
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Performance Evaluation and Modeling of
a Multicore AUTOSAR System
On theoretical modelling of speedup gain in
heterogeneous multicore systems

Abdollah Safaei Moghaddam
Master of Science Thesis in Networks and Distributed Systems

Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden 2013

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-
commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that
the Work does not contain text, pictures or other material that violates copyright
law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and
University of Gothenburg store the Work electronically and make it accessible on
the Internet.

Performance Evaluation and Modeling of a Multicore AUTOSAR System

Abdollah Safaei Moghaddam

c©ABDOLLAH SAFAEI MOGHADDAM, May 2013.

Examiner: Jan Jonsson

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2013

Abstract

Multicore processors have become common in personal computers and worksta-
tions for the past few years, and they are making their way to embedded devices.
Meanwhile, Electronic Controller Unit (ECU) suppliers have also introduce mul-
ticore solutions in the automotive Electrics and Electronics(E/E) domain. The
automotive E/E architectures are expected to adapt themselves to this change.
This leads the AUTomotive Open System ARchitecture (AUTOSAR) standard to
introduced multicore support in release 4.0. Because of the close ties and depen-
dencies between the software and hardware, this adaptation is a complex task.
The dependencies between hardware and software need to be handled carefully for
any well performing multicore software.

Based on the AUTOSAR solution, we believe that the cross-core communi-
cation could be a potential bottleneck and hence, this study measures SoftWare
Components(SWC) communication time in inter-core and intra-core. In order to
achieve this, a mocking of an AUTOSAR software was designed, implemented
and tested on a dualcore MPC551x processor. Furthermore, a theoretical model
for speedup gain prediction on heterogeneous dualcore systems is proposed. The
model considers a scenario in which a task is fragmented into so-called slave tasks
among cores in order to achieve speedup. By using this model, once can predict
the possible speedup gain when migrating a software from a single-core to a multi-
core platform. The model is driven by extending Amdahl’s law and addressing the
cross-core communication overhead in AUTOSAR and the heterogeneous nature
of the MPC551x processor. The results show that cross-core communication has
an overhead of 54%. The speedup curve shows that in tasks with large execution
times, the speedup is 1.74 and that speedup is unity for tasks with an execution
time about 28µs. The proposed model is evaluated by carrying out several test
scenarios and comparing the results with the model which shows the model is more
than 90% accurate.

Keywords: AUTOSAR, automotive, multicore ECU, dualcore, speedup, het-
erogeneous, theoretical modeling, Amdahl, software migration

Acknowledgments
I would like to thank my supervisor, Anders Svensson, for his endless support,
kindness and enthusiasm. Needless to say, without his close cooperation and keen
ideas that shed light on dark corners of this research, this would not have been
possible. Furthermore, I would like to thank Mafijul Islam and Tommy Andersson
for their in depth support and their time throughout this work. Also, I like to
thank Johan Haraldsson, Sigurjón Þorvaldsson, Peyman Barazandeh and all my
colleagues for the great times that we had together and the interesting discussions
that broadened my understanding of the automotive industry. And last but not
least, I am thankful for my family and friends for their support and understanding.

Contents

1 Introduction 1
1.1 Thesis delimitations and problem definition 2
1.2 Thesis structure . 2

2 Background 4
2.1 Introduction to AUTOSAR . 4

2.1.1 Application layer . 5
2.1.2 Communication between software layers 5
2.1.3 VFB layer . 6
2.1.4 RTE layer . 7
2.1.5 BSW layer . 8

2.2 Multi-core support in AUTOSAR 8
2.2.1 Communication in multi-core AUTOSAR 9
2.2.2 The Operating System . 9
2.2.3 Inter OS-Application communication 11

3 Test and Development Environment 18
3.1 Software environment . 18

3.1.1 ArcticStudio and ArcCore 18
3.1.2 CodeWarrior . 19
3.1.3 FreeMASTER . 19

3.2 Hardware environment . 22

4 Inter-core versus intra-core communication 23
4.1 Test description . 23
4.2 Intra-core communication . 24
4.3 Inter-core communication . 26
4.4 Communication time measurement results 30

i

CONTENTS

5 Speedup gain on an AUTOSAR 4.0 implementation with dualcore
support 32
5.1 Introduction to speedup and Amdahl’s law 32
5.2 Measuring speedup gain . 33

5.2.1 Single-core scenario . 34
5.2.2 Dualcore scenario . 37
5.2.3 Results . 37

5.3 Extending Amdahl’s law to a heterogeneous multicore AUTOSAR
system . 41
5.3.1 Earlier studies . 41
5.3.2 Model overview and Assumptions 41
5.3.3 Using and evaluating the extended speedup model 45

6 Conclusions 49

Bibliography 53

Appendix A How to use FreeMASTER 55
A.1 Introduction to FreeMASTER . 55

A.1.1 Memory read and write . 56
A.1.2 Oscilloscope . 56
A.1.3 Recorder . 56

A.2 FreeMASTER on target driver . 56
A.2.1 Establishing a serial communication 56
A.2.2 Using FreeMASTER on target driver 61

A.3 Introduction to PC side software 63
A.3.1 Communication setup in PC application 63
A.3.2 Reading and Modifying variables 63
A.3.3 Recorder . 63

Appendix B Verification experiments on the Extended speedup model 65

ii

1
Introduction

Nowadays, electronics play a key role in vehicles and we are driving com-
puters, rather than cars. The electronic equipment that were normally
used in luxury cars before, are used in conventional vehicles, today. As
a result, the functions that were special to luxury cars, are expected to

be seen, as standard functions, in middle-class cars over time. Growth of func-
tionalities in cars results in an increase of electronics complexity. As complexity
increases in electrical and electronics (E/E) architecture of a vehicle, it has become
more and more necessary to standardize automotive E/E architectures to manage
this complexity. Therefore, the “AUTomotive Open System ARchitecture”, AU-
TOSAR, was founded to fulfill this requirement. The growth in software size not
only impacts software, but more powerful hardware is also needed.

As software required faster hardware, processor manufactures provided faster
processors, mainly by increasing the clock frequency. However, higher clock fre-
quency led to a greater power consumption. In the early 2000s, the clock frequency
trend started flatting out by hitting the power consumption ceiling according to
Krste Asanovic et al [1]. Thereby, increasing clock frequency was no longer pos-
sible. Hence, new techniques had to be introduced for increasing computational
power, but, with the same power consumption. One solution to this problem is
multi-core processors as Krste Asanovic et al describe in [1]. The automotive in-
dustry is no exception in this trend and hence, multi-core ECUs were introduced.
As ECU software developers will need to adopt to this change, the AUTOSAR
standard needs to support a multi-core architecture for ECU suppliers and ven-
dors, also. Therefore, multi-core support was introduced in AUTOSAR 4.0.

1

1. Introduction

1.1 Thesis delimitations and problem definition
The study was accomplished at Advanced Technology and Research at Volvo
Group Trucks Technology and the thesis delimitations were defined in alignment
with the Volvo’s research projects.
The AUTOSAR design was based on single-core micro-controllers up to version 3.1.
As the need of multi-core processors became trivial, the AUTOSAR introduced the
first version of multi-core AUTOSAR in version 4.0. This project investigates and
evaluates the performance of the current AUTOSAR multi-core architecture. The
project is carried on an MPC5517E micro-controller, addressing the followings:

• What are the possible bottlenecks in communication among cores and what is
the communication overhead in a cross-core communication compared to an
intra-core communication? An architectural study is carried out and based
on the prospective bottlenecks found, an experimental mocking model of an
AUTOSAR implementation is done by having only the necessary modules
for an AUTOSAR software, to support the findings.

• What is the possible speedup gain achieved in the current implementation of
AUTOSAR 4.0? When migrating from a single-core to a multi-core software,
it is important to know what advantage is gained in such a migration. A test
scenario is designed and implemented in order to define the upper bound of
this advantage gain.

• Is it possible to predict the speedup gain of an AUTOSAR application, when
migrating the software from a single-core to a multicore architecture? Pre-
liminary steps are taken towards a theoretical modeling of the speedup gain
achieved by migrating from a single-core to a dualcore implementation. The
model is based on hardware specific factors of the MPC551x processor and
the cross-core communication overhead. The theoretical model will extend
Amdahl’s law such that heterogeneous systems and the AUTOSAR multi-
core architecture are addressed. Given an already implemented set of soft-
ware components, the model will predict what speedup can be achieved, if
the implementation is migrated from a single-core to a dual-core system.

1.2 Thesis structure
The remainder of this thesis is structured as the following: Chapter 2 describes
the AUTOSAR layers and studies the key modules introduced in AUTOSAR 4.0
for supporting multi-core software. Chapter 3 explains the “Test and development
environment”. In this chapter, various tools that are used throughout the project
are described and the software development life cycle is explained. Chapter 3
also describes an overview of the MPC551x processor hardware architecture. In
Chapter 4, the cross-core communication overhead is measured by doing an exper-
iment. Chapter 5 describes the speedup gain in a multi-core implementation of an

2

1. Introduction

AUTOSAR software and explains the theoretical modeling developed for predict-
ing speedup gain. Chapter 6 gives a conclusion and summarizes the findings and
results.

3

2
Background

The “AUTomotive Open System ARchitecture”, AUTOSAR, was founded
during 2002-2004 as an agreement between core partners, BMW, Bosch,
Continental, Daimler Chrysler, Ford, Toyota and Volkswagen[2]. Today,
9 Core partners, 50 premium members, 78 associate members and 21

development members support AUTOSAR[3]. This chapter briefly describes the
AUTOSAR standard. Section 2.1 gives an introduction to the AUTOSAR layers
and interfaces. Section 2.2 explains how multi-core support is introduced in AU-
TOSAR 4.0 and briefly describes the newly introduced modules that are necessary
to support multi-core.

2.1 Introduction to AUTOSAR
The main goal of AUTOSAR, as stated in the official website is:

“The primary goal of the AUTOSAR development cooperation is the
standardization of basic system functions and functional interfaces, the
ability to integrate, exchange and transfer functions within a car net-
work and to substantially improve software updates and upgrades over
the vehicle lifetime. Having this goal in mind, AUTOSAR pushes the
paradigm shift from an ECU based to a function based system design
attempt in automotive software development and enables the manage-
ment of the growing E/E complexity with respect to technology and
economics.” - AUTOSAR.org, [4]

AUTOSAR is designed based on a layered, modular, stack structure such that
each layer is independent from the other layers in order to satisfy modularity among
functions, ease of software mobility and migration, hardware independence, and
etc. Figure 2.1 illustrates the AUTOSAR stack architecture. A brief explanation
is given on different layers of the AUTOSAR architecture in the following sections.

4

2. Background

Figure 2.1: Overview of software layers in AUTOSAR. The BSW is shown in
sub-layers depicting a high level structure of the BSW itself ([2]).

2.1.1 Application layer
Conceptually, the application layer consists of the so called SoftWare Components
(SWC) that each of which contain one or more runnable. Each SWC is an ap-
plication software that provides a small functionality of the vehicle. SWCs are
location independent and ECU independent such that a SWC could be moved to
another ECU without the need of modification. Communication between SWCs
is supported through standardized communication interfaces.

2.1.2 Communication between software layers
AUTOSAR states that for software re-usability and component mobility, AU-
TOSAR modules shall communicate with each other through predefined struc-
tured interfaces. Two different types of interfaces are introduced in AUTOSAR,
“Sender/Receiver” interface (message passing), and “Client/Server” interface (func-
tion call). The sender/receiver interface makes an asynchronous data exchange
whereas the client/server interface makes a synchronous call. As for now, we
are concerned about the sender/receiver communication interface and within this
project a communication refers to a sender/receiver communication unless specified
otherwise. Also, communication between SWCs and modules within the underly-
ing layers is done through the standard interfaces introduced. Figure 2.2 illustrates
standard schematics for each type of interface.

Each SWC consists of a number of runnables, and each runnable may have
access to a number of ports. The sender/receiver interfaces may have a 1:1 rela-
tion (e.g. one sender writing to 1 receiver), 1:N relation (e.g. on sender writing
to multiple receivers) or an N:1 relation, (e.g. multiple senders writing to one
receiver)1.Figures 2.3 and 2.4 illustrate the schematic for each case.

1See [5] section 4.3.1.4 for more details.

5

2. Background

Figure 2.2: Standard illustration of Sender/Receiver and Client/Server interfaces
in AUTOSAR.

Figure 2.3: High level illustration of data propagation among SWCs demonstrating
a 1 to 2 (1:2) relation. The data provided by SWC-Sender is accessible by two SWCs,
SWC-Receiver1 and SWC-Receiver2.

2.1.3 VFB layer
Virtual Function Bus (VFB), is the communication concept that separates the
communication mechanism between SWCs and the infrastructure beneath the ap-
plication layer and amongst SWCs themselves. Communication amongst SWCs
is done through the same mechanisms as between SWCs and the lower layers in
the AUTOSAR stack[6]. Figure 2.5 demonstrates an arbitrary number of SWCs
and the communication interfaces between them. From the SWC point of view, a
communication is done via the VFB, thus, a SWC has no awareness of the com-
munication end-point location, (i.e the receiving port) providing mobility among
SWCs. In Figure 2.5 port F writes to two ports, D and B, establishing a 1:2
relation.

6

2. Background

Figure 2.4: High level illustration of multiple SWCs writing to 1 Receiver demon-
strating a 2 to 1 (2:1) relation. Two SWCs, SWC-Sender1 and SWC-Sender2 both
can provide data for SWC-Receiver. SWC-Sender1 and SWC-Sender2 might over-
write each others data.

