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Multi-axial Fatigue Models for Composite Lightweight Structures 

Master’s Thesis in Applied Mechanics 

HARTWIG PÖRTNER 

Department of Applied Mechanics 

Division of Material and Computational Mechanics 

Chalmers University of Technology 

 

ABSTRACT 

Due to the challenging restrictions regarding the exhaust emissions of cars, more and 

more metal components are replaced by composites due to their high strength to 

weight ratio. The components need to sustain complex loadings during a life-time of a 

vehicle. In the early development phase, fatigue simulations are carried out to predict 

the fatigue behaviour of components. This can be done fairly accurate for metals but 

the simulation tools and research are limited when it comes to composite material. 

Therefore, this thesis deals with the fatigue simulation of composites subjected to 

variable amplitude loadings under plane stress conditions and it is concerned in 

particular with models to account for multi-axial stress states. Focus lies on the 

interaction between transverse stress and shear stress. Three methods to account for 

stress interaction are presented and applied to a case study of a carbon fibre reinforced 

polymer (CRFP) cross member in an AUDI car body subjected to complex load 

histories. Two methods reduce the complex loading to constant amplitude loadings in 

transverse and shear direction, respectively, one is based on the static failure criteria 

of composites proposed by Puck [4] and the other uses Hashin’s fatigue failure 

criterion [5] to account for multi-axiality. A third method computes an equivalent 

stress at each time step by using Puck’s static failure criterion to obtain an equivalent 

stress history which is then used for fatigue assessment.  

In this case study of the CFRP cross member subjected to complex loading under 

plane stress conditions fatigue analysis was carried out by analysing each stress 

component             separately. Mean stress effects were taken into account by 

constant life diagrams and linear damage accumulation according to the Palmgren-

Miner rule was assumed. The three methods were applied to this analysis and the 

results showed that accounting for multi-axial stress states in fatigue analysis is of 

high importance. When accounting for multi-axial stress states the resulting damage 

was up to 20 times higher than the damage due to the single stress component. 

Furthermore the results of the two methods using the Puck criterion were surprisingly 

close. It is recommended to use the method of computing an equivalent stress 

according to Puck’s theory, since it is the physically most reasonable approach. 

Biaxial fatigue testing to validate the methods is needed. 

Key words: Fibre-reinforced composites, failure criterion, Hashin, Multi-axial 

fatigue, Puck, Variable amplitude loading  
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Notations 

 

Roman upper case letters 

A  extensional stiffness matrix 

B  coupling matrix 

C  bending stiffness matrix 

E  elasticity modulus 

G  shear modulus 

M  resultant moments 

N  resultant forces or number of cycles 

R  fracture strength or stress ratio 

Q  stiffness matrix in lamina coordinate system 

Q  stiffness matrix in global coordinate system 

T  transformation matrix 

 

Roman lower case letters 

bca  Variable notation for something 

   stress exertion 

h  laminate thickness 

k  curvature or slope of S-N curve 

p  pitch factor 

u  displacement in x-direction 

v  displacement in y-direction 

w  displacement in z-direction 

z  distance from mid-plane 

 

Greek lower case letters 

  shear angle 

  strain 

  Poisson’s ratio 

  normal stress 

  shear stress 

 

Greek upper case letters 

  fibre orientation angle 

 

Abbreviations 

APDI  A Posteriori Damage Interaction 
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CFRP  Carbon fibre reinforced polymer 

FF  Fibre failure 

FRP  Fibre reinforced polymer 

IFF  Inter-fibre failure 

LTS  Load over time signal 

MBHA  Method based on Hashin’s approach 

RBE  Rigid Body Element 

SSCM  Single Stress Component Method 

UD  Unidirectional 

WWFE  World-wide fibre exercise 

 

Indices 

1  orientation longitudinal to the fibre direction 

32,  orientation perpendicular to the fibre direction 

e  endurance limit 

f  regarding the fibre 

FF  fibre failure 

fr  fracture 

IFF  inter-fibre failure 

m  regarding the matrix 

s  symmetric 

u  ultimate 

  maximum principal stress 

  minimum principal stress 

  transverse direction 

  longitudinal direction 

   transverse longitudinal direction 

 

Superscripts 

  tension 

  compression 

  transverse direction 

  longitudinal direction 

   transverse longitudinal 
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1 Introduction 

This chapter shall give an overview about the background, objective and content of 

the Thesis, which was carried out at the development department at AUDI AG in 

Ingolstadt, Germany. 

 

1.1 Background 

The European commission adopted a law which stipulates a reduction of the fleet CO2 

emission to 130g CO2/km until 2015 [1]. Furthermore, a current point of discussion is 

a further reduction to only 95g CO2/km until 2020 [1]. These regulations force the car 

manufactures to decrease the exhaust emission significantly, which is in most cases 

only obtainable by reducing the car’s fuel consumption. One way of achieving these 

goals is to reduce the weight of the car by replacing steel components by lighter 

materials, e.g. fibre reinforced polymers (FRP). Fibre reinforced polymers, and 

especially carbon fibre reinforced polymers (CFRP), have a low density but high 

strength and therefore a high lightweight potential. 

Through the lifetime of a car complex loadings affect the strength of the structural 

parts of a car. Therefore, the components have to be designed such that they withstand 

certain loadings. To make full use of their lightweight potential and to reduce the 

number of expensive prototypes, the use of advanced simulation methods is essential.  

The current solution for the evaluation of metal parts in AUDI processes is to predict 

its fatigue life with the help of linear finite element method (FEM) and linear damage 

accumulation theory. A concept for the evaluation of CFRP components has been 

worked out, which considers the anisotropic stiffness, strength and damage 

characteristics of the material [2], [3]. The concept evaluates each stress component 

separately, meaning that no interaction between stress components is taken into 

account, which does not agree with the failure mechanism of composites. 

 

1.2 Objectives 

The aim of this Master’s Thesis is the improvement of the described fatigue 

simulation method in terms of consideration for multi-axial stress states. Three 

different methods, which account for multi-axial stressing, are applied to a fatigue 

analysis of a CFRP component. Hahne [2] proposed two of these methods, which are 

based on Puck’s failure criteria for composites [4]. The third method is based on the 

fatigue failure criterion proposed by Hashin [5]. Based on the results of the fatigue 

analyses a recommendation for the application of these methods in standard processes 

is given and areas, where improvements in terms of method, processes and tools are 

necessary, are pointed out. 
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1.3 Outline of the Thesis 

The Thesis contains six chapters. Chapter 2 deals with the basic principles in analysis 

of composites. Failure mechanisms as well as two failure criteria of composites are 

presented. Furthermore, the basic principles of fatigue analysis are explained.  

Chapter 3 concerns with the fatigue assessment by using the commercial simulation 

tool FEMFAT. It consists of two subchapters. In the first one, the process of fatigue 

assessment of metal components by using FEMFAT is described. A work-around for 

the analysis of composites, which was developed by Hahne and Kloska, is outlined in 

the second subchapter.  

This work around does not take stress interaction into account. The scope of the 4
th

 

chapter is therefore to present three models from literature, which enables the 

consideration of multi-axial stress states.  

These three methods are applied to a fatigue analysis of a composite component in 

chapter 5. The results obtained from the different approaches are compared and 

discussed. 

Finally, the conclusions, which are drawn from the results of the thesis, are presented 

in chapter 6 and also recommendations, how these methods can be used in the 

simulation process and where improvement needs to be carried out, are given. 
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2 Theory 

As the title of the Master’s Thesis already states, this work deals with the fatigue 

behaviour of composites. Therefore, the basic concept of analysing composites is 

described in the beginning of this chapter. Fatigue comes along with failure of the 

material and hence the failure mechanisms of composites are explained and how 

failure can be estimated by failure criteria. Hereafter follows a brief description of 

fatigue assessment in general, where at the end of the chapter the special 

characteristics of the fatigue behaviour of composites are pointed out. 

 

2.1 Composite material - Basics 

A composite is a material which is composed by two or more distinct materials. In 

engineering applications composites consist usually of two materials with different 

material properties. Well known composites are e.g. fibre reinforced polymers (FRP), 

which consist of a polymer matrix and embedded fibre material. The main purposes of 

the matrix material are to keep the fibres in position and to protect them from harsh 

environment. In addition, their purpose is the redistribution of loadings. Usually glass, 

aramid or carbon fibres are used. Carbon fibres are frequently used in the automotive 

industry due to their high strength-to-weight ratio and high stiffness. 

In this Master’s Thesis the analyses are limited to carbon fibre reinforced polymers 

(CFRP) in an epoxy polymer matrix. The composites are laminates. Their structure, 

material properties and also their failure behaviour are described in the following 

subsections.  

 

2.1.1 Unidirectional laminate 

A unidirectional laminate (UD laminate) consists of multiple UD laminae as shown in 

Figure 2.1. The fibres in one layer are oriented in the same direction. A composite is 

anisotropic. Due to the processing of lamina it is possible that material defects are 

present, but for analyses on the macroscopic scale the following assumptions are 

made [6]: 

- Fibres are perfectly straight and parallel aligned 

- Bonding between fibres and matrix is perfect  

- Fibres are distributed equally over the cross-section 
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Figure 2.1: A four-ply laminate [6] 

Figure 2.1 also depicts the laminate orientation code, a convention used to label 

laminates according to their fibre orientations. The main rules are listed below: 

- Fibre angle is always referred to the x-axis 

- Laminae are listed in sequence from the first lamina laid up 

- Neighbouring laminae with same orientation angle are labelled by a numerical 

subscript, i.e.[     ]  [   ] 

- Symmetric laminates are labelled with the index s 

- Non-repeated lamina in symmetric laminates are over lined ̅ ,       

i.e. [        ]  [     ̅̅̅̅ ]
 
  

Using this orientation code, the four ply laminate in Figure 2.1 would be labelled as 

[0/-45/45/90]. Before the analysis of such a laminate is described, the analysis of one 

single layer, a UD lamina, is explained. 

 

2.1.2 Analysis of an UD lamina 

Considering a 3-dimensional stress state the UD lamina is subjected to six stresses, as 

shown in Figure 2.2. These stresses are namely: 

- Normal stresses:   ,    and    

- Shear stresses:    ,     and     

The index 1 is referred to the direction of the fibre, whereas indices 2 and 3 are 

referred to the direction transverse to the fibre direction. Since the material properties 

are identically with respect to the material axes 2 and 3, a unidirectional composite 

can be considered to be transverse isotropic. That means the plane normal to the fibre 

0°

-45°

45°

90°
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direction can be considered as the isotropic plane and the mechanical properties in all 

planes normal to this isotropic plane are identical (see Figure 2.2 right) 

In that case the use of the word stressing instead of stress is preferable. Therefore, 

only four unique stressings are acting on a UD lamina. These are normal stressing 

longitudinal to the fibre direction,        , normal stressing transverse to the fibre 

direction,            and the transverse-longitudinal shear stressings              

and transverse-transverse shear stressings         , respectively. In order to 

distinguish between compressive stressings and tensile stressings a superscript for 

tension (+) and for compression (-) is used. [7] 

 

Figure 2.2:  Left: Stresses acting on an element of a UD-lamina [8])  

Right: Transverse isotropy - The plane 2-3 in the right Figure is a plane 

of isotropy. The material properties are the same in all planes 

perpendicular to the plane of isotropy [8] 

Composites are often used in applications where the assumption of plane-stress 

conditions                is valid. Based on the transverse isotropy the 

relation between the stresses in the material coordinate system under plane stress 

conditions can be related to the strains according to equation (2.1). 

{

  

  

   
}  

[
 
 
 
 

  

        

     

        
 

     

        

  

        
 

     ]
 
 
 
 

⏟                
                  

{

  
  
   

}  [
       
       
     

] {

  
  
   

} (2.1) 

where    is the Young’s modulus longitudinal to the fibre direction,    is the Young’s 

modulus transverse to the fibre direction and     is the in-plane shear modulus of the 

lamina.     and     are the major and minor Poisson’s ratios. These material 

properties are determined by the mechanical properties of the fibre and matrix 

material and also by their volume fraction, i.e. how much fibres and how much matrix 

material does the lamina consist of. How to determine these material parameters is 

well described in Chapter 3 in [6]. 
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A laminate is usually stacked with layers of different fibre orientation angles, which 

means the local material coordinate system changes with respect to a fixed reference 

coordinate system when the fibre orientation changes, as depicted in Figure 2.1. 

Therefore, it is useful to express the stresses and strains in fixed reference coordinate 

systems. The stresses and strains can be transformed from the local material 

coordinate system into the global reference coordinate system by the following 

relations: 
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where 
1T  is the stress-transformation matrix given as: 
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and 
2T  is the strain-transformation matrix given as: 



























22

22

22

2

sincoscossin2cossin2

cossincossin

cossinsincos

T  (2.5) 

The angle   describes the rotational angle between the global x-axis and the local 

axis longitudinal to the fibre direction. Substituting equation (2.2) and (2.3) into 

equation (2.1) one obtains the stress-strain relation for an orthotropic lamina in global 

coordinates as follows: 
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For simplicity a  ̅ matrix can be defined similar to the   matrix, which relates the 

global strains to the global stresses as shown in equation (2.7) 
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As already mentioned a laminate consists usually of more than one ply with different 

fibre orientation. The analysis for such a laminate is described in the following 

paragraph.  

 

2.1.3 Analysis of laminated composites [6] 

The evaluation of composites regarding stress analysis can be carried out by using the 

classical laminate theory (CLT). It is used to establish the elasticity equations of the 

multi-layer composite (MLC) from the elastic properties of each UD lamina. In order 

to determine the deformations of a single lamina the elasticity equation of the MLC is 

used. Having obtained the deformations, one can determine the stresses within the 

lamina. 

When using this concept, several assumptions are made. It is assumed that the bond 

between two laminae is perfect and infinitesimally thin, which means that the 

displacements remain continuous and the two laminae cannot slip relatively to each 

other. Furthermore it is assumed that the laminate is loaded under plane stress, i.e. 

stress components along the thickness of the laminae are zero. In addition it is 

assumed that Kirchhoff’s theory is valid when the laminate is subjected to bending 

loads. 

Resultant forces and moments 

For a laminate consisting of   layers and a total thickness   as shown in Figure 2.3 

the resultant forces   acting on the mid-plane of the laminate can be obtained by 

integrating the corresponding stress over the laminate thickness  . Due to the fact that 

the laminate may consist of plies with different fibre orientation and therefore 

different stiffness matrices with respect to the reference coordinate system, the 

integration is split into a summation of the resultant forces in each layer.  

{

  

  

   

}  ∫ {

  

  

   
}

 

 

 
 

 

   ∑ ∫ {

  

  

   
}

 

  
  

    

 
    (2.8) 

The same procedure can be carried out for the resultant moments  , which can be 

computed according to equation (2.9): 

{

  

  

   

}  ∫ {

  

  

   
}

 

 

 
 

 

     ∑ ∫ {

  

  

   
}

 

    
  

    

 
    (2.9) 

where   is the distance from the mid-plane of the laminate. 
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Figure 2.3: Geometry of a multi-layered laminate [6] 

Kinematics 

The strains at any point in the deformed laminate can be related to the displacements 

               and to the curvature (             ). 

{

  
  
   

}  {

  
 

  
 

   
 

}   {

  

  

   

} (2.10) 

where the mid-plane strains are derived from membrane theory and the curvatures are 

derived from Kirchhoff’s plate theory as follows: 

{

  
 

  
 

   
 

}  

{
 
 

 
 

   

  
   

  

   

  
 

   

  }
 
 

 
 

    {

  

  

   

}  

{
 
 

 
 

    

   

    

   

 
    

    }
 
 

 
 

 (2.11) 

The stress in the k-th lamina can be computed from the stiffness matrix of layer k,  ̅ , 

and the mid-plane strains and curvature as: 

{ }   ̅    ̅ { 
    } (2.12) 

where the subscript k refers to the ply number, z is the distance from the mid-plane 

and the vectors    and   are the mid-plane strains and the curvature as given in 

equation (2.11). The lamina stiffness matrix Q  is constant for each lamina and 

therefore equation (2.12) gives a linear variation of stress for each lamina. Depending 

on the fibre orientation the stiffness matrix with respect to global coordinates varies 

for each lamina. This leads to a discontinuous variation of stress within the laminate 

as shown in Figure 2.4. 



