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Abstract

Community structure is an important aspect of network analysis, with a variety of real-
life applications. Local community detection algorithms, which are relatively new in
literature, provide the opportunity to analyze community structure in large networks
without needing global information. We focus our work on a state-of-the-art algorithm
developed by Yang and Leskovec and evaluate it on three different networks: Amazon,
DBLP and Soundcloud.

We highlight various similarities and differences between the geometry and the sizes
of real and annotated communities. The algorithm shows robustness to the seed node,
which is also demonstrated by its rather high level of stability. By using two different
methods of seed selection from the literature, we demonstrate further improvement on
the quality of the communities returned by the algorithm. Finally, we try to detect real-
life communities and show that the local algorithm is comparable to global algorithms
in terms of accuracy.
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1
Introduction

N
etworks appear in many real life structures such as social groups, energy
distribution systems, the World Wide Web, and the molecular structure of
materials. The emergence of network science allowed researchers to analyze
these different entitities within the same mathematical framework. With the

help of this common framework, it was discovered that such different structures share
many similar characteristics, e.g. power-law distributions of the degrees [1] or the ‘small
world’ phenomenon[2].

One such characteristic is the groups that hold members with high number of con-
nections among themselves and low number of connections to those outside of the group.
Such groups are generally called ‘communities’, and the problem of finding such groups
is referred to as ‘community detection’ in the literature [3].

The majority of the community detection algorithms in the literature are ”global”
algorithms. That means, they require the complete information of the network, and try
to find all communities in it. In this project, however, we work on local community
detection algorithms, which are relatively new in the literature.

While the global algorithms have a graph-centric approach, i.e. focus on finding
tightly connected groups of nodes in a graph; local algorithms have a node-centric ap-
proach, focusing on finding the communities around a node. As such, local community
detection algorithms tend to start from a ‘seed node’, then grow the communities around
the node in the subsequent iterations.

One of the most well-known algorithms is an extension of the Local Spectral Clus-
tering algorithm by Yang and Leskovec [4]. Our work focuses on its applications and
evaluation on various networks and possible methods to improve the algorithm’s perfor-
mance.
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

1.1 Motivation

Community detection is one of the widely discussed problems in network science, and
it has a wide range of applications. These applications include detecting friend circles
in online groups, grouping similar types of proteins in protein-interaction networks, and
uncovering clusters that are separated by characteristics such as geographic location.

A brute-force approach to the problem is computationally expensive, which necessi-
tates ‘smarter’ solutions. There exists various methods proposed (which we discuss in
the following sections) to approach the problem. However, there is no ‘perfect method’ to
handle the task. Community detection remains an open research problem, and any new
approach yields the possibility of potential breakthroughs and expanding the algorithm’s
possible areas of use.

Local algorithms provide a new approach to the problem. They allow the detection
of communities in the situations where one is only interested in a certain subset of
the network, without having to involve the whole network in their calculations. In the
situations where one deals with very large networks, such an approach is particularly
desirable [5]. However, as it is a relatively new concept, few works propose or evaluate
local community detection algorithms, and even fewer works deal with the particulars
such as community characteristics or detecting real-life communities.

As stated before, our work focuses on Yang and Leskovec’s algorithm[4]. We aim to
evaluate the performance of the algorithm, describe the properties of the communities
detected, discuss possible methods of improvement that have been proposed in the lit-
erature and use the algorithm to detect the communities found in real life. By meeting
these goals, we hope to provide new insights to local community detection algorithms,
and the community detection problem in general.

1.2 Definitions

Our work is heavily involved with the concepts of network theory. This sections contains
the definition of such concepts, and the explanations about our naming choices.

Graph: The entity G(V,E) is defined as a graph with V as the set of vertices
(singular: vertex) and E as the set of vertices; such that:

∀(u,v) ∈ E : u ∈ V, v ∈ V

In this work, we use the words graph and network interchangably. However, we prefer
to use the term graph when referring to an abstract mathematical entity, and network
when referring to a real-world structure (such as Soundcloud network).

Vertex: A vertex, or a node, is a single element of the set V in the graph G(V,E).
Vertices are the main building blocks of the graphs. We generally use the term node.

Edge: An edge, or a connection is an element of the set E in the graph G(V,E).
The element consists of a pair, like (u,v), and both sub-elements in the pair belong to
the set of vertices, V . A vertex can be connected to any other vertex in the graph.

Degree: The number of edges a node is connected to.

2



1.3. BACKGROUND CHAPTER 1. INTRODUCTION

Subgraph: A subgraph G′ of the graph G is defined as follows: G′(V ′,E′) is a graph
such that V ′ ⊂ V , E′ ⊂ E. G′ is also a graph, and satisfies the requirements of one.

We prefer the term subgraph when mentioning the abstract entity. In other cases, we
prefer to use the informal term ‘group of nodes’.

Shortest path: The shortest path between two nodes (u, v) is a sequence of edges,
in which the number of edges required to traverse when trying to reach from node u to
node v is minimum.

Distance: The number of edges in the shortest path between two nodes. If there
exists no paths between two nodes, then the distance is considered to be ∞.

Diameter: The maximum distance in a graph or a subgraph.
Eccentricity: The maximum distance between a node and all the other nodes in a

graph (or subgraph) [6].
Community: A group of nodes where the number of internal edges exceeds the

number of edges connecting the nodes outside the group. Figure 1.1 shows the com-
munities detected in the author’s Facebook network. See the following section for the
discussion about its definition.

Annotated community: A group of nodes that define a ‘community’ in real life
sense, such as Facebook groups. Annotated communities can be used as a basis to
evaluate the usefulness of a community detection algorithm. We also use the terms
‘communities based on ground-truth’ and ‘annotated communities’ interchangeably [4].

Boundary: The boundary of the community C for a graph G(V,E) is defined as the
set of edges E′, such that E′ ⊂ E, E = {(u,v)|(u,v) ∈ E, u ∈ C, v /∈ C} [5]. We also call
E′ the set of ‘inter-community’ or ‘bordering’ edges.

