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Abstract  
 

An analytical study of the electron trajectories between two opposite electrodes having curved surfaces 

is undertaken for the case when the electron transit time exceeds the rf period. The analysis is based on 

a statistical approach which makes it possible to calculate the width of an electron bunch after a 

number of electron transits taking into account the spread of electron emission velocity, and the spatial 

non-uniformity of the rf field using the concept of the ponderomotive force. The results are used to 

estimate the multipactor threshold in terms of a value of the secondary emission yield which is 

necessary to balance electron losses. Based on the model it is predicted that multipactor is impossible 

inside the realistic configuration of a helix antenna where four electrodes are placed on the same 

cylindrical surface.  

 

 

Introduction 
 

Multipactor is a serious failure mechanism for microwave equipment operating under vacuum 

conditions. The resulting electron avalanche will generate noise, detune the equipment, and may even 

lead to gas breakdown and system damage. Therefore multipactor prediction is an important technical 

problem, and when new rf equipment is designed it is standard practice to take into account the 

multipactor limits. Typically, accurate predictions of the multipactor threshold inside realistic rf 

components requires extended numerical simulations [1-3]. However, more general analytical studies 

can be also very useful when it is necessary to search for the components which are the best protected 

against multipactor. During the last decade numerical simulations of multipactor have been performed 

for a number of particular components including different waveguides [4-11], waveguide irises [12-

13], microstrip and coaxial lines [14-18], rf filters [19-20], etc. At the same time, up to now the 

general multipactor theory is based on a few models which deal with electrons oscillating between two 

plane surfaces, or in the vicinity of one plane surface [21-24]. Very little analytical work has been 

done so far for the case of multipactor between curved surfaces, and so far only the case of a 

transmission line composed of two cylindrical wires has been considered [25]. The latter study 

demonstrated that the surface curvature can be responsible for defocusing of electron trajectories 

resulting in a considerable enhancement of the multipactor threshold. However, it is clear that if the 

surfaces are concave, and the surfaces are within a certain distance from each other, the opposite effect 

(focusing of electron trajectories) is also possible. In such a case the risk of multipactor can be 

increased significantly. In this paper we develop a simplified model for multipactor between two 

conductors having an arbitrary surface curvature. The model cannot be used to make very accurate 

predictions of the multipactor threshold, but it enables one to formulate general rules, and identify 

parameter regions where the risk of multipactor is enhanced, and reduced accordingly. Specifically the 

model does not describe the multipactor resonance zones in the parameter space. Its applicability is 

restricted mainly to systems with relatively large gaps between the electrodes, and electron transit 

times which considerably exceeds the rf period. In this case the resonance phenomenon is blurred by 

the spread of the electron emission velocity [26], and the effect of the spatial non-uniformity of the rf 

field on the electron trajectories can be described using the concept of the ponderomotive force [17, 
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27]. We apply this model to a realistic helix antenna (which is quite different from an arrangement of 

cylindrical wires, see Figs. 3 and 6) and it is shown that multipactor should be impossible in such a 

system.  

 

 

Approximation of electron trajectories as straight lines perpendicular to the emission 

surface 
 

A previous study of multipactor between two cylindrical wires showed that the main peculiarities of 

the averaged electron trajectories can be described using a very simple model within which these 

trajectories are treated as straight lines perpendicular to the emission surface [25]. The idea was 

justified by the fact that initial electron acceleration is directed along the vector of the rf electric field 

which is normal to the metal surface, and the model predictions were confirmed in exact numerical 

simulations [28]. For this reason, we start the analysis using the same idea and applying it to both 

convex and concave surfaces. In this section, the effect on the multipactor threshold by the focusing or 

defocusing of electron trajectories will be estimated and analyzed as a function of the surface 

curvature and the distance between the surfaces. In the next section, the model will be generalized by 

including the effects on the electron trajectories of: the tangential component (with respect to emission 

surface) of the electron emission velocity; the finite width of the metal electrodes; and the 

ponderomotive force, which is caused by the spatial non-uniformity of the rf electric field [17, 27].  

