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ABSTRACT

Highly energy efficient ships are valuable assets in the maritime transport industry;
however, energy efficiency often comes at a higher price. In this work “energy
efficient ships” are considered to be ships designed with lightweight structures, which
lead to lower fuel-consumption or larger payload capacity. The material of the
lightweight structures addressed in this thesis is fibre-reinforced plastic, a material
known for its high strength to weight ratio. The material is also known to be
expensive and traditional design principles with over-conservative estimates need to
be reviewed in order to limit the costs.

The purpose of this thesis is to contribute to the development of methods for
calculating the ultimate limit state (ULS) of fibre- reinforced plastic panels with less
conservative estimates compared to traditional methods used in the industry. This
contribution was achieved by extending the formulation of an existing computer
software known as Panel Ultimate Limit State (PULS), which is used for estimating
the ULS capacity for steel and aluminium panels, to include unstiffened single-skin
composite panels. The ULS was defined as the ultimate load-carrying capacity. Two
traditional lay-ups used in the maritime industry were analysed for different
breadth/thickness-ratios under compressive load conditions. The results were
compared with a finite element analysis and another semi-analytical model.

Through comparisons of the developed software against a finite element analysis, it is
found that composite PULS provides reasonable conservative ULS results for plates
with high breadth/thickness-ratios. Composite PULS has its limitations when it comes
to estimating the ULS of plates with low breadth/thickness-ratios. It was experienced
that the balance between accuracy and computational time is hard to establish.

Using composite PULS in order to estimate the ULS capacity is through this thesis
shown to give a less conservative ULS compared to traditional design criteria.
Composite PULS is based on Hashin-Rotem’s failure criteria, and estimated the ULS
to be 73-94% of the ULS calculated with a finite element analysis.

Key words: Buckling, composite panels, fibre-reinforced plastic, Hashin-Rotem’s
failure criteria, plates, semi-analytical method, strength, ultimate limit
state.
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Undersokning av brottgrdans for plattor av komposit material - En utbdjningsanalys
utford med semi-analytiska metoder

Examensarbete inom Naval Architecture and Ocean Engineering

ERIK BRAATEN AND JONAS BOSTROM

Institutionen for sjofart och marin teknik

Avdelningen for Marine Design, Forskargruppen Marine Structures

Chalmers tekniska hogskola

SAMMANFATTNING

Energieffektiva fartyg dr en virdefull tillgng inom transportindustrin, men hog
energieffektivitet kommer med ett hogt pris. Effektiva skepp beskrivs hér kort som
skepp tillverkade 1 lattviktsmaterial vilket mojliggdr minskad briansleforbrukning eller
utokad lastnings forméga. I denna studie behandlas lattviktsmaterialet fiberforstirkt
plast, ett material som &r kint for ett hogt forhallande mellan styrka och vikt.
Materialet betingar ett hogt pris och forknippas med traditionella designprinciper med
konservativa berdkningar som behover ses ver for att reducera onddiga kostnader.

Malet med denna studie var att bidra till utvecklingen av metoder som berdknar
brottgrinsen av fiberforstirkt plast pd ett mindre konservativt sitt, jamfort med
traditionella metoder. Detta har gjort genom att utveckla en existerande
programmjukvara, kind som “Panel Ultimate Limit State” (PULS), vilket anvénds for
att uppskatta maximal lastbarnings formaga for aluminium- och stalkonstruktioner, till
att hantera fiberforstirkta plastpaneler. Tvéa traditionella plastlaminat vanliga for den
marina industrin, av olika tjocklekar och utsatta for kompressiva lastfall bade axiellt
och biaxiellt, har analyserats. Resultatet har jimforts med finita element analys och en
alternativ semianalytisk modell.

Den utvecklade modellen, komposit PULS, har genom jamforelse med en finita
element analys visats ge rimliga resultat for maximal lastbdrnings formaga for plattor
med ett hogt bredd/tjockleks forhallande. Vad betriffar plattor med Ilagt
bredd/tjockleks forhdlande sd 4ar mojligheterna att utféra en uppskattning av
brottgrinsen begrinsade. Balansen mellan berdkningstid och resultatnoggrannhet
visade sig vara svar att identifiera.

Det har i denna studie visats att komposit PULS ger en mindre konservativ
bedomning av maximal lastbdrningsformaga &n traditionella metoder. I komposit
PULS har Hashin-Rotems brottkriterier anvénts och den uppskattade brottgransen var
pa 73-94% av den maximala lastbarningsforméga som uppnades genom finita element
modellen.

Nyckelord: Brottgrdns, buckling, FRP-material, Hashin-Rotems brottkriterier,
komposit paneler, plattor, semianalytiska metoder, styrka.
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Notations

Roman upper case letters

A Displacement amplitude [mm]
[B] Coupling stiffness matrix [N]

[C] Stiffness matrix for homogenous material [MPa]
[Cd ] Degraded stiffness matrix [MPa]
D Damage parameter [-]

[D] Bending stiffness matrix [Nmm]
E Young’s modulus [MPa]
G Shear modulus [MPa]
L Length between nodes of an element [mm]
Noy Reference load [ N/mm ]
Py Preload [MPa]
0" Perturbation load [MPa]
[Q] Stiffness matrix [MPa]
S Shear strength [MPa]
U’ Bending energy [m]]
v, Fiber volume fraction [-]

X Longitudinal strength [MPa]
Y Transverse strength [MPa]
Z Out of plane strength [MPa]
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Roman lower case letters

yoms Damage factor; respectively fiber, matrix, shear [-]

g Shape function [-]

m Number of half sine waves along the x-direction [-]

n Number of half sine waves along the y-direction [-]

w Out-of-plane deflection [mm]
X Longitudinal coordinate [mm]
y Transverse coordinate [mm]
Greek lower case letters

£ Normal strain [-]

g’ Mid-plane strain [-]

@ Rotation [-]

4 Shear strain [-]
An Increment parameter [-]

2 Eigen value [-]

v Poisson’s ratio [-]

o Stress [MPa]
T Shear stress [MPa]
Subscripts

1 Longitudinal direction [-]

2 Transverse direction [-]

3 Out of plane direction [-]

C Compression [-]

S Symmetric [-]

S step [-]

T Tension [-]
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Abbreviations

ALS Accidental limit state

CDM Continuum damage mechanics
CLPT Classical laminated plate theory
CPDM Complete ply degradation model
CPT Classical plate theory

DNV Det Norske Veritas

DOF Degrees of freedom

FE Finite element

FEA Finite element analysis

FFF First fibre failure

FLS Fatigue limit state

FPF First ply failure

FRP Fibre-reinforced plastic

FSDT First-order shear deformation theory
GRT Gross register tonnage

IMO International Maritime Organisation
LPF Load proportional factor

PULS Panel ultimate limit state

SLS Serviceability limit state

ULS Ultimate limit state
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1 Introduction and motivation

In this section, a brief introduction is presented, including the background, objective,
methodology, limitations and outline of the thesis.

1.1  Background

Around 90% of the world’s trade is today carried out at sea, and the trade volume is
expected to increase in the forthcoming years, see IMO (2013). With this high share
of the transport industry, it is important to realise our responsibility for reducing the
harmful emissions caused by shipping, and making transport as energy efficient as
possible. The introduction of alternative energy sources can reduce significantly the
release of dangerous emission gases like SO, NOy and CO,. Other aspects to consider
are to reduce the resistance through the water by optimizing the hull shape or reduce
the weight of the structure.

The structural weight can be reduced by using lightweight materials, such as
aluminium and fibre- reinforce plastic (FRP). FRP structures are in general more
expensive to fabricate than classical steel structures, but aspects like low maintenance,
a long fatigue life and no corrosion contribute to a lower yearly cost compared to steel
structures, see LIWEM (2012). The high strength to weight ratio of composites can be
used for reducing the weight of the structure of a ship. By reducing the weight of the
structure, there are possibilities of increasing the speed, reducing the fuel consumption
and thereby the emissions, adding more cargo or increasing the stability by combining
steel and composite structural designs, see LIWEM (2012) and RINA (2013).

There are many examples of where FRP has been applied and one such is a large fleet
of small ferries. For small ferries the structural weight is a large proportion of the total
load, and, subsequently, decreasing the structural load has large benefits on fuel
consumption. An example on how the size of FRP-ferries has increased is U.T.O
Krilo Carbo with its 546 gross register tonnage (GRT), see Bradrene AA (2013).
Additional examples of FRP ships can be found in the Navy, where the Visby class
corvette in the Royal Swedish Navy, see Kockums (2013), and the American
destroyer, DDG-1000 Zumwalt class, planned to be delivered in 2014, see Naval-
technology (2013) are such examples. Since the Navy does not have to comply with
SOLAS rules, and as large budgets for rather complex structures are available, they
have been able to exploit the benefits of FRP structures.

FRP have so far been of limited use in the maritime transport industry because of the
high price associated with FRP constructions, but with increasing oil prices the
profitability of utilising FRP is now highlighted. An example of a well-known
operator in the maritime transport industry is Stena Teknik which came up with a
concept design; Stena F-MAX, which saved 500 tonnes by introducing a FRP
superstructure, see LIWEM (2012).
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When designing ships, there are different limit state designs that describe different
methods used in the design process.

e ALS, accidental limit state

e FLS, fatigue limit state

e SLS, serviceability limit state
e ULS, ultimate limit state

The ULS can be defined as the load condition where the structure fails due to reaching
its maximum strength, potentially causing significant loss of lives or values, see
Hollaway et al. (2001). It should be mentioned that ULS for FRP is defined in various
ways in different available literature, where examples of such are; FPF, first buckling
load, first fibre failure or maximum load-carrying capacity. The definition of ULS
throughout the thesis was considered as the maximum load-carrying capacity of a
plate. The SLS is defined as a condition where the structural response reaches a
limiting value when performing normal use, while ALS is the condition where the
safety of personnel, the cargo or the environment is affected due to accidents causing
large structural damage. FLS is the condition where fatigue cracks due to long-term
usage during operational conditions occur.

A common factor for these limit state designs is safety, where different situations a
ship can experience throughout its lifetime are considered. For panels in ships
subjected to hogging and sagging, the ULS in both compression and tensile load cases
is of importance. The regulations for marine hull constructions using fibre composite
materials developed by class are based on first ply failure (FPF) and buckling load,
where matrix failure should be inhibited by the fibres in the composite, see DNV
(2013 a). To ensure that the FPF or the first buckling load is not reached, a safety
factor of 0.33-0.4, depending on the structure, is used for defining the limit load, see
Figure 1.1. This consideration is conservative where the calculation time is low, but
there is, however, often a significant amount of residual strength after the defined
limit load. The deflection after the first buckling load, however, is non-linear and
results in complex calculations.

Load

————————————————— Collapse load

——————————————————————————— First buckling load (ULS)
Safety
factor
——————————————————————————— Limit load
Normal
operation
>

7~
Longitudinal end-shortening

Figure 1.1  Principal load-displacement curve showing different load states for
current traditional design scenarios.
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By exploiting this residual strength in the postbuckling area the ULS and a less
conservative limit load can be calculated, resulting in a more optimized structure.
Figure 1.2 shows how the limit load is located closer to the first buckling load and
FPF. The non-linearities that occur with large deflection and material degradation is
often a complex task to describe, resulting in high computational costs.

Load
_____________ - Collapse load/ULS
Safety
factor FPF
First bucklingload
Normal Limit load
operation

Longitudinal end-shortening

Figure 1.2 Principal load-displacement curve showing different load states for
future design scenarios.

For thin-walled stiffened steel panels used in ship hull structures, there exists a semi-
analytical computer software, PULS (Panel Ultimate Limit State) that increases the
accuracy in ULS-calculations compared to traditional rule formulations, see DNV
(2013 b). The ULS calculated by PULS accounts for residual strength in the
postbuckling region. The computational cost is low and it allows for optimization in
the design process.

The benefits of a similar tool for composite structures are obvious and will contribute
to a less conservative ULS prediction than achieved with traditional designs. The
purpose of this thesis has been to develop a computational tool that with tolerable
accuracy can estimate the ULS capacity of FRP panels within reasonable time. An
ongoing research project for developing a semi-analytical method for estimating the
ULS-capacity of FRP panels is the Complete Ply Degradation Model (CPDM), see
Yang (2013), and further testing of lay-ups typical for the maritime industry is of
interest.

1.2  Objective

The use of fibre-reinforced plastic (FRP) panels in ships has large potentials regarding
the contribution to a sustainable future. The high strength to weight ratio enables a
lightweight structure design, although, on the other hand, the material cost is high. In
order to reduce weight and cost it is important to reduce over-conservative designs.
The objective of this thesis has been to make a fast and good assessment of the ULS
of FRP-panels subjected to compressive loads. In more specific terms, the objective is
expressed as:

e Extend PULS so that it can calculate the ULS of FRP-panels under
compressive loads.
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A more accurate assessment of the ULS would allow for improved utilization of FRP
constructions. The improvement would result in a lower environmental impact, since
unnecessary material can be avoided in both material fabrication and in structural
design.

1.3  Methodology

In this section, a short description of the methodology used in order to achieve the
objective is presented, see Figure 1.3 for a schematic overview.

Parametric
study
e v_ EREEE
Non-linear PULS CPDM
FEA

Compare ¢

displacement

E FRP-material
description properties

v

ﬁ

I

|

|

I Compare FPF FRP failure
(T

|

|

|

|

|

criteria

v

Degradation

maodel

Compare ULS and

) FPF for uniaxial h

loading

v

Compare ULS and
)‘ FPF for biaxial

loading

Figure 1.3 Flowchart of the methodology. The area surrounded by a dashed line
shows the extension of PULS.

In order to extend PULS so that it could calculate the ULS of FRP-panels under
compressive loads, the theory behind PULS was extended. The work was limited to a
parametric study on square, single-skin, unstiffened panels of various b/t-ratios
subjected to compressive loads, see Section 1.4 for a further description. The parts of
PULS that were elaborated can be reduced to three areas; FRP material properties,

FRP failure criteria, and a degradation model to evaluate the laminate strength after
FPF.
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The material properties were implemented using classical laminate plate theory
(CLPT). The failure of the material was calculated through failure criteria developed
by Hashin-Rothem, see Section 2.3.5. To estimate the ULS of the plate, a complete
ply degradation model, see Section 2.3.2, was implemented utilizing the residual
strength after FPF. The implementations were done using the programming language
Fortran 95. Continuous validations of displacement descriptions, FPF loads and the
implementation of a degradation model, see Figure 1.3, were performed with a non-
linear FE-model as a reference.

