
Re S

Extending web applications to mobile platforms: a

software engineering view

Master of Science Thesis in the Programme Software Engineering and

Technology

CAN PESKERSOY

MALEEKANYA TANINTARA-ART

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, January 2013

2

The Authors grant to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose make

it accessible on the Internet.

The Authors warrant that they are the authors of the Work, and warrant that the Work does

not contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), inform the third party about this agreement. If the Authors have

signed a copyright agreement with a third party regarding the Work, the Authors warrant

hereby that they have obtained any necessary permission from this third party to let Chalmers

University of Technology and University of Gothenburg store the Work electronically and

make it accessible on the Internet.

Customer Relationship Management application for mobile platforms

CAN PESKERSOY

MALEEKANYA TANINTARA-ART

© CAN PESKERSOY, 2012.

© MALEEKANYA TANINTARA-ART, 2012.

Supervisor: Sally A. McKee

Examiner: Sven-Arne Andréasson

Department of Computer Science and Information Technology

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0) 31-772 1000

Cover:

QBIS CRM application logo

©QLogic AB, 2012.

Department of Computer Science and Engineering

Göteborg, Sweden

3

Acknowledgments

First and foremost, we would like to thank Andrew Johnston for providing continuous

support and supervision for our thesis. Also we would like to express our deepest

gratitude to our supervisor, Sally A. McKee, for her valuable advice and suggestions

which have provided guidance throughout the writing of thesis.

We are indebted to our families for their endless support and encouragement during

all academic life

Last, but not least, we thank all the people who helped us to succeed with our thesis,

especially employees of QLogic AB for being hospitable and kindly.

4

Abstract

The purpose of this master thesis is to investigate the problems and solutions for a

company who wants to expand their applications onto mobiles. It is important for the

company if they can find the faster way to develop the same system onto mobile

apps, what artifacts can be used in common and what can be reused. Even

smartphones have ability to work almost like PC but they also have many limitations

such as screen size, limited resources like RAM, disk, and battery. How can we

compromise the full data context with those limitations? In this master thesis, we

have studied all perspectives in the software engineering area and come up with

problems and solutions through the real implementation of mobile apps. We have

learned that a project plan and organization involvement at the beginning is crucial

because the decision on the target market, software architecture, offline/ online

necessity affects a lot later on in the implementation phase. We have found out that a

large extent on the reuse is based on the software architecture and design pattern.

The tradeoff between using the same design pattern and different mobile

frameworks’ best fits design patterns is a one interesting future study topic. A testing

coverage is also one topic that we have found out needed because a mobile app

needs more considerations than a traditional application.

5

Glossary

CRM: Customer Relation Management

SDK: Software Development Kit

API: Application Programming Interface

RUP: Rational Unified Process

UML: Unified Modeling Language

ADT Plugin: Android Development Tools Plugin

SOA: Service Oriented Architecture

WSDL: Web Services Descriptive Languages

SOAP: Simple Object Access Protocol

REST: REpresentational State Transfer

MVC: Model-View-Controller

GPS: Global Positioning System

OS: Operation System

UI: User Interface

HTTP: Hypertext Transfer Protocol

XML: Extensible Markup Language

GUI: Graphic User Interface

IDE: Integrated Drive Electronics

6

Table of Contents

ACKNOWLEDGMENTS .. 3

ABSTRACT .. 4

GLOSSARY ... 5

TABLE OF CONTENTS ... 6

1. INTRODUCTION ... 8

2. BACKGROUND ... 10

2.1. CUSTOMER RELATIONSHIP MANAGEMENT (CRM).. 10

2.2. QBIS CRM .. 11

2.3. MOBILE PLATFORMS ... 11

2.3.1. IOS ... 11

2.3.1.1. Architecture .. 12

2.3.1.2. Software Development Kit ... 13

2.3.1.3. Gestures .. 13

2.3.2. ANDROID ... 15

2.3.2.1. Architecture .. 15

2.3.2.2. Gestures .. 16

2.3.2.3. Platform, Tools ... 18

2.3.2.4. Version History .. 18

3. METHODS & ANALYSIS .. 20

3.1. DEVELOPMENT PROCESS .. 20

3.2. REQUIREMENT ELICITATION TECHNIQUES .. 21

3.3. TESTING METHODS ... 22

3.4.1 UNIT TESTING ... 22

3.4.2 SYSTEM TESTING .. 22

3.4.3 ACCEPTANCE TESTING .. 23

3.4. ARCHITECTURE .. 23

3.5.1 SERVICE ORIENTED ARCHITECTURE .. 23

3.5.2 SOAP VS. REST .. 24

3.5.3 DESIGN PATTERNS .. 25

4. DESIGN & IMPLEMENTATION .. 27

4.1. ITERATION 1: INCEPTION PHASE .. 28

4.1.1. WORLD MARKET RESEARCH ... 28

4.1.2. SWEDEN MARKET RESEARCH ... 29

4.1.3. ANDROID VERISON SELECTION FOR THE BEST MARKET RESULT 30

4.1.4. IPHONE VERSION SELECTION FOR THE BEST MARKET RESULT 31

4.2. ITERATION 2: ELABORATION PHASE .. 32

4.2.1. REUSABILITY .. 32

7

4.2.1.1. Project Overview .. 33

4.2.1.2. UML Reuse .. 34

4.2.1.3. Database Reuse .. 35

4.2.2. SYSTEM ARCHITECTURE AND DESIGN PATTERNS .. 37

4.2.2.1. QBIS Architecture and Communications ... 37

4.2.2.2. Web Service Reuse ... 39

4.2.2.3. Best fits Design Patterns in iPhone and Android ... 39

4.2.2.4. The Model-View-Controller Design Pattern (MVC) .. 40

4.2.2.5. The Model-View-Presenter Design Pattern (MVP) .. 41

4.2.3. USER EXPERIENCE (GUI) ... 42

4.2.3.1. Comparing Attributes with Competitors ... 42

4.2.3.2. Interviewing .. 43

4.2.3.3. Prototyping ... 43

4.2.4. FINAL PRODUCTS ... 46

4.3. ITERATION 3: CONSTRUCTION PHASE .. 49

4.3.1. SYNCHRONIZATION ... 49

4.3.2. UNIT TESTING .. 51

4.3.2.1. SenTestingKit (OCUnit) ... 51

4.3.2.2. Android Testing Framework (JUnit) ... 52

4.4. ITERATION 4: TRANSITION PHASE .. 53

4.4.1. USER VALIDATION (APPLYING ACCEPTANCE TESTING)... 54

4.4.2. DISTRIBUTE THE APPLICATIONS .. 55

4.4.2.1. App Store ... 55

4.4.2.2. Android Markets ... 56

4.4.3. ONLINE HELP ... 56

5. DISCUSSION ... 57

6. CONCLUSION ... 60

6.1. MOBILE APPLICATION DEVELOPMENT ... 60

6.2. FUTURE WORK ... 61

7. REFERENCES .. 62

8

1. Introduction

In order to increase sales, many companies are choosing to extend their desktop

applications to the Internet. Also, the increasing popularity of cloud computing

services in recent years has encouraged the software companies to provide all

computations, software applications, data access, and data management to

customers such that the customers have to pay only for the services they use. We

call this kind of service web-hosted software solutions, which are often referred to as

Software as a Service (SaaS). [Pragyaan_IT_June2011]

QLogic AB, the company we are doing master thesis with, has also seen this

opportunity. They have marketed QBIS, a suite of intelligent web-based business

modules online for many modules, for example Time Reporting, Project

Management, CRM (Customer Relationship Management) and Service Desk since

2001.

Along with growing cloud computing and web-hosted software, the introduction of

smartphones platforms like Apple iPhone or Google’s Android has also caught

attention of SaaS companies, including QLogic AB, since the smartphones are

capable of general-purpose computing (we can call them the next PCs), so they are

able to provide solutions like web-hosting does. [Pro-Android] So, QLogic AB decided

to take a step toward this chance as well. Considering the smartphones’ market

share and the usage of QBIS target customers, QLogic AB chose to start extending

their QBIS web suite onto smartphones with a CRM module.

There is quite a big opportunity for many companies who are SaaS providers (or

becoming SaaS providers) to gain more profits by extending their application to

smartphones. We as software engineer students have dedicated this master thesis to

finding out solutions to guide the companies in deciding what kind of considerations

should be taken into account and also what possible solutions exist before they start

to extend their applications onto mobiles. We address the following questions:

Q1) What kind of problems should be considered when companies want to extend

their existing application to mobile client applications (from a software engineering

perspective)?

Q2) Considering the whole software development process, what significant artifacts

can be used in common when it comes to developing one system on two platforms

(in order to reduce cost of implementation)?

Q3) What constraints should be used to decide the graphic user interface context

needed for light weight mobile application?

Q4) What kind of methods and what considerations need to be taken into account for

synchronization to serve the needs for data correctness and efficiency?

9

Q5) How much test coverage should be considered to fulfill all user requirements and

sufficient in target platforms?

In this thesis, we have limited our research to the CRM system, and also to only two

largest mobile platforms (the iPhone and Android platforms).

10

2. Background

In this section, we explain what is CRM and what kind of advantages can be taken

using the system as a mobile application. Then we talk about the QBIS CRM which is

a web-based solution developed by QLogic AB. Finally we provide technical

information about two popular mobile platforms, Apple iOS and Google Android, with

explaining their specifications, architectures and gestures.

2.1. Customer Relationship Management (CRM)

Customer relationship management or CRM is a marketing strategy for organizations

or individual customers who plan business operations to understand their needs and

provide rapid solutions. [Top CRM] To succeed in competitive market, it is really

important to eliminate obstacles as fast as possible. Instead of building a new

customer relationship each time, CRM mostly aim to retain current ones to have

long-term business success. There is a set of stages that need to be applied when

company put the CRM strategy on practice:

 Customer Selection: Targeting high value and low attrition-risk prospects.

 Customer Acquisition: Determining the most profitable customers

 Customer Retention: Ensuring customer loyalty with increasing satisfaction

of customer.

 Customer Enhancements: Understanding behaviors of existing customer

and providing the most profitable opportunities depending on their needs.

Information technologies play a fundamental role in the retention and development

process of customer relations. Especially computer-aided software applications

assist to make more profitable growth for companies by supporting flexibility. With

technological innovations most of software companies offer different kinds of CRM

tools with extensive features. However most of the users incur different kinds of

problems that software providers have to deal with. Several complaints are caused

by lack of usability such that customers do not feel comfortable while using such

tools. They were unnecessarily complex and sophisticated. Consequently, software

companies aim to overcome these challenges in smart way. One of the solutions

could be keeping all kinds of customer-related information in a complex back-end

database while presenting significant information within a simple user-friendly

interface.

