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Abstract—One of the most important steps in presurgical diag-
nosis of medically intractable epilepsy is to find the precise location
of the epileptogenic foci. Electroencephalography (EEG) is a non-
invasive tool commonly used at epilepsy surgery centers for presur-
gical diagnosis. In this paper, a modified particle swarm optimiza-
tion (MPSO) method is used to solve the EEG source localization
problem. The method is applied to noninvasive EEG recording of
somatosensory evoked potentials (SEPs) for a healthy subject. A 1
mm hexahedra finite element volume conductor model of the sub-
ject’s head was generated using T1-weighted magnetic resonance
imaging data. Special consideration was made to accurately model
the skull and cerebrospinal fluid. An exhaustive search pattern and
the MPSO method were then applied to the peak of the averaged
SEP data and both identified the same region of the somatosensory
cortex as the location of the SEP source. A clinical expert inde-
pendently identified the expected source location, further corrob-
orating the source analysis methods. The MPSO converged to the
global minima with significantly lower computational complexity
compared to the exhaustive search method that required almost
3700 times more evaluations.

Index Terms—Electroencephalogram (EEG) source localiza-
tion, finite element method (FEM), inverse problem, magnetic
resonance imaging (MRI), particle swarm optimization, so-
matosensory evoked potential (SEP), subtraction method.

I. INTRODUCTION

E PILEPSY is one of the most common neurologic diseases
in the world. According to the Centers for Disease Control

and Prevention [1], epilepsy affects 2.2 million Americans. The
Institute ofMedicine, in their recent report “Epilepsy Across the
Spectrum” [2] says “the 2.2 million prevalence estimate is most
accurately viewed as approximating a midpoint in a wide po-
tential range of 1.3 million to 2.8 million people with epilepsy.”
Epilepsy affects 65 million people worldwide. Many patients
with epilepsy never receive the treatment they need in order to
be seizure free; consequently, treatment of epilepsy with medi-
cations is a major effort of the World Health Organization [3].
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However, in cases of medically intractable epilepsy, surgical
therapy is often the only feasible intervention.
The combination of the neuronal network approaches open

up a short remark for an assumption that uncontrolled network
oscillations in epilepsy need a cortical focus for high frequency
activity during seizures. The spikes, the epileptiform activity in
the interval between seizures, also need cortical foci [4]. Thus,
source localization of epileptic activity is a tool to delineate cor-
tical areas/volumes with abnormal neuronal activity of cells and
networks. A correct and anatomically precise localization of the
epileptic focus is mandatory for deciding whether resection of
brain tissue is possible.
An electroencephalogram (EEG) is the most commonly used

clinical method for finding the sources of brain activity. EEG
source localization deals with two problems: 1) the forward
problem in which scalp potentials are simulated for a (set of)
given current source(s) in the brain, 2) the inverse problem in
which a (set of) source(s) in the brain are estimated that fit with
a given potential distribution at the scalp electrodes.
In the past, simplified spherical head models were used to

solve the forward problem. More recently, a combination of
imaging modalities (e.g., T1-,T2/PD- MR and DTI, [5]–[7])
are used to accurately describe the geometry of the head and
conductivity of tissues. A finite element method (FEM) is well
suited to handle the geometrical complexity of realistic head
models and tissue inhomogeneity. The EEG source localization
is (usually) highly nonlinear and requires efficient algorithms
for its solution. Parametric methods based on current dipoles
are well suited for estimating locally activated neural sources,
e.g., events like epileptic spikes or motor control tasks [8],
[9]. In these methods, a search is made for the best-fit dipole
position(s) and orientation(s) and the methods assume a
fixed number of dipoles inside the brain volume during the
searching process. The most widely used parametric optimiza-
tion methods for solving the EEG inverse problem can be
classified into two groups: gradient methods, which use func-
tion and derivative information (e.g., Levenberg–Marquardt
[10]), and search methods (nongradient techniques) which use
only function values (e.g., Nelder–Mead downhill simplex
[11]). Both of these methods minimize the cost function by
iteratively adjusting the parameters of the dipole sources.
The gradient optimization methods are fast to converge and
effective when there is only one dipole in our source model
and the data is noiseless. But when we use the multi-dipole
model and noisy cases the local optimization approaches are no
longer effective since it is easy to be trapped in local minima
[12]–[14]. Moreover, the final solution often depends on the
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Fig. 1. Different steps in the EEG source localization procedure.

