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Abstract—We present a finite-blocklength analysis of the
throughput and the average delay achievable in a wireless system
where i) several uncoordinated users transmit short coded
packets, ii) interference is treated as noise, and iii) 1-bit feedback
from the intended receivers enables the use of a simple automatic
repeat request (ARQ) protocol. Our analysis exploits the recent
results on the characterization of the maximum coding rate at
finite blocklength and finite block-error probability by Polyanskiy,
Poor, and Verdú (2010), and by Yang et al. (2013). For a given
number of information bits, we determine the coded-packet size
that maximize the per-user throughput and minimize the average
delay. Our numerical results indicate that, when optimal codes
are used, very short coded packets (of length between 50 to 100
channel uses) yield significantly lower average delay at an almost
negligible throughput loss, compared to longer coded packets.

I. INTRODUCTION

Next generation wireless communication systems are expected
to support real-time data transfer with guaranteed end-to-end de-
lay of at most few milliseconds. This will enable the introduction
of services such as [1]
• vehicle to vehicle and vehicle to infrastructure communi-

cations for traffic efficiency and safety;
• real-time video processing for augmented reality;
• monitoring of materials, e.g., of buildings to identify po-

tential damages, and monitoring of the environment, for
example for agricultural purposes;

• wireless control of industrial plants and smart electricity
grids.

A common feature of the services listed above is that they often
require the transmission of short packets (no more than hundreds
of bits), which need to be correctly decoded at the intended
receiver within stringent latency requirements.

Designing wireless communication systems able to support
such services is challenging because most of the results available
within the field of wireless communication theory are asymptotic
in the packet length. Indeed, the classic performance metric used
in wireless communication theory is the Shannon capacity [2],
which is the largest data rate at which reliable communication
(i.e., communication with arbitrarily low error probability) is
possible. This metric is asymptotic in the following sense: for
a given rate below the Shannon capacity, arbitrarily low error
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probability can be achieved only using sufficiently long (coded)
packets, i.e., introducing sufficiently long delays.

In spite of its asymptotic nature, Shannon capacity (and its ex-
tension to nonergodic channels—the outage capacity [3, p. 2631],
[4]) has been proven useful to design the current wireless systems.
The reason is that the delay constraints in current systems are
typically above 10 ms, which, for the frequency-bandwidth
values presently used, allows for long packets.

However, when the transmitted packets are short, channel
capacity is a poor benchmark. In this scenario, the fundamen-
tal performance limit is instead the maximum achievable rate
R∗(n, ε) at a given packet length n and packet error probability ε.
This quantity, which is proportional to the largest amount of
information bits k that can be mapped into a packet of n coded
bits, under the constraint that the information bits are recovered
at the receiver with probability no smaller than 1− ε, has been
recently characterized in [5]–[7] for both AWGN and fading
channels.

The objective of this paper is to leverage the results obtained
in [5]–[7] to investigate the following question: how should
one design throughput optimal multiple-access schemes in the
presence of latency constraints? This question has been posed
before, often in the context of cross-layer optimization (see
e.g, [8]). However, most of the available results are for specific
combinations of modulation and coding schemes [9] or rely on
asymptotic information-theoretic performance metrics [10].

In this preliminary investigation, we shall focus on a simple
system model, namely, a wireless communication system where
several uncoordinated users transmit short coded packets us-
ing frequency hopping and a simple automatic repeat request
(ARQ) protocol. This setup, which is closely related to the one
known in the literature as slotted Gaussian collision channel
with feedback [11], [12], is particularly relevant for machine-
type communication systems involving a very large number of
devices. We consider both the case when the channel among
each users is impaired by additive Gaussian noise only, and the
quasi-static fading case, where the fading gains are random but
stay constant over the duration of each packet.

An analysis of the throughput achievable over this channel has
been previously conducted in [12] for the case of asymptotically
large packet length, by relying on the capacity-versus-outage
formulation. Our analysis is instead non-asymptotic. Specifically,
we use the results on the characterization of R∗(n, ε) reported



in [5]–[7] to analyze the throughput achievable over this channel.
For a given number of information bits, we determine the coded
packet size that maximizes the throughput and minimizes the av-
erage transmission delay. We also investigate how the maximum
throughput and the minimum average delay behave as a function
of the number of information bits. Our numerical results indicate
that, when optimal codes are used, very short coded packets (of
length between 50 to 100 channel uses) corresponding to about
100 information bits yield significantly lower average delay at
an almost negligible throughput loss compared to longer packets
containing more information bits (1000).

