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Efficient NMPC for nonlinear models with linear subsystems

Rien Quirynen, Sébastien Gros and Moritz Diehl

Abstract— Real-time optimal control algorithms for fast,
mechatronic systems need to be run on embedded hardware
and they need to respect tight timing constraints. When using
nonlinear models, the simulation and generation of sensitivities
forms a computationally demanding part of any algorithm.
Automatic code generation of Implicit Runge-Kutta (IRK)
methods has been shown to reduce its CPU time significantly.
However, a typical model also shows a lot of structure that can
be exploited in a rather elegant and efficient way. The focus
of this paper is on nonlinear models with linear subsystems.
With the proposed model formulation, the new auto generated
integrators can be considered a powerful generalization of
other solvers, e.g. those that support quadrature variables. A
speedup of up to 5− 10 is shown in the integration time for
two examples from the literature.

Keywords : structure exploitation, code generation, IRK
methods, NMPC, embedded optimization

I. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) [1] and
Moving Horizon Estimation (MHE) [2] are popular ap-
proaches for real-time optimal control and estimation, since
they can explicitly handle constraints and nonlinear dy-
namics. In the case of a system with fast dynamics, the
high computational burden forms a major challenge. An
Optimal Control Problem (OCP) needs to be solved at each
sampling time, respecting the hard timing constraints which
are imposed by real-time applications. Recent algorithmic
progress [3], [4], [5] allows to consider NMPC and MHE
also for fast systems. Among the available online algorithms,
the Real-Time Iteration (RTI) scheme [6] has been proposed
as a highly competitive approach.

In addition to using an online algorithm, efficient imple-
mentations are needed in a specific programming language to
allow running it in real-time on embedded control hardware.
One way to achieve this is by automatic code generation, i.e.
by exporting a customized solver. Significant improvements
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in the computation time can also be obtained by removing
unnecessary computations, optimizing the memory access
and cache usage, and by exploiting the problem structure
and sparsity patterns. This rather old idea has become quite
popular for e.g. convex optimization [7]. It is now possible to
assemble a complete algorithm for solving an OCP, starting
from different components of which each could be code
generated when advantageous. This is the approach pursued
by the ACADO code generation tool, which exports highly
efficient C-code based on the RTI scheme [8]. It has a
MATLAB interface to export and use the same code in
simulations [9].

A rather important component in case of NMPC is the
one that handles integration and sensitivity generation for
the nonlinear model. It forms typically a major or even
dominating factor in the total computation time, while the
accuracy of the derivatives also strongly defines the suc-
cess of the optimizer. Because of the need for a more or
less deterministic runtime in case of real-time applications,
adaptivity is avoided where possible. The assumption in
this paper is therefore that the step size and order of the
integration method are fixed. It has been shown that code
generation for Implicit Runge-Kutta (IRK) methods with a
tailored approach for computing the sensitivities can be very
efficient [10]. This is important because of the attractive
properties of A-stable IRK methods and their natural exten-
sion from systems of Ordinary Differential Equations (ODE)
to Differential Algebraic Equations (DAE) of index 1. In the
specific case of collocation methods, extra output functions
can be evaluated on an arbitrary grid and this at a rather low
cost [9].

In this paper, the following OCP formulation is addressed

min
x(·),u(·)

∫ t+T

t
(‖x(τ)− xref(τ)‖2

Q +‖u(τ)−uref(τ)‖2
R)dτ

+‖x(t +T )− xref(t +T )‖2
P

s.t. x(t) = x̄t ,

ẋ(τ) = f (τ,x(τ),u(τ)),

u
¯
≤ u(τ) ≤ ū,

x
¯
≤ x(τ) ≤ x̄, ∀τ ∈ [t, t +T ], (1)

in which x and u are the states and controls, xref and uref are
the state and control references, t denotes the current time
and T the length of the prediction horizon. Of particular
interest is the nonlinear function f which defines the system
dynamics. It is known that the models used in applications,
either ODE or DAE systems, often have a clear structure
resulting in e.g. a sparse Jacobian matrix. A scalable way to



