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Abstract—Radio-frequency (RF) impairments in the transceiv-
er hardware of communication systems (e.g., phase noise
(PN), high power amplifier (HPA) nonlinearities, or in-
phase/quadrature-phase (I/Q) imbalance) can severely degrade
the performance of traditional multiple-input multiple-output
(MIMO) systems. Although calibration algorithms can partially
compensate these impairments, the remaining distortion still has
substantial impact. Despite this, most prior works have not
analyzed this type of distortion. In this paper, we investigate the
impact of residual transceiver hardware impairments on the MI-
MO system performance. In particular, we consider a transceiver
impairment model, which has been experimentally validated,
and derive analytical ergodic capacity expressions for both exact
and high signal-to-noise ratios (SNRs). We demonstrate that the
capacity saturates in the high-SNR regime, thereby creating a
finite capacity ceiling. We also present a linear approximation
for the ergodic capacity in the low-SNR regime, and show that
impairments have only a second-order impact on the capacity.
Furthermore, we analyze the effect of transceiver impairments
on large-scale MIMO systems; interestingly, we prove that if one
increases the number of antennas at one side only, the capacity
behaves similar to the finite-dimensional case. On the contrary,
if the number of antennas on both sides increases with a fixed
ratio, the capacity ceiling vanishes; thus, impairments cause only
a bounded offset in the capacity compared to the ideal transceiver
hardware case.

I. INTRODUCTION

MIMO wireless communication systems have attracted con-

siderable attention over the past decades due to their ability

to enhance the channel capacity and transmission reliability.

Telatar and Foschini have respectively shown in [1] and [2]

that there is a linear growth in channel capacity by increasing

the number of transmit and receive antennas, without requiring

additional transmit power or bandwidth. Although numerous

publications have appeared in this field, the vast majority

assumes ideal RF hardware. However, this assumption is quite

unrealistic in practice. More specifically, RF impairments, such

as I/Q imbalance [3], [4], HPA nonlinearities [5], [6] and

oscillator PN [7], [8] are known to have a deleterious impact

on the performance of practical MIMO systems. Even though

one can resort to calibration schemes at the transmitter, or

compensation algorithms at the receiver to partially mitigate

these impairments [9], there still remains certain amount of

distortion unaccounted for. The reasons for such residual

transceiver impairments are, for example, inaccurate models

which are used to characterize the impairments’ behavior,

imperfect parameters estimation errors due to thermal noise,

and unsophisticated compensation algorithms with limited

capabilities.

In this context, very few publications have studied the

impact of residual transceiver impairments. For example,

[10] provided experimental results to model the statistical

behavior of residual hardware impairments. Moreover, they

also investigated the impact of transmitter impairments on

several existing MIMO detection algorithms (e.g., zero-forcing

detection, maximum-likelihood detection, and max-log a pos-

teriori probability detection). In [11], the authors analyzed the

MIMO channel capacity under the aforementioned residual

impairment model, but they only considered hardware impair-

ments at the transmitter side and mainly derived high-SNR

capacity ceilings. Very recently, [12] reported how hardware

impairments affect dual-hop relaying systems. However, to the

best of our knowledge, a detailed study of the MIMO system

capacity in the presence of residual transceiver hardware

impairments is missing from the literature.

Motivated by the above discussion, we hereafter analytically

assess the impact of residual RF impairments in the transmitter
and receiver hardware of MIMO systems. More specifical-

ly, we derive a new analytical expression for the MIMO

ergodic capacity in independent and identically distributed

(i.i.d.) Rayleigh fading channels for arbitrary SNR values.

Additionally, we also present asymptotic capacity expres-

sions in the high-SNR regime. In the low-SNR regime, we

derive expressions for the minimum normalized energy per

information bit required to convey any positive rate reliably

and the wideband slope [13], which are the two key low-

SNR parameters. Throughout our analysis, we find that the

impact of residual impairments is marginal on low SNR

systems, while it can substantially affect the performance of

high SNR systems. In the last part, we analyze the ergodic

capacity of large-dimensional MIMO systems with transceiver

impairments and deduce asymptotic closed-form expressions

for three typical cases. This provides valuable insights on



how transceiver impairments affect large-scale (or “massive”)

MIMO systems [14].

