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ABSTRACT 

Membrane bioreactors (MBRs) show great promise for productivity improvement and energy 

conservation in conventional bioprocesses for wastewater reclamation. In order to attain high 

productivity in a bioprocess, it is crucial to retain the microorganisms in the bioreactors by 

preventing wash out. This enables recycling of the microorganisms, and is consequently saving 

energy. The main feature of MBRs is their permeable membranes, acting as a limitative interface 

between the medium and the microorganisms. Permeation of nutrients and metabolites through 

the membranes is thus dependent on the membrane characteristics, i.e. porosity, hydrophilicity, 

and polarity. The present thesis introduces membranes for MBRs to be used in a continuous 

feeding process, designed in the form of robust, durable, and semi-hydrophilic films that 

constitute an effective barrier for the microorganisms, while permitting passage of nutrients and 

metabolites. Polyamide 46 (polytetramethylene adipamide), a robust synthetic polymer, holds the 

desired capabilities, with the exception of porosity and hydrophilicity. In order to achieve 

adequate porosity and hydrophilicity, bulk functionalization of polyamide 46 with different 

reagents was performed. These procedures changed the configuration from dense planar to 

spherical, resulting in increased porosity. Hydroxyethylation of the changed membranes increased 

the surface tension from 11.2 to 44.6 mJ/m2. The enhanced hydrophilicity of PA 46 resulted in 

high productivity of biogas formation in a compact MBR, due to diminished biofouling. 

Copolymerization of hydrophilized polyamide 46 with hydroxymethyl 3,4-

ethylenedioxythiophene revealed electroconductivity and hydrophilic properties, adequate for use 

in MBRs. To find either the maximal pH stability or the surface charge of the membranes having 

undergone carboxymethylation, polarity and the isoelectric point (pI) of the treated membranes 

were studied by means of a Zeta analyzer. The hydroxylated PA 46 was finally employed in a 

multilayer membrane bioreactor and compared with hydrophobic polyamide and PVDF 

membranes. The resulting biogas production showed that the hydroxylated PA 46 membrane was, 

after 18 days without regeneration, fully comparable with PVDF membranes. 

 Keywords: Bioreactor, Functionalization, Hydrophilic, Membrane, Polyamide 46, Synthetic 

polymer 
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Nomenclatures 

 

AFM                        Atomic force microscopy 
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CMR                        Catalytic permselective active membrane reactor 
13C-NMR                 Carbon nuclear magnetic resonance 

DMSO                     Dimethyl sulfoxide  

DSC                         Diffraction scanning calorimetry 

ECM                        Electroconductive membrane 

ECP                         Electroconductive polymers 

ESEM                      Environmental scanning electron microscopy 

FT-IR                       Fourier transform infrared spectroscopy 
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 HMEDOT               Hydroxymethyl 3, 4-ethylenedioxythiophene 

 ΔHc                          Enthalpy of crystallization 

ΔHm                          Enthalpy of melting 

LDV                         Laser doppler velocimetry  

MBRs                       Membrane bioreactors     

MF                           Microfiltration 

 NF                           Nanofiltration  

NMR                        Non-permselective membrane reactor 

PBMR                      Packed bed membrane reactor  

PHMEDOT              Polyhydroxy 3, 4-ethylenedioxythiophene 

PVDF                       Polyvinylidene difluoride  

PES                          Polyethersulfone  

PA 46                       Polyamide 46 

PEG                         Polyethylene glycol 

pI                             Isoelectric point  
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 Introduction 
 

Rapid high- yield biological production is the main ambition in industrial bioprocesses today. A 

surge of interest in membrane bioreactors is hence presently opening for new prospects in the 

bioprocess research agenda. The term membrane bioreactor (MBR) refers to versatile bioreactors 

used in bioprocesses to attain rapid production and reduced energy consumption. A membrane 

bioreactor is a biological appliance for carrying out biochemical reactions in the interface 

between the membranes and the living cells.  Membranes consequently play a major role, 

constituting the porous solid barrier between the microorganisms and the nutrients that helps to 

extend the biochemical interaction at the interface, but with minimal impact on the living cells. 

The pores allow nutrient solutions to diffuse and disperse through the membrane, while 

hindering entrapped cells from freely dispersing into the medium. As a result, the surface of the 

membranes develops catalytic activity, either by high affinity toward the nutrients or by forced 

assimilation of the microorganisms 1.  An increased separation aptitude of the membrane 

improves the catalytic reaction. This is achieved through a selective separation by functioning as 

an extractor, or by a selective sorption, functioning as a distributor. This means that in an MBR, 

these two functions can be attained simultaneously, by controlling pore size as well as polarity. 

Thus, selective separation is a screening phase based on particle size, whereas selective sorption 

is a thermodynamic feature of the membrane that is dependent on the polarity of permeates and 

membrane. The ability of extraction or distribution is related to the affinity of the solutes to the 

membrane. This means that membranes displaying high interaction with the solutes are able to 

integrate with water-soluble gradients, while in the case of low interaction, the extraction feature 
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will dominate. In this context, the hydrophilic property of the membrane in a submerged MBR 

aids a uniform continuous feeding of entrapped microorganisms. Moreover, any negative 

charges, like those occurring in cytoplasm membranes  (e.g, yeast), are repelled by the negative 

charges of anionic membranes 2, 3. This is the most advantageous feature of the negative charged 

membranes, since it prevents attachment of microorganism onto the surface of membrane. 

Consequently, the research in this thesis aimed at optimizing the synthesis of functionalized 

membranes in order to acquire a cross-flow operation system, leading to an increased flux rate 

along with reduced biofouling. 

The purpose was thus to design and synthesize a robust and durable membrane to be exploited in 

MBRs. Impact on living cells and their environment is a critical quality aspect of membranes in 

MBRs, and the aim was thus to synthesize polymers that did not have such impact. Selectivity of 

the membranes was another priority, and was tackled by controlling pore size and surface charge. 

Stability at high concentrations of electrolytes, high pH levels, and at elevated temperatures 

during membrane sterilization are other advantages of the synthetic membrane proffered in this 

theses. Furthermore, the greatly reduced biofouling of the membranes, attained by 

hydrophilization and negative charges, resulted in a high flux of nutrients and metabolites. Since 

the synthetic membranes were to be applied in a submerged MBR, capability of welding and 

fixation in a multilayer bioreactor was other parameters taken into consideration. The hypothesis 

proposed that retaining of Saccharomyces cerevisiae and biogas microorganisms would be 

particularly effectively retained in a submerged membrane bioreactor.  As biogas and CO2 are 

being produced during the fermentation or digestion process, an accumulation of gases inevitably 

occurs inside the membranes. In order to prevent the membranes from being fluidized, fixation 

by metallic frames kept them below the medium surface. Chemical resistance, durability, 

reduction of biofouling and bioadhesion, low impact on living cells and on the extent of nutrients 

flowing through the membrane were the main criteria to be met in producing a synthesized 

membrane. 

