

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, February 2014

Implementation of a real-time computer for space
applications

Master of Science Thesis Embedded Electronic System Design

Oscar Siby

II

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Implementation of a real-time computer for space applications
Master of Science thesis embedded electronic system design
Oscar Siby

© Oscar Siby, February 2014.

Examiner: Per Larsson-Edefors

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden February 2014

III

Abstract

This thesis is a pre-study presenting the challenges involved in constructing an embedded

instrument control unit (ICU) and an introduction of the technologies involved. The ICU is to be

constructed using an FPGA implementing a GRLIB/Leon 3 soft processor and running a real-

time operating system with communication through an ESA Spacewire IP core. The starting

point was a Xilinx Virtex-5 Ml507 development card, the GRLIB development library and a

choice between various RTOS.

A Spacewire core has been attached to the AHB bus of a Leon 3 processor design, tested on-

board the Virtex-5 FPGA and verified using Grmon and testing software. From the available

RTOSs Rtems was chosen as the best candidate and an Ubuntu host development environment

was installed featuring the necessary software and drivers. Software was then compiled for

this architecture in order to test, verify and benchmark the complete system.

The complete system is working except for a small error in the error handling within the

Spacewire core and communication over Spacewire has been established with a loopback

cable. The FPGA has plenty of space left after implementation of the Leon 3 design and is a

good candidate when this project goes live.

IV

1

Acknowledgements

First I would like to thank Omnisys instruments for offering this exciting Master Thesis and

especially Mats Wannerbratt who was the project leader. Also I would give thanks to my

supervisors at Omnisys Mikael Krus and Kalle Kempe who were available for answers and

finally I would like to thank my supervisor and examiner at Chalmers: Per Larsson-Edefors for

valuable advice and help.

2

Table of Contents
1 Introduction .. 4

1.1 Aim .. 5

1.2 Thesis outline .. 5

1.3 Materials and Equipment .. 6

2 Technical Background ... 7

2.1 Xilinx and Virtex-5 ... 7

2.2 Gaisler and GRLIB .. 8

2.3 Spacewire and Opencores ... 10

3 Real-Time Operating systems.. 12

3.1 Rtems... 12

4 Implementation and verification .. 14

4.1 Leon 3 .. 14

4.2 The Spacewire_light Peripheral .. 17

4.3 Building Rtems cross compilation tools .. 21

4.4 Compiling and testing operating system ... 22

4.5 Testing the complete system .. 23

5 Results ... 27

6 Conclusion ... 27

6.1 Future works ... 28

Bibliography .. 29

Appendix ... 31

3

Glossary

AMBA – Advanced microcontroller bus architecture

API – Application programming interface

BSP – Build support package

CLB - Configurable logic blocks

ESA – European space agency

EDA – Electronic design automation

FPGA – Field programmable gate array

GRLIB – Gaisler research IP library

ISR – Interrupt service routine

ICU – Instrument control unit

JTAG – Joint task action group

LGPL – Lesser general public license

OSI model – Open systems interconnection model

RTOS – Real time operating system

RPM – Red hat package manager

Spacewire – Space communication standard

VHDL – VHSIC hardware description language

XGI – Xilinx generic interface

4

1 Introduction

This Master thesis is being conducted in cooperation with the company Omnisys Instruments

who are developing a Stratosphere-Troposphere Exchange and climate Monitor Radiometer:

STEAMR [1] which is an instrument used for atmospheric research. Omnisys Instruments are

the prime contractor for the instrument and responsible for optics, control software and

system tests and are currently performing a breadboard study, demonstrating the key features

of the instrument. Omnisys’s scope of the instrument is the front-end including LO-, IF- and

phase-lock system, the digital autocorrelator, back-end quad receivers, the power distribution

and control hardware [2]. This system is to be mounted on a satellite in the near future and in

that process the system needs to be space worthy and an instrument control unit (ICU) needs

to be implemented in hardware for the back-end control system, a rough sketch of the back-

end system is shown in Figure 1.

Figure 1: Current redundant system schematic

This Master thesis is designed as a pre-study to learn more about which technologies and what

kind of system is required for this embedded ICU to function in this context. The starting point

of this pre-study is a Xilinx Virtex-5 development board described in chapter 2.1, a

LEON3/GRLIB soft processor design plus necessary peripherals described more in detail in

5

chapter 2.2 and 2.3. A real time operating system will then be implemented and tested with

I/O functions over a Spacewire communication protocol [6] which is described in chapter 2.3.

1.1 Aim
The aim of the project is to investigate whether a Leon 3 core realised on a FPGA, a RTOS and

Spacewire peripheral can work together. Since the system this ICU will be placed in has yet

been fully designed there is no explicit hardware requirements, this means measuring the

performance of the involved hardware is not a primary concern as long as the components can

be realised and the software can execute with decent responsiveness. When it comes to the

capabilities of an RTOS the priorities are thread and scheduling control, size of the kernel and

compiled programs and finally its response times. This means running test and benchmarking

software to verify and evaluate the RTOS while it is executing on the development board. In

successive order the four goals are:

-Determine if the Xilinx Virtex-5 FPGA is sufficient; evaluate the capabilities of Leon/GRLIB and

the possible RTOS:es.