Figure 2.5: High level illustration of Virtual Function Bus, (VFB), with a number
of SWCs, interfaces and ports.

2.1.4 RTE layer
The Run-Time Environment (RTE) is seen as the heart and the veins of the system
which makes communication possible amongst SWCs. Also, the communication
between SWCs and the underlying layers (Basic Software components and ser-
vices) is done through the RTE layer. The RTE is generated for each ECU based
on the ECU configuration settings, SWCs that are mapped to the ECU, and the
underlying layers’ settings and configuration. The RTE is responsible for run-
ning runnables, task execution and etc[5]. Figure 2.6 depicts the RTE within the
VFB context. The communication between port B and C, is done through the
RTE layer and may or may not require additional communication through the
underlying layers. While the communication between two ECUs (i.e port D and
E) conceptually goes through the VFB and does require communication through
underlying layers.

7

2. Background

Figure 2.6: Demonstration of inter-ECU and intra-ECU communication through
RTE and VFB layers. Inter-ECU communication is handled conceptually through
the VFB layer, while intra-ECU communication is handled only within the RTE of
that ECU.

2.1.5 BSW layer
The Basic SoftWare(BSW), as shown in Figure 2.1, consists of several component
modules and services. It provides functionalities to applications through various
standard/hardware-specific components and services. In terms of vehicle function-
ality, the BSW does not provide any specific job itself, rather, it is the engine of the
AUTOSAR stack. Within the BSW layer, the “Services layer” consists of services
such as communication protocols and memory management. The “ECU abstrac-
tion layer” makes ECU specific configurations transparent to higher layers. The
“Microcontroller abstraction layer” contains standard communication interfaces
between upper layers and the microcontroller registers and configuration. The
“Complex Device Drivers”, (CDD), brings in functionalities for direct hardware
access to upper layers for specific purposes.

2.2 Multi-core support in AUTOSAR
As the computation demand is going higher and increasing in the automotive
industry on one hand, and increasing clock frequency is not possible due to the
need of low power consumption in ECUs on the other hand, the need of multi-
core ECUs becomes more and more clear. Multi-core ECUs may be used for more
processing power and redundancy in safety critical applications (as recommended
in ISO26262). Multi-core support was first introduced in AUTOSAR release 4.0
in 2009. In this section, a brief introduction is given to aspects of AUTOSAR,
such as modules and aspects, with respect to multi-core support.

8

2. Background

2.2.1 Communication in multi-core AUTOSAR
Communication between SWCs is divided as the following:

Inter − ECU communication

Intra− ECU communication

Inter − core communication

Intra− core communication

As the scope of this project is limited to ECU level architecture, inter-ECU
communication is not discussed. Inter-core communication is extensively studied
as it plays a critical role in future multi-core systems. Figure 2.7 illustrates a high
level of all four cases of communication.

Figure 2.7: High level demonstration of inter/intra core communication and inter-
ECU communication. Ports A and B illustrate an intra-core communication, ports
C and D illustrate a cross-core communication, and ports E and F illustrate an
inter-ECU communication.

2.2.2 The Operating System
The AUTOSAR Operating System, (OS) is a manipulation of the OSEK[7] op-
erating system. Most of the general properties and attributes of OSEK apply to
AUTOSAR-OS also. The rest of this section explains briefly some aspects of the
AUTOSAR-OS.
As discussed in [8] Section 3.37, from an operating system point of view, there are
three different main approaches to increase processing power within AUTOSAR.
That is:

9

2. Background

• One Operating system per core(e.g. A case in which multiple ECUs are
merged into one ECU, each running on one core, individually. The drawbacks
of this approach may appear in shortage in I/O and memory, complexity in
core synchronization, computation overhead for shared resource handling and
etc.)

• One operating system controlling more than one core(e.g. Running SWCs
with parallel distributed algorithms).

• Having cores with no operating system(e.g. A core may be used to do simple
tasks such as I/O without the need of an operating system).

Figure 2.8: High level demonstration of AUTOSAR layers on a dual-core ECU
with one OS per core. Core1 is the master core and thus, Core2 has much less
modules and services than Core1.

The scope of this research is only within the first approach, i.e. one OS per
core. Figure 2.8 illustrates the BSW on a dual-core ECU. The following gives a
terminology on some aspects of the OS, that are used throughout this study:

• Tasks: Each OS has at least one task. Tasks may be “basic” or “extended”.
A basic task is a task which is terminated after completion. An extended
task is a task that may be activated again after completion. Generally, the
OS task is a basic task and all other periodic tasks are extended tasks[7].
Tasks may be activated periodically by the scheduler or by an event.

• Scheduler: Each OS has a scheduler which implements the scheduling policy
among tasks. In AUTOSAR, static priority scheduling policy is used.

10

2. Background

• Event: An event may be sent to the scheduler to activate a specific task. The
scheduler will then activate the naming task if there is no other task with
a higher priority to be executed. The scheduler itself has a higher priority
than any other task.

2.2.3 Inter OS-Application communication
“OS Application” refers to a set of tasks, counters, Interrupt Service Routines(ISRs),
and other OS modules that form an object together and hold an adherence to-
gether. Each OS has at least one OS-Application. Hence, in multi-core systems
with one OS per core, each core has at least one OS-application. Within the con-
text of this writing, OS-applications are used only to assign objects to a specific
core. Thus, each core has one OS-application and every task, runnable, counter
and etc shall belong to one, and only one OS-Application, which determines the
core in which the object executes on. The “Inter OS Communicator”(IOC), is nec-
essary and was introduced in [9] Section 7.10 for multi-core support. Since there is
only one OS per core, inter-os communication is seen as inter-core communication2.
We focus on two major purposes and functionalities of the IOC:

• The IOC is responsible for guaranteeing data consistency between two cores
in inter-core communication.

• The IOC provides a mechanism for event triggering between the two cores
while keeping the two OSs synchronized.

2.2.3.1 Data consistency in IOC

Figure 2.9 depicts a configuration of SWCs emphasizing a 2:1 relation between
SWC-1, SWC-2 and SWC-3, in which SWC-1 and SWC-2 try to send a data to
the same port on SWC-3. This means a memory location is shared among the
three SWCs. In such a configuration, if SWC-1 and SWC-2 attempt to send a
data to SWC-3 simultaneously, SWC-1 might overwrite the data of SWC-2, and
vice-versa. Hence, a mechanism is needed to support mutual exclusion between
the two SWCs(i.e SWC-1 and SWC-2). The IOC may be implemented in various
ways to support mutual exclusion, however, AUTOSAR standard suggests using
“spinlocks”. Within this project, all mutual exclusions are handled by using spin-
locks. Lakshmanan et al in [10] have discussed various approaches for supporting
data consistency(and mutual exclusion in general) within the AUTOSAR context.
While Figure 2.9 illustrates a high level structure of how the IOC handles data
consistency between two cores, Figure 2.10 depicts the sequence diagram of the
same configuration3. Figure 2.9 shows that SWC-1 and SWC-2 write to their corre-

2Although the standard does allow multiple OS-Applications on one core, we use OS-
application as an identification for objects to determine which core they belong to and thus,
having such an approach, requires not to have multiple OS-Applications per core.

3Labels used in Figures 2.9 and 2.10 are not AUTOSAR standard. Shortened names have
been used for ease of readability.

11

2. Background

sponding RTE layer. The RTE layer knows that destination port is shared among
other SWCs and hence, it will request a write permission to its corresponding OS
and the OS passes the request to the IOC module. So far, all events execute in
parallel on both cores and a race condition occurs between the two SWCs trying to
access the IOC. The IOC grants write permission to the RTE by an acknowledg-
ment. The IOC grants write permission to each RTE layer such that it guarantees
data consistency among the two SWCs. Each RTE layer writes its data to the
destination port after it has received IOCs acknowledgment. Figure 2.10 shows
the sequence diagram of the same configuration as in Figure 2.9. The following
describes the chain of events in Figures 2.9 and 2.10:

1. RTE_Write_<Runnable>_<Port>(): A runnable in a SWC writes
sends a data to the RTE layer with the destination port.

2. OS_Request_IOC_Write_<Runnable>_<Port>(): The RTE re-
quests write permission on the destination port from the IOC module. Note
that a race condition may occur if multiple calls are made to the IOC module.

3. Ack_IOC_Write_<Runnable>_<Port>(): IOC grants write per-
mission to the RTE layer by acknowledging its request.

4. RTE_Write_Buffer_<Runnable>_<Port>(): The RTE writes the
data to the memory buffer location, which will be read by the receiver.

5. Ack_Completion: The RTE acknowledges the IOC that it has finished its
job and now releases the IOC module.

6. RTE_OK: The RTE acknowledges the SWC that the write operation has
completed successfully and the data is available to the reader.

Note that reading the data by SWC-3 has no impact on the communication mecha-
nism whatsoever. How SWC-3 reads the data and how frequently it reads the data
does not affect the concern of data consistency and hence, we do not address the
complete chain of send and receive. Figure 2.10 illustrates the sequence diagram
of a cross-core communication with guaranteed data consistency(See [9], Section
7.10.3.1)4

4As it is stated in the AUTOSAR OS Specification [9] page 108, on 1:1 relations, data consis-
tency is not necessary. However, the current implementation done by ArcCore[11] does not follow
this approach and the RTE generated still acquires the lock and so assures data consistency.

12

2. Background

Figure 2.9: High level demonstration of data consistency handling between two
cores through the IOC service. The IOC has to grant write permit to SWC-1 and
SWC-2 since they try to write to a shared memory location, before any data is
actually written to SWC-3.

13

2. Background

F
ig

ur
e

2.
10

:
Se

qu
en

ce
di
ag

ra
m

de
m
on

st
ra
tin

g
da

ta
co
ns
ist

en
cy

ha
nd

lin
g
be

tw
ee
n

tw
o
co
re
s
th
ro
ug

h
th
e
IO

C
se
rv
ic
e.

T
he

IO
C

ha
s
to

gr
an

t
w
rit

e
pe

rm
it

to
SW

C
-1

an
d

SW
C
-2

sin
ce

th
ey

tr
y
to

w
rit

e
to

a
sh
ar
ed

m
em

or
y
lo
ca
tio

n,
be

fo
re

an
y
da

ta
is
ac
tu
al
ly

w
rit

te
n
to

SW
C
-3
.

14

2. Background

2.2.3.2 Inter-core notification in IOC

In a sender/receiver communication, a sender may optionally notify the availabil-
ity of new data to the receiver. There are various ways for implementing such a
mechanism depending on the hardware architecture. However, the standard sug-
gests using interrupts. Upon completion of data write, the sender shall trigger
an “event” to the task in which the corresponding receiver port is running on.
The event is then passed to the “scheduler”, which will eventually activate the
receiving task. As mentioned in Section 2.2.2 each OS has its own scheduler, and
thus, accessing the scheduler of another OS shall be handled such that it will not
cause any affect on the other scheduler. Figure 2.11 illustrates a configuration of
inter-core sender/receiver communication with notification support. As in Figure
2.11, if SWC-1 and SWC-2 intend to send a data to SWC-3 with notification si-
multaneously, a race condition may occur in accessing the scheduler. Therefore,
the notification shall be handled through the IOC. Here, accessing the scheduler
is accessing a shared resource. Moreover, another rationale supporting the need of
the IOC, is that even if the notification is handled independent of the scheduler,
since each core has an OS of its own and the OS has its own Interrupt Vector Offset
Register (IVOR), again a conflict may occur if the notification is not handled via
the IOC. Having said that, in essence, an inter-core notification problem is a shared
resource handling problem, and it is handled in the same manner of guaranteeing
data consistency (i.e using spinlocks when acquiring the shared resource).

Figure 2.11 shows the high level configuration that SWC-1 and SWC-2 write
a data to SWC-3. Both SWCs use the inter-core notification mechanism. Both
SWCs, notify the destination port once data write has completed and is available
to the receiver. The data write mechanism(i.e. RTE_Write_Buf()) follows the
same mechanism as explained earlier in Section 2.9, but it is not shown in Figures
2.11 and 2.12 for simplicity. Each SWC sets an event to the OS on its core, and
hence communicates to its scheduler. However, the scheduler module on Core1
realizes that destination port resides on another OS module, and hence, requires
access to the scheduler of the destination port(i.e. Scheduler2). Once Scheduler1
has acquired access to Scheduler2, it sets an event on it by an IVOR call(i.e.
NotifyCore()). Note that similar to the IOC method for assuring data consistency,
the IOC uses spinlocks to handle the race condition between SWC1 and SWC2.
Figure 2.12 shows the sequence diagram of the same configuration in Figure 2.11.
The following describes the chain of events in Figures 2.11 and 2.12:

1. RTE_Write_<Runnable>_<Port>(): A runnable in a SWC writes
sends a data to the RTE layer with the destination port.

2. RTE_Write_Buffer_<Runnable>_<Port>(): The RTE writes the
data to the memory buffer location, which will be read by the receiver.

3. Set_Event(): The RTE has to notify the availability of new data to the
receiver. This is done by triggering an event to the relevant OS.

15

2. Background

4. IOC_Request_Scheduler(): The OS requests access to the scheduler.
This results in a race condition if two cores try to access the scheduler simul-
taneously. Since the scheduler is a shared resource, it needs to be handled
via the IOC.