initial approximation and the number of local minima of the
cost function [15] since reasonable initial guesses are difficult
to make.
In previous studies done by the authors, [16], [17], a modi-

fied particle swarm optimization (MPSO) method was proposed
for solving the EEG source localization. In [16], it is shown in
several examples that, where as the deterministic method DI-
vide RECTangle (DIRECT) failed to efficently solve the source
localization problems, the MPSO could found the optimal solu-
tion significantly faster than other improved versions of PSO, as
well as GA. In addition, the MPSO is less prone to be trapped in
local minima. Comparing the convergence rate between MPSO
and GA in [16] showed that the MPSO converged to the global
minima in all cases whereas the mean of the GA’s convergence
was 79%. In [17], it is shown that the MPSO is feasible to solve
the EEG source localization in a real clinical setup.
The main goal of this paper is to apply the MPSO method

on real EEG data and compare the results with physiological
knowledge. The real EEG data that we use in the present study
was recorded from somatosensory evoked potentials (SEPs)
stimulation on a healthy subject. The rest of the paper is orga-
nized as follows. Section II-A introduces the forward problem
and a modified version of the subtraction method used to model
the dipole source. Section II-B describes the inverse problem
and its mathematical formulation. Section III presents the PSO,
its parameter selection and modification methods. Section IV
deals with the EEG data and the head model. The results are
presented in Section V. Finally, Section VI discusses the results
and conclusions are drawn.

II. METHOD

The EEG source localization has several different subprob-
lems that each should be done carefully. Fig. 1 illustrates all
necessary steps performed in the EEG source localization pro-
cedure. In the following sections we go through each step and
present our proposed method for solving the EEG source local-
ization.

A. Forward Problem
The characteristic frequencies of the signals in the kilohertz

range and below make the capacitive and inductive effects of
the tissue negligible. Therefore, the quasi-static approximation
of Maxwell’s equations for the potential can be used. If we
denote the domain of interest as (with boundary ) and let
the tissue conductivity be , we have Poisson’s equation

(1)

subject to the conditions

(2a)
(2b)

The source current is modeled by a mathematical dipole at
position with the moment

(3)

The source has a singularity at and is therefore difficult to
model with standard finite elements. A modified subtraction
method [16], [18], [19] is used to circumvent this problem,
where the total potential is split into two parts

(4)

For convenience, we have defined the function

(5)

The first part, , is the solution to (1) in an unbounded domain
with constant conductivity

(6)

The solution can in this case be formed analytically [20] as

(7)
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For future references, we notice that both the source current
and depend linearly on the dipole moment . is a smooth
cutoff function which is identically 1 in a neighborhood of .
Using (4) and(1), the new formulation reads

(8)

subject to the conditions

(9a)
(9b)

Application of the standard FE method to (8) and (9) yield a
linear equation system

(10)

where is a sparse symmetric positive definite stiff-
ness matrix, the coefficient vector of the modified
electric potential and the right hand side vector with
being the number of FE nodes.
In EEG applications the potentials are typically measured at

approximately 40–100 electrodes. Then the values of the poten-
tial at the electrodes can be obtained by multiplying the vector
of nodes values with a restriction matrix

(11)

The size of the matrix is . Since only the rela-
tive differences of the potential are of interest, it is common in
EEG to use the average signal as a common reference, this is
the so-called average reference montage. Let be the transfer
matrix such that

