

the operational cost of this vehicle depends solely on the quantity of hydrogen

consumed along the bus line.

Operational cost of the vehicle can be minimized by using predictive in-

formation of the known bus line. The goal is to optimally split demanded
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Figure 2: Model of a bus line, expressed by demanded vehicle velocity and road altitude.

The initial and final velocities and road altitudes, respectively, are equal, thus conserving

kinetic and potential energy of the vehicle.

power between the FCS and the supercapacitor, without violating system

constraint. This requires higher utilization of supercapacitor energy, mak-

ing it beneficial to increase supercapacitor size, both for increased freedom

of FCS operation, and higher recuperation of braking energy. However, a

larger buffer, in terms of power rating and energy capacity, increases the

component cost of the vehicle. Then, to keep component cost down, the

possibility of downsizing the FCS is also considered, such that the optimal

tradeoff is reached between component cost and operational cost within the

lifetime of the vehicle. This is a multi-objective optimization problem where

two objectives are weighted, i.e. operational and component cost. The opti-

mization framework for solving this problem is illustrated in Figure 3, while

a verbal formulation is provided in Table 1. The mathematical description of

the optimization problem is resumed in Section 2.2.6, after modeling details

of the FCHV powertrain are provided.
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Figure 3: Optimization framework for simultaneous component sizing and energy man-

agement of a hybrid city bus. After user inputs are provided, the combined operational

and components cost are minimized simultaneously, in order to obtain the optimal power

split control and sizes of powertrain components.

2.2. Mathematical model of the powertrain sizing problem

The problem formulated in Table 1 is revisited here, by providing mathe-

matical meaning to constraints and the objective function. To the end of this

section it will be shown that the powertrain sizing problem can be formulated

as a convex optimization problem.

2.2.1. Longitudinal vehicle dynamics

The vehicle is assumed a point mass system, where the vehicle mass

m(sF , sB) depends on sizing variables sF and sB, denoting scaling factors for

the fuel cell system and the electric buffer. The longitudinal dynamics of the

point mass system can be described by the torque demanded on the shaft

between the electric machine and the final (differential) gear,

Tdem(sF , sB, t) =

(
JV +m(sF , sB)

R2
w

r2fg

)
ω̇M(t) +

ρairAfcdR
3
w

2r3fg
ω2
M(t)

+m(sF , sB)
crRw

rfg
g cosα(t) +m(sF , sB)

Rw

rfg
g sinα(t),

(1)
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Table 1: Optimization problem for simultaneous component sizing and energy management

of a hybrid city bus.

Minimize:

Operational + component cost;

Subject to:

Driving cycle constraints,

Energy conversion and balance constraints,

Buffer dynamics,

Physical limits of components,

...

(For all time instances along the bus line).

where ωM(t) is speed of the electric machine, JV is vehicle’s rotational inertia,

which includes the inertia of the wheels, the electric machine, the final gear,

the drive axels and all rotating shafts. The EM speed is directly related to

the demanded velocity of the bus line

ωM(t) = vdem(t)
rfg
Rw

, (2)

where rfg is gear ratio of the final gear and Rw is wheels radius. The de-

manded torque in (1) is a sum of four contributions: 1) acceleration torque, 2)

retarding torque due to aerodynamic drag, 3) retarding torque due to rolling

resistance with the road, and 4) gravitational torque due to road inclination

α(t). Description of the coefficients and their values used in the example are

given in Table 2.

The vehicle mass consists of a constant part, and part varying linearly
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Table 2: Vehicle parameters and corresponding values used in the optimization example.