Notation: Upper and lower case boldface letters denote

matrices and vectors, respectively. The trace of a matrix is

expressed by tr (·). The n × n identity matrix is represented

by In. The expectation operation is E[·], while the matrix de-

terminant is denoted by det(·). The superscripts (·)H and (·)−1

stand for Hermitian transpose and matrix inverse, respectively.

The Euclidean vector norm is denoted by ‖·‖. The symbol

CN (m,Σ) denotes a circularly-symmetric complex Gaussian

distribution with mean m and covariance Σ.

II. SIGNAL AND SYSTEM MODELS

The canonical flat-fading point-to-point MIMO channel with

Nt transmit antennas and Nr receive antennas is modeled as

y = Hs+ ν (1)

where s ∈ C
Nt×1 represents the transmitted signal, with zero

mean and covariance matrix Es

[
ssH

]
= Q. The received

signal is denoted by y ∈ C
Nr×1, while ν ∼ CN (0, INr ) is the

(normalized) additive complex Gaussian receiver noise. The

channel matrix is denoted by H ∈ C
Nr×Nt and is assumed

to have i.i.d. complex Gaussian entries with zero mean and

unit variance. The receiver is assumed to know H perfectly,

while only its statistical characteristics are available at the

transmitter.

Unfortunately, the canonical model cannot describe physical

hardware impairments of RF transceivers in an accurate way.

To be more specific, on the transmitter side, the impairments

will cause a mismatch between the intended signal and what

is actually transmitted; on the receiver side, the impairments

will distort the received signal during the reception processing.

These impairments come from different sources, for example,

I/Q imbalance, HPA non-linearities and PN [9]. Compensation

schemes can be applied at both the transmitter and receiver

to mitigate part of these impairments; however, as shown in

[9], [10], the residual impairments will still induce additional

additive distortion noises. As proposed and validated in [9],

[10], the impact of residual transceiver impairments is well-

modeled by a more general channel model:

y = H (s+ ηt) + ηr + ν (2)

where the additive terms ηt and ηr are distortion noises
from the residual impairments in the transmitter and receiver,

respectively. The system block diagram is shown in Fig. 1.

Furthermore, the measurement results in [10] show that the

residual transmit distortion noise is well-modeled as Gaussian

distributed, with the important property that its average power

is proportional to the average signal power. On this basis, the

transmitter and the receiver distortion noises are modeled as

ηt ∼ CN (
0, δ2t diag(q1, . . . , qNt

)
)

(3)

ηr ∼ CN (
0, δ2rtr(Q)INr

)
(4)

where q1, . . . , qNt are the diagonal elements of the signal

covariance matrix Q. This means that the transmitter distortion

MIMO Channel

s y

ν
Intended
Signal

tη

Transmitter
Distortion
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Fig. 1. Block diagram of the MIMO channel with distortion noises from
residual impairments in the transmitter and receiver hardware.

power at the nth transmit antenna is proportional to the signal

power qn applied on the same antenna, while the receiver dis-

tortion power at the mth receive antenna is proportional to the

average signal power tr(Q) received over the mth row of the

channel matrix H.1 This model assumes sufficient decoupling

between the transmit and the receive RF chains, such that the

corresponding impairments are statistically independent across

the antennas [10].

The proportionality parameters δt and δr characterize the

level of residual impairments in the transmitter and receiver,

respectively. Note that δtandδr are inherently connected to the

error-vector magnitude (EVM) metric [15], which is common-

ly used to quantify the mismatch between the intended signal

and the actual signal in RF transceivers. In our notation, the

total EVM in the transmitter hardware is given by

EVM �

√
Eηt

[‖ηt‖2]
Es[‖s‖2]

= δt. (5)

In practical applications, such as long term evolution (LTE),

the EVM requirements are in the range δt ∈ [0.08, 0.175] [15,

Sec. 14.3.4]. Note that (2) reduces to the canonical model (1)

for δt = δr = 0, which indicates ideal hardware on both sides.