CHALMERS, Applied Mechanics, Master’s Thesis 2013:79 9 

 

Figure 2.4: Variation of strain and stress in a three plies laminate with different fibre 

orientation angles [6] 

Having obtained the stresses as function of mid-plane strain and curvature the 

resultant forces and resultant moments given in equation (2.8) and (2.9) can be 

expressed as: 

{
 
 

}  [
  
  

] { 
 

 
} (2.13) 

where     and   are 3x3 matrices, which elements are computed according to 

equation (2.14), (2.15) and (2.16), respectively. 

    ∑ ( ̅  ) 
 
             (2.14) 

    
 

 
∑ ( ̅  ) 

 
      

      
   (2.15) 

    
 

 
∑ ( ̅  ) 

 
      

      
   (2.16) 

The matrix   is called the extensional stiffness matrix. It relates the resultant forces to 

the mid-plane strains. In a similar way the bending stiffness matrix   relates the 

resultant moments to the plate curvatures. The matrix   gives information about the 

coupling between bending and extension. In case of non-zero coupling matrix  , 

normal and shear forces acting on the mid-plane result not only into mid-plane strains 

but also into bending and twisting of the laminate plate.  

For given resultant forces and resultant moments, inverting equation (2.13) gives the 

mid-plane strains    and curvature   in the laminate. These can then be used to 

determine the stresses in each lamina according to equation (2.12). To summarize the 

CLT one could say that based on the elasticity parameters of each homogenised UD 

lamina which form the multi-layered composite, the CLT is used to compute the 

stresses and deformations of each individual lamina. These stresses should of course 

be withstood by the lamina. Hereby an advantage of composites is the fact, that the 

designer has the possibility to change fibre orientations, layups and laminae 

thicknesses to design the laminate in such a way that it suits its application best. 

Nevertheless when the stresses in a laminate are too high failure might occur. The 

physical appearance of failure and how the failure may be predicted through failure 

criteria is described in the following paragraph “Failure of composites”. 
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2.1.4 Failure of composites 

UD-laminates can fail in two ways, namely fibre failure and inter-fibre failure. 

Figure 2.5 gives an overview of the two different kind of failures. Fibre failure (FF) is 

caused by the stress longitudinal to the fibre direction,   , whereas inter-fibre failure 

(IFF) is caused by the transverse stress    and the shear stresses     and    . 

In case of FF not only one, but a bunch of fibres break whether due to high tensile 

stresses or due to high compressive stress. A broken fibre cannot bear any loading, 

which leads to a stress redistribution to the remaining fibres. This usually leads to 

complete failure of the lamina and might also lead to a complete failure of the 

laminate. 

In case of IFF a crack runs through the matrix material or the matrix-fibre interface. 

The crack propagates parallel to the fibre direction through the thickness of the 

lamina. It is stopped only by fibres of the neighbouring layers with different fibre 

orientation. IFF may be tolerated in multi-layered composites with different fibre 

orientations, since the stresses are redistributed to adjacent layers. The fibre strength 

is much higher than the matrix strength and therefore IFF does not lead directly to 

failure in that case. On the downside IFF usually comes along with a degradation of 

the composite material in terms of stiffness. Furthermore, cracks stopped at 

neighbouring layers, can lead on the one hand to delamination (two neighbouring 

layers separate from each other) and on the other hand to a notch effect at the fibres, 

which can decrease their fatigue resistance. In general a composite should always be 

designed against IFF. [8] 

 

Figure 2.5: Failure modes of a UD laminate [4] 
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Failure criteria 

Failure criteria are used to determine whether a given stress state leads to failure in the 

lamina and, depending on the criterion, what kind of failure mode will occur when it 

comes to failure. Many failure criteria were developed within the history of 

composite. A rather simple theory, the so called “Maximum stress theory” was 

proposed by Jenkin [9] in the 1920s, which is described further below. The probably 

most well-known failure theory of composites was developed by Tsai and Azzi and is 

based on the theory for anisotropic plasticity according to Hill. It is also known as the 

Tsai-Hill criterion [10]. Another well-known criterion is the so called Tsai-Wu 

criterion [11], which is implemented in many commercial software. A point of 

criticism is the fact that although both criteria take combined stresses into account, it 

is done without any physical motivation for the interaction. Instead they are 

mathematically easy to use criterion  

One of the first failure criterion for composites which took stress interaction under 

plane stress conditions based on a physical approach into account was proposed by 

Hashin and Rotem in 1973 [5]. It was extended to three dimensional stress states by 

Hashin in 1980 [12]. Based on Hashin’s proposal of applying the idea of Mohr’s 

circle for metals to UD laminae, Puck proposed a criterion, which assumes failure in 

the plane with the lowest fracture resistance. It is based on a physical approach unlike 

the Tsai-Wu criterion and it differentiates between fibre failure and inter-fibre failure. 

Hinton, Kaddour and Soden asked the leading experts in failure analysis of 

composites to apply their failure models to several test cases within the so called 

“World-wide Failure Exercise (WWFE)” [13]. They compared the results and came to 

the conclusion that Puck’s failure theory gives, among others, very good results and it 

differentiates between different failure modes. Therefore, the Puck criterion is used in 

this Thesis. But before illuminating Puck’s failure criterion, the maximum stress 

theory, which plays also a role in this thesis, shall be briefly explained. 

Maximum stress theory [6] 

The maximum stress theory, which is commonly attributed to Jenkin [9], predicts 

failure when the stresses in the principal material axes exceed the corresponding 

material strength. In order to avoid failure it has to be ensured that the stress limits are 

not exceeded: 

   
       

  (2.17) 

   
       

  (2.18) 

|   |      (2.19) 

where   is the strength of the material and its index denotes the direction. As soon as 

one of the inequalities above is violated the material fails by a failure mode which is 

associated with the allowable stress. No interaction of stress components is taken into 

account and therefore certain loading conditions, e.g. superposition of tensile and 

shear stresses, lead to non-conservative results. 
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As already mentioned a failure criterion which takes stress interaction into account 

and which is based on a physical approach is the Puck criterion. It is described in the 

following. 

Puck’s failure criterion [4] 

Puck proposed the criterion in 1996 [4] (see also [7]). An important quantity is the 

stress exertion   , sometimes also called stress exposure or effort. It can be 

understood as a degree of utilization of the material. If the stress exposure is      

failure occurs, when it is smaller than one, the lamina can withstand the stressing. The 

Puck criterion distinguishes between fibre and inter-fibre failure.  

Fibre failure criterion 

Fibre failure depends only on the longitudinal stress but it has to be distinguished 

between tension and compression due to the different material strength. Therefore, the 

failure criterion can be written as the ratio between the stress and the associated 

strength: 

      
  

  
     for      (2.20) 

      
|  |

  
    for      (2.21) 

Since the strength is per definition positive, the absolute value of the longitudinal 

stress has to be taken into account when it comes to compression (negative normal 

stress). 

Inter-fibre failure criterion 

In case of IFF one can distinguish between three different fracture modes, which are 

shown in Figure 2.6, where a lamina is subjected to transverse normal stress and a 

shear stress. Fracture mode A and B have the same fracture plane, which is normal to 

the transverse stress. The fracture plane is different for fracture mode C, where 

fracture occurs under a certain angle. For plane-stress conditions the IFF criterion can 

be expressed in the form of three failure conditions. 

 

Figure 2.6: Failure modes under plane stress condition 

 

 

Mode A Mode B Mode C
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Fracture mode A  for      

In case of fracture mode A failure can occur due to pure tensile transverse stress   , 

pure transverse-longitudinal shear stress     and a combination of both stresses. The 

exertion is calculated according to: 

       √(     
   

 

   
)
 

(
  

  
 )

 

 (
   

   
)
 

    
   

   
 (2.22) 

The cracks are propagating along the thickness of the lamina, which means per 

definition that the angle of the fracture plane is       . 

Fracture mode B  for      and   |
  

   
|  |

   
 

     
| 

Fracture mode B occurs when a compressive stress    is superimposed by shear stress 

   . The compressive stress closes the cracks and increases the friction along the 

fracture plane. Therefore, the material can sustain a higher shear stress than the actual 

shear strength    . In case of fracture mode B the exertion for IFF is computed as: 

       √(
   

   
)
 

 (
   
 

   
  )

 

    
   

   
 (2.23) 

Fracture mode C  for      and   |
   

  
|  |

     

   
 | 

When the compressive stress is increased the fracture mode changes to mode C. The 

angle of the fracture plane is in that case       . A so called “wedge effect” occurs, 

where the compressive stress disperse a part (wedge) out of the lamina (see 

Figure 2.5). It might happen that this wedge effect is so strong that it burst the whole 

laminate and leads to complete failure. Therefore, this fracture mode should be strictly 

avoided. The exertion for IFF in fracture mode C is computed as: 

       [(
   

 (     
 )   

)
 

 (
  

  
 )

 

]
  

 

     
 (2.24) 

The three equations for IFF given above contain some parameters which were not yet 

explained. These are    
 ,      , and the so called pitch factors (   

     
         

 ). 

The two material properties    
  and       define basically the point when the fracture 

mode changes from fracture mode B to fracture mode C, this is when the ratio |
  

   
| 

becomes larger than the ratio |
   

 

     
|. Both parameters can be computed as follows: 

   
  

  
 

 (     
 )

 (2.25) 

         √      
  (2.26) 
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The pitch factors can be determined experimentally. In case no test data is available 

Puck et al. [14] suggest the following parameters for CFRP.  

Table 2.1: Suggestion of pitch factors for CFRP [14] 

   
  [-]    

  [-]    
  [-]    

  [-] 

0.35 0.30 0.25 – 0.30 0.25 – 0.30 

Failure occurs when the stress exertion is equal to one. Using the three equations for 

IFF (equation (2.22), (2.23), (2.24)) and setting          one obtains the fracture 

curve as depicted in Figure 2.7. If a stress state in the lamina exists with transverse 

stress    and a shear stress     such that the position vector touches or exceeds the 

fracture curve, IFF takes place. It illustrates also which fracture mode will occurs 

depending on the stress state,       .When subjected to pure transverse stress    the 

fracture curve is bounded by its compressive and tensile material strength, 

respectively. One can also see the effect that the material can withstand higher shear 

stresses when it is subjected to compressive transverse loads due to higher friction at 

the crack surfaces. 

 

Figure 2.7: Fracture curve for inter-fibre failure under plane stress [4] 

For the sake of completeness it should be mentioned that the fracture curve for inter-

fibre failure, as shown in Figure 2.7, is influenced by the longitudinal stress   . For 

increasing   , the fracture curve shrinks. The fracture curve is plotted for different 

longitudinal stresses in Figure 2.8. The envelope for the fracture curves forms a body, 

which is bounded by the plane for fibre failure for high longitudinal stress. Due to its 

shape it is sometimes referred to “Puck’s fracture cigar”. The effect of decreasing 

resistance against inter-fibre failure for increasing longitudinal stress is only 

significant for high longitudinal stresses and is therefore not taken into account in this 

Thesis work. 
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Figure 2.8: Fracture body for IFF and FF under plane stress condition [8] 

The failure modes of composites and two failure criteria were explained. In the next 

section the fatigue behaviour of composite material is explained, but before that is 

done, the general concept of fatigue analysis is illustrated and effects that come into 

play are briefly explained. 

 

2.2 Fatigue behaviour of materials 

Components in vehicles are subjected to repeated loadings during their service life. 

The resulting stresses can lead to microscopic damage in the material, which can 

accumulate to a macroscopic damage under cyclic stress and lead to failure of the 

component even though the stresses are below the materials ultimate strength. This 

process of failure under cyclic loading is called fatigue. 

When it comes to fatigue analyses, three major approaches exist. These are namely 

the stress based approach, the strain based approach and the fracture mechanics 

approach. The strain based approach is used, when the interest is in the local yielding 

at stress raiser. The fracture mechanics approach is used, when the interest is in the 

propagation of cracks. In this Master’s Thesis the stress based approach is used, which 

is based on the averaged stress in an affected region. Especially when it comes to 

fatigue analysis of large systems using the finite element method (FEM), the stress 

based approach is usually applied. 

In the following paragraphs the basic concept in fatigue analysis is briefly explained 

and effects, which come into play, are described. At the end of the chapter the fatigue 

behaviour of composites is depicted and the main differences with respect to the 

fatigue behaviour of metals are pointed out. 

 

 



CHALMERS, Applied Mechanics, Master’s Thesis 2013:79 16 

2.2.1 Definitions and basic concepts [15] 

A load cycle can be described by its characteristic quantities, which are listed below: 

- Maximum stress,      

- Minimum stress,      

- Mean stress,    

- Amplitude stress,   , and stress range,    

When the minimum and maximum stress levels remain constant over time, the 

loading is called constant amplitude stressing and is shown in Figure 2.9. The stress 

range,   , is defined as the difference of the maximum stress and the minimum stress. 

             (2.27)) 

Half the stress range is the stress amplitude,        . 

   
  

 
 

         

 
 (2.28) 

The mean stress,   , is the average of the maximum and minimum stress. It can be 

computed as: 

   
         

 
 (2.29) 

The ratio between the minimum stress      and the maximum stress      is called 

the stress ratio  : 

  
    

    
 (2.30) 

Figure 2.9 shows different loadings. In case of an alternating load with     , as 

shown in Figure (2.9 a), the stress ratio becomes     . For a zero-to-tension load, 

see Figure (2.9 c), the stress ratio is    . Sometimes a zero-to-tension load is 

referred to a R-value of      . This is often done when it comes to testing of 

specimens. In order to ensure that the specimen is not unloaded at a certain point of 

time, the minimum stress is bounded to                     . 
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Figure 2.9: Constant amplitude cycling. Case (a) is completely reversed or 

alternating stressing,      ; (b) has a nonzero mean stress   ; and 

(c) is zero-to-tension stressing,       . [15] 

In general a test specimen will fail after a certain number of cycles when subjected to 

cyclic stress. Carrying out the same test at a higher stress amplitude will lead to a 

lower number of cycles to failure. The results of these tests can be plotted in a 

diagram to obtain the so called S-N curve. The nominal stress,  , is plotted over the 

number of cycles to failure   . The tests to obtain such S-N curves are usually carried 

out at a constant mean stress or for a constant  -value. The numbers of cycle to 

failure are plotted on a logarithmic scale. If the S-N data can be approximate by a 

straight line in a log-log plot, the corresponding equation can be written as: 

    (
  

  
)

  

 
 (2.31) 

where    and    is an arbitrary fulcrum of the S-N curve and the parameter   

describes its inclination. A small value of   means a steep inclination, whereas a large 

value of   corresponds to a flat inclination, as shown in Figure 2.10, with fulcrum 

       and        for both curves. 

 

Figure 2.10: S-N curve for two different values of k 
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2.2.2 Linear damage accumulation according to Palmgren-Miner 

Components in cars are usually not subjected to a loading with constant amplitude but 

to loadings with variable amplitudes, meaning that the load-time signal is not just a 

simple trigonometric function with constant stress amplitude but consists of cycles 

with varying amplitudes and different mean stresses. In order to analyse such a time 

signal cycle counting methods are applied. A popular method is the so called rainflow 

cycle counting method. It is used to count cycles of same stress amplitude and mean 

stress of an arbitrary time signal.  