Neighborhood: A neighborhood, or an egonet of a node, is the set of vertices that
are connected to that node [7].

1.3 Background

Community detection is about finding tightly connected groups of nodes with few con-
nections leading outside. However, the problem remains ambiguous in the literature:
there is no consensus on what a community is, and some amount of ‘common sense’ is
required to identify one [3].

Following from the ambiguity of the definition of a community, there are also multiple
measures of how ‘fit’ a group of nodes is to be a community, such as modularity or
conductance. By using these measures, we can define the community detection as a
problem of optimizing these fitness functions, which is an NP-Complete problem [4].
Therefore, many community detection methods are actually approximation algorithms.

We can then give examples of various fitness functions. Let G(V, E) a graph, C the
set of nodes in a community, ein the number of edges where both nodes are within C,
ebnd the number of edges where one node is in C and one is outside (boundary edges),
and eout the number of edges where both nodes are outside C. Let ki be a node’s degree,
and let A be the ‘adjacency matrix’ of the graph so that Aij = 1 when an edge exists
between the nodes numbered i and j. Let si = 1 when the node numbered i is in the

3



1.3. BACKGROUND CHAPTER 1. INTRODUCTION

Figure 1.1: The results of a global community detection algorithm (greedy modularity max-
imization) on the author’s Facebook ego network. The first three communities roughly cor-
respond to: magenta-high school, green-workplace, blue-university. The red-colored nodes
form a union of the remaining smaller communities in the network.

community, andsi = −1 otherwise. The definitions of various fitness functions are as
follows:

Conductance [8]: The actual definition of conductance is:

f(C) =
ebnd

min((ebnd + ein), (ebnd + eout))

For local community detection, where the community is considerably smaller than
the graph, conductance can be defined as the fraction of the edges in C that point out
of the community and be simplified as:

f(C) =
ebnd

ebnd + ein

Modularity[9] : Difference between the number of edges in the community, and
the expected number of edges in a given graph with the same degree distribution.

f(C) =
1

4

∑
i,j

[sisj(Aij −
kikj
2|V |

)]
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1.3. BACKGROUND CHAPTER 1. INTRODUCTION

Triad participation ratio [4]: The fraction of nodes in the graph that belong to
a triangle.

f(C) =
|u : u ∈ C, (v,w) : v,w ∈ C, (u,v) ∈ E, (u,w) ∈ E, (v,w) ∈ E|

|V |

Cut Ratio[3]: Fraction of the edges pointing outside the community, to all possible
such edges.

The best known examples of community detection algorithms are what we denote
‘global’ algorithms. They are generally concerned with finding all communities in a
given graph. However, there are several networks with a massive volume or a dynamic
structure. In such networks, attempting to detect communities using global algorithms
becomes infeasible [10].

Our work, however, is concerned with local community detection. Local methods
start from one seed node and grow a community around it. In the following subsections
we explain these in more detail, and give examples of both global and local methods.

1.3.1 Global Community Detection

The vast majority of the work done in the field of community detection is on global
methods. We included several well-known methods in this section and grouped them
into different categories. It should be noted, however, that global algorithms are not
limited to these categories.

Clustering: Community detection problem is analogous to cluster analysis in ma-
chine learning. Cluster analysis, or clustering is the problem of finding group of objects
that show more similarity to each other than the other objects [11]. It has applications
in many different areas, such as bioinformatics, text analysis and recommendation sys-
tems. For the community detection problem, ‘similarity’ can be defined as the number
of common neighbors.

Modularity maximization: Modularity is one of the most widely used measures in
community detection methods. One such way to approach the modularity maximization
problem is to use greedy algorithms. An algorithm is denoted ‘greedy’ when it makes
decisions based on reaching local optima in each step [12]. The first known greedy
method for modularity maximization, based on hierarchical clustering, was developed
by Newman[13]. In a later work, Clauset, Newman and Moore [14] developed one of the
most well-known greedy algorithms, which is able to detect communities in graphs with
size up to 106. In this paper, we used the algorithm on some of our datasets to allow
the reader to make a comparison.

Besides greedy algorithms, there are several other methods of optimization, such as
simulated annealing. [15]

Random walk based methods: If the communities in a graph are well-separated,
we can expect a random walker to spend considerable amount of time in a community,
due to the high number of interconnecting edges and low number of ‘bordering’ edges.
Some examples using random walks are ”Walktrap” by Latapy and Pons, which is based
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on probabilities of reaching a node in a number of fixed steps [16]; and methods based
on Markov chains by Van Dongen[17] and by Weinan et al. [18].

Shortest-path based methods: The method of Girvan and Newman, based on
edge betweenness, is the most well known among the methods based on shortest paths.
[19]. Betweenness of an edge is defined as the number of shortest paths that go through
the pairs of the nodes in the edge. [20]

The algorithm runs as follows:

1. Calculate betweenness values for all edges

2. Remove the edge with highest betweenness

3. Recalculate the edge betweenesss values

4. Go to step 2

As the algorithm runs, communities are transformed into components that are dis-
connected from each other. An application of the algorithm by Gleiser and Danon on
musician networks reveal meaningful communities: Musicians are shown to be separated
by race and geographic location. [21]

With the present computational power, the algorithm is only feasible to run on graphs
with up to 10,000 nodes [3]. However, there are variants that are designed to decrease
the time complexity [22].

Overlapping community detection: Most of the community detection algorithms
find communities with distinct nodes. This, however, is not the case for the communities
found in real-life. In the Figure 1.1, for example, the community (2) is composed of the
author’s co-workers and classmates. As some of the people belong to both these groups,
it is actually a group consisting of two overlapping communities.

Since considering overlaps adds another dimension of complexity, the problem is
generally ignored. There are, however, methods that are designed with overlapping
communities in mind.

Clique percolation method is the most widely known example [23]. A ‘clique’ is a
group of nodes that are all connected to one another, and a set of such k number of
nodes is called a k − clique. The idea of the clique percolation method is that, due
to the definition of a community, cliques are likely to exist within the community, and
unlikely to exist at the community boundaries. Therefore, detection of the cliques forms
the essential part of the community detection process.