Parameter Value

Vehicle’s rotational inertia JV = 55 kgm2

Vehicle’s baseline mass m0 = 14 573 kg

FCS’s baseline mass mF = 223 kg

Buffer’s baseline mass mB = 176 kg

Wheels’ radius Rw = 0.509 m

Final gear ratio rfg = 4.7

Vehicle’s frontal area Af = 7.54 m2

Aerodynamic drag coefficient cd = 0.7

Rolling resistance coefficient cr = 0.007

Air density ρa = 1.184 kg/m3

Gravitational acceleration g = 9.81 m/s2

with the scaling factors of the fuel cell system and the electric buffer,

m(sF , sB) = m0 +mF sF +mBsB. (3)

A constant baseline vehicle mass m0 is considered and it is assumed that the

final gear is lossless. The assumptions are only for didactic reasons, to keep

the problem relatively simple. It is, of course, possible to vary vehicle mass

with time, in case the typical number of on-board passengers between bus

stops is known. Other possibilities, such as maximizing payload, or using

a more detailed powertrain models, could be included without infringing

problem convexity. Further details on this topic can be found in Murgovski

et al. (2012c).
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Using (3) in (1) allows the demanded torque to be written as

Tdem(sF , sB, t) = T0(t) + T1(t)sF + T2(t)sB, (4)

where it is evident that the torque is an affine function of the scaling co-

efficients sF and sB. Furthermore, a common practise when deciding con-

trol strategies, or comparing different vehicle concepts, is to assume that

the vehicle exactly follows the driving cycle (Guzzella and Sciarretta, 2013).

The vehicle model is then an inverse simulation model, in which the trac-

tion torque of the powertrain is considered equal to the demanded torque

of the driving cycle. This reduces the computational burden in simulations

by removing the driver model and the vehicle velocity from the state vector

(Sciarretta and Guzzella, 2007). Instead, the full knowledge of the driving

cycle is employed, considering that vdem(t) and v̇dem(t) are known at each

time instant. Hence, the vectors ωM(t), T0(t), T1(t) and T2(t) in (2) and (4)

are also known at each point of time, and the only unknown variables in (4)

are the scaling coefficients sF and sB.

2.2.2. Electric machine

The FCHV powertrain delivers the demanded torque in (4) by the electric

machine, which is powered by the fuel cell system and the electric buffer.

The EM is also used to recuperate braking torque and store the energy in

the buffer. These processes can be mathematically described by mechanical

and electrical torque/power balance constraints

TM(t) = T0(t) + T1(t)sF + T2(t)sB + Tbrk(t), (5)

PMe(·) = PFe(t) + PB(t)− PBd(·)− Pa, (6)
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where TM(t) and PMe(·) are torque and electrical power of the electric ma-

chine, Tbrk(t) is torque dissipated due to friction braking, Pa = 7 kW is power

consumed by auxiliary devices. The powers PFe(t), PB(t) and PBd(·) denote

electrical power of the FCS, internal and dissipative power of the buffer, re-

spectively, and will be detailed later in Section 2.2.3 and Section 2.2.4. The

notation f(·) is a compact notation that indicates a function of optimization

variables. These functions will be detailed later, after the needed models are

presented.

The relation between electrical and mechanical EM power are represented

by a static model, illustrated in Figure 4. It can be observed in Figure 4(b)
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Figure 4: Quasi-static model of an electric machine and its corresponding approximated

model. The electrical power of the approximated model is quadratic in torque within the

operating speed range of the electric machine.

that the electric power appears convex in torque, for speed measurements

within the operating speed range of the EM. Figure 4(b) also illustrates an
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approximated model, quadratic in torque,

PMe(TM(t), t) = a0(ωM(t)) + a1(ωM(t))TM(t) + a2(ωM(t))T 2
M(t), (7)

with coefficients parameterized in speed. The approximation is performed

over a grid of EM speeds, and the coefficients, aj, j = 0, 1, 2, are computed at

each time instant using linear interpolation at the known EM speeds ωM(t).

The coefficients a2(ωM(t)) are nonnegative, which ensures that PMe(·) is con-

vex in TM(t). Besides using it in this example, the quadratic model has been

widely used in literature for both electric machines and internal combus-

tion engines. For further reading on validity of this model, see Guzzella and

Sciarretta (2013) and references therein.

The machine generating torque is constrained by a torque limit

TM(t) ≥ TMmin(ωM(t)), (8)

which is also a function of EM speed. Constraints can be imposed on the

machine motoring torque and maximum operating speed, but an explicit

notation is omitted here, assuming that these constraint will not be violated.

This is a natural assumption, as otherwise the problem will be infeasible and

there will be no need for optimization. An illustration of the EM torque

limits is given in Figure 4(a).

