

Automatic code generation of AUTOSAR compliant

HMI applications

Master of Science Thesis in Applied Information Technology

SAMIRA AFSHOON

MARYAM GHAVIBAZOU

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, February 2013

1

The Authors grant to Chalmers University of Technology and University of Gothenburg the non-

exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible

on the Internet.

The Authors warrant that they are the authors to the Work, and warrant that the Work does not

contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for example a publisher

or a company), acknowledge the third party about this agreement. If the Authors have signed a

copyright agreement with a third party regarding the Work, the Authors warrant hereby that they

have obtained any necessary permission from this third party to let Chalmers University of

Technology and University of Gothenburg store the Work electronically and make it accessible on the

Internet.

Automatic code generation of AUTOSAR compliant HMI applications

© Samira Afshoon, February 2013.

© Maryam Ghavibazou, February 2013.

Examiner: JAN JONSSON

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden, February 2013

2

Abstract

Today in automotive industry the trend is moving toward use of Human Machine Interfaces for a

variety of purposes from designing interfaces for infotainment systems till instrument clusters.

Mecel Populus Suite is a complete tool chain for design, development and deployment of the user

interfaces for distributed embedded systems [5]. The current version of this product does not

support automatic communication with application under AUTOSAR standard.

The objective of this master thesis is to investigate the possibility of auto-generating AUTOSAR

compliant interfaces for the Mecel Populus functional units and implementing an appropriate

solution which can serve this purpose and provide an easy procedure for data communication

between these two.

The investigation phase consists of proposing a simple process for data mapping and data

transmission between Populus and AUTOSAR while the implementation phase consists of providing a

user friendly plugin for the Mecel Populus Suite which can offer the expected functionality.

3

Preface

Mecel is a software and system development company that offers solutions and products specifically

for the automotive industry. The thesis proposal was made by Mecel AB as a part of the Second Road

Fas 1 project which is initially conducted by Volvo Cars. Second Road Fas 1 project aim is to develop a

common simulation environment to evaluate and test active safety functions and HMI-interface

before building the cars [12]. Adaptation of HMI platform towards AUTOSAR standard is among the

deliverables taken by Mecel and proposed in form of a master thesis.

Populus HMI development suit is one of the major products of this company which is the base of

provided solution in this thesis.

We were grateful to have the supervision of Henrik Roslund and Ola Edward regarding Populus and

Mathias Fritzon regarding AUTOSAR during this thesis.

4

Contents

1. Introduction …….….… 7

1.1 Background …… 7

1.1.1 Human Machine Interface (HMI) ……………………………………………………………………. 7

1.1.2 Automotive Open System Architecture (AUTOSAR) ..……………………………………… 8

1.2 Motivation .…… 8

2. Theory ………..…… 9

2.1 Populus ………... 9

2.1.1 Structure …… 9

2.1.2 ODI ……. 10

2.1.3 Populus workflow ………………………………………………………………………………………… 11

2.1.4 Functional Unit (FU) ……….…………………………………………………………………………..… 11

2.1.5 Functional Unit Software Development Kit (FUSDK) …………………………………..… 12

2.2 AUTOSAR ……. 12

2.2.1 General view ………………………………………………………………………………………………… 12

2.2.2 Basic concepts ……………………………………………………………………………………………… 13

2.2.2.1 Software Component (SWC) ………………………………………………….………… 13

2.2.2.2 Virtual Functional Bus (VFB) …………………………………………………….…….… 14

2.2.2.3 Runtime Environment (RTE) ……………………………………………….….………… 14

2.2.2.4 Basic Software (BSW) ………………………………………………………………….……. 15

2.2.3 Approach ……………………………………………………………………………………………………… 15

3. Tools …… 17

3.1 Mecel Populus Suite ………………………………………………………………………………………….…… 17

3.2 Mecel Picea Suite ………………………………………………………………………………………………..… 17

3.3 Volcano VSX ……… 18

3.3.1 Volcano Vehicle System Architect (VSA) ……………………………………………………..… 18

3.3.2 Volcano Vehicle System Builder (VSB) ………………………………………………………….. 18

4. Solution ……….… 19

4.1 Design …………………………………………………………………………………………………..……….……… 19

4.2 Implementation …..………………………………………………………………………………………………… 20

4.2.1 Extracting Information …………………………………………………………………………….…… 20

4.2.1.1 HMI ……………………………………………………………………………………………………..….….. 20

4.2.1.2 AUTOSAR ……………………………………………………………………………………………………. 20

4.2.2 Mapping ………………………………………………………………………………………………..…….. 21

4.2.3 SW-C description generation ………………………………………………………………………… 21

4.2.4 Generation of AUTOSAR compliant FUSDK …………………………………………………… 22

4.2.5 Generation of SW-C implementation and required heading files ………………..… 22

4.2.6 Data type and scaling …………………………………………………………………………………… 23

4.2.7 Integration of generated SW-C description with system description ……….…… 24

5

5. Results ……… 25

6. Discussion and future work …………………………………………………………………………………….… 27

7. Conclusion ………………………………………………………………………………………………………..……… 27

References ……….... 29
Appendix ………. 30

A. RTE interfaces ……………………………………………………………………………………………………….… 30

B. Populus internal data scaling ………………………………………………………………………………….. 31

6

Abbreviations

Artop ATUOSAR Tool Platform

API Application Programming Interface

ARXML AUTOSAR XML

AUTOSAR Automotive Open System Architecture

BSW Basic Software

BSWD Basic Software Description

CAN Controller Area Network

C/S Client/Server

DD Dynamic Data

DE Data Element

DRP Data Receive Point

DSP Data Send Point

ECU Electronic Control Unit

EMF Eclipse Modeling Framework

FIL FU Interface Layer

FR FlexRay

FU Functional Unit

FUSWC Funtional Unit Software Component

HMI Human Machine Interface

IB Internal Behavior

IDE Integrated Development Environment

LIN Local Interconnect Network

MC Microcontroller

MCAL Microcontroller Abstraction Layer

ODI Open Display Interface

OEM Original Equipment Manufacturer

PIP Picea Integration Package

RTE Run-Time Environment

SCG Source Code Generator

S/R Sender/Receiver

VFB Virtual Functional Bus

SWC Software Component

SWCD Software Component Description

XML Extensible Markup Language

7

1. Introduction

During the last decade group of major OEMs initiated the development of a standard architecture for

reducing the complexity of software development for automotive industry. As a result the attempt

led to introducing Automotive Open System Architecture (AUTOSAR).