Mobile applications are rapid, supportive, and especially light solutions that allow

users --- salesmen, service staff, and support teams –-- to access and modify their

customer records while they are away from computers (even when there is no

Internet connection). Using different kinds of mobile devices, users can retrieve

customer-specific information from central servers and can manage their activities,

opportunities or tasks as much as they like. [Mobile CRM]

11

The advantage of having CRM application on mobile device is an improvement in

productivity and simplicity. User-friendly mobile applications significantly decrease

the time within which the user is able to perform operations. Moreover, an internet

connection is not always required. Users can access and modify customer data

locally and then synchronize the application later.

2.2. QBIS CRM

QBIS CRM is a web-based hosted CRM solution that helps users in managing their

customer information and sales activities in a single system. Because of being web-

based hosted users can use the web application from any location, which means that

it needs neither to be installed on their computers nor that they need to buy additional

hardware. This approach is compatible with most of the leading web browsers,

including Internet Explorer, Google Chrome, Mozilla Firefox so that it can be used by

almost any internet user.

All functionalities in the suite are easy to use for different business roles so that

salesmen can manage their accounts, tasks, and prospects while executives trace

their progress. But the most important benefits of the QBIS CRM solution lie in

management layer of business structure. It will give enhanced support to each user

for evaluating their activities, which helps to improve productivity and effectiveness. It

also provides a robust security solution in that all critical customer or account

information is stored confidentially.

2.3. Mobile Platforms

The market of mobile devices grows very fast. Manufactures have to deal with

various demands from customers. Most of them provide different features such as

GPS navigations, high resolutions, enhanced network connectivity, or speech

recognition. However each platform has also different kinds of limitations, such as

battery consumption, low-power CPUs and device memory. [Comparison Mobile]

These pros and cons lead users to choose best practices according to their

preferences.

Mobile platforms have different operating systems that support various application

frameworks and programming languages. [Comparison Mobile] Android and iOS are

the two most common operating systems, each having their own native languages

and integrated development environments. Although each platform has unique and

different features that are supported by their own framework, there are some other

third-party engines for multi-platform application development today. But they are not

perfect solutions in most cases, since they have limited capabilities because of lack

of support. Therefore, we focus on these two operating systems with their own

development environment in our thesis.

2.3.1. iOS

Apple released the first version of iOS in 2007 (initially named iPhone OS). iPhone

and iPod Touch are the first compatible devices for the operating system. Unlike

12

other manufacturers, Apple does not offer any open-source license for their

developers to modify the source code for their own customization or install it on other

mobile devices. [Apple MobileHIG]

2.3.1.1. Architecture

The iOS architecture consists of four software layers that provide different

frameworks to be used in the development phase of applications. Each layer has an

abstract interface that makes communication easy and consistent among them.

Figure 1 shows the representation level of each layers and how the application use

hardware components of the device.

The Cocoa Touch layer is located on top of the other layers comprising the

development frameworks to be used by developers. Multimedia services (such as

audio, video, animation and graphics) are provided by the Media Service Layer. Core

Services provides system services to upper layers either directly or indirectly. iCloud

is a good example for this layer introduced with iOS 5. Users are able to store

personal data on the central server and access them from other Apple devices.

[Apple Technology] On the bottom of the iOS stack Core OS layer sits with low-level

features. The user has to deal with the layer if an application will communicate with

device built-in hardware or accessories.

Figure 1 – Layers of iOS stack

13

2.3.1.2. Software Development Kit

The iOS SDK (Software Development Kit) has been mainly written in Objective-C,

which is also the native development language for iPhone development. Since

Objective-C is one of the C family languages and most of the parts are derived from

C language, some C libraries are still available in the SDK. Objective-C is also an

object-oriented language that supports message passing model. Objects are able to

send or receive a message to/from other objects.

There are also other key tools included in SDK. XCode is the one of the main

development tools that enables user to design and develop their applications.

Interface Builder is a built-in interface design tool, developers able to create graphical

interface of the application. Instruments is another tool to analyze performance of the

application in terms of memory management, CPU usage and data storage. Users

can also track memory leaks, file I/O operations, and network activity and traffic.

2.3.1.3. Gestures

The communication of the interface is accomplished through several interactions:

touching (single-multi touch) the screen directly using interface control elements

(buttons, sliders, switches) and also pressing psychical buttons. The iOS also

supports multi-touching gestures to perform various actions. There are four main

gestures on interface layer which are also show in Table 1:

Table 1 – Main gestures of iOS devices.

Tap: Users touch the screen to open an
application or interact with any controller
such as button, editable fields.

Double Tap: Users touch the scree twice to
copy some text or make a zoon in/out.

14

Pinch: Users place the two fingers
(commonly thumb and a finger) on the screen
and move them apart without lifting them
from the screen. Pinch is mostly used for
zoom in.

Reverse Pinch: Users place the two fingers
on the screen and move them near without
lifting them from the screen. Reverse pinch
mostly used for zoom out.

Rotate: Users place the two fingers
(commonly thumb and a finger) on the screen
and move their fingers in clockwise or anti-

clockwise direction to rotate the images.

Tap and Hold: Users touch the screen for a
while without moving finger. It is commonly
used to arrange the order of menu items or
paste clipboard text into tapped field.

15

2.3.2. Android

Google acquired the startup company Android Inc. in 2005 to start the development

of the Android Platform, and in late 2007, a group of industry leaders (including

Motorola, Samsung, Sony Ericsson, Vodafone, and Google) came together to form

the Open Handset Alliance, the goal of which is to innovate rapidly and respond

better to consumer needs, and the first key outcome of which was the Android

Platform. [Pro-Android]

2.3.2.1. Architecture

The Android SDK was issued first in November 2007 and updated in October 2008,

Google has made the source code of the Android Platform available under Apache’s

open source license. [Pro-Android]

At the core of the Android Platform is Linux kernel version 2.6, which is responsible

for device drivers, resource access, power management, etc. [Pro-Android] On top of

the kernel, there are C/C++ libraries such as WebKit, OpenGL, FreeType, Secure

Sockets Layer (SSL), the C runtime library (libc), Media, and SQLite. [Pro-Android]

The WebKit library is used for browser support, and this is actually the same library

that supports Apple Safari and Google Chrome. The FreeType library is for

supporting fonts. SQLite is a relational database available either pre-installed on

devices or as an independent open source which can be downloaded and used. [Pro-

Android] The gateway to access Android Platform is Dalvik VM, which most

application frameworks use for accessing the core libraries.

Figure 2 – Architecture of Android platforms.

16

Developers create end-user applications on mobile device (for example Contacts,

Phone, Home, and Browser) on top of the Java API which consists of a main set of

Java libraries that address telephony, resources, UI, locations, content providers, and

package managers. [Pro-Android]

In addition to the general APIs, Android depends on hardware APIs to support

wireless infrastructures such as WiFi, 3G, EDGE, Bluetooth, and Global System for

Mobile Communication (GSM) telephony. [Pro-Android]

2.3.2.2. Gestures

Table 2 illustrates the core gesture set that Android supports.

Table 2 – Seven different gestures for Android based devices. [Andriod Gestures]

Touch: User presses and lift will trigger the
selected item to show the default
functionality.

Long press: User presses wait and lift will
allow the user to select one or more items in
a view.

17

Swipe: User presses then move and lift will
scroll over content or navigate between views
in the same page’s hierarchy.

Drag: User long presses then move and then
lift will rearrange data within a view, or moves
data into a container such as folders.

Double touch: User two touches quickly will
zoom into content and can also be used in a
text selection.

Pinch open: User two finger presses then
move outwards and then lift will zoom into
content.

18

Pinch close: User two finger presses then
move outwards and then lift will zoom out the
content.

2.3.2.3. Platform, Tools

The Android SDK (Software Development Kit) includes several tools and utilities to

help develop; create, test, and debug mobile applications for the Android platform.

The tools are categorized into two groups: SDK tools and platform tools. SDK tools

are platform-independent, but platform tools are customized to support features for

only the latest Android platform.

The most important and frequently used SDK tools include the Android SDK

Manager (Android SDK), the AVD Manager (Android ABD), the emulator (Emulator),

the Dalvik Debug Monitor Server (DDMS), and sqlite3. [Android SDK Tools]

2.3.2.4. Version History

There are a lot of updates in Android version since its first release. The updates are

typically about new features adding and bugs fixing. and has seen a number of

updates since its original release. [Android Versions]

The released versions of Android are:

 2.0/2.1 (Eclair), the user interface modified, HTML5 introduced and Exchange

ActiveSync 2.5 supported.

 2.2 (Froyo), speed improvements introduced with JIT(Just-In-Time)

optimization and the Chrome V8 JavaScript engine, Wi-Fi hotspot tethering

and Adobe Flash support added.

19

 2.3 (Gingerbread), the user interface refined, the soft keyboard improved and

the feature copy/paste improved, and the feature to support for Near Field

Communication added.

 3.0 (Honeycomb), a tablet-oriented and many new user interface features

released, multicore processors supported, hardware acceleration for graphics

increased.

 4.0 (Ice-cream sandwich), a combination of Gingerbread and Honeycomb

into a "cohesive whole,"

20

3. Methods & Analysis

In this section, we introduce our development model RUP that we use as a guideline

of our project. We explain the reasons why we prefer the model among the others.

Then we present the techniques that we used to elucidate the requirements. After

that, we explain how can we ensure the quality of the mobile applications, especially

what kind of testing methods we apply to them. We also share the experiences that

help to developers to understand restrictions of mobile application in a better way.

Finally, we explain the overall architecture of the system with its sub-components and

design patterns.

3.1. Development Process

There are several models that we can follow during the application development

process. Each model has its own specification among which developers have to

choose for their models according to several constraints. An iterative and incremental

development process is the most adaptable discipline, and so we decided to follow

one such process in our work.

The Rational Unified Process (RUP) is a comprehensive process development

framework that has development blocks that can be adaptable and includes some

the elements that can be selectable by developers. As seen in Figure 3, the

development process is shown in a two-dimensional graph that has several

development disciplines, where each discipline is divided into four consecutive

phases. Disciplines can be varied based on comprehension of the project. Milestones

sit at the end of each phase for which critical decisions have been made regarding

key objectives that have or have not been accomplished.

 Inception Phase: Develops the business case and delimiters of the project

are determined in this phase. Also success factors, market potential and risk

assessments are made in this phase. [Rational]

 Elaboration Phase: The goal of this phase is to analyze the domain of the

problem and eliminate higher risk elements of the project. Also development

plan of the overall project is scheduled and most of the use-case models are

developed in this step. [Rational] In addition, a software requirements

specification document is written.

 Construction Phase: The main development of the software system occurs

in this phase. In comprehensive projects there could be several consecutive

iterations depending on requirements. All components of the system are

verified with test cases. The most important outcome is the beta release of the

system.

21

 Transition Phase: The developed system is converted into a software

product, which should be understandable and verifiable. All other project

components are summed up into final artifacts.