1.3.2 Local Community Detection

The main difference between local algorithms is that they do not require complete in-
formation about the network. A seed node is selected, and the community is ‘grown’
around the seed node using a bottom-up approach.

In order to properly evaluate a local algorithm, one must study the properties of
the detected communities. In general, we expect the returned communities to have an
optimal fitness value (e.g. low conductance, high modularity) and display similarities to

6
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communities found in real-life networks. The size and the shape of the communities are
particularly important. Most of the works about community detection briefly mention
the community sizes. Few works also address the aspects of the community geometry,
such as the diameter [24][25].

As local methods require a seed node to run, the selected seed is one of the parameters
that influence the algorithm’s performance. Several works propose methods of seed
selection [26][27][7], and we evaluate two of these methods in our work. Another aspect of
the algorithm’s performance is its stability. Local algorithms use a bottom-up approach
to reveal the community structure. We call an algorithm ‘stable’ if we can detect the
same community structure using different seeds that belong to it. This area is generally
neglected in the literature, however, there exists mentions of overlapping communities
with different seeds [27][25].

Lastly, the results of a community detection algorithm can be tested against real
data. A considerable number of real-life networks contain annotated communities; such
as groups in Facebook and departments in a university network. Using the algorithm
to predict these communities will give an idea of how accurate the community detection
process works. Note that this task is challenging, as annotated communities do not
always share the cohesive structure as the communities returned by metrics like conduc-
tance and modularity. Nevertheless, some of the present work also focus on this area
[4][24].

Previous Work

The local methods are relatively new in literature. Clauset [5] proposed the first local
community detection method based on ‘local modularity’. This new definition of modu-
larity was required since Girvan and Newman’s definition[19] of modularity uses global
information, such as the number of edges in the complete network. Local modularity
is based on the edges in the community boundary. With B ⊂ E as the community
boundary, the local modularity for the community C can be defined as:

|{(u,v)|(u,v) ∈ Bu ∈ C, v ∈ C}|
|B|

Another well-known work on local methods was developed by Luo, Wang and Promis-
low [25], with a new definition of local modularity. They proposed methods based on
three different heuristics for optimization. The communities detected by the algorithm
displayed small-world properties and overlaps in certain cases. The algorithm is claimed
to be better suited for recommendation engines compared to Clauset’s.

Bagrow [28] proposed an algorithm based on the concept of a node’s ‘outwardness’,
which is defined as the normalized difference between the node’s neighbors outside the
community and those inside the community. The outwardness value is used in the search
process as the main criterion of a node’s inclusion into the community.

Local spectral clustering algorithm, which Yang and Leskovec’s algorithm is based
on, is particularly worth mentioning. Spielman and Teng proposed a method for graph
partitioning based on the mixing of random walks, using an algorithm named Nibble [29].

7
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Andersen and Lang applied these methods to detect communities in various networks
[30]. In addition, they developed an improved extension to the original algorithm, called
PageRank-Nibble [8].

There are several works that deal with the seed selection process. Gleich and Se-
shadri proposed selecting low-conductance neighborhoods as communities, and presented
results on using such neighborhoods in the seed selection process [7]. Pan et al. also
presented a method of seed selection, based on ‘PageRank centrality’, a modified version
of the PageRank algorithm [27]. They denote these selected nodes as ”leaders”, and
expanded the community according to a fitness function after the leader selection. Chen
and Fang, on the other hand, select seed nodes based on a ”locally maximal degree”
heuristic, and use a local community detection method based on adding neighbors that
have the ”greatest common neighbors” [26].

8



2
Methodology and Problem

Setting

I
t is necessary to provide the reader more in-depth information before moving on to
the results. In this chapter we explain our methods; the choice of programming
languages and the libraries, then give more information about the concepts related
to our work, summary and interpretation of the network data, and finally the

workings of the algorithm we are evaluating.

2.1 Methodology

Our work involves testing the local community detection algorithm in various networks.
The majority of these networks have been obtained from Stanford’s SNAP project. In
addition to these, we decided to gather network data from SoundCloud, the music dis-
tribution platform with over 42,000,000 users. Surprisingly, our research found no social
network analysis work using the network.

For our calculations, we used NetworkX[31] (Python) and SNAP[32] (C++) libraries.
SNAP was mainly used for community detection and NetworkX was mainly used to
calculate network statistics.

For the collection of Soundcloud data, we alternated between random sampling and
breadth-first-search, so that we could capture local neighborhood information while cov-
ering different parts of the network. SQLAlchemy for Python was utilized to provide a
seamless interface to the database in the data collection process [33]. More information
about the Soundcloud network is given in the following section.

With the exception of the parts where other seed selection methods are stated, we
always used uniform random sampling with replacement to produce community statis-
tics.

9
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2.2 Datasets

Besides Soundcloud, we included DBLP and Amazon networks in our work, both ob-
tained from the SNAP project[34]. DBLP is a citation network, the edges denote co-
authoring on an article, and ground-truth communities denote the journal, conference
or organization the authors have appeared together. Amazon dataset contains a co-
purchasing network of products from the website of the same name. The annotated
communities denote various product categories in the website.

2.2.1 Soundcloud

As mentioned before, Soundcloud is an online social network about sound sharing, con-
taining over 42 million users.

By the time we started community detection work, we had ca. 1.5 million users in
the giant connected component; meaning that our work is focused on a small subset of
the whole userbase. As stated before, local algorithms focus on the vicinity of a node and
do not require complete information about a network to perform, so we do not expect
to encounter any significant issues about the lack of global data. Nevertheless, data
collection is an ongoing process, and we are going to publish a more complete version of
the Soundcloud data along with the current subset.

Similar to Twitter, users can follow each other. As a result, unlike Facebook’s friend-
ships, the connections are not necessarily reciprocal. Popular artists tend to attract a
large number of followers. The users can comment on the tracks in the website.

The users also can form and join groups. We use these groups to make comparison
between the detected communities and the real-life communities.