2.2.3. Fuel cell system (FCS)

The fuel cell system (FCS) consists of fuel cells connected in series, and

auxiliary systems, such as hydrogen storage and supply system, air supply

system, water management system, and cooling system. The FCS produces

DC electricity via electrochemical reactions, where efficiency depends on elec-

trical power, as illustrated in Figure 5(a). The fuel power of the baseline
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Figure 5: Quasi-static model of the baseline fuel cell system and its corresponding ap-

proximated model. The fuel power of the approximated model is quadratic in electrical

power.

(non-scaled) FCS can be approximated as

PFfB(·) = b0 + b1PFeB(t) + b2P
2
FeB(t) (9)

with b2 ≥ 0. A comparison between the original and approximated baseline

FCS is illustrated in Figure 5(b).

A quadratic FCS model has also been used in Tazelaar et al. (2012a,b),

while a more detailed description and experimental validation has been per-

formed by Funck (2003) and Gasser (2005). It has also been indicated by

Tazelaar et al. (2012a,b); Funck (2003); Gasser (2005) that both the FCS

fuel power and electrical power scale linearly with size, by, e.g. adding

or removing cells to the stack. Hence, by denoting PFf (t) = sFPFfB(t),

PFe(t) = sFPFeB(t), the fuel power of the scaled model can be expressed as

PFf (PFe(t), sF ) = b0sF + b1PFe(t) + b2
P 2
Fe(t)

sF
. (10)
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This function is convex in sF and PFe(t), for any positive scaling factor sF .

A constraint is imposed on the electrical power

0 ≤ PFe(t) ≤ sfPFeBmax (11)

where PFeBmax is rated power of the baseline FCS.

2.2.4. Supercapacitor

The supercapacitor pack is built of n0 identical cells described by an

open circuit voltage u(t) connected in series to an internal resistance R. The

arrangement of cells in series/parallel is irrelevant, because the pack energy

and power depends only on the total number of cells. The pack dissipative

power is described by

PBd(·) = Ri2(t)n0 (12)

where i(t) denotes cell current. An alternative expression, in terms of internal

pack power PB(t) and pack energy EB(t), is

PBd(PB(t), EB(t)) =
RC

2

P 2
B(t)

EB(t)
, (13)

which is a convex function of PB(t) and EB(t). The pack energy, EB(t) =

Cu2(t)n0/2, is considered positive, i.e.

EB(t) > 0. (14)

Cell capacitance is denoted by C. The relation between pack energy and

internal power is simply given as

ĖB(t) = −PB(t) (15)
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where standard sign convention has been adopted, indicating positive buffer

power when discharging.

When scaling the electric buffer, it is assumed that the baseline number

of cells n0 is replaced with n = sBn0. It is interesting to note that buffer

scaling does not explicitly affect (13) and (15). However, the physical limits

on cell voltage and current

u(t) ≤ umax, (16)

imin ≤ i(t) ≤ imax, (17)

will be affected. This becomes evident when cell voltage is expressed by pack

energy, and cell current by internal pack power and energy. Then, the limits

can be written as

EB(t) ≤ sB
Cu2maxn0

2
, (18)

imin

√
2n0

C
EB(t)sB ≤ PB(t) ≤ imax

√
2n0

C
EB(t)sB. (19)

Recall that the square root function is concave in EB(t) and sB, as a geo-

metric mean of nonnegative variables. Hence, the constraint (19) preserves

convexity, considering that imin ≤ 0, and imax ≥ 0.

Similar convex model can also be obtained for an electric battery, for

which the cell open circuit voltage can be approximated as an affine function

of state of charge. It turns out that such approximation is suitable for hybrid

electric vehicle applications, where operation at too low and high state of

charge is avoided due to battery longevity reasons. Further details on convex

modeling of batteries can be found in Murgovski et al. (2012b); Egardt et al.

(2014).
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Table 3: Specifications for the supercapacitor cell.