-Implement the Leon 3 soft processor and the necessary IP cores for Spacewire communication

on the Xilinx development board using VHDL.

- Implement the chosen RTOS by having it running on the soft core and testing out its features.

- Testing and benchmarking the system as a whole by developing and running software that

measures its capabilities.

Also of prime importance is how well the tools and development environments for Leon 3 and

chosen RTOS work, if they are easy to use and set up, whether they require extra software and

so forth.

1.2 Thesis outline
This project was performed with a mix of theoretical studies and hardware/software

development. The first steps were getting to know these components, to understand how they

work and how they fit into the big puzzle. After getting a system wide overview I could then

proceed with design and implementation. Therefore Chapter 1.3 lists the involved hardware

and software components, after which I in chapter 2 and 3 relate to these components with

specifications and technical-backgrounds revealing my findings. Chapter 4 will then walk

through the hardware and software development steps, display the current benchmarking

results and how testing of the complete system was performed. Chapter 5 displays the results

in accordance to the goals and finally chapters six includes conclusions and future work.

6

1.3 Materials and Equipment

 Computer :

 Virtex-5 FXT FPGA ML507 evaluation platform, including Xilinx USB JTAG platform

cable.

 Custom made D-Sub 9 pin communication extension for the Virtex-5 board, attached

onto the XGI expansion headers.

 Software: Windows 7, Office package, Xilinx Vivado design suite, Cygwin, Virtual box,

Ubuntu (additional Linux software specified in chapter 4), Grmon debug monitor,

Rtems development package, GRLIB development library.

All of the physical hardware components were fixed from the start, as was some of the

software. Certain applications though were added as a response to arising development needs,

for example Cygwin. With this is mind it is prudent to delve deeper into the hardware and

software components involved. This in order to better gauge what working with them entails

and what limitations they have.

7

2 Technical Background

This chapter will introduce Xilinx along with the Virtex-5 development board and describe its

features and limitations. It will continue to describe GRLIB and how this IP Core Library

operates. Finally we will look at Opencores and the Spacewire VHDL core.

2.1 Xilinx and Virtex-5
Xilinx invented FPGAs and the programmable logic circuit. They are a fabless semiconductor

company specialized towards FPGAs and CPLDs where their products span the whole design

chain. They design, develop and market programmable logic circuits, ICs, design tools and

specialized hardware delivered as IP, as well as all other services required such as technical

support, field engineering, customer training and design services.

They have a large number of FPGAs available in various packages ranging from fully

customized to premade development platforms; the one used in this study is a Virtex-5 FXT

FPGA ML507 evaluation platform. Omnisys had several platforms that could be used but this

one was the most powerful and offered synergies with other components in this project

(Spacewire Core). These development platforms provide out of the box design solutions and

contain everything you need to rapidly start the development process. This specific board

contains a long list of features and components [3], most importantly the Virtex-5 FPGA core

and a supporting PowerPC 440 Microprocessor. The board also features cross-platform

compatibility, system monitoring and supports the most common communication interfaces

such as USB and Ethernet.

8

Figure 2: Virtex-5 ML507 development board [19]

While the features give an idea of what the board can do other variables within the FPGA core

have significant impact on performance such as CLB slices, DSP slices, RAM Blocks, Clock

Management Blocks (CMTs) and total I/O banks. This data shows what can be realised on the

FPGA and according to board specifications it has 11,200 CLB slices, 128 DSP slices, maximum

of 5328 kB of RAM, 6 CMTs and 19 I/O banks. The ML507 was a high performance board in the

Virtex-5 series when it was launched, today it is marked as legacy and when comparing to

today’s top of the line FPGAs it is considered small. The biggest Virtex-7 model features over

300k CLB slices.

2.2 Gaisler and GRLIB
Aeroflex Gaisler is a company that produces IP cores and development tools for embedded

processors, specifically those based on SPARC architectures. The company is based in

Gothenburg Sweden and has a diverse portfolio, where the full source codes for some

products are available for free under the GNU GPL Licence while others have to be bought and

paid for.

In the centre of their work lies GRLIB [4] which is an integrated set of reusable IP cores used in

System on a chip development. These IP cores are organized around VHDL libraries sorted by

vendor or by specific technologies, the library as a whole uses coherent methods for

simulation and synthesis while being vendor independent and supports a broad range of CAD

9

tools and target technologies.

Figure 3: GRLIB tree structure [20]

 The whole creation process can be handled through automated global makefiles that can also

generate simulation/synthesis script files for most development tools. GRLIB also follows a

plug & play fashion where adding and removing packages or libraries from the structure only

requires modifying text files in the hierarchy.

GRLIB contains several versions of the LEON soft processor, a 32 bit processor based on the

SPARC v8 architecture. Leon 3 is the only core included in the open source version of GRLIB but

the Leon 2 can also be bought as a fault-tolerant version and is available in radiation

hardened components from Atmel. The Leon 4 is an evolved version of Leon 3 and is only

available by purchasing a license.

