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Abstract

The scheduling of real-time systems has been the subject of research for many
years since it has many implications for safety-critical embedded real-time systems.
Within that field, there have been two recent developments which are the subject
of this thesis. The first is the development of new scheduling theory for mixed-
criticality systems, i.e. systems in which functions of differing importance are
scheduled on the same processor. The second is the increasing production use of
multiprocessor systems, even in the world of embedded real-time systems.

The purpose of this work is twofold. First a new schedulability test for fixed-
priority mixed-criticality uniprocessor systems will be presented and evaluated.
Secondly, that schedulability test will be used in an evaluation of different heuristics
for partitioned multiprocessor scheduling of mixed-criticality systems.

In order to evaluate the performance of the new schedulability test and the
different heuristics in terms of schedulability, a number of experiments were per-
formed. For this purpose random task sets were generated, and each such task set
was tested for schedulability.

It was found that the new uniprocessor schedulability test outperforms the
previously known approaches for fixed-priority mixed-criticality task sets on pre-
emptively scheduled uniprocessor systems. In terms of the heuristics that were
evaluated for partitioning, it was determined that the combination of a slack-
monotonic initial ordering with a best-fit allocation algorithm and deadline mono-
tonic priority ordering yields the best schedulability. It seems surprising that using
a deadline monotonic priority ordering outperforms Audsley’s priority ordering ap-
proach. Furthermore, it was shown that a utilisation-based worst-fit task allocation
algorithm is not a good heuristic for the kind of systems under assessment. Finally,
the presented uniprocessor schedulability test seems to scale well with the number
of processors, if the number of tasks per taskset is sufficiently high.
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1
Introduction

D
uring the last two decades, embedded systems have become highly perva-
sive in our society. There are few devices which operate without embedded
processors, and many of their applications have real-time requirements.

Modern cars for instance consist of somewhere between 50 and 100 electronic
control unit(s) (ECU(s)) which execute a number of applications, ranging from
safety-critical control systems to comfort systems. The timely reaction of those
applications to user and sensor input is of paramount importance so that traffic
safety can be guaranteed, e.g. when braking.

A real-time system comprises applications which have stringent timing require-
ments, e.g. restrictions on their finishing time (execution deadline). Most of these
applications consists of a collection of small tasks that run concurrently on a proces-
sor. Scheduling programs in real-time systems has been an active area of research
for a long time.

In order to reason about the design of these systems, their timing properties
are abstracted into models. With the help of these models extensive theory for
guaranteeing timeliness has been developed. A common model for real-time system
is as a set of recurrent tasks which have a fixed frequency of execution and a
deadline by which the execution must be finished. This type of application is often
found in control systems.

Many real-time systems consist of applications of different criticality. Revisiting
the example of ECU(s) in a car, some of them run safety-critical applications
whereas others may only be running comfort functions. Currently, applications of
different criticality are designed to run on different processors so that safety can
be guaranteed. In the future it may be more cost-effective to be able to integrate
safety-critical and non-safety-critical applications on a single processor. However,
this integration may raise questions to the safety of such a system. In order to be
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CHAPTER 1. INTRODUCTION

able to guarantee safety, a complete theory is necessary. Systems that integrate
applications of differing criticality on a single processor are also known as mixed-
criticality systems and research on this topic has recently gained traction.

Due to the stagnation of uniprocessor clock speeds, multiprocessor systems
continue to spread in all areas. This recent trend also has strong repercussions in
the real-time systems community. The scheduling issues for uniprocessor systems
are generally well understood, but the theory for multiprocessor scheduling is still
under very active development.

In this report we present a new response-time analysis based uniprocessor
schedulability test for mixed-criticality systems which uses work-load analysis, an
idea which is customarily applied to multiprocessor scheduling. We will show that
for a specific run-time model, the new test performs better than all previously pro-
posed uniprocessor tests for mixed-criticality systems. We will also investigate how
it performs in partitioned multiprocessor environments compared to other tests,
and we will investigate how different parameters influence the results.

The remaining structure of this report is as follows. In chapter 2 the necessary
background and definitions for the rest of the thesis are developed. Chapter 3
gives an overview of the existing work regarding the scheduling of mixed-criticality
systems. The system model that is used in the remainder of the report is described
in chapter 4. The new uniprocessor test for mixed-criticality systems is presented
in the 5th chapter. Subsequently the performance of the proposed test is evaluated
for uniprocessor and for partitioned multiprocessor systems in chapters 6 and 7
respectively. Finally, our conclusions are presented in chapter 8.
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2
Background

T
his chapter will give a brief introduction to the field of real-time systems,
especially to the topics which are relevant in the context of this thesis. We
will also define a number of basic terms here.

2.1 Real-Time Systems

In general, real-time systems are systems in which the timing of a computation is
important for the correctness of the system. A distinction can be made between
hard real-time and soft real-time requirements. Systems with hard real-time re-
quirements can not tolerate even a single violation of their timing requirements,
whereas for soft real-time systems there is a gradual decline in utility for each
occurring timing fault. This thesis is only concerned with hard real-time systems.

For the purpose of this thesis, a real-time system is modelled as a number of
independent, recurrent tasks which need to be scheduled on one or more processors
according to their timing properties.

A task τi has the following timing properties:

• Release time ri: The time at which this task was first released.

• Relative deadline Di: The time by which this task needs to be done.

• Period Ti: The (minimum) inter-arrival time between releases.

• Worst-case execution time Ci: The uninterrupted/undisturbed execution
time of this task in the worst case.
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CHAPTER 2. BACKGROUND

These can also be written as a tuple (ri, Ci, Ti, Di). A job of a task is an instance
of the task. A task can spawn an infinite number of jobs.

Another important property is the task utilisation, i.e. the ratio of the worst-
case execution time (WCET) and the period (Ui = Ci/Ti). The utilisation provides
a very simple scheduling check for any processor. Processor utilisation can be
defined as the sum of the task utilisations of the tasks scheduled on that processor.
If the processor utilisation is bigger than 1, the tasks can not all be scheduled
successfully on that processor.

The periodicity of a task depends on the relation of the period and the release
time. A strictly periodic task is released exactly every T time units, i.e. T specifies
the exact inter-arrival time. A sporadic task has an inter-arrival time of at least
T time units, but the release may happen later. Finally, aperiodic tasks show no
periodicity, they are released randomly. All task systems in this thesis consist of
sporadic tasks.

If a task has a deadline which is lower or equal to its period (D ≤ T ), we
call it a constrained deadline task system. If the deadline is equal to the period
(D = T ), we call it an implicit deadline task system. In any other case, we call
it an arbitrary deadline task system. In this thesis we only consider task systems
with constrained deadlines.

Tasks can have interdependencies due to resource constraints, for instance if
several tasks need to communicate over a single bus. However, we will only consider
independent tasks in this thesis.

A very simple task system with two tasks is depicted in table 2.1. If no arrival
time is specified as in this case, it is assumed to be 0 for all tasks.

Table 2.1: Example task set

Ci Ti Di Ui

τ1 1 5 3 0.2

τ2 2 10 5 0.2

2.2 Scheduling

The scheduling of real-time systems has been an active area of research for many
decades, and a lot of theory has been developed as a result. Process scheduling is
also a part of operating systems theory, and the terminology is partly the same.

In preemptive systems a running task can be suspended in favour of another
task, even though the running task has not yet completed. A non-preemptive
system is one in which tasks always run to completion before a new task can be
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CHAPTER 2. BACKGROUND

scheduled to run. There are advantages and disadvantages to both models, but we
will only consider preemptive systems.

The run-time system consists of a scheduler and a dispatcher. The dispatcher is
responsible for starting ready-to-execute tasks according to the priority determined
by the scheduler. The scheduler implements a scheduling algorithm which decides
the task execution order. The scheduling algorithm generates a schedule for a task
system in a specific run-time system.

A feasible schedule is one which fulfils all timing constraints of a task system,
and a task system is schedulable if at least one scheduling algorithm exists which
generates a feasible schedule.