Composite PULS was validated against both CPDM and a non-linear FEA. The non-
linear FE-model was done in Abaqus Standard where two processes were performed.
Firstly, a linear buckling analysis was performed in order to utilize the displacement
description of the first buckling load as input for the later analysis. Secondly, the
static Riks method was used in order to describe the load/displacement relation. The
results gained from the FE-model were used for evaluating the ULS and FPF
calculated for the parametric study with both composite PULS and CPDM for the
uniaxial compressive load case. The biaxial compressive load case was only evaluated
using composite PULS and Abaqus.

1.4 Limitations and assumptions

The study was carried out in cooperation with Det Norske Veritas (DNV) and
Universitetet 1 Oslo, and limited to already existing models, namely PULS and
CPDM, see Sections 2.1 and 2.2. The study is based on the background theory and
assumptions of the already existing PULS. From the existing framework, the objective
was to develop PULS to encompass composite material, and the limitations and
assumptions regarding this further development are presented in this section.

It was unknown whether or not PULS would be extendable to include composite
materials, and in order to keep the focus on the theoretical applicability simple plates
were chosen. Simple plates mean that the geometry was limited to single-skin square-
shaped panels without any stiffeners and with various thicknesses. The study cases
consisted of investigating postbuckling failure for square panels with lengths of 500
mm. Different thicknesses were defined by a breadth to thickness ratio, b/¢, which was
given by 10, 15, 20, 30 and 50.

No plate is perfectly flat and therefore an initial imperfection of 0.1 % of the length
was used, with the shape from the first buckling mode. There are many different
composite material combinations to choose between, and in order to compare and
develop PULS the study was limited to one material set-up. The material is FRP,
made of a pre-preg E-glass fibre/epoxy, where the fibres are unidirectional. The
material properties found through testing done by Hayman et al. (2011) were used.
The material properties are found in Table 1.1, where the subscripts 1 and 2 are in the
longitudinal and transverse directions, respectively, and T and C are tensile and
compressive.
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Table 1.1 Material Properties of the material used throughout the thesis.

Material properties

E, =49627 [MPa] | G, =G =G, =4800 [MPa] | v,, =0.27

E,=15430 [MPa] | V, =0.62

X, =968 [MPa] | Y, =24 [MPa] S =65 [MPa]

X.=915 [MPa] | Y.=118 [MPa]

The lay-up configurations chosen, see below, are commonly used in the shipping
industry and give additional test results for the CPDM.

e Lay-up A, a quadriaxial lay-up: [03 /+45/90/— 45]ZS

e Lay-up B, a triaxial lay-up: [— 45/+45/ 0]4‘Y

The loads applied were restricted to uniaxial and biaxial compression for
simplysupported boundary conditions, since these boundary conditions cause the
lowest ultimate load, see Misirlis (2012).

1.5 Outline of thesis

The thesis is divided into eight sections, where Section 1 describes the introduction
and motivation behind the work. After this section the reader should have a clear view
of the objective, how the objective was solved and which limitations and assumptions
that were made in order to fulfil the work.

In Section 2, the theories behind the models are presented in short terms. An
introduction to failure theory, failure criteria and progressive failure is given in order
to give an understanding of the later sections.

The work done by the authors regarding the CPDM is explained in Section 3.

In Section 4, the development of PULS to include composite materials is explained.
The implementation of stiffness matrices, decisions of progressive failure and in-plane
stress calculations are described. Further, the limitations regarding these choices are
motivated.

Section 5 introduces the FE-model in terms of analysis procedure and the damage
evolution model. The choice of element type as well as mesh size is motivated and
described.

Results are compared and discussed in order to form an understanding of the
performance of the models in Section 6.

In Sections 7 and 8 the conclusions of the thesis and future work, respectively, are
presented.
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The Appendix section contains further descriptions of the theories applied in the
different models in form of mathematical expressions. The rest of the results that are
not presented in Section 6 are found in the Appendix.
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2 Model introduction

In this section an introduction to the Complete Ply Degradation Model (CPDM), the
Panel Ultimate Limit State (PULS) and failure theory are presented. Further
explanations of the theories mentioned in the text are found in the appendices.

2.1 Panel Ultimate Limit State (PULS)

PULS stands for Panel Ultimate Limit State. It is a semi-analytical software for an
estimation of ULS through the non-linear buckling behaviour of steel panels
developed by DNV (2013 b). PULS estimates the ULS capacity of plates that are
unstiffened, regularly stiffened, arbitrarily stiffened, open corrugated and subjected to
uniaxial and biaxial compressive, shear and tension loads. The software is used as a
tool combined with linear FEA from where loads are extracted in order to make a
more thorough assessment of the design. PULS can, for example, be used in the
estimation of a ULS capacity of structures that through years of service have been
exposed to corrosion.

The software is based on the large deflection plate theory developed by von Karman
and Marguerre, where Marguerre extended the non-linear theory developed by von
Karman to account for the initial imperfections in the plate, see Byklum (2002). The
non-linear terms introduced by von Karman are necessary in order to achieve a better
approximation of the membrane strains when the deflection is relatively large
compared to the thickness, see Turvey et al. (1995). The membrane strains are one
part of the total strains which, in PULS, are expressed by using Kirchhoff’s
assumptions:

e Straight lines perpendicular to the mid-plane (transverse normals) remain
straight as the plane deforms into a surface, see Figure 2.1.

e Transverse normals do not experience elongation.

e The transverse normals rotate in such a way that they remain perpendicular to
the mid-surface after deformation.

CHALMERS, Shipping and Marine Technology, Master’s Thesis X-13/288
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Figure 2.1  Undeformed and deformed plate geometry when Kirchhoff’s
assumptions hold, see Reddy (2004).

These assumptions are valid for plates with a side-to-thickness ratio greater than 30,
see Reddy (2007), for thicker plates first-order or higher order shear deformation
theories could be required.

In order to develop the non-linear elastic equilibrium equations due to the large
deformation theory, energy methods like the virtual work principle and the principle
of minimum potential energy are used, explained in detail by Byklum (2002). For
both principles, see Appendix C, the work done by external and internal forces are
required and these are described by the mid-plane deflection, w. To describe the
deflection in connection with the principle of minimum potential energy, the
Rayleigh-Ritz method has shown to be convenient, see Byklum (2002). The Rayleigh-
Ritz method, see Appendix D, reduces the problem that describes the deflection, and
to find the amplitudes of the shape functions, see Equation (2.1). The number of terms
required is dependent on how well the chosen shape functions agree with the actual
deflection.

wx,»)=Y > 4,.2,(x)g,(y) [mm] 2.1)

m n

where g, and g, are shape functions and A4,, are displacement amplitudes. Using

the deflection keeps the number of terms low, since only one dimension is regarded.
However, the choice of shape functions is critical when only one parameter is
regarded, see Chia (1980). Instead of expressing the energy by the deflection, an
alternative is to express it with displacements in the x, y and z directions. To express
the energy by displacements in all directions would include more terms, which results
in higher computational costs.
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Byklum (2002) shows that the solution to the energy problem of a plate subjected to
large deflection is of the fourth order in the deflection. This is reduced to the third
order in the displacement amplitudes by implementing Rayleigh-Ritz and potential
minimum energy. The non-linear system is made stepwise linearly by using a
perturbation theory which calculates the next step by using the tangent in the previous
step, explained in detail by Steen (1998).

The ULS-capacity for the steel plate is defined when the von Mises yield criterion is
violated somewhere at one of the supported edges. The reason for only investigating
the edges is that the stress can be redistributed to the edges until the yield criterion at
the edges is reached. By investigating the edges only, the computational effort is
reduced.

2.2  Complete ply degradation model (CPDM)

This method was established by Yang et al. (2012) as a semi-analytical model for
estimating ULS capacity of unstiffened single-skin composite panels, and further
developed in 2013, see Yang (2013), to account for the large deflection theory. A
short introduction of the model is presented in the following text and is explained
schematically in Figure 2.2. Each step of the method is explained further in Appendix
F, and if a more detailed description is required, see Yang (2013).

> Start (Load =0 MPa)

Calculation of new ¢

A-,B-,D-matrices ) Increase load
for the plate

3 v

Calculation of

Material
degradation

displacements, rotations
and load parameters

¢ No failure ¢

Failure

Failure mode
location (— Failure checking (— Calculate in-plane stresses

Figure 2.2 Schematic view of CPDM.

CPDM is based on the Rayleigh-Ritz method and is a general model in the sense that
it accounts for unsymmetrical lay-ups and is based on FSDT, see Appendix B. FSDT
is an extension of Kirchhoff’s assumptions where the transverse normals must still be
straight but not necessarily perpendicular to the mid-surface, see Figure 2.3. The
consequence is that the cross section rotates with respect to the mid-plane, and these
rotations must be accounted for.
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Figure 2.3 Undeformed and deformed geometries of a plate under the assumptions
of the first-order plate theory, Reddy (2004).

CPDM expresses the displacements and cross sectional rotations via a Fourier series
for each parameter, see Equations (F.1) to (F.5) in Appendix F. These parameters are
implemented in Rayleigh-Ritz and a similar procedure as for PULS is performed. The
displacements and rotations are used for expressing the energy problem and the last
unknowns are solved with the perturbation method.

Accounting for unsymmetrical lay-ups means that there is a coupling between the in-
plane forces and moments, i.e. the coupling matrix B #0 which does not allow for

the large matrix in Equation (A.13) to be divided into smaller sub-matrices. The
reason for including the coupling matrix, even though many laminates are symmetric,
is that when the material is degraded the lay-up becomes unsymmetrical and hence the
symmetry condition is no longer fulfilled.

As a plate is subjected to an increasing load, the matrix and/or fibres of the composite
will eventually fail in different failure modes, see Section 2.3.1. When failure occurs,
the matrix and/or fibres are damaged meaning that the stiffness of the material is
reduced resulting in a weaker structure. There are several ways of accounting for the
strength reduction, where the CPDM reduces the stiffness contribution from the failed
part (matrix and/or fibres) for the complete ply. The material is degraded until the
maximum load is achieved and this load then defines the ULS.

In the study performed by Yang (2013), two lay-ups were used, one triaxial
[-45/+45/0,/+45/-45/0,/—45/+45/0,], and one quadriaxial [0/+45/90/-45],

The ULS results calculated with CPDM varied from 67% to 87% compared to the
ULS achieved using the FEA approach performed by Hayman et al. (2011).

2.3 Progressive damage evolution

When describing the process from first ply failure (FPF) to the ULS for a composite
laminate, failure criteria and progressive damage evolution should be mentioned. In
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this section, different failure modes as well as failure criteria are presented in order to
describe progressive damage models.

2.3.1 Composite failure modes

To describe failure of an FRP material, different failure modes should be considered.
The failure can be divided into internal material failure, also known as microscopic
failure, and macroscopic failure. Most often an internal failure is present before any
macro failure is visible. According to Agarwal et al. (2006), the most typical ways of
describing internal material failure are:

1. Breaking of the fibres

2. Micro-cracking in the matrix
3. Separation of fibres from the matrix (debonding)
4. Separation between laminas, also known as delamination

The different failure modes are closely connected to the loading conditions, material
properties and lamina stacking. In the following text different failure modes in
association with typical loading conditions are described.

For longitudinal tensile loads, breakage of the fibres often occurs at the weakest point
in the cross section. There are three typical failure modes, described as; brittle failure,
brittle failure with fibre pull-out, brittle failure with fibre pull-out and matrix shear
failure or debonding.

Brittle failure is most common in composites with a low fibre volume fraction. In
composites with a fibre volume fraction between 40% and 65% brittle failure with
fibre pull-outs caused by stress concentrations at the fibre ends is the most common.
Brittle failure with pull-outs and additional interface-matrix shear failure or
debonding is typical for composites with a fibre volume fraction larger than 65%, see
Agarwal et al. (2006), see Figure 2.4 for failure illustrations.

ll

Figure 2.4  Failure modes for longitudinal tensile loads, from left; brittle failure,
brittle failure with fibre pull-out, brittle failure with debonding/shear
failure.

During longitudinal compressive loads, the most common internal failure modes,
according to Agarwal et al. (2006), are transverse tensile failure, fibre micro-buckling
and shear failure. Transverse tensile failure means that the composite is split along the
fibre direction. This splitting is caused by transverse strains from the Poisson’s ratio-
effect that are larger than the ultimate transverse strain of the composite. Fibre micro-
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buckling can be described in two ways, see Figure 2.5. The buckling with parallel
fibres is the most common mode in composites with a fibre volume fraction above
40%. Fibre buckling is initiated after matrix yielding, micro-cracking or debonding.
The third typical failure mode is shear failure, see Figure 2.6.
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Figure 2.5  Failure modes for longitudinal compressive loads; (left) longitudinal
compression loads, (middle) transverse tensile failure and (right)
micro-buckling.

Figure 2.6 Shear failure for longitudinal compressive loading.

When the laminate is subjected to transverse tensile loading, common failure modes
are: matrix tensile failure, debonding and fibre splitting. Loads transverse to the fibre
direction cause stress concentrations in the matrix and in the interface between matrix
and fibre, which lead to tensile matrix failure, see Figure 2.7. In the case of fibres with
low transverse strength, a splitting of the fibre may occur.
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Figure 2.7  Matrix tensile failure.

During transverse compressive loading, typical failure modes are matrix shear failure
and matrix shear failure with debonding/fibre crushing. The fracture splits the ply in
an angle that depends on the interaction between the transverse and in-plane shear
stresses, see Figure 2.8.
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Figure 2.8  Matrix shear failure during transverse compressive loading.

For in-plane shear loads three failure modes are considered likely to happen; matrix
shear failure, debonding with and without matrix shear failure, see Figure 2.9.
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Figure 2.9  Matrix shear failure during in-plane shear loads.