(12)

where is the average of the potential at all nodes. can
be obtained from by subtracting the column-wise mean from
each entry. From the relation (10) we see that
and therefore

(13)

We call the transfer matrix for the average ref-
erence montage. The right hand side, , is linear in the dipole
moment and nonlinear in dipole position , therefore we
can write it as follows:

(14)

In the modified subtraction method the contribution to the total
potential comes from two parts. One part from the finite element
method computed as described above and one direct contribu-
tion from (5). Both these contributions are linear in the dipole
moment so therefore the total potential at the electrodes can be
written

(15)

Here, is the value of the function for the three
polarizations at all electrodes when the dipole is located at
and is called the gain matrix. We use (15) in the inverse
problem to find the position of the dipole.

B. Inverse Problem
Localization of the neural activity inside the brain based on

the scalp EEG signal is called the EEG inverse problem. The
problem is underdetermined (number of possible source loca-
tions number of electrodes) and the solution is nonunique.
The remedy is to impose some regularization method on the
source model as well as anatomical and physiological con-
straints as a priori knowledge about the source.
In a parametric method, the number of dipoles is assumed

to be fixed and their locations and moments are chosen such
that the potentials at the electrodes, , that are computed
according to (15), approximate the measured potentials
well according to some criteria. Here we follow the common
practice and choose the parameters such that we have the best
fit in least squares sense. For one dipole we get the following
minimization problem:

(16)

where is the brain domain and the dimension. Since
this is a least squares problem and depends linearly on
the dipole moment it is convenient to separate the parameters in
(16) and solve for the dipole moment first. Define, for fixed

(17)

According to the normal equations for linear least squares prob-
lems, optimality is obtained for

(18)

Substituting (18) into(17) yields after some manipulation

(19)
Now we can reduce (16) to a minimization problem only over

the dipole position

(20)

where a constraint function is introduced to define the
optimization domain [16]. Here, the optimization problem is a
function of the source position only, thus the complexity of the
inverse problem is reduced.
Moreover, this approach can be used to estimate more than

one source. To choose the number of dipoles, one can start with
one dipole and then increase the number until some criterion on
the matching between the measured and optimized potentials
at the electrodes is met. One natural criterion is that the rel-
ative difference is lower than some
prescribed value.

III. PARTICLE SWARM OPTIMIZATION

A. Standard Particle Swarm Optimization
The Particle Swarm Optimization concept was first intro-

duced by Kennedy and Eberhart [21], [22] in 1995 based on the
social system behavior such as the movement of flock of birds
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or a school of fish when searching for food. Each individual
in the swarm is called a particle. The th particle of the swarm
is represented by the vectors for its position and for its
velocity. The particle has a memory to record the position of its
previous best performance, personal best , in the vector
and the position of the best particle in the swarm, global

best , which is recorded in the vector . The particle
swarm optimization algorithm consists of, in each iteration,
changing the velocity of each particle towards the position of
its best performance, , and the swarm best position, .
Thus in the original version particles move according to the
following formula:

(21)

Parameters and are the cognitive and social learning rates
. These two rates control the relative influence of the memory
of the swarm best performance to the memory of the individual
and are often selected to the same value to give each learning
rate equal weight. In addition to the and parameters, imple-
mentation of the original algorithm also requires placing limits
on the search area ( and ), and the velocity ( ).
Shi and Eberhart [23], [24] devised an inertia weight, , to

improve the accuracy of the PSO by damping the velocities over
time, allowing the swarm to converge with greater precision. By
integration of into the algorithm, the formula for computing
the new velocity is

(22)