Figure 3 – RUP hump chart indicates the effort of phases over specific discipline.

One of the best advantages of the RUP is iterative development that developer can

re-adapt their system according to additional requirements. Given complicated and

uncertain requirements sometimes it is not possible to provide the entire solution.

[Rational] With iterative approach, developer can have a good understanding and

provide reliable design decisions that are considered in successive iterations without

effecting project structure.

The model also presents best practices to use UML model effectively in development

process. UML model allows developer to form the business model, combine

requirements in common structure, analyze and design the system behaviors with

visual models.

3.2. Requirement Elicitation Techniques

Two types of requirement elicitation techniques have been selected for this thesis. In

mobile applications, an obvious limitation which we all can see is the smaller screen

size than desktop applications, and also the limited memory size. The latter means

that having all data stored in the same way as in the QBIS web application might not

be desirable. In order to have just enough information from the CRM system, the

requirement elicitation has to be used as a tool to select the right information for

CRM users given the limited resources of mobile devices.

22

At the beginning of the project, the study of the existing system QBIS-CRM was

performed, comparing it to other products in the market. In addition to interviewing

business analysts, we also solicited feedback from a salesperson that is familiar with

the system and user’s requirements. Based on these two activities, we selected all

information needed for the application. We also exploited prototyping techniques

because of the unfamiliar screen size and actions on mobile screens. Such early

feedback is needed in order to adjust the captions, information, and screen styles for

the users’ look and feel before starting the implementation. [RE_NESEIBEH]

3.3. Testing Methods

Mobile software system development has many aspects differ from traditional

software development, as mobile software has special requirement and constraints

such as wireless communication issues, special privacy and customizability needs,

so software produced for mobile environments should be at a high level of quality in

order to operate properly on different kind of mobile devices. [Designing Agile for

Mobile]

Testing is one of the key components used to ensure the quality of software

applications. Testing increases the reliability of the software and prevents potential

failure. Mobile applications bring new challenges, such as connectivity, data integrity,

resolution, performance, and security. All these factors should be considered when

the testers describe their test strategies to evaluate functionalities. In our thesis we

applied both white-box and black-box testing from unit level to acceptance level.

3.4.1 Unit Testing

Unit testing is a crucial method for examining the system at the source code level.

Small pieces or building blocks are tested with unit testing before being integrated

into large modules. Detecting and removing defects with unit testing is easy and

more cost effective if it is compared with other level.

In quality perspective, Test-driven Development (TDD) is one of the highest

importance characteristics of iterative-incremental development. [Designing Agile for

Mobile] TDD concept is to use test cases to drive the design and implementation by

increment the simple small pieces generalized to complex software system. [TDD]

Test cases consist of several unit tests that automate to execution and benchmark

predicted outcomes and actual outcomes. Although TDD seems to be suitable to the

project, our inexperience in field and time constraints force us to keep TDD out of the

project scope.

3.4.2 System Testing

System Testing is an integration testing of separate modules or system components

to ensure communication as intended. A test plan is prepared with requirement

specifications that it covers assessment of all related components in particular

sections. In our thesis, the plan is included in acceptance testing process which are

held by other QBIS developers. Since they are already familiar with the system,

various scenarios have been applied depending on the test plan.

23

3.4.3 Acceptance Testing

Acceptance Testing helps to ensure the requirement specifications are completely

implemented into software product. Generally, test procedures are applied by end

users which mostly interact with the system in future. Since it is a black box testing,

they are only responsible for system inputs and their expected results.

The difficulty in developing mobile applications can be a major impact from the

different style of user interaction and smaller display. While the traditional interface

style that we are familiar with like Microsoft Windows and Apple’s iOS is WIMP

(Windows, Icons, Menu, Pointer), mobile paradigm is based on touch, widgets,

physical motion, and keyboards (physical and virtual). [Software Engineering Issues

for Mobile App]

One common thing from users that user interface designer should be concerned

about is in each particular native applications like Android or iPhone, they, especially

on touch-screen devices users, expect to use the platform’s standard set of gestures.

So, it would be interest for the designer to design common “look and feel” in one

platform which each of those platforms has also provided their own UI libraries and

guidelines. [Software Engineering Issues for Mobile App]

With the limited screen space, the challenge is to make the best usage out of it. We

might think that we want to take full range of functionalities like in a traditional web

application, but actually users are seeking only to quickly complete a simple task on

their mobile. So, the design must be completed by including most used functions,

attributes while the screen must be used effectively and follow mobile user interface

paradigm. [Software Engineering Issues for Mobile App] So, the question is how we

do that and also how to measure it?

3.4. Architecture

The system’s software architecture is a set of structure in which explain and reason

about the system. The software architecture is comprised of software elements, their

relations and their properties. [Doc Software Arch]

The term software architecture also means documentation used to communicate

between stakeholders. The early decision making on software architecture in high-

level design is crucial for software project. It will allow and ease the further

development and changing requirements, such as reuse of the components and

patterns in the same project or between projects. [Sof Arch In Practice]

To identify elements, their relation and their properties systematically, knowing

design pattern fits first is probably the fine and elegant step.

3.5.1 Service Oriented Architecture

Service oriented architecture (SOA) is widely used web standard with providing

collection of protocols for constructing communication bridge between two different

software architectures. The implementation of SOA is done with web services which

24

isolate the infrastructure of server and build up a new flexible interface. [Mobile Web]

With the strength of web services, different functionalities are grouped into several

parts that clients can consume one or more of them at the same time. Since they are

located at the end point of the server communication, they should be self-describing

and discoverable that clients need to know how to consume them and what kind of

response will be returned. All these functionalities, protocols, bindings and message

encodings are described with WSDL. It provides XML-based file which clients read

the file for retrieving operations and call one of them.

There are also two traditional web service communication models which are: Simple

Object Access Protocol (SOAP) and REpresentational State Transfer (REST). SOAP

is a XML based protocol for exchanging information via HTTP. It provides messaging

framework that it can be implemented by web services. REST is an architectural

style, which is a lightweight alternative of the SOAP. The information message is also

transferred via HTTP.

3.5.2 SOAP vs. REST

Although both services use HTTP standard as a communication protocol, they have

different kind philosophy inside. SOAP uses XML-based structures such as XML

Namespaces and XML Schemas whereas REST deals pre-defined nouns and verbs

to supports some set of operations. For example, HTTP GET method is used for

retrieving a resource from server. The resource could be representation of any

meaningful concept. Response of the server is mostly in either XML or JSON format

but sometimes it can be HTML page as well. The other supported HTTP operations

are PUT, POST and DELETE.

On the other hand SOAP message has more complex format that is combined in a

specific namespace and named SOAP-Envelop. It consists of two parts, header and

body, like other any message format. Although SOAP-Header is an optional part of

the message, it can contain significant information such as authentication or

encoding style. SOAP-Body contains the actual message that is required and also

the name of the requested method, which is already defined in WSDL file with its

parameters. As you see in Table 3, messaging structure of REST is much simpler

then SOAP. REST request can be sent within a few lines.

Table 3 – Request message formats for both web services.

SOAP
Example

POST /WSDomain.wsName.asmx HTTP/1.1
Host: address.com
Content-Type: text/xml; charset=utf-8
Content-Length: length
SoapAction:
“https://address.com/WSDomain/wsName/GetExample”

<?xml version="1.0" encoding=“utf-8”?>
<soap:Envelope

25

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelop/ ”>

<soap:Body xmlns:m="http://www.example.org/stock">
 <GetExample xmlns=”https://address.com/WSDomain/wsName”>
 <Paramater1>Value1</Parameter1>
 </GetExample>
</soap:Body>

</soap:Envelope>

REST
Example

GET /GetExample/IBM HTTP/1.1
Host: address.com
Accept: text/xml
Accept-Charset: utf-8

Although REST is much simpler approach to implement and consume, SOAP is most

commonly used among the software companies. Because REST has not been

standardized yet. Also the company had already implemented the SOAP services

into their systems. Besides we had limited time to introduce a new web services. So

we decided to keep the web service implementation out of the scope of the project

and continue with existing web services.

3.5.3 Design Patterns

A design pattern has become a useful tool for architecture, software engineering and

development. It is an abstraction template for a design to solve a general and

recurring problem in software’s particular context. [Apple MVC]

The design pattern depends on themes, principles or rule of thumb for constructing

object-oriented systems that influences design patterns. The examples of design

principles are such as encapsulate concept, interface, and implementation. [Apple

iOS Dev]

If a system needs to have a flexibility property, it is necessary to design the system

as loosely coupling and eliminate dependencies as much as possible. The design

especially with interfaces that vary a lot should be encapsulated, also not tied to any

other parts. So when we want to alter or extend those variable parts, it will be a lot

easier to implement. Also, the change will not affect another parts and the whole

system. Another benefit of the design patterns is that it will make a program more

elegant, more efficiency and having fewer lines of code compared to a program that

is not designed based on the design pattern concept. [Apple iOS Dev]

One of the research questions of this master thesis is about how we can reuse

artifacts which including components/ source code among three platforms: web

26

application, iPhone and Android. If the design pattern has been fully considered at

the beginning of the project, we would be able to save a lot of implementation time

then also a future implementation. Unfortunately we could not because of our

implementation time was limited. However, we believe that the research on the

design pattern for reusability will be useful for companies or people who come to the

same situation. So we have dedicated our time on it after the implementation and it

will be explained in details in later sections.

27

4. Design & Implementation

In this section, we provide detailed information about design and implementation

process. We explain how we decide to choose suitable versions for mobile platforms

based on markets research. We also mention about reusable artifacts that we used

in our thesis. Then we discuss requirement gathering methods to provide best user

experience. After that, we have a section about design patterns which help us to

design the structure of the applications. We clarify the communication between client

and server sides. Finally we introduce validation and verification methods to meet

user expectation.

The Figure 4 shows a roadmap of how we implemented the project. We have

implemented the project according to four phases of RUP. As we have mentioned in

the previous section and from Figure 3; it shows that RUP is a disciplined approach

which assigns and manages tasks and responsibilities into phases in development

organization. [The RUP]

We have chosen this process because RUP elaborates each discipline which we can

examine all possible reusable artifacts in every phase in the project. Moreover, the

extending mobile apps from web applications is a project which is not quite traditional

software project and since RUP is an iterative and incremental development process

which is quite adaptable discipline; so it is rather been used for our project rather

than other methods.

RUP is divided into four consecutive phases. Disciplines can be varied based on

comprehension of the project. As well as our project, one discipline have been done

iteratively more than one phase but we have put the discipline artifacts into the phase

that they have been mainly working on.

Figure 4 – The roadmap of the project implementation

28

 Inception Phase: The objective of this phase is to scope costing and

business case. We have done a market study based on QLogic AB customers

in this phase.

 Elaboration Phase: The problem domain analysis is made in this phase; use

case diagram, UML diagram, software user interface design, and architecture

design.