All Leon cores are highly configurable and built in a bus-centric fashion where most

components in the design are or will be connected through the AMBA-2.0 AHB or APB. What

components to be used in a specific design are purely optional and can easily be modified

using Xconfig or through straight VHDL modifications. Xconfig is a GUI tool made by Gaisler and

is included in GRLIB, it is used to create and configure the Config.vhd file for Leon 3 template

designs.

AMBA v2.0 [5] is an ARM multi-master bus design that can be used for free and has been

implemented according to specifications with additional sideband signals for address decoding,

interrupt steering and device identification. All attached units are split into masters and slaves

and are controlled by a global bus arbiter, address decoder and bus multiplexer that selects

which master and slave that are currently active.

10

Figure 4: Leon 3 template design [21]

The Leon 3 [6] processor is built on the SPARC v8 [7] instruction set with the V8e extensions

and uses a seven stage pipeline. It includes hardware multiply-, divide-, MAC units and a fully

pipelined IEEE-754 floating point unit. A great feature of soft processors is the flexibility, when

using GRLIB all caches and memory sizes are easily configurable and subject to the designers

decision. GRLIB also include on-chip debug support units with instruction and data trace

buffers that can be attached to the AHB bus. This debug unit can be connected to a Gaisler

developed tool called Grmon to significantly ease debugging and with which software can be

loaded onto the FPGA. The Leon 3 processor design caps at 125 MHz in FPGAs.

GRLIB contains template designs for many of the common development platforms and a

configuration and development guide is available that describes how to design other versions

of the Leon processor using Xconfig. Each template is based on three files: Leon3mp.vhd,

Config.vhd and Testbench.vhd with the first one being the top-level design entity which

instantiates the IP cores used in that specific design. Config.vhd contains all the configuration

parameters set by Xconfig while Testbench.vhd is a testbench built to simulate the design.

2.3 Spacewire and Opencores
Spacewire is a high-speed space communication standard defined in the ESA standard ECSS-E-

ST-50-12C [8]. It was authored by Steve Parks from the University of Dundee in collaboration

with the ESA Spacewire working group which include European space industry, academia and

NASA. The standard works on the first two layers of the OSI model (physical- and data-link

layers) with the goal of achieving low-cost, low-latency, full-duplex point to point

communication through packet switching wormhole routers. The standard encompasses

11

speeds between 2 – 400 Mb/s and components included are physical connectors and cables,

electrical properties and logical protocols within the data link.

Opencores is an online community set up to host and further advance open source hardware

projects; it is a forum for developers and enthusiasts to share knowledge and technology

where all projects are available as open source under LGPL or GPL. Opencores was started as

the OpenRISC project in 1999 by a group of Slovenian students who aimed at creating an open

source microprocessor architecture. After two years they had produced architectural

specifications, a simulator and a VHDL implementation. All this they launched through their

new community Opencores as free software under GPL/LGPL. By joining this community a lot

of technology became available; among those a Spacewire encoder-decoder IP core with an

AMBA bus interface already tested in a Virtex-5 FPGA.

The Opencores Spacewire core is named Spacewire light and is written by Joris van Rantwjik

who also holds the copyright distributes under GPL. The core contains several entities

including a receiver, a transmitter, two application interfaces and a link state machine. There

are two top level entities that are contained within Spwstream.vhd and Spwamba.vhd to use

either connected to an AMBA bus or as a separate core.

The next chapter will look into the software that is going to run on these hardware

components and what an RTOS is and explain the software components involved.

12

3 Real-Time Operating systems (RTOSs)

Real time embedded system are today’s bread and butter and can be found practically

everywhere in our daily lives ranging from telephones to kitchen appliances. Combine this with

a rapidly changing technological environment and technological advancements and it’s easy to

understand why it is difficult to define exactly what a real time embedded system is. What can

be said though is that the most distinguishing rule that separates these from other software

applications is that they are driven by and must respond to real world events. The correctness

of the system depends on when a result is produced, thus the system must keep timing

requirements while adhering to various other requirements set by the environment that they

interact with and responding to external stimuli.

When developing software for embedded systems it is usually done in a cross development

environment. That means compiling the software in one system which is called the host

system while executing on another system the target platform. Often the requirements for the

target system are incompatible or in direct conflict with the build host system. That means

setting up a specialized environment with the correct provisions for the target board including

tools, initialization code, drivers and error handling code. The host system is generally a

general purpose workstation built for flexibility and with much greater resources while the

target system has limited resources built for a specific task or function.

When it comes to RTOS for the Leon 3 processor Gaisler keeps a list of which systems that

maintain active support for their processor, both commercial and open source versions are

available. Although one of the project goals was to look at all candidates, it quickly became

apparent that Rtems was the only viable candidate. This due to several factors, but most

importantly that only open source systems were financially viable in this project and that the

Spacewire core already had drivers for Rtems which would speed up development significantly.

Other candidates mentioned by Gaisler were VxWorks, Thread X, Nucleus, LynxOs, Snapgear

Linux and eCos [9].