 

 

 
 

Fig. 1. Configuration of the system considered with two curved electrodes. A positive radius of 

curvature indicates convex surfaces (as in the figure), and a negative radius indicates a concave 

surface. 

 

 

Consider a couple of opposing electrodes separated by a distance a , having surfaces with 

different radii of curvature (see Fig. 1). The system is exposed to an rf voltage, and an electron emitted 

from the surface of either electrode receives its first acceleration in a direction perpendicular to the 

electrode surface. In order to find the breakdown threshold it is only necessary to consider the case 

when electron losses are minimized. This corresponds to the case when Rx  , and we shall use this 

assumption throughout the paper to simplify the treatment. Let an electron start from the electrode 

surface with some deviation, 0x , from the symmetry plane. Approximating its trajectory as straight 

line perpendicular to the electrode surface one can easily find the deviation, 1x , of the electron 

position from the symmetry plane when this electron reaches the opposite electrode:  

 









1

0101 1
R

a
xAxx , (1) 
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where 1A  is the defocusing factor for an electron transit from the first electrode to the second one, 1R  

stands for the curvature radius of the first electrode ( 01 R  if this electrode is convex, 01 R  if this 

electrode is concave). Assuming that each time after an impact the secondary electron starts from the 

impact position and using the same approximation of a straight line for its trajectory, one can calculate 

the deviation of the electron position after an arbitrary number of gap crossings:  

 
k

k Axx 02  ,  
k

k Axx  112 , (2) 

where 


















21

21 11
R

a

R

a
AAA  plays the role of the defocusing factor for a two way electron 

transit. When the absolute value of this factor, A , exceeds unity (for example, in the case when both 

electrodes are convex) the electron trajectory is spatially unstable and its deviation from the symmetry 

plane increases exponentially with an increase in the number of transits. This mechanism will cause an 

originally small bunch of electrons to spread out during successive passages between the surfaces. In 

[25] it was found that the electron density evolves as 
k

k Ann /2102  , where n  is the electron 

density, and 1  and 2  stand for the secondary emission yield for different one way transits. In this 

case the necessary condition for the multipactor avalanche to grow can be expressed as the inequality 

 A 21 , (3) 

where   denotes the effective secondary emission yield per two transits. Unless the two multipacting 

surfaces are similar and made of the same material  1  and 2  will not have the same value, as they 

depend on both impact speed and the SEY-curve. In this way, Eq. (3) can be used as a criterion for 

multipactor in such geometries as coaxial waveguides (see Ref [17]) and opposing cylinders of 

unequal radii (see Ref. [25]). When one or both of the curvature radii are negative it becomes possible 

that 1A . In this case the electron trajectories are spatially stable between the curved surfaces and a 

multipactor avalanche will develop provided 1 . 

 

 

 

Fig. 2. A parameter chart where a range of different combinations of curvature radii are shown. The 

light grey area represents the region where 1|| A , the curved dashed line represents all coaxial 
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geometries, the straight dashed line represents parallel cylinders in the upper right quadrant, and 

similar opposing concave surfaces in the lower left quadrant.  

 

A summary of all the structures which can be analyzed using this simple scheme is seen in 

Fig. 2. Outside the grey area the geometric defocusing of electrons determines the loss rate, and the 

threshold is given by Eq. (3), whereas inside the grey area there is no net dilution of the electron 

bunches.  

The simplest examples of structures where electron trajectories are spatially stable are 

(i) two parallel plane electrodes where 21,RR , 1A  (point of origin in Fig. 2, marked 

by (i)); 

(ii) coaxial line where 1221 ,0,0 RRaRR  , 1A  (points on the curved dashed line 

in Fig. 2, marked by (ii)); 

(iii) Two electrodes covering opposite sides of the same cylindrical surface, where 

1221 ,0 RRaRR  , 1A  (the point marked by (iii) in Fig. 2). 