 Construction Phase: In this phase, we built the project and show the

interfaces example in the elaboration phase. In this section of the report, we

show how we implemented regarding synchronization for the sake of having

offline/online apps. Also, we explain on how we implement testing, how to

ensure the test is coverage for the whole project.

 Transition Phase: In order to transit the system from development to

production, there is a way that we checked the quality before submitting it. We

describe it in this section of the report.

4.1. Iteration 1: Inception Phase

We did a market study in this inception phase to meet the phase’s objective; to scope

costing and business case. We broke down the market study into 2 parts;

international market and Swedish market. The results from the market study show

why the QLogic AB has chosen to develop iPhone and Android applications instead

of Windows Mobile or other mobile platforms.

It is important for SaaS companies to study on their target customers before starting

a software implementation. The more they know about the market, the more they can

gain profits from it. After the market study, we did a study on Android and iPhone

platforms to see which version has the highest number of users. The versions that

the company selected would affect the number of users using the application and

certainly their profits. Once the versions selected, tools for the implementation were

chosen accordingly.

4.1.1. World Market Research

According to Gartner sales research [Gartner], there were about 110 million

smartphones in use in the world in second quarter of 2011. Android got the first place

with 43.4%, Symbian follows in the second place with 22.1% and iOS 18.2% in the

third place. The total number of smartphones’ market shares is presented in Table 4.

The table provides a comparison between the market share in a second quarter of

year 2010 and 2011.

29

4.1.2. Sweden Market Research

According to the market survey from Metro Business (2011), there is a huge debate

between Android and iOS in this country. Each operation system has an equal

market share which is 41%, leaving only 18% to Symbian. [Metro]

Figure 5 – Android and iOS smartphone market in Sweden [Metro].

Table 4 – The market share of the smartphones operating system in the second
quarter of 2010 and 2011.

30

The survey also shows that iOS has a dominance in three major cities of Sweden:

Norrbotten, Jämtland, Västra Götaland while Android is more popular in the rest of

the country. Figure 5 shows the preference of two major smartphone’s operating

systems across the country.

4.1.3. Android Verison Selection for the Best Market Result

The research regarding the usage share of Android platform, which was conducted in

March 2011, is presented in Figure 6 and Table 5. The highest usage percentage

was the platform 2.2 which was 61.3% and the second highest percentage was

Android 2.1; 29.0%.

It could be a good choice for companies to pick a platform which has the highest

users’ distribution; for example in this case, Android platform 2.2. One advantage of

picking the platform 2.2 instead of others is that developers can use the highest level

of the platform’s API (Application Program Interface) which might not yet exist in

platform 2.1.

It is important to consider about the API since API is a set of routines, protocols, and

tools for building software applications. A good API can make the development

easier and save a lot of development time.

Figure 6 – The usage share among Android platform on March 15, 2011

31

However, companies should not base their decision on the development perspective

only. As seen in examples, it can be realized that if the companies choose to use the

API platform 2.2, they will lose totally 36.8% of customers who currently use older

version of API platform. The 36.8% comes from 29.0% customers who are using

Android 2.1, Android 1.6 = 4.8%, Android 1.5 = 3.0%. Thus, the customer usage is

another important perspective companies must take into consideration as well.

QLogic AB has considered in both perspectives; development and customers, and

decided to select Android platform 2.1 for the development.

Nonetheless, despite the fact that technology grows fast, a mobile new platform

releases quite often. Companies should foresee on their new developing product’s

release date and a new platform version release date.

To give an example, if a company selects to support platform version 2.1 but the

developers need 6 months to release an app, by that time no customers would use

the 2.1 version any longer. So it is better for the company to take an advantage by

selecting version 2.2 to save time in development instead.

4.1.4. iPhone Version Selection for the Best Market Result

After Apple announced to developers to stop supporting to 3.x version of iOS, most

of the iPhone users had to upgrade their system up to 4.x version at the beginning of

2010. The new version 4.0 was not compatible with first generation of iPhone that

developers had to design the applications to be aware of this separation. Developer

faced up same problem with 4.3.1 version for second generation of iPhone. One of

the reporter companies announced the separation of usage of 4.x version as 95% by

March 2011. In Figure 7, usage distribution between iOS versions is shown on the

left side and iOS version 4.x on the right side [CocoaNetics]

Table 5 – The percentage of usage share among Android platform on March 15, 2011

32

95,59
%

4,22
%

0,17
%

iOS 4

iOS 3

iOS 2

Depending on the research above, we decided to set the lowest required version

(deployment target) to 4.0 which is the most common version from all around the

world.

4.2. Iteration 2: Elaboration Phase

We have analyzed problem domain in this phase also produced use case diagram,

UML diagram, database, software user interface design, architecture design. To

answer the research questions about usability and user experience, from those

designed we have created, we answer them in this report section. As well as at the

final part of the section, we have sample screen shots of mobile apps that we have

implemented.

In this section, we discuss four main things: reusability which describes importance of

it, reuse/non-reuse artifacts and how the project was implementing regarding the

reuse. The next one is about system architecture & design patterns, we explain QBIS

architecture, the importance of architecture and how we implement in the project.

After that about user experience; importance of it, method on the implementation and

then we show the prototype example. The last thing we illustrate in this phase is our

example apps’ screenshots.

4.2.1. Reusability

One of the research questions of this master thesis is “Consider in the whole

software development process, what significant artifacts that can be used in common

when it comes to develop one system in two platforms (in order to reduce cost of

implementation)?”

Reusability is an essential to the project in term of minimizing development time,

maintenance cost, decrease testing time. Especially this type of project which

expanding new systems from the existing one, we know that the core business logic

is the same, only the details and user interface layer design in client side is different.

Web service methods which being used by current system and can be also used in

the two new mobile applications is an easy example for the reusability.

0 20 40 60

Others

iOS v.4.3.5

iOS v.4.3

iOS v.4.1

iOS v.4.3.2

iOS v.4.3.1

iOS v.4.2.1

iOS v.4.3.4

iOS v.4.3.3

Figure 7 – Usage distribution between iOS versions.

33

In this section, as illustrate, we explain about our study and out implementation

regarding usability. At the beginning of this section we briefly explain about the

project overview, then later about artifacts that can/ cannot be reused and why. At

the second section we explain about the system architecture, design pattern, web

service reuse and the important role which affects the reusability. The third section

talks about the user experience where we have done three ways in order to get the

most clarify requirements. The last one we have shown the sample of one

screenshots of our final products.

After QLogic AB’s decision to implement this project which is called CRM mobile

apps project, we began the implementation by designing the software. To analyze

requirements and design software systems to communicate among developers and

customers in this project, we used UML as a tool. Since UML has been a well-known

tool in software projects for a very long time [UML Forum], we chose to analyze what

artifacts we can reuse and how we can reuse them from the UML.

The UML Forum and Smart Draw are good websites which offers good explanations

general idea of UML diagrams, tool suggestions and training [UML Forum][Smart

Draw]. There are eight types of diagrams in UML that are generally used in software

projects: Use Case Diagram, Class Diagram, State Chart Diagram, Activity Diagram,

Sequence Diagram, Collaboration Diagram, Component Diagram, and Deployment

Diagram. [Using UML] The definitions, explanations and how to write those UML

diagrams can be found easily from the internet. But we can also recommend a

couple of websites as well:

In this section we present how the project uses UML, see what UML is, and what

artifacts in UML can be reused in order to reduce the cost of implementation.

In order to understand how we design the project architecture, GUI and UML in this

elaboration phase, it is necessary for us to first describe the project requirements.

4.2.1.1. Project Overview

The project is to develop client phone applications that will work together with QBIS

CRM server software provided by QLogic AB. The phone applications will be a way

that users can conveniently connect to QBIS CRM and access key features and data.

The phone applications should be developed for the iPhone and/or Android current

platforms.

Introduction to QBIS CRM

QBIS CRM is a hosted web based CRM software tool that helps automate sales

support, CRM and customer management. The software is a cloud based solution

enabling users to use the system from any location and at any time. QBIS CRM is

easy to use and there is no software to be installed on your computer.

34

Functional Requirements for CRM Phone Application

1. Companies and Contacts – search / add / edit / delete / view

2. Can call or email a contact directly from contact call card (one touch)

3. My tasks – add / edit / delete / view (phone calls, appointments, tasks) – all

booked entries should also appear in the phone’s inbuilt calendar functionality.

4. Opportunities – add / edit / view / delete

5. Products, product groups & prices (including filters) – search & viewing

6. Sales Pipeline – show the current sales pipeline.

General Application Requirements

1. Secure Login – Should be able to securely use the login credentials stored at

server side for the user.

2. Language supported (initially two languages will be include - Swedish and English)

3. Work offline when there no reception – the application should work even when

outside cellular network coverage. Be able to work with locally cached data and

remote server data.

4. Highlight unsynchronized data. The user should be able to see data that is

unsynchronized with the central server. The user should see when the last

successful synch was made.

5. Extend the current QBIS XML Web Services gateway to facilitate the functionality

by the client phone application and central qbis server.

6. Handle user privileges in the same manner as QBIS CRM.

4.2.1.2. UML Reuse

The only UML artifact which can be fully reused in this project is a use case diagram.

The diagram can be used in both platforms because of the design is in a high level

(as a matter of fact, it must be the same in all platforms). We give an example by one

of the functional requirement, Companies as depicted in Figure 8. User actor has to

be able to use all functions: Search Company, Add Company, Edit Company, View

Company, Delete Company regardless platforms.

A use case specification can also able to be used in both platforms if a designer

design in common view in both platform or not to mention in to details like user

interface. For instance, not to specifically indicate where the menu or button is and

where to return after error occurred. For example do not put the sentence such as

“User clicks on add contact button on menu bar” instead of “User clicks on add

contact button”. The first sentence makes it too specific for iPhone screen because

35

Android can use an option menu for the Add contact function instead of using a menu

bar.

 For reuse purposes, designers have to realize that two platforms can have different

ways of working in the particular details. The general idea for designers is if they

want to fully reuse analyze or design artifacts is that try not to design too specific into

details.

Figure 8 – Use case diagram of the Companies

The other UML diagrams besides the use case cannot be reused among both

platforms in this project because they have different architecture and design pattern.

Since the other UML diagrams we have mentioned such as a class diagram,

component diagram are the diagram which contains such low level design or deeper

into class, methods, sequence, so it is difficult to make a reuse out of it without a

common design of the design pattern which we will explain further in this report.

4.2.1.3. Database Reuse

Core Data is a framework which Apple provides to developers or ‘schema-driven

object graph management and persistence framework’ or the framework which is

used to manage where/how data is stored, data catching and memory management.

