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We demonstrate the active suppression of transmon qubit dephasing induced by dispersive measurement,
using parametric amplification and analog feedback. By real-time processing of the homodyne record, the
feedback controller reverts the stochastic quantum phase kick imparted by the measurement on the qubit.
The feedback operation matches a model of quantum trajectories with a measurement efficiency ~η ≈ 0.5,
consistent with the result obtained by postselection. We overcome the bandwidth limitations of the
amplification chain by numerically optimizing the signal processing in the feedback loop and provide a
theoretical model explaining the optimization result.
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In a quantum measurement, information gain is accom-
panied by backaction, altering superposition states of the
observed system [1]. Tunable strength measurements have
been devised to balance the tradeoff between information
gain and backaction. These can be realized, for example,
by controlling the interaction of the observed qubit with an
ancillary qubit, followed by strong measurement of the
ancilla [2–4]. Depending on the choice of ancilla meas-
urement basis, the observed qubit either acquires a sto-
chastic phase kick, or is partially projected towards one of
the basis states, in a direction that is determined by the
measurement result. Similarly, a cavity mode can serve as
an ancilla, with the measurement basis set by the detected
field quadrature [5], and a continuous range of measure-
ment results and associated kickbacks [5,6].
For an efficient measurement [1], the correlation between

the stochastic evolution of the system, also known as quan-
tum trajectory, and the measurement record of the ancilla
can be exploited to undo any unwanted backaction [7,8] or
to reverse the measurement altogether [9]. Probabilistic
reversal of measurement backaction has been pursued with
superconducting [10], photonic [11], and ionic systems [12].
Deterministic reversal, requiring feedback control, has only
been demonstrated with ions [13]. Recent improvements in
quantum coherence in circuit quantum electrodynamics
(cQED) [14] have allowed first demonstrations of feedback
controlwith superconducting qubits. Digital feedback, based
on fully projective measurement, enabled on-demand qubit
state initialization [15,16], deterministic teleportation [17],
and generation of deterministic entanglement by parity
measurement [18]. Analog feedback, instead, is required to
counteract the continuous range of measurement kickbacks
in a qubit-cavity system. A first implementation of analog
feedback relied on continuous monitoring of a driven qubit
to stabilize Rabi oscillations [19].

In this Letter, we demonstrate the real-time reversal of
measurement-induced qubit dephasing in cQED, using
phase-sensitive parametric amplification [20] and analog
feedback control, as proposed in Ref. [21]. The recovery
of coherence by feedback is quantitatively consistent
with a measurement efficiency ~η ≈ 0.5 for the homodyne
detection chain, closely matching the result obtained by
open-loop postselection. Furthermore, we demonstrate a
numerical procedure that finds the optimal weight function
for the homodyne signal integration, circumventing the
inefficiency arising from the finite detection bandwidth.
We study measurement-induced dephasing of a trans-

mon qubit (transition frequency ωQ=2π ¼ 5.430 GHz)
coupled to the fundamental mode of a 3D cavity (frequency
fr¼ 6.5433GHz, linewidth κ=2π ¼ 1.4 MHz). The qubit-
cavity Hamiltonian in the presence of a measurement drive
at frequency fm and valid in the dispersive regime of our
experiment is [22]

H ¼ ðΔr − χZÞa†a − ωQZ=2þ ϵmðtÞaþ ϵ�mðtÞa†;

in a frame rotating at fm, with Δr=2π ¼ fr − fm, a (a†) the
photon annihilation (creation) operator, and Z the qubit
Pauli z operator. Above, we have grouped terms to high-
light the dependence of the cavity resonance on the qubit
state. The transmitted signal is sent to a Josephson para-
metric amplifier (JPA) operated in phase-sensitive mode
[20,23]. The homodyne signal obtained by demodulation is
recorded for postprocessing purposes and also sampled by
a feedback controller implementing real-time phase cor-
rection (discussed further below) [Fig. 1(a)]. We choose for
fm the average of the cavity frequencies for the qubit in j0i
(fr) and j1i (fr þ χ=π, with χ=π ¼ −3.2 MHz) [Fig. 1(b)].
Applying a measurement pulse entangles the qubit

with the cavity field [6,24]. If the measurement record is
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disregarded, the absolute qubit coherence r ¼ jρ01j is
reduced, where ρ01 ¼ h0jρj1i is the off-diagonal element
of the qubit density matrix. We observe this effect by
applying a pulsed measurement drive with the qubit ideally
starting in the superposition state ðj0i þ j1iÞ= ffiffiffi

2
p

. The
measurement pulse is applied during the second half of
an echo sequence [Fig. 1(c)], preferred over a Ramsey
sequence to reduce the dephasing from mechanisms not
inherent to the applied measurement. The pulse envelope
has magnitude ~ϵm and the sign reversed halfway during the
total duration of 500 ns. The measured and amplified
quadrature of the cavity response is set by the phase ϕ
between the measurement pulse and the JPA pump.