Pretty much all run-time systems have a concept of task priority which helps
the scheduling algorithm to generate a feasible schedule. The task priority is also
used by the dispatcher during run-time to determine which task should be executed
next.

Task priorities can either be fixed or dynamic. In fixed-priority (FP) systems,
the task priorities are determined offline and never change at run-time. An example
of this is rate-monotonic (RM) scheduling, in which priorities are assigned offline
according to task periods, i.e. the shorter the period the higher the priority of
the task. In systems with dynamic priorities on the other hand, priorities can
change at run-time based on some run-time properties. An example for this is
earliest deadline first (EDF) scheduling, in which the task with the next upcoming
absolute deadline has the highest priority. The absolute deadline of a job is the
release time of the job plus its relative deadline. We will only consider FP systems.

2.2.1 Schedulability Analysis

Schedulability analysis is concerned with determining the schedulability of a given
task system for a specific run-time scheduler.

It consists of two related sub-problems. First, the problem of finding a priority
assignment which makes the system schedulable. Second, in order to actually test
the priority assignment for schedulability, a schedulability test is needed. We will
consider each problem in turn in the following subsections.

Priority Assignment

The priority assignment problem can be defined as follows: In a given task system,
each task must be assigned a priority so that each task meets its deadline if it is
scheduled in a priority-based run-time system.

A popular priority assignment policy for preemptive FP systems is deadline-
monotonic (DM) scheduling [LW82]. Under this policy, the task priority is in-
versely proportional to the relative deadline of the task, i.e. the shorter the dead-
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CHAPTER 2. BACKGROUND

line, the higher the priority. For systems with implicit deadlines (T = D), DM
is the same as RM. These are “classic” priority assignment policies and extensive
theory has been developed regarding their applications. The interested reader is
referred to any introductory real-time systems book, e.g. [BW09].

Another very popular approach to priority assignment is Audsley’s optimal
priority ordering (OPA) [Aud91], often simly called “Audsley’s approach” in the
literature. OPA works with a specific scheduling algorithm which needs to be
chosen in advance. Initially the priority assignment algorithm assumes that all
tasks have no assigned priority. All tasks without assigned priority will be handled
as highest priority tasks by the schedulability test, i.e. they all interfere with tasks
which have been assigned a priority. For each unassigned priority level, the OPA
algorithm iterates over the entire task set and tries to assign this lowest unassigned
priority to a task using the chosen schedulability algorithm. If the lowest priority
could be assigned, the algorithm proceeds to the next unassigned priority level
and again tries to assign it. If each task can be assigned a priority under the
chosen schedulabilit test, the assignment succeeds. If at any point no task can
be assigned the lowest unassigned priority level, the algorithm fails and the task
set is determined to be unschedulable under the given schedulability test. Our
implementation in C is shown in listing 2.1.

1 char OPA( int n , Task∗ tasks , a n a l y s i s t t e s t )
2 {
3 int as s i gned = 0 ;
4
5 for ( int i = 0 ; i < n ; i++)
6 ta sk s [ i ] . p = UNASSIGNED;
7
8 while ( a s s i g n l o w e s t (n , tasks , ass igned , t e s t ) != FALSE)
9 as s i gned++;

10
11 i f ( a s s i gned == n)
12 return TRUE;
13 else
14 return FALSE;
15 }

Listing 2.1: OPA implementation in C

where assign lowest is a function which tries to assign the lowest available priority
to the current task, with the given schedulability test.

However, OPA is not always applicable to all systems and quite some research
has been done regarding the properties which make a system OPA schedulable.
We will show later that OPA is indeed applicable for the new uniprocessor test
which has been developed in chapter 5.
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CHAPTER 2. BACKGROUND

Schedulability Testing

A schedulability test determines whether a given task set can be scheduled under
a certain priority assignment with a specific scheduling algorithm such that all
deadlines of the tasks will be met.

An exact schedulability test is both necessary and sufficient, which means that a
positive result of the test confirms the schedulability of the task set, and a negative
result falsifies it. An exact test is highly desirable, but not always computationally
tractable.

A schedulability test which is only sufficient confirms the schedulability of a
given task set, but a negative result yields no information. If a sufficient test gives
a negative result, nothing can be deduced about the schedulability of the task set.
Sufficient tests are usually the result of pessimism in the analysis. They reveal less
information than an exact test, but they are also easier to derive.

The uniprocessor test which we will present in chapter 5 is a sufficient test.

2.2.2 Response Time Analysis

A schedulability test which has long been used is response time analysis[JP86].
The goal of response-time analysis (RTA) is to determine the worst-case response
time (WCRT) of a specific task under a given priority assignment, taking the
interference of higher priority tasks into account. It is important to note the
difference between WCET and WCRT. The WCET is the uninterrupted execution
time of a task, i.e. completely independent of any other tasks, whereas the WCRT
does include interference due to higher priority tasks.

The basic fixed-point response time equation is

Ri = Ci +
∑
j∈hp(i)

⌈
Ri

Tj

⌉
Cj (2.1)

where hp(i) is the set of tasks with higher priority than task i, and
∑

j∈hp(i)dRi/TjeCj
is the interference caused by higher priority tasks. The logical initial value for Ri

to solve this fixed point equation is its own WCET Ci.
In order to check a task for schedulability according to RTA, the above equation

needs to be solved, and the resulting WCRT needs to be checked against the
deadline of the task. If the WCRT is bigger than the deadline, the task is not
schedulable. This can be repeated for every task in the task set to determine the
schedulability of the entire task set. If a single task is not schedulable, the entire
task set is not schedulable, assuming the concrete RTA is exact.

One nice property of this test is that it is highly extensible. Baruah et al.
[BBD11] adapted RTA to mixed-criticality task sets, and we will adopt a similar
approach for our new uniprocessor test.
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CHAPTER 2. BACKGROUND

2.3 Multiprocessor Scheduling

In this section we will discuss the additional complexities of multiprocessor schedul-
ing. We will only consider homogeneous multiprocessor environments, i.e. where
all processors are of the same type.

There are two main scheduling models for multiprocessors, global scheduling
and partitioned scheduling. There are also hybrid models which combine global
and partitioned scheduling techniques.

Global scheduling entails that there is a single ready-queue for the entire system.
When a ready task arrives, it can be scheduled on any processor according to a
global scheduler. So tasks can migrate at run-time from processor to processor.
This requires a completely new scheduling theory, and a lot of research has been
done on this in the last decade or so. It also holds the promise of high processor
utilisation.

Partitioned scheduling on the other hand means that the tasks will be assigned
offline to one specific processor and will never migrate. Each processor has a ded-
icated ready-queue accordingly. This means that a task-to-processor assignment
must be found before the system is taken into operation. This task-to-processor
assignment is essentially a bin-packing problem, and we will use these terms in-
terchangeably. Bin-packing has been shown to be NP-hard.The big advantage of
partitioned scheduling is that the well-known uniprocessor theory can be reused
on a per-processor basis. The downside is that processor utilisation might not be
optimal since ready tasks might have to wait on one processor while another one
is idle.

This thesis only deals with partitioned scheduling.

2.3.1 Partitioned Scheduling

Partitioned scheduling is about dividing a task set Γ such that each task τ ∈ Γ
is assigned to exactly one of m available processors. Let Γi be the ith partition,
where i ∈ {1..m}. The partitioning needs to be done in such a way that each
partition Γi is schedulable on a single processor.

There are several components in this process that have an impact on schedu-
lability. The whole process can be broken down into three main steps.

1. An initial ordering Π of the unassigned tasks should be chosen. Any
parameter could be chosen to facilitate this ordering. Ordering the task set
according to decreasing utilisation has been shown to be beneficial [LGDG03]
for example.

2. For each task, the processors need to be tested if the task can be added
without making the partition unschedulable under a certain schedulability
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CHAPTER 2. BACKGROUND

test. The processor order depends on some heuristic, since an exhaustive
search would be computationally too expensive. If a task fails to be assigned
to a processor, the partitioning process fails.