Parameter Valuea

Maximum open circuit voltage umax = 2.85 V

Maximum discharging current imax = 2200 A

Maximum charging current imin = −2200 A

Internal resistance R = 0.29 mΩ

Capacitance C = 3000 F

Massb 0.59 kg

aBCAP3000 Maxwell cell. Available online: www.maxwell.com, December 2013.
bIncludes 15 % additional mass for packaging and circuitry.

Supercapacitor cell specifications used in the example are given in Table

3.

2.2.5. Objective function

The optimization objective is formulated to minimize a cost function Φ(·)

consisting of operational and component cost. The operational cost is simply

the cost for consumed hydrogen, and the components cost constitutes the cost

for FCS and electric buffer. Then, the cost function can be written as

Φ(·) = wh

∫ tf

0

PFf (PFe(t), sF )dt+ wF sf + wBsB (20)

where wh, wF , wB are weighting coefficients that transform the individual

costs in currency/km, and tf is the time when the route is completed. The
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weighting coefficients are computed as

wh =
ch

Hhddc
, (21)

wF =
cFPFeBmax

nydy

(
1 + py

ny + 1

2

)
, (22)

wB =
cBn0

nydy

Cu2max

2

(
1 + py

ny + 1

2

)
, (23)

where ch is hydrogen price in currency/kg, cF is FCS price in currency/kW,

cB is supercapacitor price in currency/kWh (including materials, manufac-

turing, packaging and circuitry), Hh = 120 MJ/kg is lower heating value of

hydrogen, ny is operational period of the bus, dy is yearly traveled distance

of the bus, and ddc is length of the driving cycle, computed directly from the

given velocity profile,

ddc =

∫ tf

0

vdem(t)dt. (24)

The expression Cu2max/2 in (23) indicates maximum energy of the superca-

pacitor cell, while terms in parentheses, in (22), (23), refer to depreciation

expenses. It is assumed that there are no FCS and buffer replacements during

the bus’ operational period.

Description of the remaining parameters and values used in the example

are given in Table 4.

2.2.6. The convex optimization problem

Finally, the optimization problem that has been formulated in Section

2.1, is translated here into mathematical language. A convex form of this

problem is summarized in Table 5, where the problem has been written in a

discrete form, using first order Euler discretization. It can be noticed that
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Table 4: Parameter values used for computing weighting coefficients in the objective func-

tion.

Parameter Value

Hydrogen pricea ch = 4.44e/kg

FCS priceb cF = 34.78e/kWh

Supercapacitor price cB = 10 000e/kWh

Yearly travel distance dy = 70 000 km

Bus’ operational period ny = 2 years

Yearly interest rate py = 5 %

aSwedish Gas Centre, Hulteberg and Aagesen (2009).
bPrice for high-volume manufacturing, Spendelow and Marcinkoski (2012).

the mechanical and electrical torque/power balance constraints,

TM(t) = T0(t) + T1(t)sF + T2(t)sB + Tbrk(t),

PFe(t) + PB(t)− PBd(PB(t), EB(t))− Pa = PMe(TM(t), t),

have been relaxed to

TM(t) ≥ T0(t) + T1(t)sF + T2(t)sB, (25)

PFe(t) + PB(t)− PBd(PB(t), EB(t))− Pa ≥ PMe(TM(t), t). (26)

The reason for relaxing (26) is needed to keep problem convexity, because in a

convex optimization problem, the nonlinear terms, such as PBd(PB(t), EB(t))

and PMe(TM(t), t), cannot be tied by an equality constraint. Although the

relaxed problem is now different from the original problem, it is easy to argue

that the optimal solution of the relaxed problem will be identical to the

optimal solution of the original problem. The relaxation can be understood
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Table 5: Pseudo code in CVX for convex optimization of simultaneous component sizing

and energy management of a hybrid city bus.

minimize wh

∑N
k=1

(
b0sF + b1PFe(k) + b2

P 2
Fe(k)

sF

)
∆t+ wFsf + wBsB

with respect to: PFe(k),PB(k),EB(k),TM (k), sF , sB, ∀k = 1, ..., N

subject to:

TM (k) ≥ T0(k) + T1(k)sF + T2(k)sB,

PFe(k) + PB(k)− RC
2

P 2
B(k)