3.1 Rtems
Real-Time Executive for Multiprocessor Systems is a free open source RTOS created for

embedded systems use and its designed started in the late 1980 with early versions available

in 1993. Currently OAR Corporation is managing the Rtems project in cooperation with a

steering committee. Rtems is fully built around the open-source concept supporting various

open API standards such as POSIX and BSD sockets while supporting file systems such as NFS

and FAT. In POSIX terms Rtems implements a single process, multithreaded environment and

as such does not provide any process forking services. It supports a wide range of architectures

among them SPARC and the LEON designs. While Gaisler provides an Rtems port and cross-

compilation system called RCC the original Rtems version will be used in this project due to the

spw_light being built for the original. Rtems also comes with a wide range drivers and the

13

cross-compilation environment is built akin to GRLIB with Makefiles. The programming

language in question is C and the compiler being used is GCC. The kernel is very flexible and

what drivers or functions brought in is determined by define macros in the compiled code.

Similarly to GRLIB, Rtems is built for a Linux environment with automake and autoconf and

heavily relies on makefiles. The community around Rtems is very active with several mail

groups and forums available to answer questions should the need arise.

This concludes the Technical background and the next part contains the Implementation and

verification of the hardware and software.

14

4 Implementation and verification

With the goals of this project already outlined, the implementation part started with questions

of varying priority that arose and needed answers. This a project really split into two parts,

software development and hardware development and the tasks are layered, meaning some

tasks need to be finished before others can be started. The first big question was related to the

hardware: would Leon 3 with peripherals fit onto this specific Virtex-5 FPGA? Second, are there

Leon 3 designs available from GRLIB for this board or will I need to design one from scratch?

And related to that why use this specific soft processor? There are a variety of them out there.

It turns out the reason for choosing Leon 3 and GRLIB has to do with reliability and confidence,

when it comes to products bound for space the hitch is if things break down it is a real hassle

to repair or replace components. Since GRLIB has been featured in numerous space going

missions [10] it has been tested and proven to work in space environments. Furthermore,

GRLIB also contains a Spacewire core (requires a commercial license) and has a verified list of

functional RTOS for their architecture. In this industry GRLIB is regarded as a safe and reliable

component in any system. To answer the two first questions I needed to start developing with

GRLIB.

4.1 Leon 3
GRLIB comes with comprehensive manuals detailing everything within the GRLIB domain

among them a quick start guide explaining the installation paths/environments available. As

mentioned earlier GRLIB development is built around a hierarchical system of GNU makefiles

built for Linux. My currently installed environment is windows 7 which made me try a

translation API named Cygwin [11] that the guide mentioned. This is a nifty program that

provides significant Linux API functionality for windows and worked out perfectly except for

one small detail which I was never able to fix: the Xconfig tool provided with GRLIB behaved

quite strangely within the Cygwin environment: It wasn’t able to save any of the created

configurations, it only every printed out an empty Config.vhd file. I spent some time trying to

solve this problem but instead ended up installing Ubuntu Linux under a virtual machine using

Virtual box from Oracle. Having Cygwin installed proved to have other advantages though,

since the rest of the Linux tools was working I could still use the rest of the GRLIB Makefile

scripts such as creating scripts, programming the FPGA or synthesizing the design. This was

especially helpful for the EDA steps that require a lot of computational power and could then

be run on the host system rather than on the virtual machine.

15

As it turns out there was an example design for the Virtex-5 FPGA within GRLIB, for the ML505

version. To have it working for the ML507 you have to reconfigure it using Xconfig and then

resynthesize the bit file using “make ise” within the Cygwin/GRLIB environment (which in

reality just runs Xilinx ISE in command mode). This default Virtex-5 ML507 design is similar if

not identical to a “General purpose Leon processor configuration” [12].

Figure 4 shows that this design has no trouble fitting this Virtex-5 board taking only 37% of

total LUTs, and 63% of total slices. The synthesis also meets the timing constraints and is able

to run at 80 MHz which

was set in the

configuration file, while

path delay and skew is

within limits.

The FPGA is then

programmed in the same

environment with the

“make ise-prog-prom”

command which in

essence runs the Xilinx

impact tool. This

programming of the

FPGA requires the JTAG

USB cable to be plugged

in on the board. To verify

and debug the board

Gaisler provides a tool

called Grmon under an

evaluation installation.

This program allows you

to connect to the Leon 3

core using modules

attached to the AHB bus

and is built into most

Leon 3 designs (can be

enabled/disabled

through Xconfig). Grmon

can connect to the board

using the most common interfaces including JTAG and Ethernet and as long as the debug

modules and interfaces are present on the board. Giving the command “info sys” when

connected to the core prints out the information shown in figure 5. All seems to be working

but to be sure I ran a simple hello world program, which ran without problem.

Figure 5: Default Leon 3 Synthesis report

16

Figure 6: Default Leon 3 configuration up and running

The next step was then attaching the Spacewire core onto the AHB bus to enable such

communication.