In practice, due to the manufacturing process, the cross section of a realistic helix antenna has 

much more in common with the latter case (iii) (see Figs. 3 and 6) than with an arrangement of 

cylindrical wires, as was assumed in [25]. This means that without including the ponderomotive force 

in the model, no net geometric defocusing will take place, and a more accurate analysis is needed to 

estimate the rate of electron losses and the multipactor threshold in such a structure. This analysis is 

detailed in the next section where a more sophisticated model of the electron trajectories is considered, 

taking into account the spread of electron tangential velocities, the finite width of the electrodes, and 

the action of the ponderomotive force on the electron motion in a non-uniform rf field.  

 

 

Fig. 3. Cross section of a realistic helix antenna with four electrodes placed on the same cylindrical 

surface. 

 

 

Advanced model of the electron trajectories 
 

The emission velocity of secondary electrons has a certain spread over angle with respect to the 

surface of emission. The tangential component of the emission velocity will cause electrons to deviate 

from the straight lines we assumed in the previous section. Furthermore, the spatial non-uniformity of 

the rf electric field in the gap between the two electrodes will result in a perturbation of the average 

electron trajectory from that of a straight line. The motion due to the non-uniformity can be described 

using the concept of the ponderomotive force. Typically, under multipactor conditions, the electron 

emission velocity is small compared to that which the electron gets due to acceleration in the rf field, 
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and the ponderomotive force is also relatively weak. Therefore the deviation of the trajectories from 

the straight line perpendicular to the emission surface is not strong and this effect can be neglected 

when geometrical focusing or defocusing is considerable (when the absolute value of the defocusing 

factor, A , is not very close to unity) as takes place in e.g. the case of multipactor between two parallel 

cylinders [Ref. 25]. On the other hand, when multipactor occurs in systems that are close to those 

listed in points (i) and (iii) above, the geometrical focusing or defocusing is weak (the defocusing 

factor 1A ) and even a small deviation of the electron trajectories from the straight line 

perpendicular to the emission surface can be an important effect which governs electron losses as well 

as the multipactor threshold.  

 

A first order approximation of the effects of the electron emission velocity and the 

ponderomotive force can be performed by considering the electron trajectories that are close to the 

symmetry plane ( 0x ) between the electrodes. In this case one can neglect the perturbation of the 

electron transit time,  , and restrict oneself to a study of the average electron motion in a direction 

perpendicular to the symmetry plane (along the x -axis in Fig. 1). Due to the symmetry we can use an 

expansion for the electric field along the x -axis on the form 

 

0

2

2
2

2

1
)0()(







x
x

E
xExE , (4) 

The ponderomotive force in the x -direction is given by 

 
x

E

m

e
F xp






2

2

2

,
4 

, (5) 

Where e , and m  stand for electron charge and mass respectively, and   is the angular field 

frequency. Using Eqs. (4) and (5), the electron motion along the x -direction can be described by the 

following equation:  

 x
dt

xd
 2

2

2

, (6) 

where 

0

2

22

2 )0(
2

1















x
x

E
E

m

e


 is assumed to be positive value (which corresponds to a 

maximum of the rf field amplitude E  in the symmetry plane). The dimension of  is 
1s  , and 

1  

represents the time-scale for considerable increase in the x-component of the average electron 

velocity. For the ponderomotive force to be considered weak, and for the ponderomotive concept to be 

applicable, it is necessary that the rate of this velocity increase is not too fast, and that the time-scale 

for this increase is much longer than the field period, i.e.  . 

Due to the curvature of the emission surfaces, an electron that is emitted in the direction of the 

surface normal will initially gain an average velocity component in the x - direction. Since we are 

close to the symmetry plane, this component is approximately proportional to the deviation of the 

electron initial position, 0x , from the symmetry plane:  

 
R

xa

R

x
vx i

00
0


 , (7) 

where /avi   stands for the absolute value of the averaged electron velocity, and R  is the 

curvature radius of the emission surface. Obviously, a nonzero tangential component, Tv , of the 

electron emission velocity will give an additional contribution to the initial value of the average 
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electron velocity in the x-direction. Taking this into account one should look for a solution of Eq. (6) 

with the following initial conditions  

   TvRaxxxxt  00 ,,0  , (8) 

where avT   under typical multipactor conditions. Taking for simplicity const.  and solving 

Eq. (6), the first coordinate of electron impact can be expressed as  

    
 

 
 




























sinhsinh
cosh01 TvRaxx , (9) 

One should note that when neglecting the ponderomotive force effect ( 0 ) and the tangential 

component of the electron emission velocity ( 0Tv ) this solution gives the same result as Eq. (1). 