The reason why using Core Data with SQLite to store data instead of direct SQLite,

XML or property lists is because the Core Data API allows developers to use SQL-

less conditions on use a relational database, validate records or query data. It is

36

beneficial for developers who are familiar with object-relational mapping (ORM)

technologies for example Ruby on Rails, CakePHP which abstract access to the

database and another benefit using this approach is that when interact with SQLite in

Objective-C, developers can ignore about managing the connection and database

schema. [Apple iOS Dev]

We cannot say that there is existing same concept with core data of Apple because

Android has the only simple store for keeping data called Shared Preferences.

Shared Preferences class provides a general class used for save and retrieve a pair

of key and value of primitive data types. However, even Android does not provide

such core data like iOS does, there is also third party who provides such similar

framework for example greenDAO which will be a layer between the objects and

SQLite data storage.

From an experience of the implementation on this project, we have found out that

there can be one artifact that can be fully reused. In order to explain easier, we have

divided database artifacts into two levels below:

 Core Data Level.

According to the design of core data’s framework regardless third party

provider, the design of core data will not be fully used by both platforms

because Android OS still has not been designed to support such core data like

iOS does.

 Data Storage Level.

In this data storage level, both platforms use the same database storage

which is SQLite. So we can and we have used exactly the same relational

database design as shown in Figure 9.

In conclusion for this database reuse, we conclude that the reuse utilization depends

on how the whole architecture designs which companies want to have. If the design

is prepared for both platforms to have the core data level, for example if companies

invest for a third party the core data’s component for the Android platform, the core

data level’s artifact will also be able to reuse as well as the data storage level.

37

Figure 9 – The CRM relational database diagram

4.2.2. System Architecture and Design Patterns

We have mentioned in previous sections how a system architecture and design

patterns play important role in reusability; in this section we explain why. The

analyzed and design artifacts in UML which require details such as class, methods:

Class Diagram, State Chart Diagram, Activity Diagram, Sequence Diagram,

Collaboration Diagram, Component Diagram, and Deployment Diagram are difficult

to be reused if the systems were designed with different design patterns. However,

different software platforms have different architectures which will lead to the fact that

we cannot just use the same design patterns in all platforms or at least use it after

agree on pros and cons.

So in this project, as we mentioned, the implementation time was limited: we had to

develop a project before we could fully research the architecture and design patterns.

Nevertheless, we have done some research after the implementation which is

describing here in this section. We begin by explaining about QBIS suite’s

architecture first because it is a core of the systems that will be extended by iPhone

and Android. Then we explain the mobile platform’s best fit design pattern and the

possibility of using the same design pattern to gain more benefit from reusability.

4.2.2.1. QBIS Architecture and Communications

Current QBIS suite’s architecture is logically divided into three tiers as shown in

figure 10; user interface tier, application tier and data tier. All communication services

are provided within cloud computing manner. Clients can request specific information

with sending a web services message to QBIS server. Server processes the

38

message, fetches the requested information from database and returns back to the

client.

 User Interface Tier: All available operations and message format to provide

basic interactions are defined in this layer as a service contract. Also it

includes policy of the communication which defines message exchange

pattern such as request/response or one-way. It is also responsible to convert

received message format to proper data types, which will be used in

application tier.

 Application Tier: All the business logic of the web service is located in this

layer. Service calls, accessing data layer or invocation of all kind of operations

are performed. Also authentication and validation are verified in here as well.

 Data Tier: Database adapters and all other recourses to access database are

defined in here. It contains an agent to establish communication between

business logic and database, which is located in another server. Also

authentication for database access is verified in this layer.

 Cloud Service: End users access cloud-based applications which in this

project QBIS-CRM through their mobile app or web browser.

Figure 10 – QBIS general architecture

All communications to QBIS application server is provided though web services via

the protocol SOAP (Simple Object Access Protocol). The request is retrieved from

client in SOAP message format. As previously mentioned, the message is converted

serial commands and data types, which are used to call related operations. Then the

operations communicate the stored procedures via database adapters. Procedures

 Cloud

User Interface Tier

Application ServerApplication Server

Web Service

XML

Application Tier

Database
Data Tier

39

are performed and return related result to business logic layer again. Sometimes

these results can be simple data types like integers as well as data tables.

Depending on the results, the response message is encoded and sent back to client.

Sometimes an error can occur in any levels of the process. In such cases, the

service prepares SOAP fault message to inform client. Also QBIS administrator

receives a descriptive mail about the situation.

4.2.2.2. Web Service Reuse

Despite the fact that in this project we had three different clients; web application,

Android app, iPhone app, so we applied SOA concept in order to bridge those three

different software architectures together. The QLogic AB provides those .NET web

services for the project; those web services are flexible isolated interfaces which all

three systems can call the exact same one web service, no need three different

functions provided. As shown in Sample Code 1, the QBIS architecture provides

XML-based file which described with WSDL (Web Services Description Language).

The code shows the WSDL example of one of the web services; GetCRMCompanies

which all clients commonly use.

GetCRMCompanies
Get all CRM companies from QBIS. The companies are returned as a .NET untyped
DataSet. For more information about the return type see QBIS Help. In case of any error the
method returns a NULL value.

POST /ws/qbis_mobileapp.asmx HTTP/1.1
Host: bin.qbis.se
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "https://bin.qbis.se/WS/QBIS_MOBILEAPP/GetCRMCompanies"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetCRMCompanies xmlns="https://bin.qbis.se/WS/QBIS_MOBILEAPP">
 <Company>string</Company>
 <Password>string</Password>
 <SyncDate>dateTime</SyncDate>
 </GetCRMCompanies>
 </soap:Body>
</soap:Envelope>

Sample Code 1 – The WSDL example of GetCompanies

4.2.2.3. Best fits Design Patterns in iPhone and Android

Design patterns tell how classes, objects should be created, their relationships how

they are interacting with each other. The UML reuse artifacts and coding components

rely so much on design pattern, the more similar design, the more reusable

components can be utilized. However, each mobile environment has probably been

designed to support different design patterns which can be one issue that can stand

in a way of usage reusability.

40

The Cocoa environment on the iPhone has many of architectures and mechanisms

to support different design patterns. Android is also flexible to design in any kind of

patterns but the question is which pattern we can make the most use from. Patterns

supported by Cocoa are for example Abstract Factory, Adapter, Chain of

Responsibility, Facade, Singleton etc. but MVC (Model-View-Controller) and object

modeling seems to be the most important and widely-used in Cocoa and both

patterns are largely interrelated. The Figure 11 is illustrated the Model-View-

Controller (MVC) Design Pattern.

In Android, it is as well possible to design the application based on MVC pattern.

However, Android OS does not provide the whole architecture between layers

isolated enough to implement MVC easily, for example the ambiguous of Activity

class; we are not really certain whether we can call it a view or a controller. One of

the patterns we have found it might be the better selection for Android is Model-View-

Presenter or MVP as illustrated in Figure 12.

However, different patterns have different ways to use and have different limitations.

For example, pattern Abstract Factory who provides an interface for creating families

of dependent objects by not specifying concrete classes, so it is easier to learn and

to use the class. However, the tradeoff is a simplified super class cluster will make

more difficult to create custom subclasses. So, in the sakes of commonly used of two

mobile platforms and OS structure design’s compatibility, two design

recommendation patterns will be explained here in this report which are MVC and

MVP.

4.2.2.4. The Model-View-Controller Design Pattern (MVC)

Object-oriented programs that based their design on MVC are easily extensible than

those which are not. When the programs adapt MVC design pattern, interfaces can

be define better and tend to be more reusable and adaptable when there are some

requirement changes. In addition to Cocoa, some of their new technologies such as

bindings, the document architecture and scriptability are based on MVC; custom

objects must play one role that defined by MVC.

Roles and Relationships of Model-View-Controller (MVC) Objects

Figure 11 – Model-View-Controller (MVC) Design Pattern is shown with its relationships.

41

 For Model objects, they are used to encapsulate important data and their

expertise behavior. The best practice of model objects design is to have no

explicit connection to view or user interface layer.

 For View objects, they are used to display data from the application’s model.

 For Controller objects, they are the middle person, responsible to ensure that

the view objects have access to the model objects and make the view learned

if the model has some changes.

Figure 12 – Model-View-Presenter (MVP) Design Pattern

4.2.2.5. The Model-View-Presenter Design Pattern (MVP)

Model-View-Presenter is a derivative of the Model View Controller Pattern. The MVP

pattern provides a cleaner implementation of the Observer connection between

Application Model and view.

Roles and Relationships of Model-View-Controller (MVC) Objects

 For View objects, contains UI components, and handling their events

 For Presenter objects, this will handle communication between the model and

view layer. It can be seen as a gateway of the model. It retrieves data from

repositories (the model), format and display to the view.

 For model objects, is an interface used for defining data to be displayed or

acted upon the user interface.

In conclusion, we have found from our research and experience as a software

engineers that the best-fits design pattern for iPhone is MVC and for Android is MVP.

So to make a reuse of artifacts such as UML design and coding components by two

different design patterns is quite difficult because of their classes, method, interfaces

will be designed in different ways. However, it is an interesting idea if companies

want to trade the best fits with a usage of reuse as ignoring about the best fits and

use the same design pattern in both platforms. The tradeoffs, the possibility of

implementing it can be put to the further research in our future work.

42

4.2.3. User Experience (GUI)

Another research question of this master thesis is “What constraints used to decide

the GUI context needed on light weight mobile application?”. It is clearly not an easy

job for GUI designer to compress all information from screen size 19 inches to 4

inches as illustrated in Figure 13. In this section we explain three methods we have

used in the project to produce the best GUI design: comparing attributes with

competitors, interview and prototyping.

Figure 13 – Web application and Mobile application size comparison

4.2.3.1. Comparing Attributes with Competitors

At the beginning of the project, we have studied what CRM system is, what the main

CRM functions in the market are. Then we listed all screens, attributes, and functions

from the existing QBIS-CRM web application. We do the same with main CRM

mobile apps providers; both Android and iPhone platforms. Then we compared field-

by-field, function-by-function among current QBIS application and other competitors

as shown in Table 5.

As illustrated in the table, column “A” is the column that combines all fields and

functions that exist in potential providers’ applications; column “C” shows what QBIS-

CRM application has, four columns as shown as “D” are columns that identify what

items each competitor has in their mobile application and “B” column indicates the

final decision what fields should be included in our mobile apps. The decision of the

selected functions have been made by the business analyst who know best about the

system, also is familiar with users most. The business analyst’s decision can be a

good based conclusion for what is needed for CRM mobile application users.

However, we did not based decision only on the decision from the comparison, but

we also have done some interviews and prototype which will be discussed further as

well.

43

Table 5 – Comparison between QBIS web application and other CRM mobile apps provider

4.2.3.2. Interviewing

Even though, the decision from the business analyst has been made based on the

comparison among competitors, but we believed that interviewing is still needed. We

thought that what does not contain in competitors’ apps does not mean that QBIS-

CRM users do not need.