We investigated two possible ways to create a network out of the data. The first,
and obvious one, is the network of ‘follow’ relations. The users are nodes, and the graph
contains a directed edge (u,v) if the user u follows the user v.

The second type of network we investigated was the ‘co-commenting’ network. If
two users commented on the same track, an undirected edge is formed between them.
The network is also weighted: the number of tracks commented on by both users is the
weight of the edge.

In the end, we decided to only use the follows network for our algorithm. In the
following section, we give the reasoning behind our initial decision for investigating the
co-comments network, and later not following through with it.

Co-comments network

The followers network provides a good start for the community detection task. However,
we had certain concerns about detecting annotated communities. Following relations are
partially due to friendships, and partially due to the user being interested in the tracks
produced by another user. Groups, on the other hand, are largely formed by the users
with similar taste in music, not due to friendships. Therefore, the follows that are due to
personal contacts would actually lead to false positives when detecting communities: the

10
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algorithm would detect a group of friends as a structural community, but no Soundcloud
group would correspond to it.

Users commenting on the same track, on the other hand, are shown to express interest
in the same kind of music, and would therefore would have a higher probability of being
in the same group. Therefore, a co-commenting network could lead to more reliable
results in terms of community classification.

Another incentive for choosing to work on the comments network is the fact that
comments are timestamped, whereas follows are not. Studying the comments network
gives us the possibility to study the evolution of the communities.

The disadvantages of the co-comments network is that they are much more dense and
clustered in comparison to other real-life networks. For example, a track with 100 users
commenting on it would create a clique with 100 nodes in the network. This means all of
these 100 nodes would have an edge between each other. With over 100,000,000 tracks,
this leads to an immense density and clustering, and makes the community detection
task very challenging. Figure 2.1 shows the weight distribution of the comments, with
the ‘weight’ being the number of co-comments between two users.
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Figure 2.1: Weight distribution for the co-comments network.

Dealing with this density problem requires us to come up with a method to eliminate
the majority of the edges. Several measures such as setting up a threshold (number of
co-comments), a timestamp based filter(only comments that are posted in similar time
periods create an edge), additional criteria for eligibility (comments on the same track
and the group) were proposed.

Despite these measures, crawling and creating co-comments network is computation-
ally much more expensive, compared to the follows network. In addition, enforcing these
measures increases the computational cost even further. Therefore, as it was infeasible
to create a co-comments network at a large size, we decided to run the algorithm on the
follows network only.

11



2.2. DATASETS CHAPTER 2. METHODOLOGY AND PROBLEM SETTING

2.2.2 Network properties

The Table 2.1 shows the basic statistics about the three networks. While they have
various differences, e.g. in size, diameter and density; they also share characteristics
that are common in many real life networks. One such characteristic is the hierarchical
distribution of the degrees (see Figure 2.2).
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Figure 2.2: Degree distributions, with logarithmic binning.

All three distributions follow a similar trend, with strongly decreasing density as
the degrees increase. In the case of Amazon, the distribution starts with a relatively
moderate decline for the low-degree nodes, then follows a power-law. DBLP, on the
other hand, shows a steeper decline in density. Soundcloud also has a sharp decline for
the high degrees and several shifts in its slope. It should be noted that Soundcloud has
the highest maximum degree among all three networks, which is expected as it is the
largest network among the three.

Table 2.1: Network statistics for Amazon, DBLP and Soundcloud.

Soundcloud Amazon DBLP

Nodes 1,583,460 334,863 317,080

Edges 3,009,036 925,872 1,049,866

Groups 48,091 271,570 13,477

Fraction of the nodes with group memberships 0.07 0.96 0.82

Average group size 24.4 11.7 53.4

Average membership size 0.74 9.5 2.3

It should be also noted that Soundcloud is a directed network, whereas Amazon and
DBLP are not. The algorithm, however, always assumes an undirected network. We
note that this could lead to interesting results, and discuss the possible effects of this
assumption in the following section.
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3
Algorithm

I
n this chapter we present an outline of the Yang and Leskovec’s algorithm (denoted
YL). We refer the interested readers to their paper for the details [4].

The algorithm is based on random walks, and is an extension of the Local Spectral
Clustering algorithm [29] [30]. As we mentioned in the previous chapter, random walks
are one of the methods to approach the community detection problem in the literature,
and there exist a variety of random walk based-algorithms in the literature, such as
Walktrap.

YL uses a personalized PageRank method. The personalized PageRank assumes that
a random-walker begins its motion in a particular seed node, and returns the distribution
of its probabilities of being in each node in the graph, as a vector. The nodes with a high
probability of visiting have greater PageRank scores. The implementation of PageRank
that is used in the algorithm is called PageRank-Nibble, an approximation algorithm by
Andersen, Chung and Lang [8]. The implementation ignores the nodes that score below
a threshold value and thereby limits the computation to the seed node’s vicinity. An
overview of the algorithm is given in the following subsection.

The pseudocode of the method can be seen in the Algorithm 1. The plot of the
conductance score with respect to the number of nodes in the community is called the
‘sweep curve’. The algorithm uses the local minima of the curve as a means of detecting
the communities. Since all of the nodes in the sweep curve belong to the same sequences,
the local minima correspond to ‘nested’ communities. Leskovec and Yang generally
select the first local minimum in their work. In order to maintain consistency and allow
comparison of results, we also use the first local minimum.

The score of a node is proportional to its PageRank score, and inverse proportional to
its degree. Consequently, the algorithm avoids high-degree nodes (which lead to greater
conductance) and is attracted towards nodes with a high probability of a random walker
visiting.

The implementation we are using works with conductance as the fitness function [32].
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CHAPTER 3. ALGORITHM

As the original work shows that conductance provides the most effective score to match
annotated communities, we used this implementation without modifications.

Our work focuses on aggregated results, but we present an example on the author’s
Facebook ego-network for the reader’s consideration (see Table 3.1) .