When neglecting only the tangential component of the emission electron velocity, Eq. (9) simply 

reduces to the following modification of the defocusing factor, A, 

   
 

   
 






































sinh
cosh

sinh
cosh 221121 RaRaAAA , (10) 

where it is taken into account that the electron transit time can be different in opposite directions, as is 

the case in e.g. a coaxial line [17]. Detailed calculations (see Fig. 4) show that the defocusing factors, 

1A  and 2A , increase monotonously with increasing ponderomotive force and transit time. This is 

intuitively clear because electrons are pushed out of the region with a high rf field amplitude. In the 

case of convex electrodes, an increase in the defocusing factor always corresponds to an increase in 

the spatial instability of electron trajectories, which is accompanied by an increase both in electron 

losses and the multipactor threshold. However, in the case of concave electrodes, the defocusing 

factors can be negative. In this case the ponderomotive force can result in a decrease of the absolute 

value of the defocusing factor (see curve 3 in Fig. 4), which leads to the possibility of electron 

trajectory stabilization and thereby a decrease in the multipactor threshold. As is clear from Eq. (10), 

the stabilization of electron trajectories in the case of concave electrodes occurs only within a limited 

range of the product of the transit time and the ponderomotive force strength. A further increase of this 

parameter is always accompanied by the destabilization of the trajectories, and an exponential increase 

in the rate of electron losses (Fig. 4).  

 

Fig. 4. The dependence of the defocusing factor per one transit on the product of the ponderomotive 

force and the transit time in case of similar electrodes with: convex surfaces (curve 1) with 12Ra  , 

plane surfaces (curve 2), and concave surfaces (curve 3) with 12Ra  .Between the dashed lines, the 

ponderomotive force serves to stabilize the electron trajectories, but as   becomes bigger, the 

ponderomotive force becomes too strong, destabilizes the trajectories, and causes the threshold to 

rise.  
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In general, the emission of an electron is a stochastic process which is associated with some spread in 

the electron emission velocity. This spread will also give rise to a spread in the impact position, which 

means that it is necessary to apply a statistical approach when analyzing Eq. (9). The tangential 

emission velocity can be described by some statistical distribution, )( Tv , that is independent of the 

emission position on the electrode, and we assume  

 











 2

2,1

22 )(,0)(,1)( Vdvvvvdvvvvdvv TTTTTTTTTT    (11) 

The impact position will also follow some statistical distribution, )( kk xf , which changes upon each 

passage. We assume that 

 



1)( kkk dxxf  (12) 

The 1k ’th impact position, 1kx , is a function of the k ’th impact position, kx , and the tangential 

emission velocity, Tv , and we define its average as 

  







  TkTkkTkkk dvdxvxfvxxx )()(),(11   (13) 

Within this statistical approach the main attention is paid to the average position of electron impacts, 

kx , and its variance, 
22

kkk xxD  , after k  transits. Based on these assumptions one obtains 

from (9) that  

 011 xAx  ,  
2

10

2

11 BDAD  ,  
 

 11

1

1
1

sinh





VB




 , (14) 

where 0x  and 0D  are the average position and variance of the first electron bunch respectively. 