17

4.2 The Spacewire_light Peripheral
The Spacewire_light archive included a manual that recommended integrating the core into

GRLIB in order to increase the accessibility and ease of use; this was done by copying the

Spacewire folder into the lib/opencores/ directory of the GRLIB hierarchy and then adding the

name of that folder to the lib/opencores/dirs.txt file. This makes all spw_light entities

accessible like any other GRLIB IP core.

Adding the spw_light core to the Leon 3 template design is a matter of instantiating the

spwamba entity inside the top level leon3mp entity and connecting it correctly to the AMBA

AHB bus while connecting the correct signals to it. The entity correctly connected to the AHB

bus is shown in Figure 4.

Figure 7: spwamba entity correctly connected to the AMBA buss

This core is supposed to communicate over wire with another computer or similar device and

therefore needs to be connected to a physical port of the development board. This

development board has no Spacewire ports built-in and instead had to be connected through

the XGI extension pins by attaching a custom built D-sub communication extension board that

Omnisys had available, shown in the figure 5.

18

Figure 8: Virtex-5 board with XGI extension

In order for this to work the entity that is realized in the FPGA must be connected to physical

outpads and inpads off the FPGA which require some extra code shown in Figure 6.

Figure 9: Connecting entity ports to FPGA outpads

19

Furthermore these FPGA outpads need to be directed towards the XGI headers, this is done by

connecting the above

shown signals to the

XGI headers physical

name in the

leon3mp.ucf file. This

proved to be a hassle

as the FPGA divide its

outpins into banks and

within each bank all

signals need to follow

the same I/O standard,

which for example

defines signal voltages.

The bank the XGI

header pads are

located in is fixed and

the same holds true for

the Ethernet pad

which requires

LVCMOS33 while

Spacewire uses

LVDS_25. Two of XGI

header pads and the

Ethernet pad were

located in the same

bank which made both

the topmost d-sub

connectors unusable.

Fortunately the bank

the lowermost two

where connected to

have no such collisions

and could be used by

the XGI extension board.

This design was then synthesized in the same manner as earlier and the results are shown in

figure 7. In the device utilization summary we can see that Sliced LUTs total has increased by

1319 while the Slices count has increased by 391. The synthesis is successful which implies is

has met the timing requirement of 80 MHz even though the timing summary mentions a max

frequency of 75 MHz.

For verification the FPGA was programmed and connected to using Grmon seen in figure 8.

Figure 10: Xilinx Device utilization summary of the Leon 3 design

20

Figure 11: Info sys information of Modified Leon 3 core

As can be seen in figure 8 the spw_core has been found on the AHB bus connected as master 5.

The next question was concerning the functionality of the core, would I need to modify the

processor core to improve performance? Is the new core working correctly? The decision on

how to proceed came down to work hours, there was still a lot of work to be done and how

well the Leon 3 core performs is not really an issue as long as it worked and it could be

improved if needed. Debugging and verifying that the core is working as intended should be

the next step, this could be done in several ways and I chose to do it through software rather

than with lengthy and time consuming hardware verification methods. This is usually a bad

choice but Opencores has marked it as a finished project; in its documentation it is noted that

they have previously had it working under a Virtex-5 system and provided in the package is

several testbenches that can be used to verify it. All this made me confident it should be

working as intended, testing and verifying would then be faster through software using the

chosen RTOS Rtems.

21

4.3 Building Rtems cross compilation tools
The first step when starting development is constructing the host system for cross

development and there were a few important facts to consider. First Rtems can be distributed

in a few forms: first I noticed that for some Linux distributions already compiled releases were

available. Unfortunately there were none for Ubuntu hence a need to compile the necessary

tools from source. Secondly the source files are available through various mediums such as a

simple Zip file, but you could also clone a build version through a Git repository or let a RPM

file build one for you. For this project though an older version of Rtems was needed since the

spw_light core was created for Rtems version 4.10 while the most recent version is 4.11. I

chose to download and extract a tarball from the Rtems ftp site, which also includes a getting

started guide.

Figure 12: Rtems Automake structure

Setting up this cross development platform was done in three stages, first installing the

necessary Ubuntu applications in order to run and utilize the make structure Rtems is using.

Most important of these programs are autoconf and automake [13]. Secondly you need to

configure and install the compiler, which includes packages/programs the compiler needs in

order to compile applications for this specific architecture [14]. Finally when that’s done you

need to verify that the compiler is working and that the compiled programs can execute on the

target platform. The Rtems packages includes plenty of test applications that you can build

automatically once the compiler is installed but to test them you either need hardware or a

simulator like Qemu [15].

22

4.4 Compiling and testing operating system
Once the compiler was installed using it required Adding the /Rtems<version>/bin/ path to the

Ubuntu PATH variable. In order to access the board support packages included with the Rtems

install you need to link your code to those files, the easiest way to access them is through the

already constructed make hierarchy. This required constructing makefiles that inherits the

Rtems make structure and points towards which files to compile. A board support package

(BSP) means those C source files tailored for a specific architecture that conforms to a given

operating system, for example bootloaders and device drivers. This mean that each supported

architecture has its own BSP included within Rtems.