EB(k)
− Pa

≥ a0(ωM(k)) + a1(ωM(k))TM (k) + a2(ωM(k))T 2
M (k),

EB(k + 1)−EB(k) = −PB(k)∆t,

EB(N + 1) = EB(1),

TM (k) ≥ TMmin(ωM(k)),

0 ≤ PFe(k) ≤ sFPFeBmax,

0 < EB(k) ≤ sB
Cu2

maxn0

2
,

imin

√
2n0

C
EB(k)sB ≤ PB(k) ≤ imax

√
2n0

C
EB(k)sB,

sf > 0,

sB > 0,

for all k = 1, ..., N.

as letting the buffer throw away energy, which is certainly not optimal. The

subsequent reasoning is that the constraint (26) must hold with equality for

the optimal solution.

Similarly, the constraint (25) has been relaxed, by removing the braking

torque from the problem. It is also evident that for a positive torque demand,

the result where this constraint holds with inequality is not optimal, as this

will mean delivering higher EM torque than demanded, which will trigger
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unnecessary losses. When demanded torque is negative, however, this con-

straint may hold with inequality, if either the EM generating torque limit

(8) is reached, or the buffer charging limit (19) is activated. The quantity

that would satisfy this constraint with equality is exactly the braking torque,

which can be obtained after the optimization is finished. A more rigorous

proof that these relaxations will not change the properties of the optimal

solution can be found in Egardt et al. (2014).

The convex problem has been written in CVX modeling language (Grant

and Boyd, 2010), and solved with SeDuMi (Labit et al., 2002). A complete

Matlab code is provided by Murgovski (2014). Optimization results are dis-

cussed in the following section.

2.3. Optimization results

The correspondence between the total cost per kilometer and the sizes

of the FCS and the buffer (i.e., the supercapacitor stack) is shown in Figure

6. It is indicated that the cost exhibits a complicated nonlinear relationship

with respect to the sizes of power sources, rather than a simple monotonic

interplay. However, it has been demonstrated that the convex programming

is able to effectively find the global minimum (see the star in Figure 6).

Additionally, the shaded area in Figure 6(b) reflects that some combinations

of the sizes of FCS and electric buffer may lead to infeasible solutions that

cannot meet the drivability requirements. The optimal cost, component sizes,

and the computational time are summarized in Table 6.

The optimal power-split law between the FCS and the buffer, as well as

the buffer SOC trajectory, is shown in Figure 7. It can be seen that the buffer

provides relatively large transient power for effective FCS load leveling. The
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Table 6: Optimization results.

Parameter Value

FCS size 69.3 kW

Buffer size 0.7 kWh

Total cost 0.28e/km

Computational timea 10 s

a2.67 GHz dual-core processor was used with 4 GB RAM.

corresponding operational efficiencies of the FCS and the buffer are indicated

in Figure 8. It is apparent that a majority of the operating points of the

FCS and the buffer are located in high-efficiency area. Owing to a very low

efficiency in the case of a relatively large power, the optimized buffer performs

the power sinking/sourcing in a moderate manner.
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Figure 6: Optimal cost for different sizes of fuel cell system and electric buffer. The

globally optimal solution is indicated by the star. The shaded region in (b) illustrates

infeasible component sizes.
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(b) State of charge of the electric buffer, computed as the ratio of operated and max-

imum supercapacitor voltage. The initial and final buffer charges are equal, thus con-

serving electric energy of the vehicle.

Figure 7: Optimal control and state trajectories.

3. Other powertrain configurations

In Section 2, a case study of a fuel cell/supercapacitor hybrid powertrain

is introduced to illustrate the efficiency and fidelity of convex programming

in a combined design and energy control optimization. Convex optimization,

however, can also be applied to other powertrain configurations, such as par-

allel and series HEV powertrains, illustrated in Figure 9. In the parallel

configuration, the ICE and the electric machine (EM) are mechanically cou-
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Figure 8: Optimal operating points of the fuel cell system and the electric buffer.

pled to the drive axle, so that the ICE is able to directly deliver mechanical

energy to drive the wheels, in addition to a pure electric mode and a joint op-

eration between the ICE and the EM. In contrast, the engine-generator unit

(EGU), in the series configuration, is mechanically decoupled from the drive

axle. In other words, there is no mechanical path delivering energy from the

ICE. The ICE energy is first converted to electrical energy by means of the

generator, and the electrical energy is then used to power the EM.