AUTOSAR is an open standard for software architecture which provides the ability to develop

software independent of any specific electronic control unit infrastructure. There are many

implementations of this standard available in the industry and Mecel Picea Suite is one of these

implementations which have been developed by Mecel AB.

Moreover, Mecel Populus Suite is a complete tool chain product that is also developed by Mecel for

easy design, development and deployment of HMIs specifically for the automotive industry. This

product offers a SDK which interfaces the HMI and provides the necessary functional base for

sending and receiving data to and from HMI.

The current version of Populus is not offering an AUTOSAR compliant SDK for automatic data

communication between these two. Therefore, it was requiring further configuration and adaptation

of the SDK for making this communication possible.

Therefore there appeared a need for offering an AUTOSAR compliant SDK which can provide the

required interfaces for transferring data between the produced HMI by Mecel Populus Suite and an

AUTOSAR based application.

Accordingly, the master thesis involves investigating the Mecel Populus workflow and providing an

applicable solution for sending and receiving data to and from an AUTOSAR based application which

correspondingly writes/reads this data to/from a vehicle communication bus. For this purpose, Mecel

Populus Suite is being used as the base in the thesis work but the Mecel Picea is used just as an

instance of AUTOSAR implementation and the solutions are addressed in a generic way and totally

independent of any specific implementation of AUTOSAR.

1.1 Background

1.1.1 Human Machine Interface (HMI)

A Human Machine Interface (HMI) enables user to interact with the underlying application or system

through a graphical interface. Therefore it provides an easier and more understandable way of

interaction for user.

In every human machine interface two important component needs to be considered. The first is

how to receive input from user and the second is how to present the resultant output to it. Besides,

designing a functional, accessible and pleasant to use HMI is considerably challenging.

Mecel Populus Suite provides an easy solution for design and implementation of the desired HMIs

without having to write any software. It has specially targeted for automotive industry to deliver

high-performance user interfaces with short time-to-market and enable efficient software life cycle

management [5].

8

1.1.2 Automotive Open System Architecture (AUTOSAR)

During the last decade the innovation of Electronic/Electrical (E/E) system led to a growing

complexity in this area and also an increasing number of software in the area of functionality.

Considering these facts the automotive industry was requiring a more flexible, scalable and reliable

solution for taking control of the ECUs. These requirements motivated major automotive companies

to work together with suppliers and the software industry to develop an open standard for

automotive software architecture [1]. This open standard was called AUTOSAR.

The fundamental design of AUTOSAR is the separation between the application and infrastructure.

AUTOSAR introduced a standardized layer between application software and the electronic control

unit hardware. Therefore software is largely independent of the chosen microcontroller and the OEM

[2]. This will result in a simplified development process and a higher flexibility and easy reuse of the

application software [2].

AUTOSAR consortium was founded in 2003 by BMW, DaimlerChrysler, Bosch, Continental,

Volkswagen and Siemens VDO. Later Ford, General Motors, Toyota and PSA (Peugeot Citroen) joined

the consortium as core members [9]. As a result two prime versions of AUTOSAR have been released

since then. AUTOSAR 3.x and AUTOSAR 4.x were released at the end of 2007 and 2009 respectively

[2]. The recently sophisticated specification of AUTOSAR was published at January of 2012 which has

introduced new features in the area of Network, Safety and processing components. This is the 4.0.3

release and the concentration of this project is also on this release.

Figure 1.2: AUTOSAR decouples application software from hardware.

1.2 Motivation

From early releases of AUTOSAR a growing cooperation started for development of this standard

that is expected to serve as a platform for future vehicle applications [9]. Consequently adding a new

plugin to Populus Suite that can support automatic communication with AUTOSAR compliant

applications not only elevates the functionality of this produce but also increases the market appeal

of it as well.

The new plugin should offer required software for eliminating time consuming manual configurations

needed to make this communication possible. For supporting such functionality in Populus, there

should be an investigation on possible ways for mapping of data elements within AUTOSAR

Software is dependent on hardware. Software is independent of chosen
microcontroller.

Decouple software from hardware

9

application with those in the Populus Suite. Next, a suitable solution for generating the required

software elements must be provided as well.

2. Theory

2.1 Populus

2.1.1 Structure

FU FU FU

Mecel Populus Editor HMI Database (XML) Mecel Populus Engine

ODI

Display

Figure 2.1: Mecel Populus Suite five major components

Mecel Populus Suite consists of five major components. The combination of these components

provides the required platform for supporting further functionalities on this base.

As it is illustrated in figure 2.1 these five components are:

 Populus editor:

Through the Populus editor user can design and specify all the required elements and

features of the HMI. This includes graphical layout, visual effects, language, content of

functional units, required data types etc.

 HMI database:

All the static data from layout to logic of HMI are received from the editor and stored in an

XML database.

 Populus engine

10

It executes HMI in run-time [5]. This means for running the HMI, Populus engine fetches

required information from the database to render the graphical interface. After that, it

receives user interaction with the interface as input and communicates with functional

units.

 Open Display Interface:

The ODI communication protocol decouples the functionality of HMI from functional units

while they still can communicate with each other.

 Functional Units:

They form the lowest layer of functionality in Populus. In other words, they are the

implementation of actual functionality behind the graphical interface.

2.1.2 ODI

Open Display Interface plays an important role within the Populus Suite. The main purpose of this

communication protocol is to provide simplicity in communication and flexibility in structure.