Included with Rtems is a wide variety of programs of varying size and complexity. Most exist to

test a specific function or to benchmark important functions. From these I started with the

simplest, a Ticker program that has three threads printing the local time of the OS and then

waits a specified amount of time, repeating this over 20ms. I say OS because regardless of its

size it still contains some parts of the Rtems kernel, in this case the timer and clock functions.

Going from there I tested more and more complex programs like an Ethernet demo and an

arithmetic demo, making sure that each function was working. Figure 10 shows the printouts

of the Nbench benchmark program.

Figure 13: Rtems Nbench run

23

4.5 Testing the complete system
When testing the whole system first priority was making sure that the Spacewire

communication core was working since that had been pushed ahead in order to test it through

software. The spw_light package contained two test programs for this purpose, one that could

be used to verify the hardware (No OS kernel) and another to test the communication (based

on Rtems). The first one is called spwl_ambatest and as can be seen in figure 11 test the

functionality of the core.

Figure 14: Spwl_ambatest run

This program reported an error from a routine that does a “transmits data from an invalid

address” test, while looking into the problem I also ran the other program that does real

Spacewire communication and using that I was able to send and receive data through a

loopback cable as can be seen in figure 12.The error didn’t seem to affect the communication

functionality and originates from incorrect error handling, I wasn’t able to pinpoint from where

exactly. A third test was performed by connecting the board with a Spacewire cable through a

star-dundee USB brick [16]. This worked well initially and you could see that the hardware

layers were connected and exchanged information because the star-dundee brick was giving

off green light. Getting software on the board and on a PC to communicate was much harder.

Test software included with the star-dundee brick on the pc and the previously mentioned

Spacewire test software on the board was initially unable to communicate, and further test

had to be aborted because the cable got damaged.

24

With Spacewire communication working benchmark the Rtems operating system was next, of

primary concern was context switching latencies, interrupt latencies, general performance and

the general size of Rtems generated programs.

A systems context switching latencies is defined as the time required for the CPU to switch the

executing process, this requiring saving the state of the currently executing process and then

loading the state of the to be executing process. To test this I created a small program CS-u.c

(shown in detail in the

appendix) that includes

two threads of different

priority. With the default

scheduling configuration in

Rtems this means the

higher priority thread will

execute until finished or

being blocked. By having

the higher priority thread

request a semaphore that

is currently locked it will

release the CPU to the lower

priority thread which then starts a global timer and releases that semaphore. This will trigger a

controlled context switch to the higher priority thread that reads that same timer and prints

the time has elapsed. The results are shown in Figure 13. Important to note is that this is of an

Figure 15: testing communication with spwtest.dsu

Figure 16: a run of an Unloaded Context switch measuring program

25

unloaded system with just these two threads running and with no interrupts firing. When a

system runs with both background threads and with various interrupts firing, the context

switching delay can increase significantly depending on system load.

Next came interrupt latencies which according to the Rtems [17] are defined as the time

between an interrupt firing and when the interrupt service routine starts executing, as can be

seen in figure 14. To test this I ran a program called tm27 included in the timing test suite

located within Rtems example programs. The results of executing this program are shown in

figure 15. All in all this program does three kinds of interrupt test: the first line represents

interrupt latency, the second line interrupt dispatch latency. The second set of two shows the

same things but this time it’s the interrupt service routine that gets interrupted by another

interrupt call, meaning we get nested ISRs. The third set shows first a value for the same thing

as the first line, this time being 0 because the ISR is in memory already. The last value in the

set however is now very large this is because a context switch has occurred; a task with higher

priority than the first interrupted task supersedes it after the ISR is done but before it has time

to start executing.

Figure 18: tm27 run

When it comes to the performance of the complete system I wanted to get a general feel of

how the system performs. It is not a very important factor since this a default Leon 3

Figure 17: Rtems.org definition of Latencies [23]

26

configuration which is far from the “best” setup of the Leon 3 and performance wise many

improvements are available. Included in the Rtems package is an Nbench [18] port made for

Rtems, the results of its execution can be seen in figure 10. The program ran smoothly except

for the assignment problem which executed slowly which also shows in the results.

The final attribute to measure was how much space does the Rtems OS need? This will vary

depending on how much of the kernel is initialized and is of importance since a large

executable needs more realized memory on the FPGA, needs more overhead etc., the smaller

the better. Tables 1 show the sizes of various programs that have been used to benchmark

and verify the system. In essence this shows that the kernel is small. The netdemo program

includes most of the Rtems OS functionality but is still smaller than the benchmark which has

less of that but a lot more of its “own” code.