As an example: A rainflow cycle counting of a stress over time signal gives the 

information that the signal consists of three different stress amplitude levels     ,     , 

     and each block of same stress amplitude is repeated          times (see 

Figure 2.11). The partial damage    for each level can be computed as    
  

  
. Where 

   is the number of cycles at a certain stress amplitude      and    is the number of 

cycles to failure obtained from the S-N curve for     . The Palmgren-Miner rule states 

that the total damage   of the material arises from the sum of the partial damages 
  

  
 

according to equation (2.32): 





m

i i

i

N

n
D

1

 (2.32) 

Per definition failure occurs when the total damage   is equal to one. If a safety factor 

against failure is considered, the maximum allowable total damage is set to values 

smaller than one. One drawback, which occurs when using the Palmgren-Miner rule, 

is that sequence effects of the stress-time signal are not taken into account.  

 

Figure 2.11: S-N curve: Linear damage accumulation according to Palmgren-Miner 

Below a certain stress amplitude the continuation of the S-N curve changes. This 

stress limit is called the endurance limit, fatigue limit, or the knee point of the S-N 

curve,   . It is related to a number of cycles to failure of   , which is for metals 

usually of magnitude       or    . It can be distinguished between three different 

approaches. These are namely: Miner original, Miner elementary and Miner modified, 

respectively. 
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According to Miner original it is assumed that load cycles below the endurance limit 

do not contribute to the damage of the component at all. At that specific point the S-N 

curve becomes horizontal and the slope parameter   of the S-N curve is in that case 

infinite high, due to the definition of the slope. The assumption that load cycles below 

the endurance stress limit do not contribute to any damage of the structure may 

sometimes not be true.  

The idea behind Miner elementary is that no endurance limit exists and the S-N curve 

proceeds with same slope in that region. That means that damage due to low stress 

amplitudes is equally taken into account as damage due to high stress amplitudes.  

Haibach [16] states that both Miner original and Miner elementary contain some 

simplification. While the Miner original assumes that low stress amplitudes do not 

contribute to the total damage, which does not agree with experiments. On the other 

hand Miner elementary assumes that low stress amplitudes contribute in the same way 

as large amplitudes, which leads to an overestimation of the damage. Therefore, he 

proposes to use the method of Miner modified, a compromise between the two other 

methods. The slope of the S-N curve is altered to      for fatigue life above the 

fatigue limit   . This assumption is often valid for metals but the fatigue behaviour of 

composite materials differs in some points, which is described in the following 

subsection. 

 

2.2.3 Mean stress effects 

The mean stress has an influence on the fatigue life of a specimen. For a given stress 

amplitude, a tensile mean stress would in general lead to shorter fatigue lives than a 

zero mean stress. One way of illustrating the influence of mean stress effects is a 

constant life diagram (CLD; also known as linear Goodman diagram), which is shown 

in Figure 2.12. The diagram can be derived from S-N curves for different mean 

stresses, which is the case in Figure 2.12, or from S-N curves for different R-values. 

Mean stresses were in that case 0, 140, 275 and 410 MPa, respectively. The lines in 

the Figure represent constant life. If the mean stress increases, the stress amplitude has 

to be decreased in order to obtain the same number of cycles to failure. For the special 

case when the mean stress is equal to the ultimate strength of the material,      , 

the allowable stress amplitude,   , becomes zero.  

If the fatigue life is evaluated by using stress amplitudes, one way of accounting for 

mean stresses is to compute an equivalent completely reversed stress amplitude and 

use an S-N curve for completely reversed loading, i.e.     , to evaluate fatigue. 

Well known methods are e.g. Goodman or the approach by Smith Watson Topper 

(SWT approach). They both give an equation at hand to compute a completely 

reversed stress amplitude [15].  
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Figure 2.12: Constant life diagram derived from S-N curves at different mean 
stresses    [15] 

Another approach, which might be more suitable for composite material, is the 

computation of individual S-N curves for specific stress ratios by using a constant life 

diagram, which is briefly explained in the following. The computation of the slope of 

an S-N curve requires two points. It shall be assumed, that the S-N curves are defined 

for constant stress ratios and expressed in terms of stress amplitudes,   , as functions 

of number of cycles to failure,   . For a given stress ratio, the first point of the S-N 

curve may be chosen as the point of static failure, i.e. number of cycles to failure 

        . In case of tensional failure the sum of the corresponding stress amplitude 

and mean stress is equal to the material strength,   : 

         (2.33) 

Since the stress ratio,  , is known, the mean stress in equation (2.33) can be 

eliminated by an expression solely based on the stress amplitude,   , and the stress 

ratio,  , by using the relations given in equations (2.28) –(2.30).  

          

 
 (2.33) 

The second fulcrum is the stress amplitude for the same stress ratio but a different 

number of cycles to failure, e.g.         . It can be determined from a constant life 

diagram, which is exemplarily shown in Figure 2.13. The dashed line represents 

failure for        cycles. The curve is determined through fatigue test for different 

stress ratios (  ,   , etc.) and usually it is only described for a couple of different 

stress ratios.  
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In case the stress ratio is not covered by the diagram at hand, one has to determine the 

stress amplitude and mean stress by using for example linear interpolation method, 

which is described in [17]. Having determined two points of the S-N curve, its slope 

parameter,  , can be determined according to equation (2.34): 

  
   (    )    (    )

   (    )     (    )
 (2.34) 

Thus, the S-N curve is defined and can be used for the fatigue assessment. 

 

Figure 2.13: Example of a constant life diagram obtained from data at specific R-
values 

 

2.2.4 Fatigue behaviour of composites 

Extensive research has been carried out about the fatigue behaviour of metals and it is 

understood very well so far. When it comes to fatigue behaviour of composites the 

research is less complete than for metals, especially when it comes to multi-axial 

fatigue. The main difference between metals and composites is the fact that composite 

material is inhomogeneous on a microscopic scale and anisotropic and therefore, the 

fatigue behaviour of composites differs from the fatigue behaviour of metals.  

Metal fatigue failure is characterized by propagation of macroscopic cracks and the 

damage is often localised. Composites accumulate damage in a rather general fashion. 

Fatigue failure is influenced by several effects, i.e. fibre breakage, matrix cracking, 

delamination and debonding [18]. 

The slope of S-N curves, which can be regarded as a descriptor of the fatigue 

resistance, is very low for CFRP. That means that sensitivity to fatigue loads drops 

significantly as the stress amplitude drops, which can be considered as good. On the 

other hand a small increase in stress amplitude means a substantial shortening in 

fatigue life. In addition, the scatter in fatigue life is higher for composites than for 

metals. [19] This can be explained by the fact that the chance of including small errors 

through the manufacturing process is higher for composites compared to metals. 

Small material defects can lead to an initial damage in the material. 
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[20] carried out tests, where CFRP specimens were subjected to variable amplitude 

loadings. It was suggested that the Palmgren-Miner rule can also be applied to fatigue 

analysis of composites, but instead of assuming failure for    , they suggested that 

an effective damage sum of          should be used in case no value from 

experience is at hand. But since the scope of this Thesis is to apply different methods 

to account for multi-axial stress states, and simulation results are used for comparison, 

instead of predicting failure, it is assumed that failure occurs for a damage of    .  
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3 Fatigue Simulation Process using commercial 

software FEMFAT 

By using computational simulation techniques in the early product development phase 

different model variants can be easily compared against each other and the numbers of 

expensive prototypes can be reduced significantly in this way. A simulation tool for 

fatigue assessment is FEMFAT, developed by the Austrian company Magna Steyr. It 

is a well-established software used by various companies in the automotive and 

engineering industry. It carries out fatigue assessment based on the results of finite 

element analyses. The software consists of different modules. The FEMFAT MAX 

module is used for analysing components subjected to multi-axial loadings and it 

allows a superposition of multiple stress states. 

All analyses within this Thesis were carried out with FEMFAT MAX version 5.0 and 

whenever it is written FEMFAT in this report, it is referred to the software tool 

FEMFAT MAX. In the following section the simulation process for fatigue 

assessment of metal components is outlined. Hahne [2] and Kolska [3] adapted this 

process to fatigue simulation of composites, which is described in section 3.2. 

 

3.1 Fatigue simulation process for metals 

Figure 3.1 shows the basic workflow when using FEMFAT. An FE-model is 

subjected to a number of load cases in linear finite element analyses. Each load case 

results into a stress plot, which is scaled by a load time signal. These time signals can 

usually be obtained in two ways. They can be measured on a testing track or they can 

be simulated by using multi body dynamics (MBD) simulation techniques. The stress 

states over time are superposed to a single stress state at each time step, which 

represent the stress state due to the total loading. Based on this stress state as a 

function of time the fatigue assessment is carried out. The final output result is an 

analysis report and the damage distribution plot. The fatigue simulation process is 

explained more detailed in the following by using a complete vehicle as an example.  
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Figure 3.1: Process for fatigue assessment with FEMFAT MAX [3] 

 

3.1.1 Geometry data  

As a first step the geometry data, i.e. the FE-model, has to be imported into FEMFAT. 

Various input files types of different FE programmes are supported. It is possible to 

evaluate 2D and 3D elements but in this Thesis the analyses are limited to 2D 

elements. The geometry data allows FEMFAT to compute the distances between 

nodes. This information may be used to compute for example stress gradients, which 

are necessary for analysing the influence of notch effects. 

The model of the car is a so called trimmed body model, as shown in Figure 3.2. A 

trimmed body is a model of a complete car where the suspension and engine are not 

included. Interior and exterior components, e.g. seats or doors, are represented by 

point masses, which are coupled to the car via rigid body elements. 

 

Figure 3.2: "Trimmed-body" model [3] 
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3.1.2 Stress data and load signals 

The trimmed body is loaded by forces and moments in 22 points. Three forces and 

three moments are acting on each point in the direction of the three global coordinate 

axes, respectively. Figure 3.3 shows the locations of the 22 load application points. 

They represent the locations where the suspension is attached to the car body. In the 

linear static finite element analysis each load represents a single load case, i.e. the 

total number of load cases is 132 (22x6), where forces and moments are set to 

        and         . The resulting stress plots can then be scaled by a 

load over time signal. These time signals can be obtained in two ways: Whether by 

using multi body dynamics simulations, where driving manoeuvres are simulated and 

the resulting forces and moments over time at the specific points are determined 

numerically, or by measuring the forces during driving tests, where several force and 

moment transducer are attached to the car body at the particular locations. 

 

Figure 3.3: Load introduction points of the trimmed body model. Three forces, 

represented by yellow arrows, and three moments (red curved arrows) 

are acting on each point. [3] 

FEMFAT evaluates stress data always at the nodes of the finite element. In case the 

result file contains stress data at the elements, the data is averaged at the nodes. In the 

analysis of the complete vehicle, the car body is subjected to 132 loads, forces are 

acting in 66 load cases and moments are acting in 66 load cases on the trimmed body. 

In order to reduce the computational effort not only for the static FEA but also for the 

fatigue simulation, only the force load cases are taken into account. All 66 moment 

load cases are neglected. The influence of the moments is rather small on the results 

of the fatigue analysis and therefore the simplification can be tolerated.  
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The load over time signals for the analysis are based on measurement data. The data is 

collected through different driving manoeuvres on the EVP testing track (Ehra 

verschärfter Kurs für PKW – Ehra aggravated testing track for passenger cars). As 

shown in Figure 3.4 the track consists of two symmetrical tracks, east and west, which 

are driven by turns four times in total during one driving cycle. The loops can be 

divided into different parts with different loading scenarios, e.g. different road 

surfaces, special steering manoeuvres or braking. 

 

Figure 3.4: EVP testing track [21] 

The resulting load time histories at the 22 attachment points are then used to multiply 

the corresponding FE stress plots over time. In addition, FEMFAT offers a feature 

that each stress plot can be scaled separately by a constant factor. This is useful if the 

units of a measured load over time signal differ from the units used in the FEA, e.g. a 

load of       was applied to a structure in a static FEA, but the measured load 

over time signal is in Newton. The stress plot can then be scaled by a factor of 

       , such that both the stress plot and the load over time signal have the same 

units, i.e. Newton.  

In order to carry out a fatigue assessment it is necessary to know the amplitude and 

mean stress of a stress over time signal. The stress state under plane stress conditions 

is defined by the three stress components       and    . These three stress 

components are usually not proportional with respect to each other but altering in a 

different way over time, which is exemplarily shown in Figure 3.5. One way of 

counting the number of cycles is the rainflow counting method. It can only be applied 

to a single time signal and not to three different stress over time signals. Therefore, an 

equivalent stress has to be computed which expresses the stress state as a single stress 

for each time step. 
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Ostkurs

West Track

East Track
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Figure 3.5: Plane stress state (σ1, σ2 and τ12) varying over time 

FEMFAT offers various methods for computing an equivalent stress. The methods 

can be distinguished between methods based on the critical plane approach or general 

methods. Methods based on the critical plane approach require a high computational 

effort. The method normal stress in the critical plane for example is seeking for the 

plane of a stress state with highest normal stress. Based on this normal stress the 

fatigue assessment is carried out. The computational effort is high for these methods 

but on the other hand they deliver more accurate results than general methods. 

General methods compute an equivalent stress based on the stress state by using for 

example the von Mises stress. Some methods which are available in FEMFAT are 

listed below: 

- Normal stress in critical plane 

- Material characteristic shear stress 

- Signed von Mises stress 

- Signed min/max principal stress 

Since critical plane methods require high computational resources and the FE model 

has a high number of elements, these methods are not applied in the fatigue simulation 

process for metals. Instead the method of signed min/max principal stress is used. It 

computes the principal stress of a stress state. For a plane stress state the principal 

stresses can be computed according to equation (3.1) which reads: 
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where I  is the maximum principal stress and II is the minimum principal stress. 

The principal stress with highest absolute value determines the equivalent stress 
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where its sign is also taken into account. According to the FEMFAT MAX user 

manual [22] this method shall be used when the interest is in a fast computation, 

which shows the critical region of the component and not in an accurate result in 

terms of fatigue life. The method of signed min/max principal stress is applied to the 

stress state in Figure 3.4 and the resulting equivalent stress is shown in Figure 3.5. 

The maximum stress in Figure 3.4 is less than 20 N/mm², whereas the maximum of 

the equivalent stress is slightly higher than 20  N/mm². Based on this equivalent stress 

history the rainflow counting method is carried out in order to determine the number 

of cycles together with the amplitude and mean stresses of each cycle, which define 

the rainflow class. This information is then used to carry out the fatigue assessment. 

The maximum number of rainflow classes is limited to 64 in FEMFAT.  

 

Figure 3.6: Resulting equivalent stress based on the stress over time signals as shown 

in Figure 3.5. Equivalent stress was determined by the signed min/max 

principal stress method. 

 

3.1.3 Influence factors 

Fatigue behaviour of materials can be influenced by several factors and FEMAT 

offers the possibility of taking most of them into account. One of these factors is the 

effect of surface finish. Smooth surfaces increase the resistance to fatigue, whereas a 

rough surface introduces small cracks at the surface, which facilitate the crack 

propagation and decrease the fatigue resistance [15]. Furthermore, surface treatments 

like shot peening or nitriding of steel may also be considered. 

Two other important influence factors are the stress gradient and the mean stress 

effect. The stress gradients are obtained from the stress data and the finite element 

model, which is used to compute the distances between the nodes. High stress 

gradients usually appear at notches. A high stress peak is decreasing rapidly over the 

distance from the notch. The material is not sensitive to the peak stress, but rather to 

the average stress that acts over a small region [15]. That means that the fatigue life 

would be shorter when the stress peak is used for fatigue analysis instead of an 
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average stress value over a small region. Therefore, FEMFAT suggests that the 

influence of stress gradients should be activated to obtain more realistic results [23]. 

Having deactivated the influence of mean stress, means that only stress amplitudes are 

considered in the fatigue life evaluation and mean stresses are neglected. As shown in 

chapter 2.2.3 the mean stress plays an important role when it comes to fatigue 

assessment and therefore needs to be considered. FEMFAT offers multiple ways for 

mean stress accounting, e.g. Goodman or by using constant life diagrams, which is the 

case in this Thesis. 