Through the ODI protocol HMI and the FUs can function independently of each other while they still

communicate and exchange information with one another. When it comes to downloading the

designed HMI on a target platform the functional units and the displays can be placed on different

ECUs. Therefore functional units are absolutely unaware of the number of existing displays and their

location on the hardware.

ODI protocol is the only form of communication between Mecel Populus Engine and Functional

Units. The protocol is designed for CAN but it is not limited to it and can work with TCP/IP and some

other communication templates as well.

ODI messages are divided into four categories

 Events:

FU sends these messages on its own initiative to notify the HMI about an event. Each

message contains event ID and FU ID of the functional unit sending this message.

 Actions:

HMI sends these messages to a specific FU. Action messages are divided into two groups of

simple actions and value actions. Simple actions contain no data while the value actions

carry an additional 32 bits of information. Actions are asynchronous function calls and their

corresponding messages contain functional unit ID and action ID.

 Indications:

These are boolean flags which are sent by the FU on its own initiative and broadcasted to all

Populus Engine instances. The message contains functional unit ID and a bit field indication

for showing true or false.

 Dynamic Data:

These messages are sent to the Populus Engine upon its request or prior subscription.

Therefore the engine informs the FU that it is interested in receiving a certain value, in other

words the engine subscribes a dynamic data. After that FU sends a response message to the

engine every time that particular value changes. The response messages will continue till the

engine unsubscribes that dynamic data. A data request message that is sent from engine to

a particular FU, contains the FU ID and one to five data IDs which the engine is interested to

subscribe or unsubscribe. In return the response message that is sent from a particular FU

contains FU ID, data value and data validity state.

11

According to [11], “ODI is an application layer protocol that runs on top of other communication

protocols”. Consequently the message type definitions may differ based on the underlying

communication protocols (TCP/IP, CAN, FlexRay and etc.).

2.1.3 Populus workflow

Figure 2.2 illustrates an example of HMI workflow for two types of ODI messages action and dynamic

data.

HMI Db

Populus Engine

FU Interface

FIL

CD Player

Functional Unit

ODI

CD Player HMI

01:35

Select ”Play Button”:

CD FU: ”Play” Action

FU ID: 17

Action ID: 3

ODIAction Message

Look up Fu ”17”…

Call Action ”3”…

void doPlayAction()

{

m_pCDPlayer ->Start(m_currTrack);

}

U32 getCurrentTrackTime()

{

return m_pCDPlater -> GetTime();

}

Compile message from

FU ”17” for Data ID ”12”

ODIDataResponse Message

Incoming Data for

CD FU, Data ”CurrentTrackTime”

Field ”CD Time” update:

Format text into ”01:35”

Figure 2.2: Populus workflow for action (left) and dynamic data (right).

2.1.4 Functional Unit (FU)

Functional Units are part of Populus Suite and where the actual functionality behind the visual

interface lies. Functional Units and Populus Engine are completely self-contained and they do not

have any compile dependencies on each other. Therefore, they can only communication through ODI

protocol.

User can design HMIs graphical layout and logic through Populus editor. Here the logic refers to

behavior of the designed interface i.e. how the user can interact with it and what HMI does as the

result of this interaction. The operation of HMI is defined in Functional Units, but in editor it is only

the description of the FUs which are saved in FU Interface (figure 2.2). This means that from the

engines point of view FU is just an ID which points to a certain interface. Each Functional Unit can

contain the interfaces of several ODI message type e.g. event, action, indication and dynamic data.

12

Interfaces are identified by a tuple of FU ID and interface ID. For every FU a C++ code is generated

automatically from the Populus Editor.

2.1.5 Functional Unit Software Development Kit (FUSDK)

Mecel Populus offers a FUSDK which contains the implementation of ODI and the FUs. The SDK

consists of two main parts (figure 2.2) and can be generated in C++, Java or Python through Populus

editor after HMI being designed. These two parts are FIL and the FUs.

FIL is the interface layer between ODI and FU implementation and it handles ODI data subscriptions.

As an example if FIL receives an ODI message for subscribing a dynamic data value, from the time of

subscription it will sends a response message to the Populus Engine upon the value change in that

specific dynamic data. In this way it will inform the Engine about the latest value of that dynamic

data.

FUs are the lowest layer of functionality in the generated code and they are interfaces of the FUs

defined through the Populus Editor. It is upon the programmer to define the functionality of each FU

and implement the callback functions (figure 2.2).

2.2 AUTOSAR

Figure 2.3: AUTOSAR main software layers.

2.2.1 General view

Figure 2.3 illustrates three main software layers of AUTOSAR architecture on the highest level of

abstraction [4]. The first layer on top is application layer which encapsulates the functionality of the

system. The second layer is RTE which provides the communication services to the application layer

[4]. The third layer is BSW which provides basic services for the application layer. BSW is further

divided into four sub-layers (figure 2.4).

Microcontroller Abstraction Layer (MCAL) is the lowest layer within BSW and it has direct access to

the on-chip microcontroller (MC) and internal peripherals. It makes higher layers independent of

microcontroller via specific drivers.

13

The next sub-layer is ECU Abstraction Layer which provides drivers for external devices and makes

upper layer independent of the location of MC and internal/external devices.

Service layer provides basic services for application and basic software modules [4] e.g. vehicle

network management, memory management, operating system, diagnostic services and etc.

Microcontroller

Runtime Environment (RTE)

Application Layer

ECU Abstraction Layer

Microcontroller Abstraction Layer

Service Layer

Runtime Environment (RTE)

Complex

Drivers

Figure 2.4: BSW sub-layers

Finally, Complex driver gives the possibility of integrating special purpose functionalities which are

not defined in AUTOSAR or have significantly high timing constrains [4]. This layer can have direct

access to hardware through bypassing the BSW.

2.2.2 Basic concepts

Under AUTOSAR standard the E/E infrastructure in a vehicle is distributed over several ECUs which

each of them obey from the AUTOSAR software architecture and are connected through a sort of

communication bus to each other. Four basic concepts in AUTOSAR are Software Component (SW-C),

Virtual Functional Bus (VFB), Run Time Environment (RTE) and Basic Software (BSW).