Algorithm 1: Local community detection [4]

1: Compute the PageRank-Nibble scores ru from the seed s
2: Order nodes u by the decreasing value of ru/d(u), d(u) being the degree
3: for k = 1 to len(PageRank vector) do
4: S = First k nodes in the list
5: Compute the fitness function f(S)
6: end for
7: Detect the local optima of f
8: Each local optimum corresponds to a community found. For each kmin, get the

first kmin nodes, Ckmin
and insert into S: S = S ∪ Ckmin
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Figure 3.1: The sweep curve of the algorithm, with the conductance score plotted against
the number of nodes, ordered by their modified PageRank score.

3.0.3 Directed networks

It was previously mentioned that the algorithm assumes an undirected network. Con-
verting the directed edges to undirected causes loss of information to some extent, and
in this section we discuss the consequences of such conversion.

The difference starts with the definition of conductance. Let us call C the nodes that
belong to a community, C̄ the nodes in the graph that do not belong to the community,
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CHAPTER 3. ALGORITHM

Local seed 1

Local seed 2

Local seed 3

Global

Table 3.1: An example of the communities detected by the algorithm, on the author’s
Facebook network. The last row contains the communities detected by the greedy modularity
maximization algorithm [14]. The columns denote the local minima with increasing order
and the red nodes denote the detected local communities.
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CHAPTER 3. ALGORITHM

eo the edges leading from C to C̄, ei the edges leading from C̄ to C, and ec all the edges
that are incident with C.

With directed networks, conductance of C is eo/ec [35]. Note that we do not involve
ei. In contrast, with the undirected networks, we consider all edges that are connected
to a node outside the community. That means, when we convert a directed network to
an undirected one, the conductance of C becomes (ei + eo)/ec). Therefore, the commu-
nity scoring is affected, with certain communities having increased conductance. This
potentially leads to losing some of the local minima that would appear with a directed
network.

PageRank scoring is also affected. The original algorithm was intended for the world
wide web, with web pages as nodes, and links as the edges. As the links are not required
to be reciprocal, the network is directed.

Converting non-reciprocal directed edges into undirected ones can significantly affect
the movements of a random walker. Consider a web page which has no links, but is linked
by a great number of other pages. In the directed version of the network, the random
walker would be trapped in the node. As a contrast, when the network is converted to
undirected, the random walker can move out of such nodes. That would mean spending
less time in that node, and would lead to a lower PageRank score than before.

It should be remembered that the algorithm is trying to find groups with low con-
ductance, and uses the PageRank score as the main criterion of finding such nodes. Con-
verting the node to undirected causes some nodes to have decreased PageRank scores,
and some groups to have increased conductance. Consequently, some of the communities
that would potentially appear in a directed network are ‘lost’.
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4
Characteristics of the

Communities

I
n this chapter, we investigate several aspects of the communities including their size
and shape. This area, while important for the evaluation of the local algorithms,
is mostly left unexplored in the literature.

4.1 Size

The community size forms a basic but important measure in community detection. It
would be desirable for an algorithm to be able to cover the various community sizes that
appear in the real-life networks. Figure 4.1 shows the distribution of community sizes,
and Table 4.1 shows the mean values, compared to the annotated communities.

For Soundcloud, the algorithm provides a near-perfect match of the mean community
size. It returns considerably smaller communities for DBLP (less than the half), and
larger communities for Amazon. The algorithm covers community sizes between 1 to
∼ 103. For the cases of Amazon and DBLP, the annotated communities cover an even
larger extent, and several communities over the size of 1,000 are beyond the algorithm’s
reach.

The distributions show similarities, and in case of Soundcloud, overlaps for small-
sized communities. However, looking at the curve, it is clear that annotated communities
and detected communities belong to different types of underlying distributions.

4.2 Geometry

The geometric analysis of a community involves its various properties about the shape
and structure of the community. In this section, we address three different areas: diam-
eter, symmetry and roundness.
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Figure 4.1: Size distribution of the detected communities in comparison with the annotated
communities (log-binned).

Table 4.1: The mean values of community size, |C| for the detected and annotated com-
munities.

Annotated Detected

Amazon 11.7 17.1

DBLP 53.4 25.8

Soundcloud 31.8 31.8

The diameter of a community is the largest distance between any nodes in it. As
communities tend to be closely connected groups with many edges inside, a small diam-
eter value is desirable. However, it is also shown that some real-life communities can
have a large diameter.

The diameter distributions are shown in Figure 4.2. The algorithm finds communities
with a relatively larger diameter for DBLP. This fact is also reflected in the distribution:
while all three distributions are skewed to the right, the skewness of the distribution is
more pronounced for Amazon and Soundcloud. In contrast, DBLP has the peak of the
distribution shifted to the right.

Soundarajan and Hopcroft [24] explain the distinction of ‘round’ and ‘long’ commu-
nities. Round communities have edges distributed throughout the community, whereas
long communities contain peripheral nodes that have a considerably high distance from
each other. They also maintain that fitness functions such as conductance and modu-
larity return round communities in general. As a measure of ‘roundness’, they propose
measuring the ratio of the community’s diameter to a graph with the same number of
nodes and edges. Communities that have a ratio of 1 are considered round.

It has been shown that annotated communities generally have larger diameters com-
pared to the random graphs of the same size, with the ratio varying between 1.1 to
2[24].
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Figure 4.2: Diameter distributions for the detected communities, with the mean values of
(a)3.14 (b)4.20 (c)3.28

Table 4.2: ‘Roundness’ measures for the communities detected by our algorithm, with var-
ious thresholds. See Soundarajan and Hopcroft’s paper for the results on various annotated
communities [24].

Amazon DBLP Soundcloud

(#nodes ≥ 50 ) 1.28 1.45 0.50

(#nodes ≥ 75 ) 1.31 1.50 0.57

(#nodes ≥ 100 ) 1.34 0.57 0.59

We calculate the roundness of the communities detected by the algorithm using the
same metric. Both Amazon and DBLP display a longer structure than those of the
Erdös-Renyi networks of the same size. For comparison, the annotated communities in
Amazon have the diameter ratious of 1.72, 1.84, and 1.91 for the thresholds of 50, 75
and 100, respectively [24]. The communities detected in these networks are rounder in
comparison to the real-life ones, but longer than the random subgraphs.