Delamination is considered as an important failure mode, since it separates plies from
each other preventing the load-distribution between the plies, see Figure 2.10. Instead,
the laminate is reduced to individual plies that reduce the global strength significantly.
Kageyama et al. (1991) and Turvey et al. (1995) claim that the most common cause of
delamination is impact by foreign objects after the laminate has been loaded (in
service). Delamination is also known as a result of several micro-cracks in the matrix,
fatigue, inadequate bonding between layers or overload. The loading condition that is
most associated with delamination is inter-laminar shear contribution, see Kageyama
et al. (1991). An equation that expresses various load contributions is a stress-based
failure criterion proposed by Ye (1988). The Ye criterion consists only of out-of-plane
stress contributions, see Equation (2.2). If the normal stress is not tensile, the
expression is reduced to shear contributions only.

2 2 2
(0_] (G_] [0_] 1 22)
ZT S13 S23

Figure 2.10 Delamination indicated by separated plies.
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2.3.2 Progressive damage methods

The term damage evolution can be defined as a non-linear deformation process
including three phases; nucleation of micro-defects, growth of the micro-crack and the
development into a macro-defect, see Krajcinovic (1989). From the point where
failure occurs from the micro-defects is a fact, the remaining fracture process should
be described until final failure. Three methods that are, according to Hu et al. (2010),
well known for describing the failure of composite laminates: the stress method, the
fracture mechanics method and the continuum damage mechanics method.

The stress method determines the stresses either in each ply and/or between the plies
in a laminate. Through the use of energy-principles and equilibrium equations in
combinations with stress-strain relations and material constants, stresses can be
determined. Cui et al. (2009) used this method for predicting damage initiation and
residual tensile strength during internal failure in a laminate. The method, in
combination with failure criteria, can only predict failure initiation and in order to
describe further failure, either fracture mechanics or continuum damage mechanics
(CDM) should be applied.

The fracture mechanics method can be described by the strain-energy release rate,
stress-intensity factor and the J-integral, see Agarwal et al. (2006). During loading,
the material absorbs energy by material deformation and the creation of new surfaces.
The energy release rate is based on a criterion stating that the free energy of the
cracked form and applied forces is not to increase as the crack is developing. The
stress-intensity factor is the stress distribution around the crack tip. By assuming the
composite material to be homogeneously anisotropic, expressions for the stress
distributions around the tip can be determined. The J-integral is an energy line
surrounding the crack-tip that is related to the plastic stress and strain singularities.
Fracture mechanics is based on an initial crack or defects, and predictions of the crack
growth and its path are often found complex to predict, see Hu et al. (2010).

The continuum damage mechanics model determines, through the use of internal state
variables, the changes in the shape and form of the laminate, see Hu et al. (2010). In
the term of damage evolution, these variables are often known as damage factors,
which are used to reduce the material properties, see Equation (2.3) and Abaqus
(2012), in order to describe a stress-displacement relation, see Figure 2.11.

E(-d,)  Ev,(i-d)i-d,) 0
€)= Evnl=d )i-d,)  E-d,) 0 | [MPa (23)
0 0 GD(1—d.)

where Poisson’s ratio is represented by the D-term:
D=1-(1-d,)1-d,)v,vy (2.4)

Examples of damage factors can be terms that seek to reduce the material properties
defining the fibre, matrix and/or the shear strength, see the d-terms in Equation (2.4).
The development of these variables describes the evolution of the damage, and they
can be classified as constants for sudden degradations and functions with different
numbers of variables for gradual degradations, see Garnich et al. (2009). Figure 2.11
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describes a stress-displacement relation where the terms, o and o’ ., are made

equivalent in order to avoid a strong mesh dependency. The relation is linear elastic
until failure occurs in point A, and the further description of the stress-displacement
relation is determined either by a sudden degradation or a gradual degradation. A
sudden degradation would follow the vertical line from point A to D, which results in
no residual strength. A gradual degradation would follow the line A-B-C if it is linear,
where the stress-displacement relation is linear elastic between O and B as the
strength is gradually reduced. The gradual degradation decreases the stiffness on the
ply-level, while sudden degradation often is connected with complete ply degradation
or degradation of elements on the ply-level.

N
o |MPa
eq. [ ]

~

7 e
(5eq‘

Figure 2.11 Example of a degradation scheme; sudden degradation between points
A and D, and gradual degradation between A, B and C.

2.3.3 Failure criteria

Several failure criteria exist in order to estimate at which load failure occurs in a
material. Failure criteria can be divided into two groups, stress-based criteria and
fracture mechanics-based criteria. The fracture mechanics criteria are based on
methods described in Section 2.3.2, while the stress-based criteria can be divided into
mode-dependent and mode-independent, see Garnich et al. (2009). Traditional
criterion like Tsai-Wu and Hashin, where Tsai-Wu is mode-independent and Hashin
is mode-dependent, are well known through the last 30-40 years. They are easy to use,
and their results have shown to give good agreement with experimental results.
Hinton et al. (2002) have tested several failure criteria in order to highlight strengths
and weaknesses of the methods. For traditional failure-mode independent criteria
(Examples are Tsai-Hill, Tsai-Wu, Hoffman), Tsai-Wu proved to be the most reliable
one compared to experiments. For mode-dependent criteria (Examples are Hashin-
Rotem, Puck, Maximum stress/strain), the Puck criterion gave good results. The Puck
criteria focus in the same way as Hashin on failure modes by distinguishing between
fibre failure and matrix-failure. However, Puck failure criteria have shown to be less
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accurate for structures with large displacements, see Hinton et al. (2002). Due to the
similarities between Hashin and Puck, and the complexity in predicting the action-
plane angle used in Puck’s criteria, see Deuschle (2013), only the Hashin failure
criteria will be introduced in this section. The criteria that are further presented, in
Section 2.3.4-5 are the Tsai-Wu, Hashin-Rotem and Hashin failure criteria.

2.3.4 Tsai-Wu failure criterion

The failure criterion suggested by Tsai and Wu is a general stress expression based on
interaction between stress components, see Equation (2.5):

Fo,+F.o0.0. =1 (2.5)

g-u-—j
where 1,j = 1,2,...,6

The F-terms are functions of uniaxial and biaxial strengths found through
experiments, where most of the F-terms are given by simple expressions, Equation
(2.6), see Tsai et al. (1971):

(2.6)

The subscripts T and C, respectively, mean tension and compression. If Equation (2.5)
is written in its full length with all the stress interactions and interaction terms, it
would be difficult to operate. In total, there are 21 F,; -terms and 6 F,-terms, but

simplifications can be done with regard to symmetry, transverse isotropy, and in-plane
stress. Expressions similar to Equation (2.6) exist for most of the interaction terms,
but F},,F,;and Fj; are not easily expressed. These terms should be found through

biaxial failure testing, see Tsai et al. (1971). The interaction terms similar to Equation
(2.6) are based on both compressive and tensile strengths, which, according to Hashin
(1980), is unreasonable since a compressive stress-failure situation should be
calculated with compressive strengths and not tensile strengths.

Although the Tsai-Wu criterion has shown to give a good fit with test results, there
are disagreements concerning failure in different modes. It has been shown how
different loading conditions result in different failure modes, see Hashin (1980). In
order to identify failure modes, failure indices identifying the primary load direction
relative to failure have to be defined. These failure indices have shown to be
unpredictable when different indices are close in magnitude, see Garnich et al. (2009).
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2.3.5 Hashin-Rotem and Hashin failure criteria

Hashin and Rotem suggested failure criteria based on experimentally observed
failures for different loading conditions and different failure modes. The
argumentation for the different modes is that in a plane where the failure occurs, the
failure is caused by normal and shear stresses in that plane, see Hashin et al. (1973).
In total, four failure criteria modes, both with Hashin-Rotem and the criteria later
developed by Hashin, see Hashin (1980), will be presented. The difference between
the two sets of failure criteria is that Hashin includes out-of-plane normal and shear
stress contributions, while Hashin-Rotem are more simplified expressions with only
in-plane stress contributions.

Tensile fibre mode:

Hashin-Rotem express the tensile fibre strength in the longitudinal direction by the
maximum stress criteria, see Equation (2.7). For the criterion later developed by
Hashin, see Equation (2.8), where the contributions of both in-plane and out-of-plane
shear stresses are presented.

Hashin-Rotem:

2
O
— | =1 2.7
[X T J 27
Hashin:
2 2
(Gﬂj + [‘7122 +on j =1 (2.8)
XT S12S13

Compressive fibre mode:

In this mode, only the normal compressive stress, o,,, is included, see Equation (2.9).

The effect of axial shear stresses on the compressive strength was unknown at the
time of the publication of the criterion, and therefore it is not included. Later tests that
were done on the subject, see Michaeli et al. (2008), show that the fibre tensile
strength is not significantly affected by shear stresses. For the compressive strength,
only tests including small magnitudes of shear stress were done, and these tests show
that shear stress has a small effect on the compressive strength, see Michaeli et al.
(2008). For this statement to be valid, similar tests for larger shear stress magnitudes
should be included. Based on the existing test-results, see Michaeli et al. (2008), the
Hashin-Rotem tensile/compressive fibre failure criteria are found to be good
approximations.

Hashin-Rotem and Hashin:
2
oy
=1 2.9
( Xc J 29
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Tensile matrix mode:

The matrix failure modes are considered to be more complex compared to the fibre
modes. This is due to the significant contribution of shear stresses, which makes it
difficult to predict the failure plane.

Compared to the fibre failure mode, an in-plane shear contribution is considered as
being of importance for the matrix failure in Hashin-Rotem for both tensile and
compressive failure, see Equations (2.10) and (2.12). In Hashin, see Equations (2.11)
and (2.13), stress contributions in terms of out-of-plane normal and shear stresses
were added.

Hashin-Rotem:

2 2
(%j J{Glzj ~1 (2.10)
YT Slz

Hashin:
0203 i 0y —0pn0s 0 12 +0"1
+ 5 + =1 (2.11)
Y. Z, S S1S5;

Compressive matrix mode:

Hashin-Rotem:

2 2
(%] +(%j 1 (2.12)
YC S12

Hashin:
2
253, Y. Z. A 2.13)
o’ — 0,,073; + o’ +0o

S%x S,S.

For thin shells, a general consideration is that the magnitude of the out-of-plane shear
stress is considered small and of less importance, see Reddy (2004). Based on this
consideration, it is assumed that Hashin’s failure criteria will have a bigger
contribution for thicker plates. Due to the tests done by Michaeli et al. (2008) it is
believed that by applying Hashin instead of Hashin-Rotem, the difference will be
most visible in the FPF region, while the ULS dominated by fibre-failure will remain
the same.
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3 CPDM-Complete Ply Degradation Model

In this section the extended validation of CPDM, which includes two more lay-up
configurations, see Section 1.4, that are likely to be used in ship panels is presented.
In order to get reliable results a convergence study for the new lay-ups was performed
and can be reviewed in Section 3.1, and the results of the convergence study are
presented in Section 3.2. The results of the extended validation are presented in
Sections 6.1 and 6.2 where they are compared and discussed with composite PULS
and Abaqus. CPDM and previous work done with CPDM are summarized in Section
2.2.

3.1 Convergence study of CPDM

For a given lay-up with all material data available, there are still parameters in CPDM
that need to be defined in order to achieve reliable ULS results. Because the
computation expense is limited and preferably small, the number of terms expressing
the displacements/rotations, see Equations (F.1) to (F.5) in Appendix F, and the
amount of increments in the incremental procedure need to be restricted. The
convergence study along with the assumptions made are explained and motivated.
The purpose of the scheme is to ensure convergence while minimizing the calculation
time for a complete calculation.

Since the behaviour of the laminates is highly dependent on the lay-up configuration,
a convergence study was performed using the new lay-ups. To limit the convergence
study, all Fourier’s series were assumed to need the same amount of terms, meaning
that the displacement/rotation that converged the slowest determined the number of
terms. The amount of increments is dependent on two parameters: the increment
parameter Arn and the reference load which A7z relates to. In order to achieve

approximately the same Arn for different b/f-ratios the reference load was set to be

half the buckling load for plates with a high b/¢-ratio and smaller for plates with a low
b/t-ratio. The reason for smaller reference loads for plates with a low b/t-ratio is that
the compression strength of the material is the limiting factor rather than the buckling
load, which is the limiting factor for plates with a high b/f-ratio.

The convergence for A7 and the number of terms was investigated by the trial and

error principle, including as few increments as possible without compromising the
result. With the reference load set, the increment size needed was investigated. The
load for the FPF was calculated for a rather large increment size, and this was then
halved and the FPF was recalculated. The procedure was repeated until at least 150
increments and the recalculated load was no more than 1% of the previously
calculated load, see Figure 3.1. The increment size affects the ability to describe the
non-linear effects caused by the out-of-plan displacement. This effect means that if
the effects from non-linearities are small, fewer increments are needed to trace the
load-displacement curve. In order to limit the calculation time, five numbers of terms
were used. The convergence of the increment load was checked for a larger number of
terms for layups with the lowest b/f-ratio, since these where affected most by the
number of terms.
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Figure 3.1  Flowchart of the convergence study of the increment parameter A1 .

3.2 Convergence study results
In this section the results from the convergence study are presented.
The results for Layup A, with b//=50, are presented in Table 3.1

Table 3.1 Results from convergence of the increment size for lay-up A,
[0, /+45/9O/—45]2S with b/t=50, reference load=162 N/mm and

number of terms=3.

O rpr [MPa] An Number of increments | Buckling load [N/mm]
39.0 0.2 14 162
38.2 0.1 27 162
37.0 0.05 50 162
36.3 0.025 97 162
35.9 0.0125 | 190 162
35.7 0.0063 | 377 162
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The number of terms for each lay-up was evaluated with the converged increment size
and for first fibre failure (FFF). In order to decrease calculation time, total matrix
failure was assumed meaning that degradation for matrix failure in all plies was
adopted. Calculations of FFF for an increasing number of terms were made until
convergence was achieved. However, if convergence was found at a larger number of
terms than five, the convergence for the increment size was checked for the higher
number of terms as well.

For plates with a low b/t-ratio, five numbers of terms were shown to be sufficient,
while for plates with a high b/t-ratio the number of terms were needed in order to
describe the displacements. Since large out-of-plane displacement was expected for
plates with a high b/f-ratio, the demand for more terms was expected. In other words,
the displacements are harder to describe when the out-of-plane displacements are
large. Table 3.2 shows the convergence results for Lay-up A with b//=50.