As originally developed, is often decreased linearly from
about 0.9 to 0.4 during a run. Suitable selection of the inertia
weight provides a balance between exploration, the ability to
test various regions in the problem space in order to locate a
good optimum, hopefully the global one, and exploitation, the
ability to concentrate the search around a promising candidate
solution in order to locate the optimum precisely [24].
The PSO algorithm introduced by Kennedy and Eberhart

has been proven to be powerful but needs to select various
parameters, such as the maximum velocity coefficient, the
swarm size, the neighborhood size as well as the cognitive and
social learning rates. A complete theoretical analysis of the
algorithm has been given by Clerc and Kennedy [25]. Based
on this analysis, the authors derived a reasonable set of tuning
parameters, as confirmed by [26]. However, the parameter
selection in a specific problem is not straightforward. The
PSO algorithm has a risk to trap in a local minima and lose its
exploration-exploitation ability [27]. In the following section,
we describe a modified PSO (MPSO) algorithm [16], which
can help to cure the aforementioned drawbacks.

B. Modified Particle Swarm Optimization
One way to avoid PSO to trap in local minima is mutation and

using evolutionary programming (EP). In this method parti-
cles are selected among the swarm population by the -tourna-
ment selection method and then mutated by the EP method [28].

By evaluating the fitness value of all the particles, the global
best position is determined. For each particle, the nearest elite
particle is determined by the Euclidean distance. The velocity
and the position of the particles are updated according to the
global best position, the nearest elite position, and the personal
best position. These are applied to the PSO with inertia weight
as follows:

(23)

where denotes the constant of the nearest elite and the
nearest elite position.
In the MPSO, we introduced the concept of authority to

maintain the exploration ability and increase the exploitation
ability. In the concept of authority, as the swarm moves close to
a minima the closest particles to are extracted and they
are allowed to fly freely based on their memory and knowledge.
Thus, the velocity update is divided into two parts as

(24)

where and

(25)

where , , and are the velocity, position and personal
best of the th particle, respectively, for .
The nearest particles to are reselected in each iteration
to ensure that the particles which moved away from the
lose their authority and next iteration update their velocity based
on (24). It means that in some steps the particles which are closer
to the global best can influence the performance and decision
of the swarm more than others. The concept of authority allows
the swarm to have more information around before lots of
particles come close to it and stuck with each other, thus it im-
proves the exploitation ability. The concept of authority mixed
with EP helps to keep the balance of the exploration-exploita-
tion trade-off as well as to avoid trapping in local minima.
A natural choice for is the number of neighborhoods for

each particle in the swarm, which in our case is equal to 5. The
concept of authority allows the swarm to have more information
around before lots of particles approach it and get stuck
to each other, thus it improves the exploitation ability. The con-
cept of authority mixed with EP helps to keep the balance be-
tween exploration and exploitation as well as avoiding trapping
in local minima.

C. The MPSO Parameter Selection
Usually, the swarm size is constant. Some authors use 20,

while some others use 30 [22], [24], but nobody has proved
that one given size is really better than any other. Thus it
seems better to let the algorithm modify the swarm size [29],
adaptively based on the current situation. In each iteration,
the swarm has information about each particle’s position, ,
personal best, , velocity, as well as the previous objective
function values and improvement of the objective function,
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since last check (difference between the previous objective
function value and the current one). The swarm also has some
global information, i.e., the size and time step. Using this infor-
mation, the swarm has two options to act on particles. It may
remove particles from the swarm or generate new particles.
The condition for the swarm to change the status of a particle is
based on the following situations.
• If one particle has had enough improvement a new particle
is generated from that particle and the old one is kept.

• If one particle has not had enough improvement that par-
ticle is removed from the swarm.

Here, the status changes every five iterations which is equal
to the neighborhood size. The enough improvement is defined
by “improvement for 5 iterations”. Reflecting walls are used
as boundary conditions for MPSO. When a particle hits the
boundary in one of the dimensions, the sign of that velocity com-
ponent is changed and the particle is reflected back towards the
solution space. This boundary condition keeps the particles in-
side the searching space. Here, we use the following parameters
coefficients: from 0.9 to 0.4, , ,

, and initial swarm , which are suggested in
the literature [24], [28].