In particular, for ϕ ¼ 0, the averaged homodyne response
is equal and opposite for the qubit in j0i and j1i,
hVIi0 ¼ −hVIi1, whereas for ϕ ¼ π=2, hVQi0 ¼ hVQi1
[Figs. 1(d), S2] [25]. The measurement reduces roff , the
qubit coherence at the end of the echo sequence for ~ϵm ¼ 0,
to the open-loop coherence rol. According to theory [26],
rol ¼ roff exp ½− R

t
0 ΓdðτÞdτ�, with instantaneous measure-

ment-induced dephasing rate ΓdðtÞ ¼ 2χIm½α0ðtÞα�1ðtÞ�,
where αi ¼ haii ∝ ϵm is the complex-valued intracavity
field for the qubit in jii. As expected, we observe a
Gaussian decay of rol as a function of ~ϵm [Fig. 1(e)].
Note that Γd is independent of φ (data not shown) [27,28].
Collecting the field emitted by the cavity during a

measurement reveals the quantum trajectory followed by
the qubit. The measurement basis and the corresponding
kickback on the qubit depend on the choice of ϕ [27,28].
The ϕ-specific backaction becomes evident by condition-
ing (binning) the tomography results MI on the processed
homodyne voltage. As first demonstrated in Ref. [5], for
ϕ ¼ 0, the measurement discriminates between qubit states
and coherence is lost by gradual projection to the north or
south pole of the Bloch sphere (Fig. S3 [25]). For ϕ ¼ π=2,
the case we focus on here, the measurement does not
discriminate between qubit states and the kickback is a
stochastic azimuthal phase δϕ (z rotation). According to
theory for a detector with infinite bandwidth [21,27,29],
this phase depends on the integrated weighted homodyne
voltage V int ¼

R

wðtÞVQðtÞdt, with the weight function
wðtÞ ∝ Re½α0ðtÞ�=ϵm, as

ρ01ðV intÞ ¼ roff exp

�

ðη − 1Þ
Z

ΓdðtÞdtþ iφ

�

; (1)

where φ ¼ cV int þ φ̄, with c ∝ ϵm and φ̄ the deterministic
ac-Stark phase shift [26]. Here, η is the quantum efficiency,
modeled as losses in the readout chain leading up to the JPA.
In our experiment, the zero-average envelope of the meas-
urement pulse, which makes

R

wðtÞdt ¼ 0, is chosen to
suppress the infiltration of excess low-frequency noise in
V int [30]. Furthermore, the integration window extends
6.5=κ ¼ 0.75 μs past the end of the applied measurement
pulse [Fig. 2(a)] in order to capture the total field emitted by
the cavity as it returns to the vacuum state [21]. Binning the
tomography results MI on V int reveals the stochastic phase
δφ induced by the measurement [Figs. 2(b)–2(d)] [5].
Rather than relying on the weight function predicted by
theory, we numerically optimize w ¼ wopt to maximize the
conditioned coherence rcon ¼

P

CðV intÞrðV intÞ, with r the
absolute coherence and C the fraction of counts for the bin
centered at V int [25]. From the conditioned coherence, we
place a lower bound on η, absorbing signal losses after the
JPA and classical processing of VQ in an overall measure-
ment efficiency ~η in Eq. (1). We find quantitative agreement
with the data for ~η ¼ 0.50 [Figs. 2(c)–2(d)].