Fig. 1. Schematic illustrating the three stages, together with the workflow
in the structure exploiting integrators.

handle this is by using sparse solutions for the linear algebra
operators when that is advantageous. It will however create
little to no gain for small to medium scale systems which
appear in the problems that are targeted by this paper. The
goal is therefore to have a closer look at the structure specific
to these systems and to propose an alternative approach for
structure exploitation, that will be shown to perform very
well. The addressed model class contains as a subclass the
Wiener-Hammerstein models which are since a long time
used in system identification [11].

Contribution: This paper presents algorithms to exploit
a frequently occurring model structure, resulting in very
efficient auto generated integrators.

The paper is organized as follows. In Section II, a three
stage model formulation will be proposed. Section III sum-
marizes the used framework of collocation methods with
sensitivity generation. Then, the issue of how to exploit the
three stage structure in these IRK methods, is addressed by
Section IV. Finally, some real-world applications are used
in Section V to illustrate the structure exploiting integrators
and their performance.

II. THE THREE STAGE STRUCTURE

In this section, a typical structure consisting of three
different stages in the system of differential equations is
discussed.

A. Model formulation

When modeling for example a mechatronic system, the
result is typically a set of nonlinear differential equations
with possibly some algebraic states. In the case of an
explicit ODE such as ẋ = f (x,u) from the OCP in (1), one
would often recognize one or more of the following three
subsystems in this specific order

ẋ[1] = A1x[1]+B1u, (linear input system)

ẋ[2] = f2(x[1],x[2],u), (nonlinear system)

ẋ[3] = A3x[3]+ f3(x[1],x[2],u), (linear output system)
(2)

with the matrices A1, B1 and A3 and the nonlinear functions
f2 and f3 defining the subsystems. Figure 1 illustrates
this chain of three subsystems. In what follows, N[1]

x , N[2]
x

and N[3]
x denote the number of differential states in each

of the three subsystems. As mentioned earlier, this class
comprises Wiener-Hammerstein models which consist of a
linear dynamic system followed by a static nonlinearity and

another linear dynamic system. In our notation, they are of
form (2) with N[2]

x = 0. Let us generalize this structure to an
implicit DAE system of index 1 as follows:

C1ẋ[1] = A1x[1]+B1u, (3a)

0 = f2(x[1],x[2], ẋ[1], ẋ[2],z,u), (3b)

C3ẋ[3] = A3x[3]+ f3(x[1],x[2], ẋ[1], ẋ[2],z,u), (3c)

with invertible matrices C1 and C3 and function f2 satisfying
∂ f2

∂ (z,ẋ[2])
invertible.

B. Motivation

The introduced structure is not something that comes up
only in rare occasions. These stages almost always arise
naturally when modeling for control. A linear input system
(3a) can result from
• some partially linear dynamics which are independent

of the states in the nonlinear equations. A classical
example would be the double integrator

ẋ1 = u

ẋ2 = x1
(4)

but any linear variant of this is possible.
• any linear high order differential equation, which would

be transformed into a set of first order equations

dnx
dtn = h(t,u(t),x(t), . . . ,

dn−1x
dtn−1 )

⇓ x1 = x, . . . ,xn =
dn−1x
dtn−1

ẋ1 = x2

. . .

ẋn = h(t,u(t),x1(t), . . . ,xn(t)),

(5)

with h a linear function.
• implementing a filter on the controls or input states. In

optimal control, it e.g. makes sense to extra penalize
the high frequency content. Therefore, a High-Pass RC
filter such as

dx(t)
dt

=−ωCx(t)+
du(t)

dt
(6)

can be used, with ωC = 1
RC = 2π fC in which fC is called

the cutoff frequency.
The linear output system in (3c) is somewhat similar to

the input system in (3a), but with a nonlinear relation with
respect to the previous states and the control inputs. An
output system can therefore result from some partially linear
dynamics which also depend on the previous states or it can
implement a filter for these states. In the latter cases, the
matrix A3 will generally be nonzero. When A3 = 0 and C3
is an identity matrix, Equation (3c) reduces to

ẋ[3] = f3(x[1],x[2], ẋ[1], ẋ[2],z,u) (7)

which are known in a different context as quadrature states
[12]. They are typically used to formulate objective and
constraint functions in an OCP.