D. Bound and Anatomical Constraints

Because of the dipole singularity, the FEM modeling usually
has high error for sources located close to interfaces between tis-
sues of different conductivities [30]. This causes false extrema
that can trap the optimization methods in local minima during
the minimization process. To avoid such problems at the inter-
faces we will use a constraint for the MPSO search method. The
position of each particle is checked before the evaluation. If the
particle either is placed on a interface or its distance to an inter-
face is less than half a mesh size, then the particle is replaced
to the middle of the mesh cell it is located in. With this position
correction we can be sure that the particles are a safe distance
away from the interfaces.
Restricting the search space in limited areas of the brain

volume (e.g., the gray matter) reduces the ambiguity of source
localization [31]. In the inverse problem we consider only those
dipole locations and orientations that are consistent with the
anatomical data. The EEG signals are generated by currents
flowing in the apical dendrites of cortical pyramidal cells
[32], [33] so the searching area could be restricted only to the
cortex sheet of the brain. We use this information and add it to
MPSO searching. For the anatomical constraint MPSO solely
evaluates(19) for the particles which are placed in the gray
matter and assign a high value to others. The MPSO starts from
gray matter and in this way it ends up in the gray matter, also
this constraint helps to avoid trapping the inverse problem in
false local minima in other tissues. This reduces the number of
evaluations and thus the computational time significantly.

IV. MRI AND EEG DATA

A. Head Model and Sensor Positioning

Structural MR images were acquired using a PHILIPS
ACHIEVA 3T scanner (Sahlgrenska University Hospital,

Fig. 2. (a) The manually segmented MRI for five tissues, (b) the subject’s FEM
gray matter and skin generated from the segmentedMRI and the registered EEG
electrode positions on the scalp surface, and (c) 61 EEG electrodes topography
for the N20 peak.

Gothenburg, Sweden) equipped with a 32 channel head
coil. T1-weighted images were acquired for a healthy sub-
ject, (192 sagittal slices, matrix , voxel

mm , flip angle , ms).
Since the authors’ previous study [34] showed that the widely

used softwares packages for brain segmentation, namely FSL
[35] and FreeSurfer [36] cause significant errors in source lo-
calization results, here the segmentation of the five tissues, i.e.,
gray matter, white matter, cerebrospinal fluid (CSF), skull, and
skin was done manually by a clinical expert. Our expert spent
170 h to fully segment the head model (120 slices).
The mesh model which is generated from the cubic voxel

structure of the MR image has good numerical properties [37]
and it simplifies FE mesh generation as well. Here, the high res-
olution model is necessary to accurately model the CSF com-
partment and the thin area of the skull. We generated the mm
hexahedra FE head model with approximately 2.8 million nodes
from the segmented MRI [see Fig. 2(b)]. The following con-
ductivities were then assigned to the FE compartments based
on their segmentation labels and the isotropic reference model
[38], [39]: , (skull to skin
conductivity ratio of approximately 1:100), ,
gray , and white .
Sixty-one EEG electrodes were placed on the subject head based
on the 10/10 EEG electrode system [40]. The 3-D (-x,-y,-z) co-
ordinates of these electrodes were measured before and after the
SEP stimulation experiment with a digitizer and for the elec-
trode registration three reference points, i.e., nasion (the delve
at the top of the nose, level with the eyes), left tragus (small
point situated in front of the left concha), and right tragus (small
point situated in front of the right concha) were measured on the
subject head as well. Then by using an affine transformation,
the measured points were co-registered to the surface of the FE
model.
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B. Somatosensory Evoked Potential