3. When testing whether a task can be added to a specific processor, a schedu-
lability test with a specific priority ordering must be applied.

Since no backtracking is employed, each of these three steps can have a large
impact on whether or not a specific task set is found to be schedulable. The
complete algorithm is described in pseudo-code in algorithm box 1.

Algorithm 1 Multiprocessor Partitioning

1: function partitioning(Γ, pack heuristic, sched test, prio ordering)
2: assigned tasks := 0
3: while assigned tasks < n do
4: for all τi ∈ Γ do
5: if (τi is UNASSIGNED) then
6: assigned := proc alloc(τi, pack heuristic, sched test, prio ordering)
7: if (assigned is TRUE) then
8: assigned tasks := assigned tasks+ 1
9: break

10: else
11: return UNSCHEDULABLE
12: end if
13: end if
14: end for
15: end while
16: return SCHEDULABLE
17: end function

2.4 Mixed-Criticality Systems

A mixed-criticality (MC) system is a system in which tasks of different criticality
levels run on the same processor.

Functional safety standards usually define a small number of criticality levels.
For example, the general international standard IEC 61508 (“Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related Systems”) defines 4
safety integrity level(s) (SIL(s)). Several adaptations to specialised industries exist,
for instance the relatively new standard ISO26262, which defines 4 corresponding
automotive safety integrity level(s) (ASIL(s)).

9



CHAPTER 2. BACKGROUND

System designers have an interest in scheduling tasks of different criticality
on the same processor to reduce costs, and also to be able to better utilise the
processor. But many embedded systems, especially safety-critical systems, require
certification by certification authorities which usually set different standards from
the system designers.

When tasks of different criticality are put on the same processor, the authorities
will demand that all tasks will be certified to the level of the task with the highest
criticality. This introduces pessimism which diminishes the utility of this approach
for the system designer. Much of the research work on MC systems has been done
to try to reconcile these two conflicting interests.

One of the most popular approaches to achieve this consolidation is to use
different WCET for each criticality level, i.e. to model the WCET as a function
of the criticality level.

In MC systems, the task properties listed in section 2.1 are extended by the
task criticality level Li. It is important to note that task criticality is distinct from
task priority. The criticality of a task gives an indication of the importance of the
task functionality, whereas the task priority is a scheduling mechanism to improve
system schedulability. There is no necessary correlation between the importance
of a task and its priority, although it is of course possible to design it so.

10



3
Related Work

M
ixed-criticality systems have become a popular research subject in
recent years, which goes back to the seminal work done by Vestal [Ves07].
He extended the standard response time analysis to preemptive fixed-

priority MC systems.
The main difference in the models of standard and mixed-criticality systems is

that the WCET Ci of a task τi is an L-dimensional vector, where L is the number
of criticality levels. Ci(L) will denote the WCET of τi at criticality level L. Let Li
denote the assigned criticality level of task τi. Vestal’s least fixed point equation
for the response time Ri of task τi is then

Ri = Ci(Li) +
∑
j∈hp(i)

⌈
Ri

Tj

⌉
Cj(Li) (3.1)

where hp(i) denotes the set of tasks with higher priority than τi. Note the implica-
tion that all lower criticality tasks need to be certified up to the highest criticality
level, because for each task the response time depends only on its own criticality
level Li.

Baruah, Burns and Davis [BBD11] built on Vestal’s work and developed a
new scheme they call Adaptive Mixed-Criticality (AMC), because it adapts the
criticality level of the system at run-time. It was developed for a dual-criticality
system, and AMC requires run-time monitoring to work. They also formalised
the response-time analysis for AMC. The basic idea is that the system starts out
in LO-criticality mode, but switches to HI-criticality mode if any task runs over
its WCET. Once the system is in HI-criticality mode, all LO-criticality tasks are
dropped.

The schedulability verification process according to Baruah et al.’s RTA consists
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of three parts:

1. Checking the schedulability of the LO-criticality mode

2. Checking the schedulability of the HI-criticality mode

3. Checking the schedulability of the moment of the criticality change

Verifying the LO- and HI-criticality modes is rather straight-forward:

RLO
i = Ci(LO) +

∑
j∈hp(i)

⌈
RLO
i

Tj

⌉
Cj(LO) (3.2)

RHI
i = Ci(HI) +

∑
j∈hpH(i)

⌈
RHI
i

Tj

⌉
Cj(HI) (3.3)

where hpH(i) is the set of tasks with HI-criticality and higher priority than τi. For
each mode the respective recurrence equation needs to be solved for all tasks, and
the response time of the tasks need to be checked against the task deadlines.

The analysis for the moment of the criticality change is more involved. If the
criticality change happens at some arbitrary time s, the response time equation of
task τi can be modelled as

Rs
i = Ci(HI) + IL(s) + IH(s) (3.4)

where IL(s) and IH(s) represent the interference from tasks of lower and higher or
equal criticality than τi, respectively.

IL(s) can be upper bounded by

IL(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO) (3.5)

where hpL(i) is the set of tasks with LO-criticality and higher or equal priority
than τi.

In order to define IH(s) we need a term for the maximum number of releases
of an interfering task τk after the criticality change s:

M(k,s,t) = min

{⌈
t− s− (Tk −Dk)

Tk

⌉
+ 1,

⌈
t

Tk

⌉}
(3.6)

Using this term, an upper bound for IH(s) can be defined as

IH(s) =
∑

k∈hpH(i)

{(
M(k,s,t) Ck(HI)

)
+

(⌈
t

Tk

⌉
−M(k,s,t)

)
Cj(Li)

}
(3.7)
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where hpH(i) is the set of tasks with HI-criticality and higher priority than τi.
Finally, the response time of τi for the moment of the criticality change is given

by
R∗i = max(Rs

i )∀s (3.8)

Since Rs
i can only increase at points when a LO-criticality task is released, only

those values for s need to be checked.
For details on the derivation of these equations we point to the original paper

[BBD11]. It should be noted that their analysis allows LO-criticality tasks to run
to completion after the criticality level of the system is raised. The run-time model
which we will use for our analysis assumes that LO-criticality tasks can be aborted
immediately, so they do not complete their runs.

Kelly, Aydin and Zhao [KAZ11] did a comparative study of different task alloca-
tion (bin-packing) and priority assignment algorithms for partitioned fixed-priority
mixed-criticality task sets on multiprocessors, using Vestal’s RTA [Ves07]. They
compared first-fit (FF), best-fit (BF) and worst-fit (WF) for the task allocation
algorithms in conjunction with decreasing utilisation (DU) and decreasing criti-
cality (DC) as initial orderings of the task set. For DU they used the nominal
utilisation Ui(Li), i.e. the utilisation at the criticality level of the task. For DC
they also used DU in case of tie-breaks. In terms of priority assignment they only
considered RM and OPA. This also implies that their experiments were limited to
implicit deadline task sets. Kelly et al. concluded that choosing the right prior-
ity assignment is more important than choosing a good task allocation heuristic.
FF and BF had comparable performance while WF performed worst. They also
observed that OPA clearly outperformed RM and that the combination of DC-
OPA performed best. Our multiprocessor evaluation section extends their set of
experiments.

Pathan [Pat12] introduced a new RTA-based schedulability test for global fixed-
priority multiprocessor systems. It works for arbitrary criticality levels, and the
applicability of Audsley’s priority assignment algorithm is also shown. This work
is mostly interesting because our uniprocessor test is based on similar ideas. Both
approaches use workload analysis to come up with tight response time tests. A
more detailed description of this approach is deferred to chapter 5 which explains
our new uniprocessor test.

In [BLS10] Baruah, Li and Stougie adapted Audsley’s OPA [Aud91] to MC
system instances which consist only of non-recurrent jobs. They call this adapted
version “Own Criticality-Based Priorities (OCBP)”, because when a job is con-
sidered for the lowest priority only the parameters for the criticality level of that
job are considered in the analysis. They also show that OCBP is able to find a
complete priority ordering in polynomial time, if such an ordering exists. Systems
for which such an ordering exists are called OCBP-schedulable. Some parts of this
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work have also been published in [BBD+10], but most importantly Baruah et al.
proved in [BBD+10] that the scheduling of an MC system is NP-hard.