III. AUTO GENERATED IRK METHODS

This section compactly describes the general implementa-
tion of auto generated IRK methods, presented earlier in [10]
and [9]. Their formulation is handled in Subsection III-A, for
ODE as well as DAE systems of index 1. Some comments on
the implementation are repeated in Subsection III-B and the
used methods for efficient generation of continuous output
and sensitivities are respectively described by Subsection III-
C and III-D.

A. Formulation

The general IRK methods from [9] solve the following
Initial Value Problem (IVP) over a certain time:

0 = f (t, ẋ(t),x(t),z(t),u(t)),

x(0) = x0,
(8)

with x(t) a vector of Nx differential states, ẋ(t) the corre-
sponding time derivatives, z(t) a vector of Nz algebraic states
and u(t) a vector of control inputs so that f defines a system
of Nx + Nz equations. Note that Nx = N[1]

x + N[2]
x + N[3]

x in
case of the structure in (3). These methods handle models
ranging from explicit ODE until fully implicit DAE systems.
The Jacobian matrix ∂ f

∂ (z,ẋ) needs to be invertible, so that the
algebraic states z and the differential state derivatives ẋ are
uniquely defined, i.e. the DAE system should be of index 1
[14].

Because of their high order of accuracy and good stability
properties, the focus of this paper will be on A-stable IRK
methods such as the Gauss methods [15]. Applied to the
system in (8) for the integration from tn until tn+1 = tn +h,
an s-stage IRK method can be formulated as follows:

0 = f

(
tn + cih,ki,xn +h

s

∑
j=1

ai jk j,Zi

)
, i = 1, . . . ,s,

xn+1 = xn +h
s

∑
i=1

biki,

(9)

with Zi the stage values of the algebraic states, ki the stage
values of the differential state derivatives and the coefficients
ci, bi and ai j are defined by the Butcher table. The method
results in a nonlinear system of (Nx +Nz)× s equations that
can be solved using a Newton method. Using this scheme,
consistency of the state values is only assured at the s
collocation nodes. For stiffly accurate methods such as the
Radau IIA methods, the endpoint is included in these nodes.

B. Implementation

With real-time applications in mind, the ACADO code
generation tool exports a customized integrator with a deter-
ministic runtime. The step size, the order of the method and
the number of Newton iterations are therefore fixed. Let us
write the nonlinear system from (9) as G(xn,K)= 0, resulting
in the following Newton-type iterations:

M =
∂G
∂K

(xn,K[0]),

K[i] = K[i−1]−M−1G(xn,K[i−1]), i = 1, . . . ,L,
(10)

with M the evaluation of the Jacobian ∂G/∂K in the ini-
tialization point and the variables K = (k1, . . . ,ks,Z1, . . . ,Zs).
Note that one Jacobian evaluation and a small amount of
iterations L is sufficient if this initialization K[0] is good
enough. The evaluation of the Jacobian can be done using Al-
gorithmic Differentiation (AD) [16]. A custom linear solver
can even be exported, e.g. based on the LU decomposition
of the matrix M.