5. IOC_Acquire_Scheduler: The IOC grants scheduler access to the OS.
The OS can then make changes to the scheduler, or access another scheduler
if needed. In Figure 2.12 OS1 needs to access another scheduler while OS2
does not need to do so.

6. NotifyCore(): The NotifyCore() function is implemented as an IVOR. It
is used to interrupt and modify the scheduler on another core. For example,
Scheduler1 has to notify a modification to Scheduler2, since the receiving
port(i.e. SWC-3) is running on Core2. This illustrates that both schedulers
are seen as shared resource, despite the necessity of a cross-core notification.
The reasoning from the scheduler point of view, is that the scheduler is not
aware that a receiving event will require a cross-core notification or not.

7. Ack_Completion: The OS acknowledges the IOC about completion of
scheduler modification. The scheduler is now free.

Figure 2.11: High level demonstration of inter-core, data-write notification through
the IOC service. In such a case, OS-1 needs to access the scheduler on another
OS, and this results in multiple processes(SWC1 and SWC2) accessing a shared
resource(Scheduler 2).

16

2. Background

F
ig

ur
e

2.
12

:
Se
qu
en

ce
di
ag
ra
m

de
m
on

st
ra
tin

g
in
te
r-
co
re
,
da

ta
-w

ri
te

no
tifi

ca
tio

n
th
ro
ug
h
th
e
IO

C
se
rv
ic
e.

In
su
ch

a
ca
se
,
O
S-
1
ne
ed
s
to

ac
ce
ss

th
e
sc
he
du

le
r
on

an
-

ot
he
r
O
S,

an
d
th
is

re
su
lts

in
m
ul
tip

le
pr
oc
es
se
s(
SW

C
1
an

d
SW

C
2)

ha
nd

lin
g
a
sh
ar
ed

re
so
ur
ce
(S
ch
ed
ul
er

2)
.

17

3
Test and Development

Environment

This chapter describes the development environment, both software and
hardware. In order to simulate an AUTOSAR stack, we first need
an AUTOSAR software and a hardware to execute the software on.
Among the AUTOSAR component builders such as Vector, Davinci and

ArcticStudio[11], we chose ArcCore because we already had access to an implemen-
tation with multicore support based on AUTOSAR 4.01 developed in ArcticStudio
and provided by Ecore. The hardware target is an MPC5517E micro-controller on
the MPC5510EVB evaluation board. The following sections explain the develop-
ment environment. Section 3.1 describes the software tools and environment and
Section 3.2 briefly describes the target hardware.

3.1 Software environment
This section describes the software tools and environment that are used through
the project. That is, the development environment, the debugging and analysis
tools and environment, and hardware communication software and tools.

3.1.1 ArcticStudio and ArcCore
ArcticStudio is an eclipse based, free and open-source2 Integrated Development
Environment (IDE) providing SWC, RTE and BSW module code generators. Ar-
cCore, which is the heart of the BSW modules, drivers and interfaces supports
a number of target hardware and evaluation boards which is freely available.
Through this project, different configurations and implementations of AUTOSAR

1Current version is preliminary evolved version of 3.1 with some functionalities of version 4.0
2Some features of the IDE, basically, code generators are not freely available as the time of

this writing.

18

3. Test and Development Environment

are generated through ArcticStudio and evaluated. The ArcticStudio uses “gcc”
compiler and is capable of directly generating a binary file for the target hardware
by using the target hardware cross-compiler directly within the IDE. ArcticStudio
is not a debugging tool(it cannot connect to the hardware directly). Hence, the
generated binary file (*.elf) has to be uploaded on the hardware using other tools.
Also, other tool and software are needed for debugging purposes.

3.1.2 CodeWarrior
CodeWarrior 5.9[12] is a fairly simple IDE by Freescale[13] for development on
Freescale micro-controllers. Since we are using a Freescale product, we use Code-
Warrior cross-compiler. The procedure is such that ArcticStudio uses gcc compiler,
then it is linked to CodeWarrior for generating the elf file. Hence, the user does
not need to do anything directly within the CodeWarrior IDE. The generated bi-
nary file(*.elf) is uploaded to the target hardware using “NEXUS DEBUGGER
for CodeWarrior”. NEXUS DEBUGGER’s communication with hardware is done
through the “NEXUS/USB Multilink JTAG Debugger”.

3.1.3 FreeMASTER
One of the difficulties in parallel real-time software development, is detecting run-
time bugs that may or may not appear in runtime due to the realtime and parallel
nature of software and cause an abnormal behavior in software. Such an abnor-
mality is extremely difficult to detect using static debuggers3 simply because by
stopping and starting the software, the software behavior changes and the bug will
not appear. Moreover, in real-time applications, sometimes it is necessary to see
the system behavior in runtime, which again is not possible with static debug-
gers. The problem is solved by logging(which in essence modifies the software)
or by using realtime debuggers. FreeMASTER[15] is an open-source run-time de-
bugging tool, also provided by Freescale, which makes it possible to fetch and
modify variables in realtime by communicating through RS232 channel or the
CAN bus with the target hardware using an on target driver. Through the com-
munication with target, the desired variables are sampled, read and modified in a
user-defined rate and downloaded to the PC. FreeMASTER also provides a graph-
ical user interface for data visualization. Through this project, FreeMASTER is
used both for debugging and monitoring purposes to analyze our test cases. In
easy words, FreeMASTER is seen as a digital oscilloscope which can probe, mod-
ify, and plot desired variables on PC. In this section a brief explanation is given
on how FreeMASTER modularities are embedded within the AUTOSAR stack.
Generally, FreeMASTER has two parts:

3Most common debuggers are static debuggers which execute the program step by step or by
evaluating a condition such as breakpoints. Dynamic debuggers instead do not need to stop the
execution flow, and it is possible to monitor some states of registers, stack pointer and etc while
the program flow is executing[14].

19

3. Test and Development Environment

• The PC based FreeMASTER client running on PC.

• The on target driver and communication software.

Once the on target FreeMASTER software is embedded within the AUTOSAR
stack and is running on the target, the on target software could be controlled
and monitored from the PC. However, FreeMASTER has its own limitations and
does not come without a cost. Basically, embedding FreeMASTER within the
original software is altering the original AUTOSAR software that was intended
to be monitored. Hence, it is the designer’s responsibility to design and imple-
ment the monitoring on target software with least overhead cost, and to estimate
the cost caused by software manipulation. Figure 3.1 depicts a schematic of the
development environment. As it seen in Figure 3.1, “FreeMASTER Driver and Ap-
plication” are implemented on the RTE and Application layers. This depends on
which layers are intent to be monitored by FreeMASTER. A detailed explanation
is given on how to use FreeMASTER in Appendix B.

Figure 3.1: Schematic view of development environment. The software is uploaded
and debugged using the JTAG connector through USB, while the on target software
is monitored in realtime by FreeMASTER PC client via RS232 channel.

Figure 3.2 shows the complete tool chain from code generation through running
an AUTOSAR software on the hardware. The following describes development
steps as shown in Figure 3.2:

20

3. Test and Development Environment

Figure 3.2: Complete software development tool chain.

1. An AUTOSAR software design is made.

2. Using ArcticStudio code generators, the source code is generated from AU-
TOSAR configuration description files, “ECU Extract Builder”, “SWC Builder”
and “ECU Configuration”.

3. FreeMASTER driver and protocol files are added to the source code, accord-
ing to the FreeMASTER implementation design.

4. FreeMASTER monitoring application is added to AUTOSAR source code
and necessary changes are made.

5. The binary file is generated within ArcticStudio using the CodeWarrior cross-
compiler.

6. The binary file (*.elf) is uploaded to the target hardware using Nexus De-
bugger USB uploader.

21

3. Test and Development Environment

3.2 Hardware environment
The hardware used for evaluation in this project is an MPC5510EVB[16] evalua-
tion board equipped with an MPC5517E[17] micro-controller from Freescale. As
explained in [17]4 and [18], the MPC551x micro-controllers family are heteroge-
neous dualcore processors. Software analysis is not independent from hardware
and thus, it is necessary to understand the hardware architecture which the soft-
ware is executing on. The following briefly describes some aspects of the nam-
ing micro-controller. The MPC551x micro-controller consists of two non-identical
cores, Core1 and Core2. Core2 has less processing power and features than Core1
and thus, it is known as an auxiliary node, or I/O node. Figure 3.3 shows some
of the key differences between Core1 and Core2:

• Core1 has a bigger instruction buffer than Core2.

• Core1 has an independent data bus access to flash memory as shown in Figure
3.3, whilst data communication in Core2, is handled via shared “instruction
and data” bus through crossbar.

• Core1 has more branching capabilities than Core2, see [17] for more details.

Figure 3.3: The dualcore MPC551x micro-controller block diagram. Direct access
to flash memory and a bigger instruction buffer brings more processing power to
Core1 compared to Core2.

4See Sections 10 and 11.

22

4
Inter-core versus intra-core

communication

This chapter studies the communication time in an inter-core communi-
cation and an intra-core communication. The additional overhead in-
troduced in cross-core communication is an interesting factor from a
multi-core perspective and therefore it is investigated. Hence, two simple

configurations of SWCs on the AUTOSAR stack were designed and implemented.
One configuration with an intra-core communication and another, with an inter-
core communication is developed. In the following of this chapter, in Section 4.1
the scenarios and test configurations are explained, Section 4.2 describes the intra-
core communication test and Section 4.3 describes the inter-core communication
test. The results and discussions are presented in Section 4.4.

4.1 Test description
The communication mechanism used in the two tests is intra/inter core communi-
cation with notification as described earlier in Section 2.2.3.2. The communication
time is measured by using FreeMASTER and reading the “Timebase” register
on the MPC5510x micro-controller. The timebase register provides system clock
resolution. An example for using the timebase register is available in [19]. The
overhead of actual reading the timebase register, is neglected.

Figures 4.1 and 4.3 illustrate a high level structure of intra-core and inter-
core communication as implemented in the software. The configuration consists
of two software components, SWC1 and SWC2. As the dotted arrows show, each
SWC, consists of one runnable, Runnable1 and Runnable2. Runnable1 is mapped
to TaskA and Runnable2 is mapped to TaskB. Both TaskA and TaskB have the
same priority. The “communication time” refers to a time that a data is written
to the output port (i.e. Writing point in Figure 4.2) until the data is read by the
receiving port (i.e. Reading point in Figure 4.2). Listing 4.1 shows the source code

23

4. Inter-core versus intra-core communication

for Runnable1 and Runnable2. In both test scenarios, the source code for both
runnables is the same and the difference is in the RTE layer. Runnable1 makes
an implicit “RTE_IWrite” call which will write the data on the outgoing port.
Runnable2 makes an implicit “RTE_IRead” call which reads the written data. As
mentioned earlier, the “communication time” refers to the time difference between
the “RTE_IWrite” call and the “RTE_IRead” call.

4.2 Intra-core communication
In this section, the intra-core communication test is described in details. In Figure
4.1, both TaskA and TaskB are mapped to “Scheduler1” and run on Core1, and so
Core2 is idle. Figure 4.2 illustrates the sequence diagram of the same configuration
as shown in Figure 4.1. The following describes the sequence of events based on
Figures 4.1 and 4.2.

1. Activate_Runnable1: OS1 activates Runnable1 and thus, TaskA is acti-
vated and Runnable1 starts its execution.

2. RTE_IWrite_Runnable2: Runnable1 writes an 8 bit data on its port1.

3. RTE_IWrite_Buffer(): After “data_write” completion the RTE acti-
vates Runnable2 by running “SetEvent(Runnable1)”.

4. GetSpinlock(OS): Accessing the scheduler is handled through the IOC.
“GetSpinlock()” is interpreted as request IOC service, and “GetSpinlock(OS)”
is interpreted as Request Scheduler. The function continues examining the
availability of OS lock in a busy loop until the lock is available.

5. Irq_Save: OS1 has locked the OS lock and hence it is granted access to
Scheduler1, and Scheduler1 is activated. The scheduler task itself, is an
IVOR. The intention is that the scheduler shall have highest priority and
hence, it is implemented as an interrupt routine. Irq_save() disables all
interrupts while the critical section is executing(i.e. Scheduler1). This is
needed in order to avoid deadlocks and the reason lies behind the nature of
spinlocks.

6. Scheduler: The scheduler starts its execution which will examine which
task shall start next.

7. Activate_Runnable2: The scheduler activates the next task that should
start its execution and so it activates Runnable2.

8. ReleaseSpinlock(): The execution of the critical section is finished and the
lock is released.

1The “RTE_Write” handling through IOC as described in Section 2.2.3.2 is not shown for
simplicity.

24

4. Inter-core versus intra-core communication

9. Irq_Restore: The interrupts are enabled since the critical has ended.

10. RTE_IRead_Runnable1: Runnable2 is actually activated and reads the
written data to its port by Runnable1.

Figure 4.1: High level illustration of implemented software for “intra-core commu-
nication with notification” measurement. The communication time is measured from
the time SWC1 writes a data, and the data is read by SWC2.

1 void Runnable1 () {
s t a t i c UInt8 va l = 11 ;

3 Rte_IWrite_Runnable1_senderPort_dataElem_1 (va l) ;
}

5

void Runnable2 () {
7 s t a t i c UInt8 va l = 33 ;

UInt8 va l = Rte_IRead_Runnable2_senderPort_dataElem_1 () ;
9 }

Listing 4.1: Source code for Runnable1 and Runnable2 as is in the implementation
on application layer. Runnable1 writes “val” to “senderPort” via an “RTE_IWrite”.
The RTE_IWrite, will send an event to TaskB which will eventually activate
Runnable2. Runnable2 reads “val” on “senderPort” by making an RTE_IRead call.