Table 3.2 Convergence of number of terms for Layup A [03 /+45/90/— 45]2S with
b/t=50, N, =162 and An=0.025.

o e [MPa] Number of terms Number of increments
182 3(27) 487
125 5(127) 348
112 7 (249) 314
108 9 (407) 304
106 11 (607) 300

The conclusions from the convergence study were that the plates with a low b/t-ratio
needed a fewer number of terms than the plates with a higher b/f-ratio. Furthermore,
convergence for the increment size was achieved when A7 <0.025. The highest

requirement was when the plate has a high b/¢-ratio. Here, 9 numbers of terms and an
increment size of 0.025 were needed to fulfil the convergence criterion. Tabulated
results of parameters used for all lay-up configurations during calculation of the ULS
are presented in Tables 3.3-4.
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Table 3.3 Parametric values used for calculating ULS with CPDM, lay-up A
[0, /+45/90/-45], .

b/t-ratio | An | Ref. load [N/mm] | Number of terms
10 0.05 | 5723 5(127)
15 0.025 | 3801 5(127)
20 0.025 | 2553 7(249)
30 0.025 | 761 7 (249)
50 0.025 | 162 7 (249)

Table 3.4 Parametric values used for calculating ULS with CPDM, lay-up B
[-45/+45/0],,.

b/t-ratio | A7 | Ref. load [N/mm] | Number of terms
10 0.05 | 5709 5(127)
15 0.05 | 3440 5(127)
20 0.025 | 2855 5(127)
30 0.025 | 962 9 (407)
50 0.025 | 208 9 (407)

The results from the full calculations where the ULS was determined for all b/¢-ratios
and both lay-ups are presented and compared to Abaqus and composite PULS in
Section 6.
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4 Composite PULS

PULS is a software that uses the semi-analytical model programmed in Fortran 95 to
reduce computational time compared to a FE analysis - an ability that was kept in
mind during the development. The way PULS was developed to include composite
materials is explained and motivated in Section 4.1. The results of the ULS
calculations based on the developed PULS, here referred to as composite PULS, are
presented and compared in Section 6.

4.1 Implementation of composite plates

The implementation process kept the approach used in PULS, which is Airy’s stress
function in combination with deflections to express the displacements/rotations.
Failure criteria were implemented to evaluate failure and a progressive damage
process was established in order to calculate the ULS. The stiffness properties of the
composite plate were calculated and act as the in-data for PULS. A flowchart of
composite PULS is shown in Figure 4.1, where the dotted line indicates the developed
parts and the already existing PULS is located outside. The mentioned steps are
described in detail in Section 4.1.1-2.

1
|
|
|
|
|
|
I
|
|
|
|

-

\ 4

Start (Load = 0 MPa)

displacements, rotations

Calculation of new I ¢
: 1
A-, D-matrices for 1 ) Increase load
the plate I ¢
¢ I Calculation of
Material

degradation

and load parameters

$ NofailureL————¢——
Failure

_—
Failure mode I
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Figure 4.1  Flowchart of composite PULS accounting for FRP, where the dashed
line indicates the added material into the model.

4.1.1 Implementing of composite stiffness

PULS assumes homogenous orthotropic material and in order to make this more
general and extend it to account for inhomogeneous orthotropic laminates, two
modifications were carried out:

e (alculation of extensional and bending stiffness matrix for the given laminate.

e (Generalization of bending stiffness calculations.
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The calculations of extensional and bending matrix stiffness for laminates were
straightforward using theory found in basic composite mechanic literature, for
example Reddy (2004) and Agarwal, et al. (2006). PULS is stress-based, whereas the
extensional stiffness matrices, found in literature in this area, for the sake of simplicity
use a force equilibrant. This difference means that care had to be taken when
implementing the theory. The calculated extensional stiffness matrix was divided with
the thickness of the plate in order to achieve the right stiffness relations for a stress
approach.

A calculation of bending stiffness for a composite laminate differs from a calculation
of the bending stiffness in PULS, where homogeneous material is assumed. For
homogenous orthotropic materials, the bending stiffness is calculated from the known
extensional stiffness matrix. To extend this calculation method, the bending stiffness
matrix was calculated for the laminate and then implemented in the PULS-expression
to calculate the bending stiffness. For simplicity’s sake, the parts that couple the
bending and twisting, the terms that include odd order derivatives, were assumed to
have small effects on the final result and were thus neglected. However, the model is
theoretically correct, especially for orthotropic laminates where there is no coupling
between bending and twisting. Furthermore, the effect of the coupling between
bending and twisting makes the material less stiff and therefore decreases the
buckling load, which is non-conservative, see Jones (1999).

It has been pointed out that even small couplings between bending and twisting may
cause significantly different results, see Turvey et al. (1995). Ashton (1969) studied
the effect by skewing a square isotropic plate, which introduces D, and D,,. His

study showed that the effect for ratios between D and D, that are small;
—-0.17< Dy /D,, <0, is not significant (4% decrease of the maximum out-of-plane
deflection). However, for moderate ratios; D,,/D,, ~ 0.5, the effect is significant
(24% decrease of the maximum out-of-plane deflection).

The bending stiffness has an impact on the bending energy, and, in order to show the
difference, the equation of bending energy for homogenous orthotropic material
derived in Byklum (2002) Equation (4.1) was compared with the one taking
laminates, into account, Equation (4.2).

E
U’ = ﬁJ‘A (C1111W,211 +2C1122W,11W,22 + C2222W,222 +4C1212W,212)dA [Nm] 4.1)

U= L (D1111W,211 + 2D1122"V,11W,22 +D2222W,222 +4D1212W,212 )dA [Nm] (4.2)

where C is the stiffness matrix for homogenous material, D

XXXX XXXX

is the bending

stiffness matrix components and w, is the deflection differentiated in a different

[

direction indicated by “,”. The difference is that the homogenous material in Equation
(4.1) is independent of the thickness and the term ¢’ / 24 can be extracted from the

integral. For laminates, the thickness needs to be included in the calculation of the
bending stiffness matrix.
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4.1.2 Calculation of in-plane stresses and (failure
degradation

In order to calculate the load-carrying capacity past FPF, it was necessary to introduce
a progressive damage model. A CDM-model is often found in articles, see Garnich et
al. (2009), Maimi et al. (2007), Hu et al. (2010), where one reason is that the method
offers various degrees of complexity depending on the analysis type. An
instantaneous degradation model with a constant degradation factor is conservative
and computationally fast. On the other hand, Garnich et al. (2009) argue that a
progressive failure analysis of a composite structure should use gradual degradation in
order to reflect the actual failure process. The downside with the gradual degradation
is the computational cost, since the stiffness matrices are continuously changing,
which is not suited to a simplified method. Models based on the fracture mechanics
method become complex in order to define crack growth paths, crack growth rates or
crack profiles necessary for the calculations, see Hu et al. (2010). With regard to the
investigated progressive failure analysis the simplest method, the CDM-model with
instantaneous degradation, was implemented in PULS. The stiffness matrix is
degraded to 1 % of its initial stiffness with regard to the detected failure mode.

There are several different failure criteria described for composite, and in PULS the
Hashin-Rotem criteria were used. The reason for choosing these particular criteria
was that the failure mode is clearly stated. The Hashin-Rotem are recognized criteria
and CPDM uses these criteria making the two models comparable. It is also beneficial
to know the failure mode in order to degrade the correct material property upon
failure. Mode-independent criteria would need assumptions to be made in order to
determine which failure mode that occurs. Furthermore, the complexity of the Hashin-
Rotem criteria is low, since these use few terms and easily accessible material
properties. The Hashin-Rotem criteria are easy to implement and they are the default
failure criteria in Abaqus allowing for further comparisons.

It is mentioned in Section 2.3.1 that delamination is a vital failure mode in composite
structures, mainly caused by inter-laminar shear contributions. Hashin-Rotem failure
criteria do not consider this failure mode, and other criteria in order to determine this
failure mode have not been considered. The reason for this is that the PULS-theory
disregards out-of-plane shear contributions, and only considers in-plane shear, which
is represented in the Hashin-Rotem failure criteria. Knowing the failure mode for the
laminates allowed degradation of this specific element and further calculation was
evaluated in order to find the ULS. To detect if failure has occurred, the stresses in
each ply are needed.

The calculation of stresses in each ply is relevant for checking if failure occurs in the
laminate, where membrane strains and curvature of the plate are essential. Curvatures
are not of the same importance for steel plates, which are governed by the membrane
strains. For this reason curvatures are not implemented in PULS, while they had to be
implemented into composite PULS. The curvatures are calculated using Kirchhoff’s
assumptions, which give functions dependent on differentials of the out-of-plane
displacement, see Appendix A. Since the out-of-plane displacement is well defined in
PULS, the curvatures were found by differentiating this expression with regard to x
and y. Kirchhoff’s assumptions were used because of the simplicity. However, they
resulted in a stiffer material since shear deformation is restricted compared with a
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theory applying a first-order or higher order of shear deformation theory. This choice
of assumptions will have a non-conservative effect on thicker plates, while the effect
on thinner plates will be small; see Agarwal et al. (2006). With the curvature and the
membrane strain defining the ply strain, the in-plane stresses in each ply can be
calculated, see Equation (4.3)

O, Q 1 Q 2 Q 6 g;) k,
o,r=10n On O g;) +z9k y [MPa] (4.3)
To O O Oss AU )(c)y kxy

The degradation of the laminate is a minor alternation of the degradation process
proposed by Yang (2013). PULS has no coupling between strain and curvature, i.e.
the coupling matrix B=0, which means that asymmetry in the lamina was not
considered.

In order to keep the model conservative, the degradation model was altered to make
symmetric degradation implying that if matrix failure occurs in the top ply,
degradation will be performed in both top and bottom in order to maintain symmetry
in the laminate.
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5 Finite element analysis

To validate the results given by CPDM and composite PULS, a parallel study using
finite element analysis was performed. The FE-program used was Abaqus Standard
6.12, see Abaqus (2012). In the following text a model description in addition to the
analysis procedure is presented. Further, a mesh study was carried out and the
calculated ULS results are presented in Section 6.

5.1 Abaqus model and material set-up

The first step in creating the model was to define the geometry. A square plate with
the desired measurements, see Section 1.4, was modelled in two dimensions, defined
as a deformable planar shell. Since the thicknesses are significantly smaller than the
remaining dimensions, the shell assumption was considered valid. The material
properties, including failure criteria and the damage evolution model, needed to be
expressed in order to create the composite lay-up. With the defined part and material
properties, the composite lay-ups were created, choosing the number of plies, fibre
directions, materials, integration method as well as the number of integration points
through each ply.

5.2 Boundary conditions and loadings

The boundary conditions were kept simply supported around the edges, see Table 5.1,
for all cases, and the loads were varied from a uniaxial to a biaxial compression.

Table 5.1 Simply supported boundary conditions where the length = a, and the
breadth = b, U is displacement.

Boundary conditions, simply supported

x=0 X=a y=0 y=b

U3=0 | UI=U3=0 | U3=0 | U2=U3=0

A reference point was established outside the plate geometry, in which the loads were
applied. The two edges that were free to move in their respective directions, see
Figure 5.1, were coupled to the reference point formed as sets, meaning that the edge
remained straight when subjected to loads. The coupling between the reference point
and the sets was established through two constraints. Since the edges were free to
rotate during loading, it was desired for the loads to act normal to the edge during
rotations.
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U, U3
+2.986e+01
+2.737e+01
+2.488e+01
+2.23%e+01
+1.991e+01
+1.742e+01
+1.493e+01
+1.244e+01
+9.953e+00
+7.464e+00
+4.976e+00
+2 488e+00
+0.000e+00

Figure 5.1  Lay-up A subjected to a compressive load in the x-direction, showing
out-of-plane displacement. Two edges are free to move in their
respective directions, indicated by the light blue area. The deformations
are scaled with a factor of 10.

5.3 Damage evolution

The damage evolution model in Abaqus was defined by the energy release rate in four
loading conditions; longitudinal tensile and compressive loading and transverse
tensile and compressive loading. The degradation was linear, and the input in Abaqus
required four critical energy release rates, where each of the critical energy release
rates match the area of the large triangle, see Figure G.1, for the respective loading
conditions. The critical energy release rate-inputs were calculated using the equations
found in Appendix G.

The reason for expressing the model in terms of equivalent stresses and strains was to

avoid the strong mesh dependency by introducing the term LY, L° is the length
between two nodes for the chosen elements.

The failure criteria available in Abaqus are Hashin-Rotem and Hashin. The main
difference is the out-of-plane shear contribution, which was expected to have an effect
on the matrix failure, see Section 2.3.5. In order to reflect the models presented in
Sections 3 and 4, the Hashin-Rotem failure criteria were applied in Abaqus. Both
composite PULS and CPDM use the Hashin-Rotem criteria. In this way the
differences caused by the theories between the models can be detected. The inputs in
Abaqus were the material strengths presented in Table 1.1. A minor study was carried
out to see the differences of the ULS for the Hashin-Rotem and Hashin failure criteria,
where the ULS calculated ones were unaffected by which criteria that were chosen.
These results can be seen in Appendix I, Table I.1.
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5.4  Analysis procedure

The analysis was divided into two processes. The first process was a static
stress/displacement analysis in order to estimate the bifurcation load, which was done
by the linear perturbation method. From this analysis the preferred buckling mode was
found by the first eigenvalue, and the mode-shape was used as input in the next
analysis as an initial geometric imperfection of the plate. The geometric imperfection
similar to the first natural buckling mode is known to cause the lowest ULS, see
Misirlis (2012). The displacement from the linearized eigenvalue analysis was written
in the Edit Keywords with the following term: *NODE FILE U. The creation of an
initial imperfection is important in order to get a continuous response prior to the
post- buckling behaviour.

The bifurcation load was expressed as:
PY+ 20" =0 [MPa] (5.1)

where N and M are the degrees of freedom (DOF), P is the preload, Q is the
perturbation load and A is the eigenvalue. By multiplying the perturbation load and
the first eigenvalue, the external load to cause buckling was found.