 

3.1.4 Output data 

The main output of the fatigue analysis is the resulting damage, D. It can be written 

into output files of the same format as output files of various FE programmes. In case 

the stress analysis was carried out in NASTRAN the FEMFAT results can be written 

in an output file of NASTRAN type. The damage plot can then be visualised in a post 

processor, e.g. METAPOST. A detailed protocol file is also output by FEMFAT. It 

contains a summary of the fatigue analysis including material data, analysis 

parameters and damage results.  

Furthermore, it is possible to display the equivalent stress over time signal for the 

critical node or for any selected node, when it is defined in a detailed result group. 

The fatigue analysis is based on this equivalent stress history, on which the rainflow 

counting method is applied to. The rainflow counting method, which is implemented 

in FEMFAT, differentiates between a closed load cycle and a residuum. A residuum is 

a hysteresis loop which is not closed (see [16] for more information). It is often 

weighted as half a cycle, which means that two residua with same mean and 

amplitude stress are counted only as one cycle, instead of two. The weighting of 

residua can be defined in FEMFAT and the rainflow matrices can be output in the 

form of text files and as figures. The weighting factor for residua is defined as 

      in this Thesis. The result of the rainflow counting method is available as an 

output and is used in this Thesis. It gives information not only about the number of 

cycles of each rainflow class but also about the partial damage of each rainflow class.  

 

3.2 Fatigue simulation process for composites 

FEMFAT was designed for the fatigue analysis of metal structures. It offers an option 

to analyse fibre reinforced polymers but this is limited to short fibre reinforced 

polymers. In order to use FEMFAT for analysing composite materials Hahne [2] and 

Kloska [3] suggested a method where, due to the orthotropic behaviour of FRP and 

the different material strengths in transverse and longitudinal fibre direction, the stress 

components are analysed separately. In order to verify the feasibility of the method, 

they applied it to an existing fatigue analysis of the trimmed body model, which is 

shown in Figure 3.2. Since the car did not contain any FRP component, the cross 

member was replaced by a CFRP cross member, which is highlighted in yellow in 

Figure 3.7. The composite layup was set to [0°/90°/45°/-45°]s, which gives a quasi-

isotopic material behaviour. The thickness of the cross member was increased such 
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that the stiffness did not change significantly between the steel cross member and the 

CFRP cross member.  

Kloska adapted the process for fatigue assessment of metal components in two parts, 

where the handling of stress data and the handling of material data is treated 

differently compared to the metal process. The motivation behind these changes and 

their implementation are described in the following two subsections.  

 

Figure 3.7: The Cross member whose material was changed from steel to CFRP is 

highlighted in yellow.  

 

3.2.1 Stress data modification 

As already mentioned, each stress component is analysed separately. FEFMAT offers 

no appropriate function such that only one stress component of a stress tensor is taken 

into account for the fatigue analysis. Therefore, the resulting stress data of the FEA is 

written into a text file by NASTRAN, a so called punch file. This text file can then be 

manipulated in a way that it suits the application. The element property for composite 

material (PCOMPG) is not supported by FEMFAT and has to be changed to a 

PSHELL property, which is the property for standard shell-elements. Since a standard 

shell-element contains only one “layer”, the stress data of each layer has to be written 

into single stress input files. This means that an analysis of a composite, which consist 

of eight layers under plane stress conditions (three stress components) leads to 24 

(8x3) stress data files. Since the stress components are analysed separately this 

method is referred to the single stress component method in this Thesis. It is similar to 

the maximum stress theory, which was described in chapter 2.1.4 as a failure criterion 

for composite. It states that each stress component is analysed separately and no 

interaction between the stress components is taken into account.  
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By using the single stress component method an issue arises, which is described in the 

following. A single finite element, which consists of one layer, is analysed. Its stress 

state is given as: 
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where the shear stress component,    , is equal to the normal stress component,   . 

Furthermore, it is subjected to an altering load over time signal, which is of simple 

triangle form and shown in Figure 3.8. 

 

Figure 3.8: Load over time signal 

By applying the method of single stress component, the stress data is split into three 

files (cf. equation 3.2). Three fatigue analysis in FEFMAT are carried out, but since 

    , only two analyses need to be run. FEMAT computes an equivalent stress 

according to the method of min/max principal stress (cf. 3.1.2). In case of pure shear 

stressing the resulting principal stresses are computed as: 
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The first and second principal stress are of same magnitude and an equivalent stress 

according to min/max principal stress is not unique anymore, which is also shown by 

using the concept of Mohr’s circle in Figure 3.11 for this particular case. In the case 

that the maximum absolute value is not unique, FEMFAT chooses always the positive 

principal stress as the equivalent stress, i.e.        , since tensional stress is usually 

more critical than compressive. The equivalent stress over time signal for this 

particular case is shown in Figure 3.9. It is only positive and has a maximum value of 

           and a minimum value of          . This leads to two load 

cycles with mean stress of          and an amplitude stress of         . 
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Figure 3.9: Equivalent stress for pure shear stressing. The equivalent stress is only 

positive defined. 

In case of analysing the transverse stress, where all stress components are zero except 

the   -component, the min/max principal stress method leads to equivalent stresses 

as: 
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In this case the equivalent stress according to the min/max principal method is unique, 

and equal to       , which is visualized by a Mohr’s circle in Figure 3.11. The 

equivalent stress over time signal is shown in Figure 3.10. It is varying in the same 

way as the load over time signal.  

 

Figure 3.10: Equivalent stress for pure transverse stressing. The equivalent stress is 

altering according to the load over time signal shown in Figure 3.8. 
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This equivalent stress can be expressed as one cycle, which has a mean stress of 

        and a stress amplitude of         . Table 3.1 compares the 

resulting damages for the two stressings. The damage due to pure transverse stressing 

is much higher than the damage due to pure shear stressing, eventhough the stress 

components    and     were of same magnitude. The difference is due to the 

equivalent stress, where the stress amplitude is twice as high for the case of pure 

transverse loading compared to the pure shear loading case. The fact that the number 

of load cycles is twice as high for the shear stress has only a minor influence.  

Table 3.1: Resulting damage for the two simple loading cases (based on same 

material properties) 

Pure shear stressing Pure transverse stressing 

                          

Therefore, it is proposed to change the procedure of carrying out the single stress 

component method slightly, such that the shear stress component,    , is written to the 

position of the transverse stress,   . Thereby, the case where the minimum and 

maximum principal stress are of the same magnitude is avoided.  

  

Figure 3.11: Mohr's circle for pure shear stress state (left) and pure normal stress 

state (right). For pure shear stressing the minimum and maximum 

principal stresses have same absolute value, which is not the case for 

pure normal stressing. 

The reason for analysing each stress component separately, is based on the fact that 

the composite material is orthotropic and the material properties differ especially for 

transverse and longitudinal fibre direction. The material properties are described in a 

more detailed fashion in the next section.  
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3.2.2 Material modelling 

Typical materials are already predefined in FEMFAT, but these materials are metals 

and not composite materials. Thus it is required to define the material properties of the 

composite material. Each stress component is analysed separately and therefore 

Kloska [3] defined three materials, one material for each direction (transverse, shear 

and longitudinal), where the material data was taken from Hahne [2]. The materials 

are defined by the static strengths, a constant life diagram (CLD) and an S-N curve.  

Figure 3.12 shows the CLD for transverse stressing. The solid lines indicate lines of 

constant fatigue life, whereas the dashed lines are lines of constant stress ratios, R. 

The material strength in tension is significantly lower compared to the material 

strength in compression. The critical stress ratio,      , is the ratio between the static 

material strength in compression (-180 N/mm²) and the material strength in tension 

(39 N/mm²). Stressing which lies to the left of the critical stress ratio results into 

compressive failure of the material, while tensional failure occurs when the loading is 

to the right of the critical R-value. The highest stress amplitude can be sustained for a 

mean stress of approximately                     . 

 

Figure 3.12: Constant life diagram of CFRP unidirectional material under transverse 

stressing taken from [3] based on [2] 

The CLD for shear stressing is symmetric with respect to the      -axis as shown in 

Figure 3.13 and therefore the critical stress ratio is         . It implies that a 

negative shear stress causes the same damage as a positive shear stress. In other 

words, if a torsional moment is applied to a tube, which results into shear stress, 

failure does not depend whether the tube is twisted clockwise or counter clockwise.  

The material strength of a unidirectional lamina is largest in fibre direction, which is 

  
            in tension and   

            and depict in the CLD as 

shown in Figure 3.14. That means that the critical R-value is           . 
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Figure 3.13: Constant life diagram of a CFRP unidirectional material under shear 

stressing taken from [3] based on [2] 

 

Figure 3.14: Constant life diagram of a CFRP unidirectional material under 

longitudinal stressing taken from [3] based on [2] 

In order to account for the mean stress effect, FEMFAT requires only the constant life 

diagram for a specific number of cycles. Furthermore it requires the slope of the S-N 

curve for alternating stressing        and the endurance limit in terms of stress 

and number of cycles to failure as an input. The slopes for the three different loading 

types are given in Table 3.2. The trend of the S-N curve may change at the endurance, 

as described in chapter 2.2.2, and it is distinguished between three different 

formulation, namely Miner original, Miner modified and Miner elementary. In this 

case the method of Miner modified is applied, since no exact information about the 

material behaviour in the region of fatigue life higher than the endurance limit is 

0

25

50

75

100

-90 -60 -30 0 30 60 90

τ  
∥,

a 
in

 N
/m

m
² 

  ⟶
 

τ ∥,m in N/mm²   ⟶ 

100 

108 

R = 10 

R = 2 

Rcrit = -1 

R = 0,1 

R = 0,5 

0

400

800

1200

-1000 -500 0 500 1000 1500

σ
∥,

a 
in

 N
/m

m
² 

  ⟶
 

σ∥,m in N/mm²   ⟶ 

100 

108 

R = 10 

R = 2 

Rcrit = -0,67 

R = 0,1 

R = 0,5 

R = -1 

R = -3 

R= -0,5 



CHALMERS, Applied Mechanics, Master’s Thesis 2013:79 36 

available and the Miner modified approach is a compromise between the other two 

formulations. The endurance limit is set to        cycles. 

Table 3.2: Slope, k, of the S-N curve for longitudinal, transverse and shear stressing, 

respectively 

longitudinal, k‖ transverse, k  shear, k ‖ 

14.0 9.25 9.0 

The fatigue analysis according to the concept of single stress component is applied to 

the cross member in Chapter 5. By using this concept each stress component is 

analysed separately and no stress interaction is taken into account. It is similar to the 

maximum stress theory, which is a static failure criterion for composites and was 

described in Chapter 2.1.4. Not taking stress interaction into account leads to non-

conservative results and does not correspond to the failure criteria proposed by Puck. 

Therefore, stress interaction needs to be utilised. Three models to account for multi-

axial stress states are described in the next chapter. They are applied to the fatigue 

analysis of the cross member in Chapter 5.  
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4 Multi-axial Fatigue Models for Composites 

In chapter 2.1.4 the failure modes of composites were described and Puck’s failure 

theory was outlined. It was pointed out that under plane stress conditions there is no 

interaction of stress components when it comes to fibre failure, but in case of inter-

fibre failure an interaction between the transverse normal stress component,     and 

the shear stress component,      exists. This interaction is currently not taken into 

account in the fatigue analysis of composite components as described in chapter 3.2.  

In order to improve the validity of fatigue analysis of composites stress interaction 

needs to be taken into account. Three methods which account for multi-axial stress 

states are explained in the following. They are applied to the fatigue analysis of a 

complete vehicle simulation in chapter 5. The first method was proposed by Hahne 

[2]. It is based on Puck’s failure theory and uses the stress exertion to compute an 

equivalent stress. The second method, an a posteriori damage interaction method, 

which was also proposed by Hahne [2], is in its principals based on a suggestion by 

the society of German engineers (VDI – Verein Deutscher Ingenieure) [24]. It is 

claimed, that Puck’s static failure theory may be adopted to fatigue analyses as well. 

Its procedure is described in section 4.2. The third method to account for stress 

interaction, which is originally used for welded metal structures suggested by the 

International Institute for Welding [6], is described in section 4.3. It is slightly 

modified in a way, such that it fits the fatigue behaviour of composites.  

 

4.1 Stress interaction according to Puck’s theory 

The Puck failure criterion states that failure occurs when the stress exertion,   , 

which, in case of IFF, is a function of the stress components    and    , is equal to 

one. Based on this fact it may be assumed that different stress states cause the same 

damage when their stress exertion is the same. Therefore, it is plausible to use the 

stress exertion for the computation of an equivalent stress.  

Figure 4.1 illustrates this concept for the case that a stress state   lies in the region of 

fracture mode  . The stress exertion,       , for point   is computed by using 

equation (2.22) for inter-fibre failure under plane stress conditions. In order to 

compute an equivalent transverse stress the point   is projected onto the   -axis such 

that the stress exertion remains constant. That means that if the stress state        

possesses a stress exertion of       , one can “translate” this stress state into an 

equivalent transverse stress                , where    is the material strength in 

transverse direction. It can be seen that       is larger than the sole   -component. The 

change in magnitude is due to the shear stress part which is now taken into account. 

Instead of computing an equivalent transverse stress, one could also compute an 

equivalent shear stress,       , by projecting the stress state   not onto the   -axis but 

onto the    -axis. The procedure is the same and the equivalent shear stress would be 

computed as                  . Again one can see the difference in magnitude 

between the single shear stress component     and the equivalent shear stress 

component        in Figure 4.1.  



CHALMERS, Applied Mechanics, Master’s Thesis 2013:79 38 

The procedure is summarized in the equation (4.1) to (4.4). Depending on the sign of 

  , the equivalent transverse stress,      , is computed as: 

               
       for       (4.1) 

                
       for       (4.2) 

Since the material strength and the stress exertion are always positive defined, the 

equation for equivalent transverse stress in compression has to be written with a 

minus sign. The equivalent shear stress, τ    , is computed as: 

                     for        (4.3) 

τ                    for        (4.4) 

It has to be kept in mind that the stress exertion is determined differently depending 

on the fracture mode (see equations (2.22), (2.23) and (2.24)).  

 

Figure 4.1: Equivalent transverse (green) and equivalent shear stress (blue) using the 

principal of constant stress exertion,        

Why determine both an equivalent shear stress and an equivalent transverse stress? 

This shall be briefly illustrated in the following loading case scenario: 

A tubular specimen with fibre oriented in circumferential direction is subjected to a 

torsional moment, which leads to a mean shear stress,   , and shear stress amplitude, 

  . In addition to the torsional moment a minor, alternating transverse load is applied. 

The stress over time signal may look as shown in the left Figure in Figure 4.2. If the 

stress over time signal is plotted in the stress interaction diagram, that means that at 

each point of time there is a pair of stress values          , which is represented by a 

single dot in the stress interaction diagram, one would obtain the plot to the right in 

Figure 4.2. The Figure shows also the fracture curve for static failure and it marks the 

three regions of different fracture modes. The two lines between fracture mode B and 

fracture mode C represent the borders, where the fracture mode changes from mode B 

to mode C. 
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Figure 4.2: Loading scenario of a tubular specimen. Left: Stress-over-time-signal. 

Right: Interaction diagram with fracture curve for IFF. The red point 

cloud represents the stress over time signal. 

The shear stress is dominating in this loading scenario and the stress exertion is 

altering between 0.4 and 0.5. When it comes to determination of equivalent stresses, 

an equivalent transverse stress,      , would result in an altering stress signal with 

minimum and maximum values of: 

                    
                     

                   
                     

This would lead to very large stress ranges, even though the actual stress ranges in the 

original time signal are rather small. Figure 4.3 shows the resulting equivalent 

transverse stress,      , and the equivalent shear stress,       , as functions of time 

based on the loading scenario given above. The two equivalent stress signals differ 

significantly. As already mentioned above, the equivalent transverse stress is altering 

between values of                  and                , whereas the 

equivalent shear stress is altering between values of τ                  and 

                  . Since the portion of transverse stress,   , in the original time 

signal (shown in Figure 4.2, left) is rather small, the equivalent shear stress signal, 

         , does not differ significantly from the shear stress component signal       . 