25

4. Inter-core versus intra-core communication

Figure 4.2: Sequence diagram illustration of implemented software for “intra-core
communication with notification” measurement. Execution time is measured between
the “Writing point” and the “Reading point”.

4.3 Inter-core communication
The intra-core communication configuration is altered such that SWC1 and SWC2
will establish an inter-core communication and the communication time is mea-
sured. Figure 4.3 depicts the high level structure of the implemented software and
Figure 4.4 shows the sequence diagram of the same configuration. The follow-
ing describes the sequence of events for in an inter-core communication based on
Figures 4.3 and 4.4.

1. Activate_Runnable1: OS1 activates Runnable1 and thus, TaskA is acti-
vated and Runnable1 starts its execution.

2. RTE_IWrite_Runnable2: Runnable1 writes an 8 bit data on its port2.

3. RTE_IWrite_Buffer(): After “data_write” completion the RTE acti-
vates Runnable2 by running “SetEvent(Runnable1)”.

2The “RTE_Write” handling through IOC as described in Section 2.2.3.2 is not shown for
simplicity.

26

4. Inter-core versus intra-core communication

4. GetSpinlock(OS): Accessing the scheduler is handled through the IOC.
“GetSpinlock()” is interpreted as request IOC service, and “GetSpinlock(OS)”
is interpreted as Request Scheduler. The function continues examining the
availability of OS lock in a busy loop until the lock is available.

5. Irq_Save: OS1 has locked the OS lock and hence it is granted access to
Scheduler1, and Scheduler1 is activated. The scheduler task itself, is an
IVOR. The intention is that the scheduler shall have highest priority and
hence, it is implemented as an interrupt routine. Irq_save() disables all
interrupts on the core it is called while the critical section is executing(i.e.
Sceduler1). This is needed in order to avoid deadlocks and the reason lies
behind the nature of spinlocks.

6. Scheduler1: The scheduler starts its execution which will examine which
task shall start next.

7. NotifyCore()/IVOR: Scheduler1 tries to activate “TaskB”, but, it does
not have access to TaskB since it belongs to Core2. Thus, Scheduler1 shall
notify the owner of TaskB about the receiving event. Hence, an interrupt
is triggered, and any running task on Core2 is preempted. The interrupt
activates “Scheduler2”.

8. Scheduler2: Scheduler2 is activated and examines the event sent by Sched-
uler1.

9. Activate_Runnable2: Scheduler2 activates the next task that should start
its execution and so it activates Runnable2.

10. Ack: The Notification message is acknowledged. According to [9], scheduler
execution is a synchronization point. Hence, an acknowledgment message is
sent back to the calling core.

11. ReleaseSpinlock(): The execution of the critical section is finished and the
lock is released.

12. Irq_Restore: The interrupts are enabled since the critical has ended.

13. RTE_IRead_Runnable1: Runnable2 is actually activated and reads the
written data to its port by Runnable1.

27

4. Inter-core versus intra-core communication

Figure 4.3: High level illustration of implemented software for “inter-core commu-
nication with notification” measurement. The communication time is measured from
the time SWC1 writes a data, and the data is read by SWC2.

28

4. Inter-core versus intra-core communication

Figure 4.4: Sequence diagram illustration of implemented software for “inter-core
communication with notification” measurement. Execution time is measured between
the “Writing point” and the “Reading point”.

29

4. Inter-core versus intra-core communication

4.4 Communication time measurement results
Measuring the time difference on inter-core communication between writing point
and reading point according to Figures 4.2 and 4.4 is not possible using the Time-
base register since it is not accessible on Core2(See [17] Chapters 10 and 11). In
order to overcome this problem in a simple manner, the two designs were mod-
ified such that SWC2 will write back a dummy data on SWC1 through another
interface and SWC1 will read back the data. Figure 4.5 illustrates a high level se-
quence diagram of the modified design in intra-core communication. The inter-core
communication design is modified in a similar manner. The “Round Trip Time”
(RTT) is introduced as the time between the “Writing point” and the “Reading
point” according to Figure 4.5. It is assumed that the time spent in Runnable2 be-
tween “RTE_IRead_Run1” and “RTE_IWrite_Run1” in Figure 4.5 is negligible.
Thus, intra-core communication time and inter-core communication time is the
RTT divided by two. Table 4.1 shows the measured RTTs in intra-core communi-
cation and inter-core communication time. The last column in Table 4.1 shows the
intra-core and inter-core communication time normal form over intra-core commu-
nication time. As it is seen in the last column, a cross-core communication is 54%
more expensive than an intra-core communication.

30

4. Inter-core versus intra-core communication

Communication Architecture Communication Time (µs) Normalized

Intra-core 110
2 = 55 1

Inter-core 170
2 = 85 85

55 ≈ 1.54

Table 4.1: Intra-core versus Inter-core communication time. The results show that
the inter-core communication time is 54% higher than the intra-core communication
time.

Figure 4.5: High level sequence diagram of modified SWC1 and SWC2 communi-
cation mechanism. In this modified scenario, SWC2 writes back a dummy data to
SWC1 so that time measurement is done always on Core1.

31

5
Speedup gain on an AUTOSAR
4.0 implementation with dualcore

support

Afundamental question that shall be answered in addressing multi-core sys-
tems is the processing power gained by a multi-core system compared to
a single-core system. This chapter, studies the processing power gained
by introducing multicore support in AUTOSAR 4.0. Later, preliminary

studies are carried out towards a development of a theoretical model of speedup
gain, based on the multi-core AUTOSAR design requirements and implementation
factors. The theoretical model takes into account hardware specific factors specifi-
cally considering the heterogeneous design of the MPC551x microcontroller family.
This chapter is structured as the following: Section 5.1 gives an introduction to
speedup and describes the terminology. Section 5.2 describes the test scenarios for
measuring speedup gain and explains the findings and results. Section 5.3 illus-
trates how the theoretical model for speedup gain is developed based on Amdahl’s
law.

5.1 Introduction to speedup and Amdahl’s law
In parallel programming, the computational capacity gained by having multiple
cores is known as “speedup”. Speedup, is introduced according to Equation 5.1.

SN = T1

TN
(5.1)

Where:

• N is the number of cores.

• T1 is the execution time of the program having only one core.

32

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

• TN is the execution time of the program having multiple cores.

• S is speedup.

Later, Amdahl’s argument in [20] led to extending the speedup gain equation by
differentiating between the parallel portion of the program and the serial portion
of the program. Amdahl’s law enhanced the speedup such that:

S(N,P) = 1
(1− P) + P

N

(5.2)

Where:

• N is the number of cores.

• P is the parallel portion of the program such that: 0 6 P 6 1

• S is the Speedup.

Amdahl’s law considers only symmetric systems with identical cores with the
same characteristics. From Equation 5.2 it is observed that by having a smaller
serial portion in the program, a higher speedup will be achieved. Thus, when
seeking software speedup by using extra cores, it is critical to know what portion
of the software executes in a sequential manner, and what portion is executable in
parallel.

In the following of this chapter, two test scenarios were designed and imple-
mented, mocking workload division and parallelism in order to measure the pos-
sible speedup gain. In Section 5.3 a theoretical model is driven based on the
heterogeneous hardware architecture of the MPC551x, such that it could be ap-
plied on already implemented single-core based applications. The model presents
the speedup boost on migration of those applications to a dualcore system.

5.2 Measuring speedup gain
In multi-core systems, task fragmentation is usually done by a master task that
fragments a workload of a task on a number of slave tasks, which each run on a
different core, usually, known as slave cores. Each slave task carries out a part of
the total work and reports back the result to the master task. Afterwards, the
master task collects the results and puts the results together. In first sight, it
seems that the more slave tasks are used, the parallel portion of the software, P
in Equation 5.2 is increased and hence, a higher speedup is gained. However, the
task fragmentation itself, introduces an extra overhead to the serial portion of the
software, that is S in Equation 5.2 is increased and hence, the speedup is reduced.
In the following we propose and implement a test scenario, in which, we measure
the actual speedup gained in a similar manner as explained. We introduce SWC-
Master, SWC-Slave1 and SWC-Slave2. SWC-Master consists of two runnables,

33

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

“DivideRunnable” that would do the workload fragmentation on other cores, and
“CollectRunnable” that would put the results together. SWC-Slave1 and SWC-
Slave2 will each do a part of the total fragmented workload.

Two scenarios are carried out, firstly, on a single-core system and secondly on a
dualcore system with the same workload as in the single-core scenario but with the
workload being fragmented on two cores. Figures 5.1 and 5.3 illustrate the SWCs
configuration, port mapping and runnable to task mapping on the two scenarios.
The following sections describe each scenario in details.

5.2.1 Single-core scenario
The software architecture is shown in Figure 5.1, since there is no active commu-
nication between Core1 and Core2, and there is no active task on Core2, Core2
is idle. Figure 5.2 shows the sequence diagram in which “DivideRunnable” puts a
workload on “Runnable1”. The following explains the single-core scenario based
on Figure 5.1 and Figure 5.2.

Step 1: “DivideRunnable” which is mapped to SWC-Master, writes a message by
an “RTE_IWrite” to port “S2”. Once the message becomes available on the
receiving port, Task Slave1 is activated. The message is read on the receiving
port by “Runnable1” and “Runnable1” starts its execution.

Step 2: “Runnable1” completes the execution of the simulated workload and reports
back upon completion by an “RTE_IWrite” to “CollectRunnable”, which is
mapped to SWC-Master and port R2.

Step 3: “CollectRunnable” measures the total execution time(i.e. the time differ-
ence between writing to “Runnable1” and reading the data written back to
“CollectRunnable” by “Runnable1”). As it is seen in Listing 5.1, the “Collec-
tRunnable ” does the measurement (line No. 20) once TaskSlave1(i.e. task1
in source code) has completed its execution.

The scenario is repeated for different workloads. Hence, the total workload (i.e
E) is increased, and the scenario starts again from “Step 1”. Time measurement
starts before “DivideRunnable” fragments the workload and stops after “Collec-
tRunnable” has read the data on its ports(i.e. R2 in Figure 5.1). Hence, the
communication time is included in the workload execution time itself. Listing 5.1
shows source code of runnables. The source code is simplified in Listing 5.1 and
Listing 5.2.

34

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

Figure 5.1: High level illustration of implemented software for single-core scenario
configuration on the AUTOSAR stack. In this scenario, only Core1 is used and
no workload fragmentation is done and the total workload is carried out by Task
Slave1. SWC-Master writes a data to SWC-Slave1, and SWC-Slave1 reports back
to SWC.Master, once it has finished its execution.

Figure 5.2: Sequence diagram of single core scenario illustrating workload propa-
gation between the Master task and one Slave task. No workload division occurs in
this scenario.

35

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

1 void DivideRunnable () {

3

Rte_IWrite_Sender1 Runnable_senderPort_dataElem_1 (task1Counter) ;
5

}
7

void Col lectRunnable () {
9

UInt8 va l1 = 99 ;
11 UInt8 va l2 = 99 ;

va l1 = Rte_IRead_Sender2Runnable_R1senderPort_dataElem_1 () ;
13

i f (va l1 == task1Counter)
15 {

task1Counter = 1 ;
17 task1_done = 1 ;

}
19

i f ((task1_done==1))
21 {

/∗ Measure time , In c r e a s e workload , repeat the s c ena r i o ∗/
23 }

}
25 void Runnable1 () {

s t a t i c UInt8 va l = 11 ;
27 taskCounter = Rte_IRead_DivideRunnable_senderPort1_dataElem_1 () ;

i n t dummy = 0 ;
29 f o r (i n t i = 0 ; i < taskCounter ; i++){

dummy++; /∗workload s imu la t i on ∗/
31 }

Rte_IWrite_CollectRunnable_senderPort_dataElem_1 (taskCounter) ;
33 }

Listing 5.1: Listing of runnables source code. CollectRunnable is called when a
data is written on its port. After checking that the data written is correct, it will set
the relative task to done and so the experiment continues by increasing the workload.

36

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

5.2.2 Dualcore scenario
Figure 5.3 illustrates the software configuration in the dual core scenario. As
mentioned earlier, in this scenario, the workload is fragmented among the two cores
and is completed by “Slave Task1” and “Slave Task2”. The following describes the
dual-core scenario based on Figure 5.3 and Figure 5.4.

Step 1: “DivideRunnable” which is mapped to SWC-Master, writes a message to port
“S2” and a message to port “S1” by making an RTE_IWrite on each port.
Once the message becomes available on the receiving ports, Task Slave1 and
Task Slave2 are activated. The message is read on the receiving port by
“Runnable1” and “Runnable2”, and the two runnables start their execution.

Step 2: “Runnable1” and “Runnable2” complete their execution of the simulated
workload and each reports back the completion to “CollectRunnable”.