Evoked potentials are the electrical signals generated by the
nervous system in response to sensory stimuli. Auditory, vi-
sual, and somatosensory stimuli are commonly used for clinical
evoked potential studies. SEP consist of a series of waves that
reflect sequential activation of neural structures along the so-
matosensory pathways. Sensory nerves (cell bodies in the dorsal
root ganglia) transmit the signal rostrally and ipsilaterally (first-
order fibers), in the posterior column to a synapse in the dorsal
column nuclei at the cervicomedullary junction [41]. Then the
signal is passed via the second order fibers that cross to the con-
tralateral thalamus via the medial lemniscus. Finally, the signal
travels via the third-order fibers from the thalamus to the fron-
toparietal sensory cortex.While SEP can be elicited by mechan-
ical stimulation, clinical studies use electrical stimulation of pe-
ripheral nerves, which gives larger and more robust responses.
The stimulation sites typically used for clinical diagnostic SEP
studies are the median nerve at the wrist, the common peroneal
nerve at the knee, and/or the posterior tibial nerve at the ankle.
In this study two sets of stimulations were measured. 1) Me-

dian nerve at the left wrist. The anode was placed just proximal
to the palmar crease, and the cathode was placed between the
tendons of the palmaris longus muscle, 3 cm proximal to the
anode. The selected nerves were stimulated with monophasic
square pulses, 300 s in duration and the stimuli were delivered
by using a constant current stimulator with . 2) The left
posterior tibial nerves at the subject’s ankle. The selected nerves
were stimulated with monophasic square pulses, 300 s in du-
ration and the stimuli was delivered by using a constant current
with . The SEP components typically are named by their
polarity and typical peak latency in the normal population. For
example, N20 is a negativity that typically peaks at 20 ms after
the stimulus.

C. EEG Signal Preprocessing

The EEGs of a healthy subject, used for the EEG source lo-
calization, were recorded at the Department of Clinical Neuro-
sciences of the Sahlgrenska University Hospital (Gothenburg,
Sweden). The participant (30 years old) was without substance
abuse or dependence and had no known neurological or psy-
chiatric illness or trauma. A 61-channel EEG system was used
at a sampling frequency of 2 KHz. The EEG time series were
filtered (FIR, band-pass of 1–45 Hz and notch of 50 Hz), reref-
erenced against the common average reference, and segmented
into nonoverlapping 300 ms epochs using the EEGLab software
[42]. Artifacts in all channels were edited offline: first automati-
cally, based on an absolute voltage threshold (100 mV) and on a
transition threshold (50 mV), and then on the basis of a thorough
visual inspection. The sensors with high artifacts were removed
from the recorded signals. Using short segments for analysis al-
lowed us to record 160 artifact-free epochs per subject in order
to achieve high confidence of the data. The epochs were selected
based on maximization of the SNR and to increase the SNR
signal averaging of 160 artifact-free epochs were used. After
averaging the SNR was equal to 28 dB. Then the peak of the
averaged signals was used as input for the inverse problem.

Fig. 3. SEP: Butterfly plot of the averaged (a) median nerve stimulation N20
and its late cortical activity P60 and (b) tibial nerve stimulation N40 and its late
cortical activity N78 at the 61 EEG electrode positions.

Fig. 4. Somatosensory cortex: the location and size of the subject’s somatosen-
sory cortical area corresponding to the left wrist (a) and leg (b) stimulations are
marked by a clinical expert.

V. RESULTS AND DISCUSSION

A. Validation

Validation of the source localization is difficult, because there
exist no “ground truth” to compare with and also we do not have
access to other functional modalities, e.g., fMRI and MEG data
from our subject for the same kind of stimulation.We have taken
two approaches to validate our method: first we use the physi-
ological knowledge on localization of motor and sensory func-
tions [43] based on clinical expertise and second we do an ex-
haustive search pattern, i.e., inversion was performed for each
possible source location in the motor and sensory cortex area
inside a region of interest (ROI), and the location producing the
smallest residual norm was selected as the best possible source
location. In [44] it was shown that median nerve SEPs (N20)
are generated by primary somatosensory cortex in the poste-
rior wall of the central fissure (SI area) and later cortical waves
recorded at P60 are more susceptible to changes by cognitive
factors. Moreover, several studies [45], [46] have shown that
the strong recorded signals in the primary somatosensory cortex
correspond to N20 and P40 for median and tibial nerve, respec-
tively. Fig. 3 shows the average of 160 stimulations for median
(a) and tibial (b) nerve stimulation at the 61 EEG electrodes, re-
spectively. Fig. 4 shows a visual image of locations and sizes of
the subject’s somatosensory cortical areas for the left wrist and
leg.
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For the single point source the cost function (relative error)
is defined as