Surprisingly, the communities returned from the Soundcloud network are the exact
opposite: the communities have much smaller diameter than the random network of the
same size, implying the existence of considerably more tightly-knit communities in the
network. It can be speculated that this could be the result of the asymmetric ”follower-
artist” relationships in Soundcloud, which create communities of fans with a popular
artist in the centre. With such communities, a small diameter can be expected, as the
artist in the centre of the community will act as a ‘hub’ between any two nodes in the
community.

Another aspect of the geometry is the symmetry of the community ‘growth’ process.
If the seed node is in the centre of the community detected by the algorithm, we can
conclude that the growth is symmetric. There are many measures of centrality of a
node, and for this particular case, we choose eccentricity: the longest distance of the
seed to any node in the community. If the eccentricity value is close to the diameter,
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this means that the seed node is in the periphery. If the eccentricity value is half of the
diameter or less, the seed node is considered in the core part of the community. Figure
4.3 shows the comparison of eccentricity values to the diameter. It can be seen that the
seed node is closer to the periphery than the central area, and this difference becomes
more pronounced as the diameter gets larger.

The fact that the seed node is not consistently in the centre is actually desirable
and is a sign of the algorithm’s robustness. Suppose the opposite situation, where the
algorithm consistently returns communities centered around the seed node. That means,
the algorithm would be actually ignoring the community structure, and is only trying to
find the nodes that are close to the seed node, regardless of its position in the community.
The following chapter provides a more detailed analysis regarding the robustness.
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Figure 4.3: Eccentricity of the seed node compared to the reference values. The green
reference line denotes the cases when eccentricity is equal to half of the diameter, and the
red line denotes when eccentricity is equal to the community diameter.
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5
Quality

T
HERE are multiple indicators of how well a community detection algorithm
performs. In this chapter, two main aspects of the quality of community de-
tection is explored: the fitness(conductance) and the stability of the detection
process.

Building the community using a bottom-up approach from a seed node is one of the
biggest strengths of the local algorithms, giving a considerable flexibility. Surpisingly,
however, the dependency on the seed nodes also constitutes a drawback in terms of
the reliability of the algorithm. Ideally, a local algorithm is expected to reveal the
community structure a seed node belongs to, independent of the node’s location within
the community. In the previous chapter, our results about the seed node’s eccentricity
implied that the algorithm possesses some degree of robustness regarding to the seed
node. Nevertheless, it is possible to improve the results further by using a ‘smart’
heuristic to select the seed. We evaluate the conductance scores and possible methods
of seed selection in the first section of this chapter

The reliance on the seed node also affects the stability of the community detection
process. Let Cu and Cv be two communities detected by a local algorithm, with the
seed nodes u and v, respectively. Assume that u and v belong to the same structural
community according to several fitness functions, such as modularity and conductance.
In an ideal case with clear-cut communities, we would expect Cu = Cv. However, this is
often not the case, partly because the algorithms are not ‘perfect’, and partly because the
community structure in the real networks is prone to overlaps and unclear boundaries.
Nevertheless, the degree of overlap between Cu and Cv is an indicator of stability, and
higher values are more desirable.
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5.1. CONDUCTANCE AND SEED SELECTION CHAPTER 5. QUALITY

5.1 Conductance and Seed Selection

Figure 5.1 shows the distribution of conductance when we randomly sample the seed
nodes. All three distributions are right-skewed, with the peak at the low values of con-
ductance. Amazon displays the lowest values of conductance among the three networks.

(a) Amazon

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
φ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p
(φ

)

(b) DBLP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
φ

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p
(φ

)

(c) Soundcloud

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
φ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p
(φ

)

Figure 5.1: Distribution of conductance(φ) over randomly sampled seed nodes from the
networks.

We first investigate the relation between a seed’s degree and the conductance of the
detected community. The intuition behind this investigation is that highly connected
nodes have a higher chance of being in the ‘core’ part of the community than the pe-
riphery. As such, nodes with high degree are potentially good seeds for the algorithm.

Figure 5.2 shows the relation between the seed’s degree and the community fitness.
With Amazon and DBLP, there is an obviously decreasing trend. In contrast, Sound-
cloud shows a jump in conductance as the seed degree is increased from 1 to 5, and
shows a constant fluctuation rather than a decreasing trend.

The relation between the seed node’s degree and the conductance is also confirmed by
the correlation coefficients. Spearman’s correlation coefficient[36] yields values between
-1 and 1, the former denoting a monotonically increasing relationship and the latter
denoting the opposite. The correlation coefficients for the degree and conductance values
are -0.22, -0.16 and 0.27 with a p-value of 0; for Amazon, DBLP and Soundcloud,
respectively.

While certain high-degree nodes provide good seeds, simply picking the nodes with
the highest degrees in the graph is not enough to have a significant decrease in the
conductance values. More complex criteria are required to find low-conductance com-
munities.

Chen and Fang propose one such criterion, and demonstrate it using another local
community detection algorithm developed by themselves [26]. They select seeds with
‘locally maximal’ degrees, which have a higher degree than all of their neighbors.

Another method of seed selection, ‘minimum conductance neighborhoods’, is pro-
posed by Gleich [7]. According to this heuristic, the conductance of each node’s egonet
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(a) Amazon (b) DBLP (c) Soundcloud

Figure 5.2: Two dimensional histograms showing the distribution of the conductance over
the seed node’s degree. The colour denotes the number of nodes, in log10. The blue line
indicates the mean conductance for a given seed node degree. We display the mean values
when there are at least 20 samples for a given degree.

Table 5.1: The values of < φ > for two different seed selections methods, and randomly
sampled nodes for comparison. The values in the parantheses indicate the percentage of the
seed nodes to the whole population.