2.2.2.1 Software Component (SWC)

The application layer (2.2.1) in AUTOSAR consists of interconnected SW-Cs [1]. SW-Cs are placed on

the highest level of abstraction and they are unaware of their location (on a specific ECU) in the

system.

Simple AUTOSAR SW-Cs are of type “Atomic Software Component”. This means that each instance of

software component can be assigned to just one ECU and cannot be distributed over several ECUs

[1]. “Sensor/Actuator” is a special subset of “Atomic Software Component” which contains the

application dependencies on a specific sensor or actuator.

AUTOSAR also offers a more generic definition of SW-C in a sense that “a SW-C can be a logical

interconnection of other components” [1]. Such a SW-C is called “Composition”. Composition can

also be distributed on several ECUs.

14

AUTOSAR SW-Cs are able to transfer data between each other by using ports and interfaces (figure

2.5). Also, each SW-C in AUTOSAR has a so-called “internal behavior” which consists of one or several

“runnables”. Internal behavior describes the scheduling aspects of a component such as activation of

the runnables and events that they are responding to [1]. Also runnables are the smallest functions

within a software component which have direct access to the SW-C port.

 Virtual Functional Bus (VFB)

SWC

n
SWC

1
SWC

2

SWC

3
SWC

4

Application Layer

Figure 2.5: Example of SWCs in AUTOSAR

In essence, shipment of a complete SWC in AUTOSAR consists of [1]:

 A SWC description which contains the properties and behavior of a SWC.

 An implementation of the SWC which can be provided either as an object code or a source

code

2.2.2.2 Virtual Functional Bus (VFB)

VFB is a communication mechanism that separates SW-C from the underlying infrastructure and

provides the relocatability of software in this architecture. In VFB concept, SW-Cs of the entire

vehicle can be virtually connected to each other during the design phase. In other words, VFB hides

the difficult connection details from the designer. Therefore, SW-Cs can be virtually connected

regardless their location on ECU (figure 2.6).

 Virtual Functional Bus (VFB)

. . .

ECU 1 ECU 2 ECU M

SWC

1

SWC

2

SWC

3

SWC

n

Figure 2.6: SWCs are connected virtually during the design phase

2.2.2.3 Runtime Environment (RTE)

RTE is the implementation of VFB in runtime. It is placed between the application layer and the basic

software layer to decouple the functionality of them from each other. RTE hides the network from

the application. Therefore, communication between the SW-Cs located on the same ECU is limited to

15

RTE level. But when it comes to inter ECU communication RTE also offers the necessary interfaces for

using COM services which are provided by the BSW. The code for RTE is being generated by RTE

generator based on ECU configuration description file (more about this in 2.2.3).

2.2.2.4 Basic Software (BSW)

BSW is a standardized layer which contains ECU specific components. It provides the required

services by the software component and does not fulfill any specific functionality on its own [1].

BSW provides:

 Services such as NVRAM, diagnostic protocols, memory management and etc.

 Communication bases (CAN, LIN and FlexRay), I/O management and network management.

 OS service for scheduling

 Microcontroller Abstraction Layer (MCAL) for access to hardware on a higher level.

 Etc.

BSW configurations are stored in an standard AUTOSAR XML file called Basic Software Description

(BSWD).

2.2.3 Approach

AUTOSAR approach explains the structure of application software under ATUOSAR standard.

As it is mentioned previously in (2.2.1.1), the application software in AUTOSAR is distributed over

smaller units called SW-C. Each SW-C contains a part of the applications functionality and it needs to

communicate with other SW-Cs to work in integration as of the initial monolith application.

In general the main specifications of a SW-C can be summarized into:

 Port:

Ports are considered as the communication gateway for SW-C. Each port is one of the

provider or required type. A Provider port sends a value out of SWC and a required port

receives a value from another port.

 Interface :

Each port in AUTOSAR requires an interface. Interface defines the transferring data elements

as well as the semantics of the transfer. Interfaces are of two types of sender/receiver (S/R)

and client/server (C/S). A S/R interface is a one way communication between the two sides

of transmission while a C/S interface is a two way communication. In C/S client asks for a

value and then it will wait for the server response.

 Data Element (DE):

Each port interface contains one or several DE which is the ultimate parameter being

transferred between the SW-Cs on the same ECU. Each DE has a data type.

 Internal Behavior:

It defines the behavior of SW-C and also provides the required functions, variables, events

and other internal data needed by the SW-C [3].

 Runnable:

A runnable is a schedulable function that has access to SW-C ports. RTE provides the

runnable APIs and also triggers it according to a specific schedule defined in SW-C

description.

 Event:

16

Each runnable is being triggered by an RTE event. There are different types of RTE events but

the general simple form is called “TimingEvent” in which RTE triggers the SW-C component

over a constant frequency.

All these information are packed into a SW-C description file (figure 2.7). During early design phase,

SW-Cs are connected virtually through VFB. After specifying the connections each SWC will be

mapped to an ECU. Depending on whether two SWC are placed on the same ECU or on two different

ECUs, they can communicate through RTE or available communication platform.

In AUTOSAR there is a configuration description file for each ECU. This file contains all the required

(SW-C, BSW and RTE) configurations for an AUTOSAR ECU. For each newly added SW-C, its

description file must be integrated with the ECU description file. The ECU description file is an input

for the SCG (Source Code Generator). Having all the necessary configurations SCG will generate the C

code of BSW modules configurations and RTE APIs for that ECU. The generated code and the static

implementation of BSW modules together will provide a compilable application for this AUTOSAR

design.

SWCDSWCDSWCDSWCD

 Virtual Functional Bus (VFB)

SWC

n
SWC

1
SWC

2

SWC

3
SWC

4

SWC

1

SWC

2

SWC

3

SWC

4

ECU 1 ECU 2

SWC

n

ECU m

BSW

RTE . . .
BSW BSW

RTE RTE

system
configuration

SWCD

CAN / LIN / Flexray

Figure 2.7: AUTOSAR basic approach.