III. ERGODIC CHANNEL CAPACITY ANALYSIS

Based on the residual impairment model in Section II, we

now derive an expression for the ergodic capacity for any

number of antennas and arbitrary SNR.

Definition 1: The SNR is denoted by ρ. We will also use

the SNR to represent the effective signal power ρ = tr(Q),
since the channel gain and receiver noise power are normalized

in this paper.

Remark 1: An increase in SNR can be achieved by increas-

ing the transmit power or improving the channel conditions

(i.e., by decreasing the propagation loss). If the transmit power

is increased such that we move far outside the dynamic range

of the power amplifier, then the EVM will increase and thus

δt should also be increased [16] and advanced dynamic power

adaptation is required [17]. For the sake of clarity and brevity

in interpretation, we will keep the analysis clean by assuming

that any change in SNR is achieved by a change in the

propagation loss, while the transmit power is fixed.

1In practice, the receiver will amplify and filter the received signal y
in several steps during reception. The receiver distortion noise ηr is the
aggregation of these steps which occur at different amplification levels.
Without loss of generality, (4) represents the aggregate receiver distortion
using the amplification at the time when the signal first reaches the receive
antenna.



We define q � min(Nt, Nr) and p � max(Nt, Nr) and

have the following lemma.

Lemma 1: The ergodic channel capacity of (2) with

i.i.d. Rayleigh fading and under the constraint tr(Q) ≤ ρ is

C = EH

[
log2 det

(
INr

+
ρ

Nt
HHHΦ−1

)]
(6)

where Φ �
(

ρ
Nt

δ2tHHH + (δ2rρ+ 1)INr

)
. The capacity is

achieved by s ∼ CN (0, ρ
Nt

INt
), giving the distortion noise

distributions

ηt ∼ CN
(
0, δ2t

ρ

Nt
INt

)
(7)

ηr ∼ CN (
0, δ2rρINr

)
. (8)

Proof: For any channel realization H and signal covari-

ance matrix Q, (2) can be seen as an instance of the canonical

model (1) with noise covariance

Φ =
(
δ2tHdiag(q1, . . . , qNt)H

H+(δ2rtr(Q) + 1)INr

)
. (9)

Thus, the sufficiency of using a Gaussian distribution on s
follows from [1] and the ergodic capacity becomes

C = max
Q: tr(Q)≤ρ

EH

[
log2 det

(
INr +HQHHΦ−1

)]
. (10)

Finally, the optimality of the signal covariance matrix Q =
ρ
Nt

INt
is a simple consequence of [11, Corollary 1].

This lemma shows that the ergodic capacity with transceiv-

er hardware impairments has a similar structure as for the

canonical model in (1). In the remainder of this paper we

will, however, show that it behaves fundamentally different in

many cases and regimes of practical relevance.

A. Exact SNR Analysis

We now derive a closed-form expression for the ergodic

capacity in Lemma 1. To this end, we first define the instan-

taneous MIMO channel correlation matrix as

W �
{
HHH , if Nr ≤ Nt,

HHH, if Nr > Nt,
(11)

since it will be often used in our manipulations. We begin our

discussion with the following proposition.

Proposition 1: For i.i.d. Rayleigh fading channels, the er-

godic capacity in (6), under the proposed residual impairment

model, is

CNr×Nt
=

q

ln(2)
K

q∑
n=1

q∑
m=1

(−1)
n+m

det (Ω)Γ (t+ 1)

×
t+1∑
k=1

⎛
⎝e

1
f Et+1−k

(
1
f

)
f2(t−k)

−
e

1
g Et+1−k

(
1
g

)
g2(t−k)

⎞
⎠

(12)

where we define t � n+m+ p− q − 2, f � ρ(δ2t+1)
Nt(ρδ2r+1) and

g � ρ
Nt(ρδ2r+1) , while K =

[∏q
i=1(p− i)!

∏q
j=1(q − j)!

]−1

is

a normalization constant. Moreover, Γ(z) denotes the Gamma

function [18, Eq. (8.310.1)] and En(z) =
∫∞
1

t−ne−ztdt is

the exponential integral function [18, Eq. (8.211.1)]. Finally,

Ω is a (q−1)×(q−1) matrix whose (i, j)-th element is given

by

Ωi,j =
(
α
(n)(m)
i,j + p− q

)
! q−

1
q−1

where

α
(n)(m)
i,j �

⎧⎪⎨
⎪⎩
i+ j − 2, if i < n and j < m

i+ j, if i ≥ n and j ≥ m

i+ j − 1, otherwise.