Step 3: “CollectRunnable” starts its execution when a data is written on its port and
Core1 is idle. For example, if “Runnable1” completes its execution it will
trigger the “CollectRunnable”, but the “CollectRunnable” will realize that
“Runnable2” has not reported the result yet and hence, Core1 will go back
to idle. Eventually, “Runnable2” will also complete its execution and trig-
ger “CollectRunnable”, but this time it will realize that both runnables have
reported back, and hence it will end the scenario. By contrast, in Figure
5.4, “Runnable2” completes its execution before “Runnable1” but it can not
activate “CollectRunnable”. This is because Core1 is executing “Runnable1”
and “Task Master” and “Task Slave1” have the same priority(See Figure
5.3). Hence, “CollectRunnable” is executed when actually both slave tasks
have completed their execution, but as explained in the first example, this
might not be the case. Therefore, as seen in Listing 5.2(line No. 27) this
is examined and “CollectRunnable” measures the total execution time when
both “Runnable1” and “Runnable2” have completed their workload(i.e. time
difference Writing to “Runnable1” and “Runnable2”, and reading the data
written back to “CollectRunnable” by “Runnable1” and “Runnable2”). As
it is seen in Listing 5.2(line No. 27), the “CollectRunnable ” does the mea-
surement when both task have completed their execution.

The scenario is repeated for different workloads. Hence, the total workload (i.e
, E) is increased, and the scenario starts again from “Step 1”.

5.2.3 Results
The speedup is calculated using Equation 5.1. Having the results for different
workloads on the single-core and dualcore scenarios. Figure 5.5 illustrates the
results. In both scenarios, the serial portion of the software is constant for all
values of different workloads. However, in the dual core scenario, the serial portion
of the program is bigger since an extra communication, (inter-core communication

37

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

1 void DivideRunnable () {

3

Rte_IWrite_Sender1Runnable_sender2Port_dataElem_1 (task1Counter) ;
5 Rte_IWrite_Sender1Runnable_senderPort_dataElem_1 (task2Counter) ;
}

7 void Col lectRunnable () {

9 UInt8 va l1 = 99 ;
UInt8 va l2 = 99 ;

11 va l1 = Rte_IRead_Sender2Runnable_R1senderPort_dataElem_1 () ;
va l2 = Rte_IRead_Sender2Runnable_R2senderPort_dataElem_1 () ;

13

i f (va l1 == task1Counter)
15 {

task1Counter = 1 ;
17 task1_done = 1 ;

}
19

i f (va l2 == task2Counter)
21 {

task2Counter = 2 ;
23 task2_done = 1 ;

}
25

i f ((task1_done==1)&&(task2_done==1))
27 {

/∗ Measure time , In c r e a s e workload by i n c r e a s i n g taskcounter ,
r epeat the s c ena r i o ∗/

29 }
}

31 void Runnable1 () {
s t a t i c UInt8 va l = 11 ;

33 taskCounter = Rte_IRead_DivideRunnable_senderPort1_dataElem_1 () ;
i n t dummy = 0 ;

35 f o r (i n t i = 0 ; i < taskCounter ; i++){
dummy++; /∗workload s imu la t i on ∗/

37 }
Rte_IWrite_CollectRunnable_senderPort_dataElem_1 (taskCounter) ;

39 }
void Runnable2 () {

41 s t a t i c UInt8 va l = 33 ;
taskCounter = Rte_IRead_DivideRunnable_senderPort2_dataElem_1 () ;

43 i n t dummy = 0 ;
f o r (i n t i = 0 ; i < taskCounter ; i++){

45 dummy++; /∗workload s imu la t i on ∗/
}

47 Rte_IWrite_CollectRunnable_senderPort_dataElem_1 (taskCounter) ;
}

Listing 5.2: Listing of runnables. CollectRunnable is called when a data is written
on its port. After checking that the data written is correct, it will set the relative
task to done. By contradiction to Listing 5.1, it checks that both tasks are done
and the first time CollectRunnable is called, only one task is set to done. Once, the
second data is written, it will set the relative task to done too and the scenario will
be repeated. 38

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

Figure 5.3: High level illustration of implemented software for dual core scenario
configuration on the AUTOSAR stack. In this scenario, two cores are used and
workload fragmentation is done through an inter-core communication. The total
workload is carried out by Task Slave1 and Task Slave2, which execute in parallel.
The total workload is carried out by Task Slave1 and Task Slave2, which execute in
parallel.

between Master and Slave2) occurs. Therefore, if the speedup gained by workload
fragmentation is smaller than the extra cross-core communication overhead, the
speedup is actually less than 1, in other words the performance has been reduced!
Therefore, from Figure 5.5 it is observed how big should the parallel portion of
the software be so that the speedup will exceed 1. The Figure shows that for total
workload of approximately E ≈ 345µs it is worth having a workload fragmentation
strategy having such an specific configuration. In this experience the workload
was divided equally among the two cores. Given that the two cores have different
processing powers, it is expected to achieve a higher speedup by having a better
fragmentation strategy(i.e the core with higher processing power, should carry out
a bigger workload.). An 8th degree exponential fit shows a lean nor more than 45%
speedup on the MPC551x. Ideally, according to Amdahl’s law, in a homogeneous
dual-core system, with a relatively small serial portion and a big parallel portion
of the software, the speedup lean should be 2.

39

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

Figure 5.4: Sequence diagram of dual core scenario illustrating workload propaga-
tion between the Master task and Task Slave1 and Slave2. The workload is equally
fragmented among the two tasks.

Figure 5.5: Speedup measurements with equal workload division with 700 samples
for increasing amount of workload. For tasks with a lower execution time than
345µs, it is not worth to fragment the task among two parallel tasks. An 8th degree
exponential fit shows that maximum speedup gained would be less than 45 percent.

40

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

5.3 Extending Amdahl’s law to a heterogeneous
multicore AUTOSAR system

One might question that having a task with a known execution time, would it be
wise to fragment the task to two separated tasks on two cores, in order to achieve
a lower execution time? If so, what speedup will be gained? This is a crucial
question when migrating a software from a single core, to a multicore platform,
with the intention of reducing execution time and gaining speedup. In this section,
a theoretical model on speedup gain on workload division(task fragmentation) is
developed, based on the heterogeneous nature of the MPC551x and the communi-
cation mechanism among SWCs on multiple cores in AUTOSAR 4.0. The goal is
to extend Amdahl’s law to the multicore AUTOSAR architecture, such that the
result will provide a more precise picture of the possible speedup gain.

5.3.1 Earlier studies
Over the past four decades, many researchers have developed various extension
of the Amdahl’s law defining upper and lower bounds, and extending the original
work to various hardware architecture factors such as pipeline, branching, out
of order execution and etc. Hill and Marty in [21] investigated the Amdahl’s
law in symmetric, asymmetric, and dynamic multicore hardware and applied a
hardware model to Amdahl’s law and introduced a power factor for cores. By this,
they differentiated between the processing power of different cores in asymmetric
systems. However, Xian-He Sun and Yong Chen in [22] argued the conclusion
by Hill and Marty were pessimistic and evaluated their work. E. Yao et al in
[23] carried on with Hill and Marty, and did a theoretical analysis on their work.
Today, the trend in multi core systems is a hot area, however, some may argue it
is the repetition of history, since the arguments are very similar to the discussions
when multi-processors were coming to the picture.

5.3.2 Model overview and Assumptions
In this section, a so called extended version of Amdahl’s law is developed that
would consider a coefficient of performance for each core in an asymmetric mul-
ticore system. Moreover, the extended model considers an overhead cost for each
added core. This model will predict the possible speedup gain in multicore asym-
metric systems more precisely than the original Amdahl’s law.

The theoretical model for speedup gain prediction is based on the workload
division strategy as described in Section 5.2. As Hill and Marty have shown, adding
extra cores on a system, will introduce an execution overhead to the the program.
This overhead, which can be interpreted as the serial portion of the program,
may be caused by both hardware, and software properties. For example, some
hardware design attributes that could affect this overhead, are memory access,

41

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

pipelines, profiling and etc1. From a software point of view, additional work might
be needed for having extra cores, and this could introduce the naming overhead.
The limit of Equation 5.2 (Amdahl’s law) with N towards infinity, is a strict
ascending curve, leaning to a certain number(depending on N and P). But, by
introducing an overhead for each added core, after a certain number of cores,
the speedup will actually decrease2. In other words, one cannot just increase the
number of cores, threads or processes on it’s software and expect it to run faster.
In many cases, the program will actually become slower, and so, it is necessary to
understand the design principles behind any software and hardware. The following
explains how the overhead for having an additional core is introduced within the
AUTOSAR context.

Considering the workload division strategy, it is obvious that by adding one
core, two inter-core communications are needed and hence, more instruction oper-
ations are executed. Figure 5.6 shows how the extra overhead for the added core
is introduced according to the workload division strategy. In the upper graph of
Figure 5.6, M1, E and M2 represent “DivideRunnable”, “Runnable1” and “Col-
lectRunnable” in Figure 5.1, respectively. Similarly, in the lower graph, M1, E1,
E2 and M2 represent “DivideRunnable”, “Runnable1”, “Runnable2” and “Collec-
tRunnable” in Figure 5.3, respectively. In Figure 5.6, the upper graph shows that
M1 activates E(i.e. the complete workload), and E activates M2 after its com-
pletion. In the lower graph in Figure 5.6, the second core is added, and Task E,
which is the completely parallelizable, is divided between the two cores in two
smaller tasks, E1 and E2 and so E should have a shorter execution time in over-
all. However, M1 has to activate E2 in addition to E1, and so an overhead will
be introduced (i.e. O1). Similarly, E2 and E1 have to activate M2 together, and
so an overhead introduced (i.e. O2). Hence, by introducing the second core, two
additional overheads, O1 and O2, are introduced. The following describes how the
extended speedup considers the naming overhead.

Assume task E is divided equally to E1 and E2. We have:

T1 is the execution time of task E on one core.

T2 is the execution time of tasks E1 and E2 on two cores.

S2 = T1

T2
(5.3)

E1 = E2 = E

2 , T2 = T1

2 =⇒ S2 = T1
T1
2

= E
E
2

(5.4)

Constant O is defined as the overhead of introducing the second core such
that O = O1 +O2.

1For example, in the MPC551x microcontroller, one core has direct access to flash memory,
while the other needs to access the crossbar for accessing the flash memory. This may cause a
difference in the processing power of each core.

2See [21] for example graphs on this matter.

42

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

SpeedupEXTENDED,2 yields:

SpeedupEXTENDED,2(E,O) = E
E
2 +O

(5.5)

In an asymmetric dualcore system, where the cores have different processing pow-
ers, it is reasonable to divide the workload unequally among the cores. However,
in Equation 5.5, it is assumed that both cores are identical and the workload is
divided equally among the two cores. Therefore, Equation 5.5 is enhanced so that
an unequal task division would be possible.

If task E is divided unequally among two cores as E1 and E2, and the two
tasks start their execution simultaneously, it is unlikely that both E1 and E2 are
finished at the same time. Therefore, the total workload (i.e. E) is finished when
both divided tasks are finished. Hence, the execution time of E when it is divided
to two tasks, is the execution time of the task(E1 or E2) with the longer execution
time. Therefore, a coefficient should determine what percentage of task E should
run one core, so that the remainder would run on the other core. We have:

Coefficient α is defined as the workload division coefficient and 0 6 α 6 1.
Hence:

E

2 ←−
3
Max(αE︸︷︷︸

E1

, (1− α)E︸ ︷︷ ︸
E2

) (5.6)

Where:

E1 = αE and E2 = (1− α)E

(5.5), (5.6) =⇒ SpeedupEXTENDED,2(E,O,α) = E

Max(αE, (1− α)E) +O
(5.7)

Having an asymmetric system with two cores, one core will have higher pro-
cessing power than the other. In other words, a given task will have a longer
execution time on the slower core. The following enhances Equation 5.7 such that
this distinction between the cores is taken into account:

For any two cores, Corei and Corej, having a known task Ti with a known
execution time of ei on Corei and ej on Corej, β is determined as the processing
power coefficient such that:

β = ei
ej

(5.8)

Assume that in Equation 5.6, E1 is executed on Core1, and E2 is executed on
Core2. If E2 has an execution time of e on Core1, E2 will have an execution time
of e/β on Core2. We have:

3x ← y expresses that x is replaced by y.

43

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

Figure 5.6: The upper graph shows task E, which is parallelizable, executing in
a single core system. The lower graphs shows task E being fragmented to two sub
tasks, E1 and E2. By adding Core2, an overhead is introduced because of the com-
munication among the two cores. The overhead is non-parallelizable.

(5.6),(5.8) =⇒ E2 ←
E2

β
(5.9)

This means, since E2 is being executed on Core2, it will take a longer time for it
to finish.

Hence,by considering that the system is heterogeneous and introducing β:

(5.6),(5.7), (5.9) =⇒ SpeedupEXTENDED,2(E,O,α,β) = E

Max(αE, (1− α)E
β

) +O

(5.10)
The final argument is how to optimize Equation 5.10 to achieve maximum

speedup? In symmetric systems, which all cores are identical, it is reasonable to
divide the tasks equally among cores. By contradiction, in heterogeneous systems
the task division should be relevant to each core’s processing power. In other words,
task division should be such that the total execution time would be minimized. For
example, in Figure 5.6 instead of dividing E equally to E1 and E2, task division
should be such that E1 and E2 finish their execution at the same time. This means
that α should be determined based on β. Hence, we have:

44

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

Having:

E1 = αE and E2 = (1−α)E
β

:

E1 = E2 ⇒ αE = (1− α)E
β

⇒ α = 1− α
β
⇒ α = 1

1 + β
(5.11)

Therefore, for maximum speedup, Equation 5.10 is enhanced by an extra con-
dition of defining α according to Equation 5.11. Calculating speedup analysis by
using Equation 5.10 in practice, requires determining the values of the overhead,
power processing coefficient and the execution time of the task in single-core case.
The next section explains how these values are measured.