17

3. Tools

3.1 Mecel Populus Suite

Mecel Populus was the base of provided solution in this project. As the result of solution, a new

plugin called “AUTOSAR Integration” is added to this application.

Moreover, for testing the final solution and viewing the result of data transmission between Populus

and AUTOSAR we were requiring a HMI for visualizing these results. Therefore, Mecel Populus is used

for design and implementation of this HMI as well.

3.2 Mecel Picea Suite

Mecel Picea Suite contains the RTE, BSW and the configuration and integration tool chain. Also it is a

fully ICC3 compliant AUTOSAR suite [10] (AUTOSAR ICC3 conformance class contains the most

detailed interface granularity).

Picea Suite is consisted of the following main parts:

 Picea Integration Package (PIP):

PIP is the stack implementation of AUTOSAR. It contains both RTE and BSW.

Picea RTE is a command line code generator which requires the AUTOSAR configuration files

as an input. RTE generator reads the configuration file and validates them according to

AUTOSAR schema [10] and generates the RTE C code.

Picea BSW is consisted of SCG and standard software core for each BSW module. Here again

the SCG is a command line code generator which receives the ARXML configuration files and

generates their corresponding C files.

 Picea Workbench:

Picea Wokbench is consisted of an AUTOSAR authoring tool. Configuration of RTE and BSW is

the main use case of this tool. But it can also be used for editing the SW-Cs and building the

ECU application layer [10]. More about Picea Workbench authoring tool is in (3.3).

Figure 3.1: Picea Integration Suite (figure from [10])

18

3.3 Volcano VSX

AUTOSAR standardizes the automotive software architecture but the process of design and

deployment of this architecture is a complicated flow. Volcano VSX tool chain offers the necessary

tools for an organized design and deployment of AUTOSAR system models. VSA and VSB are two of

the VSX tools which are mainly used for the model design and configuration in this project.

3.3.1 Volcano Vehicle System Architect (VSA)

VSA is a tool for design of automotive software and hardware architectures and management of their

relations under AUTOSAR standard. System design in VSA includes:

 SWC definition:

Defining required SW-Cs (2.2.1.1, 2.2.3) and their connections with the rest of system.

 Mapping of SW-C to ECU instance:

Each SW-C is mapped to its associated ECU instance. Later, a Communication Matrix (COM

Matrix) is defined according to this mapping.

 ECU topology:

It describes the structure for interconnection of ECUs through the underlying physical

communication bus [13].

 Data mapping:

SW-Cs located on the same ECU are transferring data between each other using DEs (2.2.3

DE). On the other hand, if they are located on different ECU instances, data transmission is

done through the system signal which is sent over the physical communication bus. Data

mapping is mapping of data elements (those which are required to be transferred over the

communication bus) to the system signals.

 Etc.

The result of VSA is an ECU extract for each existing ECU in the system.

3.3.2 Volcano Vehicle System Builder (VSB)

VSB is an AUTOSAR ECU configuration editor that refines the final output (ECU extracts) received

from VSA and creates a complete ECU configuration. When VSA main functionality is centered on

software architecture and communication design, VSB focuses on applying BSW configurations for a

specific ECU.

In general ECU configuration process consists of extracting ECU description system description file for

each ECU and configuring each AUTOSAR BSW module according to the special needs of that specific

ECU [14].

19

4. Solution

4.1 Design

SWC

2

SWC

1

ECU

Communication Bus

Show speed:

FU ID: 11

DD ID: 3

Receive speed data

from port S

Port S

Activate warning light:

FU ID: 10

Action ID: 5

Send data to port W

Port W

Populus Engine

ODI ODI

TCP/IP

SWC

n

RTE

FU-SWC

BSW

. . .

Figure 4.1: Data transmission

Generally the transmitted data between HMI and AUTOSAR can be divided into two categories. The

first category contains the data sent from HMI to AUTOSAR. According to section 2.1.2, HMI can

send a simple parameter from the HMI engine to the Functional Units in the form of a simple value

action message. This message type is one and only proper form for sending data from HMI to

AUTOSAR.

The second category contains the data received by HMI from AUTOSAR. According to section 2.1.2

HMI can receive a simple parameter from Functional Units in the form of dynamic data ODI message

type. Dynamic data is sent from Functional Unit to the Populus engine upon engines request. This

property makes dynamic data a unique and suitable form for our purposes in the current solution.

Although we have found the appropriate ODI message type for our data transmission purposes, the

number of parameters used in each transmission can vary significantly between different designs.

Thus, placing a new software component within AUTOSAR system that can act as the representative

of HMI needs can be a wise strategy for handling these variations (figure 4.1). We name this new

software component “FUSWC”.

FUSWC is responsible for collecting the data required by HMI from AUTOSAR and also delivering the

data sent from HMI to a targeted port within AUTOSAR system. To enable the FUSWC with such

functionality we must define the necessary properties and behaviors for it in its description file.

20

After that there should be an intuitive way for the user to map each HMI ODI message type to an

AUTOSAR data element type. This can be done through a mapping phase where the user can import

the ATUOSAR system description file into Populus application and receive all the information about

the available ECUs, SW-Cs, ports and etc. Then the user will be able to select the correct ports as a

resource or target for each data transmission.

The result of mapping phase will be an input for generation of the FUSWC description. FUSWCD

contains all the prerequisites for integration of FUSWC and system description file. By integrating

these two we have a new AUTOSAR system file which also contains the representative of HMI as

well.

4.2 Implementation

4.2.1 Extracting information

It is upon the user to decide what data transmission needs to take place between the designed HMI

and AUTOSAR system. Therefore, user must be informed about the available data in both HMI

database and the AUTOSAR system. For this reason we should extract the necessary information

from both of these two systems and illustrate them within one view to the user.

4.2.1.1 HMI

All the defined data in Populus are stored in HMI database (2.1.1). The data is placed within

Functional Unit and it can be one of the forms of action, dynamic data, event or indication.