The next process was to analyse the load-displacement behaviour of the material.
There were both material and geometric non-linearities and due to these non-linear
aspects the Static Riks method was chosen as analysis type in Abaqus. Static Riks is
an incremental solution based on the arc length method. An automatic increment
scheme was used in order to ensure high computational efficiency. The initial arc
length increment was varied between 0.1 and 1, while the minimum increment was

equal to 107 . A load proportionality factor (LPF) was found at each increment. The
initial imperfection found by the linear perturbation method was implemented in the
Edit Keywords option with the input-file: *IMPERFECTION, FILE="name-of-the-
job”, STEP=1, 1, w. The letter w is the maximum amplitude of the initial
imperfection, here defined as 0.1% of the breadth.

An analysis was done without failure initiation in order to check for reasonable results
of both the lay-ups, and further compared against both composite PULS and CPDM.
The load-displacement curves can be seen in Section 6.1.

5.5 Element type

For a 2D planar shell model the following types of conventional elements are
available in Abaqus: four-node linear quadratic shell elements (S4R), eight-node non-
linear quadratic shell elements (S8R) and three-node triangular shell elements (S3R).
For these element types there are different configurations depending on the type of
analysis. The triangular element was excluded at an early stage since it only calculates
thin plate solutions. The remaining elements are briefly presented below. Only
elements with reduced integration were considered. The reason for using reduced
integration was that the computational time is significantly reduced compared to fully
integrated elements, while the accuracy of the results remains the same, see Abaqus
(2012).
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The S8R element is an eight-node second-order quadratic shell element that can be
expressed with five or six DOF; three displacement and two/three rotations. With five
DOF the element is limited to “thin-shell” theory neglecting out-of-plane shear
contributions, and solutions for thicker plates are therefore expected to be inaccurate.
With six DOF the shell element handles out-of-plane shear contribution for the plates,
where this contribution is less vital for thin plates. As the element has eight nodes, the
large deflections of the plate can be described accurately with fewer elements
compared to a linear element type.

The S4R element is a four-node linear element that treats finite membrane strains or
small strains with large rotations. The small strain set-up is limited to five DOF, and
was rejected for the same reason as the S8R5 elements. The S4R element that deals
with finite strains includes out-of-plane stress in order to analyse thick plates. Since
the element-type is linear, smaller elements compared to the non-linear type are
necessary in order to describe larger displacements.

The choice was between S4R- and S8R-elements, both with 6 DOF, and an analysis
was performed in order to see the difference in the solutions for a thin plate, see
Figure 5.2.
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Figure 5.2  Load-displacement relation for different element-types.

From this study, the curves fit well and only small differences regarding the ULS
were found. The S8R element type gave the most conservative solution,
approximately a 2 % lower ULS-load. The number of elements was varied for the
S4R element, see Figure 5.2, and the trend was that the ULS converged against the
ULS value calculated for S8R with fewer elements, see Figures 5.3 and 5.4. On the
other hand, the computational time increased significantly when more elements were
required. For this reason, the S8R elements were found to give faster and more
reliable solutions and became the choice of element type in the calculations.
Furthermore, in order to describe the cross-sectional behaviour of the chosen shell
element, Simpson’s integration rule with three section points in each ply was applied.

37 CHALMERS, Shipping and Marine Technology, Master’s Thesis X-13/288



Simpson’s integration rule was used in order to determine transverse shear stress in
the interface between the plies.

u,uz
+2.997e+01
+2.7478+01
+2.497e+01
+2.2488+01
+1.998e+01
+1.748e+01

+7.492e+00
+4.994e+00
+2.497e+00
+0.000e+00

Figure 5.3  Lay-up A subjected to uniaxial compressive loads, 20733 S4R elements,
showing out-of-plane displacement. The shaded area along two of the
edges indicates the displacement from the original shape. The
deformations were scaled with a factor of 5 in all directions.

u, u3

+2.986e+01
+2.737e+01
+2.48Ge+01
+2.23%e+01
+1.991e+01
+1.74Ze+01
+1.493e+01
+1.244e+01
+9.9538+00
+7 464e+00
+4.976&+00
+2488e+00
+0.000e+00

Figure 5.4  Lay-up A subjected to uniaxial compressive loads, 1296 S8R elements,
showing out-of-plane displacement. The shaded area along two of the
edges indicates the displacement from the original shape. The
deformations were scaled with a factor of 5 in all directions.
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5.6 Mesh convergence study

A mesh convergence study was done to establish the number of elements needed for a
converged result. This was done stepwise by calculating the ULS for the following
number of elements, for the thinnest and the thickest plate, /=50 and b/r=10
respectively:

e 100 elements

e 400 elements

e 900 elements

e 1024 elements

o 1296 elements

e 1600 elements

e 2116 elements

Both the ULS and the load proportional factor (LPF) from the static Riks analysis and
the first buckling load for each element size were checked. The LPF is a magnitude,
which, decomposed, describes the load in the longitudinal and transverse directions.

In Figures 5.5 and 5.6 the ULS-load has been plotted against a varied number of
elements for the plates with highest and lowest b/f ratio, respectively, for both the lay-
ups subjected to uniaxial loading. The differences were smaller for lay-up A
compared to lay-up B, which resulted in converged results for a fewer number of
elements. The exact values can be seen in Tables H.1-H.4.
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Figure 5.5  ULS-load — number of elements for lay-up A [03 /+45/90/- 45]2S , With
(a) b/t=50 and (b) b/t=10.
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Figure 5.6 ~ ULS-load — number of elements for lay-up B [— 45/+ 45/0]4S, with (a)
b/t=50 and (b) b/t=10.

In order to check mesh convergence for the plates subjected to biaxial loadings, the
LPF was plotted against a varied number of elements in the same way as for uniaxial
loading, presented in Figures 5.7 and 5.8. The load-ratio that was used in the

convergence study for biaxial loads, was N, =0.84. As for the uniaxial load-case,
y

lay-up B needed a higher number of elements in order to have converged results. An

additional study using 3200 elements was necessary for lay-up B in order to ensure

convergence.
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A more general check including the entire load spectrum vs centre out-of-plane
displacement showed that the curve had a good fit from 900 elements and more, see
Figure 5.9. Only with 100 and 400 elements, did the curve show a visible divergence
in the ultimate failure area.
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Figure 5.9  Mesh refinement, plate A [03 /+45/90/— 45] b/ t=50.

PN

In order to ensure that the elements were sufficiently small a mesh convergence study
was perfomed for the plates with the highest and lowest /¢ ratio of both the lay-ups.
The exact values are available in Tables H.1-H.4 in Appendix H. In general, the
results were good enough with 900 elements, only with a few exceptions. With 1,296
elements all the study-cases showed converged results. The difference in
computational time between a mesh of 900 elements compared to 1296 elements was
minor. Instead, there was more time to save, during model-making, in applying a
standard mesh for all the models.
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6 Comparison and discussion of postbuckling analyses

Section 6 presents, compares and discusses some of the results calculated by
composite PULS, CPDM and Abaqus, the remaining results can be found in
Appendix I.

The structure of this section consists of four parts, the first part discusses the ability
to describe the out-of-plane displacement due to the load. In order to discuss the
displacement description of the different models, the comparison was made by
calculating the deflection of the plate without failure or degradation. The second part
discusses the relation between ULS calculated for each model under uniaxial loads. In
the third part, biaxial loads are compared and discussed and in the final part the
consequences of not accounting for delamination are briefly discussed.

6.1 Displacement description without failure

In order to verify that the material properties were implemented correctly, load-
displacement curves without failure or material degradation were plotted.
Furthermore, the effects of not implementing the first-order shear deformation theory
(FSDT) into PULS were evaluated and compared with the results gained from CPDM.
Four plots of load-displacement curves without failure are presented in Figures 6.1-
6.2.
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Figure 6.1  Load-displacement  curves  without  failure for lay-up A
[0,/+45/90/-45] ; (a) and lay-up B [-45/+45/0],s (b), both with

b/t=50.

Both CPDM and composite PULS show a good fit for the load-displacement relation
for the thin plates, see Figure 6.1. The reason for this good correlation, despite the
restraints from the assumptions involved by the theories of the classical laminated
plate theory (CLPT) and FSDT, is believed to be due to the high /¢ ratio. The high
b/t-ratio resulted in a negligible out-of-plane normal stress and shear stress
contribution, and the theories without this contribution, or only a first-order
contribution, would give the same results. However, for plates with lower /¢ ratios,
where the out-of-plane shear contribution was not negligible, the load-displacement
relation shows a stiffer plate for the simplified theories, see Figure 6.2. With this
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relation in mind, the focus of Section 6.2-6.3 is on the effects caused by different
progressive failure methods from the first ply failure (FPF) until the ULS.

Despite the good correlation seen in Figure 6.1, some deviation is still present. The
reason for this deviation is that the load-displacement curves, for both composite
PULS and CPDM, were found using the Rayleigh-Ritz method in combination with
the perturbation method. The perturbation method operates with small linear
increments where the non-linear contribution from the large deflection theory is
linearized. This linearization results in a small “over-shooting” when the change in
deflection is great, see Figure 6.1(b) around 30 MPa.

In Figure 6.2, composite PULS clearly shows weaknesses when calculations were
made for plates with lower b/t-ratios, which is due to the fact that CLPT disregards
the out-of-plane stress contributions. The better approximation from CPDM is
because the out-of-plane shear deformation contribution is accounted for through
FSDT. The differences are visible for both lay-ups with b//=10, although for lay-up B
the CPDM-curve is located somewhat closer to PULS than to Abaqus. Why CPDM
does not match Abaqus better is not known, and some deviation was expected due to
the perturbation method but when smaller increments were tried there was no
noticeable difference.
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Figure 6.2  Load-displacement  curves  without  failure  for lay-up A
[0,/+45/90/-45],; (a) and lay-up B [-45/+45/0],s (b), both with

b/t=10.

6.2 Uniaxial load cases

In this section, the failure and the degradation model were implemented in the load-
displacement calculations. Figures 6.3-6.6 illustrate the results of the calculations with
composite PULS, CPDM and Abaqus. Furthermore, the first buckling load was
calculated as a reference to the ULS.

The differences between the models were shown to initiate after FPF, and therefore
the discussion focuses on this part. Abaqus degrades the material properties linearly,
which means that the degradation affects the stiffness of the plate more slowly
compared to composite PULS and CDPM which instantaneously degrade the
complete ply. It is assumed that the ply in reality has residual strength in the
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remaining undamaged parts of the ply and for this reason the linear degradation
model in Abaqus is more accurate compared to the instantaneous complete ply
degradation.

The reason for the cluttered load-displacement curves for both CPDM and composite
PULS, see Figure 6.3, is that the calculations of displacements and curvatures were
restarted from an unloaded condition after each degradation. The load-displacement
curves are therefore plotted for all calculated values up to FPF, and, from this point
on, only the failure points from each reloading were indicated. This means that the
load-displacement curves are somewhat overestimated between the failure points,
while the ULS and all failure points are precise. Tabulated results are presented in
Tables 6.1-6.3, for lay-up A and B where FPF and first fibre failure (FFF) for
composite PULS and Abaqus are specified.
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Figure 6.3  Load-displacement curves for lay-up A [03 /+45/90/- 45]2S (a) and
lay-up B [-45/+45/0),s (b), both with b/t=50.

In traditional standard ULS design, the ULS is located at the first buckling load or
FPF, see DNV (2013 a). Compared to this design criterion, the plates with a b/¢-ratio
of 50 show a significant residual strength after both FPF and the first buckling load,
see Figure 6.3. Composite PULS calculates the maximum load-carrying capacity
independent of the failure sequence, which means that several fibre failures could
occur before the ULS is reached. Fibre failure in tension can be rather violent and the
dynamics of such a failure could cause immediate total failure. Since the ultimate
strength is considered as the maximum load-carrying capacity, the results can be non-
conservative in occasions with multiple fibre failures.

As the b/t-ratio was decreased, the FPF occurred for loads lower than the first
buckling load, but there is still a residual strength in the laminate. For the thickest
plates considered in this thesis, the first buckling load was found to be much larger
than the collapse load. This implies that for plates with low b/z-ratios the non-linear
terms in the large deflection theory could be disregarded, since the maximum load is
reached when the deflection is small compared to the thickness, Turvey et al. (1995).
If the large deflection theory may be disregarded, the semi-analytical methods do not
require a perturbation method in order to estimate the ULS.
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The comparison between Abaqus and composite PULS was performed in detail where
the plies degraded for FPF and FFF were investigated. The expectation was to find
that the same plies were degraded for the FPF for composite PULS and Abaqus, since
no degradation has occurred before FPF. However, some variation for the FFF could
be expected due to the different degradation models, where composite PULS utilizes
complete ply degradation, which affects the load distribution in the laminate. Tables
6.1-6.3 show that this was expected for most cases, although for the plates with the
lowest b/t-ratio this was not the case. The reason for FPF in different plies is believed
to be related to the predominate end shortening in the longitudinal direction. The FPF
for composite PULS occurred within a reach of 96% to 104% of the FPF calculated
with Abaqus. For both plates with a b/t-ratio of 50, the FPF occurs after the first
buckling load.

Table 6.1 Overview FPF [MPa] and FFF [MPa], Lay-up A [03 /+45/90/- 45]25

The numbers in the parenthesis indicate the fiber direction. The
subscript P indicates composite PULS and the subscript A indicates

Abaqus.
Composite PULS Abaqus
b/t Ply GFPF.P Ply GFFF.P Ply GFPF.A Ply O-FFF.A

10 | 5(90°) | 298 1(0°) 437 20(90°) | 292 1(0°) 539

30 | 24(0°) | 83 21(45°) | 157 | 24(0°) | 80 21(45°) | 187

50 | 24(0°) | 36 21(45°) | 101 | 24(0°) |35 21(45°) | 122

Table 6.2 Overview FPF [MPa] and FFF [MPa], Lay-up B [— 45/+45 /0]45 The

numbers in the parenthesis indicate fiber direction. The subscript P
indicates composite PULS and the subscript A indicates Abaqus.