(26)

where is a vector of the measured potentials on the scalp,
is a vector of the potential generated by the estimated dipole

and denotes the Euclidean norm. For the exhaustive search
we selected a large area that covered all of the left and right
hemisphere motor and somatosensory cortex. This ROI has ap-
proximately 110 000 voxels. All computations were performed
on an Intel 2.93 GHz workstation with 8GB RAM memory and
the post processing and visualizations were done using Matlab
(R2012a) and the 3DSlicer (3.6.3) software [47].

B. The MPSO Results

In [16] we showed that the proposed MPSO method con-
verges faster and is less prone to be trapped in local minima
compared to some other PSO methods in the literature. There-
fore, we only use MPSO in this section. We ran the source lo-
calization method for N20 and P40 signals recorded from me-
dian and tibial nerves as well as their later cortical waves i.e.,
P60 and N78 [44], respectively (see Fig. 3). For the MPSO, 30
particles were initialized in the ROI, which cover the left and
right hemisphere motor and somatosensor cortex. Each particle
had six parameters, three parameters for the position and three
parameters for the orientation. As the proposed MPSO has the
ability to use an adaptive swarm size the number of particles ini-
tialized is not crucial for the convergence. These particles were
generated randomly inside the gray matter with uniform dis-
tribution. Moreover, the boundary and anatomical constraints
(see Section III-D) were applied to the MPSO. The optimiza-
tion method was terminated when the minimum relative error
from the exhaustive search was obtained. Fig. 5 shows the con-
vergence curve for the MPSO for all cases. Table I shows the
number of evaluations and the relative error between measured
and estimated potentials for each case.
Figs. 6 and 7 show the measured and estimated scalp surface

potential topographies for the median nerve stimulation and its
late cortical activity, respectively. Figs. 8 and 9 show the esti-
mated source position for median nerve stimulation and its late
cortical activity on the subject’s segmented MR image.
Figs. 10 and 11 show the measured and estimated scalp sur-

face potential topographies for the tibial nerve stimulation and
its late activity, respectively. Figs. 12 and 13 show the estimated
source position for the tibial nerve stimulation and its late cor-
tical activity on the subject’s segmented MR image.
We have run both median nerve stimulation (N20) and tibial

nerve stimulation (P40) for two dipole sources. We kept the first
estimated dipole fixed and then started searching for the second
dipole which clearly has weaker amplitude. For N20 the relative
error decreased from 0.23 to 0.18 and for P40 it decreased from
0.23 to 0.19.

VI. CONCLUSION

In this paper, the ability to perform EEG source localization
was tested with a new optimization method. The new method is

Fig. 5. MPSO convergence curve.

TABLE I
NUMBER OF VALUATIONS AND RELATIVE ERROR FOR BOTH THE MPSO AND
EXHAUSTIVE SEARCH METHODS. MPSO AND EXHAUSTIVE SEARCH GAVE
IDENTICAL RESULT BUT WITH A MUCH LOWER NUMBER OF EVALUATION

FOR MPSO

Fig. 6. Scalp surface potential topography for the median nerve stimulation
(N20). (a) Measured EEG and (b) estimated EEG potential.

a modified version of particle swarm optimization. In this new
approach, positions and orientations of dipoles are optimized
to obtain the best least squares fit between the measured EEG
signals and simulations. For the forward problem, we built a
realistic high-resolution finite element head volume conductor
based on a T1-weighted MR dataset including five tissues, i.e.,
gray matter, white matter, CSF, skull, and skin.
SEPs stimulation by an electrical pulse on the median nerve

of a healthy subject, was recorded with 61 EEG electrodes
placed on the scalp. Based on physiological knowledge, the
somatosensory cortex generates the SEP signals and its po-
sition is known a priori to a good approximation. Although
this position slightly differs between individuals the variations
are small [43] and we can use this knowledge to validate
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Fig. 7. Scalp surface potential topography for the late cortical activity of the
median nerve stimulation (P60). (a) Measured EEG and (b) estimated EEG.