Performing similar calculations to a sequence of electron transits results in  

 02 xAx k

k  ,  112 xAx k

k  , (15) 

   110

2

2 GGDAD k

k  ,    221

2

12 GGDAD k

k  , (16) 

where the defocusing factors 1A , 2A , A  are defined in (10) and  

 
2

2

2

2

1

2

2
1

1 A

BBA
G




 ,  

2

2

1

2

2

2

1
2

1 A

BBA
G




 ,  

 
 22

2

2
2

sinh





VB




 , (17) 

As follows from (15), the average deviation of the electron impact position from the symmetry plane 

is governed by the defocusing factors, which are independent on the spread of the electron emission 

velocity. Equation (16) makes it possible to formulate explicitly a criterion for the multipactor 

threshold in terms of the electron bunch half-width, kk D . It should be noted that the electron 

bunch will have no clear outer boundary, which means that any definition of the bunch width will be 

somewhat arbitrary. When the absolute value of the defocusing factor, A , exceeds unity, the spatial 

instability of the electron trajectories results in an exponential growth of this width with an increasing 

number of transits, and the inequality (3) should be fulfilled to balance the growth of the width to  

ensure an increase in the electron density. As was mentioned above, the defocusing factor does not 

depend on the spread of the electron emission velocity. However (as can be seen from Eq. (16)) the 

spread of the electron emission velocity guarantees a nonzero width of the electron bunch even in the 

case of a single seed electron starting exactly at 0x . In the latter case the initial average coordinate 

and variance of the electron bunch are zero ( 00 x , 00 D ) and the solutions (15)-( 16) can be 

rewritten as  
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 0kx , (18) 
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1
BBA

A

A
D

k

k 



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1

2
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2

12

2
2

1

2

12
1

1
BBA

A

A
BAD

k
k

k 



 , (19) 

It can be seen from Eq. (19) that in the case of spatially unstable electron trajectories ( 12 A ), the 

spread of electron emission velocity triggers an exponential increase in the electron bunch width 

(
 12

2

 k

k AD , when k ). Since the electron bunch starts with a zero width, the electron 

emission velocity spread is necessary to start the increase in the bunch width, but once that process is 

started, the velocity spread plays a minor part in the further dispersion of the electron bunch, and the 

threshold for multipactor is mainly set by the geometrical conditions (which includes the 

ponderomotive effect). But in the case when the trajectory is spatially stable the electron emission 

velocity spread can be responsible for considerable increase in the multipactor threshold. Specifically, 

when the absolute value of all defocusing factors approach unity (this takes place when e.g. the action 

of the ponderomotive force is neglected between two plane parallel electrodes or between electrodes 

covering opposite sides of the same cylindrical surface) the solution (19) describes a linear increase of 

the variance with the number of transits:  

  2

2

2

12 BBkD k  ,   if  12

1 A  and 12

2 A , (20) 

This corresponds to an unlimited growth of the electron bunch width, which will exceed the width of 

the electrodes after a number of transits. As a result, there will be electron losses over the electrode 

edges, and the multipactor threshold will increase. In the case when 12 A  the spread of the electron 

emission velocity makes an unlimited decrease of the electron bunch width impossible. And as 

k  the bunch half-width instead approaches the finite limit  

 
2

2

2

1

2

2
2

22

1

1
BBA

A
D kk 


 ,  

2

1

2

2

2

1
2

12

1

1
BBA

A
k 


   (21) 

If this limit exceeds half the electrode width the multipactor threshold will increase due to the electron 

losses, despite the fact that the electron trajectories are spatially stable, see Fig. 5. 

 

Fig. 5. An illustration of the growth of the width of an electron bunch (the blue regions) between 

successive impacts on the electrodes (grey regions). In the case when 12 A  the electron bunch width 

approaches a certain value 2 , if this width is smaller than the electrode widths ( 2b ) no 

electron losses due to geometry will occur. On the other hand, when the electrodes are smaller than 

the bunch width ( 1b ), there will be electron losses over the edge of the electrodes.  
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Effect of finite electrode width on the multipactor threshold  
 