5.3.3 Using and evaluating the extended speedup model
In this section, the extended speedup model (i.e. Equation 5.10) is applied to
a task in order to predict the speedup of the naming task, when it is migrated
from a single-core architecture to a dualcore architecture. Then, the naming task
is fragmented and migrated to a dualcore architecture in order to measure the
speedup by experience(similar to the speedup measurement scenario in Section
5.2.2). Finally, the extended speedup model is evaluated by comparing the results
in the theoretical model and the speedup achieved in the experiments.

In order to determine the speedup of a given task, according to the workload
fragmentation strategy, and by using the extended speedup model(Equation 5.10),
first, the values of the following variables should be determined:

• β, the processing power coefficient.

• O, the overhead of introducing an additional core.

• E, the execution time of the given task on single-core.

Determining β’s value requires measuring the pure processing power of Core1
and Core2, independent of each other. According to Equation 5.8, this is simply
doable by measuring the execution time of any given task once on Core1, and then
on Core2. Hence, the dualcore configuration test case is done with the values of
α = 1, in which the task is executed completely on Core1, and α = 0 in which
the task is executed completely on Core2. By comparing the results, β’s value is
determined for the MPC551x microcontroller and under the given configuration4.
In these two test cases, both cores are active meaning that message passing among
the cores occurs and the software configuration is as described in the dualcore
scenario in Section 5.2.2.

4Various configuration settings on MPC551x could alter the results. For example, one core
may have priority for data fetching or accessing the crossbar. In this study, different configuration
settings were studied and examined. A configuration was chosen that would provide best results
in our experiments. Generally, one should fine tune hardware settings according to its software
in order to achieve best performance. See chapters 10 and 11 in [17].

45

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

Figure 5.7: Comparison of Core1’s pure computational capacity compared to
Core2’s computational capacity. The execution time for a same workload is shown
if executed on Core1(α = 1) or on Core2(α = 0). The higher slope of α = 0 shows
less processing power for Core2. The y-intercept for α = 1 shows the cross-core
communication overhead for Dual-core over Single-core.

Figure 5.7 shows the results of dualcore scenarios, having α = 1 and α = 0.
According to the definition of processing power coefficient in Equation 5.8, β can
be calculated by dividing the y values of any two given points with the same x
value in Figure 5.7. This will provide β’s value based on only one experiment of
one single task. This reasoning is prone to errors since a single execution of a task
could occur in a WCET, BCET or ACET5. Therefore, β is calculated by dividing
the slope coefficient of (α = 1) over (α = 0). By this, a more realistic and less
erroneous value is measured.

slope coefficient = m = y2 − y1

x2 − x1
(5.12)

β = eα=1

eα=0
= mα=1

mα=0
≈ 1

1.35 ≈ 0.74 (5.13)

5WCET: Worst case execution time. ACET: Average case execution time. BCET:Best case
execution time.

46

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

In order to define the overhead cost for introducing a second core, a task is
executed first on Core1 (i.e. the upper graph in Figure 5.6). Afterwards, the
same task should be executed on two cores, having α = 1(i.e. the lower graph in
Figure 5.6). Hence, in the latter experiment, the execution time of E2, is 0 and
so the execution time of the given task (i.e. E) is increased only by O1 + O2.
Therefore, by comparing the execution time of such experiments, the overhead of
adding a second core is measured. The following describes how O is derived from
the experiments and the results as shown in Figure 5.7. The Single-core line in
Figure 5.7 is actually y = x. Thus, the additional core’s overhead is the y-intercept
of any dualcore test case with an arbitrary α. However, having α = 1 shows that
the overhead is easily seen as the difference between the two lines of Single-core
and α = 1. The y-intercept for this case, and any other dualcore test case, yields:

y − intercept ≈ 107⇒ O ≈ 107µs (5.14)
The trustworthy of Equation 5.10 is verified by carrying out several test cases

with arbitrary values of α, and matching the experience with the equation’s curve.
Hence, dualcore test cases with different fractions of workload on Core1 and
Core2(i.e. variations of α) are carried and the results are compared to the theoret-
ical model. The upper graph in Figure 5.8 illustrates the results for the theoretical
model and the dualcore scenario for α = 0.5, having β = 0.74 and O = 107.
The lower graph in Figure 5.8 shows the error percentage between the theoretical
model and experimental results. As it is seen in the lower graph, the extended
speedup model prediction is reliable with an error percentage up to a ±10%. As
execution time increases, the extended speedup model is less erroneous. However,
an abnormality is seen in the lower graph close to where the execution time is
almost 1000 µs. This abnormality is due to a abnormal behavior in the software
and could be a place for further investigation. It is easier to see that in Figure 5.5
the speedup curve has an abnormal raise and fall just before 1000µs. This unpre-
dicted behavior causes the theoretical model to be more erroneous. In Appendix
B, additional experiments are carried out with arbitrary fractions of workload di-
vision in order to more investigate and evaluate the extended speedup theoretical
model. Throughout all the experiences shown in Appendix B, with considering
abnormal behaviors(ACET, BCET and WCET), the theoretical model shows a
percentage error less than ±10% and by waving the abnormalities the percentage
error is approximately ±6%.

While Figure 5.8 shows the speedup with equal workload fragmentation(i.e.
α = 0.50), Figure 5.9 shows the theoretical model speedup according to Equation
5.10 having β = 0.74 where α is determined according to Equation 5.11. By
determining α based on Equation 5.11, the speedup curve leans to 1.74 in infinity
and the execution time when speedup equals to unity is 252µs. This means that
for tasks with an execution time less than 252µs on single-core, it is not worth
fragmenting the task. In final, we recall that the speedup extended model is a
preliminary version. Yet, with an eye on assumptions and limitations, and carefully
determining correct values of the processing power coefficient and additional core’s
overhead, we believe the model is applicable and trustful.

47

5. Speedup gain on an AUTOSAR 4.0 implementation with dualcore support

Figure 5.8: Matching theoretical speedup analysis on real data measurements having
α = 0.50. Real data measurements were down-sampled by a step of 10 for ease of
readability. The erroneous of the theoretical model’s compared to real measurements
are presented in speedup percentage in the lower graph.

Figure 5.9: Theoretical modeling of speedup gain with optimized workload fragmen-
tation. The workload fragmentation factor’s value(α = 0.57) is defined relevant to
the processing power factor for each core. The curve shows that the speedup exceeds
1 for execution times greater than 252µs.

48

6
Conclusions

The thesis has studied aspects of multicore support in AUTOSAR 4.0, while
evaluating the performance of the multicore architecture. To have a bet-
ter understanding of the multicore architecture, the new IOC module was
investigated in detail, and a set of experimental scenarios were designed

and implemented.
The communication mechanism among SW-Cs was studied as it is a key el-

ement in the performance of any AUTOSAR software. Test scenarios between
software components in dualcore and single-core architectures were carried out
and they have shown that the cross-core communication time has an overhead of
54% compared to a single-core communication time.

The study investigated the performance of the multicore architecture on an
MPC551x processor which is a dualcore heterogeneous system. In a scenario of
task fragmentation among cores, we developed a theoretical speedup model by
extending Amdahl’s law and adapting heterogeneous systems and unequal task
fragmentation among cores. Also, the model addressed the cross-core communica-
tion overhead. Afterwards, by studying the MPC551x processor and determining
its properties by carrying out several test scenarios, the extended speedup model
was adapted to the MPC551x processor. As a result, the speedup curve of a dual-
core AUTOSAR software with task fragmentation on this specific target hardware
was developed. The speedup curve shows the system performance increase in the
dualcore system compared to the single core system for any given execution time.
The results showed the maximum speedup for long execution times(infinity) would
be 74% and execution time when speedup equals to unity is at most 28µs. This
means for a task with an execution time less than 28µs, it is not worth fragment-
ing the task. The model was verified by comparing the results with several test
scenarios and the results showed that the theoretical model is more than 90%
accurate.

49

Bibliography

[1] J. D. T. K. K. K. J. K. N. M. D. P. K. S. J. W. D. W. K. Y. Krste Asanovic,
Rastislav Bodik, A View of the Parallel Computing Landscape, Communica-
tions of the ACM 52 (10) (2009) 56–67.
URL http://dl.acm.org/citation.cfm?doid=1562764.1562783

[2] AUTOSAR, AUTOSAR Basics.
URL http://autosar.org/index.php?p=1&up=1&uup=0&uuup=0&uuuup=
0&uuuuup=0

[3] AUTOSAR, AUTOSAR Members.
URL http://www.autosar.org/index.php?p=2&up=1&uup=0

[4] AUTOSAR, AUTOSAR FAQ.
URL http://www.autosar.org/index.php?p=1&up=6&uup=0

[5] AUTOSAR, Specification of the RTE Software (2006).
URL http://www.autosar.org/download/R2.0/AUTOSAR_SWS_RTE.pdf

[6] AUTOSAR, Specification of the Virtual Function Bus (2008).
URL http://www.autosar.org/download/AUTOSAR_SWS_VFB.pdf

[7] M. Kunz, OSEK OS, Tech. rep., Chemnitz University of Technology (2009).
URL http://osg.informatik.tu-chemnitz.de/lehre/old/ws0809/sem/
online/OSEK.pdf

[8] AUTOSAR, Feature Specification of the BSW Architecture and the RTE
(2011).
URL http://www.autosar.org/download/R4.0/AUTOSAR_RS_
BSWAndRTEFeatures.pdf

[9] AUTOSAR, Specification of Operating System (2011).
URL http://www.autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf

[10] R. R. Karthik Lakshmanan, Gaurav Bhatia, AUTOSAR Extensions for Pre-
dictable Task Synchronization in MultiCore ECUs, SAE 2011 World Congress

50

http://dl.acm.org/citation.cfm?doid=1562764.1562783
http://autosar.org/index.php?p=1&up=1&uup=0&uuup=0&uuuup=0&uuuuup=0
http://autosar.org/index.php?p=1&up=1&uup=0&uuup=0&uuuup=0&uuuuup=0
http://www.autosar.org/index.php?p=2&up=1&uup=0
http://www.autosar.org/index.php?p=1&up=6&uup=0
http://www.autosar.org/download/R2.0/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/download/AUTOSAR_SWS_VFB.pdf
http://osg.informatik.tu-chemnitz.de/lehre/old/ws0809/sem/online/OSEK.pdf
http://osg.informatik.tu-chemnitz.de/lehre/old/ws0809/sem/online/OSEK.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_RS_BSWAndRTEFeatures.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_RS_BSWAndRTEFeatures.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf

BIBLIOGRAPHY

Exhibition.
URL http://papers.sae.org/2011-01-0456

[11] ArcticStuido, ArcCore AB, Göteborg, Sweden, Version 1.3.
URL http://www.arccore.com/products/arctic-studio/

[12] CodeWarrior Development Studio for MPC55xx/MPC56xx (Classic IDE),
Freescale Semiconductor Inc, Texas, USA, version 5.9.
URL http://www.freescale.com/webapp/sps/site/prod_summary.jsp?
code=CW-MPC55XX_56XX

[13] Freescale Semiconductor Inc, Texas, USA.
URL http://www.freescale.com/

[14] S. A. L. R. W.-F. W. Qin Zhao, Rodric Rabbah, How to do a million watch-
points: efficient debugging using dynamic instrumentation, Proceedings of the
Joint European Conferences on Theory and Practice of Software 17th inter-
national conference on Compiler construction (2008) 147–162.
URL http://dl.acm.org/citation.cfm?id=1788388

[15] FreeMASTER Run-Time Debugging Tool, Freescale Semiconductor Inc,
Texas, USA, Version 1.3.
URL http://www.freescale.com/Freemaster

[16] MPC5510EVB User Manual (2007).
URL http://cache.freescale.com/files/dsp/doc/ref_manual/
MPC5510EVBUM.pdf

[17] MPC5510 Microcontroller Family Reference Manual (2008).
URL http://cache.freescale.com/files/32bit/doc/ref_manual/
MPC5510RM.pdf

[18] Basic Multicore Initialization For the MPC5516G/E and MPC5514G/E De-
vices (2008).
URL http://cache.freescale.com/files/microcontrollers/doc/app_
note/AN3627.pdf

[19] MPC5500 and MPC5600 Simple Cookbook (2010).
URL http://cache.freescale.com/files/32bit/doc/app_note/AN2865.
pdf

[20] G. M. Amdahl, Validity of the single processor approach to achieving large
scale computing capabilities, In Proceedings of the April 18-20, 1967, spring
joint computer conference (1967) 483–485.
URL http://dx.doi.org/10.1145/1465482.1465560

[21] M. Hill, M. Marty, Amdahl’s law in the multicore era, Computer 41 (7)
(2008) 33–38.