The proper data formats for this solution are value action and dynamic data (4.1). Thus, these are the

only data structures that the user needs to have access to.

In order to extract the available actions and dynamic data from the HMI database, we have

employed Populus own EMF (figure 4.2). This EMF contains a complete model of all data structures

defined in Populus and can offer a full functionality for extracting the required information.

4.2.1.2 AUTOSAR

The information that user requires to have from the AUTOSAR system includes all existing ECUs,

available SW-Cs in each ECU, existing ports in each SW-C, corresponding interface for each port etc.

(figure 4.2). This information can be found in system description ARXML file. But for extracting them

we need to employ a suitable modeling framework which can support ARXML 4.0.3 files. We have

used Artop 4.0 EMF as the model in this solution.

AUTOSAR Tool Platform (Artop) is a demonstrator which is designed for pars and edition of AUTOSAR

XML files. It is also being offered as a plugin in VSX tool (3.3). Artop provides an Eclipse Modeling

Framework (EMF) which the programmers can employ to make their desired operation on the

standard AUTOSAR XML files. Figure 4.2 shows a general view of extracted information from system

description file.

21

Figure 4.2: Extraction of data from system description files.

4.2.2 Mapping

The User can have access to the extracted information from the Populus and AUTOSAR (4.2.1)

through one editor in “AUTOSAR Integration” plugin. This will simplify the mapping process by

providing a quick and complete view over all available information at once. User can map each

provider port from the AUTOSAR system to an action data structure and also each required port to a

dynamic data structure (4.2.1).

A completed mapping will be saved for the generation of FUSWC description in the next step.

4.2.3 SWC description generation

According to the user mapping a complete description of FUSWC can be automatically generated

from the editor. For generation of this SWC description the program analyzes user mappings first. By

checking this mapping it can find which SWCs, ports, data elements and what data types are involved

in this mapping. Therefore it can decide what kind of ports, data elements, data types and etc. the

generated FUSWC needs to support as well. Figure 4.3 gives a general view over the information

included in FUSWC description.

Figure 4.3: Generating software component description.

system.arxml

Port

Interface

Data Element Data Type

.

HMI Database

Populus FU EMF FU 1

FU 2
.
.
.

Action (value action)

Dynamic Data

Indication

Event

Name

ID

Data Type

ECU 1

ECU 2
.
.
.

Artop EMF

SWC

 Protoype 1

SWC

Prototype 2
.
.
.

DSP/DRP 1

DSP/DRP 2
.
.
.

Artop EMF

SWC

Prototype

Connectors

Internal

Behavior

Ports

Event

Runnable

Interfacer

ComSpecs

DSPs

DRPs

Data

Element
Data

Type

fuswc.arxml

22

FUSWC can be connected to the rest of the structure defined in system description through

connector. Connectors used for connecting SW-Cs within one ECU are called assembly connectors.

Each assembly connector connects one provider port to one required port. Consequently for

Integrating the generated FUSWC with the rest of system we need an assembly connector per each

available port in this SW-C. These connectors are also generated as a part of FUSWC description to

make the integration process easier for the user.

4.2.4 Generation of AUTOSAR compliant FUSDK

The FUSDK is the implementation of ODI protocol and the FU interfaces (2.1.4). The simple form of

generated SDK from Populus contains the interfaces for the FUs but it is upon programmer to define

their functionalities by implementing their callback functions (2.1.4).

After mapping of HMI data to AUTOSAR data (4.1, 4.2.2) by the user in the newly added plugin

(ATUOSAR integration plugin), an AUTOSAR compliant version of the regular FUSDK can be

generated. In this new version the functionality of the FUs are specified and their callback functions

are being defined and implemented. All of these are done based on user mappings.

In other words, by checking user mappings, the application will generate the correct RTE read and

write interfaces and it will also place them in the correct FU message interface. All generated RTE

interfaces belong to FUSWC. The reason for it is that FUSWC is now the Populus gateway for data

transmission with the rest of AUTOSAR system. In addition, RTE interfaces are generated according

to AUTOSAR standard API reference [8] which makes them completely independent of any specific

implementation of AUTOSAR architecture.

Generally RTE APIs for reading and writing a data values differ based on their actual functionality and

the type of value they transmit. Hence for employing the correct API we need to identify the factors

which are important in this transmission. Considering our solution properties, according to AUTOSAR

standard APIs [8] the RTE interfaces for reading and writing of data elements with “data” semantic,

over a sender-receiver communication bus, is an appropriate interface that suits our case (appendix

A). Each RTE call interface consists of several arguments such as port name, variable data prototype

and data type. Therefore, it will be different for each data element on a specific port. To generate the

correct interface for each FU call back function we should check both user mappings and FUSWC

description to be able to conclude the correct arguments for the corresponding RTE interface.

4.2.5 Generation of SWC implementation and required heading file

The actual functionality for the correct data transmission over RTE is placed within the FU callback

functions in the generated AUTOSAR compliant FUSDK (4.2.4). But the activation of the whole FUSDK

containing both FIL and the FU interfaces (2.1.4) starts from the FUSWC runnable.

A SW-C implementation C code that contains the FUSWC runnable can be automatically generated

from the solution plugin. The signature for the runnable is generated according to standard AUTOSAR

runnable signature [8] and it is independent from any specific AUTOSAR implementation (appendix

A).

A runnable is a schedulable function (2.2.1) and it can be triggered with a certain period that is

defined during the generation of software component description. Therefore, activating the FUSDK

23

through runnable will change the frequency of ODI message passing. By defining a relatively high

frequency for FUSWC runnable in its generated SW-C description we can decrease the possibility of

missing ODI messages.

4.2.6 Data type and scaling

In the mapping phase, user should pay attention to data types in both the Populus and AUTOSAR

system in order to avoid losing data during transmission. All the related ODI data types and AUTOSAR

data element types are extracted and illustrated to the user in the mapping table.