 

The present thesis comprises five chapters, where chapter 2 describes the background and the 

various conventional MBRs used for batch- and continuous bioprocessing. It furthermore 
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describes the fouling agents occurring on membranes during biological processes, the 

background of filtration, mass transport through the membranes, polarity of membranes, 

biomembranes, synthetic membranes, applications, classification, and methods of preparation 

(papers I-IV). Chapter 3 put forward the possibility of upgrading polyamide 46, by means of 

functionalization, bulk and surface, hydrophilically or hydroelectrically. This chapter also covers 

analytical techniques for assessing the quality of final products, such as surface charges, 

hydrophilicity, presence of functional groups, heat stability, crystallinity, pore morphology, 

porosity, and water flux (papers І-ІV). Chapter 4 describes the effects of feeding flow and 

performance of the synthesized membranes on the process in a compact multi layer membrane 

bioreactor (paper III). Finally, chapter 5 presents conclusions and future work.  
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2 

 

 

 

 Membrane bioreactors  

 

Application of membranes in bioreactors has been prompted into two directions: first, the 

capability of producing high flux and defect-free membranes on a large scale, and second, the 

aptitude of such membranes to function in a compact, high surface area, as well as being 

constructed as economically viable modules. These demands manifest an ambition to select apt 

membrane types to be applied in MBRs, paying specific attention to productivity, separation 

selectivity, shelf life, cost effects, and chemical/mechanical reliability in optimized operating 

systems. Developing new membrane materials in accordance with these parameters is a key 

factor for increasing the degree of application of membranes in a multitude of areas. However, 

for applications in MBRs, acquiring the maximal mass transport through the membrane is the 

main concern. Generally, two main features are expected from MBRs: functioning as selective 

separator (extractor) and as selective absorbent (distributor) 4. Selective separation for screening 

can be achieved by modifying the pore size of the membranes, and sorption capacity is 

completely linked to polarity and surface tension of the membranes 1. Although some types of 

permselective membranes integrate well with a variety of MBRs, this is not true for all of them. 

The general goal when constructing membranes for MBRs is less fouling and a high flow rate of 

effluents. Regardless of the design of the MBR, all membranes used in this type of reactor are 

expected to accomplish a phase separation between the microorganisms and the medium. 

Furthermore, one of the advantages microorganisms being entrapped in an exclusive MBR is 

protection from inhibitors in the feed flow (paper III). The absence of membranes in a reactor 

increases the risk of bioprocess failure when using industrial wastewaters, due to its content of 
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inhibitors and toxic materials.5 The main industrial applications of MBRs comprise aerobic 

wastewater treatment, and few industries utilize anaerobic MBRs for wastewater treatment.5 The 

application of membranes in MBRs therefore mainly concerns pore size distribution and surface 

charge density. Due to its membranes, the separation process in MBRs is improved in terms of 

energy and time consumption in comparison with traditional separation methods (centrifugation 

or sedimentation), making MBRs suitable for water reclamation and desalination in a continuous 

process at large-scale, as the purpose of the process in this case is to eliminate very small 

particles 6. The driving force behind mass transport through membranes is dependent on the 

concentration of solutes on each side of the membrane, and also on the pressure applied by the 

fluids on each side of the membrane. The pressure causes metabolites to leak from the entrapped 

microorganisms into the surrounding medium, which comprises the yield of the MBR. In 

contrast to  conventional high flow rate filtrations using filter-press or centrifuge for separation 

any particles larger than 10 µm in batch-wise separation, MBRs due to micro pores of 

membranes are more competent for continuous feeding operation 7.  

 

Figure 2.1 illustrates the configuration of membranes to be used in reactors, showing 

functionality and position of the membrane 8. Figure 2.1A shows a catalytic non-permselective 

membrane reactor (CNMR). In this scheme, an interface contactor provides the separation, 

selective and steric constraints being placed at the intermediate phases between the membrane 

(solid) and the fluid (liquid) 9. Figure 2.1B represents a catalytic membrane reactor (CMR). In 

this type of MBR, a permselective layer accomplishes the catalytical reactions, either in the form 

of an inherent catalytic coat, or as an active phase attached on an intermediate polymer layer, or 

as an active phase embedded in the membrane matrix10. Figure 2.1C indicates a non-

permselective membrane reactor (NMR) that is passive without any permselective coating. 

Inside the reactor, membranes, reactants, or microorganisms for chemical/biochemical reactions 

are distributed, and the selectivity of the permeates is screened only by means of pore size and 

distribution 11. Figure 2.1D is a packed bed membrane reactor (PBMR), which is an inert 

permselective membrane reactor, in which reactants or catalysts are distributed inside the 

membrane tubes. After systematic reactions, retenates and permeates diffuse through the 
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membrane in different directions 8, 12. This type of membrane is only used in a sidestream MBR 
13. 

 

  

               

 
 Figure 2.1 Configuration of membranes to be used in reactors: (A) Catalytic non-permselective membrane 
reactor (CNMR), (B) Catalytic membrane reactor (CMR), (C) Non-permselective membrane reactor (NMR), 
(D) Packed bed membrane reactor (PBMR).  
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2.1. MBR for wastewater treatment 
 

Commercial membrane bioreactores are developed for municipal wastewater treatment14, and the 

role of the membranes in these bioreactores is to filter and clarify water. Because of a high flow 

rate of the effluent, retaining activated sludge might help saving energy as well as stabilizing the 

biological process. The design of the platform of MBRs is based on the type of effluent. Dorr-

Oliver introduced the first commercial MBRs for wastewater treatment in the late 1960s 15. 

Further work was published by Bemberis et al. in 1971, who used an ultra-filtration (UF) 

membrane for filtering ship-board sewage 15. Figure 2.2 shows conventional MBRs for waste 

water treatment in the form of sidestream and submerged MBRs 14. In the sidestream platform 

(Figure 2.2A), the membrane module is located outside the reactor as a discrete unit, and the feed 

flow is being recycled between two units; the concentration of permeate is then gradually 

increasing. In contrast, in a submerged MBR, modules are immersed in the medium, leaving the 

surface module in contact with effluent. Apparently, the microorganisms are in both designs 

freely fluidized inside the bioreactors, whereupon the membranes are bringing about the 

separation. It should be noticed that permeates contain either metabolites or feed components. 

These two methods are suitable for wastewater treatment, where the final metabolites are gases 

(CH4 or CO2) rather than liquids. This motivates research aiming at developing an MBR design 

for fermentation processes of liquids, such as ethanol fermentation. 