When geometrical spreading is strong it is sufficient to consider the evolution of the electron density, 

and use Eq. (3) as a criteria for breakdown. However, in systems where the electron bunch width 

approaches a finite value it is instead necessary to consider the losses of electrons over the conductor 

edges. This leads to a modified breakdown criteria, where we require exponential growth in the total 

number of electrons involved in the discharge for multipactor to be possible. In the case of finite 

electrode widths a simple estimate of the multipactor threshold can be derived by considering a 

sequence of electron transits after the moment when the electron bunch width, 2 , have grown to 

equal the electrode width, b2 . We can define an enhancement factor, k , which is simply the number 

of secondary electrons generated in an impact divided by the number of impacting electrons. For the 

case when an electron transit is completed with 2,1bk   it seems reasonable to assume that no 

electrons are lost over the electrode edges. In this case the enhancement factor is simply equal to the 

secondary emission yield, i.e. kk    , and the secondary electron bunch will start on the opposite 

electrode with the same width as it had at impact. On the other hand, each time an electron transit is 

finished with 2,1bk   one can assume that a fraction, 
k

b




2,1
1 , of the electrons is lost, in which case 

the enhancement electron factor will equal 
k

kk

b




2,1 , and the secondary electron bunch will start 

from the opposite electrode with a width equal to that of the electrode. In a sequence of transits the 

electron enhancement factor is multiplied, and the condition for the electron number to grow, and a 

multipactor avalanche to develop, can be expressed as the following inequality  

 1 k , (22) 

This condition is simplified considerably when both electrodes have identical parameters 

( RRR  21 , bbb  21 ,   21 , VVV  21 ,   21 ). In this case, after achieving 

equality between the electron bunch width and the electrode width, all subsequent electron transits will 

be identical, and all electron enhancement factors, k , will be the same. Based on the solution (14) 

one can find the value of k  and express the necessary condition for a multipactor avalanche to 

develop as the following inequalities: 

  
    222
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






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
















b

V

R

a 








 , (23) 

if the RHS of (23) exceeds unity or 

 1 , (24) 

if the RHS of (23) is lower than unity (in this case the electron bunch width will never exceed the 

electrode width if the bunch starts from a single seed electron at 0x ).  

The two summands under the square root on the RHS of Eq. (23) represent separate 

contributions from different effects into the enhancement of the multipactor threshold. The first term 

represents the contribution of the surface curvature and the ponderomotive force. It depends on neither 

electron emission velocity nor electrode width. When this term is taken alone it gives the previous 

estimate (3) for the multipactor threshold with the defocusing factor defined in (10). The second term 

represents the contribution of the electron emission velocity, which is enhanced by the action of the 

ponderomotive force. This term is independent on the surface curvature.  
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Application of the model to some particular cases.  

 

Applying the simplified model above to some particular structures makes it possible to get a better 

understanding of a number of previously published results. Specifically, taking (23) with 0  and 

  0Ra  one immediately finds the multipactor threshold, 

2

1 









b

V
 , previously obtained in 

[12] for a waveguide iris using the approximation of a uniform rf field. If we wish to make a more 

accurate estimate of the multipactor threshold within an iris by applying our model, we need to find an 

approximation for the second derivative of the electric field. Since the conductors have the half-width 

b , a rough estimate should be  

 
2

0

0

2

2

b

E

x

E

x








, (25) 

where 0E  stands for the maximum of the rf field amplitude. This makes it possible to to express the 

product   via pure geometrical parameters based on the approximation 



V

a
 , where 




m

eE
V 0  

stands for the electron oscillatory velocity. This approximation for the crossing time is based on two 

assumptions for the drift velocity of the electrons. First of all one assumes that the drift velocity is 

maximal, i.e. Ni VVV    [26](see Eq. (7)), where 
2

NN vV   is a statistical average of the 

emission velocity in the direction of the surface normal.  Under typical multipactor conditions this is 

generally true, and one can also use NVV  , leading to VVi  .  Secondly one assumes that the 

drift velocity of the electrons is constant during the passage over the gap. This assumption was 

justified in [26], where it was shown that between two cylindrical conductors, the maximum drift 

velocity is V
2

3
, which results in only a minor correction to the estimate  




V

a
 . Using these 

assumptions we find 

  
b

a

2
 , (26) 

Substituting this estimate of the ponderomotive force into (23) the multipactor threshold for an iris can 

be expressed as  

 


























b

a

V

V

b

a

2
sinh2

2
cosh 2

2

2



 , (27) 

which is in qualitatively agreement with the main features of the simulation results obtained in [13]. 