It seems likely that in case the loading is dominated by shear stresses, an equivalent 

shear stress may lead to more realistic results, whereas the equivalent transverse stress 

may give more reasonable results, when the loading is dominated by transverse 

stressing.  

Another feature, which can be observed for this loading scenario, is the frequency of 

the equivalent stress signals, see Figure 4.3. In case of equivalent transverse stress, the 

signal          has the same frequency as the transverse stress signal,       (cf. left 
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Figure 4.2), while the frequency of the equivalent shear stress signal,          , 

corresponds to the frequency of the original shear stress signal,       . A higher 

frequency means more load cycles and especially in fatigue analysis the number of 

load cycles is an important quantity, which is another reason why the type of 

equivalent stress should be chosen accordingly to the dominating stress component. 

 

Figure 4.3: Resulting equivalent stress over time signals for the stress signal as 

shown in the left Figure of Figure 4.2 

Since the strength in transverse compressive direction,   
 , is usually much higher 

than the transverse tensional strength,   
 , one may argue whether or not it is 

reasonable to determine an equivalent stress according to equation (4.2). The 

equivalent stress in compression becomes a very large value, which can also be seen 

in Figure 4.3. Furthermore, the fracture angle for fracture mode C is different than the 

fracture angle for fracture mode A and B (cf. subsection 2.1.4) and a stress amplitude 

may not contribute to failure that much. Therefore, an alternative to the equivalent 

transverse stress, where the equivalent stress is always determined based on the stress 

exertion for all fracture modes, may be formulated as follows:  

If a stress state lies in the region of fracture mode   the equivalent transverse stress is 

determined, as it was done before, by projecting the stress state onto the transverse 

stress axis such that the stress exertion remains the same. In case of fracture mode   

or   the equivalent stress is not determined by a transverse stress of same stress 

exertion, but instead the equivalent stress is set equal to the    stress component, see 

Figure 4.4. In order to avoid confusion between the equivalent transverse stress 

according to equations (4.1), (4.2), the alternative equivalent transverse stress is 

labelled as σ    
 . It is determined by the following relations: 
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σ    
           

     for       (4.5) 

σ    
  σ   for       (4.6) 

Thus it is assumed that no interaction between shear stress,    , and transverse stress, 

  , takes place when     . There is no real physical motivation behind this 

formulation, but instead this might be an alternative to the equivalent transverse 

stress,      . Since the equivalent stress in compression will be less for the alternative 

method than for the original one (σ    
        for      , using these two methods 

of computing an equivalent transverse stress, gives the possibility to express the 

influence of compressive stress.  

 

Figure 4.4: Procedure for determining the alternative equivalent transverse stress 

     
  based on three stress states             for different fracture 

modes. The orange line is a line of constant stress exertion, whereas the 

blue, vertical lines are lines of constant transverse stress 

Implementation into the simulation process 

In the current process of fatigue analysis for composites no stress interaction is taken 

into account. As described in chapter 3.2 each stress component is analysed 

separately. A way to apply the method of equivalent stress based on the stress exertion 

to the simulation process is described in the following. Unfortunately, FEMFAT does 

not offer the possibility to control or modify fatigue analyses by using a macro 

programming language or the like as it is possible for most of the finite element 

software. That means that the user has to rely on the functions FEMFAT already 

offers and cannot implement own routines.  

With the procedure described in the following the influence of stress interaction is not 

taken into account for all nodes of the structure but only for a selected node of 

interest. At the beginning the fatigue analysis for composites according to the concept 

of single stress component assessment as described in chapter 3.2 has to be carried 

out. The structure is analysed in this case three times for each stress component 

               separately. This leads to three critical nodes, the nodes with highest 
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damage: One critical node with highest damage for pure   -stressing, one critical 

node for pure   -stressing and one critical node for pure    -stressing. As already 

mentioned, no stress interaction has to be taken into account for damage longitudinal 

to the fibre direction, which would lead to fibre failure. But stress interaction plays a 

role for inter-fibre failure, i.e. the critical nodes for pure   -stressing and pure    -

stressing show a tendency to IFF.  

In order to compute an equivalent stress, the stress state at the critical node has to be 

known. The structure is usually subjected to a time varying stress state, which is 

obtained as a superposition of multiple stress states scaled with different load over 

time signals. The result file of the finite element analysis contains the stress values at 

the elements, which are averaged at the nodes in FEMFAT. Since FEFMAT uses the 

stress data at the nodes, one needs to obtain the nodal stresses from the element 

stresses in the FEA result file. This stress data for each load case can be extracted at 

the nodes with postprocessors, e.g. METAPOST. Table 4.1 shows the superposition 

of nodal stress data             for two load cases. The stress data for each load case 

is a result of a linear FEA and is displayed directly below the stress components in 

Table 4.1. The stress data is then scaled with a variable load over time signal (LTS) 

for each load case and then summed up over all load cases at each time step. 

Table 4.1: Superposition of stress data of a node for two different load cases. The 

stress data is scaled with a corresponding load over time signal (LTS) 

and summed up over each time step. The stress values right below the 

stress components represent the stress values from the linear static FEA 

with unit loading. Units of stress data are N/mm². 

  Load case 1 Load case 2 Sum over load cases 

  LTS σ1(t) σ2(t) τ12(t) LTS σ1(t) σ2(t) τ12(t) σ1(t) σ2(t) τ12(t) 

time 
 

2 1 1,5 
 

1 2 2 3 3 3,5 

1 -10 -20 -10 -15 13 13 26 26 -7 16 11 

2 -22 -44 -22 -33 3 3 6 6 -41 -16 -27 

3 -20 -40 -20 -30 -10 -10 -20 -20 -50 -40 -50 

The sum of stresses of each load case represents the stress state which is present at 

each time step, e.g. during a driving manoeuvre. The resulting transverse and shear 

stress over time signal are highlighted red in Table 4.1. Based on this data the fracture 

mode according to Puck can be determined as well as the stress exertion for each time 

step. Depending on the type of equivalent stress, equations (4.1) – (4.6) are used for 

the computation of the equivalent stress, which is depicted in Table 4.2 for equivalent 

transverse stress,      , alternative equivalent transverse stress, σ    
 , and equivalent 

shear stress,       , respectively. 
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Table 4.2: Illustration of the impact of stress interaction on equivalent stress values. 

Strength data in transverse direction for tension   
         , for 

compression   
           and in transverse longitudinal direction 

           . 

t 

 

Stress   
Fracture 

mode 

according 

to Puck 

Stress 

exertion 

according 

to Puck 

  σ2(t) τ12(t) 

components     
Equivalent 

stress σ2,eq 
Alternative 

equivalent 

stress σ*2,eq 

Equivalent 

stress τ12,eq σ2(t) τ12(t) 
    

    

1 16.0 11.0 

 

A 0.43 

 

16.8 16.8 36.3 

2 -16.0 -27.0 

 

B 0.25 

 

-45.2 -16.0 -22.6 

3 -40.0 -50.0   C 0.44   -78.4 -40.0 -39.2 

In Table 4.2 it can be seen that the absolute value of the equivalent transverse stress, 

     , is always larger than the single    stress component. If one compares the 

equivalent shear stress,      , with the single     component one can observe that for 

fracture mode   and fracture mode   the equivalent stress is lower than the single 

stress component. This implies the fact which was already stated in chapter 2.1.4 that 

the material can sustain higher shear stresses when it is subjected to compression. The 

equivalent stress is then reduced for specific constellations of shear stress and 

compressive transverse stresses. 

In order to take multi-axial stress states into account the idea is to “feed” FEMFAT 

with a respective equivalent stress signal as a load over time signal. In chapter 3 it was 

stated that FEMFAT cannot just process a single stress component, but has to 

compute an FEMFAT internal equivalent stress. In this case the method of min/max 

principal stress is used. This equivalent stress is a FEMAT internal equivalent stress 

and should not be confused with the equivalent transverse, or shear stress to account 

for stress interaction. The principal stresses under plane stress conditions are 

computed as: 

σ     
     

 
 √(

     

 
)
 

 τ    (4.7) 

FEMFAT chooses the principal stress, which has the highest absolute value, as 

equivalent stress. For a stress state, where all stress components are zero, except the 

transverse stress component, given as: 

[
σ τ  
τ  σ 

]  [
  
  

]N mm   (4.8) 

the principal stresses are computed as σ         and σ    . In this case 

FEMFAT would choose σ   N mm , since its absolute value is largest. If this 

stress state is scaled with a load over time signal, the FEFMAT-equivalent stress over 

time signal would be the same as the load over time signal (cf. Chapter 3.1.2). Based 

on this fact, a second fatigue analysis is carried out on a single element FE model. The 

stress state of the single finite element is set to a unity transverse stress state, as shown 

in equation (4.8). This can easily be done by editing the punch-file, which contains the 

stress data and is used as an import into FEMFAT. The input load signal into 

FEMFAT is a simple text-file, which contains one of the equivalent stress over time 
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signals as exemplarily shown in Table 4.2, meaning that the FEMFAT internal 

equivalent stress is equal to the equivalent stress determined according to Puck’s 

stress exertion (     ,      
 , or       ). FEMFAT applies then the rainflow counting 

method to the equivalent stress history in order to determine the number of cycles of 

each rainflow class, which is characterised by a stress amplitude and mean stress. The 

mean stress effects are taken into account by the corresponding constant life diagram. 

When the equivalent shear stress,       , is used as a load over time signal, the 

material for transverse longitudinal direction (“shear material”) has to be used in the 

fatigue analysis in FEMFAT. For the case of running the fatigue analysis with an 

equivalent transverse stress,       or      
 , the material for transverse direction 

(“transverse material”) needs to be used. 

The procedure described above enables the fatigue analysis based on an equivalent 

stress (transverse or shear), which accounts for the interaction between    and    . 

The change of geometry from a complex FE model to a simple one-element model 

has the effect that factors, which are determined by the geometry data, e.g. influence 

of stress gradients, cannot be taken into account since the geometry is different, which 

would lead to different stress gradients. Only one single finite element is considered, 

which has a certain stress state. Averaging this stress state at the nodes would result 

into the same stress state at all nodes and therefore the difference between the nodal 

stress states is zero, which means that the stress gradient is zero too. Nevertheless, no 

influence factors, which are based on the geometry, are taken into account in the 

fatigue analysis in FEMFAT and therefore changing the geometry does not lead to 

different results.  

The described procedure shows how a FEMFAT user can carry out fatigue analysis 

and take multi-axial stress states into account by computing an equivalent stress based 

on the stress exertion. It is summarized in the following: 

1. Carry out a fatigue analysis on a component by using the single stress 

component method for pure transverse stress,   , and pure shear stress,    . 

This will give two critical nodes: one with highest damage for pure transverse 

loading and one for pure shear loading. 

2. Extract nodal stresses for these two nodes from FEA for each load case. 

Multiply stresses of each load case with corresponding load over time signal. 

Sum up stress components over all load cases at each time step.  

3. Based on the superposed stress over time signal, determine fracture mode at 

each time step according to Puck’s theory. 

4. Compute stress exertion at each time step depending on fracture mode. 

5. Determine equivalent transverse stress, equivalent shear stress and/or the 

alternative equivalent transverse stress by using the appropriate equations.  

6. Carry out a fatigue analysis in FEMFAT on a single element FE model with a 

plane stress state: 

[
     
     

]  [
  
  

]    
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And use the max/min principal stress as method for computing FEMFAT 

internal equivalent stress. 

7. Use the respective equivalent stress as a load over time signal. 

8. Use “shear material” when using τ      as load signal, and use “transverse 

material” for      , or      
 , respectively.  

9. Run fatigue analysis and determine “new” damage.  

It should also be mentioned that some load cases exist, at least in theory, where the 

method of equivalent stress according to constant stress exertion leads to 

inappropriate results. One special case occurs when the load is altering only on a 

curve of constant stress exertion for pure positive shear stress or pure negative shear 

stress, as shown in Figure 4.5 for the case of pure positive transverse stressing. The 

orange line is a line of constant stress exertion. Three different stress states 

           have different shear stress and transverse stress components but they result 

into the same stress exertion. Due to the same stress exertion the equivalent shear 

stress would always result into the same value      . According to the equivalent shear 

stress the structure would be loaded by a quasistatic shear stress, with constant mean 

stress                and stress amplitude          , which would not lead to any 

fatigue damage at all, since the stressing is constant and not cyclic.  

 

Figure 4.5: Three different stress states             with same stress exertion        

result into same value of equivalent shear stress        

The same goes for the equivalent transverse stress,      , when the load is altering 

along a curve of constant stress exertion only in the compressive or only in the 

tensional transverse stress region. These fictional loading cases are very constructed 

and the chance of occurrence during the service life of a car is very small. 

Nevertheless, one has to be aware of this behaviour when using this method. 
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4.2 An a posteriori damage interaction method 

A second method suggested by Hahne [2], which uses also the Puck criterion for 

stress interaction, is based on the VDI guideline VDI 2014. The guideline consists of 

three parts and deals with the design and construction of FRP components. The third 

part, “Development of FRP components (fibre-reinforced plastics) Analysis” [24], 

gives recommendations for the analysis of composites and also to some extend for 

fatigue analyses.  

The main idea is that the damage mechanism for static failure and cyclic failure do not 

change significantly and can be assumed to be identical. Therefore, one can apply 

Puck’s failure criteria also to fatigue analyses. The failure criteria for inter-fibre 

failure (IFF) under plane stress conditions can be expressed by three conditions 

depending on the fracture mode, as explained in chapter 2.1.4. These criteria depend 

on the stress state          the pitch factors and the material strength for shear and 

transverse stressing        
    

  . If for example a material is subjected to pure static 

shear stressing, failure occurs when the maximum shear stress is equal to the 

transverse longitudinal material strength,            . In case the material is not 

subjected to a static load but to a cyclic loading, the maximum bearable stress is 

decreasing, depending on the number of repetitions. This decrease as a function of 

number of cycles can be expressed in S-N curves as already described in chapter 2.2.  

This gives the possibility to modify the Puck failure criteria in a way that the static 

material strengths, are replaced by dynamic material strengths, which are obtained 

from S-N curves. Since S-N curves depend not only on the number of cycles to failure 

but also on the stress ratio  , the parameters for dynamic material strength become 

functions of number of load cycles,  , and stress ratio,  . Puck’s failure criteria for 

IFF under plane stress can then be rewritten for the different fracture modes as: 

Fracture mode A  for      

         √(     
   

      

        
)
 

(
      

  
      

)
 

 (
       

        
)
 

    
       

   
 (4.9) 

Fracture mode B  for      and   |
  

   
|  |

   
      

          
| 

         √(
       

        
)
 

 (
   
 

        
      )

 

    
       

        
 (4.10) 

Fracture mode C  for      and   |
   

  
|  |

          

   
      

| 

         [(
       

 (     
 )        

)
 

 (
      

  
      

)
 

]
  

      

(       )
 (4.11) 

The dynamic material strengths are determined from S-N curves and therefore, it is 

required that one S-N curve, typically for a stress ratio     , is available. The 

effect of different stress ratio,  , which is associated with the effect of mean stress, is 

taken into account by using constant life diagrams (CLD).  
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Figure 4.6 depicts the method described above. The fracture curve (        ) for 

static inter-fibre failure under plane stress conditions is shrunk according to 

appropriate S-N curves for transverse and shear stressing. By using this method, 

fracture curves of constant life can be plotted in the         -diagram corresponding 

to equations (4.9) to (4.11). 