(13)

Proof: Using the notation in (11), the ergodic capacity in

(6) can be expressed as

CNr×Nt = EH

[
log2 det

(
Iq +

ρ

Nt
WΦ−1

)]
(14)

where Φ =
(

ρ
Nt

δ2tW + (δ2rρ+ 1)Iq

)
. Note that W is a q×q

random, non-negative definite matrix following the complex

Wishart distribution. Thus, it has real non-negative eigenvalues

and the probability density function (PDF) of its unordered

eigenvalue, λ, is found in [19, Eq. (38)] to be

pλ(λ) = K

q∑
n=1

q∑
m=1

(−1)m+nλn+m+p−q−2

eλ
det (Ω) . (15)

By exploiting the eigenvalue properties, we can now alter-

natively express the capacity in (14) as

CNr×Nt
= EH

[
q∑

i=1

log2

(
1 +

ρ
Nt

λi

ρδ2t
Nt

λi + ρδ2r + 1

)]
(16)

= q

∞∫
0

log2

(
1 +

ρ
Nt

λ

ρδ2t
Nt

λ+ ρδ2r + 1

)
pλ (λ) dλ (17)

= q

⎛
⎝ ∞∫

0

log2

((
ρ

Nt
+

ρδ2t
Nt

)
λ+ ρδ2r + 1

)
pλ (λ) dλ

⎞
⎠

− q

⎛
⎝ ∞∫

0

log2

(
ρδ2t
Nt

λ+ ρδ2r + 1

)
pλ (λ) dλ

⎞
⎠ (18)

where λi represents the i-th ordered eigenvalue of W.

The integrals in (18) can be evaluated using the following

integral identity [20, Eq. (40)]

∞∫
0

ln (1 + ay) yn−1e−cydy = Γ(n)e
c
a

n∑
k=1

Γ
(−n+ k, c

a

)
ckan−k

(19)

and the fact that En(z) = zn−1Γ(1− n, z), where Γ(s, x) =∫∞
x

ts−1e−tdt is the upper incomplete gamma function [18,

Eq. (8.350.2)]. The expression in (12) then follows after some

simple algebraic manipulations.



Note that for the practically interesting 2 × 2 MIMO case

(e.g., used in mobile handsets), (12) reduces to a very concise

form

C2×2 = 2

⎡
⎣e

1
f E2

(
1
f

)
f2

−
e

1
g E2

(
1
g

)
g2

⎤
⎦+ f − g. (20)

Figure 2 illustrates the ergodic capacity for different hard-

ware conditions and antenna configurations. In all cases, the

results demonstrate an excellent agreement between analytical

results and Monte-Carlo simulations. Furthermore, for both

2 × 2 and 4 × 4 configurations, it is clear that hardware

impairments will cause severe degradation on the ergodic

capacity, compared with the ideal case studied by Telatar and

Foschini [1], [2]. Observe that the capacity gap between the

ideal system and the impaired system gets larger with the SNR.

It is also noteworthy that for high SNR values, the ergodic

capacity saturates and thus exhibits a finite capacity ceiling

that cannot be crossed regardless of the SNR value. The reason

for this effect is that the distortion noise power on both sides

grows linearly and unboundedly with the transmit power. This

confirms that hardware impairments fundamentally limit the

performance of high-capacity systems, as quantified by the

following corollary.
Corollary 1: Asymptotically as ρ → ∞, the ergodic capac-

ity in (6) approaches the finite limit

Climit=
q

ln(2)
K

q∑
n=1

q∑
m=1

(−1)
n+m

det (Ω)Γ (t+ 1)

×
t+1∑
k=1

⎛
⎝e

1
f̂ Et+1−k

(
1
f̂

)
f̂2(t−k)

−
e

1
ĝ Et+1−k

(
1
ĝ

)
ĝ2(t−k)

⎞
⎠ (21)

where f̂ � 1+δ2t
δ2r

and ĝ � δ2t
δ2r

.