The key point for the convex modeling and optimization of the paral-

lel HEV powertrain is approximation of fuel power as a convex function

of the ICE net torque. A special case of describing fuel power as affine in

torque, with speed dependent parameters, is known as Willans lines (Guzzella

and Onder, 2010). Another common approximation, Guzzella and Sciarretta

(2013); Murgovski et al. (2012c), describing fuel power as a quadratic func-

tion, similar to the approximated EM model in (7), has been illustrated in

Figure 10(b). A detailed description of sizing and energy management of a
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(a) Parallel hybrid electric powertrain. The

engine (ICE) and electric machine (EM) are

mechanically coupled to the drive axle.

(b) Series hybrid electric powertrain. The

engine-generator unit (EGU) is mechanically

decoupled from the drive axle.

Figure 9: Parallel and series hybrid electric powertrains. When EM operates as a motor,

the electric energy flows from the buffer (battery or supercapacitor) to the wheels. When

EM operates as a generator, the electric energy flows from the wheels, or ICE/EGU, to

the buffer.

parallel hybrid electric vehicle, bus and a passenger car, via convex program-

ming is detailed in Murgovski et al. (2012c); Pourabdollah et al. (2013).
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Figure 10: Quasi-static model of an internal combustion engine and its corresponding

approximated model. The fuel power of the approximated model is quadratic in torque

within the operating speed range of the engine.
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Figure 11: Quasi-static model of an engine-generator unit (EGU) and its corresponding

approximated model. The EGU is constructed from the electric machine and combustion

engine illustrated previously, in Figure 4(a) and 10(a). The efficiency line is obtained

by operating the engine and electric machine at the optimal operating points within the

electrical power range of the EGU. The fuel power of the approximated model is quadratic

in electrical power.

For the series powertrain, the challenge is to convexify the EGU. One

well-established solution is to approximate the EGU by depicting the fuel

power as a quadratic function of the generator net power. As illustrated

in Figure 11, the quadratic EGU model can precisely describe real EGU

energy loss. The tacit assumption behind the good approximation is that

the EGU operates along the optimal operating line, which can be realized by

a local EGU controller. A more thorough discussion on convex modeling and

optimization of series hybrid electric vehicles is detailed in Murgovski et al.

(2012c); Hu et al. (2013).

Besides the parallel and series configurations, convex optimization has

also been extended to a series-parallel powertrain with a planetary gear as a
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Figure 12: Series-parallel hybrid electric powertrain with a planetary gear as a power split

device. The powertrain includes an internal combustion engine (ICE) and two electric

machines, EM1 and EM2. The powertrain can be operated as a parallel HEV, when ICE

and EM2 power the vehicle, or as a series HEV, when ICE and EM1 mimic an engine-

generator unit.

power split device (see Figure 12). The strategy of convexifying the energy

management problem relies on decomposing the problem into two optimiza-

tion problems. The first is a static problem that looks for the optimal engine

speed that maximizes efficiency of a compound unit, resembling an engine-

generator unit combining the planetary gear and kinetic energy converters

connected to it. The second is a dynamic optimization problem deciding

the optimal power split between an electric buffer and the compound unit.

By approximating the losses of the compound unit as convex, second order

polynomial in electrical power, it is possible to solve the energy management

problem using convex optimization (Murgovski et al., 2014a).

It is relevant to mention that integer decisions are often involved for the

engine on/off and gearshift control in hybrid powertrains. As the set of

integers is not convex, these signals have to be decided outside the convex

program. One possible way to decide integer control signals is by using heuris-

tics. Simple heuristic strategies that have been observed to give near optimal
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results for series and parallel powertrains have been provided in Murgovski

et al. (2012c); Pourabdollah et al. (2013). There are also more elaborate

schemes that rely on iteratively solving a convex program. Strategies based

on a synergy between convex optimization and Pontrygin’s maximum prin-

ciple are provided in Murgovski et al. (2013); Elbert et al. (2014).