Composite PULS Abaqus

b/t | Ply Ply Ply Ply

O rpr.p O rrr.p O rpr.4 O rrr.4

10 [22(0) | 162 |3(0°) |303 | N/A(*) | NJA(¥) | 3(0°) | 342

30 | 24(0) | 85 4(-45°) | 163 | 24(0°) | 89 2(45°) | 161

50 | 22(0) | 42 1(-45°) | 119 | 22(0°) | 41 2(45°) | 124

(*) N/A = No answer
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Table 6.3 A comparison of the loads from Table 6.1 and 6.2. The subscript P
indicates composite PULS and the subscript A indicates Abaqus.

Lay-up A Lay-up B

blt | orprp | Crprp | Crorp | Crrrp

Oppra | Orrra | Orpra | OFrr.a

10 | 1.02 0.81 N/A(*) | N/A(*)

30 | 1.04 0.84 0.96 1.01

50 | 1.03 0.83 1.02 0.96

(*JN/A = No answer

The ULS calculated with composite PULS were in most cases similar or slightly
lower than the results from CPDM, see Table 6.4 and 6.5. The reason for the slightly
smaller ULS is the symmetric complete ply degradation that composite PULS uses. In
two cases, the lay-up B b/f-ratio equal to 50 and 30, composite PULS calculates less
conservative ULS compared to CPDM. The small difference for the plate with a b/z-
ratio of 30 can be explained by the disregarded coupling between bending and
twisting (the difference in ULS is about 4%).

Table 6.4  Overview ULS [MPa], Lay-up A [0, /+45/90/— 45]2S

b/t | CPDM | Composite PULS | Abaqus | 0,5, | Oy
Ousc | Ous.p OuLs.4 Outs,a | OuLs,a
10 | 484 490 543 0.90 0.89
15 | 273 276 306 0.90 0.89
20 | 205 208 259 0.80 0.79
30 | 166 157 215 0.73 0.77
50 | 124 102 137 0.74 0.91
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Table 6.5 Overview ULS [MPa], Lay-up B [— 45/+45 /O]4S

b/t | CPDM | Composite PULS | Abaqus | 0,5, | Oy
Ousc | Ous.p OuLs.4 Outs,a | OuLs,a
10 | 305 303 343 0.88 0.89
15 | 281 280 298 0.94 0.94
20 | 204 200 220 0.91 0.93
30 | 140 146 162 0.90 0.86
50 | 96 119 129 0.92 0.74

The big difference for the highest b/t-ratio cannot solely be explained with the
neglected coupling relation. The effect on the ULS from the coupling terms was
investigated by running CPDM with D, = D,, =B =0. The calculation resulted in a

higher ULS (103.7 MPa), but it was still far from the result gained by composite
PULS. There are two additional differences between composite PULS and CPDM,;
Composite PULS disregards shear deformations and the stresses are calculated from a
Fourier series expressing the deflection. Since the deflections are closely matched, see
Figure 6.1(b), it indicates that the disregarded shear deformations do not affect the
deflection. The reason for the difference between the ULS results for composite PULS
and CPDM should then be due to the different methods of stress calculations. In order
to investigate if the number of terms for composite PULS affected the result, an
additional calculation was made with 15 number of terms instead of 10. The increase
in the number of terms had no effect on the ULS result.

For a decreasing b/t-ratio, the accuracy of the semi-analytical load-displacement
curves deteriorated before FPF, see Figure 6.4, which this is due to the perturbation
method. The gap between composite PULS and CPDM in the range between a
displacement of 5 — 20mm, was caused by the additional loss of matrix strength due to
the symmetrical degradation. In the range where the residual strength is mainly
carried by the fibres, the curves of the semi-analytical models agree.

In Figure 6.4(a), CPDM indicates more than one fibre failure before reaching the
ultimate strength, while composite PULS defines the ultimate strength at the first fibre
failure. The reason for this difference in ultimate strength is that the residual strength
after symmetric fibre degradation is too small to contribute to any further load
increase.
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Figure 6.4  Load-displacement curves for lay-up A [O3 /+45/90/- 45]2S (a) and
lay-up B [-45/+45/0),s (b), both with b/t=30.

For the plates with the lowest b/t ratio, see Figure 6.5, absolute failure occurs for
loads significantly lower than the first buckling load. The reason for failure before the
first buckling load is that the plates, due to their b/ ratio, are too stiff to buckle, which
results in material failure before buckling occurs. However, it must be noted that the
stiffness predicted by composite PULS is greater than for CPDM, even though
degradation is performed symmetrically for composite PULS. The reason for this
greater stiffness is that CPDM calculates with FSDT taking shear deformation into
account, allowing the material to deform in out-of-plane shear.
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Figure 6.5  Load-displacement curves for lay-up A [O3 /+45/90/- 45]2S (a) and
lay-up B [-45/+45/0),s (b), both with b/t=10.

By following the “x” in the CPDM curve in Figure 6.5(b), the bending stiffness seems
to increase from degradation for the plates with the lowest b/7 ratio, especially the lay-
up B b/t=10.The bending stiffness reduction can seem peculiar, since it indicates that
the material becomes stiffer from degradation. However, the deflection is small for
the plates with the lowest b/t-ratio and the load-displacement curve expressed by
longitudinal end-shortening presents the result more clearly, see Figure 6.6. A closer
investigation showed that the first failures occurred at the top of the plate, which
resulted in an unsymmetrical degradation for CPDM. The unsymmetrical degradation

CHALMERS, Shipping and Marine Technology, Master’s Thesis X-13/288 43



made the plate less sustainable to bending and caused a change in the deflection. The
effect was reduced when the bottom of the plate was degraded as well, hence no effect
can be seen for composite PULS since symmetric degradation is performed.

The relation between the load and longitudinal end-shortening clarifies the fact that
the degradation reduces the stiffness of the plate in the longitudinal direction.
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Figure 6.6  Load-longitudinal end-shortening lay-up A [03 /+45/90/- 45]2 s
(a) and lay-up B [-45/+45/0],, (b), both with b/t=10.

All the calculated ULS results are found in Tables 6.4 and 6.5 and these are compared
to Abaqus in a ratio-format in the two columns on the right hand side. The ULS
calculated with composite PULS are conservative compared to the calculations
performed with Abaqus, and vary between 73% and 94% of the ULS calculated with
Abaqus. For the lower b/f-ratios the ULS loads show good agreement with the results
obtained with Abaqus, but Figure 6.5 shows that the deflections were greatly under-
predicted. This indicates that the bending was of less importance compared to the end
shortening, and allowed composite PULS to give a good approximation of the ULS
even though shear deformation was not accounted for.

Disregarding shear deformation and the coupling between strain and curvature,
bending and twisting, allows for simplifications which reduce calculation time. In
Table 6.6, the time of the ULS calculations for composite PULS and CPDM is
compared. Composite PULS was expected to have a significantly lower
computational time since the coupling terms are disregarded. The degradation model
applied in composite PULS should reduce the computational time by half compared to
CPDM, since the degradation is symmetrical instead of unsymmetrical. Furthermore,
composite PULS expresses the displacements with the deflection, which requires a
fewer number of terms. The use of the deflection is believed to contribute to the
significant reduction of calculation time.

The simplifications made in composite PULS resulted in a calculation time for the
ULS which was only a fraction of the time CPDM used to perform the same task.
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Table 6.6 Comparison of computational time for composite PULS and CPDM.

Lay-up A Lay-up B

b/t | PULS | CPDM PULS | CPDM

10 | 50s Oh 30min | 45s Oh 16min

30 | 21s 3h 15min | 35s 9h 35min

50 | 30s 4h 28min | 28s 23h 50min

6.3 Biaxial load cases

The ULS results from the biaxial load case reflect the results gained from the uniaxial
case. Composite PULS is conservative for the plates with higher b/t ratios, but
approximate the plates with lower b/t ratios to be too stiff due to Kirchhoff’s
assumptions. Figures 6.7 and 6.8 present the results for biaxial loading, where both
the ULS and eigenvalues for the FE-model and composite PULS are included. First,
the results for the plates with high b/f-ratios are discussed and secondly the lower b/¢-
ratios were investigated for both lay-ups. Due to time limitations only b/z-ratios of 10,
30 and 50 were investigated.
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Figure 6.7  Biaxial load case for lay-up A [O3 /+45/90/- 45]23 (a) and lay-up B
[-45/+45/0],5 (b), both with b/t=50.

The calculation of the biaxial case takes approximately twice the time compared to the
uniaxial case. This is because the most critical buckling mode has to be evaluated for
both the longitudinal and transverse load before calculating the ULS.

For the plates with the highest b/t-ratio the results from the ULS calculation are
conservative due to the symmetric complete ply degradation and that the plates are
thin, meaning that CLPT is applicable. The eigenvalue for composite PULS and
Abaqus closely matched each other and the small difference that was detected was
due to the disregarded bending- twisting stiffness terms and the disregarded shear
deformation.
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The ULS results from the somewhat thicker plates, 5//=30, have a similar accuracy
compared to the ULS results gained from the b5/=50 plates. However, a larger
difference for the eigenvalues was observed. The eigenvalues from composite PULS
were higher than the ones from Abaqus, caused by the increased out-of-plane shear
deformation. For the thickest plates, b//=10, the difference in eigenvalues was clearly
observed, see Figure 6.8.
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Figure 6.8  Biaxial load case for lay-up A [03 /+45/90/— 45]25 (a) and lay-up B
[-45/+45/0],5 (b), both with b/t=10.

The reason for similar eigenvalues on both load axes is that the plates are square and
that the critical buckling load occurs when the number of half sine waves for both
longitudinal and transverse directions is equal to one.

The ULS calculations of the plates with the lowest b/f-ratio show non-conservative
values for lay-up B. There could be multiple reasons for the non-conservative
answers, where the neglected of out-of-plane shear deformation is considered to be of
most significance. The effect of disregarding D,, and D, is higher for lay-up B than

for lay-up A, since the ratio between D, and D, 1s higher for lay-up B.

6.4 Delamination

Delamination as a failure mode was not considered in this thesis, since out-of-plane
stress contributions were not calculated. The effect of not considering this mode was
difficult to predict because it is not known whether delamination was present or not. If
delamination was to be present, the results would have been found non-conservative.

In Section 2.3.1, a typical stress-based failure criterion for delamination was
presented, which consisted exclusively of out-of-plane stress contributions. For thin
plates, these stress contributions were considered to be small. On the other hand,
plates with a low b/t ratio were expected to have a larger impact on the out-of-plane
stress contributions. It is not known to the authors if this impact would have been
large enough to cause delamination without any impact of foreign objects. It should
be noted that even though the matrices’ material was degraded, the assumption of
perfect bonding between layers was never degraded. After a total matrix failure this
assumption can seem unrealistic since the matrix-material keeps the laminate intact.
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7 Conclusions

The objective of this thesis was to extend PULS so that it can be used for calculating
the ULS of single-skin, unstiffened FRP-panels under compressive loads. This was
achieved under the following assumptions:

e Kirchhoff’s criteria are valid.
e Failure of FRP is well predicted by Hashin-Rotem’s criteria.
e No delamination occurs in the laminate.

e The theory for specially orthotropic plates can approximate ULS for general
FRP-plates.

e Instantaneous material degradation can be considered in the whole ply after
failure.

The ULS was defined as the maximum load-carrying capacity. Compared to the FEA,
which included out-of-plane shear but not delamination failure, composite PULS
generates reasonable and conservative ULS-estimates for plates with the tested b/t
ratios. As the panels’ b/t-ratio decreases, the accuracy of the out-of-plane
displacement estimates drops resulting in a stiffer response of the plates than received
from the FEA, although the ULS estimation is still conservative. A comparison was
also made to CPDM, which is based on FSDT, and the curve-fit was found much
similar to composite PULS. This indicates that applying CLPT instead of FSDT has a
small effect on the ULS estimates with the applied failure criteria.

CLPT does not allow out-of-plane shear, and hence a delamination failure criterion
was not included in composite PULS. Disregarding this failure mode can lead to over-
predicted results. Another source for over-predicted results is that composite PULS is
based on theory especially for orthotropic plates, meaning that D, .and D,, are zero.

However, the effect of this was shown to be small for the parametric study where a
comparison of eigenvalues calculated with Abaqus and composite PULS was
performed.

When failure is reached, composite PULS degrades the failed material
instantaneously, which reduces the stiffness of the material for the whole ply. It was
shown that the degradation method is conservative. However the perturbation method
cannot handle the stiffness change and therefore the calculation has to restart from
zero after each degradation. This is time consuming since there often occurs
degradation in each ply before total failure. Furthermore, the computational demand
was increased compared to steel because the stress needs to be checked in each ply,
which is not the case for steel. The calculation time for composite PULS, given the
study cases found in this thesis, varies from half a minute for the simplest case up to
one minute for the more complex calculations. Comparison of the calculation time for
composite PULS and CPDM showed that composite PULS is significantly faster than
CPDM.

Both composite PULS and CPDM contribute to a simplified way of estimating the
ULS compared to FEA. Composite PULS has more limiting assumptions compared to
the CPDM, although these have little effect on the calculated ULS and the
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calculations are performed significantly faster. The work in this thesis has developed a
tool that estimates the ULS of composite plates. The estimation of the ULS is less
conservative compared to traditional standard methods and faster compared to FEA.
A further development of composite PULS could eventually allow for more
sustainable designs compared to designs based on methods that today are considered
over-conservative.
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8 Recommendations for future work

Composite PULS should be investigated for additional lay-ups and material
configurations in order to get a deeper understanding of the limitations. For example,
a laminate made of materials with a higher longitudinal-transverse stiffness-ratio,
E,/E, , may introduce possibilities of a different degradation pattern, where perhaps

the matrix strength can be disregarded. The possibilities regarding a different
degradation pattern should be further investigated, since it is time-consuming to
iterate the solution procedure for each degradation. For material where the matrix has
a minor contribution to the material strength it can be sufficient to only check first
fibre failure without matrix degradation.

There are different opportunities regarding progressive damage models. Composite
PULS reloads from zero after each instantaneous degradation, which requires a
certain amount of computational time. The possibility to use a linear degradation
model instead of an instantaneous degradation model should be investigated. A linear
model is generally more time-consuming compared to a model applying instantaneous
degradation, but time could be saved when reloading from zero as each degradation is
unnecessary. Furthermore, a linear degradation would contribute to a less
conservative ULS compared to the instantaneous degradation models.