FIG. 1 (color online). Measurement-induced dephasing and
analog feedback scheme. (a) Diagram of the key elements of the
experimental setup. Qubit measurement and control drives are
coupled to the input port of an asymmetrically coupled 3D cavity
(κin=κout ≈ 1=30). The signal emitted at the output port is added
to the pump tone, which biases the JPA to a voltage gain G ¼ 16
and a bandwidth κJPA=2π ¼ 5.7 MHz (Fig. S7). The reflected,
amplified signal [20,23] is directed by a circulator to a semi-
conductor amplifier (HEMT) at 3 K. At room temperature, the
signal is split into two arms, one for data acquisition and another
feeding the FPGA-based feedback controller (see Fig. S1 for
setup details). (b) Cavity spectroscopy for the qubit prepared in
j0i and j1i. Measurement pulses are applied at fm (green arrow).
(c) Echo sequence, where in the second half a measurement pulse
with amplitude ~ϵm is inserted to study its dephasing effect on the
qubit. The second π=2 pulse is compiled into the tomographic
rotation Rn⃗;φ̄, where Rn⃗ is either Ryð−π=2Þ, Rxðπ=2Þ or I, and the
axis is rotated by φ̄ around z to cancel the deterministic phase
shift. (d) Parametric plot of the averaged homodyne response
hVQi versus hVIi for measurement phase ϕ ¼ π=2 and 0,
respectively, for the qubit in j0i (red) and j1i (blue), with
~ϵm ¼ 0.4 V. Dashed circle: signal corresponding to n̄ph ¼ 0.1
intracavity average photon. (e) Qubit coherence rol as a function
of ~ϵm. The best-fit curve gives the lever arm ϵm=~ϵm ¼
2π × 1.2 MHz=V. For ~ϵm ¼ 0, rol ¼ roff ¼ 0.79� 0.01.
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Moving beyond postselection, we now set off to cancel
the measurement-induced kickback by employing analog
feedback control. In real time, the controller samples VQ,
calculates V int using wopt, and adjusts the phase of the
tomographic prerotation Rn⃗;ϕ by δφ ¼ cfbV int (Figs. S4, S5
[25]). The optimal choice for the feedback gain (cfb ¼ copt)
removes all the azimuthal phase dependence on V int

[Figs. 2(e)–2(f)]. Crucially, rcon is unaffected, demonstrat-
ing that feedback does not introduce additional errors.
To fully quantify the performance of the active coherence

recovery, we repeat the experiment in Fig. 2(b) for various
measurement-drive amplitudes ~ϵm and feedback gains cfb
[Fig. 3(a)]. Whereas the variance of V int is independent
of ~ϵm, as expected, the phase dependence dδϕ=dV int
grows linearly with ~ϵm [27,29], requiring the optimum
copt ∝ ~ϵm [Fig. 3(a) inset]. Following from Eq. (1), the
measured rol (corresponding to cfb ¼ 0), roff (~ϵm ¼ 0) and
rcl (cfb ¼ copt) are related by

rol=rcl ¼ ðrol=roffÞ~η: (2)

We obtain the best-fit ~η ¼ 0.49� 0.01 [Fig. 3(b)].

FIG. 2 (color online). Conditional qubit tomography and
cancellation of measurement-induced dephasing by analog feed-
back. (a) The measurement MQ is performed with a pulse at fm
with amplitude ~ϵm ¼ 0.4 V and 500 ns length (dashed trace). The
homodyne record VQ is acquired for a total duration of 1.25 μs
from the start of the measurement pulse. Light (dark) trace: single
(average) record. (b) Measurement scheme. (c) Conditional state
tomography (left) and corresponding fraction of counts C (right)
in open-loop operation. Solid (dashed) curves: data (model
with ~η ¼ 0.50). The tomography outcomes MI are binned on
V int ¼

P

nw½n�VQ½n�, where VQ is sampled every 10 ns. The
weight function w ¼ wopt is obtained by numerical optimization
using the records VQ (see also Fig. 4. (d) Stochastic qubit phase
δφ (dots) and absolute coherence r (squares), binned on V int, and
model for δφ with ~η ¼ 0.50 (solid) and 1 (dashed line). In closed-
loop operation [(e), corresponding to cfb ¼ −10 in Fig. 3(a)], VQ
is fed to the feedback controller, which calculates V int using wopt
and translates it into δφ, setting the phase of Rn⃗;φ. (f) Measured
distribution of δφ (grey scale) produced byMQ and refocusing by
analog feedback. This refocusing increases the unconditioned
coherence from rol ¼ 0.40 (black arrow) to rcl ¼ 0.56 (pink
arrow). Dashed circle: maximum r ¼ roff that would be obtained
with ~η ¼ 1.