51

http://papers.sae.org/2011-01-0456
http://www.arccore.com/products/arctic-studio/
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=CW-MPC55XX_56XX
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=CW-MPC55XX_56XX
http://www.freescale.com/
http://dl.acm.org/citation.cfm?id=1788388
http://www.freescale.com/Freemaster
http://cache.freescale.com/files/dsp/doc/ref_manual/MPC5510EVBUM.pdf
http://cache.freescale.com/files/dsp/doc/ref_manual/MPC5510EVBUM.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/MPC5510RM.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/MPC5510RM.pdf
http://cache.freescale.com/files/microcontrollers/doc/app_note/AN3627.pdf
http://cache.freescale.com/files/microcontrollers/doc/app_note/AN3627.pdf
http://cache.freescale.com/files/32bit/doc/app_note/AN2865.pdf
http://cache.freescale.com/files/32bit/doc/app_note/AN2865.pdf
http://dx.doi.org/10.1145/1465482.1465560

BIBLIOGRAPHY

URL http://dl.acm.org/citation.cfm?id=1449387&CFID=
163581176&CFTOKEN=33586685

[22] X. Sun, Y. Chen, Reevaluating amdahl’s law in the multicore era, Journal of
Parallel and Distributed Computing 70 (2) (2010) 183–188.
URL http://www.sciencedirect.com/science/article/pii/
S0743731509000884

[23] E. Yao, Y. Bao, G. Tan, M. Chen, Extending amdahl’s law in the multicore
era, ACM SIGMETRICS Performance Evaluation Review 37 (2) (2009) 24–
26.
URL http://dl.acm.org/citation.cfm?id=1639571

[24] A. Monot, N. Navet, B. B. Françoise Simonot, Multicore scheduling in auto-
motive ECUs, ERTSS.
URL http://nicolas.navet.eu/publi/ertss_2010.pdf

[25] B. B. F. S.-L. Aurélien Monot, Nicolas Navet, Multi-source software on mul-
ticore automotive ecus - combining runnable sequencing with task scheduling,
ERTSS.
URL http://nicolas.navet.eu/publi/ECU_TIE_2012.pdf

[26] W. S.-P. Niko Böhm, Daniel Lohmann, A comparison of pragmatic multi-core
adaptations of the autosar system, OSPERT.
URL http://www.seas.gwu.edu/~gparmer/ospert11/ospert11_
proceedings.pdf

[27] W. P.-Y. Z.-M. Z. Rongshen Long, Hong Li, An approach to optimize intra-
ecu communication based on mapping of autosar runnable entities, ICESS.
URL http://www.computer.org/portal/web/csdl/doi/10.1109/ICESS.
2009.63

[28] R. R. Jörn Schneider, Michael Bohn, Migration of automotive real-time
software to multicore systems: First steps towards an automated solution,
ICESS.
URL http://www.fh-trier.de/fileadmin/groups/12/ProSyMig/pub/
paper/Migration_ECRTS2010_WIP.pdf

[29] K. S. G. Rajeshwari Hegde, Load balancing in multi ecu configuration, ART-
com.
URL http://dl.acm.org/citation.cfm?id=1673450

[30] T. Gribb, Simplyfing multicore migration, EECatalog.
URL http://eecatalog.com/dsp/2011/10/18/simplifying-multicore-
migration/

[31] W. D. Huang Bo, Dong Hui, Z. Guifan, Basic concepts on autosar develop-
ment, ICICTA 1 (2010) 871 – 873.

52

http://dl.acm.org/citation.cfm?id=1449387&CFID=163581176&CFTOKEN=33586685
http://dl.acm.org/citation.cfm?id=1449387&CFID=163581176&CFTOKEN=33586685
http://www.sciencedirect.com/science/article/pii/S0743731509000884
http://www.sciencedirect.com/science/article/pii/S0743731509000884
http://dl.acm.org/citation.cfm?id=1639571
http://nicolas.navet.eu/publi/ertss_2010.pdf
http://nicolas.navet.eu/publi/ECU_TIE_2012.pdf
http://www.seas.gwu.edu/~gparmer/ospert11/ospert11_proceedings.pdf
http://www.seas.gwu.edu/~gparmer/ospert11/ospert11_proceedings.pdf
http://www.computer.org/portal/web/csdl/doi/10.1109/ICESS.2009.63
http://www.computer.org/portal/web/csdl/doi/10.1109/ICESS.2009.63
http://www.fh-trier.de/fileadmin/groups/12/ProSyMig/pub/paper/Migration_ECRTS2010_WIP.pdf
http://www.fh-trier.de/fileadmin/groups/12/ProSyMig/pub/paper/Migration_ECRTS2010_WIP.pdf
http://dl.acm.org/citation.cfm?id=1673450
http://eecatalog.com/dsp/2011/10/18/simplifying-multicore-migration/
http://eecatalog.com/dsp/2011/10/18/simplifying-multicore-migration/

BIBLIOGRAPHY

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
5522844

[32] M. N.-K. R.-M. J. Simon Schliecker, Jonas Rox, R. Ernst, System level
performance analysis for real-time automotive multicore and network ar-
chitectures, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28 (2009) 979–992.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
5075823

[33] U. K.-C. F. Peter Gliwa, Jens Harnisch, From single-core to multi-core
platforms - systematic migration of hard real-time software in autosar,
Embedded World 28 (2011) 979–992.
URL http://www.symtavision.com/downloads/success-stories/
MulticoreSchedulingAnalysis_Gliwa_Infineon_Symtavision_01.pdf

[34] FreeMASTER Serial Communication Diver User Guide, find in Driver Pack-
age (2011).

[35] FreeMASTER for Embedded Applications User Guide (2011).
URL http://www.freescale.com/files/microcontrollers/doc/user_
guide/FreeMasterUG.pdf?fsrch=1

[36] Free Serial Port Monitor, HHD Software, London, UK, Version 3.31.
URL http://www.serial-port-monitor.com

53

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5522844
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5522844
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5075823
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5075823
http://www.symtavision.com/downloads/success-stories/MulticoreSchedulingAnalysis_Gliwa_Infineon_Symtavision_01.pdf
http://www.symtavision.com/downloads/success-stories/MulticoreSchedulingAnalysis_Gliwa_Infineon_Symtavision_01.pdf
http://www.freescale.com/files/microcontrollers/doc/user_guide/FreeMasterUG.pdf?fsrch=1
http://www.freescale.com/files/microcontrollers/doc/user_guide/FreeMasterUG.pdf?fsrch=1
http://www.serial-port-monitor.com

Appendices

54

A
How to use FreeMASTER

This appendix is a quick guide on how to use FreeMASTER. The reader is encour-
aged to read section 3.1.3 before continuing on this appendix. The purpose of this
tool is achieving the ability of input and output monitoring and modification in
real-time on Freescale embedded devices. The following of this appendix describes
who should use FreeMASTER, how to use FreeMASTER and reflections are given
on how to use FreeMASTER for best performance.

A.1 Introduction to FreeMASTER
One of the difficulties in parallel real-time software development, is detecting run-
time bugs that may or may not appear in runtime due to the realtime and parallel
nature of software and cause an abnormal behaviour in software. Such an abnor-
mality is extremely difficult to detect using static debuggers simply because by
stopping and starting the software, the software behavior changes and the bug will
not appear. Moreover, in real-time applications, sometimes it is necessary to see
the system behavior in runtime, which again is not possible with static debuggers.
The problem is solved by logging(which in essence modifies the software) or by us-
ing realtime debuggers. FreeMASTER[15] is an open-source, run-time debugging
tool, provided by Freescale, which makes it possible to fetch and modify variables
in realtime. To fulfill this goal, a protocol is implemented that communicates
through the RS232 channel or the CAN bus1 with the target hardware using an
on target driver. Through the communication with target, the desired variables
are read, sampled and modified in a user-defined rate, and downloaded to the
PC. FreeMASTER also provides a graphical user interface for data visualization.
Through this project, FreeMASTER is used both for debugging and monitoring
purposes to analyze test scenarios. In easy words, FreeMASTER is seen as a digital
oscilloscope which can probe, modify, and plot desired variables on PC. Generally,
FreeMASTER has two parts:

1In the latest version, these are the only supported methods for the MPC551x micro-controller.

55

A. How to use FreeMASTER

• The PC based FreeMASTER client running on PC.

• The on target driver and communication software.

The remainder of this section describes some features of FreeMASTER.

A.1.1 Memory read and write
Using this feature the PC host can read and write any memory location on the
target hardware. Also, by providing the *.elf file to the PC software, it is possible
to read and modify any variable in the target software. The feature could be used
for software control by implementing a software that would behave differently
based on the value of a variable.

A.1.2 Oscilloscope
As the name implies, the oscilloscope is an scope that could probe variables and
illustrates the value of the variables on the scope. It is also possible to modify the
value of a variable. An oscilloscope can probe at maximum 8 variables at the same
time. The scope can plot a variable’s value in real-time up to a resolution based
on the communication speed and sampling period. In general, for µs resolution,
the oscilloscope is not recommended.

A.1.3 Recorder
Similar to the oscilloscope the recorder can record the value of up to 8 variables at
the same time. The difference between the oscilloscope and the recorder is that, in
the recorder mode the variables are sampled on the internal device memory. The
samples are then downloaded to PC and thus, the sampling rate is much faster
compared to the oscilloscope. However, the recorder does not provide the infor-
mation in real-time. The recorder provides a sampling up to 27µs resolution[35].

A.2 FreeMASTER on target driver
The FreeMASTER driver itself does not initialize the communication channel in
any sort of way. It is the user’s responsibility to manage the communication
channel whether it is serial communication or CAN bus. Hence, the fist thing to
do is to establish an RS232 communication between the hardware and the PC.

A.2.1 Establishing a serial communication
A Serial Communicator Interface (SCI) communication is established in the same
manner as described in [19] section 15. In order to verify a successful communica-
tion a software is needed to monitor the serial communication channel between the
target hardware and the PC. For this, the Free Serial Port Monitor[36] software is

56

A. How to use FreeMASTER

used. First, SCI initialization has to be done on target board. Listing A.2 shows
a source code for SCI initialization, a “Transmit” function and a “Receive” func-
tion. The SCI initialization values depend on desired “baud rate” and hardware
“clock frequency”. The initialization values are valid for 64MHz clock frequency
and a baud rate of 9600 bits per second2. In [19] a simple function for “System
Clock Initialization” is provided. The source code is shown in Listing A.1. How-
ever, if code generators are being used, instead of using “SysClockInit()”, set the
clock frequency from the code generator software, for example, ArcticStudio. In
ArcticStudio, this could be done in the following steps:

1. Under “ECU Configuration” go to “MCU Settings”.

2. Create a new clock and set the parameters PllEprediv=0, PllEmfd=32 and
PllErfd=5.

3. Set the new clock to default clock.

Figure A.1 shows the system clock settings page in ArcticStudio BSW Builder.
The red box and arrows indicate the valid values for 64MHz clock frequency.

Also, jumpers J9, J10 and J11 must be set as explained in [16] on the evaluation
board in order to activate and correctly configure the SCI port. Figure A.2 shows
a close up of the jumpers next to the ESCI connector.
void i n i t S y s c l k (void) { /∗ I n i t i a l i z e PLL and sy s c l k to

64 MHz ∗/
2 FMPLL.ESYNCR2.R = 0x00000007 ; /∗ 8MHz xta l : 0x00000007 ; 12MHz

xta l : 0x00000005 ∗/
FMPLL.ESYNCR1.R = 0xF0000020 ; /∗ 8MHz xta l : 0xF0000020 ; 12MHz

xta l : 0xF0020030 ∗/
4 CRP.CLKSRC.B.XOSCEN = 1 ; /∗ Enable ex t e rna l o s c i l l a t o r ∗/

whi l e (FMPLL.SYNSR.B.LOCK != 1) {} ; /∗ Wait f o r PLL to LOCK ∗/
6 FMPLL.ESYNCR2.R = 0x00000005 ; /∗ 8MHz xta l : 0x00000005 ; 12MHz

xta l : 0x00000003 ∗/
SIU .SYSCLK.B.SYSCLKSEL = 2 ; /∗ Se l e c t PLL f o r s y s c l k ∗/

8 }

Listing A.1: System Clock Initialization function for 64MHz frequency.

2User should set SCI settings on PC accordingly.

57

A. How to use FreeMASTER

Figure A.1: Screen shot from MCU settings page in ArcticStudio BSW Builder.
The MCU is configured for a 64MHz clock frequency.

58

A. How to use FreeMASTER

Figure A.2: Close up view from SCI jumper settings on MPC5510EVB. J8 enables
power on SCI and J10 configures Tx and Rx routing.

59

A. How to use FreeMASTER

1 const uint8_t TransData [] = { " He l lo World ! \ n\ r " } ; /∗ Transmit
s t r i n g & CR∗/

uint8_t RecData ; /∗ Received byte from eSCI ∗/
3

void ESCI_A_Init (void)
5 {

ESCI_A.CR2.R = 0x2000 ; // Enable ESCI and s e t a l l b i t s
to r e s e t va lue

7 ESCI_A.CR1.B.TE = 1 ; // r e c e i v e r enable
ESCI_A.CR1.B.RE = 1 ; // t ran smi t t e r enable

9 ESCI_A.CR1.B.PT = 0 ; // pa r i t y i s even
ESCI_A.CR1.B.PE = 0 ; // pa r i t y c on t r o l d i s a b l e

11 ESCI_A.CR1.B.SBR = 417 ; // Baud ra t e = 9600 , in case
f ipg_c lock_l in = 64 MHz

//ESCI_A.CR1.B.SBR = 34 ; // Baud ra t e = 115200 , in case
f ipg_c lock_l in = 64 MHz

13 }

15 void TransmitData (void) {
uint8_t j ; /∗ Dummy va r i ab l e ∗/

17 f o r (j =0; j< s i z e o f (TransData) ; j++) { /∗ Loop f o r cha rac t e r
s t r i n g ∗/

whi l e (ESCI_A.SR.B.TDRE == 0) {} /∗ Wait f o r transmit data
reg empty = 1 ∗/

19 ESCI_A.SR.R = 0x80000000 ; /∗ Clear TDRE f l a g ∗/
ESCI_A.DR.B.D = TransData [j] ; /∗ Transmit 8 b i t s Data ∗/

21 }
}

23

void ReceiveData (void) {
25 whi le (ESCI_A.SR.B.RDRF == 0) {} /∗ Wait f o r r e c e i v e data reg f u l l =

1 ∗/
ESCI_A.SR.R = 0x20000000 ; /∗ Clear RDRF f l a g ∗/

27 RecData = ESCI_A.DR.B.D; /∗ Read byte o f Data∗/
whi l e (ESCI_A.SR.B.TDRE == 0) {} /∗ Wait f o r transmit data reg empty

= 1 ∗/
29 ESCI_A.SR.R = 0x80000000 ; /∗ Clear TDRE f l a g ∗/

ESCI_A.DR.B.D = RecData ; /∗ Echo back byte o f Data read ∗/
31 }

Listing A.2: Simple SCI communication functions. The “MPC5517G.h” header
file, or similar is needed.