As was mentioned above, under typical multipactor conditions the electron initial velocity is small 

compared to that one which electron achieve due to acceleration in rf field ( VV  ). Therefore the 

estimate (27) explicitly illustrates that inside an iris with 1ba  the contribution of the 

ponderomotive force into the enhancement of the multipactor threshold is more important than the 

contribution of the electron emission velocity spread.  

Applying a similar approximation, 
2

0

0

2

2

R

E

x

E

x








, for the rf field non-uniformity in a 

system with two parallel cylinders of equal radii, as in [25], one finds an estimate of the multipactor 

threshold as 
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 












































R

a

V

V

R

a

R

a

2
sinh2

2
sinh2

2
cosh 2

22



 , (28) 

This result justifies one in neglecting the contribution of the electron emission velocity spread into the 

multipactor threshold enhancement, which was done in [25]. At the same time it follows from (28) that 

for a large distance between the wires, the contribution of the ponderomotive force into the 

multipactor threshold enhancement (which was neglected in [25]) can be very important.  In deriving 

Eq. (28) we assumed that Rb  , which means that we violated the condition Rx  . Eq. (28) can 

therefore not be considered as an exact result, but rather an underestimation of the real threshold.  

In the case of two opposite electrodes placed on the same cylindrical surface (see Figs. 3 and 

6), the radii of curvature are the same and negative, RRR  21 , whereas the distance between the 

electrodes is Ra 2 . Therefore taking the approximations (25)-( 26) the defocusing factors are 

estimated to be  

    
 bR

bR
bRAA

2sinh
22cosh21  , (29) 

Due to the manufacturing process, many helix antennas have such geometries, see Fig. 6.  

 

Fig. 6. Quadrifilar helix antenna for X-band (c. 8 GHz). Photo: RUAG Space AB. 

 

One particular example of a helix antenna which is used commercially for communication at 400 MHz 

has the dimensions 4R  cm, and 4b  mm. In this case the defocusing factors are so high 

(
5

1 106A ) that a multipactor avalanche becomes completely impossible between one pair of 

electrodes. However a realistic helix antenna with a cross section like that in Figs. 3 and 6 contains 

two pairs of electrodes, and an electrons which is pushed out of the gap between one pair has a certain 

probability to impact an electrode of the second pair. In the case of a very high defocusing factor 

(when bRA 21  ) an electron which is emitted from one electrode will suffer a major deflection 

during transit, which will cause it to miss the opposing electrode, and it is unclear exactly where it will 

end up. For a very conservative estimate of what kind of losses this infers we assume that the electron 

can reach almost any point of the cylinder surface with uniform probability. In this case the probability 

to impact any of the other electrodes is estimated to be  

 
bR

b
Pimp

22

6





, (30) 
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For the parameters of the 400 MHz commercial antenna this probability is, 1.0impP . Therefore, in 

this case, electron losses can be balanced, and the multipactor avalanche can grow, if and only if the 

secondary emission yield exceeds the threshold value  

 101  

impth P , (31) 

This threshold seems to be unrealistically high for clean metal surfaces, and it should be possible to 

state that the realistic helix antenna should be multipactor free. 

 

 

Conclusion 
 

We have developed a simple model for estimating the multipactor threshold in a gap between two 

electrodes having curves surfaces. The model is based on a statistical analysis of the electron bunch 

width after a number of the gap transits. The consideration is based on an approximate approach to the 

calculation of electron trajectories averaged over the rf period. This approximation is valid when the 

electron transit time exceeds the rf period, and makes it possible to take into account the electron 

dispersion due to the electron emission velocity spread, the surface curvature, and the effect of spatial 

non-uniformity of the rf field. The model is applied to some particular systems (waveguide iris and 

two wire transmission line) which makes it possible to compare the results with those published 

previously, and achieve a better understanding of the main effects responsible for the enhancement of 

the multipactor threshold. When applying the model to the realistic structure of a helix antenna, the 

model predicts that multipactor is impossible due to effect of the ponderomotive force which pushes 

electrons out of the regions with strong rf field.   
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