Proof: The asymptotic capacity is defined as

Climit= lim
ρ→∞EH

[
q∑

i=1

log2

(
1 +

ρ
Nt

λi

ρδ2t
Nt

λi + ρδ2r + 1

)]
(22)

= q

∫ ∞

0

log2

(
1 +

λ

δ2t λ+Ntδ2r

)
p(λ)d(λ). (23)

From (22) to (23) we have changed the order of expectation

and limit, since according to Jensen’s inequality, the term

inside the expectation is upper bounded by an integrable func-

tion, hence the dominated convergence theorem [21] holds.

The final expression (21) is obtained as in Proposition 1.
As expected, (21) is a deterministic constant independent

of the SNR. Observe that Corollary 1 extends the asymptotic

results in [10], [11] that only considered aggregate hardware

impairments at the receiver.

B. Low-SNR Analysis
In the low-SNR regime, the capacity is well-approximated

as [13]

C

(
Eb

N0

)
≈ S0 log2

(
Eb

N0

Eb

N0 min

)
(24)
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Fig. 2. Simulated and analytical ergodic MIMO capacity in i.i.d. Rayleigh
fading channels with residual hardware impairments (δt = δr = 0.15) and
without hardware impairments (δt = δr = 0).

where Eb

N0 min
and S0 represent the minimum normalized en-

ergy per information bit required to convey any positive rate
reliably and the wideband slope, respectively.

As shown in [13], S0 and Eb

N0 min
can be calculated from the

first and second derivatives of C(ρ) at ρ = 0 through

Eb

N0 min

� lim
ρ→0

ρ

C(ρ)
=

1

Ċ(0)
(25)

and

S0 � −
2 ln(2)

[
Ċ(0)

]2
C̈(0)

. (26)

Proposition 2: For i.i.d. Rayleigh fading channels, the min-

imum energy per information bit and the wideband slope, un-

der the proposed residual impairment model, are respectively

given by

Eb

N0 min

=
ln(2)

Nr
(27)

S0 =
2NtNr

(2δ2t + 1)(Nt +Nr) + 2δ2rNt
. (28)

Proof: Substituting (17) into (25) and taking the first

derivative with respect to ρ, we get

Ċ(0) = q

∫ ∞

0

⎡
⎣log2

(
1+

ρ
Nt

λ

ρδ2t
Nt

λ+ρδ2r+1

)′∣∣∣∣∣
ρ=0

⎤
⎦ pλ (λ) dλ

=
q

Nt ln(2)

∫ ∞

0

λp(λ)dλ (29)

=
E [tr (W)]

Nt ln(2)
=

Nr

ln(2)
(30)

where from (29) to (30) we have used the fact that [13,

Lemma 4]

q

∫ ∞

0

λp(λ)dλ = qE[λ] = E [tr (W)] = NrNt. (31)



Similarly, we can find the second derivative as follows

C̈(0) = q

∫ ∞

0

⎡
⎣log2

(
1+

ρ
Nt

λ

ρδ2t
Nt

λ+ρδ2r+1

)′′∣∣∣∣∣
ρ=0

⎤
⎦ pλ (λ) dλ

= −q(2δ2t + 1)

ln(2)N2
t

∫ ∞

0

λ2p(λ)dλ− 2qδ2r
ln(2)Nt

∫ ∞

0

λp(λ)dλ

(32)

= −q(2δ2t + 1)

ln(2)N2
t

E
[
tr
(
W2

) ]− 2qδ2r
ln(2)Nt

E
[
tr (W)

]
(33)

= − Nr

ln(2)

(
(2δ2t + 1)(Nt +Nr)

Nt
+ 2δ2r

)
(34)

where from (32) to (34) we use the fact that [13, Lemma 4]

q

∫ ∞

0

λ2p(λ)dλ=qE[λ2]=E
[
tr
(
W2

)]
=NrNt (Nr +Nt) .

(35)

Combining (30), (34) with the definitions in (25) and (26) we

can obtain the results in (27), (28).