Fig. 8. Estimated source position for median nerve stimulation (N20) placed on
the subject’s segmented MR image. The 3-D view shows the estimated source
placed inside the gray matter. Red lines are central sulcus (SI).

Fig. 9. The estimated source position for late cortical activity of median nerve
stimulation (P60) placed on the subject’s segmented MR image. The 3-D view
shows both estimated sources of median nerve (N20, dark blue), and late cortical
activity (P60, cyan), placed inside the gray matter. Yellow lines are primary
motor cortex (MI).

Fig. 10. Scalp surface potential topography for the tibial nerve stimulation
(N40). (a) measured EEG and (b) estimated EEG potential.

our results. Moreover, an exhaustive search pattern was per-
formed for each possible source location in the motor and
sensory cortex and used for validation of the MPSO results.
We have applied MPSO to median (N20) and tibial (P40) nerve
stimulations as well as their late cortical activities, (P60) and

Fig. 11. Scalp surface potential topography for the late cortical activity from
tibial nerve stimulation (N78). (a) measured EEG and (b) estimated EEG po-
tential.

Fig. 12. The estimated source position for tibial stimulation from P40 placed on
the subject’s segmented MRI. The 3-D view shows the estimated source placed
inside the gray matter. Green lines are sensory and motor cortex for the leg area.

Fig. 13. The estimated source position for late cortical activity of tibial nerve
stimulation (N78) placed on the subject’s segmented MR image. The 3-D view
shows both estimated sources of tibial nerve (P40), dark red, and late cortical
activity (N78), violet, placed inside the gray matter. Green lines are sensory and
motor cortex for the leg area.

(N78), respectively. Comparison between the recorded EEG
and estimated scalp potential topographies showed a good
agreement in all cases. Moreover, based on clinical expertise
the estimated sources are located in correct region. The EEG
source localization results obtained from MPSO gave the same
results as an exhaustive search but with significantly lower
computational complexity.
Electrical stimulation of the tibial nerve generated a source

at primary sensory (SI) and the source moved to the primary
motory (MI) for the evoked late cortical activity EEG signal.
The source of activated cortex in MI was 13 mm ante-
rior, 11 mm medial, and 6 mm superior of activated
cortex in SI. This results agree with the nonpainful event-related
fMRI study presented in [48] and the MEG study on the differ-
ence in responses to somatosensory electrical stimuli between
primary and secondary (SII) sensory presented in [49].
Electrical stimulation of the median nerve evoked a signifi-

cant EEG signal increase in contralateral SI. The late cortical
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activity on the other hand evoked a significant EEG signal in-
crease in primary motor cortex (MI). The source of activated
cortex in MI was 13 mm anterior, 10 mm medial,
and 15 mm superior of activated cortex in SI. These re-
sults are similar to those found in a recent MEG [50] and fMRI
study [45], which allocated the second peak of themagneticfield
evoked by median nerve stimulation into MI.
The segmentation approaches proposed to date for EEG

source localization [51], [52] all require manual intervention.
Consequently the segmentation process is laborious, time-con-
suming, and subjective. Future work will include development
of methods for automatic multi-tissue segmentation of MRI
[53]. However, even though more work is needed to improve
the preprocessing steps a fast and reliable method for the source
localization is crucial and e.g., a necessity to enable the use of
source localization in future EEG-guided rTMS applications
[54].
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