A parallel HEV may also incorporate a continuous variable transmission,

which allows replacing the gear shifting with a continuous speed ratio. This

makes it possible to decide the optimal gear ratio by convex optimization, in

which rotational energy of the part including the engine is now treated as a

pure state variable. As a consequence, ICE’s fuel power and EM’s electrical

power and torque constraints have to be expressed as convex functions of

the rotational energy (or square of angular speed). Further details on this

approach can be found in Murgovski et al. (2014b).

In addition to the supercapacitor stack discussed in Section 2.2.4, convex

models for a battery pack and a dual buffer, combining both the battery and

supercapacitor stacks, have been developed and integrated into the convex-

optimization-based framework for component sizing and power management

of hybrid electric powertrain (Hu et al., 2014). Moreover, the convex battery

thermal and aging models have been also established in Murgovski et al.

(2012a) and Murgovski et al. (2014b); Johannesson et al. (2013), respectively.

Given these models, thermal or health-conscious sizing and energy control of

hybrid powertrain via convex programming can be implemented. Interesting

readers are referred to the related articles for further details.
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4. Conclusion

In this chapter, the convex-programming framework for the combined de-

sign and control optimization of hybrid vehicles is described in a tutorial man-

ner. The effectiveness and computational advantage of convex optimization is

demonstrated, with the goal of encouraging more researchers and practition-

ers in the HEVs community to employ this useful tool for solving realistic op-

timization problems. An instructive case study of design and energy control

optimization for a fuel cell/supercapacitor bus is straightforwardly presented,

in which a pseudo code copy of CVX is also given to vividly and concretely

elucidate practical implementation of convex optimization. The generaliza-

tion, applicability, and validity of the convex-optimization framework are

also discussed for diverse vehicular configurations (i.e., series, parallel, and

series-parallel), different energy storage systems (e.g., battery, supercapaci-

tor, and dual buffer), and advanced vehicular design and controller synthesis

considering the battery thermal and aging conditions.
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Appendix A. Convex optimization

A standard notation for a convex problem is defined as follows

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

(A.1)

where x ∈ Rn is a vector of optimization variables, hi(x), i = 1, ..., p are

affine functions in x, and fj(x), j = 0, ...,m are convex functions. A function

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (A.2)

for all x, y ∈ dom f and any θ with 0 ≤ θ ≤ 1. Or, in other words, the line

segment between any two points on the graph of a convex function lies above

the graph (see Figure A.13 for illustration). In the notation above, dom f

stands for domain of f and the set of real numbers is denoted by R.

Convex optimization problems have two important properties. First, any

obtained optimal solution is also globally optimal. Second, the problem can

be solved, very reliably and efficiently, using interior-point methods or other

special methods for convex optimization. There are also generally available

solvers, e.g. SeDuMi (Labit et al., 2002) and SDPT3 (Toh et al., 2006), and

higher level optimization modeling languages such as CVX (Grant and Boyd,

2010) and YALMIP (Löfberg, 2004).
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(x, f(x))

(y, f(y))

Figure A.13: Graph of a convex function. The line segment between any two points on

the graph lies above the graph.

Assertion of convexity of the optimization problem studied in this chapter

follows directly from definition (A.1) and some properties of convex functions,

which read as follows:

• The function f is said to be concave if −f is convex.

• An affine function h(x) = qx+ r is both convex and concave.

• A quadratic function f(x) = px2 + qx+ r with dom f ⊆ R is convex if

p ≥ 0.

• A quadratic-over-linear function f(x, y) = x2/y with dom f = {(x, y) ∈

R2 | y > 0} is convex.

• The geometric mean f(x, y) =
√
xy with dom f = {(x, y) ∈ R2 |x, y ≥

0} is concave.

• A nonnegative weighted sum f =
∑
wifi with wi ≥ 0, of convex func-

tions fi, is a convex function.

• A product f(x, y) = x y is generally not a convex function.

For further details on convex optimization and applications, readers are re-

ferred to Boyd and Vandenberghe (2004).
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