C. Continuous output

Promising possibilities of auto generated IRK methods
with continuous output have already been mentioned and
illustrated in [9]. In the case of collocation methods, a
specific family of IRK methods, this continuous exten-
sion comes naturally. Using the collocation variables K =
(k1, . . . ,ks,Z1, . . . ,Zs), a polynomial is defined for x(t), ẋ(t)
and z(t):

x(tn + ch)≈ xn +h
s

∑
i=1

ki

∫ c

0
li(τ)dτ,

ẋ(tn + ch)≈
s

∑
i=1

li(c)ki,

z(tn + ch)≈
s

∑
i=1

li(c)Zi,

(11)

where li(t) = ∏ j 6=i
t−c j
ci−c j

are the Lagrange interpolating poly-
nomials. In the case of an s-stage IRK method of order p,
the order of this approximation is p∗ = min(p,s+1) for x(t)
and p∗−1 for ẋ(t) and z(t) [17]. Output functions as general
as

y = ψ(t, ẋ(t),x(t),z(t)), (12)

can efficiently be evaluated on an arbitrarily fine grid.

D. Sensitivity generation

In the context of dynamic optimization, sensitivities with
respect to all the independent variables wn = (x,u)n are
needed in addition to the simulated values of states and
outputs. In the case of extra outputs, forward techniques
to compute the sensitivities ∂ (xn+1,zn+1)/∂wn are recom-
mended. A thorough discussion on such techniques of sen-
sitivity generation for IRK methods can be found in [13].
The conclusion there is that the most efficient method is to
apply the Implicit Function Theorem (IFT) to G(wn,K) = 0,
resulting in

dK
dwn

=−∂G
∂K

−1
∂G
∂wn

, (13)

which can then be used to compute the sensitivities of the
states and outputs. This direct approach can provide very
accurate sensitivities, which is important for optimization.
The Jacobian evaluation in (13) and its factorization can be
reused in (10) for the next integration step [10]. Algorithm 1
compactly describes the resulting implementation.



Algorithm 1 The implementation of one step

Input: wn, initial K[0], LU factorization of M
Output: (x,∂x/∂wn)n+1 and (z,∂ z/∂wn)n

1: for i = 1→ L do
2: K[i]← K[i−1]−M−1G(wn,K[i−1])
3: end for
4: xn+1← xn +h∑

s
i=1 biki

5: zn← ∑
s
i=1 li(0)Zi with li(t) = ∏ j 6=i

t−c j
ci−c j

6: M← ∂G
∂K (wn,K[L])

7: compute dK
dwn

using M in (13)
8: ∂xn+1/∂wn← ∂xn/∂wn +h∑

s
i=1 bi

dki
dwn

9: ∂ zn/∂wn← ∑
s
i=1 li(0) dZi

dwn

10: compute outputs and sensitivities using (K, dK
dwn

)

IV. STRUCTURE EXPLOITING IRK METHODS

This section starts by adapting the IRK methods to the
specific three stage structure in Subsection IV-A, followed
by some remarks in Subsection IV-B. The availability of
these methods in the ACADO Toolkit is briefly illustrated
in Subsection IV-C.

A. Implementation details

The methods from Section III could be applied to the sys-
tem in (3), ignoring the structure that is present. This paper,
however, proposes an implementation which is completely
equivalent with the latter, while exploiting the structure as
much as possible. As illustrated in Figure 1, the scheme can
be represented by four blocks in total including the one that
handles the extra outputs and their sensitivities. The idea is to
compute all the collocation variables K and their derivatives
dK
dwn

, so that the outputs and the sensitivities can still be
generated in a similar way as before.

a) Linear input system: Let us define the collocation
variables K1 = (k[1]1 , . . . ,k[1]s ) for the linear input system. The
resulting equations in (9) will also be linear, namely

M1 =
∂G1

∂K1
=

C1−ha11A1 · · · −ha1sA1
...

. . .
...