We have managed to get interview sessions from the business analyst and also from

sales persons who are close with users and customers. There are a lot of times that

they got the application’s problems, new requirements, changes from the users which

can bring some new idea for the mobile applications.

4.2.3.3. Prototyping

After all information needed had been decided, it was rather difficult to imagine what

it would be like in the mobile small screens, difficult to realize that can all information

fit in the screens and how it will be operated as screen scenario. From what has been

said in [RE-Good Practice Chapter 4] that if there are vague or poorly understood

requirements, it is better to demonstrate their behaviors or what system can provide

into a prototype to users and system stakeholders. Then those users can experience

with the prototype in order to refine their ideas about the system requirements. So,

we took all attributes, functions from the result of the decision from comparison and

44

the interview to make the prototype applications to get an early feedback from

business analyst, and then we can adjust information, captions, and screen styles in

order to fit the best for users’ experiences. The Companies module prototypes of

Android and iPhone apps have been displayed in Figure 14 - 15.

Figure 14 – A “Companies” prototype from Android app.

Select Advanced Search

Select item

Select New Company

Select Edit(With existing data)
Search

Can navigate to
Contacts, Tasks

and Opportunity

45

Figure 15 – A “Companies” prototype from iPhone app.

46

4.2.4. Final Products

The main menus of iPhone and Android apps are shown in the Figure 16. All

functional requirements which is described in the section 4.2.1 have been

implemented; Companies, Contacts, Tasks, Opportunities, Products, Pipelines. We

illustrate only one module which is Companies module on the Figure 17 for the

Android app and for the iPhone app on the Figure 18.

Figure 16 – A screen capture of the main menu of mobile apps

47

Figure 17 – Screen captures of Companies screens on Android app

 Add Company Add CompanyAdvanced SearchAdvanced Search

DetailDetail

48

Figure 18 – Screen captures of Companies screens on iPhone app

 Add Company Add Company

 Details Details

49

4.3. Iteration 3: Construction Phase

In this phase, we explain how the synchronization process works in both server and

client side. We introduce four steps that the two-way (bi-directional) synchronization

occurs in a quick and smart way. Also we present low-level testing methodologies to

validate the behavior of the source code and functionalities. Unit testing help us to be

sure of the quality of the mobile applications.

4.3.1. Synchronization

It is important to have multiple copies of server data in all QBIS CRM applications

without corrupting data integrity. The applications can able to work offline and keep

the both server and mobile side in sync. But the synchronization process should be

applied in a smart way. Both sides only exchange recently modified data since

downloading whole data is not a good solution indeed. Because it takes long time to

be done and also consume large bandwidths that means extra costs for the users.

There are some synchronization strategies that had been already applied in some

projects before. In one solution, the data is pulled down from backend application

servers and synchronized back to central server when it is needed, the solutions

called polling and push synchronization. [Rhomobile] Or another solution could be

third party API that named Microsoft Sync Framework 4.0 CTP. All business logic is

moved into server that enables to keep client (mobile application) out the mandatory

installments. The sync mechanism detects conflictions automatically in both sides

and eliminates them. [Sync Framework]

Although each solution is well defined and had given successful results before, they

are so comprehensive that require a lot of time to implement. We had to prefer much

simpler but strength solution that it could be easily adapted to existing environment of

the company. So we decided to build up our own solution. In this way we were able

to use current structure while adding some extra features as well.

As you see in Figure 19, we decided to divide synchronization phase into 4 steps:

1. Get Deleted Records: Retrieve all deleted records from server and remove

permanently if any of them is still in the mobile application.

2. Send Deleted Records: Send all deleted records to server and remove

permanently if any of them is still in the server database.

3. Send Modified Records: Send all modified records to server and if a record

does not exist in server, it creates a new one otherwise modifies the existed

one.

4. Send Modified Records: Retrieve all modified record from server and if a

record does not exist in mobile application, it creates a new one otherwise

modifies the existed one.

50

Figure 19 – Synchronization process in four steps.

Since QBIS Web application is connected to SQL server on the background, we

need to know which data had been modified and should be retrieved into mobile

device. It is the same for mobile application that recently modified data must be

identified and sent to the server. Also deleted records should be kept in another table

to be forwarded in next synchronization.

First, we introduced “last synchronization time” parameter that the time is saved in

when the application is synchronized. Then we define a timestamp parameter for

each record that holds time value. The value is automatically updated with current

time if the record is modified. Then we define a sync flag for each record in

application that indicates the record had been modified or not. Finally, we create

duplicate tables to keep deleted records with deleted time stamp.

So when application request to retrieve all deleted records in first step, it also adds

the last sync time in the request. Then server fetches the records whose deleted time

is later than last sync time of the app. In next step, application fetches all deleted

records from its tables and sends to server to be deleted. When the deleting process

is done successfully, application removes all deleted records form the tables. In third

step, application fetches all modified data with checking their sync flags and sends to

server to be modified. If last updated time of the sent record is earlier than last

updated time of the server record, the updating process is skipped. And if there is not

related record at all, the new one is created directly. In final step, application retrieves

modified records from server depending on last sync time. As in the previous step,

the records are either modified or newly created.

51

4.3.2. Unit Testing

Some of the mobile platforms offer different framework to create test cases while

others support with third party plug-ins. The iOS supports SenTestingKit (also known

as OCUnit) which is fully integrated with Xcode. [Unit Test] On the other hand

Android SDK comes with a testing framework within ADT Plugin (Android

Development Tools Plugin). It is based on JUnit that developers can also use JUnit

classes separately without calling Andrioid SDK. [Android Testing]

4.3.2.1. SenTestingKit (OCUnit)

OCUnit is a testing framework which is designed for Objective-C based applications.

It consists of a set of classes and command-line tools that developer design test

cases and run them with the targeted application on simulator or device. There are

two types of tests in this framework [Apple Testing]:

 Logic Tests: are intended to check for correct functionality of the code. It is

only applicable in simulator.

 Application Tests: covers full application environment with involving

connection of user interface and controller objects. It is only applicable in

device which is more realistic environment.

Test case is a regular instance method of test suite class. [Apple Testing] It invokes

the methods which will be tested in unit. There two optional methods, one is called

before to setup the testing environment and the other one is called after the case to

remove any residual variables, structures or objects. An example code is shown in

Sample Code 2:

All the results of the test suites are shown as system logs in console. Developers can

also create new schemes to separate logic and application test suites or apply only

specific test cases from both of them.

52

z

4.3.2.2. Android Testing Framework (JUnit)

Android test structure consists of test project that includes test packages and test-

case classes which are derived from standard JUnit classes. Test project is a

directory to keep all created source-codes and other related files in the same place.

Eclipse offers a wizard for creating test projects. It automatically sets up and creates

#import “QBISCRMSampleTestSuite.h”
#import “QBISHomeViewController.h”
#import “Employee.h”

@implementation

- (void)setUp {

 [super setUp];
 app_delegate = [[UIApplication sharedApplication] delegate];
 employee = [[[Employee alloc] initWithName:@”Jack” andSurname:@”Sparrow”]
retain];
}

- (void)tearDown {

 [super tearDown];
 [app_delegate release];
 [employee release];
}

/* Logic Tests */
- (void)testAppDelegate{
 STAssertNotNil(app_delegate, @"Could not find application delegate.");
}

- (void)testEmployeeObject{
 STAssertNotNil(employee, @"Employee object has a null reference.");
}

- (void)employeeCodeTest{
 STAssertTrue([[employee code] isEqualToString:@”JaSp”], @"Empolyee code test
is failed");
}

/* Application Test */
- (void)testLogoutButton{

 QBISHomeViewController *homeViewController = app_delegate.rootViewController;
 UIView *homeView = homeViewController.view;

 [homeViewController buttonClicked:[homeView viewWithTag: 8]];
 STAssertTrue([homeViewController.loginViewController, @"Login view was not able
to created");
}

@end

Sample Code 2 – Test suite for checking functionality of employee code and logout button
behavior.

53

the test package which will be used by test runner. Test-case classes are abstract

java classes that could have multiple test methods inside. An example code is shown

in Sample Code 3:

After start to run test case with JUnit framework, the application under testing is

launched on target device and the result is shown with different colors which red

indicates the failed while green indicates passed. Developers are also able to see

overall view such as number of test cases, number of failures and errors.

4.4. Iteration 4: Transition Phase

In this phase, we explain how the applications were validated. Since we had limited

time to launch the applications, we suggested that the company apply one of the

agile practices, user stories. After that, we mention distribution process of

applications for both platforms. We provide brief information about application

markets and submitting steps. Finally, we talk about the online help that gives

technical information about the applications.

package com.qlogic.qbiscrm.test;

import com.qlogic.qbiscrm.QBIS_CRM;

import android.test.QBIS_CRMTestCase;

import android.widget.TextView;

public class QBIS_CRMInfoBoxTest extends QBIS_CRMTestCase <QBIS_CRM> {

 private QBIS_CRM activity; // the activity

 private TextView infoView; // the textview

 private String testString;

 public QBIS_CRMInfoBoxTest() {

 super("com.qlogic.qbiscrm",QBIS_CRM.class);

 }

 @Override

 protected void setUp() throws Exception {

 super.setUp();

 activity = this.getActivity();

 infoView = (TextView) activity.findViewById(com.qlogic.qbiscrm.R.id.textview);

 testString = activity.getString(com.qlogic.qbiscrm.R.string.infoString);

 }

 public void testPreconditions() {

 assertNotNull(infoView); // Test pre-condition

 }

 public void testText() {

 assertEquals(resourceString,(String)infoView.getText()); //Test case

 }

}

Sample Code 3 – Test case class for comparing two strings.

54

4.4.1. User Validation (Applying Acceptance Testing)

In software projects, validation criteria are generally created by business customer,

which mostly uses the software product. But sometimes validator can be owner of the

product or project manager if the project is developed internally.

In our project, we suggested to apply acceptance testing in agile way. Agile

development primarily focuses on iterative development processes that a new

requirements or modification can be received in any phase of the development. And

since we applied the one of the iterative developments, keeping these requests in a

single structure would be best option. So our product owner summarizes all

requirements in user stories. User stories are used in most of the agile development

process. It helps to determine significant points for being sure about functionality of

the program regarding to its requirements, which are specified before. The main

purpose of the user stories is reducing the testing time with getting respond much

faster and applying last retouches rapidly. Most of the stories are written in daily

languages, which consist of 1-2 short but clear sentences.

Accordingly, our product owner wrote the all user stories that few of them are shown

below. We group them as functional and non-functional requirements. Since QBIS

CRM has three different role levels (user, manager and administrator), stories for

functional requirements were written regarding to these roles. For non-functional

requirements, we use “the application” key word.

Functional User Stories:

 As a user, I am able to see CRM companies with their contacts, tasks and

opportunities.

 As a user, I am able to download latest modified records from server.

 As a user, I am able to call-mail companies as well as contacts.