The laminate is degraded symmetrically due to the disregarded B-matrix and the
effect of non-symmetric degradation, despite a B-matrix equal to zero, should be
investigated further in order to see if the degradation can be made less conservative.
Another extension that could be added to PULS is to include the coupling between
bending and twisting. Including this coupling would mean a higher computational
cost but also higher confidence in the result of the ULS calculations. An alternative
could be to calculate the ratio between the D,, and D,,, which would give more

awareness of the possible deviation.

To further increase the confidence in the results, the possibility of implementing the
FSDT into composite PULS should be evaluated. Since this implementation
introduces coupling terms, there could be a high calculation cost.

A reduction of computational cost should be further investigated. One way of
achieving less computational cost could be to limit the stress calculations to areas
where failure is most likely to occur.
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Appendix A. Classical laminated plate theory

In Appendix A, Classical laminated plate theory presented in Reddy (2004) and
Agarwal et al. (2006) is summarized. All equations presented and more elaborated
descriptions of the theory are found there.

Laminates consist of several laminas that are assumed to have an infinitesimal thin
perfect bond that does not deform from shear, and thus no slippage between laminas.
Each lamina may have different directional properties which gives a variation in stress
over the thickness of the laminate, even when equally strained.

Uy

Rt i

Figure A.1  Undeformed and deformed plate geometry when Kirchhoff’s
assumptions holds. (Reddy 2004).

CLPT is based on the fact that Kirchhoff’s assumptions hold, which are;
e Straight lines perpendicular to the mid-plane (transverse normals) remain
straight as the plane deforms into a surface.
e Transverse normals do not experience elongation.

e The transverse normals rotate in such a way that they remain perpendicular to
the mid-surface after deformation.

Kirchhoff’s assumptions are for a general plate, not specifically a composite plate,
and therefore some additional assumptions and restrictions need to be stated:
e The layers are perfectly bonded together.

e The material of each layer is linearly elastic and has three planes of symmetry
(orthotropic).
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e Each layer is of uniform thickness.
e The strains and displacements are small.

e The transverse shear stress on the top and bottom surface of the laminate is
zZero.

Given the Cartesian coordinate system with a rectangular plate where the sides are in
the x and y axis, respectively, and the z axis in the direction of the plate thickness. The
Kirchhoff assumptions lead to the following expression:

0

ow
ulr.yz)=uoy)-2=2 wlxr.z)=w(x.y)
o [mm] (A1)

0

v<x,y,z>:vo<x,y>—z%

Where u,v and w are the displacements in the x, y and z directions at some point in the
plate. Furthermore, u, and v, are the in-plane displacement at a point mid-plane of the
plate. It is Important that %,, v, and W, are only dependent on x and y. Using the
strain-displacement relation the strain is evaluated to

g o Ou Lfowy o _ov 1fow _Ov Ou owow (A2)
ox 2\ ox gy 2\ oy

ou 1(6w)2 v 1w ov , ou  owow
Y Ty T oy Ox Oy

The parameters ¢,, &, and 7, are the in-plane normal strain and the in-plane shear
strain. Eq (A.1) and (A.2) give

0 2
aL + l(%j _ azw
. £ k. 8x0 2\ ox i ﬁgcz
g, p=16d brzlk, b= 6L+1(8W°J S s (A.3)
o i oy 2\ oy oy
Ve Vo w o' ou’  ow, ow, 0w
+ + -
ox Oy Ox Oy Ox0y

Where k ,k, and k  are the curvature of the plate and ¢" is the membrane-strain.

The combined Equation (A.3) with the stress-strain relationship in E.3 gives
fo}, =[Q).{e" + 2k} [MPay (A4)

Where k represents the layer number in the laminate. Note that it is only the strain in
the mid-plane and the curvature that are functions of x and y. Furthermore, the [Q]k-

matrix is constant across the thickness of each lamina, which will generate a stress
“jump” between laminas since the stiffness of the laminate changes over the
infinitesimal bond between the layers.
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Due to the fact that the stresses vary between the layers, it is common to calculate the
responses from the resultant force and moment acting on a laminate cross section
instead of explicitly expressing the response due to the stresses. The forces are
defined by integrating the stresses over the laminate thickness:

N, = o dz
—h/2
h/2

N, = Lﬂzaydz [N/mm] (A.5)
hl2

N,=| /zaxydz

Likewise, the moment responses are defined by integrating the stress over the
thickness and multiply with the moment arm:

M, =| 20‘de2
M, =" oz [N A6
J’_.[h/zo-yzz [N] (A.6)
h/2
M, =\ 2axyzdz

The positive sense of orientation of the responses follows the stress convention
defined in Agarwal et al. (2006). By converting the stresses to force-responses and
moment-responses, the system is reduced so as not to contain laminate thickness or z
coordinate explicitly. Consider a setup of n orthotropic lamina with various
thicknesses stacked in a laminate. Here the force-responses and moment-responses
over the mid-plane could be replaced with a stepwise integral over each lamina.

Ny= [ ol = Y[ o), d= [N/mm] (A7)
)= ["" {o}zdz = 3 jhh {o)zdz IN] (A.8)

Equations (A.7) and (A.8) may be expressed with the use of a membrane strain and
curvature in (A.4).

(N} = Zjhh o)t Jaz+[" [ tic}zdz N/mm (A9)
M= Zf,h [Q) e fzaz+]" [Q] )"z vy (A.10)

After further investigation of Equations (A.9) and (A.10) it is noted that the mid-plane
strains, curvatures and the stiffness matrix are constant within each layer, and hence
could be moved out of the integral. The result is that the force and moment response
expression could be simplified into
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N} = Z [QL[" asle}+[QL[" zd-lk} mN/mmy (A1)

t}= 2 [0L [ ek H{0L [} 2ertit (A12)

Recognizing the coupling between the force and the moment response the expression
could be summarized into

N A B[] [N/mm
- e'| [ ] (A.13)
M| |B D|lk [ [N]
Where A, B and D-matrices are called extensional stiffness matrix, coupling matrix

and bending matrix. They are formulated using the stiffness matrix for the laminate
and the thickness of each lamina according to:

Aij = Zn:Qj(hk - hk—l) [N/mm]

B, =30, -1, IN] (A.14)
Dij = n Qy(hi _h1371) [Nmm]

k=1

The bending matrix is a coupling matrix between bending and extension of the
lamina, meaning that an extension will cause bending or vice versa. Since the stiffness
matrix is only dependent on the lay-up angle, if the material is the same through the
laminate, symmetry is often used. In the symmetry case, the thickness terms cancel
out each other and the coupling matrix becomes zero.
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Appendix B. First-order shear deformation theory (FSDT)

In Appendix B, the first-order shear deformation theory presented in Reddy (2004)
and Agarwal et al. (2006) is summarized. All equations presented and more
elaborated descriptions of the theory may be found in these works.

FSDT is a relaxation of Kirchhoff’s assumption where the transverse normals must be
straight, but not necessarily perpendicular to the mid-surface, see Figure B.1.

Figure B.1  Undeformed and deformed geometries of a plate under the assumptions
of the first-order plate theory, Reddy (2004).

The relaxed assumption results in that the displacement field is somewhat modified
to:

u(x,y,z)z uo(xay)_z¢x(xay) V()C,y,Z) = VO(X,y)—Z¢y(X,y),

w(x,,2) = w,(x,), [mm]  (B.1)

where u,v and w are the displacements in the x, y and z directions at some point in the
plate, and ¢ and ¢, indicate the rotations of a transverse normal about the x and y

axis, respectively, and can be expressed as:

ou

ov
9. = P, =5 [-] (B.2)

The same steps as for CLPT can be followed in order to calculate the stiffness
matrices. However the shear contribution needs to be accounted for. It is convenient

to split the strains into two parts, one bending part, ¢,, and one shearing part, &, .
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Since the transverse shear strains are assumed to be constant through the laminate
thickness, the stresses must be constant as well. It is known that the shear is not
constant but rather square for composite plates (Reddy 2004), although this is
compensated for with a parameter K, called the shear correction factor. The relation
between shear strain and shear force is expressed as:

R A A
{ yz}=|: 44 45 :|{}/yz} [N/mm] (BS)
sz A45 A55 yxz
Where
hl2 —
4, = Kj_h/szidz [N/mm] (B.6)

Qi 1s the transformed stiffness coefficient, and a value of 5/6 is commonly used for K.

The added shear contribution will couple the displacement fields even for the simplest
of special cases, especially an orthotropic lay-up.
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Appendix C. Energy principles

In this appendix, different energy principles applied in the thesis are summarized.
Further descriptions are found in Reddy (2004), Reddy (2007) and Byklum (2002)

Potential energy

The potential energy of a system describes the energy within the system, which is the
same as specifying the amount of work that the system can perform. The potential
energy consists of internal/elastic strain energy and the potential of applied loads. The
potential of applied loads is related to the work done by the force during displacement
in the system.

When no accelerations are present in the system, the potential energy is:
I[T=U +V [Nmm] (C.1)
Where U is the internal strain energy and V is the external load potential.

An investigation of the concept strain energy per unit volume, also known as energy
strain density, describes the energy needed to deform one volume unit and is denoted
Up.

U, = Lchs = %crs = %sTEs [Nmm] (C.2)

The total energy strain energy is then the integration of the strain energy density over
the volume of the body.

U= j U,dv =% j ¢"Eedv [Nmm] (C.3)

Equations (C.2) and (C.3) are both general when all six strains and stresses are
regarded and the material matrix, E, is six by six. If Kirchhoff’s thin plate theory is
adopted the system is reduced to a three by three, since the strain in the transverse
directions are disregarded. However, using the relaxed Kirchhoff’s assumption (first-
order shear deformation) the shear strains need to be accounted for and reduce the
stress and strain vectors to five and the material matrix to a five by five. The strain
energy of the system can be divided into membrane-energy and bending-energy, U,
and shearing-energy, U, partly breaking down the problem.

The external load potential, V, consists of body forces, f, per unit volume and surface
tractions, t, per unit area of the boundary, S.

- —Uvqudv + Lquds) [Nmm] (C.4)

u is the displacement and the negative sign indicates that the work is done on the
body. The body forces are integrated over the volume for infinitesimal elements,
while the surface forces are integrated over the surface. With Equations (C.3) and
(C.4) in (C.1) an expression for the total potential energy is obtained.
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N=U+V = % j ¢ Eedv — ([ u’fdv + Lquds) [Nmm] (C.5)

Virtual work principles

The principle of virtual work is that a static equilibrium is achieved when the sum of
the work done by the internal and external forces are zero for all virtual deformations
and strains. Virtual deformations are imagined to take place via a mechanical system
that is made out of admissible functions. The functions that fulfil the geometric
constraints, not necessarily Newton’s second law, will yield more accurate results.
These deformations do not need to have any relation to the actual displacement caused
be the loading (Reddy 2004).

oU + 0V =0 [Nmm] (C.6)

The delta symbol &is the variational operator, used for denoting the variation
(change) of the internal virtual work, U, and the external virtual work, V, in the plate.
The virtual work is found by using the variational operator on the potential energy
expressions, introduced in Section Potential energy, which gives a model that is very
general and could be implemented on non-conservative solutions. Since the
calculations performed and evaluated in this thesis are done by incremental methods,
the rate relative to the parameter of interest for each step is evaluated giving (C.7).

OU + 0V =0 [Nmm] (C.7)
The dot represents the differentiation with regard to the rate parameter.
The principle of minimum potential energy

Derived straight from the principle of virtual work, the principle of minimum
potential energy is: all the possible deflections satisfying kinematic compatibility,
those which satisfy static equilibrium, will give a stationary value of the potential
energy of the body:

o[l =0U +6V =0 [Nmm] (C.8)

The principle allows for non-elastic materials. However, the system needs to be
conservative or reversible in order for the principle to be established.

It can be shown that the stationary value of the total potential energy is a minimum
value. Given that the potential energy in the system can be described by independent
variables x, the minimum must be obtained for each of these. The principle can also

be used on rate form, where the unit depends on the unit of x, .

ol =0[Nmm] and [@j =0 (C.9)
ox,

Oox

n
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Appendix D. Rayleigh-Ritz method

Appendix D presents the Rayleigh-Ritz method. For a further description, see Cook et
al. (2002), Turvey et al. (1995) and Byklum (2002)

The Rayleigh-Ritz method is a classic approximation method of eigenvalue problems,
most of all used on the vibration problem of plates. The method, which Walter Ritz
evolved from Lord Rayleigh’s method for approximation of natural frequencies for
single-degree of freedom (SDOF) systems in the early 20th century, is applicable on
buckling and postbuckling problems as well. The expansion takes the Rayleigh SDOF
solution to multiple DOF by introducing a series of approximating functions in order
to solve eigenvalue problems, Cook et al. (2002).

The Rayleigh-Ritz method consists of admissible functions that, together with
unknown amplitudes, describe the wanted variable, where the unknown amplitudes
are found using the principle of minimum potential energy. The total potential energy
of the system is described by the displacement, which means that the potential energy
is described by several linear independent functions. Since the total potential energy is
a minimum, the differential is zero and this must be true for all linear combinations
that explain the potential energy.

1=11(a,,a,..a,) [Nmm] (D.1)
Jar_oi_ot_ ol _, (D.2)
oa Oa, Oa, oa,

The functions used in the approximation are called shape or trail functions and are a
Fourier’s series which, given the sufficient number of terms in the series, express a
correct displacement and rotation for the plate. An example of such a set-up can be
the description of out-of-plane displacement of a plate.

w, = iP,a,» (x,) [mm] (D.3)

where w, is the displacement, P is the amplitude and ai(xl.) is the admissible

functions. When the displacement is put into the potential energy equations there is an
equation system with as many unknowns as solutions, and therefore the unknowns can
be solved. This could be extended to include all displacements and rotations as well,
only increasing the size of the equations system that needs to be solved.

The functions describing the displacement are approximate and the approximation
should be investigated. Since the energy is a minimum, the displacement that requires
the /east amount of energy will take place, meaning that unless the exact displacement
i1s guessed it will be demand more energy. In other words, a greater force than
demanded for the displacement is calculated. This means that the structure is assumed
to be stiffer than it actually is giving a false impression that it can withstand higher
loads. Generally this error is reduced as a greater number of terms are increased.
However, if the exact displacement function is assumed this is not the case.
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The choice of the admissible functions is important and there are only polynomials,
and occasionally sine and cosine functions that are simple enough to be practical.
More and more functions are added until the expression converges, but in order for
there to be convergence the functions need to be complete, Cook et al. (2002).
Completeness is satisfied if the displacement and its derivatives can be matched
closely and if enough terms are used in the trail functions.