 

One advantage of the sidestream MBR is that it is easy to clean prior to membrane regeneration 
16. This type of MBR is appropriate for large dimension bioreactors with a high flow rate 

effluent, but has a drawback in that it produces low yield. Challenging the sidestream MBR, the 

submerged design produces higher yield due to the membrane having a much larger surface in 

contact with the sewage. This design also lowers the energy consumption (energy being 

conveyed to the medium) due to a positive pressure of the medium on the surface of  the 

membrane (figure 2.2B). Complicated cleaning and regenerating processes along with 

operational costs are major disadvantages of this  type of MBR 17. 
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Figure 2.2 Schemes of an anaerobic bioprocess in two types of MBRs: a sidestream membrane bioreactor 
(A), a submerged membrane bioreactor (B). 
  

The choice of membrane in the MBR designs is founded on flow rate, size of microorganisms, 

chemical constitution of feed flow, temperature of reactor, and environment. In specific, the 

membranes introduced have comprised organic, inorganic, and hybrids of organic/inorganic 

structures 1. Membranes to be used in MBRs and other types of bioreactors are selected in 

accordance with the corresponding kinetics of their production, the shelf life of the membrane 

constitution, their separation selectivity (which is based on the size of particles), and their 

chemical/mechanical reliability at operational terms, along with capital costs. Applying new 

membrane materials is however the key for developing MBRs having catalytic properties 1. The 

main advantages of MBRs are: high performance, high flow rate of effluents, selectivity in the 

final products, high flow shocking of the microorganisms is prevented by sufficient adaptation 

time, as the bioprocess is being retained, which also leads to stability, which is needed in 

continuous operations 12. According to the literature, the main motivation for changing the 

traditional design of MBRs is to enhance the separation performance or to diminish membrane 

fouling 18. Fouling of the membranes is one of the problems affecting the commercialization of 

the MBR technology 12. Two other factors concerning the performance of the membranes are: (i) 

the mechanical reliability during cleaning and (ii) stability against chemicals during operation. 
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The purpose of applying MBRs in bioprocesses is the degradation of residues, or their separation 

from the downstream formed by the chemical or biological process, in a commercial and feasible 

process. Since the downstream separation process is expensive because of the high dilution, or is 

not practicable in some cases, the only alternative in order to defeat the problems involved in 

industrial implementation, is high yield biocatalytical degradation 19.  Continuous bioprocesses 

in MBRs hold some advantages in comparison with batch bioprocesses. They are capable of 

performing at low concentrations of feed, and display tolerance toward inhibitors if they are 

mixed with the culture medium, due to their low concentrations. They also show a low capital 

cost.20 Retaining viable microorganisms is also a main purpose for using MBRs; for prevention 

of physicochemical shocks, microorganisms need time to adapt 21, 22. 

 

2.2. MBR for ethanol and biogas production 

 

Bioethanol and biogas (methane) are the two main biofuels, which can substitute fossil fuels 

today. Industrial production of these two fuels can reduce demands for fossil fuels in an ideal 

situation. Since biofuels can be obtained from biomass such as municipal feedstocks or forest 

industries, development of a large-scale production line is a promising project in terms of 

fulfilling future needs of fuel, rendering it great importance. The main criteria for biological 

production of ethanol and methane are consequently low costs and high yield of final product. In 

anaerobic digestion, the amount of methane and carbon dioxide produced is reliant on the degree 

of interaction between digestion cells and organic matters. The digestion process comprises four 

steps: hydrolysis, acidogenesis, acetogenesis, and methanogenesis 5. The last step, 

methanogenesis, is a very sensitive step in the digestion process; methanobacters grow very 

slowly, and are very sensitive to inhibitors, pH- and temperature changes. MBRs have shown to 

be adequate reactors for the digestion process since wash out is stopped, and the long retention 

times prevent stockpile of inhibitors 23. Ethanol is mostly produced by fermentation of starch and 

various sugars. Lignocellulose hydrolysate is another option to be used as feedstock for 

fermentation by microorganisms 24, but requires a complete hydrolization into fermentable 

sugars prior to fermentation. During this process, toxic components with inhibitory properties are 
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released into the medium. This can be overcome by applying various strategies, e.g. increasing 

the density of cells 25, utilizing MBRs 26, and detoxification 27. 

 

2.3. Membrane fouling in bioreactors 

 

Membrane fouling is defined as unwanted deposition and accretion of microorganisms, colloids, 

solutes, and cell debris inside the membrane pores 28. Because of physical interaction between 

the suspended living microorganisms and the membrane components, their linkage becomes 

reversible. This type of complex, formed after adsorption onto the membrane surface, reduces 

the water fluxes 29. Fouling increases the energy consumption resulting in high operational costs 
18. Three factors have an impact on the accumulation of living cells on the membrane surface: (i) 

membrane and module features, (ii) feed constitution, and (iii) operation conditions. When an 

operating flux turns into a subcritical flux, particles accumulate inside the pores, which with time 

dramatically reduce the operating feed flows in cross-flow filtration. Furthermore, the biological 

debris sediments and compiles over the membrane surface, diminishing the permeate flow. The 

latter problem not only leads to a reduced flow rate of permeates, but also increases the 

consumption of energy needed for the permeate transfer across the membrane.  

 

Fouling rate has been proven to be inversely proportional to particle velocity 30. Settling velocity 

(s) is inversely proportional to shear rate, and is regarded as a function of the particle Raynolds 

number, using the rules of Stocke and Drag 31. Consequently, high velocity of gradients causes 

viscosity reduction due to higher shear rate, which results in higher dispersion of biofilm over the 

membrane surface. Moreover, because of physicochemical properties of the solute and the 

membrane constitutions, the membrane flux will diminish over time, even when critical flux 

conditions are exceeded 2. This phenomenon is substantially dependent on the charges on the 

membrane surface, and on the interaction between colloidal particles and the membrane surface 

in an aqueous medium 32-34. 

 

Physical cleaning, such as air/permeate backwashing and sonicating, are the methods used to 

remove biofouling. Chemical methods are introduced for any membranes that are resistance 
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toward chemical reagents. This method inhibits to degrade biofouling using oxidation/reduction 

for further operation. Finally, an estimation of the deposition rate of biofilm spreading over the 

membrane surface must take several parameters into account, such as thermodynamic properties, 

the concentration of culture medium, a physicochemical characterization of the cell debris, and a 

characterization of the membrane surface. 

 

2.4. Diffusivity and permeability of membranes 

 
 
Membranes are permeable sheets, and show great diversity in chemical structure and pore size. 

Membranes are used to separate, purify, and concentrate liquids and gases, consuming minimal 

amounts of energy. The first study on membranes and osmotic pressure was reported by Nollet in 

1748, and concerned extraction of ethanol from other impurities, using porcine urinary bladder. 

He observed a relationship between osmotic pressure and flux rate in a natural semipermeable 

membrane 6. Later, Graham (1833) conducted systematic research on mass transport through 

membranes 6. 