 As a user, I am able to list all tasks, which are assigned to me. The list can be

exportable if its “Show in Calendar” option has been activated. As a user, I am

able to see all “Opportunities” which are created by or assigned to me.

 As a user, the system must warn me if there is a new version of the app. Also it

blocks the all synchronization functionalities.

 As a user, I am able to use the application in both English and Swedish.

 As a manager, I am able to see all “Opportunities” in “My Team” which are

created by or assigned to my teammate or me. To be a part of “My Team”, person

should work with same department.

 As an administrator, I am able to see whole “Opportunities” in the system.

 As an administrator, I am able to delete the companies which is not assigned to

any tasks or opportunities.

Non-functional User Stories:

 The application needs to provide secure lightweight connection with server.

55

 The application needs to download and import all initial data within 4 minutes.

 The application needs to launch each page less than 3 seconds.

 The application needs to have “delete all data” functionality that application date

can be removed securely.

Before submitting the applications, we ensured that all scenarios in stories have been

successfully applied.

4.4.2. Distribute the Applications

After all test procedures have been done successfully, it is time to publish the

application in stores. There are few things need to be done to prepare the application

files before upload them to stores. We will briefly describe these steps for both

platforms separately.

4.4.2.1. App Store

The App Store is an online application market that allows to developer to distribute

their applications, which are developed in iOS SDK. It is accessible from mobile

devices directly that user can download the applications on their mobile device by

purchasing them. Charging depends on the application that it can be free or at a cost.

Also users have a chance to download the application onto their personal computers

to sync mobile device later.

Distribution process of the iOS applications consists of 5 steps:

1. Sign up for Developer Account and Program: The developer account is

required for distributing an application in App Store. After signing up for an

account, developers need to select one of the developer programs that identify

the user and allow distributing the apps in store. For commercial releases we

chose “Developer Program – Company”.

2. Create and Install Certificate: All applications must be signed with using

developer’s key chain. Using the Keychain Access application, which is default

application for all Mac OS, a new key pair can be generated. After uploading

the key chain to developer program web site, a certificate can be

downloadable.

3. Generate Application ID and Provision Profile: Each application must have

a unique identifier that should be associated with the application and be

located into the Provisioning Profile.

4. Prepare the Application for Distribution: Provisioning profile needs to be

imported into Xcode Development IDE. Deployment target must be chosen

which is required to set minimum SDK. And also icon file and version number

must be set. Finally the project can be built with distribution settings, which

includes the signing application with certificate.

56

5. Distribute the Application: The iTunes Connect is the web site allows the

user to manage all related tools and materials such as sales, contracts,

reports, user accounts, and apps. All the information about application and

screenshots must be provided. Finally the archived version of the application

needs to be uploaded using Application Loader utility, which is also integrated

into Xcode IDE (Integrated Drive Electronics).

After submitting the app to the App Store, Apple developers review the app and

publish it. This process can take couple days and sometimes they can ask for more

information about the app or directly reject the submission in some reasons.

4.4.2.2. Android Markets

Unlike App Store, Android developers can distribute their application in different

markets. Even they can publish the applications in their web servers with providing

“.apk” file. But still most of the developers prefer to share in Google Play.

Google Play, previously named Android Market, is the official application store of the

Google that users can download various Android applications. Also developers can

publish their own applications to the market.

There are few steps to submit the Android app to market:

1. Register for publisher account: A developer needs to register Google

Publisher Account to submit the Android App. After the agreement is

confirmed and registration fee is paid, the account will be ready for uploading

process.

2. Check publishing list: Before submitting the app to store there are few things

need to be checked by developer. Google Play provides a list to developers

with highlighting some significant points that developer can easily prepare the

application for successful release. All points in the document need to be done

one by one.

3. Compile and submit the app: After all points are applied carefully, it is time

to compile the Android project for submission. First of all developers must sign

the application with cryptographic private key whose validity period ends after

October 22th, 2033. Then the app will be ready for uploading process and

after developer uploads the app to store, it will be available in a few hours.

4.4.3. Online Help

Online help documents of QBIS mobile applications give brief information about

application features and functionalities to provide best user experience. Documents

are web-based files that can be reachable online from both web and mobile

applications. Both English and Swedish languages are supported.

57

5. Discussion

In this section, we discuss the research questions that we have strived to address in

this thesis and that we used to guide the engineering of our mobile applications. First,

we discuss the different problems that guided a better and faster migration solution

when the existing application was extended to the mobile versions. Then, we explain

the significant artifacts for both platforms that reduced cost of implementation.

Subsequently we clarify the constraints to have a lightweight context for mobile

applications. After that, we explain the synchronization methods to show how data

correctness and efficiency is provided. Finally we present our amount of test

coverage explaining the test methods which we applied.

What kind of problems should be considered when companies want to extend

their existing application to mobile client applications (from a software

engineering perspective)?

Companies encounter different kind of problems when they want to extend their

existing systems to mobile applications. Especially performance was an important

issue when the company wants to migrate the web application into mobile one.

Although most of the mobile devices are multi-functional, they have restricted

hardware resources. We designed the QBIS mobile applications in a smart way that

they fetch and present the user data efficiently. Also they only download the recently

modified data to reduce the synchronization process time significantly. On the other

hand confidentiality was another problem for the company. Most of the security

violations occurred in server side and can be eliminated with providing some extra

security policies such as IP-blocking or firewall protection. On the contrary, mobile

devices are exposed to various threats. But in mobile applications, we added

additional authentication procedures, which are apart from default behavior of the

device. Users have to login to the system to reach the application data and also they

can logout to leave the app more securely. We also provide secure communication

with server that protects the application against security attacks. It eliminates all

interception attempts with providing default encryption mechanism.

Considering the whole software development process, what significant

artifacts can be used in common when it comes to developing one system on

two platforms (in order to reduce cost of implementation)?

In this project we developed a couple of significant artifacts which are commonly

used by both platforms. When we started the project, we create the time plan that we

can follow the same process rather than focusing on independent strategies. Most of

the research were done together and software documents were prepared for both

applications. Especially, all specifications were written in a single document. By this

way, we saved lots working time. At some point we had to separate the project in two

similar branches. But still we continued to implement web services for both iOS and

58

Android applications that they could consume same methods. It reduces the

development time and costs to setup different services for each platforms (e.g.

Bonjour or JBoss) which are more friendlier individually.

What constraints should be used to decide the graphic user interface context

needed for lightweight mobile application?

We knew that there would be constraints to have lightweight mobile applications on

the other hand QBIS web solution consists of several modules and dozen

functionalities. It would be heavy to implement all of them into applications. Also each

user database has thousands of CRM information that would be impossible to

download into mobile device. Most of the mobile applications were designed to assist

its users when they are not available to reach web solution. Only significant

information should be kept the device. Consequently, we decided to cover basic

functionalities and download essential information that would be enough to meet user

expectations. First of all, we specified the features, which are generally used in web

solution. We determined them with a small internal questionnaire. Then we talked

with marketing department to have their opinion since they are the one who knows

the customer requirements. They also communicated with the customers to acquire

additional feedbacks. And finally, we gathered all results in a document and selected

the important ones, which should be cover in our project.

What kind of methods and what considerations need to be taken into account

for synchronization to serve the needs for data correctness and efficiency?

Synchronization methods should provide the data correctly and efficiently. We had to

design the synchronization phase smartly since it directly affects the application

performance. Waiting a long time for synchronization process does not please the

customers. Besides weak implementation can consume additional bandwidths, which

equals to extra costs. But in our applications operate the upload and download

requests according to last synchronized time. The records in server have timestamp

that when the mobile application sends a download request, server checks for

timestamps and returns the records whose last updated time later then the last

synchronized time of the application. Also when the mobile application sends an

upload request for saving a new record, server assigns a unique id for that record,

create a timestamp to notify other application and return the id back. If the server has

already same record or even any problem occurs in this process, server returns an

error code notify the application that the record is marked as a fault one. In this way

duplications are avoided and date correctness is provided.

How much test coverage should be considered to fulfill all user requirements

and get more sufficient in target platforms?

Another interesting point is determining the amount of the testing coverage that we

include within the project. It is not easy to estimate how much testing is required or

how many test cases must be written for the completeness. However there are

59

several coverage criteria that could be considered. Especially Requirement Coverage

is one of the high level metric that verifies the all required functionalities in user

perspective. We created a couple of test cases for each requirement. Results of the

test cases are quantitative information that we aimed to reach 100 percentage of

coverage with fulfilling all requirements. On the other hand, we had to remove or

change some requirements during the project that we also considered applying the

modifications to regarding test cases. After all, we believe that we provide full test

coverage for all requirements.

60

6. Conclusion

As intent of the thesis, we explained why CRM application is so important for

salespersons and should also be developed mobile versions to assists them when

they are outside the office. With the strength of the mobile applications, they can be

more productive. Besides we focused the attention into two most dominant mobile

platforms, iOS and Android, in order to provide more diversity and flexibility.

Based on our research, we focus to obtain optimal solutions for each research

questions. We also verified the report with taking consideration of several quality

assurance criteria such as usability, security and performance. The performance of

the applications was also significant that we optimized the communication process to

avoid long synchronization time. Meanwhile we followed one of the iterative

development processes to handle requirements in every stage of the development. In

some cases could not apply best practices since we were restricted by marketing

strategy and time limit. However we reported our findings to show advantages and

drawbacks of each solution.

6.1. Mobile Application Development

Mobile application development was a new topic, which we have never got any

experience before. We encountered different kind of problems, which are specifically

related to mobile development. But the curiosity to the field motivates us in a good

way so we almost overcame all of the problems that we stated before. Unfortunately

there were few of them that needed more investigation but we had to skip because of

time constraint.

Especially the variety of the operating system versions on mobile devices affects our

thesis plan. We had to find the proper versions for both iOS and Android apps that

will cover majority. Sometimes because of the version differences we were not able

use new functionalities that are not supported in previous versions and in some

situation the existing functionalities, which are deprecated with new version, do not

perform at all. We had to apply different test cases for each versions to be sure of

functionality. But because of the limited time we were able to test the main version of

the platforms.

Another problem appeared almost at the end of the project. Initially we had designed

our systems with small-scaled databases, which keep 500-600 records at most. Also

our synchronization system was adapted to this amount. As always the requirement

changed and suddenly we found ourselves in a big trouble. There were lots of

memory overflow exceptions that we had to deal with. Then we gave a drastic

decision, which caused to 30-40% of modification in code. Eventually we solved the

problem in a smart way which also satisfied our supervisor.

61

6.2. Future Work

Nowadays, CRM applications are extremely huge projects that QBIS CRM is also

one the of comprehensive web solutions which has several sub divisions and

functionalities. Our requirements consisted of the basic functionalities with extending

some mobile specific ones as well. Most of the sub divisions or less important

functionalities had to be skipped because of the time limitation. Especially quotations

and leads are essential parts of CRM, which were not implemented, in QBIS CRM

mobile apps. Also we had to restrict some creation and deletion functionalities, which

are not necessary for mobile apps. Of course they could be implemented in future

depending on the user demand.