In [LB10] Li and Baruah generalised the OCBP algorithm to sporadic task sys-
tems. They showed that under certain conditions the priority ordering needs to be
recomputed, and they devised an algorithm which does this in pseudo-polynomial
time. Building on this work, Guan, Ekberg, Stigge and Yi [GESY11] developed an
algorithm called Priority List Reuse Scheduling (PLRS) which can do the priority
re-computation in polynomial time instead.

A more high-level view of an MC system is taken by Mollison et al. [MEA+10].
They developed an architecture for MC systems with heavier emphasis on real-
world requirements. Standards such as the RCTA standard DO-178B have a lim-
ited number of criticality levels, usually around 5, so they came up with a 5-level
architecture. Their architecture relies on container or server based separation (see
e.g. Lehoczky et al. [Leh87]). It is a complex hybrid architecture in which some
levels use partitioned scheduling and other levels use global scheduling. Each of
the architectural levels uses a different scheduling algorithm, in accordance with
their criticality. Every task gets a “time budget” which is equal to its WCET in
its criticality level, and if it does not use its entire budget when it runs, lower
criticality tasks can use it. The whole architecture is based on the assumption
that WCET are highly pessimistic, especially for high-criticality tasks. This is
also obvious by their choice of using EDF for high criticality tasks, since EDF
is very bad in handling overload scenarios. The approach Mollison et al. chose
is fundamentally different from ours, because they do not consider overloads or
run-time enforcement of execution times.

De Niz, Lakshmanan and Rajkumar [dNLR09] argue along similar lines as
Mollison et al., but de Niz et al. also take WCET overruns into account. Based
on the observation that the WCET of a task is hard to calculate and that it rarely
occurs in practice, they propose a new algorithm they call zero-slack scheduling.
It can be adapted to different scheduling algorithms, and they exemplify this with
RM scheduling, the result of which they call Zero-Slack Rate-Monotonic (ZSRM)
scheduling.

In a related paper, Lakshmanan, de Niz, Rajkumar and Moreno [LdNRM10]
extend their previous work to distributed cyber physical systems, which in essence
are partitioned multiprocessor systems. Once again they considered overload sce-
narios and they developed a new overload-resilience metric they call ductility. The
higher the ductility of a system, the more resilient it is to overload. Ductility takes
both the bin-packing and the scheduling algorithms into account. They present
Compress-on-Overload Packing (COP), a new bin-packing algorithm, and they
compare it with the WF decreasing bin-packing algorithm. As scheduling algo-
rithm they use ZSRM, and they conclude that COP is more resilient to overload
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than WF decreasing in the average case.
Santy, George, Thierry and Goossens [SGTG12] consider L-criticality systems

(i.e. systems with L criticality levels) and investigate under which conditions it
is possible to relax the constraint of immediately dropping tasks whose criticality
level has been exceeded. They also discuss when the criticality level can be reset
to a lower level again. Santy et al. also provide a short proof that the critical
instant for a FP scheduled mixed-criticality system is the same as for traditional
FP systems. It should be noted that their system model is fundamentally different
from ours. They assume that the WCET of low-criticality tasks does not increase,
that is, C(LO) = C(HI) for all LO criticality tasks in a dual-criticality system. Their
paper also nicely illustrates that system requirements play a large role in system
design, since their goal of decreasing the number of dropped tasks is somewhat
orthogonal to our goal of increasing the schedulability.

Dorin, Richard, Richard and Goossens [DRRG10] proved that Audsley’s OPA
is also optimal for traditional fixed-priority MC systems, which also implies op-
timality of Vestal’s algorithm [Ves07] for those systems. They also extended the
sensitivity analysis of Bini et al. [BDNB08] to MC systems.
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4
System Model and Notation

T
he system consists of a set of n sporadic tasks τi ∈ Γ where i ∈ {1..n}.
It is a dual-criticality system with the levels low (LO) and high (HI) where
LO < HI, which is scheduled preemptively on m homogeneous processors.

Each partition of the task system Γ will be denoted by Γj where j ∈ {1..m}.
The tasks have constrained deadlines, and each task is defined by the tuple

(Li, Ci, Ti, Di), where

• Li ∈ {LO,HI} is the criticality level of the task.

• Ci is a vector (Ci(LO), Ci(HI)) of the WCETs of task τi at both criticality
levels. The WCET of task τi at criticality level ` is equal to Ci(`).

• Ti ∈ R+ is the minimum inter-arrival time (period) of the task.

• Di ∈ R+ is the relative deadline such that Di ≤ Ti.

The WCET is monotonically non-decreasing, so Ci(LO) ≤ Ci(HI) for each task
τi ∈ Γ . The nth job of task τi will be denoted by Jni . Note that the WCET of a
task does not directly correspond to the actual run-time of a specific job.

Furthermore, let Jxi denote the x-th job (invocation) of task τi, and rxi the
release time of job Jxi .

Each task τi also has a distinct fixed-priority pi. The set of tasks with higher
priority than task τi will be denoted by hp(i). We can then define hpH(i)and
hpL(i)as follows:

hpH(i) = {τj | Lj ≥ Li and τj ∈ hp(i)}
hpL(i) = {τj | Lj < Li and τj ∈ hp(i)}
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In other words, hpL(i) is the set of tasks with higher priority but lower criticality,
and hpH(i) is the set of higher priority and higher-or-equal criticality than τi.
Note that hp(i) = hpL(i) ∪ hpH(i).

The run-time model of the system is as follows. There is a system-wide criti-
cality level indicator L which denotes the current criticality level. Task execution
times are monitored at run-time. The system starts out at LO-criticality, but
switches to HI-criticality when any of the tasks executes for more than its spec-
ified Ci(LO) time units. As soon as the switch occurs, all LO-criticality jobs are
suspended, i.e. they will not be allowed to run to completion. Resetting the
criticality level of the system is not considered.
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5
Uniprocessor Schedulability Test

- IAMC

P
lease note that this chapter was originally written by Risat Pathan. I only
made minor corrections and abbreviated parts of the analysis. Any mistakes
in this document are obviously still my own. Since this analysis has not been

published anywhere yet and it forms the basis for the rest of this thesis, it needs
to be included. The basic techniques behind the analysis are similar to the ones
presented in [Pat12].

The system model presented in the previous chapter is assumed in the remain-
der of this chapter. Since this schedulability test is essentially a more precise
schedulability test using the run-time model and strategy proposed in [BBD11],
we call it Improved AMC (IAMC).

According to the AMC strategy, all the LO-critical tasks are de-scheduled if any
job executes for more than its corresponding low-criticality execution time. Here
we present the response time analysis for the HI-critical tasks based on the AMC
strategy. We find the largest response time for any job of a HI-critical task. If
a job of a HI-critical task τi does not experience any criticality change1, then it
executes for at most Ci(LO) time units, and its response time is given (according
to [BBD11]) as follows:

RLO
i = Ci(LO) +

∑
j∈hp(i)

⌈
RLO
i

Tj

⌉
Cj(LO) (5.1)

1A criticality change is first triggered by a job of task τi or by job of any other task. This
“trigger” event happens when a job of task does not signal completion after executing for its
corresponding low-criticality execution time
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In the rest of this chapter, we present the schedulability analysis of a HI-critical
task τi considering the case where it experiences a criticality change. Based on this
schedulability analysis, we compute the worst-case response time of τi. When a
HI-critical task τi experiences a criticality change, the following facts are true:

• The job, say Jxi , of the HI-critical task τi that first experiences the criticality
change executes for Ci(HI) time units.

• The criticality change occurs somewhere within [rxi , r
x
i + RLO

i ] where rxi is
the release time of job Jxi .

In this work, we derive an upper bound on the response time of job Jxi con-
sidering that the criticality change occurs anywhere within [rxi , r

x
i +RLO

i ]. It has
already been pointed out in [BBD11] that the exact response time analysis of this
AMC strategy is likely to be intractable. We present a sufficient schedulability
test here based on response time analysis.