Rtems files sizes

 CS 3400 KB

nbench 6012 KB

netdemo 4476 KB

tm27 3329 KB

spwltest 193 KB

spwamba 3504 KB

Table 1: Rtems executable sizes

27

5 Results

When this project started four goals were established by Omnisys instruments in terms of

what they wanted to learn from this thesis. All of these four goals have been achieved to

varying degrees. For the first goal a Leon 3 template design was synthesized and realised on

the Virtex-5 board and showed plenty of available space and all Leon 3 supporting RTOS was

looked at and evaluated and Rtems was chosen as the best candidate. The second goal was

achieved when, a Spacewire core was connected on the AHB bus to the template design and

the complete design was programmed into the Virtex-5 FPGA. This was verified using Grmon

which found the new core attached to the AHB bus. Third, An Rtems compilation environment

was installed and various programs compiled for the Leon 3 architecture. Using this compiler

several programs aimed at testing the functionality of the cores was compiled and ran on the

FPGA verifying that most of it was working. One of the software reported an error in the error

handling of the Spacewire link which has yet to be solved and Spacewire communication

between two systems has only been tested sparingly. Fourth and finally, benchmarking

software measured Rtems concerning switching latency, interrupt latencies and algorithmic

capabilities.

To put the benchmarking numbers into context you would want to compare them to their

competitors. This proved difficult mainly because the numbers you receive are so heavily

dependent on the system you run on and with most RTOS being very configurable it also

depends on how you implement it. In order to make a fair comparison you would need to run

the same test programs on those RTOS on the same hardware. Finding numbers on the various

competitors is easy; comparing them fairly is harder and outside the scope of this project.

28

6 Conclusion
From the synthesis report the Virtex-5 can without trouble support a medium performance

Leon 3 design with this Spacewire core. The synthesis showed that 67% of the slices were used

and only 22% of the slice registers, meaning plenty to spare. Taxing programs such netdemo

and nbench can run on this system without incurring significant delay, although the

assignment algorithm of the nbench was slow. For this project this is a very good thing due to

the fact that the exact performance need of the final ICU is unknown. That means the

requirements on the hardware can go both ways which makes it important that sufficient

space is available. But can also mean that the Virtex-5 should be replaced by a smaller more

suitable FPGA.

Starting to work with Rtems without previous experience of developing RTOS/OS made me

realise this is a very broad subject and just trying to learn how one worked took a lot of time.

Setting up a development environment for just your system and knowing what configurations

to use took much reading with some trial and error.

The Rtems open source community is a font of knowledge, which also means it can be difficult

to navigate and hard to find exactly what you’re looking for. That aside Rtems is a good system

to work with, highly configurable, helpful community and easy to use.

6.1 Future works
With the results so far with this project there are still a couple of things left to do, most

importantly on the error side but also from personal interest. The error that showed up in the

spwamba_test happens when the program initiates a transmit action from an invalid address

and needs more looking into. Next is testing more thoroughly with a real Spacewire connection

not just through a loopback cable. Although link layer contact was established the different

software programs couldn’t communicate. A real personal interest achievement would have

been to have the Rtems OS boot when the Leon 3 Core programs the FPGA.

29

Bibliography
 [1] STEAMR Omnisys, http://www.omnisys.se/products/microwave-and-radiometers/steamr

[2] STEAMR receiver chain, http://www.nrao.edu/meetings/isstt/proceed/2009-

Proceedings.pdf

 [3] Xilinx ML507 development board, http://www.xilinx.com/products/boards-and-kits/HW-

V5-ML507-UNI-G.htm

[4] Aeroflex Gaisler GRLIB, http://www.gaisler.com/index.php/products/ipcores/soclibrary

[5] ARM AMBA v.2 specifications, http://www-micro.deis.unibo.it/~magagni/amba99.pdf

[6] Aeroflex Gaisler Leon 3 Processor,

http://www.gaisler.com/index.php/products/processors/leon3?task=view&id=13

[7] Leon 3 SPARC v8 Manual, http://www.gaisler.com/doc/sparcv8.pdf

[8] ESA Spacewire standard, http://spacewire.esa.int/content/Standard/Standard.php

[9] Aeroflex Gaisler GRLIB supported RTOS,

http://www.gaisler.com/doc/operating_systems_product_sheet.pdf

[10] ESA, http://www.esa.int/Our_Activities/Space_Engineering/LEON_s_first_flights

[11] Cygwin, http://www.cygwin.com/

[12] Aeroflex Gaisler Configuration and development guide,

http://www.gaisler.com/products/grlib/guide.pdf

 [13] Rtems Ubuntu install guide,

http://wiki.rtems.org/wiki/index.php/Building_the_RTEMS_toolset_on_Ubuntu

[14] Rtems Building Tools guide, http://rtems.org/wiki/index.php/Building_Tools

[15] Qemu machine emulator, http://wiki.qemu.org/Main_Page

[16] Star-dundee USB brick, http://www.star-dundee.com/products/spacewire-usb-brick

[17] Rtems.org: interrupt latency, http://www.rtems.org/onlinedocs/releases/rtemsdocs-

4.6.6/share/rtems/html/supplements/powerpc/powerpc00059.html

[18] Nbench, http://www.tux.org/~mayer/linux/bmark.html

[19] Figure ML507 Virtex-5, http://www.xilinx.com/products/boards-and-kits/HW-V5-ML507-