−has1A1 · · · C1−hassA1

 (14)

is a constant sN[1]
x × sN[1]

x matrix in which G1 defines the
collocation equations. Instead of performing L Newton it-
erations like in (10), the variables can now be computed
by K1 = −M−1

1 G1(xn). The inverse matrix M−1
1 can be

precomputed offline, which leaves us with only a matrix-
vector multiplication. Even the derivatives dK1

dwn
are constant

and will therefore be precomputed.
b) Nonlinear system: For the implicit nonlinear system,

the methods are still applied as described in Section III
for the variables K2 = (k[2]1 , . . . ,k[2]s ,Z1, . . . ,Zs) of dimension
s(N[2]

x +Nz). The only difference is that the derivatives dK1
dwn

are now needed to evaluate ∂G2
∂wn

for the sensitivity generation
with G2 defining the nonlinear collocation equations. In
Figure 1, evaluations of the function f3 in (3c) and of its

Jacobian are also considered to be part of this block so that
it handles all nonlinear parts.

c) Linear output system: Completely similar to the in-
put system, the variables K3 =(k[3]1 , . . . ,k[3]s ) can be computed
by K3 =−M−1

3 G3(xn) in which M3 =
∂G3
∂K3

is a sN[3]
x × sN[3]

x
matrix and G3 defines the collocation equations for the linear
output system. The inverse matrix M−1

3 and the derivatives of
K3 with respect to x[3]n are constant and can be precomputed.
The rest of the derivatives are computed by the matrix-vector
multiplication dK3

dwn
= −M−1

3
∂G3
∂wn

, using the derivatives dK1
dwn

and dK2
dwn

in the evaluation of ∂G3
∂wn

.

B. Some small remarks

First of all, the Jacobian matrix dK
dwn

has a clear sparsity
structure

dK
dwn

=


dK1
dx[1]

0 0 dK1
du

dK2
dx[1]

dK2
dx[2]

0 dK2
du

dK3
dx[1]

dK3
dx[2]

dK3
dx[3]

dK3
du

 , (15)

which is exploited in the implementation of the integrators
where possible. In addition, it is interesting to note that the
in- and output system actually have an analytical solution
since they consist of a set of linear differential equations
with constant coefficients. Using this would however have
little impact on the computational complexity and the overall
accuracy of the integration method for the complete system.

C. The ACADO software

The presented integrators are part of the open source
ACADO code generation tool [8]. It is implemented in
C++ and efficient C-code is exported, tailored to a specific
problem. But a brief glance at this tool is made possible by
its MATLAB interface. Consider a simple artificial system

C1ẋ1 = A1x1 +B1u, (16a)
ẋ2 = ux1, (16b)

C3ẋ3 = A3x3 + x2
2, (16c)

where the A, B and C matrices are constant, x1, x2 and x3
are vectors of each 2 differential states, u is the control input
and (16a)-(16c) corresponds to the three stages from Section
II. Let us now export a standalone integrator that exploits
the structure in this model using ACADO from MATLAB:

1 DifferentialState x1(2) x2(2) x3(2);
2 Control u;
3

4 A1 = [ ]; A3 = [ ]; % 2x2 matrix
5 C1 = [ ]; C3 = [ ]; % 2x2 matrix
6 B1 = [ ]; % 2x1 vector
7 sim = acado.SIMexport( 0.1 );
8

9 sim.setLinearInput(C1, A1, B1);
10 sim.setModel(dot(x2) == [u*x1]);
11 sim.setLinearOutput(C3, A3, [x2.ˆ2]);
12

13 sim.set( 'INTEGRATOR_TYPE', 'INT_IRK_GL4' );
14 sim.set( 'NUM_INTEGRATOR_STEPS', 2 );
15 sim.exportCode('export')



Note that it is also possible to export these integrators directly
as part of an NMPC algorithm, which is done in the next
section.

V. APPLICATIONS IN OPTIMAL CONTROL

The goal of this section is both to illustrate the reasoning
behind the proposed three stage structure in II-A and to
present speedups that could be expected from the structure
exploiting integrators. To strengthen this message, two real-
world problems will be tackled. An application of NMPC on
an overhead crane is discussed in Subsection V-A, followed
by a quadcopter example in Subsection V-B. The experiments
presented in this section are performed using the ACADO
code generation tool on an ordinary computer (Intel i7-
3720QM 6MB cache, 2.60 GHz, 64-bit Ubuntu 12.04 and
Clang 3.0).