An example for a buckled plate which is set up by admissible functions describing the
displacement and rotations is:

u, =Y P x..2) [mm] (D.4)
Vg = ZQkak (x,y,z) [mm] (D.5)
wy, = iRmam (x,,2) [mm] (D.6)

m=l1

where 4, v, and w, are approximated displacements in the x, y and z directions, and

the admissible functions are represented bya, which are determined from the
boundary conditions. P, Q and R are the unknown amplitudes, which are found using
the principle of minimum potential energy, see Appendix C. The displacement and
rotation functions (D.4-D.6) are used for expressing the total potential energy (C.5),
and the unknowns can be solved form the minimizing problem for all amplitudes,
Turvey et al. (1995).

oIl _o oIl _y oMl _ ©7)
oF,

(i=012..1; k=0,12..K; m=0,,2..M)

The approximation gives an exact numerical result if the number of terms, /, K and M
go to infinity. This is now implemented in the plate equation and the equilibrium
between internal forces and external forces are calculated using Equation C.8

oll oU oV

oP, oP, oP,

oll oU oV

> ~aw T =0

I I I

ol _ v o (D-8)
o0, o0, o0,

oIl _ oU N oV _ 0

00 00y 00
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All the generalized degrees of freedom can be collected in a vector A that gives an
expression using variational variables in vector form:

A sa =Y,V Asa =0 (D.9)
0A 6A  OA
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Appendix E. Composite and buckling theory

Appendix E gives a short introduction of the basic composite theory. For a further
description, see Agarwal et al. (2006).

For an orthotropic material, three-dimensioned stress-strain relations require nine
independent elastic constants, and for a two-dimensional relation four constants are
required. Below is the stress-strain relation for a two-dimensional orthotropic plate;

o 0, 0O, 0 €
o,r=0, 0, 0 &, [MPa] (E.1)
T 0 0 Oyl

The simplification made for an orthotropic material is that no shear strain occurs when
loaded in normal directions to the lamina orientation. If the lamina orientation is equal
to the reference axis it is called specially orthotropic. For a lamina where the
longitudinal and the transverse directions are the material coordinate axis
(o,=0,;0, =0, ), the [Q]-matrix can be evaluated to be

E
0, = :
l=v, vy
E
0, = -
l-v,, vy [MPa] (E.2)
0, = v E, _ v Er
12
l=v, vy 1=vgvy
O =G y7

When laminates are constructed the fibre-orientation relative to a coordinate system
becomes important. The stress-strain relation can be transformed into a Cartesian

coordinate system using the transformation matrix [T1] and [Tz] see Agarwal et al.
(2006), which gives

O, O, 0, O &, gn gz 93 &,
O, r= [Tl ]_1 0, On, 0 [Tz & r=19n On 0Onle,  [MPa] (E.3)
Ty 0 0 O Vi O, 0On On|lr Xy

Thus the [6] -matrix gives the relation between the stress and strain in a coordinate
system with an arbitrary axis to the coordinate system of the lamina.
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Appendix F. Complete ply degradation model (CPDM)

In Appendix F, each step of the complete ply degradation model (CPDM) is described
in the following order; calculations of displacements, rotations and load parameter,
solution method and degradation model. All equations presented in this section are
taken from Yang (2013), where a more elaborated description of the model can be
found.

Displacement and load parameters

The displacements and rotations for a simply supported plate that is subjected to a
uniaxial compression load are calculated using the Rayleigh-Ritz method. The
boundary condition is fulfilled using the double Fourier series with the corresponding
shape functions, see Yang et al. (2012).

ZZumn s1n( jsin(%) +u, hd [mm] (F.1)

n=1 m=1

Z Z v, sm( jsm n;zxj +v, % [mm] (F.2)

i (T’“j [rad] (F.3)

ma j (TMJ [rad] (F.4)
)

w[D[ (x y) (x y)+ WU’U[ (x y

-5 S i 3 S i

n=1 m=1 n=1 m=1

Zymn Sln

n=1 m=1

jS' (@j [mm]  (F5)
b

Here u,, v,and w,, are the mid-plane strains in the x and y-direction, respectively,

tot
and the out-of-plane displacement while ¢ .and ¢, are the rotations around the x and
y-axis. The displacement and rotations are expressed with the unknown series
amplitudes u_, u,,, V., V,,» Xu> Vun and w, ., while m and n are the positive

mn c? mn mn 2

integers, and w, ~ the initial imperfection amplitude. These unknowns are for

simplicity’s sake collected in a variable 4, .

[A] = [, 4 A ]
= [, Uy Uy s
VooV ey Vs
c 1,1 NM [_] (F6)

Xy pseees Xppg s

Vigoeeos Vo

Wy 1seees Wang )]
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The unknowns are solved using the Rayleigh-Ritz method and incrementally
computing the rate of the equilibrium equations with respect to an arc length
parameterr. The Rayleigh-Ritz method uses the principles of minimum potential
energy in order to calculate the unknown amplitudes. In order to achieve a good
overview of the problem, the internal strain energy is divided into; in-plan strain
energy and shear strain energy.

N=U,+U +V [Nmm] (F.7)

The in-plane strain is further divided into potential membrane and bending strains and
potential strains, respectively, due to the coupling terms between the membrane-strain
and bending-strain energy.

u,=U,+U,+U,, [Nmm] (F.8)

The reason for this separation is that the terms are dependent on the separate stiffness
matrix; extensional stiffness matrix, bending stiffness matrix and the coupling matrix,
in that order. The internal energy is a function of the strains and curvatures. Since the
strains and curvatures are non-linear with regard to the out-of-plane deflection in the x
and y-direction, these energy terms will be non-linear.

The potential energy due to the external forces in the x-direction is given by:

V' = AN bu, [Nmm)] (F.9)

where A is a load parameter, b is the width of the plate and u_is the plate shortening
in the x-direction.

With the energy expressions in Appendix C the unknown can be solved. However
solving the equation system for non-linear terms is hard. Rather than solving these
non-linear equations directly they are solved by using the arc length parameter to
incrementally compute the rate of the equilibrium functions, a procedure known as the
arc length method, Figure F.1. The application of the method for plate buckling
problems and the evaluation of alternative perturbation methods, with regard to large
plate deformation theory, has been done by Steen (1998) and is included in CPDM.

AN

An
AA

AL/t

Figure F.1  The arc-length method.
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For a small enough arc-length parameter the right-angle triangle shown in Figure F.1
allows the use of the Pythagorean theorem to express the relation between the arc-
length parameter, the displacement amplitude above the thickness and the load
parameter.

A2 +Z(’1j -1 (F.10)

The dot-mark above the symbols indicates that it has been differentiated with respect
to the arc length parameter. The importance of a small arc length parameter increment
An becomes further apparent when regarding the equilibrium curve from point s to (s

+ 1) where a Taylor expansion gives

S+ s AS /15 ;{'S
AT =20 @A) + (A T (A (F-11)
I! 2! 3!
A=A+ /; (An) + /;, (An)* +%(Af7)3 +.. (F.12)

In CPDM only the first two terms of the Taylor expansion, in Equations (F.11) and
(F.12), are accounted for, which means that calculated values using a large An will

give a load parameter that is higher compared to a small A7z until convergence is

achieved. Considering this increment, the method is found non-conservative since the
in-plane stresses for each ply are calculated from the displacement and rotations that,
in the model, are lower than the actual displacement and rotations.

In order to solve the unknown amplitudes, the Rayleigh-Ritz method is expressed for
each increment with the potential energy given in Equation (D.9).

ol o1 6/1,-+ 0Tl oA _,
04, OAOA, On  OAOA On

(F.13)
The equation consists of Ny, equations and N,,, + 1 unknowns, where the last needed
equation is Equation (F.10).
From Equations (F.10) and (F.13) the load rate parameter A can be established:
t

-1
. NZ 0Tl 0Tl
04,04, | 0AOA

i,j=1

A=+ (F.14)

2

With the respective displacements found, the in-plane stresses o, o, and z , can

be calculated using the relations described in Appendix A and B. The stresses are
calculated in each ply with a 10mm spacing in the x- and y-direction in order to
perform a failure check according to Hashin-Rotem’s failure criteria.
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Failure initiation, material degradation and recalculation of material stiffness

With the stresses calculated, failure initiation is checked according to the Hashin-
Rotem’s failure criteria, and if none of the failure criteria are violated the load
propagation continues until a failure is detected.

When a failure is detected in a ply or several plies, the material needs to be degraded
due to a reduced stiffness. CPDM excludes the failed material for the entire ply that
has fulfilled the failure criterion. Degradation of the complete ply is conservative,
since undamaged material that would contribute to structural stiffness is degraded as
well. It is the conservativeness of this degradation process that makes CPDM
conservative with respect to traditional FE-calculations.

CPDM reduces the stiffness of the structure instantaneously when failure occurs with
a defined damage factor, d, =0.99. The new stiffness is calculated by reducing the

affected material parameters (matrix or/and fibre) depending on the failure. When the
stiffness has been recalculated the plate properties have been changed and the iterative
process explained in previous sections needs to be restarted from the unloaded case in
order to have a known displacement (initial).
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Appendix G. Equations used in calculation of the critical

energy release rate

Appendix G presents the equations used for calculating the critical energy release rate,
corresponding to the area of the large triangle, see Figure G.1, which are used as

inputs in Abaqus, see Abaqus (2012).
Fibre tension:

sh=L <5H>2 +ae),

s <O'11><‘911>+ AT, &,
O = 5ﬁ
eq
A

Fibre compression:

56'/;6 =LC<— 6‘11>
<_O'11><_‘911>
56";0
LC

Je _
O'q—

Matrix tension:

su =L <522>2 +é&),

o™ = <O-22 ><‘922> + 7,8,

eq 5:;

LC

Matrix compression:

Sme=L\(~¢,) +&b

o = <_ Oy ><_ 522>+ T8

eq mc
5&/
LL
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Appendix H. Results of the mesh convergence study Abaqus

In this appendix, data from the mesh convergence study in Abaqus are to be found.

uniaxial

uniaxial

Table H.1 ULS-load  for different mesh,
[0, /+45/90/-45],;.
b/t=50 b/t=10
Mesh | ULS | ULS/ULS;16 | ULS | ULS/ULS3116
100 | 146.5| 1.071 542.1 | 0.999
400 | 138.4|1.012 542.1 | 0.999
900 | 135.40.989 542.6 | 1.00
1024 | 137.0 | 1.001 542.6 | 1.00
1296 | 136.8 | 1.00 542.6 | 1.00
1600 | 136.8 | 1.00 542.6 | 1.00
2116 | 136.8 | 1.00 542.6 | 1.00
Table H2  ULS-load for different mesh,
[-45/+45/0],.
b/t=50 b/=10
Mesh | ULS | ULS/ULS,116 | ULS | ULS/ULS3116
100 | 127.29 | 1.012 343.19 | 1.002
400 | 123.05]0.978 343.43 | 1.002
900 | 125.34 | 0.996 342.99 | 1.001
1024 | 123.56 | 0.982 342.70 | 1.00
1296 | 125.78 | 1.00 342.58 | 1.00
1600 | 125.64 | 0.999 342.76 | 1.00
2116 | 125.77 | 1.00 342.59 | 1.00
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Table H3  LPF for different mesh, biaxial loading, Lay-up A [03 /+45/90/- 45]2S .

b/t=50 b/=10

Mesh | LPF | LPF/LPF,;6 | LPF LPF/LPF16
100 | 80.52 | 1.032 257.15 | 1.002

400 | 78.19 | 1.003 256.67 | 1.00

900 | 78.27 | 1.004 256.60 | 1.00

1024 | 78.22 | 1.003 256.66 | 1.00

1296 | 78.13 | 1.002 256.63 | 1.00

1600 | 78.73 | 1.009 256.59 | 1.00

2116 | 77.99 | 1.00 256.63 | 1.00

Table H4  LPF for different mesh, biaxial loading, Lay-up B [— 45/+45 /0]45 .

b/t=50 b/=10
Mesh | LPF | LPF/LPF3590 | LPF LPF/LPF316
100 |93.58 | 1.039 336.89 | 1.00
400 | 88.77 | 0.986 336.68 | 0.999
900 | 89.41|0.993 336.73 | 0.999
1024 | 89.88 | 0.998 336.925 | 1.00
1296 | 90.21 | 1.002 336.93 | 1.00
1600 | 90.65 | 1.006 336.97 | 1.00
2116 [ 90.97 | 1.01 336.95 | 1.00
3200 | 90.07 | 1.00 - -
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Appendix I. Results

This appendix contains the results of the ULS calculations for all plates included in
the study. The results are presented in Figures 1.1-5 of load vs. centre out-of-plane
displacement curves. Furthermore, comparisons of ULS-loads between failure criteria

Hashin-Rotem and Hashin are presented in Table I.1.
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Figure I.1  Load-displacement curves for lay-up A [03 /+45/90/- 45]2 ¢ (a) and lay-
up B [-45/+45/0),s (b), both with b/t=50.
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Figure 1.2 Load-displacement curves for lay-up A [03 /+45/90/— 45]2 ¢ (a) and lay-

up B [-45/+45/0),s (b), both with b/t=30.
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Figure 1.3 Load-displacement curves for lay-up A [03 /+45/90/- 45]2s (a) and lay-
up B [-45/+45/0),s (b), both with b/t=20.
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Figure 14  Load-displacement curves for lay-up A [03 /+45/90/- 45]2s (a) and
lay-up B [-45/+45/0],5 (b), both with b/t=15.
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Figure 15  Load-displacement curves for lay-up A [03 /+45/90/- 45]25 (a) and
lay-up B [— 45 /+ 45/0]4S (b), both with b/t=10.
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Table 1.1 Comparison of ULS-loads between failure criteria.

ULS [MPa]

Lay-up | b/t | Hashin-Rotem | Hashin

A 10 | 542.6 542.8
A 50 | 136.9 136.7
B 10 | 342.7 342.8
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