 

Figure 4.6: Shrinkage of Puck's failure curve for IFF under plane stress conditions 

according to S-N curves for cyclic shear stressing (right) and cyclic 

transverse stressing (bottom). Figure based on [2] 

Gude et al. used this idea and compared it to multi-axial fatigue tests, where CFRP 

specimens where subjected to superposed shear and transverse stressings at constant 

stress amplitudes. The correlation between multi-axial fatigue testing and prediction 

by shrinkage of the failure curve according to appropriate S-N curves was good and 

therefore they draw the conclusion that the failure curve may be shrunk by appropriate 

S-N curves. [25] 

For a given biaxial, in-phase, cyclic stressing with constant shear stress amplitude,   , 

shear stress ratio,    , and constant transverse stress amplitude,   , transverse stress 

ratio,   , the fracture curve can be shrunk as long as the decreased curve comes in 

contact with the maximum stress peak   (     and       of the loading. This leads 

to the resulting number of cycles to failure. In other words, the equations for IFF have 

to be solved for the number of load cycles,  , which can be done iteratively. In case 

of fracture mode   an explicit solution exist, which reads: 

            
    √(       )

 
 (   

       )
 
 (4.12) 

The dynamic material strength,         , is determined by an S-N curve, which can 

be formulated in a log-log-diagram as: 
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            (  )
  

  (4.13) 

where     is the static material strength,    is the number of cycles to failure and   

the inclination of the S-N curve, which depends on the stress ratio,  . Actually not 

only the dynamic material strength depends on the number of cycles to failure in 

equation (4.9) – (4.11), but also the pitch factors. In order to estimate these parameters 

multi-axial tests need to be carried out, but since no test data is available, it is 

assumed that these factors remain constant. 

Implementation into the simulation process 

In order to apply the method of a posteriori damage interaction, the fatigue analysis by 

using the method of single stress component (see Chapter 3.2) needs to be carried out 

in advance, which gives the two nodes with highest damage due to pure transverse 

stressing and due to pure shear stressing, respectively. As for the stress interaction 

method according to Puck’s theory, only selected nodes can be analysed. In this case 

the procedure is described for analysing the node with the highest damage due to pure 

shear stressing.  

An output result of the FEMFAT analysis is the rainflow matrix of the critical node, 

which contains the number of load cycles for a specific stress amplitude and mean 

stress. It also reveals the rainflow classes, which contribute mostly to the total 

damage. Figure 4.7 shows two rainflow matrices of a critical node as an example. In 

the left matrix the numbers of load cycles for each rainflow class are displayed. In the 

right matrix the damage in percent of the total damage is shown. One can see that in 

terms of number of load cycles a few classes have more than 100 load cycles and 

classes with low stress amplitude are repeated more often than classes with higher 

stress amplitude. But when it comes to contribution to the total damage, only one 

class contributes significantly. The other classes do not contribute at all to the total 

damage.  

 

Figure 4.7: Rainflow matrices for closed load cycles. Left: Number of load cycles for 

each rainflow class. Right: Damage [%] of total damage 
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Hahne [2] suggests a method to account for stress interaction which is described in the 

following paragraphs. It is based on the idea that a load spectra, which consists of 

different rainflow classes, may be reduced to a constant amplitude loading. The shear 

stress amplitude,      , and mean shear stress,      , of this constant amplitude 

loading is determined by the rainflow class with highest partial damage. From the 

obtained mean and amplitude shear stress the stress ratio can be determined. In case 

only one or at least very few rainflow classes are dominating in terms of damage, the 

load spectra can be expressed fairly well by this approximation. The more rainflow 

classes contribute significantly to the total damage, the more uncertain becomes the 

approximation by a constant amplitude loading.  

Since the idea is to express the total load spectra and also the total damage by one 

rainflow class, which is repeated in the original spectra    times, an equivalent 

number of cycles has to be determined, such that the resulting damage of the rainflow 

class is equal to the total damage. That means that the number of cycles for the 

particular rainflow class has to be increased such that the damage of this class is equal 

to the total damage, which can be done by using equation (4.14). 

    
   

     
      (4.14) 

where     is the total damage due to pure shear stressing obtained from the FEMFAT 

analysis,    is the number of cycles of the rainflow class with highest damage 

contribution and      
   is the damage per load cycle of this rainflow class, which is 

also a FEMFAT output and expressed in a rainflow matrix. The total damage in 

transverse longitudinal direction,    , can then be expressed by a constant amplitude 

loading with mean stress       and amplitude stress      , which is repeated     

times. 

The damage in transverse direction,   , needs to be expressed by a single rainflow 

class as well. In order to use the stress interaction diagram it needs to be assumed that 

the transverse damage,   , due to pure transverse stressing is caused for the same 

number of cycles,    . This leads to a number of cycles to failure in transverse 

direction, N   , as: 

N    
   

  
 (4.15) 

By using an appropriate S-N curve and knowing the numbers of cycles to failure, N   , 

the stress amplitude can be determined. The only information missing is the stress 

ratio, which is needed for choosing the correct S-N curve by accounting for mean 

stress effects as illustrated in chapter 2.2.3. Hahne recommends two possibilities. The 

first one is to take the same stress ratio for transverse stressing, as for shear stressing, 

i.e.       . The other possibility is to determine the rainflow class which causes 

the highest partial damage in transverse direction and pick the stress ratio of this class. 

In this Thesis the first option is used. 

Having determined the transverse stress amplitude,     , which causes the damage in 

transverse direction,   , when repeated     times and knowing the shear stress 

amplitude, which causes the damage in shear direction,    , when repeated     times, 

one can use the stress interaction diagram to plot the stress state. To determine the 
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resulting number of cycles to failure,   , the fracture curve has to be shrunk as long as 

it comes in contact with the stress state. This is done by determining the fracture mode 

and solving the corresponding equations (4.9) – (4.11) iteratively for   , or by using 

equation (4.12) in case of fracture mode  . The lowest number of cycles to failure 

gives the final result. 

The steps to account for stress interaction according to the method of a posterior 

damage interaction are listed below: 

1. Carry out a fatigue analysis on a component by using the single stress 

component method for pure transverse stressing,   , and pure shear stressing, 

   . This will give two critical nodes: one with highest damage for pure 

transverse loading and one for pure shear loading. 

The next steps have to be carried out when the node with highest shear damage, 

   , is analysed. When analysing the node with highest transverse damage,   , 

the procedure is carried out analogous. 

2. Determine rainflow class which is largest contributor to the total shear 

damage,    . This will give      ,       and    . 

3. Assume that the total damage is caused by this rainflow class and determine 

the equivalent number of cycles,    , such that the damage due to this 

rainflow class is equal to the total damage (equation (4.14)). 

4. Extract the corresponding transverse damage    for the node with highest 

shear damage,    . 

5. Based on the number of load cycles determined in step 3 and the damage in 

transverse direction,   , compute the number of cycles to failure      

(equation 4.15)). 

6. Determine the stress amplitude,     , which leads to the number of cycle to 

failure,     , obtained in step 5. Therefore, an S-N curve needs to be 

constructed. Take mean stress effects into account by using the constant life 

diagram and assume       . 

7. Having obtained the representing stress amplitudes,      and      , determine 

number of cycles to failure by shrinkage of the fracture curve according to the 

appropriate S-N curves.    has to be determined iteratively. 

8. The resulting damage is then computed as:   
   

  
 

It is possible to analyse also different nodes, than the critical nodes. In order to do 

that, a detailed result groups needs to be defined in FEMFAT, which contains the 

node-ID of interest. FEMFAT provides then also the rainflow matrices for the 

specified node. 
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4.3 Method based on Hashin’s criterion 

One of the first fatigue failure criterions for composites, which distinguished between 

fibre failure and inter-fibre failure under plane stress condition, was proposed by 

Hashin and Rotem in 1973 [5]. They derived the fatigue failure criterion from a static 

failure criterion, which is stated in equation (4.16) – (4.19). 

Fibre failure: 

     
  for        (4.16) 

|  |    
  for        (4.17) 

Inter-fibre failure: 

(
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   for        (4.18) 
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   for        (4.19) 

The criterion for fibre failure depends only on the longitudinal stress,   , and the 

respective material strength,   . In case of inter-fibre failure Hashin and Rotem 

proposed an elliptic equation, which depends on the transverse stress,   , and on the 

transverse-longitudinal stress,    . They assumed that in case of failure due to fatigue 

the same criterion can be used, but instead of using the static material strength a 

fatigue resistance needs to be applied, which depends on the number of cycles,  , and 

the stress ratio,  . 

A method based on this fatigue failure criterion shall be used to account for stress 

interaction in case of inter-fibre failure. It is of simple form and written as:  

(
  

    
)
 

 (
   

     
)
 

      (4.20) 

where      and       are the material fatigue resistances in transverse and transverse-

longitudinal direction, respectively. They can be obtained from S-N curves in the 

following way. If a specimen is subjected to   cycles the fatigue resistance is the 

stress which would lead to failure after   cycles. CV is the computed comparison 

value, which needs to be smaller than one to avoid failure.  

The method shall be used for analyses where a component is subjected to complex 

loadings with variable amplitudes and mean stresses. Since the two previously 

presented methods for accounting of multi-axial stress states are rather complex or 

require a certain degree of manual work, emphasise of this methods lies on providing 

a simple method, which can be applied rather quickly. The idea is to express the 

complex loading as two constant amplitude loadings in transverse direction and shear 

direction similar to the APDI method. The constant amplitude loading in transverse 

direction causes the total damage in transverse direction,   , and the constant 

amplitude loading in shear direction causes the total damage in shear direction,    . 

The two cyclic loadings have a certain number of repetitions, which do not 
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necessarily have to be identical. These numbers of cycles are required to determine 

the fatigue resistances, which can be derived from suitable S-N curves. In order to do 

this the stress ratio of the constant amplitude loading needs to be known and the 

constant life diagram is used to account for mean stress effects.  

 

Implementation into the simulation process 

When analysing the influence of stress interaction with the use of the approach based 

on Hashin’s criterion, the fatigue analysis according to the single stress component 

method has to be carried out before. As described in the previous subsections, this 

will lead to two critical nodes, one node with highest damage when subjected to pure 

shear stressing and one node with highest damage when subjected to pure transverse 

stress. Similar to the a posteriori damage interaction method it is made use of the 

rainflow matrices, which are a FEMFAT output for the critical node. Due to the fact 

that both the rainflow matrices for pure transverse stressing and pure shear stressing 

for the node of interest are required, the fatigue analysis has to be run twice: The first 

time to determine the critical node e.g. due to transverse stressing and the second time 

to determine the respective damage for pure shear stressing at this node. The second 

analysis can be carried out only for the node of interest by defining a detailed result 

group in FEMFAT. This reduces the computational time significantly.  

The first step is to determine the damage equivalent constant amplitude loadings. It 

shall be defined that the rainflow class, which contributes mostly to the damage 

defines the stress amplitude and the mean stress of the constant amplitude loading. 

FEMFAT outputs the damage contribution of all rainflow classes and therefore, this 

quantity is easy to obtain. Since it is seldom that one rainflow class deals 100% of the 

total damage, its number of cycles needs to be increased such that the damage of the 

rainflow class is equal to the total damage, which can be done according to equation 

(4.21):  

          
      

  
 (4.21) 

where        is the total damage,    is the partial damage due to the rainflow class,    

is the number of cycles of the particular rainflow class and    is the scaling factor of 

the driving manoeuvre. It is basically a factor which scales the number of repetitions 

and is going to be explained in more detail in the next chapter.  

The rainflow class is defined by the mean stress and the stress amplitude, which 

allows the computation of the stress ratio  . Knowing the stress ratio enables the 

determination of the S-N curve from the constant life diagram. Hence, the S-N curve 

can be used to establish the fatigue resistance for     cycle. In a last step equation 

(4.20) is used to compute the comparison value and evaluate whether failure occurs or 

not.  

The necessary steps are summarized in the following: 

1. Carry out a fatigue analysis on a component by using the single stress 

component method for pure transverse stress,   , and pure shear stress,    . 
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This will give two critical nodes: one with highest damage for pure transverse 

loading and one for pure shear loading.  

2. In case of analysing the critical node due to pure transverse stressing. Rerun 

fatigue analysis for the critical node when subjected to pure shear stressing to 

obtain the required rainflow matrices for shear loading and vice versa.  

3. From the rainflow classes obtained as a FEMFAT output pick rainflow class 

with highest damage due to pure shear stressing and due to pure shear 

stressing.  

4. Determine the stress ratios, R, of the two rainflow classes.  

5. Determine the equivalent number of cycles for the two rainflow classes 

according to equation (4.21). 

6. Use the stress ratio and the constant life diagram to compute the slopes of the 

two S-N curve for the two stressings.  

7. Determine the fatigue resistance,      and τ    , for the number of cycles 

determined in step 5. 

8. Use equation (4.20) to compute the comparison value,   , and evaluate 

failure. 

One advantage by using this method is that this method is an easy-to-use method. Not 

more material data is needed than the data used for the fatigue analysis. The manual 

work load which is required for the post processing of the results of the fatigue 

analysis is rather small compared to the work load of the previously presented 

methods.  

Three methods to account for stress interaction in fatigue simulation for composite 

were described in this chapter. They are applied to the fatigue analysis of a complete 

vehicle in the following chapter. 
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5 Application to complete vehicle simulation 

In this chapter fatigue analyses are carried out on the CFRP cross member of the 

trimmed body model, which was already introduced in chapter 3. In the first section 

of this chapter the results of the fatigue analysis according to the single stress 

component method are presented. Based on these results, the three multi-axial fatigue 

models for composite material, which were described in chapter 4, are applied. The 

results are compared and discussed at the end of this chapter. 

 

5.1 Single stress component method 

When carrying out a fatigue analysis of composite component by using the single 

stress component method, each layer of the composite and each stress component 

have to be analysed separately. The material of the cross member was defined as an 8-

ply composite, which means it has to be analysed 24 times (8 layers, 3 stress 

components) instead of just one analysis for the original case when the material was 

metal. Furthermore, the trimmed body is subjected to five different driving 

manoeuvres, which are represented by different load over time signals. That means 

that the number of analyses is increased to 120, (5x24). The results, i.e. the damage of 

each driving manoeuvre, are multiplied with a scaling factor. It weights the 

manoeuvres with respect to their occurrence during the service life of the car, such 

that the total service life is represented by the driving manoeuvres. Table 5.1 shows 

the scaling factors for the different driving manoeuvres. The driving manoeuvre 

braking represents a strong braking on asphalt. R4u7 is referred to round four and 

round seven on the testing track EVP (cf. section 3.1.2). The testing track was divided 

into four parts (Pt), where part 1 and part 2 do not contain high lateral accelerations. 

Table 5.1: Driving Manoeuvres and their respective scaling factor, SF 

Braking R4u7 R1u2 R4u7-Pt1 R4u7-Pt2 

33271 3096 3096 1459 4380 

The total damage,       , caused by the different driving manoeuvres is obtained 

according to equation (5.1). The sum of the partial damages,   , of the driving 

manoeuvres, which are multiplied by the scaling factors, SF, gives the total damage.  

       ∑       (5.1) 

At first the FEA has to be carried out to obtain the stress distribution over the cross 

member for each load case. Therefore the complete trimmed body needs to be 

considered in the stress analysis. When it comes to the fatigue analysis of the cross 

member it is sufficient to analyse only the cross member and not the whole trimmed 

body model. The fatigue analysis does only depend on the stress state in each finite 

element and it does not take any boundary conditions of the FEA into account. 

Figure 5.1 shows the total damage plotted over the cross member for layer 101 when 

subjected to pure transverse stressing, i.e. the sum of the partial damages for the 
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different driving manoeuvres multiplied with the respective scaling factors. The 

maximum damage is located in the area surrounded by the red circle and it is of 

magnitude                . A damage less than one implies that no failure occurs, 

but it needs to be mentioned, that the thickness of the cross member was increased 

and the material was simply replaced by a composite with quasi-isotropic layup in 

order to demonstrate the simulation process. It is therefore not a real case and the 

results can only be used for comparison and critical areas can be highlighted. 