A. NMPC of an overhead crane

A dynamic model very similar to the one in [18] is used
for the same overhead crane. Let us immediately write down
the equations in the presented three-stage format. The linear
input system consists of

ẋT = vT v̇T= aT u̇T = uT R

ẋL = vL v̇L = aL u̇L = uLR, (17)

followed by two nonlinear equations:

θ̇ = ω

ω̇ =− 1
xL

(gsin(θ)+aT cos(θ)+2vLω),
(18)

with:

aT =− 1
τ1

vT +
A1

τ1
uT aL=−

1
τ2

vL +
A2

τ2
uL. (19)

Note that there is no linear output system and the different
parameters are defined in [18]. The NMPC algorithm can
now use an OCP formulation similar to (1) with this model
for e.g. a simple point-to-point motion. Table I illustrates the
speedup for one iteration of the RTI scheme implemented in
ACADO. Using 10 control intervals over a horizon of 1s
and 4 integration steps of the 4th order Gauss method per
interval, it presents the average computation times for the
different components with and without structure exploitation
in the auto generated integrator. For this relatively small
model, a speedup factor of 3 can already be observed for the
total computation time spent in integration and sensitivity
generation.

It has been illustrated that a linear input system can appear
naturally. Consider now the situation where one would like to
extra penalize the high frequency content in the states. One
way to do this is by implementing a High-Pass RC filter such
as in (6) for each of the states. This results in the following
6 equations being added to the input system:

ẋHP
T = ẋT −ωCxHP

T ẋHP
L = ẋL−ωCxHP

L

v̇HP
T = v̇T −ωCvHP

T v̇HP
L = v̇L−ωCvHP

L

u̇HP
T = u̇T −ωCuHP

T u̇HP
L = u̇L−ωCuHP

L , (20)

unstructured structured

integration method 220 µs 67 µs
condensing 6 µs 6 µs
QP solution (qpOASES) 16 µs 16 µs
remaining operations 3 µs 3 µs

one real-time iteration 245 µs 92 µs

TABLE I
AVERAGE COMPUTATION TIMES FOR NMPC OF AN OVERHEAD CRANE.
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Fig. 2. Closed-loop trajectories for the velocity of both trolley and cable,
before (dashed) and after extra penalization of high frequencies (solid).

but also in a linear output system consisting of

θ̇
HP = θ̇ −ωCθ

HP
ω̇

HP= ω̇−ωCω
HP. (21)

The new states in these equations are modeling the high
frequency content in the corresponding states from the orig-
inal system, leading to a complete system of 16 differential
states. Weighting these high frequency states in the NMPC
formulation causes a certain smoothing of the closed-loop
trajectories, as depicted in Figure 2. Similar to before, Table
II now presents a speedup factor of 6 for the integration time
due to the structure exploitation on this extended model.

B. NMPC of a quadcopter

In this second example, NMPC will be applied to a
Quadcopter (see e.g. [19]). This paper uses a simple Quad-

unstructured structured

integration method 1380 µs 238 µs
condensing 25 µs 25 µs
QP solution (qpOASES) 12 µs 12 µs
remaining operations 13 µs 13 µs

one real-time iteration 1430 µs 288 µs

TABLE II
AVERAGE COMPUTATION TIMES FOR NMPC OF AN OVERHEAD CRANE,

WITH EXTRA PENALIZATION OF HIGHER FREQUENCIES.



copter model, where it is assumed that low-level speed
controllers ensure the tracking of the reference velocities of
the propellers, which are computed by the NMPC scheme.
The model equations are briefly summarized by

ω̈
ref
k =Uk, ω̇k = τ

−1
(

ω
ref
k −ωk

)
, (22)

q̇ =
1
2

ET
Ω, Ω̇ = J−1 (T +Ω× JΩ) , (23)

v̇ = m−1RF−g1z, (24)