II. SYSTEM MODEL

We analyze a slotted Gaussian collision channel with feed-
back [12], over which Nu transmitter-receiver pairs operate con-
currently. For the fading scenario, we consider communications
over a time-frequency selective fading channel with coherence
time Tc and coherence bandwidth Wc. The available bandwidth
W > Wc is divided into nf = W/Wc non-interferring fre-
quency bands. For simplicity, we shall assume in the following
that nf is an integer. For each slot, each user chooses a frequency
band uniformly at random and independently from the other
users, and transmits over this band a coded packet consisting
of n complex symbols (corresponding to n channel uses) of
duration n/Wc < Tc seconds. These assumptions guarantee
that the fading channel stays constant over the duration of each
coded packet.

The received vector y ∈ Cn corresponding to the coded
packet x1 ∈ Cn transmitted by user 1 during one (arbitrary)
packet transmission slot is given by

y = h1x1 +
∑
s

hsxs +w. (1)

Here, hs denotes the fading coefficient corresponding to user s,
the index s spans the set of interfering users (i.e., of users that
chose the same frequency band as user 1 for transmission),
and w models the additive noise vector, whose entries are
independent and identically distributed circularly symmetric
complex Gaussian random variables with unit variance.

At the intended receiver, which is assumed perfectly aware
the frequency band chosen by the corresponding transmitter,1

but which ignores the choice of the other (unintended) users,
decoding is attempted. A binary feedback about the status of
the decoding operation is sent back to the transmitter. If the
feedback indicates a decoding failure, the transmitter repeats
the same coded packet over the next packet transmission slot,
after having selected a different frequency band. This allows
for reliable data transmission in spite of interference and deep-
fade events. If the feedback indicates decoding success, the next
coded packet is transmitted.

Each coded packet corresponds to k information bits (we
assume that all users need to deliver similar payloads). Fur-
thermore, each user maps the information bits into coded bits

1This is achieved in practice by letting each user transmit according to a
predetermined frequency-hopping pattern.

independently from the other users, i.e., no coordination among
users is assumed.

To simplify the analysis, we shall also assume what follows:
i) Each user has an infinite number of information bits to transmit
(full-buffer assumption) so that as soon as the transmission of
the current packet is stopped because decoding is successful,
the transmission of the next packet is started. ii) The feedback
is instantaneous and error free. iii) Interference resulting from
several users contending the same medium is treated as additive
Gaussian noise. iv) All users transmit at the same power ρ.
v) The fading coefficients {hs} are independent and identically
distributed and perfectly known to the receiver.

Assumptions iii) and iv) imply that, given the fading coeffi-
cients {hs}, the second and third term on the right-hand-side
of (1) can be jointly modeled as a circularly symmetric Gaussian
random variable with variance 1 + ρ

∑
s |hs|

2. Furthermore,
under the assumptions listed above, the system is symmetric
with respect to any user. For simplicity, we shall then take user 1
as the reference user in the remainder of the paper.

It is appropriate at this point to comment on the differences
between the system model analyzed in [12] and the one in this
paper. In [12] it is assumed that all users transmit at a given
rate R. As the packet length is assumed large, the probability of
erroneous packet detection ε is given by the outage probability2

ε = Pr{log2(1 + ρint) < R} (2)

where ρint is the signal-to-interference-and-noise ratio

ρint =
ρ |h1|2

1 + ρ
∑
s |hs|

2 . (3)

In our setup, we fix instead the number of information bits k
that each user needs to transmit. The packet length n becomes
an optimization parameter that can be set so as to maximize the
throughput. As the resulting packet size is (possibly) small, (2)
is not necessarily valid.

To make packet repetition effective, we are interested in the
scenario where different packets from the same user experience
different fading realizations. As the packet length is an opti-
mization parameter, we cannot a priori guarantee that it will
be as large as the channel coherence time. Furthermore, as we
are interested in minimizing the average delay, interleaving or
inserting guard intervals is not an appealing solution. Instead,
we achieve diversity through frequency hopping. In contrast, the
scheme proposed in [12] considers time-hopping only, according
to the slotted-Aloha paradigm. Furthermore, the role of time-
hopping in [12] is to mitigate collisions, not to provide diversity.