In AUTOSAR there exist no predefined data types. Therefore, each company or OEM must define its

own data types.

Generally AUTOSAR data types are defined within three levels of abstraction [3]:

 Application Data Level

This level allows defining data types from the application point of view and it is possible to

specify all the types required by VFB on this level. But the data types at this level cannot be

used by RTE.

 Implementation Data Level

It is introduced to optimize the data type on the implementation level which is close to the

programming language like C [3]. For each data type defined on the Application level, there

should be a mapping to an Implementation level data type.

 Base Type Level

It provides the platform dependent part of the Implementation data types [3] which are

defined in the form of bits and bytes.

In Populus, ODI data types are in one of the forms Simple Data or Non-numeric Data. Simple Data

Types are limited to 32 bit and are always sent using Metric values on the bus (temperature,

pressure, speed and etc.). Non-numeric Data Types are in other forms such as String, List, Bitmap and

etc. Among these two, Simple Data is the only suitable value type for the data transmission with

AUTOSAR.

In the AUTOSAR compliant version of Populus SDK which can be generated from the added solution

plugin to Populus, all FU callback functions are implemented so that each contains the correct RTE

read/write interfaces for data transmission according to the user mappings. But for generating the

correct callback function we should consider the type casting and scaling of data from AUTOSAR to

Populus and reverse. Figure 4.5 shows a sample of generated call back functions for dynamic data

and value action ODI message. The upper function in this figure belongs to a specific dynamic data in

Populus which receives the value of “CoolantTemperature” form AUTOSAR. The generated RTE call

for this interface is a RTE read by argument interface. In order to be able to read the value by

argument we need to generate the correct data type for using with this RTE call.

As you can see the “coolantTemperature” variable is defined with “uint16” type. Here “unit16” is an

implementation data level in AUTOSAR. This data types are being extracted during loading of the

ARXML system file into the “ATUOSAR integration” plugin (4.2.1). Also the value of

“coolantTemperature” is scaled before returning it to the Populus Engine. This scaling will take place

according to the internal scaling of parameters inside the Populus (appendix B).

Likewise, the same procedure is applied for the action ODI interface as well.

24

Figure 4.5: Generated FU callback function for Dynamic Data (upper function) and Value Action (bottom function).

4.2.7 Integration of generated SWC description with system description

According to user mappings a FUSWC description will be generated from the editor (4.2.3). This new

SW-C contains the required properties for data transmission with the rest of AUTOSAR ECU. In order

to generate the necessary RTE interfaces for this FUSWC, we need to integrate it with the rest of the

AUTOSAR system file. This integration will be done through the VSX tool (3.3). By importing both

system and FUSWC description files into the same project, we can connect the FUSWC with the rest

of SW-Cs on the ECU. An instruction will be automatically generated with the FUSWC description

from the editor. This instruction provides the information for making the correct assembly connector

for each connection. For making the connection process easier these connectors are also being

generated as a part of FUSWC description and the user can copy the provided instance. Finally the

necessary BSW configurations are done for the FUSWC and the system description will be ready for

generating RTE.

25

5. Result

In this section we will review the result of the implementation phase and its final outputs.

Figure 5.1 illustrates the resultant plugin solution in a glance. As is shown in the editor snapshot, user

can import the system description file into this plugin and explore the content in a tree view format.

The table at the bottom is the mapping table which enables the user to map AUTOSAR data to

Populus ODI messages.

Figure 5.1: A snapshot of the new plugin “AUTOSAR Integration” which is added to Populus Editor as the result of the
provided solution in this thesis.

In general the following files can be generated from the solution editor:

 A FUSWC description file and its corresponding integration instruction (4.2.3), (4.2.7).

 A FUSWC implementation (C file) and linking heading files (4.2.5).

 An AUTOSAR compliant version of Populus SDK containing implemented FU callback

functions (4.24).

Dispatching of dynamic data ODI request and ODI action message from Populus engine are two main

forms of initializing data transmission. Figures 5.1 and 5.2 are illustrating the sequence diagrams of

the solution workflow in response to these two ODI message forms.

26

AUTOSAR SWC RTE FUSWC Populus Engine

ODIDynamicDataRequest

Rte_Read(&DataElement)

Runnable

Notify(ODIDynamicData)

Runnable

Rte_Write(DataElement)

Rte_Write(DataElement)

Figure 5.1: Sequence diagram for dynamic data ODI request.

AUTOSAR SWC RTE FUSWC Populus Engine

ODIAction(actionData)

Rte_Write(DataElement)

Runnable

Runnable

Rte_Read(&DataElement)

Rte_Read(&DataElement)

Figure 5.2: Sequence diagram for ODI action message.

In brief, “AUTOSAR Integration” plugin provides all the necessary implementations automatically and

reduces the time for making the base of this data transmission significantly. Also it hides most of the

implementation procedure from the user and reduces the necessity of having detailed knowledge

regarding this process for the user.

27

6. Discussion and future work

In general the idea of providing the required base for data transmission between HMI and AUTOSAR

automatically is in its initial stage. The completion of the solution can be relative to customer needs

and use cases.

In the current solution Populus HMI is the starting point for user mappings and code generation.

Correspondingly the implementation of solution is partly Populus specific but its overall design can

be extended to fit in with other HMI development tools as well.

Besides for accommodating the whole project process into a limited time frame we had to make

strict assumption in different stages of implementation. Having a variety of options for implementing

the same functionality based on user requirements, we had to choose one of them. Our choices in

this area were made based on the customer preferences from Volvo.

In addition, the provided solution is designed specifically for PC testing and the data communication

between Populus and AUTOSAR is over TCP/IP. But for testing the solution on a target platform the

communication protocol have to change to CAN, LIN or Flexray. In this case, communication is made

through the AUTOSAR communication stack which is consisted of three application layers.

At RTE level a data element can be mapped to a signal which transfers the data values through the

lower software layers to the communication bus. But this process requires its own configuration in

AUTOSAR.