 

Membranes, being physical barriers, are able to sift by three mechanisms; dead-end filtration, 

cross-flow filtration, and hybrid flow filtration. Dead-end filtration is the most common filtration 

mechanism in batch operations (Figure 3.1A). Since feed flow and permeate are unilateral 

currents, accumulation of filtered matters on the surface of the membrane quickly leads to 

clogging of the pores. To improve/enhance the flux, it is crucial to apply stages of membrane 

cleaning in each batch. 

 

Cross-flow filtration is an improved method, as it decreases fouling as well as increases flux rate 

(Figure 3.1B). This is a suitable alternative method to dead-end filtration when continuous 

filtration with lower fouling is required. A nearly uniform spreading of the filtered matters over 

the surface of the membrane prolongs the filtration capacity. To acquire an increased flux rate, 

the surface area of the membrane as well as the feed flow need to be increased. A higher flow 
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rate of feed creates a turbulent flow in a tubular system, and will prevent accumulation of filtered 

matters on the surface of the membrane.  

 

The hybrid flow filtration is a combination of the dead-end and the cross-flow filtrations (Figure 

2.3C). A countercurrent feed flow in a closed system is the driving force behind transversal 

diffusion of permeates, although the consequence of the collision of two feed streams will be an 

aligned flow of permeates. This method qualifies for the separation of suspended particles in a 

low concentration feed, particularly in a water treatment process. 

 

 

Figure 2.3 Diffusion of permeates through a membrane: (A) dead-end filtration, (B) cross-flow filtration, and 
(C) hybrid-flow filtration. 

 

Polar membranes are able to promote the flux rate of polar permeates 6. Non-polar membranes 

cannot actively bind to the solutes as they have no affinity to them, and consequently, a 

transverse diffusion is directly dependent on pore size and water flux. Diffusion through polar 

hydrophilic membranes is not entirely correlated to pore size; affinity of the solutes to the 

membrane, followed by polarity and the concentration of permeates on both sides of the 

membrane (the osmotic pressure) are also decisive factors. Diffusion of permeates continues 

until equilibrium is reached, i.e. the concentrations are equal on both sides of the membrane 35.  

 

The flux rate in a non-polar membrane depends on the viscosity gradient (η), membrane pore 

tortuosity (τ), pressure gradient (p), and thickness of the membrane (z), as Hagen–Poiseuille 

formulated for a membrane containing parallel cylindrical pores 6. 

         



 
 

13 
 

ܬ  = ε	௥మ௱௉
଼ఎఛ௱௓

                                                        (2.1)                                             
 
                              
 where,  
 

J is the flux (L/m2h) 

ε is surface porosity of the membrane 

r is the pore radius in the membrane (m) 

η is the viscosity gradient (N.s/m2) 

ΔP is the difference in pressure gradient across the membrane (N/m2) 

τ is the ratio of pore length to the distance between the ends (thickness of membrane), which may 

be ≥1 

ΔZ is the membrane thickness (m) (distance between the ends) 

 

The flux rate of packed sphere membranes is calculated by using the Carman-Kozeny equation36: 

 

ܬ = ఌ೘			య௥మ∆௉
௄ఎ∆௓೘	ௌ೘			మ(ଵିఌ೘)మ

                                            (2.2)                                   
 
 
 
where,  

 

J is the flux rate (L/m2hr)  

Sm is the internal surface area of the pore/unit volume (1/m)  

ΔP is the pressure difference (N/m2)  

K is the Carman-Kozeny constant  

ΔZm is the membrane thickness (m) 

η is the viscosity of the liquid (N.s/m2)  

εm is the surface porosity 

The flux rate of the constituents through a polar membrane is not only dependent on the 

parameters mentioned above, but the chemical nature and electrochemical potentials of the 
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permeates are also decisive factors in the mass transport rate.6 This means that the flux rate may 

be facilitated by permeate and membrane having opposite electrochemical potentials, while 

having the same electrical charges will impede the flow 34. 

 

 Membranes can be either biological (natural) or synthetic, and they differ completely in terms of 

structure, functionality, and diffusivity. Biological membranes are e.g. the outer layer of living 

cells, while synthetic membranes are hand-made films, easy to manufacture. Using biological 

membranes as smart devices entail an inherent complexity, due to their specific task of 

transportation in and between living cells; and selective sorption and desorption, which facilitate 

transport over biological membranes always consume energy. A vital role of the cell membrane 

for metabolism in some microorganisms has furthermore been proven 37. Biological membranes 

contain a bilayer of anionic phospholipids, where integral proteins are embedded. Water-soluble 

molecules can only diffuse through the cell membrane via the integral proteins, and fat-soluble 

molecules penetrate through the membrane via the bilayer of phospholipids. Sensitivity to 

elevated temperatures and pH-values, weakness pertaining to cleanup, susceptibility to microbial 

degradation due to their natural origin, are disadvantages limiting the operational use of 

biomembranes. In contrast, synthetic membranes are not as complex as biomembranes, and their 

functionality and properties can be manipulated by chemical reactions in order to achieve desired 

features. Accordingly, the work of the present thesis focused on the application of synthetic 

membranes in MBRs, where the use of synthetic membranes is technically achievable. 

 

2.5. Synthetic membranes  

 

Solid synthetic membranes refer to selective barriers, and the membrane constitution is prepared 

by using synthetic polymers for microfiltration (MF), ultrafiltration (UF), or nanofiltration (NF) 

purposes 38. An imperative role of membranes as separation barriers is undeniable when striving 

to manufacture high purity products in the food and pharmaceutical industries, or produce 

potable water from seawater, eliminating industrial effluents and toxic components, and similarly 
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to recover valuable ingredients, separate gases from undesired residues, and of course for blood 

dialysis. The separation occurs by physical means at ambient temperature, without the 

ingredients undergoing chemical change, which is an imperative feature for biomass extraction, 

which is sensitive to elevated temperatures. Figure 2.3 demonstrates the classification of the 

synthesized membranes into homogenous or heterogeneous, symmetric (figure 2.4A) or 

asymmetric (figure 2.4B), neutral, positive, negative, or bipolar charges, based on constituents, 

morphology, pore geometry, and the charge distribution 39.          

 
 Figure 2.3 Geometry of packed sphere membranes: (A) symmetric (isotropic) membrane, (B) asymmetric 
(anisotropic) membrane. 

 

 

Synthetic membranes are furthermore subdivided into organic (polymeric) and inorganic 

(ceramic, glass, metal) membranes. The operational temperature for organic membranes is 100-

300 °C, while for inorganic membranes it is over 250 °C. Inorganic membranes are resistant to 

chemicals (oxidative and reductive), and display robustness in a wide range of pH-values (acids 

and bases).  
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 Figure 2.4 Classification of solid synthetic membranes, based on constituents, morphology, pore 
geometry, and charges.  
 