The non-fading (AWGN) scenario is readily obtained from (1)
by assuming that the channel gains in (1) are deterministic.

III. MAXIMUM CODING RATE AT FINITE BLOCKLENGTH

In this section, we briefly review the recent results on the
characterization of the maximum coding rate R∗(n, ε) at finite

2Note that (2) holds independently on whether the interference is assumed
Gaussian or not. Indeed, a standard typicality argument shows that a receiver
that treats interference as noise achieves (2).



blocklength and finite error probability [5]–[7] that we shall need
for our analysis in Section IV.

A. AWGN channels

To define R∗(n, ε), we shall focus on the single-user AWGN
case, for which the input-output is given by

y = x+w. (4)

An (n,M, ε) code for the AWGN channel (4) consists of:
1) an encoder f : {1, . . . ,M} 7→ Cn that maps the message

J ∈ {1, . . . ,M} into a codeword x ∈ {c1, . . . , cM}
satisfying power constraint

‖cj‖2 ≤ nρ, j = 1, . . . ,M. (5)

2) A decoder g : Cn 7→ {1, . . . ,M} that satisfies the average
error probability constraint (packet error rate constraint)

Pr[g(y) 6= J ] ≤ ε (6)

where y is the channel output induced by the transmitted
codeword according to (4), and J is uniformly distributed
over the message set {1, . . . ,M}.

The maximum achievable rate is defined as

R∗(n, ε) = sup

{
log2M

n
: ∃(n,M, ε) code

}
. (7)

Nonasymptotic upper and lower bounds onR∗(n, ε) are reported
in [5, Eq. (218)]. The bounds are remarkably tight. Furthermore,
their analysis for n→∞ allows one to establish the following
asymptotic characterization for R∗(n, ε) [5, Eq. (296)], [13]3

R∗(n, ε) = C(ρ)−
√
V (ρ)

n
Q−1(ε) +

log2 n

2n
+O(1). (8)

Here,

C(ρ) = log2(1 + ρ) (9)

is the channel capacity,

V (ρ) =

(
1− 1

(1 + ρ)2

)
log22 e (10)

is the so-called channel dispersion, and Q−1(·) stands for the
inverse of the GaussianQ-function. Finally, the notation f(n) =
O(g(n)), n → ∞ means that lim supn→∞ |f(n)/g(n)| < ∞.
The asymptotic expansion (8), which is shown in [5] to be
accurate already at packet sizes as small as 50, suggests the
following approximation for the minimum packet error rate
incurred in the transmission of k = log2M information bits
over the AWGN channel (8) using coded packet spanning n
channel uses:

ε(n, k) ≈ Q

(
nC(ρ) + 0.5 log2 n− k√

nV (ρ)

)
. (11)

3The results reported in [5, Eq. (296)], [13] pertain to the real Gaussian
channel. The extension to the complex case in (8) follows by identifying a
complex Gaussian channel with blocklength n with a real AWGN channel with
the same signal-to-noise ratio and blockength 2n.

B. Quasi-static fading channels

For the quasi-static case, the input-output relation is given by

y = hx+w. (12)

We shall assume that the receiver is perfectly aware of the
realizations of the fading channel h. Under this assumption, the
decoder g depends on both the channel output and the fading
realizations. In practice, knowledge of h is acquired by transmit-
ting extra pilot symbols. The resulting overhead (neglected in the
present paper) has been partially characterized in [14]. Bounds
onR∗(n, ε) for the quasi-static case were recently reported in [6],
[7]. These bounds yield the following asymptotic approximation
for R∗(n, ε)

R∗(n, ε) = Cε +O
(
log2 n

n

)
. (13)

Here, Cε denotes the outage capacity, i.e.,

Cε = sup{R : Pr[log2(1 + ρ |h|2) < R] < ε}. (14)

From (8) and (13), we conclude that R∗(n, ε) approaches the
asymptotic (n→∞) limit much faster in the quasi-static case
compared to the AWGN case. Since the quasi-static fading
channel is conditionally Gaussian given the channel gain h,
the following approximation on the minimum packet error rate
incurred in the transmission of k = log2M information bits
using a length n coded packet turns out to be accurate:

ε(n, k) ≈ E

Q
nC(ρ |h|2) + 0.5 log2 n− k√

nV
(
ρ |h|2

)
 . (15)

Here, the expectation is over the channel gain |h|2. This approxi-
mation is a minor improvement over the ones previously reported
in [15], [7], [16].