As we explained in first section, QBIS web solution consists of several sub modules

that CRM is just one of these modules. Also our project was the first remarkable

initiation among the mobile applications that they have been developed before. With

our project the base domain structure has been constructed that if the company

decide to develop mobile versions of other modules, the new applications can be

easily adopted into system. Almost all web service methods have already been

implemented and since we design the applications in a reusable manner, most parts

can use in next developments. This was the one of the achievements when we start

to design the system concerning software product line engineering.

62

7. References

[Android Gestures] Android Developers (2012). Gestures. [online]

http://developer.android.com/design/patterns/gestures.html (accessed June 20, 2012).

[Android SDK Tools] Android Developers (2012). SDK Tools. [online]

http://developer.android.com/tools/help/index.html#tools-sdk (accessed June 20, 2012).

[Android Testing] Android Developers (2012). Testing Fundamentals. [online]

http://developer.android.com/tools/testing/testing_android.html (accessed June 21, 2012).

[Android Versions] Android Developers (2012). Platform Versions. [online]

http://developer.android.com/about/dashboards/index.html#Platform (accessed June 20,

2012).

[Apple iOS Dev] Apple Developers Documentation (2011). About iOS Development.

[online]http://developer.apple.com/library/ios/#documentation/Miscellaneous/Concept

ual/iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOverview.html (accessed

July 17, 2012).

[Apple MobileHIG] Apple Developers Documentation (2012). iOS Human Interface

Guideline. [online]

http://developer.apple.com/library/ios/DOCUMENTATION/UserExperience/Conceptual/Mo

bileHIG/MobileHIG.pdf (accessed March 05, 2012).

[Apple MVC] Apple Developers Documentation (2010). The Model-View-Controller

Design Pattern. [online] https://developer.apple.com/library/ios/ -

documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/Cocoa

DesignPatterns.html (accessed July 17, 2012).

[Apple Technology] Apple Developers Documentation (2011). iOS Technology View.

[online]

http://developer.apple.com/library/ios/DOCUMENTATION/Miscellaneous/Conceptual/iPho

neOSTechOverview/iPhoneOSTechOverview.pdf (accessed March 05, 2012).

[Apple Testing] Apple Developers Documentation (2012). Xcode Unit Testing

Guide. [online]

http://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/U

nitTesting/00-About_Unit_Testing/about.html (accessed June 21, 2012).

[Applied SPLE] Kang, Kyo C., Vijayan Sugumaran, and Sooyong Park (2010).

Chapter 1 - Software Product Line Engineering: Overview and Future Directions.

Applied Software Product-Line Engineering. Auerbach Publications.

[CocoaNetics] Drobnik KG (2011). iOS Versions in the Wild. [online]

http://www.cocoanetics.com/2011/08/ios-versions-in-the-wild/ (accessed June 02, 2012).

http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOverview.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOverview.html
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/

63

[Comparison Mobile] Hee-Yeon Cho, Choon-Sung Nam, Dong-Ryeol Shin (2010).
A Compariosn of Open and Closed Mobile Platforms. IEEE Publication; ICEIE 2010,
pg. V2-141 V2-143.

[Designing Agile for Mobile] Vahid Rahimian, Raman Ramsin (2008). Designing an

Agile Methodology for Mobile, Software Development: A Hybrid Method Engineering

Approach. IEEE Publication; RCIS 2008, pg. 337-342.

[Doc Software Arch] Clements, Paul; Felix Bachmann, Len Bass, David Garlan,

James Ivers, Reed Little, Paulo Merson, Robert Nord, Judith Stafford (2010).

Documenting Software Architectures: Views and Beyond, Second Edition. Boston:

Addison-Wesley. ISBN 0-321-55268-7.

[Frakes and Kang] Frakes, W. B., and K. C. Kang. 2005. Software reuse research:

Status and future. IEEE Transactions on Software Engineering 31 (7): 529–536.

[Gartner] Gartner (2011). Gartner Says Sales of Mobile Devices in Second Quarter of

2011 Grew 16.5 Percent Year-on-Year; Smartphone Sales Grew 74 Percent. [online]

http://www.gartner.com/it/page.jsp?id=1764714 (accessed June 02, 2012).

[Hallsteinsen et al. 2008]. Hallsteinsen, S., M. Hinchey, S. Park, and K. Schmid.

2008. Dynamic software product lines. IEEE Computer 41 (4): 93–95.

[Krueger] Krueger, C. 2002. Eliminating the adoption barrier. IEEE Software 19 (4):

29–31.

[Metro] Metro Business (2011). Din bostadsort styr valet av mobiltelefon. [online]

http://www.metro.se/nyheter/din-bostadsort-styr-valet-av-

mobiltelefon/EVHkee!jdl5r8aLCHJOw/ (accessed June 02, 2012).

[Mobile App Challenges] Mobile Application Software Engineering: Challenges and

Research Directions, Josh Dehlinger and Jeremy Dixon, Department of Computer

and Information Sciences Towson University

[Mobile CRM] Giovanni Camponovo , Yves Pigneur , Andrea Rangone , Filippo

Renga (2005). Mobile Customer Relationship Management: An Explorative

Investigation of the Italian Consumer Market. IEEE Publication; ICMB 2005, pg. 42-

48.

[Mobile Doc] Marta Rauch (2011). Mobile documentation: Usability guidelines, and

considerations for providing documentation on Kindle, tablets, and smartphones.

IEEE Publication; IPCC 2011, pg. 1-13.

[Mobile Web] Fahad Aijaz, Syed Zahid Ali, Muzzamil Aziz Chaudhary, Bernhard

Walke (2010). The Resource-Oriented Mobile Web Server for Long-Lived Services.

IEEE Publication; WiMob 2012, pg. 7.

http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/

64

[MobileTest] MobileTest: A Tool Supporting Automatic Black Box Test for Software

on Smart Mobile Devices, Jiang Bo, Long Xiang, Gao Xiaopeng, Second

International Workshop on Automation of Software Test (AST'07) 0-7695-2971-2/07

$20.00 © 2007, IEEE

[OMG] Object Management Group (2003). Introduction to OMG’s Unified Modeling

Language. [online] http://www.omg.org (accessed July 17, 2012).

[Pragyaan_IT_June2011] Pragyaan : Journal of Information Technology, Volume 9 :

Issue 1. June 2011 , Institute of Management Studies Dehradun, Sanjay Singh,

Rudra Pratap Singh Chauhan

[Polling Wiki] http://en.wikipedia.org/wiki/Polling_%28computer_science%29,

accessed on 30/Mar/2012

[Pro-Android] Sayed Y. Hashimi and Satya Komatineni, 2009, Apress, Inc.

[Product Line Use Cases] Software Product Lines, Springer Berlin Heidelberg,

2006, Chapter Product Line Use Cases: Scenario-Based Specification and Testing of

Requirements, Antonia Bertolino, Alessandro Fantechi, Stefania Gnesi and Giuseppe

Lami

[Pushing Wiki] [http://en.wikipedia.org/wiki/Push_technology] 30/Mar/2012,

accessed on 30/Mar/2012

[Rational] Rational: the software development company (1998). Rational Unified

Process: Best Practices for Software development Teams. Rational Software White

Paper TP026B, Rev 11/01

[RE-Good Practice] Sommerville, Ian; Sawyer, Pete (1997). Requirements

Engineering - A Good Practice Guide.. John Wiley & Sons.

[RE_NESEIBEH] Requirements Engineering: A Roadmap, Bashar Nuseibeh & Steve

Easterbrook, ICSE '00 Proceedings of the Conference on The Future of Software

Engineering, Pages 35 - 46, ACM New York, NY, USA ©2000

[SmartDraw] SmartDraw Software, LLC

http://www.smartdraw.com/resources/tutorials/ (accessed 2012-11-03).

[Soft Arch In Practice] Bass, Len; Paul Clements, Rick Kazman (2003). Software

Architecture In Practice, Second Edition. Boston: Addison-Wesley. pg. 21–24.

ISBN 0-321-15495-9.

[Software Engineering Issues for Mobile App] Software Engineering Issues for

Mobile Application Development, Anthony I. Wasserman Carnegie Mellon Silicon

Valley, FoSER '10 Proceedings of the FSE/SDP workshop on Future of software

engineering research Pages 397-400, ACM New York, NY, USA ©2010

http://www.omg.org/
http://en.wikipedia.org/wiki/Polling_%28computer_science%29
http://www.smartdraw.com/resources/tutorials/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-321-15495-9

65

[Software Portability] Ken Garen (2007). Software Portability: Weighing Options,

Making Choices. The CPA Journal; Nov 2007; 77, 11; ABI/INFORM Global, pg. 10

[SPLE] Klaus Pohl, Günter Böckle and Frank van der Linden (2005). Software

Product Line Engineering, Foundations, Principles, and Techniques. Springer.

[TDD] Russell Gold, Thomas Hammell and Tom Snyder (2005). Test Driven

Development: A J2EE Example. Apress 2005 (296 pages) Citation, ISBN

9781590593271.

[TDD in large projects] Raghvinder S. Sangwan and Phillip A. Laplante (2006).

Test-Driven Development in Large Projects. IT Pro.

[TDD J2EE] Russell Gold, Thomas Hammell and Tom Snyder (2005). Getting

Started, Test Driven Development: A J2EE Example. Apress © 2005 Citation

[The RUP] The Rational Unified Process: An Introduction By Philippe Kruchten, 3rd

Edition, Library of Congress Cataloging-in-Publication Data, Addison-Wesley.

[Top CRM] Business Software (2011). Top 40 CRM Software Vendors are revealed

2011.

[UML Forum] UML Forum. "http://www.umlforum.com/faq/". (accessed 2012-11-03).

[Unit Test] Paul Solt (2010). iPhone Unit Testing Explained - Part 1. [online]

http://paulsolt.com/2010/11/iphone-unit-testing-explained-part-1/ (accessed June 21,

2012).

[Using UML] Using UML and Agile Development Methodologies to Teach Object-

Oriented Analysis & Design Tools and Techniques, Jeffrey Brewer, Leslie Lorenz,

CITC4 '03 Proceedings of the 4th conference on Information technology curriculum,

Pages 54 - 57, ACM New York, NY, USA ©2003

[Yves] A relationship between sequence and statechart diagrams. Yves Dumond,

Didier Girardet , Flavio Oquendo, LLP/CESALP Laboratory – University of Savoy

file:///C:/Users/Maleekanya/Documents/My%20Dropbox/Thesis%20Report%20Final%20Mary/%22http:/www.umlforum.com/faq/%22
http://developer.apple.com/library/ios/