Homogeneity of a membrane is pertaining to its constitution, which means that polymeric 

membranes composed of a single component are completely uniform, whereas membranes 

composed of more than one component lead to heterogeneity. Homogenous (isotropic) 

membranes may be macroporous, microporous, or nanoporous, being homogeneous in terms of 

pore size, while heterogeneous (Anisotropic) membranes are heterogeneous in terms of varying 

pore size, layer by layer. Mineral and composite membranes like glass, zeolite, metal, and 

ceramic, are some examples of anisotropic membranes 7. Studying pore geometry may aid the 

prediction of transport and filtration rates through the different membranes. High flux rates are 

for cost-effective reasons desired in anisotropic membranes. In order to maintain reasonable 

mechanical properties for conventional purposes, and to avoid defects, the optimal thickness of 

anisotropic membranes is limited to about 20 µm 7.  

 

Membranes with symmetric structure have maximal homogeneity in terms of porosity and 

composition. Unlike the casting solution method, the melt casting method always yield a 

symmetric configuration of the membrane, due to the cooling process being simultaneous and 

consistent, whereas the solution casting technique most often results in an asymmetric 

membrane. This probably relates to different rates of solvent evaporation at the air-solution and 
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cast-solution interfaces. Since the rate of solvent evaporation close to the air interface is much 

faster, the pore size at the air interface is larger than at the cast interface. Therefore, pore size 

may be varied in the different layers of nonporous, microporous, and macroporous membranes38. 

Figure 2.5 illustrates reverse osmosis (nanofiltration), ultrafiltration, microfiltration, and 

macrofiltration using different average pore diameters in standard membranes 7. 

                   

 
Figure 2.5 Mean values of pore diameters used for standard filtration in reverse osmosis (nanofiltration), 
ultrafiltration, microfiltration, and macrofiltration. 
 

The electrical charge of the membranes is decided by the type of charge of the free functional 

groups on their own molecules. Anionic functional groups, such as carboxylate, sulfate or 

sulfonate groups that are positioned at the side or terminally, exhibit negative charges toward the 

cations in the surrounding liquid, and are labeled cation-exchange membranes, whereas free 

cationic functional groups, such as quaternary ammonium, leads to the membrane being 

positively charged, and these are called anion-exchange membranes. This membrane type is also 

used in electrodialysis, in order to separate negative and positive electrodes. Separation by means 

of charge is obtained by exclusion of the same charge, as the ions bind to the membrane, and this 

is more effective than separation based on pore size. Membranes lacking functional groups will 

obviously be neutral. In bipolar cell membranes, negative charges are situated at the two surfaces 

(inside/outside) of the membrane, while positive charges are oriented toward the middle layer of 

the membrane38. 

 



 
 

18 
 

 Nonporous membranes consist of a compact polymeric film, through which solutes are diffused 

under osmotic pressure or through the electrically charged gradients, caused by different 

permeate concentrations at the two surfaces of the membrane. 

 

 

 

High cross-flow rate MF and UF membranes are not always made completely hydrophilic for 

commercial applications, since increased hydrophilicity reduces mechanical properties14. 

Absolutely hydrophobic polymers, such as polyethylene (PE), polypropylene (PP), 

polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF), polyethersulfone (PES), 

polyacrylonitrile (PAN), and the polyamide (PA) family, are also not desirable 14, because of low 

water cross-flow and considerable fouling properties. Hydrophilic functionalization (surface or 

bulk), post-treatment, or blending with a hydrophilic polymer would enhance the hydrophilic 

property in such polymers, resulting in semi-hydrophilic membranes, which are well suited for 

employment in MBRs 14.  

  

Classification of membrane properties is based on membrane nature, geometry, and means of 

separation. Membranes for commercial applications should have a reasonable price tag, and 

robustness and flexibility must be adequate, preventing rupture and attenuation. Resistance 

toward hydrolization of the chemical bonds in the polymeric backbone is another major criterion 

for use in submerged bioreactors. High polarity of the electrolytes in the medium at moderately 

elevated temperatures easily causes the polymeric backbone to rupture. Hence, the membranes 

need to be chemically inert at moderate conditions. However, tolerance toward a wide range of 

pH-values is advantageous for acid/alkaline cleanup of the bioreactor. PS, PES, and PVDF have 

shown to be the most robust polymers, chemically as well as mechanically, holding mid-range 

prices. Limited solubility in common solvents, along with resistance to chemical modification 

are the main advantages of these polymers when applied in MBRs 14. Blending with hydrophilic 

polymers such as polyethylene glycol (PEG) or polyvinylpyrrolidone 39 or wet spinning 

techniques is recommended 40,41. However, PVDF has demonstrated obstinacy against 

hydrophilic modification, and combining the polymers with hydrophilic additives might lead to 
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weakening of the structure 42. Thus, the wet spinning technique is recommended for constructing 

a PVDF membrane 40. Polymers with a high degree of crystallinity are not fitted for use in 

MBRs, but hydrophilization or post-treatment can reduce the degree of crystallinity, and might 

thus be advised for such polymers when used for membrane applications.  

 

The majority of the PVDF membranes have a relatively hydrophobic structure, resulting in their 

characteristics being very close to unmodified polymers 14. In addition, minimal biofouling as 

undesirable deposition achieves when surface of membranes are completely hydrophobic 43, 44. 

Biofouling, resulting from a deposit of biomass on the membrane surface, blocks the membrane 

pores, and may as a consequence dramatically reduce the yield in MBRs. A hydrophilic 

treatment of the membranes prevents however fouling, resulting in an increased flux rate. 

Stability against mild-elevated temperatures is another desirable feature of polymeric membranes 

to be used in MBRs. Pendant groups are easily released from the backbone of polymers at high 

temperatures (paper І), but cross-linking or cross polymerization can moderate this instability 

(paper ІІ).  

 

2.6. Methods of membrane fabrication 

 

The characteristics of each membrane depend on the method of preparation. There are two 

aspects to consider in order to successfully manufacture high performance membranes aimed for 

specific applications: selection of appropriate materials and the method of fabrication. Selection 

of materials must be founded on their physicochemical properties. Although techniques for 

preparing membranes are abundant, the common main methods are recommended, i.e. solution 

casting, expanded film, track-etching, template leaching, phase separation, interfacial 

polymerization, solution coating of composite, and plasma polymerization. 
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2.6.1. Solution Casting 

 

The solution casting method is one of the easiest techniques for lab-scale membrane fabrication. 