Figure 3 depicts the ergodic capacity of a 4 × 4 MIMO

system under different hardware conditions. Note that Eb

N0 min
is

the intersection of the curves with the horizontal axis. We see

in both cases that the analytical results (linear approximation)

and the numerical results have very good agreement across

a wide SNR range. Interestingly, for both ideal and impaired

systems, Eb

N0 min
remains the same. The impact of transceiver

impairments is seen only via the wideband slope S0; observe

that the slope of capacity curve decreases when impairments

are considered. This implies that hardware impairments have

only a second-order impact on the capacity in the low-SNR

regime. From the expression in (28), we notice that the

transmitter impairments have a more influential impact on S0

than the receiver impairments, since δ2t is multiplied with a

larger number. This reveals that transmitter impairments are

more influential in the low-SNR regime.

C. Large-Scale MIMO Analysis

In this section, we analyze the asymptotic behavior of

the ergodic capacity when the number of antennas is large.

Specifically, our discussion includes three cases:

i) large Nt and fixed Nr;

ii) large Nr and fixed Nt;

iii) large Nt and Nr, with a fixed finite ratio β = Nr

Nt
> 0.

For case i), recall that the Nr × Nr matrix 1
Nt

HHH

converges almost surely to INr
almost surely as Nt → ∞

[22], thus (6) becomes

C∞,Nr
= Nr log2

(
1 +

ρ

ρδ2t + ρδ2r + 1

)
. (36)

This shows that having a large number of transmit antennas

makes the capacity converge to a finite deterministic value,

which is characterized by the level of transceiver impairments

and the number of receive antennas. From (36), we notice

that for fixed SNR values, the capacity increases linearly with

the number of receive antennas; however, for fixed antenna
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setups, if we only increase SNR, the capacity behaves similar

to the finite-dimensional MIMO case in Corollary 1; that is, it

saturates in the high-SNR regime. Figure 4 shows the behavior

of the ergodic capacity as we increase the number of transmit

antennas. When Nt is small, the gap between the two systems

is small; as Nt increases the gap gets larger, and finally when

Nt is sufficiently large the gap converges to a constant which

is determined by the SNR and the level of impairments. We

can interpret this gap as a SNR penalty due to the transceiver

hardware impairments. From Fig. 4, we can see that, for both

the impaired system and the ideal system, the ergodic capacity

converges to the finite ceiling given by (36) as Nt grows large.

For case ii), analogously to the previous case, we use the

property that 1
Nt

HHH = Nr

Nt
× 1

Nr
HHH and the Nt × Nt

matrix 1
Nr

HHH converges to INt as Nr → ∞ [22]. Conse-
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Fig. 5. Ergodic MIMO capacity when the number of transmit antennas is
fixed and the number of receive antennas increases (Nt = 4, ρ = 10dB).

quently, (6) becomes

CNt,∞ = lim
Nr→∞

Nt log2

(
1 +

ρNr

Nt

ρδ2t
Nr

Nt
+ ρδ2r + 1

)

= Nt log2

(
1 +

1

δ2t

)
. (37)

Observe that this capacity ceiling is characterized only by

the number of transmit antennas and the level of transmitter

impairments, while the receiver impairments have no impact

on the system performance, similar to [11, Theorem 1], where

receiver impairments were ignored all along. The behavior

in case ii) is quite different from case i), where both the

transmitter and the receiver impairments affect the system

performance. This result indicates a very important implication

for system design: if a large-scale MIMO system adopts

the antenna configuration with Nr 
 Nt, it is of pivotal

importance to build high-quality transmitter hardware. Figure

5 compares the ergodic capacity of the impaired system

and the ideal system as Nr increases. We find that, for the

impaired system, the ergodic capacity converges to the finite

deterministic ceiling which is given in (37). However, for the

ideal system, the capacity increases logarithmically with Nr

(this coincides with the result in [22, Eq. (6)]). We conclude

from this observation that, with the existence of residual

transmitter hardware impairments, we cannot benefit from the

array gain by increasing the number of receive antennas as in

the ideal hardware case.