Locally max. deg. Min. conductance neighborhoods Random sampling

Soundcloud 0.16 (%3) 0.19 (%3) 0.25

Amazon 0.13 (%3) 0.15 (%4) 0.21

DBLP 0.1(%0.5) 0.17 (%4) 0.28

(first-step neighborhood) is calculated (called EC). Afterwards, the nodes that have a
lower EC value than all of their neighbors are selected as seeds. Also, only the egonets
with size 6 or higher are considered.

We try both of the aforementioned methods, and compare them to randomly se-
lected seeds (see Table 5.1). Both seed selection methods allow the algorithm to find
communities with a lower conductance value than randomly sampled nodes. Locally
maximal degrees provide lower conductance values in comparison to min. conductance
neighborhoods, but also covers a narrower range of nodes in the network. For the DBLP
network, this difference is significantly more pronounced, in which the min. conductance
selection covers 4% while locally max. degrees method covers only 0.5%.

5.2 Stability

We propose the following method to test the algorithm’s stability: two random seed
nodes (u,v) are selected with various distances and the overlap of the detected com-
munities Cu and Cv are computed. When two nodes are adjacent (distance of 1), an
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average overlap of nearly 100% would be ideal, since they most probably belong to the
same structural community. We would expect the overlap to decrease with distance.

Jaccard similarity is used to measure the overlaps. The Jaccard similarity of two sets
A and B is defined as follows:

J(A,B) =
A ∩B
A ∪B

[11]
J(A,B) returns a value between 0 and 1

”
with 0 denoting disjoint sets, and 1 denoting

identical sets.
The results are shown in the Figure 5.3. Amazon network shows the highest stability,

with a Jaccard index of ∼ 0.8 for the adjacent nodes. DBLP and Soundcloud have an
average overlap of 0.7 for the adjacent nodes, with the Soundcloud data showing more
variance compared to other two networks.

As expected from the previously given community diameters, the Jaccard index drops
sharply as distance increases. Amazon shows a relatively mild drop in the similarity as
the distance increases, while Soundcloud shows the sharpest decline.
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Figure 5.3: The average Jaccard similarity of the detected communities in comparison to
the distance between the seed nodes. The bars denote the standard error of the mean.
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6
Detecting Annotated

Communities

A
n important application of community detection algorithms is to uncover the
actual communities that appear in real-life. The annotated communities in our
datasets provide a reference for the performance of such an application. We
use the algorithm to detect the online groups in Soundcloud, item categories

in Amazon and the publication media in DBLP.
The greatest challenge in this task is the discrepancy between structural and anno-

tated communities. For example, in online networks, anyone can join an open group, so
a group can contain nodes that have no connections to anyone else in the group. On
the other hand, in co-authoring networks, two people that co-authored a paper appear
in the same publication venue. As a result, for the networks like DBLP, the definition
of the annotated communities is redundant with the definition of an edge.

We use a basic indicator that can give an idea about how well the annotated and the
structural communities match. Let CG be an annotated community in a graph denoted
as G(V,E). Consider the following probability:

pG = p(u ∈ CG ∧ v ∈ CG|u,v ∈ V, (u,v) ∈ E)

In other words, pG is the probability of the two nodes belonging to the same annotated
community, given that they are connected by an edge.

The logic behind this measure is as follows: consider an ‘ideal’ network where each
ground-truth community corresponds to a structural community. This means that each
community, when taken as a subgraph, consists of one giant connected component with-
out any disjoint nodes. In such a graph, there are two possibilities when two nodes share
an edge: 1) They are in a boundary between two communities, 2) They belong to the
same community. As the network gets larger, we expect the intra-community edges to
greatly exceed the inter-community edges, and pG to approximate towards 1.
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Table 6.1: The probability of adjacent nodes belonging to the same annotated community,
pG.

Soundcloud Amazon DBLP

All nodes 0 0.89 0.89

Nodes that belong at at least one community 0.03 0.98 0.99

As a result, pG gives us an indicator of how dissimilar the annotated communities
are from the structural ones. A value close to 1 does not guarantee high accuracy, but
is a prequisite of it.

The Table 6.1 shows the probabilities. The sparseness of community memberships
in Soundcloud, which was stated before in the previous chapters, can also be seen on
the first row. Soundcloud has a large number of users, small number of groups, and the
users are generally not interested in joining the groups. Amazon, on the other hand,
has a considerably high groups-to-user ratio, but it turns out that most of these groups
cover only a small portion of the node set.

The second row of the table is more important for the classification task, because
we focus on the nodes with group memberships. Amazon and DBLP have a pG ≈ 1,
whereas Soundcloud groups hardly have a match to the edges. Consequently, we can
only expect accurate classification for Amazon and DBLP networks.

We reproduce the steps by Leskovec and Yang[4] to test the accuracy of the commu-
nity detection. From each annotated community, a random node is selected as a seed
node. The algorithm is then run on these seed nodes and the nodes corresponding to the
first local minimum is chosen as the detected community. The detected community and
the annotated community to which the seed belongs to are compared, which is quantified
by the F1-score.

The F1-score (also known as F-score) of a classification is calculated using the true
positive(TP), false positive(FP) and false negative(FN) values. Let CD be the sets of
nodes in the detected community and CA be of those in the annotated community.

TP = |CA ∩ CD|, FP = |CD\CA|, FN = |CA\CD|

Following from these, we define precision(p), recall (r) and F-score as[11]:

p =
TP

TP + FP
, r =

TP

TP + FN

Fscore = 2 · p · r
p+ r

In the original work, the communities are ranked by various fitness scores. The
authors used their algorithm on the top 5000 communities only. We run the algorithm
on separately for the full set and the top 5000 communities, compare the latter results
with the original work.
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CHAPTER 6. DETECTING ANNOTATED COMMUNITIES

During our calculations, we came across a behaviour that was not addressed in the
original work: for some of the seed nodes, the sweep curve is monotonically decreasing,
so there are no local minima to obtain. For such occasions, we tried four different
approaches:

1. Try another seed node from the same annotated community. Do step (2) if all
seeds fail to return a community.

2. Return a ‘detected’ community that contains the seed node only. Note that this
returns a precision of 1 for the failures.