F =
4

∑
k=1

1
2

ρACLω
2
k 1z, T =

4

∑
k=1

(−1)k

2
ρACDω

2
k 1z, (25)

ṗ = v, İp = p− pref, (26)

where Uk for k = 1, . . . ,4 are the control inputs, commanding
the 2nd time derivative of the propeller reference velocities
ω ref

k , ωk are the actual propeller velocities, q ∈ R4 is the
quaternion vector used to represent the orientation, Ω is the
main body angular velocity in the body frame, v is the linear
velocity in the inertial frame, p is the position and Ip ∈R3 the
integral of the position error. Matrix R = EGT is the rotation
matrix between the body frame and the inertial frame, with

G =


−q1 −q2 −q3

q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 , E =


−q1 −q2 −q3

q0 q3 −q2
−q3 q0 q1

q2 −q1 q0

 .
Parameter τ is the time constant of the speed control loops,
J ∈ R3×3 is the inertia matrix of the Quadcopter, and m
its total mass. Coefficients CL and CD are respectively the
lift and drag coefficients, A is the individual area of the
propellers, ρ is the air density, and 1z =

[
0 0 1

]T .
It can be observed that (22) forms a 12 states linear

input system, (23)-(24) forms a 10 states nonlinear dynamic
system and (26) is a 6 states linear output system. The input
dynamics ω̈ ref

k = Uk are used to implement a penalty on
the high-frequency components in the control input, i.e. the
Lagrange term

Πinput =
4

∑
k=1

W1U2
k +W2

(
ω̇

ref
k

)2

is added to the objective, with positive weights W1 and W2.
Moreover, the integral of the position error İp = p− pref is
introduced and penalized in order to eliminate steady-state
errors in the Quadcopter position, which typically result from
constant disturbances and model errors.

The positive definite weighting matrices Q, R and P from
the OCP formulation in (1) are chosen to achieve quick
point-to-point motions of the quadcopter while taking into
account its limitations. A possible closed-loop trajectory for
the position and orientation of the quadcopter is presented
in Figure 3, in the event of a motion from the point (1,1,1)
to the origin. It shows the position as well as the orientation
of the quadcopter at multiple time instants, which are 0.4s
apart from each other.

Table III shows a speedup factor of 12 for the total
integration time. It even seems to cause condensing to
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Fig. 3. Illustration of a closed-loop trajectory of the position and orientation
of the quadcopter.

unstructured structured

integration method 35.8 ms 3.1 ms
condensing 2.6 ms 2.6 ms
QP solution (qpOASES) 0.1 ms 0.1 ms
remaining operations 0.2 ms 0.2 ms

one real-time iteration 38.7 ms 6.0 ms

TABLE III
AVERAGE COMPUTATION TIMES FOR NMPC OF A QUADCOPTER.

become a more dominating computational cost in one real-
time iteration. For these experiments, a horizon of length 5s
with 25 control intervals has been used and 2 integration
steps of the 6th order Gauss method are performed per
interval.

VI. CONCLUSIONS & FURTHER DEVELOPMENTS

This paper proposed a new format for defining nonlinear
dynamic models and showed how the three-stage structure
therein can be strongly exploited by IRK methods. The gen-
eral idea of code generation for IRK methods with efficient
generation of sensitivities and continuous output was first
briefly repeated. The mentioned structure in the differential
equations has then been introduced and motivated, followed
by a discussion on the consequences for the implementation
when exploiting this. Two problems, namely the real-time
control of an overhead crane and of a quadcopter, illustrated
the relevance of the proposed three-stage structure. Numer-
ical experiments have shown that important speedups can
be achieved with these auto generated, structure exploiting
integrators which are available in the ACADO toolkit [20].

It is useful to note that the proposed three-stage structure
could be detected and exploited automatically in any nonlin-
ear model. Future work could include implementing such an
automatic structure detection.
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[14] R. Findeisen and F. Allgöwer, “Nonlinear model predictive con-
trol for index–one DAE systems,” in Nonlinear Predictive Control
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