A serial communication may be established in the following steps:

1. Add the provided functions in Listings A.1 and A.2 to the source code.

2. Configure hardware clock frequency.

3. By calling “ESCI_A_Init”, “TransmitData” and “ReceiveData” at a startup
point(e.g. in OS startup) initialize and establish a serial communication.

4. Generate the *.elf file and upload to hardware.

60

A. How to use FreeMASTER

5. Using the Free Serial Port Monitor, the “Hello World!” message sent to PC
should be read. Also, verify that PC to hardware connection is working fine.

Note that it is necessary to open a SCI “session” before running the Free Serial Port
Monitor software. For this, one can use the Freemaster PC side software(*.pmp).
On the main screen as enable the “stop” button and then choose “keep trying”.

A.2.2 Using FreeMASTER on target driver
By adding FreeMASTER source code files from the provided example to the
project3, the FreeMaSTER driver has been embedded to the on target hardware.4.
The communication software has to be added using the driver API. The only file
needed for using the driver API, is “freemaster.h”. By adding this header file to
the source code(e.g. main.c), all FreeMASTER functions are accessible. The re-
mainder of this section explains FreeMASTER API and functions. The complete
guide to serial communication driver may be found in [34].

A.2.2.1 Driver API

The API configuration is handled via the “freemaster_cfg.h” file. The communi-
cation between PC and the target through the SCI protocol may be implemented
between the PC and the target through three different modes:

• Poll driven mode.

• Short interrupt mode.

• Long interrupt mode.

As stated in [34]: “Exactly one of the three macros must be defined non-zero, oth-
ers must be defined zero or left undefined. The non-zero-defined constant selects
the interrupt mode of the driver”. In the poll driven mode, FMSTR_POLL() API
is called in the code. The FMSTR_POLL() samples the desired variables and
they are transferred to the PC via SCI. In order to reduce the FreeMASTER com-
munication overhead at most, it is most likely to call this function in the system
idle loop. In poll driven mode, a minimum rate of FMSTR_POLL() API should
be called with a least minimum frequency. That is, the polling should be done as
much as the SCI buffer would not become empty. This is a big drawback, since
even when sampling is not desired, the FreeMASTER communication overhead
has to be introduced. We interpret this as the keepalive time.5 Depending on
system properties and configuration(i.e. clock frequency, baud rate and SCI buffer

3how to address provided source code? address Example_FreeMASTER.rar
4FreeMASTER serial communication driver example “MPC55xx” provided by Freescale, does

not work on the MPC551x microcontrollers, despite that it says MPC55xx. The reason is that
the provided example is for MPC555x micro-controllers which are single core, while the MPC551x
family are dual-core.

5See [34] section 2.4.3

61

A. How to use FreeMASTER

size), the minimum times per second that polling should happen will differ. In
complex systems with task preemption, it might be difficult to minimize, or even
determine the additional overhead time. In addition to the difficulty of configuring
the polling to a steady frequency rate, as our studies show, and similar to any other
code snippet, FSMSTR_POLL() itself, may have different execution times. This
will make the analysis even more complex, when dealing with time measurements
or where execution time matters.
In short interval mode or long interval mode, the system behavior is quite the same
as the poll driven mode, except that at the polling state, an interrupt is generated
which will do the polling. This means that FMSTR_POLL() will execute within
an ISR. Mainly, one will use the interrupt mode or poll driven mode, when the
other is not possible. The interrupt has to be installed in the Interrupt Vector
Offset Register (IVOR), and if FreeMASTER is used in an AUTOSAR imple-
mentation, this may cause a conflict between FreeMASTER and the AUTOSAR
software. On one hand, the interrupt mode requires modification and control over
the IVOR, and on the other hand, the operating system module in the BSW, owns
the IVOR. This results as a conflict and thus, the FreeMASTER interrupts shall
be installed and controlled through AUTOSAR-OS and interrupt handler. Because
of this complexity, this approach is dropped and poll driven mode is used in this
project.
Listing A.3 shows some parameters of the “freemaster_cfg.h” file that are im-
portant to be set. If one function, for example, the recorder is disabled, the
corresponding API functions in the source code are generated empty and so, this
header file provides a convenient way for disabling and enabling FreeMASTER
functionalities.

1 #de f i n e FMSTR_USE_SCI 1 /∗ To s e l e c t SCI communication
i n t e r f a c e ∗/

#de f i n e FMSTR_USE_FLEXCAN 0 /∗ To s e l e c t FlexCAN
communication i n t e r f a c e ∗/

3

#de f i n e FMSTR_USE_RECORDER 1 /∗ enable / d i s ab l e r e co rde r
support ∗/

5 #de f i n e FMSTR_MAX_REC_VARS 8 /∗ max . number o f r e co rde r
v a r i a b l e s (2 . . 8) ∗/

#de f i n e FMSTR_REC_OWNBUFF 0 /∗ use user−a l l o c a t e d rec . bu f f e r
(1=yes) ∗/

7

/∗ bu i l t−in r e co rde r bu f f e r (use when FMSTR_REC_OWNBUFF i s 0) ∗/
9 #de f i n e FMSTR_REC_BUFF_SIZE 10240 /∗ bu i l t−in bu f f e r s i z e ∗/

Listing A.3: Some parts of “freemaster_cfg.h”
parameters. The “freemaster_cfg.h” file handles all configuration parameters of the
communication protocol in one place.

For establishing communication between target hardware and the PC, “FM-
STR_Init()” API is called6.

6Even without initialization the communication might work. For example, if the connection
is lost, you do not need to recall FMSTR_Init() for re-establishing the communication

62

A. How to use FreeMASTER

The “FMSTR_Recorder()” API samples the desired variables and records the
values in an on-target pre-defined buffer at the point that it is called. Thus, it
the sampling resolution is much higher than the oscilloscope. The samples are
then send to PC upon a triggering condition, or whenever a number of samples
have been taken. When implementing a communication protocol, monitoring the
channel helps understanding and debugging software much easier. Therefore, it is
recommended to use the Serial Port Monitoring Software to better understand the
FreeMASTER protocol and for a better use of the API. The “FMSTR_Init()” in-
formation should be seen being transferred in the beginning of handshake between
target hardware and PC.

A.3 Introduction to PC side software
In this section a brief explanation is given on some features of the PC side appli-
cation. Figure bla shows the start up page of the application form the provided
project. A complete user guide can be found in [34].

A.3.1 Communication setup in PC application
The application settings for communication can be set in “Project menu”, “Op-
tions”. Under the “Comm” tab, set “Direct RS232” as communication mechanism
and the RS232 settings according to the settings used in the embedded application
in the on-target driver. Under the “Map files” tab, set the corresponding binary
(*.elf) file address(i.e the same *.elf file that is running on the target hardware),
and set the “File format” to “Binary ELF with SWARF1 or DWARF2 dbg format”.
Having the *.elf accessible to software, it is possible to easily access variables and
specific memory locations from the “Grid view”.

A.3.2 Reading and Modifying variables
In the variable watch grid as shown in Figure A.3, variables can be added for
monitoring and modification. By right clicking on the watch grid, under “watch
properties”, new variables can be added to the watch grid. The desired variable
can be selected from the “Address” combobox under variable properties. Under the
“Modifying” tab, modification properties and settings for that particular variable
can be set.

A.3.3 Recorder
The recorder starts downloading the recorded samples to the PC in two different
modes:

1. Trigger mode.

2. Sample numbers

63

A. How to use FreeMASTER

Figure A.3: FreeMASTER PC software startup page. Built in components of the
freemaster project are shown. -FreeMASTER original([34])

In the trigger mode, the recorder starts downloading the samples on a trigger of
an event. This “event” is triggered either upon a value of a particular variable
exceeding a predefined threshold, or the user can trigger the event from the PC
software by clicking “Run”. In the Sampling numbers mode, the sampled values are
downloaded once a predefined number of samples have been taken. These settings
can be set in the recorder properties under the “Main” tab, and the “Trigger” tab.
In the “Main” tab the size of the recorder buffer is shown. The recorder buffer size
can be set in “freemaster_cfg.h”.

64

B
Verification experiments on the

Extended speedup model

This appendix shows additional experiments of speedup gain and matchings with
the theoretical model as discussed and illustrated in Sections 5.3. Figures B.1 to
B.4 illustrate the matching of the theoretical model over the real data measure-
ments on the speedup. The erroneous of the theoretical model’s compared to real
measurements are presen in the lower graphs. This is done by subtracting the
real measurements by the theoretical and the result is presented in percentage for-
mat. Also, real data measurements were down-sampled by a step of 10 for ease of
readability. Figures B.1, B.2, B.3, B.4 and B.5, illustrate the results for extended
speedup modeling comparison with the relative experiment, having the workload
division coefficient 0.1, 0.25, 0.5, 0.75 and 0.9, respectively.

The lower graph shows a vibrating behavior through all the figures. Because
of this vibrating behavior, it seems that the extended speedup model is highly
erroneous(up to 20% in Figure B.1). The reason lies behind the execution time
of the task in the real measurements. Lets recall how the speedup is measured.
First, the task is executed on single core, and the execution time is measured,
let it be ei. Second, the same task is executed on dual core and the execution
time is measured, let it be ej. But, any task’s execution time may have a best
case execution time(BCET), an average case execution time(ACET), and a worst
case execution time(WCET). The vibrations are explained by considering three
different cases:

Case 1: ei is measured in a BCET, while ej is executed in a WCET.

Case 2: ej is measured in a BCET, while ei is executed in a WCET.

Case 3: ei is measured in an ACET, and ej is executed in an ACET.

65

B. Verification experiments on the Extended speedup model

Assumption: If “e” is the ACET of a task, “e” in WCET is “e + δ” and e in
BCET would be “e− δ”.

For Case 1 we have:

SpeedupCase1 = ei − δ
ej + δ

(B.1)

For Case 2 we have :

SpeedupCase2 = ei + δ

ej − δ
(B.2)

For Case 3 we have :

SpeedupCase3 = ei
ej

(B.3)

Assume that in the real measurements in Figure B.1, for E = 500, Case1
occurs, for E = 501, Case2 occurs, and for E = 502, Case3 occurs. Assuming
that “δ > 5”, from Equations B.2, B.3 and B.4, it is obvious that speedup will
result in a vibration, starting in low edge, raising to an up edge and falling at
the end. The continues occurrences of such cases, results in the vibrations in the
real measurements. However, these vibration are hard to see in the upper graphs,
the affect is easily seen in the lower graphs. Hence, considering such cases, the
theoretical model is even more reliable, providing a percentage error less than
±6%.

66

B. Verification experiments on the Extended speedup model

Figure B.1: Matching theoretical speedup analysis on real data measurements hav-
ing α = 0.10

Figure B.2: Matching theoretical speedup analysis on real data measurements hav-
ing α = 0.25

67

B. Verification experiments on the Extended speedup model

Figure B.3: Matching theoretical speedup analysis on real data measurements hav-
ing α = 0.50.

Figure B.4: Matching theoretical speedup analysis on real data measurements hav-
ing α = 0.75

68

B. Verification experiments on the Extended speedup model

Figure B.5: Matching theoretical speedup analysis on real data measurements hav-
ing α = 0.90

69

	Introduction
	Thesis delimitations and problem definition
	Thesis structure

	Background
	Introduction to AUTOSAR
	Application layer
	Communication between software layers
	VFB layer
	RTE layer
	BSW layer

	Multi-core support in AUTOSAR
	Communication in multi-core AUTOSAR
	The Operating System
	Inter OS-Application communication

	Test and Development Environment
	Software environment
	ArcticStudio and ArcCore
	CodeWarrior
	FreeMASTER

	Hardware environment

	Inter-core versus intra-core communication
	Test description
	Intra-core communication
	Inter-core communication
	Communication time measurement results

	Speedup gain on an AUTOSAR 4.0 implementation with dualcore support
	Introduction to speedup and Amdahl's law
	Measuring speedup gain
	Single-core scenario
	Dualcore scenario
	Results

	Extending Amdahl's law to a heterogeneous multicore AUTOSAR system
	Earlier studies
	Model overview and Assumptions
	Using and evaluating the extended speedup model

	Conclusions
	 Bibliography
	Appendix How to use FreeMASTER
	Introduction to FreeMASTER
	Memory read and write
	Oscilloscope
	Recorder

	FreeMASTER on target driver
	Establishing a serial communication
	Using FreeMASTER on target driver

	Introduction to PC side software
	Communication setup in PC application
	Reading and Modifying variables
	Recorder

	Appendix Verification experiments on the Extended speedup model