FIG. 3 (color online). Extraction of measurement efficiency
from the extent of coherence recovery. (a) Coherence versus
feedback gain cfb for ~ϵm ¼ 0.2–0.7 V, with wopt optimized at
~ϵm ¼ 0.4 V. Top left: average homodyne voltage hVQi for the
same range of ~ϵm. The maximum coherence rcl corresponds to
the optimum feedback gain copt (lower inset), directly proportional
to ~ϵm. The horizontal dashed line indicates the coherence roff for
no measurement drive (~ϵm ¼ 0). Error bars are the standard
deviations of eight repetitions. (b) Contour plot of the measure-
ment efficiency ~η, with curves at 0.1 steps. For each ~ϵm, rcl is
obtained by a quadratic fit of r around the maximum and rol is
the measured average for cfb ¼ 0 in (a). The best fit of Eq. (2)
(orange dashed line) to the data yields ~η ¼ 0.49� 0.01.
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Finally, we investigate the influence of detection set-
tings on ~η. By adjusting the pump power, we tune the
JPA voltage gain G and bandwidth κJPA, their product
being roughly constant at ∼90 MHz (Fig. S6) [20,25]. For
each setting, we perform conditional tomography (as in
Fig. 2) and extract ~η using Eq. (2). In a first approach, we
use the predicted [21,25,31] weight function w∞ ∝ Re½α0�
for infinite-bandwidth detection and unit gain [Fig. 4(a),
dots]. For decreasing gain (G < 10), VQ is not sufficiently
amplified above the noise floor of the second amplification
stage at 3 K, causing ~η to plummet. Increasing G over-
comes the noise floor at the expense of lowering κJPA.
However, for G > 10, where κJPA ≲ 4κ, the infinite-
bandwidth approximation no longer holds, resulting in a
lower ~η. In a second approach, we run the numerical
optimization procedure to determine wopt at each JPA
setting (Fig. S6) [25]. In this way, we recover ~η ≈ 0.5 even
as κJPA approaches κ. This independence of ~η at high G
suggests that inefficiency arises from microwave loss
between the cavity and the JPA, as assumed by the model.
The compensation for the finite detection bandwidth is
reflected by the change of wopt with κJPA [Fig. 4(b)]. For
κJPA ≫ κ, wopt closely matches w∞. For κJPA ≈ κ, instead,
wopt differs significantly.

Tounderstandhow the JPA response impactswopt,we apply
the recent mode-matching theory of Ref. [31]. This theory
predicts the optimumweight functionwmm ∝ hb†outðtÞZi, with
b†outðtÞ the operator for the outgoing field after amplification
by the JPA [25]. As shown in the Supplemental Material [25],
wmm ∝F−1½ðα�0;Δ−α�1;ΔÞ=2Gs;Δ�, whereαi;Δ ¼ haΔii for the
qubit in jii, with aΔ the Fourier component of the intracavity
field at detuning Δ from the pump, Gs;Δ the Δ-dependent
small-signal gain, and F the Fourier transform. Interestingly,
wmm coincides with the expected hVIi for the qubit in j0i,
corresponding to the quadrature deamplified by the JPA for
ϕ ¼ π=2. We find a good agreement between the predicted
wmm and the experimental wopt [Fig. 4(b)].
In conclusion, we demonstrated the suppression of

measurement-induced dephasing of a transmon qubit using
parametric amplification and analog feedback. Optimal
real-time processing of the homodyne signal makes the
recovery of coherence independent of detection bandwidth
and equal to the maximum achievable with the quantum
efficiency ≈0.5. We estimate that applying the same feed-
back scheme to the cavity-assisted parity measurement
[29,32] in the same conditions as Ref. [18] would improve
concurrence from the measured 34% to 42%.
Improving quantum efficiency will be essential to fully

undo measurement kickback and for protocols, such as
qubit-state stabilization [33,34] and continuous-time error
correction [35], requiring near-perfect correlation between
measurement record and kickback. Alternatively, analog
feedback schemes that rely on qubit projection can tolerate
a lower efficiency, since estimation of the quantum state
improves with the measurement strength. Similarly to the
first implementations of digital feedback in the solid state
[15–18], which reached high fidelity in spite of moderate
efficiencies, analog feedback using projective measurement
offers the capability to create and stabilize entanglement
[36,37] with the current state of the art.
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