3. Return an empty community, which gives an F1-score of 0.

4. Ignore and discard the community.

The table 6.2 shows the results of the F1-scores detected by the algorithm, compared
to the results on DBLP and Amazon in the original paper. In order to provide a reference,
we also included the results for a global method, fast greedy modularity maximization
algorithm by Clauset, Newman and Moore [14]. Due to the incompleteness of Soundcloud
data and the computational cost of running the algorithm on such a large network, we
decided to run the algorithm on DBLP and Amazon only.

Surprisingly, our implementation returns slightly different average F1-scores for the
”top 5000” communities in comparison to the original work. We assume that the authors
either used a different method to handle the aforementioned behavior, or they had differ-
ent a parameter choice for the approximated PageRank algorithm. The local algorithm
returns higher F1-scores than the global algorithm in all cases.

As shown in the tables 6.1 and 2.1, the majority of the Soundcloud’s userbase does
not show any interest in the groups, and the existing groups have a structure that is
independent from the connections between the individuals. As a result of these aspects
of the network, the algorithm does not perform well on Soundcloud.
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Table 6.2: The classification results according to F1-score. The first three columns denote
the way of handling the seeds with no local minima: (1) Re-try with another seed (2)
Return a single-node community (3) Return an empty community. (4) Ignore the community.
The column denoted ’Global’ is Clauset et al.’s greedy modularity maximization algorithm,
provided as a reference. The last column shows the percentage of the seeds with no local
minima. The rows denoted with ”LY” are the results from the original paper [4].

Average F1-score

Network/Community (1) (2) (3) (4) Global undefined%

DBLP-All 0.37 0.36 0.33 0.41 0.23 20%

Amazon-All 0.44 0.45 0.41 0.45 0.36 9.6%

Soundcloud 0.05 0.06 0.05 0.06 - 12%

DBLP-Top 5000 0.56 0.55 0.53 0.58 0.47 7.8%

Amazon- Top 5000 0.90 0.90 0.90 0.90 0.87 0.02%

DBLP-Top 5000 - LY 0.61

Amazon-Top 5000 - LY 0.87
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7
Conclusion

We evaluated a state-of-the-art local community detection algorithm by Yang and Leskovec.
Our findings provide new insights into the workings of the algorithm, and bring the pos-
sibility of further research on local algorithms.

We ran the algorithm on three different datasets; Amazon, DBLP and Soundcloud,
in order to find communities with minimum conductance scores. We analyzed certain
characteristics of the communities and highlighted the differences and similarities be-
tween the annotated and the detected ones. Annotated communities, while showing
partial overlaps, follow a different size distribution from the detected communities and
have a longer extent. Moreover, we revealed that the communities grow asymmetrically,
so that a seed node shifted away from the centre as more nodes are added to the com-
munity. We explained that this property of the algorithm is desirable, as it implies that
the algorithm shows a degree of robustness to the selected seed. Further looking into the
geometry of the communities, we compared the diameters of the communities to Erdös-
Renyi subgraphs of the same size. DBLP and Amazon have a larger diameter compared
to the random graphs. Compared to Soundarajan and Hopcroft”s results for Amazon,
however, the detected communities still have a smaller diameter value compared to the
annotated ones. In addition, Soundcloud has communities even ‘rounder’ than those
found in random graphs, due to its communities being centered around artists with a
large number of followers.

We then analyzed the quality of the community detection process, and various meth-
ods to improve it. We discussed the importance of seed selection to improve the quality
and tested two seed selection methods against random sampling. Both ”locally max-
imal degree” and ”minimal conductance neighborhood” methods provide communities
with lower conductance, and the former provides a better improvement at the cost of
a narrower seed set. Then we discussed the effects of seed selection on the algorithm’s
stability and revealed that the algorithm is fairly stable. Running the algorithm on two
adjacent seeds returns communities with a large overlap on average.
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7.1. FUTURE WORK CHAPTER 7. CONCLUSION

Finally, we provided a short discussion about the relationship between the structural
and annotated communities. We proposed a basic measure to quantify how well the
annotated and structural communities correspond to each other. It was revealed that
the type of the network and the definition of the annotated communities play an im-
portant role: in the case of DBLP and Amazon, the structural communities provide a
better match to the annotated ones, while Soundcloud’s online communities have a more
disjointed structure. With this information in mind, we tried to use the local algorithm
to detect communities in these networks. The local results confirm the aforementioned
findings - the algorithm provides relatively accurate matches for DBLP and Amazon, and
quite low accuracy for Soundcloud. Compared to the global modularity maximization
algorithm, the local algorithm returns higher F1-scores in all datasets.

Community detection remains as an important area of research in the field of Network
Science. Local methods have been proposed to address some of the issues with the
traditional methods of community detection, such as lack of global information, and
computational complexity of working with large networks. The method we evaluated
provides promising results, and the area of local algorithms warrants further research by
the scientific community.

7.1 Future Work

We provided a number of results and new information related to the workings of the
algorithm. There is, nevertheless, possibility of further research into the area. In order
to maintain the consistency with Leskovec and Yang, we generally focused on the first
local minimum - smallest community returned by the algorithm. Considering all of the
local minima or the global minimum could provide interesting results. The detected
communities would have a lower conductance value, but a larger size, and could be
desirable in the networks where the annotated communities are larger than expected.

Another possible area to explore is the combination of the seed selection methods
with the detection of the annotated communities. It could be interesting to see if using
locally maximal degree or low conductance neighborhood seeds improve the accuracy of
the detected communities. It was also shown that the results are quite dependant on the
type of the networks and the communities . This could be further investigated by testing
the algorithm on a wider range of datasets and analyzing the results with relation to
each other. This would provide better insights into both the algorithm’s workings and
the networks themselves.

When combined with datasets containing timestamps, local methods could be uti-
lized to study community evolution. This area is often neglected due to the lack of
such datasets and the extra computational complexity. Local methods can provide a
computationally inexpensive method to study the changes in selected communities over
time.
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