Assume s is the time instant relative to the release time of job Jxi at which the
criticality change is triggered, i.e., the criticality change occurs at (rxi +s) where rxi
is the release time of job Jxi . Let t be the length of the problem window in which
we analyse the schedulability of job Jxi where s < t ≤ dxi and dxi is the absolute
deadline of job Jxi . This scenario is depicted in Figure 5.1.

Figure 5.1: The problem window of length t where the criticality is changed at
(rxi + s)

According to the AMC strategy, no LO-criticality tasks are allowed to execute
after (rxi +s). Thus, the interference that job Jxi suffers within the problem window
[rxi , r

x
i + t] depends on the following two interference factors:

• IL(s): the interference due to the tasks in hpL(i) within the interval [rxi , r
x
i + s]

• IH(s): the interference due to the tasks in hpH(i) within the interval [rxi , r
x
i + t]

We denote Rs
i the response time of task τi when a criticality change occurs at time

s relative to the release time of some job of task τi. The value of Rs
i is defined as

follows [BBD11]:
Rs
i = Ci(HI) + IL(s) + IH(s) (5.2)
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In the following sections we present the schedulability analysis to calculate the
values of IL(s) and IH(s).

5.1 Calculating IL(s)

Since job Jxi experiences the criticality change at time instant (rxi +s), this job has
not signalled completion at or prior to time instant (rxi +s). In other words, in the
interval [rxi , r

x
i +s] the system is busy executing job Jxi in addition to the jobs of the

tasks in (hpL(i) ∪ hpH(i)). According to the schedulability analysis in [BBD11],
the interference on job Jxi due to the execution of the jobs of tasks in hpL(i) is
maximised if all the higher priority tasks in hpL(i) are released simultaneously at
time rxi .

We denote ÎL(s) the upper bound on the sum of the interference due to the
tasks in hpL(i) within [rxi ,r

x
i +s]. Since no task τj ∈ hpL(i) executes after (rxi +s),

the value of ÎL(s) is given as follows:

ÎL(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
Cj(LO) +min{Cj(LO), s−

⌊
s

Tj

⌋
Tj}
)

(5.3)

In contrast, the work in [BBD11] considers that any LO-critical job released at
or before s completes its execution. Such consideration may introduce significant
amount of pessimism when the WCET of such a LO-critical task is large, since
some of its execution may need to take place after time instant (rxi + s). However,
run-time monitoring is enforced in the AMC strategy. Therefore, as soon as the
criticality change occurs at (rxi + s), all the LO-critical tasks can be de-queued
immediately from the ready queue.

One important observation regarding Eq. (5.3) is that the value of ÎL(s) could
be greater than s. However, the maximum amount of execution that can take place
within the interval [rxi , r

x
i + s] is upper bounded by s. Consequently, the value of

IL(s), i.e., interference due to the task in set hpL(i) on job Jxi within the interval
[rxi , r

x
i + s], is given as follows:

IL(s) = min{s, ÎL(s)} (5.4)

5.2 Calculating IH(s)

In this subsection, we calculate the interference on job Jxi due to the tasks in hpH(i)
within the problem window [rxi , r

x
i + t]. We denote IH(k,s,t) the interference on

job Jxi within the problem window of length t due to the jobs of task τk ∈ hpH(i)
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where the criticality change occurs at (rxi + s). Thus, we have

IH(s) =
∑

τk∈hpH(i)

IH(k,s,t) (5.5)

We need to calculate the value of IH(k,s,t) for all τk ∈ hpH(i). In order to
calculate IH(k,s,t), we consider two different cases: case (i) s ≤ Dk, and case (ii)
s > Dk. We calculate the upper bound on workload of task τk within [rxi , r

x
i + t]

for each of these two cases. The upper bound on workload is an upper bound on
interference within [rxi , r

x
i + t] due to task τk.

Case(i) s < Dk: The earlier the criticality change occurs within [rxi , r
x
i + t],

the larger is the workload of task τk within [rxi , r
x
i + t]. This is because jobs of task

τk execute for Ck(HI) time units after the criticality change, and Ck(HI) > Ck(LO)
by definition. Consequently, the workload of task τk within [rxi , r

x
i + t] considering

Figure 5.2: Worst-case release pattern of jobs of task τk where s ≤ Dk

s = 0 is greater than or equal to that of considering s > 0. The worst-case releases
of jobs of task τk assuming s = 0 is given in Figure 5.2. One job of task τk is
released at time rxi and the subsequent jobs of τk arrive as early as possible.

According to [BBD11], the number of jobs of task τk that may be released
within the interval [rxi , r

x
i + t] is at most d t

Tk
e. The upper bound on workload of

the jobs of task τk within [rxi , r
x
i + t] is then given as follows:

IH(k,s,t) =

⌈
t

Tk

⌉
Ck(HI) if s ≤ Dk (5.6)

Case(ii) s > Dk: For this case, we consider a particular release pattern of
the jobs of task τk within [rxi , r

x
i + t]. We call this particular release pattern the

reference pattern . We first calculate the upper bound on the total workload
of the jobs of task τk for this reference pattern. Then, by shifting the problem
window within the reference pattern (both in leftward and rightward directions) we
determine the maximum net increase in workload in addition to the workload
calculated for the reference pattern. The sum of the workload of the reference
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pattern and the net increase in workload due to any possible shift of the problem
window within the reference pattern is the upper bound on interference caused by
the jobs of task τk on job Jxi .

The reference pattern is defined considering releases of the jobs of task τk within
the interval [rxi , r

x
i + t] as follows (see Figure 5.3):

• one job of task τk is released at time (rxi + t − Ck(HI)) and executes for
Ck(HI) time units as early as possible, and

• other jobs of τk are released as close as possible to the job of task τk that
is released at (rxi + t − Ck(HI)). This scenario considers strictly periodic
releases of the jobs of task τk.

Figure 5.3: Reference Pattern for the case s > Dk

We compute the maximum workload of the jobs of task τk ∈ hpH(i) in the
reference pattern within the problem window [rxi ,r

x
i + t] in two steps as follows:

• STEP1: The upper bound on total workload of task τk within [rxi ,r
x
i + t] in

the reference pattern (Figure 5.3) is calculated.

• STEP2: By considering any possible shifts of the problem window in the
reference pattern for α time units, 0 ≤ α ≤ Tk, either in leftward or rightward
direction, we find the maximum net increase in workload due to such
shift in addition to the workload calculated in Step 1. Note that shifting
the problem window exactly for Tk time units either in leftward or rightward
direction results in the same release pattern as in Figure 5.3. Therefore, we
do not need to consider any shifts greater than Tk time units.

The sum of the two workload factors calculated in Step 1 and Step 2 is the
maximum workload (hence, the interference) due to the jobs of task τk ∈ hpH(i)
within the problem window [rxi ,r

x
i + t]. Now we present the details of Step 1 and

Step 2.
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STEP 1: In this step, we find the upper bound on total workload of the jobs
of task τk for the reference pattern in Figure 5.3. Consider a job Jsk that satisfies
the following condition in the reference pattern:

rsk ≤ rxi + s < rs+1
k (5.7)

According to Eq. (5.7), the criticality change occurs at or after the release time
of job Jsk but prior to the release time of job Js+1

k . No job released earlier than
Jsk in the reference pattern can experience the criticality change. If job Jsk triggers
the criticality change, then it can only trigger the criticality change at or prior to
time instant (rsk +RLO

k ). Therefore, if (rsk +RLO
k ) ≤ (rxi + s), then job Jsk does not

experience the criticality change and also has not triggered the criticality change
(see Figure 5.4). On the other hand, if (rsk + RLO

k ) > (rxi + s), then job Jsk may
experience (or trigger) the criticality change (see Figure 5.5). Consequently, Jsk
executes for Ck(LO) time units if (rsk + RLO

k ) < (rxi + s), otherwise, we consider
job Jsk executes for Ck(HI) time units in the reference pattern in Figure 5.3. Any
job of task τk that is released after job Jsk executes for Ck(HI) time units in the
reference pattern in Figure 5.3. And, any job of τk that is released prior to the
release of job Jsk executes for Ck(LO) time units in the reference pattern.