UNI-G-image.htm

[20] Figure GRLIB archive structure,

http://www.rte.se/sites/default/files/Blog/Modesty/Modesty_5_2.png

http://www.nrao.edu/meetings/isstt/proceed/2009-Proceedings.pdf
http://www.nrao.edu/meetings/isstt/proceed/2009-Proceedings.pdf
http://www.xilinx.com/products/boards-and-kits/HW-V5-ML507-UNI-G.htm
http://www.xilinx.com/products/boards-and-kits/HW-V5-ML507-UNI-G.htm
http://www.gaisler.com/index.php/products/processors/leon3?task=view&id=13
http://spacewire.esa.int/content/Standard/Standard.php
http://www.gaisler.com/doc/operating_systems_product_sheet.pdf
http://www.esa.int/Our_Activities/Space_Engineering/LEON_s_first_flights
http://www.gaisler.com/products/grlib/guide.pdf
http://wiki.rtems.org/wiki/index.php/Building_the_RTEMS_toolset_on_Ubuntu
http://rtems.org/wiki/index.php/Building_Tools
http://www.star-dundee.com/products/spacewire-usb-brick
http://www.tux.org/~mayer/linux/bmark.html
http://www.xilinx.com/products/boards-and-kits/HW-V5-ML507-UNI-G-image.htm
http://www.xilinx.com/products/boards-and-kits/HW-V5-ML507-UNI-G-image.htm

30

[21] Figure Leon 3 template design, http://www.gaisler.com/products/grlib/grlib.pdf

[22] Figure Rtems automake structure, http://rtems.org/wiki/images/b/b8/Bootstrap.png

[23] Figure Rtems.org Latencies description,

http://physics.usask.ca/%7Eangie/ep414/notes/interrupt_latency.jpg

http://www.gaisler.com/products/grlib/grlib.pdf
http://rtems.org/wiki/images/b/b8/Bootstrap.png

31

Appendix
CS-u.c

/*
 * COPYRIGHT (c) 1989-2009.
 * On-Line Applications Research Corporation (OAR).
 *
 * The license and distribution terms for this file may be
 * found in the file LICENSE in this distribution or at
 * http://www.rtems.com/license/LICENSE.
 *
 * $Id: task1.c,v 1.18 2009/05/09 21:24:06 joel Exp $
 */

#define CONFIGURE_INIT
#include "system.h"
#include "timesys.h"

rtems_id Semaphore_id;

rtems_task High_task(rtems_task_argument argument);
rtems_task Low_task(rtems_task_argument argument);

rtems_task Init(rtems_task_argument argument)
{
 rtems_id task_id;
 rtems_status_code status;

 Print_Warning();

 puts("\n\n*** TIME TEST 25 ***");

 status = rtems_semaphore_create(
 rtems_build_name('S', 'M', '1', ' ') ,
 0,
 RTEMS_DEFAULT_ATTRIBUTES,
 RTEMS_NO_PRIORITY,
 &Semaphore_id
);
 directive_failed(status, "rtems_semaphore_create of SM1");

 status = rtems_task_create(
 rtems_build_name('L', 'O', 'W', ' '),
 100,
 RTEMS_MINIMUM_STACK_SIZE,
 RTEMS_DEFAULT_MODES,
 RTEMS_DEFAULT_ATTRIBUTES,
 &task_id

32

);
 directive_failed(status, "rtems_task_create LOW");

 status = rtems_task_start(task_id, Low_task, 0);
 directive_failed(status, "rtems_task_start LOW");

 status = rtems_task_delete(RTEMS_SELF);
 directive_failed(status, "rtems_task_delete of RTEMS_SELF");
}

rtems_task High_task(rtems_task_argument argument)
{
 (void) rtems_semaphore_obtain(Semaphore_id,RTEMS_DEFAULT_OPTIONS,0xffffffff);
 end_time = benchmark_timer_read();
 put_time("Time lapsed",end_time,1,0,CALLING_OVERHEAD_CLOCK_TICK);
 rtems_task_delete(RTEMS_SELF);

}

rtems_task Low_task(rtems_task_argument argument)
{
 rtems_status_code stat;
 uint32_t avg, x,y;
 rtems_id task_id;

 y = 100;
 x = 0;
 avg = 0;
 while (x < y)
 {
 stat = rtems_task_create(
 rtems_build_name('T', 'I', 'M', 'E'),
 10,
 RTEMS_MINIMUM_STACK_SIZE,
 RTEMS_DEFAULT_MODES,
 RTEMS_DEFAULT_ATTRIBUTES,
 &task_id
);
 directive_failed(stat, "rtems_task_create LOOP");

 stat = rtems_task_start(task_id, High_task, 0);
 directive_failed(stat, "rtems_task_start LOOP");

 benchmark_timer_initialize();
 (void) rtems_semaphore_release(Semaphore_id);
 avg = avg + end_time;
 x++;
 }
 put_time("Total Switching time in micro
seconds",avg,1,0,CALLING_OVERHEAD_CLOCK_TICK);

33

 put_time("Total Switches",y,1,0,CALLING_OVERHEAD_CLOCK_TICK);
 puts("*** END OF TEST 25 ***");
 rtems_test_exit(0);
}