 

Figure 5.1: Total damage due to transverse stressing plotted for layer 101 as a 

superposition of five partial damage plots due to driving manoeuvres 

scaled with corresponding scaling factors. 

The highest damage under transverse stressing occurs in layer 108, which is shown in 

Figure 5.2. The maximum damage is              , but it has to be mentioned that 

it occurs in a region, where the cross member is connected to other components via 

rigid body elements (RBEs), as shown in Figure 5.3. At that specific node the 

movement is constrained such that it cannot move independently, which might result 

into numerical singularities. An evaluation of fatigue results at these nodes is not 

recommended. 
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Figure 5.2: Total damage due to transverse stressing plotted for layer 108 as a 

superposition of five partial damage plots due to driving manoeuvres 

scaled with corresponding scaling factors. 

 

Figure 5.3: Connection to the car body represented by RBEs [3] 

Figure 5.4 shows the damage distribution due to shear stressing. In case of pure shear 

stressing the maximum total damage in layer 101 is                   . The red 

circle in Figure 5.4 indicates the area where the highest damage occurs. As for the 

damage plots due to transverse stressing the area in the middle of the cross member 

does not suffer any significant fatigue damage at all and the damage is mostly located 

along the blunted edges of the cross member.  
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Figure 5.4: Total damage due to shear stressing plotted for layer 101 as a 

superposition of five partial damage plots due to driving manoeuvres 

scaled with corresponding scaling factors. 

Scope of this Thesis is to apply different methods to account for stress interaction, 

which is mainly relevant for transverse and shear stressing, but plays a minor role for 

stressing in longitudinal fibre direction. Nevertheless, for the sake of completeness the 

damage plot due to pure longitudinal stressing in layer 101 is shown in Figure 5.5. 

Since the material strength in fibre direction is very high, the damage is rather low 

and the maximum total damage in layer 101 is only                  .  

 

Figure 5.5: Total damage due to longitudinal stressing plotted for layer 101 as a 

linear superposition of five partial damage plots due to driving 

manoeuvres scaled with corresponding scaling factors. 

The damage plots of all layers for the different types of stressing are shown in 

Appendix A1, A2 and A3, respectively.  

The maximum total damage in each layer and the corresponding nodal identification 

number for the case of pure shear stressing and pure transverse stressing, respectively, 

are listed in Table 5.2. Nodes, of which the local stress is influenced by the 
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connection as shown in Figure 5.3, are not taken into account. The highest total 

damage, which is the maximum of the total damages over all layers, is highlighted in 

red and the corresponding node-ID is highlighted in green. For both pure shear and 

transverse stressing the maximum damage occurs in layer 101, but at different nodes: 

Namely, node 1917998 for pure shear stressing and node 1915966 for transverse 

stressing. 

Table 5.2: Maximum total damage due to pure shear and pure transverse stressing in 

each Layer. The maximum damage over all layers is highlighted red 

and the corresponding node-ID is highlighted green 

  Pure shear stressing   Pure transverse stressing 

Layer ID Node- ID Damage       Node-ID Damage    

101 1917998 1,13E-03   1915966 8,30E-02 

102 1917249 4,71E-05   940754 1,82E-03 

103 1918238 6,20E-07   941740 3,20E-02 

104 1918277 4,00E-07   941010 2,30E-04 

105 1918276 4,40E-07   941978 1,23E-05 

106 1918276 1,35E-07   940732 1,51E-02 

107 1918311 5,63E-07   940723 3,36E-02 

108 1918311 4,06E-05   940677 5,32E-02 

The total damage of these two critical nodes are examined in more detail in the 

following. Table 5.3 shows the damage due to pure transverse stressing for the critical 

node (node-ID: 1915966) and layer 101 for each driving manoeuvre. The product of 

the partial damage for each driving manoeuvre and the respective scaling factor adds 

up to the total damage of                  . It is noticeable that the damage of the 

driving manoeuvre R4u7-Pt2 is significantly higher than the other manoeuvres. The 

difference in percent between the total damage,         , and the partial damage due to 

manoeuvre R4u7-Pt2,            , is only 0.006%, which means that nearly all 

damage is caused by the driving manoeuvre R4u7-Pt2. 

Table 5.3: Damage,   , for critical node due to pure transverse stressing for different 

driving manoeuvres. Node-ID: 1915966; Layer-ID: 101 

  Damage    for different driving manoeuvre     

 Manoeuvre Braking R4u7 R1u2 R4u7-Pt1 R4u7-Pt2   Sum damage 

Scaling factor (SF) 33271 3096 3096 1459 4380     

 
              

Partial damage 5,79E-22 1,58E-09 1,02E-12 5,15E-13 1,90E-05 = 1,90E-05 

 Damage   SF 1,93E-17 4,89E-06 3,17E-09 7,51E-10 8,30E-02 = 8,30E-02 

The same can be observed when comparing the damage of the driving manoeuvres for 

the case that the cross member is subjected to pure shear stressing, as shown in 

Table 5.4. The total damage,          , is dominated by the driving manoeuvre R4u7-

Pt2. The relative difference between the total damage and the damage due to 

manoeuvre R4u7-Pt2 is 0.38%. 
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Table 5.4: Damage,    , for critical node due to pure shear stressing for different 

driving manoeuvres. Node-ID: 1917998; Layer ID: 101 

  Damage     for different driving manoeuvre     

 Manoeuvre Braking R4u7 R1u2 R4u7_Pt1 R4u7_Pt2   Sum damage 

Scaling factor (SF) 33271 3096 3096 1459 4380     

 
              

Partial damage 2,38E-15 5,16E-10 1,90E-11 1,79E-09 2,57E-07 = 2,60E-07 

 Damage   SF 7,90E-11 1,60E-06 5,89E-08 2,61E-06 1,13E-03 = 1,13E-03 

Nearly all damage is caused by the driving manoeuvre R4u7-Pt2. The other driving 

manoeuvres do not contribute significantly to the total damage. Therefore, only 

manoeuvre R4u7-Pt2 is taken into account and the other manoeuvres are neglected in 

the following. The stress interaction methods described in chapter 4 are applied to the 

two critical nodes for pure transverse and pure shear stressing in the next sections. 

 

5.2 Stress interaction according to Puck’s theory 

When applying the method of stress interaction according to Puck’s theory the stress 

data at the node of interest has to be read for each load case and scaled by the 

corresponding load over time signal. The resulting stress states over time are summed 

up at each time step, which leads to the effective stress state as a result of the driving 

manoeuvre. Only the driving manoeuvre R4u7-Pt2 is considered, since it causes 

nearly all damage. The whole driving manoeuvre last almost 100 seconds and the 

forces are gathered with a frequency of 313Hz, which leads to a total number of 

30849 time steps. Figure 5.6 shows the stress states varying over time in a       -

diagram for the node 1917998. 
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Figure 5.6: Stress states plotted in the stress interaction diagram at each time step for 

node 1917998 (node with highest damage due to pure shear stressing) 

when subjected to the driving manoeuvre R4u7-Pt2 

The maximum shear stress is approximately                . At this point in 

time the node is also subjected to the largest transverse stress, which is  

             . The Figure gives the possibility to estimate the degree of multi-

axiality and whether the stressing is dominated by shear or transverse stressing. In this 

case the shear stress is dominating, but the material strength, which differs for the 

shear and transverse direction, has to be kept in mind. Therefore, it is sometimes 

useful to normalize the axes by its respective material strengths. The material strength 

in transverse tensional direction is   
         , whereas the material strength in 

transverse longitudinal direction is            . That means that the maximum 

transverse stress is approximately 20% of the material strength,   
 , and the maximum 

shear stress 27% of    . Based on this stress plot the fracture mode and the stress 

exertion according to Puck’s criterion for static failure can be determined for each 

stress state. Most of the stress states lie in the region of fracture mode A, namely 

26080. Fracture mode B appears in 4578 of the cases and fracture mode C is only 191 

times present. This information is then used to compute an equivalent stress.  

Three possibilities of computing an equivalent stress were proposed by Hahne [2]. It 

was suggested to use the equivalent shear stress method, when the loading is 

dominated by shear stresses. Figure 5.7 compares the equivalent shear stress,       , 

with the single shear stress component,    . The difference between the two curves is 

due to the transverse stress,   , which is taken into account in the equivalent stress, 

      . The maximum of the equivalent stress is               , whereas the 

maximum of the shear stress is          . This increase in stress leads to a 

shortened fatigue life, or in other words to a higher damage. 
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Figure 5.7: Comparison of the shear stress over time signal,     (blue), and the 

equivalent shear stress over time signal,        (red,) for node 1917998 

A comparison between the equivalent shear stress,       , and the equivalent 

transverse stress,      , is not meaningful, since they are evaluated for different 

material properties. When the equivalent transverse stress over time signal is used for 

the fatigue assessment the material in transverse direction is used and vice versa. 

The different stress over time signals, equivalent stresses as well as single stress 

components, are applied to a single finite element model, as described in section 4.1. 

The resulting damages are given in Table 5.5, where the scaling factor for the driving 

manoeuvre is already considered. 

Table 5.5: Comparison of total damage due to driving manoeuvre R4u7-Pt2 for node 

1917998 according to the method of single stress component and to the 

method of equivalent stress according to Puck’s theory 

Single stress component method Equivalent stress according to Puck’s theory 

                         
  

                                                  

According to the single stress component method the damage due to pure shear 

stressing is               and for pure transverse stressing             . 

The damage in transverse stressing is lower since the loading was dominated by shear 

stressing as shown in Figure 5.6. If fatigue assessment is carried out by using an 

equivalent stress the resulting damage is higher than the damages computed according 

to the single stress component method. The highest damage is computed for the case 

of equivalent shear stress,       . The damage,       , is nearly 20 times higher than 
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the damage due to pure shear stressing,    . An equivalent transverse stress gives 

slightly less damage. The factor between damage due to        and damage due to 

      is around 2.5, which is rather small in fatigue analysis. When using the 

alternative transverse stress the resulting damage,      
 , is only twice as high as the 

damage due to pure shear stressing,    .  

The damage due to pure shear stressing, when applied to a single finite element, is 

slightly lower than the damage determined by FEFMAT, when the whole cross 

member is analysed               versus              . The difference is 

approximately 10%, but actually they should be the same, since they are both based 

on the same stress signal, i.e. the pure shear component,    . To investigate the reason 

for this behaviour a comparison of the FEFMAT internal equivalent stress is 

conducted. Figure 5.8 shows the FEMFAT internal equivalent stress for the critical 

node 1917998, when subjected to pure shear stressing in the analysis of the cross 

member. In Figure 5.9 the FEFMAT internal equivalent stress for the single finite 

element subjected under pure shear stress is displayed. No difference between the two 

equivalent stresses is visible at a first glance, but when comparing the maximum 

values of both equivalent stress histories a small difference can be observed. The 

maximum of the FEFMAT internal equivalent stress in the analysis of the cross 

member is               , whereas the maximum value for the analysis of the 

single finite element is               . The difference is small but leads to 

different result in the fatigue analysis.  

One reason for this behaviour may be explained by the change of the geometry. 

FEMFAT averages the element stress at the nodes and transforms the stress data into 

the global coordinate system. In the stress tensor of the element coordinate system 

only one element of the stress tensor was unequal zero, the transverse stress 

component   . The stress transformation into the global coordinate system leads to 

the fact, that depending on the transformation, all elements are non-zero. Until now 

the difference in damage is rather low and this phenomenon is neglected, but further 

research should be carried out to find the reason for this behaviour. 
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Figure 5.8: FEMFAT internal equivalent stress for the analysis of the cross member 

according to the single stress component method for pure shear 

stressing. 

 

Figure 5.9: FEMFAT internal equivalent stress for the analysis of the single finite 

element according to the single stress component method for pure shear 

stressing 
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The same procedure can be carried out for node 1915966, the node with highest 

damage when subjected to pure transverse stressing. As for the node with highest 

shear damage,          , the varying stress states over time are plotted in a       -

diagram in Figure 5.10 to get an idea of the loading. The transverse stress is 

dominating for this case, which is not surprising since the node with highest damage 

in transverse direction is analysed. The maximum transverse stress in tension is 

      
          and       

          in compression. The shear stress is 

bounded by the values            and            . Again fracture mode A 

occurs most often, 20951 times, followed by fracture mode B (6145 times) and 

mode C (3753 times). 

 

Figure 5.10: Stress states plotted in the stress interaction diagram at each time step 

for node 1915966 (node with highest damage due to pure transverse 

stressing) when subjected to the driving manoeuvre R4u7-Pt2 

When comparing the transverse stress,   , with the equivalent transverse stress,      , 

as shown in Figure 5.9, it can be seen that the differences between the two stress 

histories are minor in tension and only noticeable in compression. The influence of 

shear stress on the maximum transverse stress peak is very low. The maximum 

transverse stress is                     , whereas the maximum equivalent 

transverse stress is                     . The fatigue life in transverse direction 

is more sensitive to tensional stress than to compressive stress. Since the difference 

between the two stress histories is rather small in tension, it can be expected, that the 

damage due to the two different histories is also rather small. 
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Figure 5.11: Comparison of the shear stress over time signal,     (blue), and the 

equivalent shear stress over time signal,        (red,) for node 1915966 

Table 5.6 compares the total damage for the single stress component method and the 

damage due to an equivalent stress, when the scaling factors are taken into account. 

As expected, the damage due to equivalent transverse stress,                , is 

only slightly higher than the damage due to pure transverse stressing,         
    . The difference between the transverse damage,     and the damage due to the 

alternative equivalent stress,      
  is even less. The alternative equivalent stress is 

generated equally to the single stress component for compressive stresses. The only 

difference is in tension, where the alternative equivalent stress is computed by an 

equivalent stress exertion, instead of using the transverse stress component (cf. 

chapter 4.1). The highest damage is computed when the equivalent shear stress 

component,       , is used, which is                  and thus approximately five 

times higher than the damage due to the equivalent transverse stress,      .  

Table 5.6: Comparison of total damage due to driving manoeuvre R4u7-Pt2 for node 

1915966 according to the method of single stress component and to the 

method of equivalent stress according to Puck’s theory 

Single stress component method Equivalent stress according to Puck’s theory 
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Again there is a difference in damage when carrying out the fatigue analysis for the 

single stress component method on a single finite element model and on the cross 

member. The damage due to pure transverse stressing when analysing the whole cross 

member is              (see Table 5.3). If the transverse stress is applied to the 

single element model, the damage is slightly increased to             , which is 

less than 10%.  

 

5.3 An a posteriori damage interaction method 

According to the a posteriori damage interaction method as described in chapter 4.2 a 

complex load spectrum is reduced to a damage equivalent constant amplitude loading 

in transverse and shear direction. Again the two critical nodes for pure shear stressing 

(node ID: 1917998) and pure transverse stressing (node ID: 1915966) are analysed. At 

first the critical node due to pure shear stressing is analysed. The rainflow matrices for 

the loading spectra in terms of number of cycles are displayed in Figure 5.12, which 

are resulting from the fatigue analysis of the cross member by using the single stress 

component method. The left rainflow matrix depicts the number of closed load cycles, 

whereas the right rainflow matrix shows the number of residua. The colour of the bars 

illustrates the contribution to the total damage, where red means high damage 

contribution and blue low contribution.  

 

Figure 5.12: Rainflow matrices for node 1917998 of the analysis of the cross member 

according to the single stress component method (pure shear stressing). 

Left: closed load cycles. Right: residua 

The header of the rainflow matrix gives information how much damage is caused by 

closed load cycles and how much damage is caused by residua. In this case 97.5% of 

the total damage is caused by residua and only 2.5% is caused by closed load cycles. 