A polymer solution is spread onto a flat glass mold, using a stainless steel casting knife to 

disperse the highly viscous solution uniformly, simultaneously preventing the solution from 

running off the edge of the mold. Allow the solvent to evaporate from the polymer solution, 

leaving behind an even, flat membrane film.7 Ideal solvents are moderately volatile. Highly 

volatile solvents result in fragility and a mottled surface, whereas a high boiling point causes 

absorption of the atmospheric moisture, whereupon the polymer precipitates, forming a hazy and 

dense surface. After drying the membrane completely, the cast is immersed in water in order to 

separate it from the cast. If polymers are semi-permeable, adding leachable components is not 

necessary; if not, adding porosity-inducing agents is inevitable. 

  

The membrane preparations in the work of this thesis were based on the solution-casting method. 

In this method, 1 g of functionalized polymer was dissolved in 10 mL formic acid and then 

poured into a glass plate with the area 56.7 cm2. After the solvent had evaporated at room 

temperature, the membrane was immersed into tap water in order to separate it from the glass 

mold. Membranes were dried in an oven at 50 ± 5 °C (papers I-IV). 

 

2.6.2. Expanded film 

 

Some polymers that do not completely dissolve in common solvents at room temperature are 

better suited for forming expanded film membranes. Polyethylene (PE), polytetrafluoroethylene 

(PTFE), and polypropylene (PP) are nearly insoluble polymers, and thus, solution casting is not a 

proper method for making membranes from these polymers. Annealing (heating followed by 

slow cooling) is performed in order to align the orientation of the crystallite part of the semi-

crystalline polymer. After a second annealing, the film is heated and stretched up to 3 times. 

During the second time, the elongation of the amorphous region results in pores forming between 

the crystallite parts.  Pore size can be controlled by the amount of film being stretched. The 

polytetrafluoroethylene (Teflon) membrane produced with this method is known as Gore-Tex 45.  
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2.6.3. Track-etching 

 

The General Electric Company first introduced the track-etch method for manufacturing 

membranes in the Schenectady Laboratory 7. In this method a thin polymer film is exposed to 

high-energy particles, acquired by fission, emitted from a nuclear reactor. They are able to pass 

through the polymeric film, and are creating a sensitized track due to formation of radicals along 

their passageway. The tracks are very susceptible to chemicals in comparison with the untracked 

matrix. The polymer film is subsequently immersed in a solution in order to prompt a reaction 

with the radicals along the tracks. The chemical composition of this solution is founded on the 

type of polymer film in question. Pore distribution and pore size depend on the time of exposure 

to the high-energy particles. The pores will all acquire a uniformly cylindrical shape, with a fixed 

diameter 7. 

 

2.6.4. Template leaching 

 

Another process for the production of isotropic membranes is template leaching. This method 

has been introduced for low solubility polymers, such as PE, PP, and PTFE.  A mixture of these 

polymers and leachable components is melted and extruded in the form of a shapeless paste. The 

paste is then shaped by means of a cast, forming flat membranes, or by using a nozzle to form 

tubular, hollow fiber membranes. The films or the hollow fibers is subsequently immersed into 

suitable solvents in order to release leachable components, thereby creating pores 46, 47. The pore 

size can be regulated by means of the molecular size of the leachable components. 

2.6.5. Phase separation 

 In short, this method is very similar to the solution casting, but is utilizing less volatile solvents. 

The solvents leave the polymer solution after immersing in a non-solvent bath, such as water, 

results in a phase separation, and the precipitated polymer in form of a film 7. Since the interface 
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of the membrane solution is a non-solvent liquid, the rate of solvent extraction differs from layer 

to layer, leading to the final product having different pore sizes from layer to layer. This results 

in the membrane morphology being anisotropic, similarly to when using the solution casting 

method. This method first time is introduced by Loeb-Sourirajan for making high flux, defect-

free reverse osmosis membrane from polysulphone 7. 

2.6.6. Interfacial polymerization 

John Cadotte48 was the first to introduce interfacial polymerization as a method for 

manufacturing anisotropic membranes. The method is utilized in order to obtain membranes for 

reverse osmosis (R.O.), and improves salt rejection and water fluxes in comparison with 

membranes prepared with the Loeb-Sourirajan technique. Nearly all membranes for reverse 

osmosis are now made by this method. The membranes introduced by Cadotte were based on 

polyethyleneimine, cross-linked with toluene 2, 4-diisocynate 48. A water soluble diamine is 

soaked in a microporous matrix, such as polysulfone, followed by impregnation with a divalent 

cross-linker (diacid chloride) in a water-immiscible solvent, e.g. hexane, in order to instigate 

cross-polymerization between the amine loaded inside the pores and the pore walls. The 

polycondensation between the amine and the diacid chloride starts at the interface of the two 

solutions (water-hexane), and a polyamide is obtained, filling the pores. The pore size of the 

polysulfone matrix is thereby reduced and thus adequate for nanofiltration (NF) as well as for 

reverse osmosis (R.O.). 

 

2.6.7. Solution-coated composite 

 

Anisotropic membrane composites are made through solution-coating of a thin selective layer of 

an appropriate microporous matrix. This type of membrane was first introduced by Ward et al.49, 

and is used for forming narrow pieces of water-casted composite membranes. The solution, 

comprising a mixture of polymer and additives, is poured onto the water between two Teflon 

rods in a water cast. The rods then move over the water surface, thereby dispersing the solution 
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over the water surface. The solvent vanishes from the polymer solution into the water, and a 

fragile, ultrathin microporous composite membrane forms over the water surface 49. 

 

2.6.8. Plasma polymerization membrane 

 

Plasma polymerization refers to the synthesis of polymers from monomers, and is carried out 

under non-thermal conditions, using ionized gases, with polymerization occurring in an electric 

field 50 (Figure 2.6). Plasma polymerization onto the surface of films is usually performed for 

processes of hydrophilization 51, electroconductivation (paper ІІ), or selectivation 52 of 

membranes. In order to generate plasma polymerization, radicals of monomers are created on the 

surface of membranes by using radio frequencies (RF) at 2-50 MHz 53. Argon or Helium gas at a 

pressure of 50-100 mTorr is normally used for inert plasma polymerization, whereas oxidative 

plasma polymerization usually is carried out in the presence of air or oxygen (paper ІІ). In order 

to accomplish a fully completed reaction, conditions are sustained for 1-10 min in the presence 

of monomers. Surface grafted polymerization is performed by ionic or radical polymerizations. 

The monomer susceptibility to plasma polymerization is unpredictable. For instance, acrylic and 

vinyl monomers polymerize slowly, while uncommon monomers (in this context), such as 

hexane and benzene, polymerize quickly. The molecular weight of a polymer is dependent on the 

concentration of monomers, the power or voltage utilized for discharging the atmosphere from 

the plasma chamber, and the temperature of the substrate. The resulting membranes are 

frequently obtained as tremendously thin and uniform shells.  