Figure 5.4: Reference Pattern with (rsk +RLOk ) < (rxi + s)

Figure 5.5: Reference Pattern with (rsk +RLOk ) ≥ (rxi + s)

Now we calculate an upper bound on interference according to the reference
pattern in Figure 5.3 on job Jxi . Our objective is to find how many of the jobs out
of d t

Tk
e jobs of task τk observe the criticality change, and thus execute for Ck(HI)
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time units. We denote N t
k,s the maximum number of jobs of task τk that may

execute within [rxi + s, rxi + t−Ck(HI)] in the reference pattern. The value of N t
k,s

is given as follows:

N t
k,s =

⌈
max{0, t− s− Ck(HI)}

Tk

⌉
(5.8)

Since job Jsk satisfies Eq. (5.7), the release time of job Jsk is given as follows:

rsk = rxi + t− Ck(HI)−N t
k,s · Tk (5.9)

We denote M̂(k,s,t) the number of jobs of τk that execute for Ck(HI) time
units in the reference pattern of Figure 5.3. The value of M̂(k,s,t) is given as
follows:

M̂(k,s,t) =

 N t
k,s if (rsk +RLOk ) < (rxi + s)

N t
k,s + 1 if (rsk +RLOk ) ≥ (rxi + s)

(5.10)

Equivalently, because rsk = (rxi + t− Ck(HI)−N t
k,s · Tk) in Eq. (5.9), we have

M̂(k,s,t) =

 N t
k,s if (t− Ck(HI)−N t

k,sTk +RLOk ) < s

N t
k,s + 1 if (t− Ck(HI)−N t

k,sTk +RLOk ) ≥ s
(5.11)

Thus, the value of M̂(k,s,t) is dependent of the values of s, t, task τk’s parameters
(Ck(HI), Tk) and RLO

k .
Note that when applying OPA to determine the priority of task τi, the value

of RLO
k is not known since (i) evaluating RLO

k requires to know hp(k) and (ii) OPA
must not be dependent on the relative priority ordering of the tasks in hpH(i). If
OPA is to be used, an upper bound on RLO

k can be used to evaluate the value of
M̂(k,s,t). By assuming that task τk meets its deadline, an upper bound on RLO

k is
Dk − (Ck(HI)− Ck(LO)).

The value of (N t
k,s + 1) in Eq. (5.10) is never greater than d t

Tk
e for the case

where s > Dk. If the value of M̂(k,s,t) is equal to d t
Tk
e, then all the d t

Tk
e jobs are

considered to execute for Ck(HI) time units and we have the following:

IH(k,s,t) = d t
Tk
e · Ck(HI)

Consequently, if M̂(k,s,t) = d t
Tk
e, we do not need to consider shifting the problem

window in the reference pattern. If M̂(k,s,t) < d t
Tk
e, then we have to consider

shifting the problem window in the reference pattern to determine any possible
increase in interference.
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For the case where M̂(k,s,t) < d t
Tk
e, we denote Î(k,s,t) the interference in the

reference pattern due to task τk on job Jxi within the interval [rxi , r
x
i + t]. The

value of Î(k,s,t) is given as follows:

Î(k,s,t) = M̂(k,s,t) · Ck(HI) +

(⌈
t

Tk

⌉
− M̂(k,s,t)

)
· Ck(LO) (5.12)

STEP2: In this step, by shifting of the problem window in Figure 5.3 for α
time units, where 0 ≤ α ≤ Tk, we determine the maximum net increase in
workload in addition to the workload calculated in Step 1. Let δ be the maximum
net increase in workload of task τk due to any possible shifts of the problem window
in Figure 5.3 either in leftward or rightward direction.

It has already been shown in [Pat12] that δ is bounded by Ck(HI) − Ck(LO).
The upper bound on interference due to the jobs of task τk within the interval
[rxi , r

x
i + t] (not necessarily according to the reference pattern) is thus:

IH(k,s,t) = Î(k,s,t) + Ck(HI)− Ck(LO) (5.13)

5.3 Summary of IAMC

The response time of HI-critical task τi is calculated for a given pair (s,t) as follows:

• The maximum number of jobs of task τk ∈ hpH(i) that may execute within
an interval of length (t− s− Ck(HI)) is calculated as follows:

N t
k,s =

⌈
max{0, t− s− Ck(HI)}

Tk

⌉
• The maximum number of jobs of task τk ∈ hpH(i) where each such job

is executed for Ck(HI) time units in the reference pattern in Figure 5.3 is
determined as follows:

M̂(k,s,t) =

{
N t
k,s if (t− Ck(HI)−N t

k,sTk +RLOk ) < s

N t
k,s + 1 if (t− Ck(HI)−N t

k,sTk +RLOk ) ≥ s

• The interference due to task τk ∈ hpH(i) is given as follows:

IH(k,s,t) =


⌈
t
Tk

⌉
Ck(HI) if s ≤ Dk

M̂(k,s,t) · Ck(HI) + (

⌈
t
Tk

⌉
−M(k,s,t)) · Ck(LO) + δ otherwise

where δ = Ck(HI)− Ck(LO).
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• The interference due to all the LO-critical tasks in hpL(i) is given as follows:

IL(s) = min{s, ÎL(s)}

where

ÎL(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
Cj(LO) +min{Cj(LO), s−

⌊
s

Tj

⌋
Tj}
)

• The response time of a HI-critical task τi is calculated as follows:

Rs
i = Ci(HI) + IL(s) +

∑
k∈hpH(i)

IH(k,s,Rs
i )

where Rs
i = Ci(HI) is used as the initial value for Rs

i .

• The worst-case response time of task τi is R∗i = max(Rs
i )∀s.
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6
Evaluation of IAMC for

Uniprocessors

I
n order to gain an understanding of the performance of the uniprocessor schedu-
lability test IAMC presented in chapter 5, we will compare it empirically with
AMC [BBD11].
In order to do the comparison, a large number of random task sets with fixed

parameters have been generated. Each of the generated task sets was then tested
for schedulability with both AMC and IAMC as the schedulability test. This gives
an idea how many task sets were schedulable by IAMC which were not schedulable
by AMC. Both AMC and IAMC were tested with deadline-monotonic priority
ordering and Audsley’s approach to priority assignment (OPA).

The details of the experimental setup and the results of the experiments will
be explained in the rest of this chapter.

6.1 Experimental Setup

In this section we will outline the setup of the performed experiments. In order
to facilitate the comparison, our setup is very similar to the one used by Baruah,
Burns and Davis in [BBD11].

6.1.1 Taskset Generation

Each taskset is defined by its utilisation, i.e. by the sum of all individual task
utilisations in the taskset. In order to randomly generate tasksets with a predeter-
mined utilisation value, the UUniFast algorithm as described by Bini and Buttazzo

27
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[BB05] was used. As input it takes the utilisation sum U to which the individual
utilisation values should add up, and the number of tasks n. UUniFast has run-
time complexity O(n) and yields a uniform distribution of the utilisation values.
For details see Bini and Buttazzo’s paper [BB05]. Our C implementation is shown
in listing 6.1.

1 /∗∗
2 UUniFast (n , U) −
3 re turns an n−s i z e vec tor , where the t o t a l sum i s equa l to U.
4 ∗/
5 long double∗ u u n i f a s t ( int n , long double U)
6 {
7 long double ∗ vectU = malloc (n ∗ s izeof ( long double ) ) ;
8
9 long double sumU = U;

10 long double nextSumU ;
11
12 for ( int i = 0 ; i < n − 1 ; i++)
13 {
14 nextSumU = sumU ∗ pow( rand ( ) , 1 . 0 / (n − i ) ) ;
15 vectU [ i ] = sumU − nextSumU ;
16 sumU = nextSumU ;
17 }
18 vectU [ n − 1 ] = sumU;
19
20 return vectU ;
21 }

Listing 6.1: UUniFast implementation in C

The following parameters were used to randomly generate the tasksets for the
experiments:

• Task utilisations (Ui = Ci/Ti) were generated with the previously discussed
UUniFast algorithm [BB05].