From ATUOSAR perspective two major extensions of the current solution can be:

 Auto-configuration of BSW for the generated FUSWC.

 Auto-generation of required properties and configurations for sending and receiving the ODI

messages over CAN/LIN/FR through FUSWC.

Likewise, two major extension of implemented solution from Populus perspective can be:
 Generating a FU definition according to the selected AUTOSAR data by user.

 Investigating the possible use cases for the two other ODI message types, events and

indications.

7. Conclusion

The added solution plugin “AUTOSAR Integration” to Mecel Populus HMI Suite eases the processes of

integrating designed HMIs with AUTOSAR applications. In other words, the necessary materials for

making this integration can take a considerable amount of time and require a high level of knowledge

about both systems. But through this plugin these materials from ARXML description files to all the

required implementation code can be generated automatically within few seconds. Furthermore this

automation can omit the possible errors which may occur during the manual configuration as the

result of user mistakes.

As it has been mentioned earlier, the solutions are according to general AUTOSAR standards and

completely independent of any specific implementation of this architecture. Although the HMI part

of the implemented solution is specific to Mecel Populus HMI suite but the idea and theory of the

28

solution is addressed in general form and can be further extended and modified for other HMI design

tools as well.

29

References

1. AUTOSAR Technical Overview, AUTOSAR Auxiliary 067, 2008.

2. AUTOSAR. (2012). AUTOSAR General [Online]. Available:

http://www.autosar.org/index.php?p=1&up=6&uup=0

3. AUTOSAR Software Component Template, AUTOSAR Standard 062, 2011.

4. AUTOSAR Layered Software Architecture, AUTOSAR Auxiliary 053, 2011.

5. Mecel AB. (2011, May). Product brief – Mecel Populus Suite [Online]. Available:

 http://www.mecel.se/products/mecel-populus

6. Mecel AB, Populus Specification, 2012.

7. Mecel AB, MecelPopulusTraining: Mecel internal documentation.

8. AUTOSAR Specification of RTE, AUTOSAR Standard 084, 2011.

9. Florian Leitner. Automotive Open System Architecture [Online]. Available:

http://www.inf.uni-konstanz.de/soft/teaching/ws07/autose/leitner-autosar.pdf

10. Mecel AB. (2011, May). Product brief – Mecel Picea Suite [Online]. Available:

http://www.mecel.se/products/mecel-picea/Product.Brief.Mecel.Picea.pdf

11. Mecel AB, Populus ODI Protocol Specification, 2012.

12. VINNOVA. (2011). Second Road Phase 1 [Online]. Available:

http://www.vinnova.se/sv/Resultat/Projekt/Effekta/Second-Road-fas-1---En-gemensam-

simulatormiljo-for-aktiv-sakerhet-och-HMI-inom-Volvo-Personvagnar/

13. AUTOSAR System Template, AUTOSAR standard 063, 2011.

14. ATUOSRAR Specification of ECU Configuration, AUTOSAR Standard 087, 2008.

http://www.mecel.se/products/mecel-populus
http://www.mecel.se/products/mecel-populus
http://www.inf.uni-konstanz.de/soft/teaching/ws07/autose/leitner-autosar.pdf
http://www.mecel.se/products/mecel-picea/Product.Brief.Mecel.Picea.pdf
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/Second-Road-fas-1---En-gemensam-simulatormiljo-for-aktiv-sakerhet-och-HMI-inom-Volvo-Personvagnar/
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/Second-Road-fas-1---En-gemensam-simulatormiljo-for-aktiv-sakerhet-och-HMI-inom-Volvo-Personvagnar/

30

Appendix

A. RTE interfaces

RTE read/write

The RTE interfaces that are generated in the functional units implementation are derived from the

standard RTE API reference in AUTOSAR RTE specification document [8].

According to this document the standard interface for explicitly reading a data element by argument

on a sender/receiver port interface is:

Rte_Read_<p>_<o>([IN Rte_Instance <instance>] ,OUT <data>)

Where <p> is the port name and <o> is the “VariableDataProtoype”. “VariableDataProtoype” is the

data element short name. The OUT parameter is for receiving the data element through its

corresponding argument.

Also the standard interface for explicitly writing a data element on sender/receiver port interface

with “data” semantic is:

Rte_Write_<p>_<o>([IN Rte_Instance <instance>],IN <data>)

Where again <p> and <o> are representing port name and “VariableDataProtoype” respectively. The

IN parameter passes the data element for writing on RTE.

It is worth to know that RTE generates the read/write interface only for those data elements which a

corresponding “VaribaleAccess” is defined for them in the DRP/DSP [8].

RTE runnable

Definition of all runnable entities which are triggered by RTEEvent for their execution follows the

same following form [8]:

<void|Std_ReturnType> <name>([IN Rte_Instance <instance>],[role parameters])
Here <name> is the symbol of the runnable entry point. In case of having several runnable entities
within an internal behavior, the runnable which the main timing event is defined on that will be the
entry point.

31

B. Populus internal data scaling

The following table illustrates a subset of Populus data types. This subset contains the valid types for

the data transmission in “AUTOSAR Integration” plugin.

Data Type

Numeric Data Format

Speed

Type 4

Integer

Type 1

EnumerationValue

Type 1

Decimal

Type 2

TextId

Type 1

BitmapId

Type 1

DistanceLong

Type 4

DistanceShort

Type 4

Volume

Type 4

Temperature

Type 4

Pressure

Type 4

FuelConsumption

Type 4

FuelConsumption
Inverted

Type 4

DecimalShort

Type 3

FuelConsumption
StandingStill

Type 4

FuelConsumptionCNG

Type 4

FuelConsumptionCNG
Inverted

Type 4

FuelConsumptionCNG
StandingStill

Type 4

FuelUsedCNG

Type 4

For increasing the resolution and also due to some other internal configurations each of these values

are scaled before being saved in the HMI data base. The data values of type 4, type 3 and type 2 are

divided by 1024, 10 and 1000 respectively before storing their values into the data base. The data

values of type 1 will not be scaled.