 
                       

 Figure 2.6 Schematic diagram of a plasma reactor containing a vacuum pump (A), power supply (B), RF 
coil (C), and a glass vessel (D).  
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3 
 

 Functionalization of polymers for MBRs 

 

Polymer functionalization, or post-polymerization modification, represents a valuable means to 

switch to constitutions, configurations, and properties of the polymers that are not easily 

accessible by means of direct polymerization of monomers 54. The strategy involves donation of 

functional groups to the polymer, when functionalization is not attainable via direct 

polymerization 55. The obtained polymers are analogues of the initial polymers, but with new 

features. The history of functionalization of natural polymers dates back to the early 1840, when 

Hancok and Ludersdorf independently of each other vulcanized natural rubber with sulfur 55. 

Shönbein synthesized nitro and acetate esters of cellulose in 1847, followed by Schützenberger 

in 1867. Modification of polymers was in the late 19th and the early 20th centuries limited to 

natural polymers. Polymer functionalization methods switched to synthetic polymers in the 

middle of the 20th century, using chlorine gas and polystyrene-divinylbenzene 55. Besides 

functional groups acquired through substitution, the final products display a changed surface 

tension. For application in MBRs, functionalization methods embrace two approaches: bulk and 

surface functionalization, both through either physical deposition (adsorption) or chemical 

modification. Reversible polymer coating with biomimetic components, without changing the 

structure of the polymer matrix, is an example of physical modification, whereas chemical 

modification entails covalent binding of the reagent with active sites on the polymeric backbone, 

and hence, chemical functionalization of polymers only takes place when the thermodynamic 

parameters allow it. Functionalized polymers to be used in MBRs should thus be hydrophilized 

through chemical treatment.  Commercial UF and MF membranes for application in MBRs 

include polytetrafluoroethylene (PTFE)56, polysulfone (PS)/polyethersulfone (PES)57, 
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polyacrylonitrile (PAN), and polyvinylidene difluoride (PVDF) 58. Since all these polymers 

constitute a hydrophobic surface on the membrane, they should be hydrophilized prior to using 

them in MBRs.   

 

3.1. Bulk functionalization  

 

Bulk functionalization of polymers means modification of polymers in a continuous phase, 

comprising polymer, reagent, and solvent. All components are dissolved in a common solvent, 

and will appear as a homogenous and continuous phase 59. After the reaction is completed, the 

phase inversion method is used to separate the final product (papers І-ІV). By this method, inert 

non-solvents are able to extract impurities and side products, without any chemical effects on the 

final product. Added functional groups always provide new features to the polymer, and the 

characteristics of the final modified polymer might end up being a combination of those of the 

original and the modified polymer, and is dependent on the substitution percentage. Even after 

processing or reusing, these features persist in the modified polymer, due to covalent bonds 

between the functional groups and the polymer backbone. Stability of functional groups depends 

on inherent properties of functional groups as well as on the features of the surrounding phase, 

and enhances by hindering of functional groups from solvolysis. 

 

Chemical bulk modification of polymers can be accomplished either by copolymerization 

(extension of molecular length of the polymer via block or graft polymerization) or by 

functionalization (substitution, using small molecules). Short chains functional groups showed 

lower stability than those on long chains (papers ІІ, ІV), but the employment of a proper linker 

would be an appropriate strategy for protecting the functional groups on short chains against 

solvolysis or ageing (paper ІV). Unpredictable physicochemical features (like pore size and 

hydrophilicity) of the obtained copolymers after block copolymerization are undesirable, and the 

present work therefore focused on functionalization methods for the entrapment of 

microorganisms in bioreactors. 
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3.1. 1. Synthesis of poly(tetramethylene-N-hydroxyethyl adipamide) 

 

Hydrophilized synthetic polymers are limited to surface hydrophilized, copolymerized or 

blended with some hydrophilic polymers such as PVP or PEG, but none of those products meet 

all requirements such as durability, sustainability, semi-hydrophilicity, robustness, solubility in 

volatile solvents for solution casting process to manufacture membranes with various thickness 

(≥ 1 µm). Furthermore, homogeneity in pore size distribution, which is dependent on the 

sequence of OH-groups on the polymer chain, is required in order to fit all types of MBRs. 

Moreover, the hydrophilic synthetic polymers on the market, such as polyvinyl alcohol (PVAOH), 

polyvinyl pyrolidone (PVP), and polyethylene glycol (PEG), posses no mechanical capacity due 

to a high ratio of OH-groups to CH2s in the polymeric backbone. Lacking mechanical properties 

these types of polymers (hydrogels) do not qualify for use in MBRs.  A higher ratio of amide to 

methylene groups made Polyamide 46 the best choice for substitution of OH-groups since the 

resulting ratio of OH-groups to methylene groups followed suit (as OH-groups bind to amide 

groups). However, gaps of 4-6 carbons between the OH-groups allow for creation of a flexible, 

robust, hydrophilic membrane. Studies on other hydrophilizing agents revealed that in some 

cases, membranes displayed inadequate mechanical traits, forming for instance a sticky paste 

(when using formaldehyde), while in other cases the membranes showed low water permeability 

because of larger aldehydes being used, e.g. propyl aldehyde and butyl aldehyde 59. Among the 

other hydrophilizers, acetaldehyde showed the best results in terms of producing membranes to 

be used in MBRs, with satisfactory mechanical and hydrophilic aptitude. 

 

 Step-growth polymerization of diamine with diacids results in a polyamide 60. Polyamide 46 

(Stanly TW300, Mn ~ 24 000 g/mol) is registered as having the highest degree of crystallinity 

(~70%) among the aliphatic polyamides 61. Durability, flexibility, no impact on living cells and 

the environment, high mechanical property and resistance to harsh environment created 

motivation to focus on polyamide 46 as the best choice in the present project. However, high 

crystallinity leads to limited solubility in common solvents and lower chemical reactivity 55. PA 

46 is no exception from this rule, with solubility in solvents limited to one or two solvents. As 
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previously mentioned, the main criterion for bulk modification of a polymer is complete 

solubility in a proper solvent as a continuous phase. All reactions in this study were consequently 

accomplished in a mixture of formic acid and dimethyl sulfoxide (DMSO), i.e. a binary solvent 

system. DMSO was in this study used as a co-solvent in order to accomplish a complete 

dissolution of PA 46 in formic acid, as a continuous phase. When completely dissolved, PA 46 

was ready for a nucleophilic attack by acetaldehyde (paper Ι), or a nucleophilic substitution, 

using monochloroacetic acid, followed by cross-linking with tartaric acid, and subsequent 

PEGylation (paper ΙΙΙ). 