• Task periods were generated using a log-uniform distribution with a range
from 10ms to 1000ms.

• LO-criticality execution times were computed from the generated utilisation
values and periods as follows: Ci(LO) = Ui · Ti.

• HI-criticality execution times were computed based on Ci(LO) and a linear
criticality factor CF : Ci(HI) = CF · Ci(LO), where CF ≥ 1.

• Task deadlines were constrained (Di < Ti) and were generated using a ran-
dom uniform distribution. The intervals differed depending on the criticality
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level of the task: For LO-criticality tasks the interval was [Ci(LO), Ti], and for
HI-criticality tasks it was [Ci(HI), Ti].

• The criticality probability CP determined the probability of a task to be
of HI-criticality. The function for determining the criticality can then be
defined as:

crit(b, CP ) =

HI, if b ≤ CP

LO, otherwise

where b ∈ [0,1] is randomly generated for each task.

6.1.2 Schedulability Tests

The following schedulability tests have been used for the experiments:

• UB-H&L: A composite upper bound, as described in [BBD11]. In order
for a taskset to be deemed schedulable under this scheme, all tasks must
be schedulable considering only Ci(LO), and all HI-criticality tasks must be
schedulable using their Ci(HI) values.

• AMC: The schedulability test described in [BBD11] as AMC-max.

• IAMC: The schedulability test described in chapter 5.

With the exception of UB-H&L for which DM is optimal, each of these test
has been run with both DM and OPA as priority ordering.

6.2 Experiments

In order to show the schedulability properties of each schedulability test, 1000 task
sets were generated for a specific utilisation level. Each of those task sets was then
tested, and the percentage of schedulable task sets at that specific utilisation level
was recorded.

The taskset utilisation runs from 0.025 up to 1 in steps of 0.025, so there are a
total of 40 data points. At each utilisation level (data point) the 1000 tasksets were
tested for schedulability with AMC and IAMC. The results have been plotted and a
number of these plots will be shown and discussed subsequently. The x-axis shows
the taskset utilisation, and the y-axis shows the percentage of the 1000 tasksets
that was found to be schedulable with the algorithm and priority assignment in
question.
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Figure 6.1: Percentage of schedulable task sets

Each plot has a header which explains the parameters which have been used
for the experiment in question. The explanation of the header is as follows:

• T: indicates how the periods were generated. “log”means it was a logarithmic
distribution, “unif” means it was a uniform distribution.

• N: the number of tasks per task set.

• CP: criticality probability. The higher the CP value, the higher the proba-
bility that a generated task is of high criticality (see section 6.1.1).

• CF: criticality factor. A scaling factor which determines the relation of
Ci(HI) and Ci(LO) (see section 6.1.1).
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Figure 6.2: Higher number of tasks per task set

• D: indicates whether the deadlines are constrained (constr.) or implicit (DT).

• Period: indicates the range of the periods in milliseconds (Ti).

Figure 6.1 shows the plot for the case with 20 tasks per taskset (n = 20), a
criticality factor of 2.0 and a criticality probability of 0.5, i.e. half of the tasks are
of HI-criticality. All other parameters are as described in section 6.1.1.

Figures 6.2, 6.3 and 6.4 show variations for n, CF and CP , respectively.
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Figure 6.3: Higher criticality probability
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Figure 6.4: Higher criticality factor
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So far, all figures show the same trends. However, the next two figures show a
slightly different trend.

Figure 6.5: Periods with a regular uniform distribution

Figure 6.5 depicts the results with N = 20, CP = 0.5, CF = 2 and constrained
deadlines, but with uniformly distributed periods (Tunif), i.e. there is a much
higher chance of high-valued periods than in the case of log-uniformly distributed
periods. Clearly this amplifies the impact of the priority ordering, because both
AMC-OPA and IAMC-OPA perform much better than their DM counterparts.
But more importantly AMC-OPA performs better than IAMC-DM in this case.
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Figure 6.6: Implicit deadlines (D = T)

Similarly, figure 6.6 shows the comparison of AMC and IAMC for tasksets with
implicit deadlines, and once again AMC-OPA outperforms IAMC-DM, although
by a much lower margin than in figure 6.5.

We can draw the following conclusions:

1. For both AMC and IAMC the priority ordering OPA leads to better schedula-
bility than DM. This clearly shows that the priority ordering is an important
factor for improving schedulability.

2. Comparing IAMC-OPA with AMC-OPA and IAMC-DM with AMC-DM
yields that IAMC performs better than AMC.

3. Finally, in many cases even IAMC-DM performs better than AMC-OPA.
We can conclude that the schedulability test is at least as important as the
priority ordering.
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7
Evaluation of IAMC for

Multiprocessors

T
he goal of this chapter is to present and evaluate a number of heuristics and
parameters which play a role in mixed-criticality fixed-priority partitioned
scheduling. We will use the previously described schedulability test IAMC

to test a large number of parameters, in order to identify the best combination of
heuristics for this test.

Since it has been previously shown that IAMC performs better than AMC,
only IAMC will be considered in this chapter.

7.1 Heuristics

Two sets of heuristics will be considered. The first heuristic concerns the order in
which the processors are selected for testing whether another task can be added.
This correlates to the classic bin-packing problem. The second heuristic concerns
the initial ordering of the taskset, that is, the order in which the tasks will be
selected for schedulability testing on each processor.

Subsequently we will describe each of the heuristics in detail.

7.1.1 Processor Selection Heuristics

The following bin-packing heuristics have been considered to guide the processor
selection:

• First Fit (FF): The processors are traversed in a fixed order, and the
selected task is assigned to the first processor in which it fits according to
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the used schedulability test.

• Best Fit (BF): The processors are ordered according to lowest remaining
capacity. Processor capacity Ωm is defined as Ωm = 1 −

∑
τi∈Γ m

Ci/Ti. In
other words, the processor with the highest utilisation is tested first, then
the one with the second highest utilisation, etc.

• Worst Fit (WF): The opposite of BF, the processors are ordered according
to highest remaining capacity.

7.1.2 Initial Orderings

The following ordering heuristics have been evaluated:

• Decreasing Utilisation (DU): The tasks are ordered by decreasing utili-
sation Ui(LO), where Ui(LO) = Ci(LO)/Ti.

• Deadline Monotonic (DM): The tasks are ordered by increasing dead-
lines.

• Criticality Monotonic (CM): The tasks are ordered according to de-
creasing criticality levels Li, where HI> LO. In case of equal criticality levels,
deadline monotonic ordering is used.

• Criticality Utilisation (CU): The tasks are ordered according to decreas-
ing criticality levels Li, where HI> LO. In case of equal criticality levels, de-
creasing utilisation is used. In [KAZ11] Kelly et al. named this Decreasing
Criticality (DC).

• Slack Monotonic (SM): The tasks are ordered by increasing slack, where
the slack Si is computed as follows: Si = Ti −Di.

• Criticality Slack Monotonic (CSM): The tasks are first ordered accord-
ing to their criticality level Li, and then according to their slack (Ti −Di).

• Random (RAND): The tasks are not ordered at all, the taskset stays in
the order in which it was input to the bin-packing algorithm.

7.2 Experimental Setup

The experimental setup is the same as in [Pat12]. With respect to the uniprocessor
experiments in section 6.1, the only differences are that the task periods now range
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from 1ms to 1000ms, and that the UUniFast-Discard algorithm [DB11] is used,
instead of UUniFast.

UUniFast-Discard is an adaption of UUniFast which also works for taskset
utilisation levels greater than 1. However, no single task may have a utilisation
greater than 1, otherwise it would automatically be unschedulable. So in order to
guarantee that all tasks fit on at least one processor, the generated task utilisa-
tions are checked for this condition. If during the generation phase a task with a
utilisation greater than 1 is created, the whole taskset is discarded, and the taskset
generation algorithm simply begins anew.