IV. FINITE BLOCKLENGTH ANALYSIS

Our throughput analysis follows closely [12]. Using the
renewal-reward theorem [17] and (15) we conclude that the
overall system throughput η, measured in bits per second per
Hertz (or bits per channel use), corresponding to the transmission
of coded packets of length n is given by

η = Nu
k

n

[
1− εint(n, k)

]
(16)

where, because of (15), the packet error rate in the presence of
interference εint(k, n) can be well-approximated by

εint(n, k) ≈ E

[
Q

(
nC(ρint) + 0.5 log2 n− k√

nV (ρint)

)]
. (17)

Here, the averaging is performed with respect to the random
variable ρint defined in (3). The corresponding average delay
(measured in number of channel uses) is given by

δ =
n

1− εint(n, k)
. (18)

This expression holds under the assumption of unlimited number
of retransmissions. In the next section, we shall numerically
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Fig. 1: AWGN collision channel; Nu = 50; nf = 50.

optimize both throughput and average delay as a function of
the blocklength n for various values of information bits k and
transmitted power ρ.

V. NUMERICAL RESULTS

Throughout, we shall assume Nu = 50 users and nf = 50.
This corresponds to an average load per frequency band of 1 user.
We consider two SNR values, namely ρ = 5dB and ρ = 10dB,
two values for the number of information bits per packet k = 100
and k = 1000, and both the AWGN and the quasi-static case.

1) AWGN: Fig. 1a shows the behavior of the per-user through-
put η/Nu as a function of the blocklength n. Let us focus for
simplicity on the case k = 100 and ρ = 5dB (leftmost dashed
red curve). The throughput maximizing blocklength value is
about 50 channel uses. This value also minimizes the average
delay (see Fig. 1b). Choosing n so that the ratio k/n equals the
rate that maximizes the throughput (with interference treated
as noise) in the asymptotic regime of long packets (see [12]),
results in the throughput value indicated by the square marker,
i.e, a throughput loss of about 26%. If we increase the number of
information bits from 100 to 1000, we observe a slight increase
in the throughput (about 10%), but a much more significant
increase in the average delay (about 9 times larger). As expected,
a high value of the transmit power ρ results in a larger throughput
and a smaller average delay, because the corresponding optimal
packet size is smaller.

2) Quasi-static: The channel gains {hs} are modeled as in-
dependent circularly symmetric complex Gaussian random vari-

ables with unit variance (Rayleigh fading). We see from Fig. 2a
that the markers corresponding to the throughput achievable by
choosing n so that the ratio k/n approach the optimal rate for
the asymptotic regime of long packets are close to the actual
maximum. This confirms the observation reported in [7] that
the outage capacity is a sharp proxy for the finite-blocklength
fundamental limits of quasi-static channels. Differently from
the Gaussian channel, increasing the number of information bits
from 100 to 1000 results in a throughput reduction (about 3%
for ρ = 5dB). This is because the approximation on R∗(n, ε)
resulting from (15) converges to the outage capacity from above
for the power levels considered in the plot. As shown in Fig. 2b,
this modest throughput degradation comes with a much more
significant increase in the average delay (about 10 times larger
for ρ = 5dB)

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We analyzed the throughput and the average delay achievable
over a slotted Gaussian collision channel with feedback, as a
function of the number of information bits per coded packet
and the coded-packet size. Our results show that at moderate
SNR values, it is preferable to use short coded packet carrying
few information bits. Indeed, the small throughput increase
achievable (for the AWGN case) using longer coded packets
comes with a significant increase in the average delay.

Our analysis was focussed on a simple ARQ protocol. To
generalize our results to more sophisticated schemes such as
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Fig. 2: Quasi-static collision channel; Nu = 50; nf = 50.

repetition-packet diversity and more general forms of hybrid-
ARQ, one needs to find suitable finite-blocklength approxima-
tions to be used instead of (17). For the case when the users
transmit to a centralized receiver, treating interference as noise
is a clearly suboptimal strategy, and more sophisticated protocols
can be used to improve the throughput. One such example is
coded slotted Aloha [18], [19] where a packet-oriented code
is used to create dependency among multiple packets, and
collisions between packets are resolved at the receiver through
iterative interference cancellation. A finite blocklength analysis
of this protocol may shed light on its suitability for applications
with stringent delay constraints.
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