For case iii), we first note that the ergodic capacity in (6)

can be expressed as the difference

C = EH

[
log2 det

(
(δ2rρ+ 1)INr

+
ρ(1 + δ2t )

Nt
HHH

)]

− EH

[
log2 det

(
(δ2rρ+ 1)INr +

ρδ2t
Nt

HHH

)]
(38)

where each term represents a classical ergodic capacity ex-

pression. The asymptotic behavior as Nt and Nr grow large

with a finite ratio β = Nr

Nt
> 0 can therefore be obtained by

analyzing each term separately. More precisely, we apply an

asymptotically tight approximation from [23, Chapter 13.2.2],

which shows that

C −Nr

[
log2

⎛
⎝1 + ρδ2r +

ρ(1+δ2t )
1+βρ1

1 + ρδ2r +
ρδ2t

1+βρ2

⎞
⎠+β−1 log2

(
1 + βρ1
1 + βρ2

)

+ log2(e)

(
ρ1(1 + ρδ2r)

ρ(1 + δ2t )
− ρ2(1 + ρδ2r)

ρδ2t

)]
= O

(
1

Nt

)
(39)

where C is the true ergodic capacity, L � 1− β−1, and

ρ1 � 1

2

(
ρ(1 + δ2t )L

1 + ρδ2r
− β−1

+

√(ρ(1 + δ2t )L

1 + ρδ2r
− β−1

)2
+

4ρ(1 + δ2t )

β(1 + ρδ2r)

)
(40)

ρ2 � 1

2

(
ρδ2tL

1 + ρδ2r
− β−1

+

√( ρδ2tL

1 + ρδ2r
− β−1

)2
+

4ρδ2t
β(1 + ρδ2r)

)
. (41)

Since the difference between the true and approximate ergodic

capacity in (39) behaves as O
(

1
Nt

)
, the approximation error

vanishes asymptotically. Observe that the expression inside the

square brackets in (39) is strictly positive and only depends

on the fixed ratio β = Nr

Nt
and not on the individual values

on Nt and Nr. When the number of antennas is scaled with

the fixed ratio β, then the approximated ergodic capacity in

(39) grows linearly with Nr and without bound. This is the

same scaling behavior as with ideal hardware, which means

that transceiver impairments will only inflict a small/bounded

offset in the ergodic capacity in this case. It is important to

note that since the SNR is fixed, the effective SNR per element

in s will reduce as ρ
Nt

, but this reduction is counteracted by the

large array gain achieved at the receiver when Nr also grows

large. Another important explanation for this phenomenon

is that by deploying a large number of antennas on both

sides, we can create several spatially parallel subchannels. The

total transmit power is then allocated to these subchannels

such that each subchannel only has a small portion of the

total transmit power, which makes the effective SNR on each

stream very low. As we observed in the low-SNR analysis,

transceiver impairments do not have significant impact on the

capacity for low SNR values. Consequently, the “capacity

ceiling” disappears. Figure 6 illustrates the ergodic capacity

of this scenario for three different values of β. Apart from the

previous observations, this figure also demonstrates that for

different β, the relative capacity gaps,
Cimp−Cideal

Cideal
, between

the impaired systems and the ideal systems, are nearly the



same. This indicates that residual transceiver impairments has

a relative smaller impact on large-dimensional MIMO systems.
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IV. CONCLUSIONS

Residual RF hardware impairments can have a dramatic

impact on the capacity of MIMO communication systems,

especially on those operating at high SNRs (i.e., high-rate

systems). In this paper, we analytically derived an ergod-

ic capacity expression for a MIMO system with residual

transceiver impairments, which applies for any finite number

of antennas and the entire SNR range. This expression can

be very easily evaluated, since it only contains elementary

functions. Additionally, we presented analytical capacity ex-

pressions in the high-SNR and low-SNR regimes. Finally,

we presented results on the ergodic capacity for large-scale

MIMO systems with residual transceiver impairments. While

the ergodic capacity generally has a finite ceiling due to the

transceiver impairments, we found that by increasing both the

number of transmit and receive antennas, the ceiling vanishes

and the capacity can increase unboundedly at any SNR. As

such, large-scale MIMO is one viable solution for mitigating

the detrimental impact of residual impairments—at least, if the

increasing overhead signaling can be handled properly.
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