Figure 7.1: IAMC-DM-*-BF
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7.3 Experiments

This section is divided into two parts. First, the best combination of initial task
ordering, priority ordering and bin-packing algorithm will be identified. In the
second part, that best combination will be investigated for its scalability properties.

The criticality probability CP and the criticality factor CF were kept steady
at 0.5 and 2.0 respectively, because their impact is quite predictable and thus
uninteresting.

7.3.1 Comparing The Heuristics

In the following a number of exemplary graphs are depicted. They have been
chosen out of literally hundreds of plots to show the trends of the results. The
lines of the plots are labelled as 4-tuples, e.g. IAMC-DM-SM-BF. The first part
represents the uniprocessor schedulability test which was used, the second part
stands for the priority ordering used by the test, the third part is the initial ordering
that determines the task input order to the bin-packing algorithm and the last part
indicates the bin-packing algorithm itself. An asterisk (*) at any position means
that this is the parameter whose variability is depicted in the plot. The header
of the plots is the same as the one described in chapter 6, except that there is an
additional parameter M , which denotes the number of processors which have been
used in the analysis. It also indicates the total utilisation level.

Figure 7.1 gives a first overview over the different initial orderings which can
be chosen. It shows the results of all seven initial orderings when the IAMC
schedulability test is used together with DM priority ordering and BF bin-packing
on a system with 4 processors. It can clearly be seen that for high utilisations,
IAMC-DM-SM-BF is able to schedule the most tasksets. There is also considerable
spread in the performance of the different initial orderings.

Figure 7.2 shows a similar plot, but with OPA as the priority ordering for the
test instead of DM. Interestingly the overall schedulability went down in com-
parison to the previously examined IAMC-DM-SM-BF. It is also much harder
to distinguish the different initial orderings, since their performance in terms of
schedulability is quite similar. Clearly the use of OPA as priority ordering di-
minishes the impact of the initial ordering considerably. This is a result which is
symptomatic for all of the experiments.

The performance of FF is, on average, slightly worse than the performance of
BF. An example is depicted in figure 7.3, IAMC-DM-*-FF. In this case IAMC-DM-
DU-FF seems to perform better for most utilisations, although IAMC-DM-SM-FF
catches up to it at the very end.

More interesting is the comparison of the initial orderings with the WF heuris-
tic, as depicted in figures 7.4 and 7.5 for DM and OPA respectively. It is obvious
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Figure 7.2: IAMC-OPA-*-BF

that in both cases DU and criticality utilisation (CU) perform much better than
all other initial orderings. However, as we will see later, the combination of WF
and DU does not perform better than the combination of BF and slack mono-
tonic (SM).

The previously mentioned relationships of BF, FF and WF can also be seen in
the figures 7.6 and 7.7. The three bin-packing heuristics are compared on the base
of SM as initial ordering, and it is easy to see that BF gives the best schedulability
while WF is much worse.

It is also worth mentioning that not ordering the taskset before task allocation,
i.e. keeping it random, performs worse than the best heuristics, but not signifi-
cantly. In fact the option of keeping random ordering performs better than several
other initial ordering heuristics. In the case of offline partitioning this is not very
interesting because pre-ordering the taskset has no cost, but in online scheduling
algorithms the cost of keeping the ready-queue in an ordered state is significant.
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Figure 7.3: IAMC-DM-*-FF

Only selected examples out of the huge amounts of data have been shown,
but the overall trend should be clear from these. IAMC-DM-SM-BF is by far
the best combination and is able to schedule more tasksets than any other tested
combination.

Especially the fact that the deadline monotonic priority ordering outperforms
Audsley’s OPA is rather surprising, and somewhat counter-intuitive. But it is
important to remember that OPA is only optimal for uniprocessor systems, and
only when a exact schedulability test is used, neither of which is the case here.
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Figure 7.4: IAMC-DM-*-WF
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Figure 7.5: IAMC-OPA-*-WF
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Figure 7.6: IAMC-DM-SM-*
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Figure 7.7: IAMC-OPA-SM-*
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Figure 7.8: M*-NM3-IAMC-DM-SM-BF

7.3.2 Scalability of IAMC-DM-SM-BF

In the following the scalability properties of IAMC-OPA-DU-WF will be analysed.
This is done by considering different numbers of processors and task set sizes, i.e.
varying values of m and n . The number of processors m ranged from 2 to 8 in
powers of 2, and the number of tasks per taskset was scaled by m, with scaling
factors of 3, 5, and 10 respectively.
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Figure 7.9: M*-NM5-IAMC-DM-SM-BF
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Figure 7.10: M*-NM10-IAMC-DM-SM-BF
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Figure 7.11: M2-N*-IAMC-DM-SM-BF

Varying The Number Of Processors

Figure 7.8 shows the normalised utilisation for 2, 4, and 8 processors with a taskset
size of n = 3m. The trend is clear, with increasing number of processors, the
achieved utilisation is decreasing.

Figure 7.9 depicts the same, but for a taskset size of n = 5m. This figure is
much less clear, at higher utilisation levels the systems with more processors are
able to schedule more tasksets successfully.

Finally, figure 7.10 depicts this relationship for a taskset size of n = 10m. This
time the results show in the opposite direction, the systems with more processors
are able to schedule more tasksets.

This would indicate that IAMC indeed scales quite well, the more processors
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Figure 7.12: M4-N*-IAMC-DM-SM-BF

the better for the schedulability, if the taskset is “flexible” enough. But more
experiments with a higher number of processors and a higher number of tasks per
taskset might be needed in order to show if this trend holds.

Varying The Number Of Tasks Per Taskset

When varying the number of tasks per taskset there is definite expectation that
more tasks per taskset lead to higher schedulability. There are more possibilities to
distribute the tasks over the processors. The intuition is that a higher number of
smaller packets should be easier to pack than a smaller number of bigger packets.

Figure 7.11 depicts the impact of varying the number of tasks per taskset for
2 processors. This plot is not very clear, and it seems logical to assume that 2
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Figure 7.13: M8-N*-IAMC-DM-SM-BF

processors with the tested number of tasks is not sufficient to show a clear trend.
Figure 7.12 depicts the same for 4 processors. Here the expected trend is

already visible, albeit not perfectly clear either.
Figure 7.13 depicts the situation for 8 processors. By now there can be no

doubt that a higher number of tasks per taskset leads to better schedulability.
We conclude that a higher number of tasks with smaller utilisation values per

task has a positive impact on schedulability as expected.
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8
Conclusions

T
he goal of this work was twofold. The first goal was to present and evaluate
the new uniprocessor test IAMC for mixed-criticality systems. The second
goal was to compare and evaluate a number of heuristics and strategies for

partitioned MC multiprocessor systems.
Concerning the first goal, it was shown that IAMC clearly outperforms AMC

in uniprocessor systems with constrained deadline tasksets. For systems with im-
plicit deadlines however the improvement is relatively small, albeit still visible. It
was also shown that the priority ordering and the schedulability test are equally
important in determining the schedulability of a taskset.

With regard to the second goal, a large number of approaches to partitioning
were investigated for an equally large number of scenarios. This yielded a number
of interesting results. Using a slack-monotonic initial ordering in conjunction with
best-fit task allocation and deadline monotonic priority ordering turned out to
give the best schedulability for random tasksets. Most surprising is probably that
using deadline monotonic priority ordering seems to be better than using Audsley’s
approach. On the other hand, it has also clearly been shown that worst-fit is a
rather bad task allocation algorithm for systems employing an AMC-like run-time
system. It is also interesting to see that IAMC seems to scale well with the number
of processors, if the number of tasks per taskset is high enough.

There are many directions in which future work on this topic could develop.
One obvious choice would be to look into other priority orderings than DM and
OPA, for instance some of the ones used in this work as initial ordering heuristics.
Another possibility could be to apply data mining techniques to the collected data
to see if they can unearth relationships within the randomly generated tasksets
which give clues to what makes a taskset easily schedulable.
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