Hahne [2] suggested that the class with highest damage determines the mean and 

amplitude stress of the equivalent constant amplitude loading. In this case the rainflow 

class with highest damage is a residuum and has an amplitude stress of  

             and a mean stress of            , which leads to a shear 
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stress ratio of           . This rainflow class causes 70.2% of the total damage 

and is repeated one time, but since it is a residuum and the FEFMAT analysis was run 

with a residuum factor of 0.5 the actual number of cycles is      . The next step is 

to determine the equivalent number of cycles,    , such that this rainflow class causes 

100% of the total damage. This can be obtained by using equation (4.23) or by simple 

calculation of percentage. In this case the equivalent number of cycles is         . 

Based on this number of cycles an equivalent transverse loading with stress amplitude 

     , and mean stress      , needs to be determined, which causes the complete 

transverse damage,   . In this case the damage due to pure transverse stressing is 

             . Knowing the damage and the equivalent number of cycles,    , 

the number of cycles to failure can be computed as    
   

  
        . The stress 

ratio of the constant amplitude loading in transverse direction should be per definition 

equal to the stress ratio of the constant amplitude loading in shear direction, i.e. 

      . By using the constant life diagram for transverse direction and the S-N 

curve, the stress amplitude can be computed. The resulting stress amplitude is 

              , which leads to a mean stress of               . The 

equivalent transverse stress,    , and the equivalent shear stress,    , can be plotted in 

a     diagram as shown in Figure 5.13. It is assumed that the transverse stress and 

the shear stress amplitude are acting in-phase.  

 

Figure 5.13: Equivalent constant stress amplitude signal (red) plotted in the 

interaction diagram for static inter-fibre failure for node 1917998. The 

black dashed line indicates the border from failure mode B to mode C. 
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When shrinking the failure curve, the cross member would fail in failure mode A and 

therefore, the equation for fracture mode A (cf. equation (4.9)) needs to be solved for 

the number of cycles to failure as described in chapter 4.2. It has to be kept in mind 

that the equation uses the stress maxima        and        , i.e. the sum of amplitude 

and mean stress. This results into            , which leads to a damage of 

  
   

  
           and when multiplied with the scaling factor for driving 

manoeuvre R4u7-Pt2 the resulting damage is            . 

The same procedure can be carried out for the critical node due to pure transverse 

stressing. The rainflow matrices in Figure 5.14 show the number of load cases of each 

rainflow class and also their partial damage in per cent of the total damage. Nearly all 

damage is caused by residua, namely 99.5% and only 0.5% of the total damage is due 

to closed load cycles. The rainflow class with highest partial damage contributes with 

45.8%. Its stress amplitude is                 and the mean stress is of 

magnitude               , which means that the stress ratio is         . The 

rainflow class with highest damage contribution is repeated one time and since it is a 

residuum it is considered as half a cycle,      . This leads to an equivalent number 

of cycles        .  

 

Figure 5.14: Rainflow matrices for node 1915966 of the analysis of the cross member 

according to the single stress component method (pure transverse 

stressing). Left: closed load cycles. Right: residua. 

Knowing the damage in shear direction and the equivalent number of cycles, the total 

numbers of cycles to failure can be computed as    
   

   
         . The number 

of cycles to failure is below the knee point of the S-N curve (      ) and therefore 

the rule of Miner modified has to be applied. Using the CLD for shear stressing as 

well as the stress ratio              an appropriate S-N curve can be 

determined, which can then be used together with the number of cycles to failure,   , 

to determine the shear stress amplitude as                and a corresponding 

mean stress as               . Figure 5.15 shows the constant amplitude 

loadings,     and     when plotted in a     diagram. It is assumed that both 
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loadings are in-phase. The Figure displays also the fracture curve for static failure and 

the regions of different fracture modes. The equivalent loading lies mostly within the 

region of fracture mode A, but also in the area of fracture mode C. Solving the 

equation for fracture mode A for    gives the number of failure           , which 

corresponds to a damage of     
   

  
          . The driving manoeuvre R4u7-

Pt2 is repeated 4380 times and therefore the resulting damage is             and 

is fairly close to one, which means that failure almost occurs in that case.  

 

Figure 5.15: Equivalent constant stress amplitude signal (red) plotted in the 

interaction diagram for static inter-fibre failure for node 1915966. The 

black dashed line indicates the border from failure mode B to mode C. 

One feature of the APDI shall be briefly discussed in the following. It is assumed, that 

the equivalent transverse stress and shear stress are acting in-phase. This assumption 

is quiet substantial, when it comes to determination of the final damage as illustrated 

in Figure 5.16. The Figure on the left shows the constant amplitude stressing when 

both, shear stress and transverse stress, are acting in-phase. On the other hand, the 

Figure to the right depicts the loading, when transverse stress and shear stress are 

acting 180° out-of-phase.  

If the fracture curve was shrunk for increasing number of cycles, the fracture curve 

would first come into contact with the maximum stress peak in the left Figure, which 

results in a damage of               . In case of an out-of-phase loading failure 

would occur in mode B and the total damage would be of magnitude  

              , which is significantly lower. It is not possible to obtain any 

information about the phase of the loadings from the rainflow matrices. Therefore, it 
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is essential to visualize the loading in a    -diagram in order to draw conclusions 

whether or not the assumption of in-phase loading leads to highest damage or if 

different phase angles may exist, which lead to more conservative results compared to 

the results of in-phase loading. 

  

Figure 5.16: Equivalent constant stress amplitude signal (red) according to the a 

posteriori damage interaction method for node 1917998. Left: When 

assuming that equivalent transverse stress and shear stress are in-

phase. Right: When assuming that equivalent transverse stress and 

shear stress are 180° out-of-phase. 

 

5.4 Method based on Hashin’s criterion 

In the approach based on Hashin’s failure criterion the load spectrum is reduced to a 

single constant transverse stress amplitude and shear stress amplitude loading. The 

mean stress and stress amplitude of these constant amplitude loadings are determined 

by the rainflow classes, which lead to the highest partial damage. Quiet many rainflow 

classes are present during the driving manoeuvre, but only few of them contribute 

significantly to the total damage. The critical node due to pure shear stressing, namely 

node 1917998, is analysed first.  

From the rainflow matrix as shown in Figure 5.12 the rainflow classes with highest 

partial damage can be determined. It causes 70.2% of the total damage. Its mean stress 

is           and its amplitude stress is           , which leads to a stress 

ratio of        . The class is a residuum and is acting        times. When 

taking the scaling factor of         into account and the fact, that the class causes 

70.2% of the total damage, an equivalent number of cycles according to 

equation (4.21) can be determined to be         . Using the determined stress 

ratio and the constant life diagram for shear stressing an S-N curve can be determined. 

Its slope parameter is equal to       . The equivalent number of cycles,    , leads 

to a fatigue resistance of              .  

Similar to the computation of an equivalent constant amplitude load in transverse-

longitudinal direction, one can compute a constant amplitude load in transverse 

direction. The rainflow class with highest damage in transverse direction is of stress 
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amplitude             and mean stress            , which leads to a stress 

ratio of        . The damage contribution of this rainflow class is 41.1% and it is 

repeated 0.5 times. Therefore, the equivalent number of load cycles is          

resulting in a fatigue resistance of             . All relevant values of the 

constant amplitude stressings are summarized in Table 5.7. 

Table 5.7: Parameters of constant amplitude loading for analysis of node 1917998 

(node with highest damage due to pure shear stressing) 

Type Amplitude Mean          Resistance 

  19.6 4.5 -0.63 11.2 3120      

  7.0 1.3 -0.69 12.9 5334      

Using the computed fatigue resistance and the stress amplitudes as shown in Table 5.7 

the comparison value can be computed according to equation (4.20), which is 

        and hence smaller than one. Failure does therefore not occur. Accounting 

for multiple repetitions of a driving manoeuvre cannot be done by multiplying the 

comparison value by a scaling factor, since CV does not scale linearly with the 

number of repetition. Hence it needs to be considered in    . 

The same procedure can be applied to the node which shows highest damage due to 

pure transverse stressing, node 1915966. Table 5.8 shows the relevant quantities 

which lead to a comparison value of        , which is lower, but very close to one.  

Table 5.8: Parameters of constant amplitude loading for analysis of node 1915966 

(node with highest damage due to pure shear stressing) 

Type Amplitude Mean          Resistance 

  6.5 -1.2 -1.47 11.0 2894      

  13.5 5.3 -0.44 13.5 4782      

The results of the fatigue simulation by using the concept of single stress component 

as well as by applying the three models for accounting for multi-axial stressings are 

summarized and discussed in the following subchapter. 

 

5.5 Summary 

The results of the fatigue analysis by using the single stress component method 

(SSCM) and by applying the three multi-axial fatigue models for composites are 

given in Table 5.9 for node 1917998. First of all, it can be seen that the resulting 

damage is always higher when stress interaction is taken into account.  
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When using the method of equivalent stress according to constant stress exertion, it 

was suggested that the equivalent stress is used in accordance with the dominating 

stress component, i.e. in the case of node 1917998 failure should be evaluated 

according to the equivalent damage       . The damage is almost 20 times higher than 

the damage due to pure shear stressing,    . Furthermore, it is surprisingly close to 

the damage determined by the a posteriori damage interaction (APDI) method,    , 

which is only slightly higher. 

The fatigue assessment based on Hashin’s approach (MBHA) gives highest value, but 

CV is not a damage and it cannot directly compared to the damages, since it does not 

scale linearly with number of repetitions. Instead, the increase of number of cycles 

reduces the fatigue resistance according to the slope of the equivalent S-N curve, 

which leads to an increase of CV. 

Table 5.9: Comparison of the total fatigue damage for node 1917998, the node with 

highest damage when subjected to pure shear stressing 

SSCM 
Equivalent stress according to 

constant stress exertion 
APDI MBHA 

                         
         

                                                                      

Table 5.10 summarizes the results of the fatigue assessment when analysing node 

1915966, the node with highest damage when subjected to pure transverse stress. 

Accounting for stress interaction leads to higher damages, than by using the single 

stress component method, where no stress interaction is taken in account. In case of 

evaluating the fatigue life by using the equivalent stress according to constant stress 

exertion the equivalent transverse damage,      , should be used, since the loading is 

dominated by transverse stresses. The difference between       and the damage due 

to pure transverse stressing,   , is rather small. The reason for this is the fact, that the 

shear stressing at this node is very low, which can be seen by the damage due to pure 

shear,    , and therefore the shear stress does not influence the equivalent 

damage,      , much. The APDI method gives 5-6 times higher damage than the pure 

transverse stress method and is three times higher than      . 

Table 5.10: Comparison of the fatigue damage for node 1915966, the node with 

highest damage when subjected to pure transverse stressing 

SSCM 
Equivalent stress according to 

constant stress exertion 
APDI MBHA 
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It needs to be kept in mind, that only two nodes of the cross member were analysed 

with respect to stress interaction. There is the possibility that nodes exist which were 

not critical when using the single stress component method, but would possess the 

highest damage when stress interaction is taken into account. The APDI method and 

the MBHA require an a priori fatigue analysis according to the SSCM. The method of 

equivalent stress according to constant stress exertion does not necessarily require a 

fatigue analysis. On the other hand the effort for carrying out this method is larger 

compared to the other two methods. 

Does failure occur, or does the component withstand the loading? This question 

cannot be answered exactly. From a numerical point of view, failure does not occur, 

since the damage or the comparison value, CV, is always lower than one. 

Experimental results would be beneficial to estimate which method predicts the 

fatigue life best or if all methods over- or underpredict the fatigue life. 

In the last chapter of this Thesis conclusions, which are drawn from the results of this 

investigation, are presented and recommendation how these methods can be applied to 

the simulation process at AUDI are given. Finally a brief outlook is given where 

improvement is required and next possible steps for the continuation of this work are 

suggested. 
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6 Conclusions and Future Work 

In the current simulation processes at AUDI AG the software FEMFAT is used to 

evaluate the fatigue life of components. FEMFAT does not support the analysis of 

endless fibre composites and therefore a work-around is made, where each stress 

component is analysed separately. This allows accounting for the anisotropic material 

behaviour of composites by using different material properties for longitudinal and 

transverse fibre direction as well as for transverse longitudinal shear direction. On the 

other hand, analysing each stress component separately is a major drawback, since it 

is contradictory to the failure theory of composites, i.e. the multi-axiality of the stress 

state needs to be taken into account for the case of inter-fibre failure in order to obtain 

reliable results. 

Aim of this Thesis was to improve the simulation process in terms of validity by 

applying three methods of stress interaction to a fatigue analysis of a composite 

component. Two methods are based on Puck’s failure criteria, where the first method 

is applied a priori by computing an equivalent stress at every time step on the basis of 

constant stress exertion. The second method is applied a posteriori, which means that 

the fatigue analysis is conducted by analysing each stress component separately. 

These results are then used to account for stress interaction. The third method, which 

is also carried out a posteriori, uses an elliptical equation for accounting for multi-

axial stress states and was proposed by Hashin in its original form.  

The obtained results of the analyses showed, that taking stress interaction into account 

always led to higher damage results in the investigations within this Thesis. Due to the 

fact that the a priori method of computing an equivalent stress takes stress interaction 

at every time step into account, it may be assumed, that the results of this method 

represent the physical behaviour of composites best. Therefore, this method should be 

preferred. Depending on the degree of multi-axiality the resulting damage was up to 

20 times higher than the damage determined by the single stress component method. 

This is a quiet substantial number, which underlines the importance of accounting for 

stress interaction in multi-axial fatigue analysis. 

The a posteriori damage interaction (APDI) method carries out the stress interaction at 

the end of the fatigue analysis. It can be understood as an interaction between the 

damages in shear and transverse direction. Based on the results of the fatigue analysis 

it computes an equivalent constant amplitude loading. This loading is determined by 

the rainflow class, which causes the highest partial damage. This assumption becomes 

the better the higher the damage contribution of the specific rainflow class is and may 

be inaccurate when the damage is dominated by many rainflow classes. Furthermore, 

it was shown that the assumption of in-phase loading between the damage equivalent 

shear stress and the damage equivalent transverse stress has a major influence on the 

resulting damage.  

When comparing the manual and computational effort between the method based on 

Hashin’s approach and the APDI method, one could notice that the APDI method 

required higher effort. Compared to the whole work load of carrying out the fatigue 

analysis, the difference was rather small. Since the APDI method is based on Puck’s 

failure criterion and it computes a damage, which can be more easily compared, it is 
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suggested to use the APDI method as a preferred method for an a posteriori 

assessment.  

In general the manual effort to carry out the fatigue analysis by analysing each layer 

and each stress component separately is high and therefore, automation of the process 

to some extent would be beneficial. By taking stress interaction into account the 

simulation results can be used to point out critical regions of the component more 

reliable than before, but whether the computed damage is conservative or non-

conservative and which of the three methods give most accurate results cannot exactly 

be answered. Therefore, experimental results of specimens subjected to shear and 

transverse stressing are required in order to validate the different models. These tests 

could be carried out on filament wound tubular specimens, with fibre orientation in 

circumferential direction, subjected to tension and torsion. 
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Appendix 

A1: DAMAGE PLOTS DUE TO PURE TRANSVERSE STRESSING 
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A2: DAMAGE PLOTS DUE TO PURE SHEAR STRESSING 
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A3: DAMAGE PLOTS DUE TO PURE LONGITUDINAL STRESSING 
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A4: MATERIAL DATA FOR CFRP 

 

Parameter Value Units 

   134450 N/mm² 

   8640 N/mm² 

   8640 N/mm² 

    5800 N/mm² 

    5800 N/mm² 

    3085 N/mm² 

    0.3  

    0.3  

    0.4  

   
  1000 N/mm² 

   
  1500 N/mm² 

    90 N/mm² 

    90 N/mm² 

   
  180 N/mm² 

   
  39 N/mm² 

    72.49 N/mm² 

   
  180 N/mm² 

   
  39 N/mm² 

 