 

Among the various polymers, polyamides show less reactivity due to the amide being a less 

reactive functional group. Oxidizability is the weaknesses of polyamides, more or less limiting 

the modifying reactions to surface modification 62 or copolymerization 63. Polyamide 46 (Figure 

3.1), or poly(tetramethylene adipamide), one of the polymers with highest crystallinity, was 

chosen for hydrophilization. The ratio of methylene to amide fractions in PA 46 is the lowest 

(8:2) among the polyamides 61. This causes a high degree of intermolecular hydrogen bonds, 

which results in higher crystallinity in the form of a monoclinic crystal lattice.  This indicates 

minimal solubility of polyamide 46, and a resistance to dissolve in common solvents, for bulk 

modification. Polyamides in an amorphous phase are, due to higher reactivability, capable of 

undergoing modification 63, and finding a proper solvent for dissolving either amorphous or 

crystalline phases was thus crucial (paper I). Formic acid was tested as solvent for polyamide 46, 

but solubility was only limited to the amorphous phase, the reason being that the liquefied PA 46 

is restricted to the opaque dispersion in formic acid. In order to complete the polyamide 

dissolution as a continuous phase for bulk modification, dimethylsulfoxide (DMSO) was added, 

since it is able to either split inter-hydrogen bonds between the polymer chain or quench the 

amidic hydrogens 64. After this procedure, the reaction is able to continue in the presence of 

acetaldehyde (paper І). Therefore, a mixture of formic acid and DMSO is an appropriate solvent 

for bulk modification of PA46.  
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Figure 3.1 Chemical structure of polytetramethylene adipamide (polyamide 46). 

In order to substitute the amidic hydrogen with a hydrophilic group, acetaldehyde was protonated 

in formic acid, forming a carbocation that attacked the amidic nitrogen. This resulted in a 

95.65% yield of alcohol functional groups (paper I). In contrast to other aldehydes 59, addition of 

acetaldehyde to polyamide 46 resulted in semi-hydrophilic capability. Larger aldehydes (e.g. 

propanal) led to lower hydrophilicity, and the smaller aldehyde (i.e. formaldehyde) formed a 

pasty hydrophilic polymer 59. Figure 3.2, illustrating a simulation of the obtained functional 

polymer, demonstrate that the pendant hydrophilic groups force the polymer chain to bend, 

forming a nodular aggregation (paper I, II,IV). Studies on monodispersed hydrophilic polymers 

have disclosed that presence of pendant carboxyl and hydroxyl groups causes deformations on 

the spherical aggregations65, which have been observed commonly in hydrophilic biopolymers66.  

 

 

Figure 3.2 A 3-D simulation of a dimer of poly(tetramethylene-N-hydroxyethyl adipamide). Pendant 
hydroxyethyl groups force the polymer backbone to bend.  
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ESEM and AFM micrographs have also confirmed this phenomenon (Figures 3.3, 3.4); a 

nonporous, high crystalline, dense polymer was transformed into porous, lower crystalline, non-

dense membranes.  

                                     

Figure 3.3 ESEM micrograph of the nodular structure of a poly (tetramethylene-N-hydroxyethyl adipamide) 
membrane. 

                                   

Figure 3.4 AFM micrograph of the nodular structure of a poly (tetramethylene-N-hydroxyethyl adipamide) 
membrane. 
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3.1.2. Synthesis of carboxymethyl polyamide 46  

 

Carboxymethylation is one of the carboxylation methods used to introduce –CH2COOH 67. 

Carboxymethylation has been performed, using monochloroacetic or monobromoacetic acid as 

carboxymethylating reagents 68. Depending on the desired chemical functionality of the 

polymers, processing methods aimed at developing functional characteristics might be needed 

prior to the carboxymethylation process. For instance, substitution of any functional groups 

along the polymer chain requires the presence of free hydroxyl or amine groups 69. Studies must 

be undertaken to establish the hydrophilic aptness and the distribution of negative charges. 

Nucleophilic substitution reactions can be carried out by treating polymers with haloacetic acids, 

and upon the completion of the reaction, halo acids (HCl, HBr) are eliminated. Non-toxicity, low 

chemical cost, weak anionic property of the pendant COOH groups, have resulted in this method 

being widely developed for modification of most biopolymers 68, 70 employed in biological 

research 70-72. 

Synthetic carboxylated polymers include carboxylated styrene73, slightly carboxylated polyester 

via extension of terminal groups74, carboxylated polysulfone75, carboxylated polyolefine76, 

polyacetylene77, carboxymethyl polyvinyl alcohol hydrogel78, and carboxymethyl PA 46 (paper 

IV) 59. All these polymers have a negatively charged surface; the intensity of the charge depends 

however on the groups linked to COOH. Electron withdrawing groups increase the polarity of 

COO¯, while electron donating groups reduce the concentration of charges around COO¯ 79. 

Therefore carboxylation using monochloroacetic acid leads to substitute carboxylate anion with 

mild negative charges for prevention highly hydration and ion exchanging. For this reason, 

polyamide 46 should rather undergo a nucleophilic substitution with monochloroacetic acid in 

the presence of a mixture of solvents (Formic acid and DMSO). Dimethyl sulfoxide (DMSO), 

shown to be a proper proton quencher 64, facilitates the elimination of hydrochloric acid 80, the 

rest product formed from the monochloroacetic acid. However, to prevent the reaction from 

reversion, HCl (byproduct) and formic acid (solvent) were at the final stage gently neutralized 

with sodium hydroxide in methanol to pH=6-7. A yield of 89.2% indicated that 

carboxymethylation of PA 46 is less complete than after hydroxyethylation. This could be related 

to the final product being hydrolyzed by HCl which is formed during the reaction.  In order to 
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improve the mechanical property of the carboxylated derivatives of PA 46 for membrane 

application, tartaric acid, being a dihydroxy diacid, intertwined two polymer chains (Figure 3.5). 

Du to esterification of the carboxylated polyamide 46 with linker, all hydrophilic groups in the 

polymer chains were blocked, resulting in a robust, nonporous film. The reason for choosing 

tartaric acid as a linker was its four functional groups. The two hydroxyl groups at the tartaric 

acid linked two carboxylated PA 46 chains, and the two carboxylic acid residues of the linker 

(tartaric acid) remained intact, available to react with two PEG chains in the next step (paper IV). 

    
Figure 3.5 Study on the effect of linkers, used to improve the mechanical traits of carboxylated PA 46 
membranes, applying the solution casting technique: (A) Non-cross-linked carboxylated PA 46 membrane, 
(B) Cross-linked carboxylated PA 46 membrane, using tartaric acid as cross-linker. 
 

3.1.3. PEGylation of carboxymethyl polyamide 46 

 

PEGylation is a route to covalent attachment of polyethylene glycol (PEG) to other molecules. 

The substitution reaction includes the elimination of potential, leaving groups such as HCl or 

H2O 81. The attached PEG improves the hydrophilicity of hydrophobic substrates, masking the 

surface of host molecules 82. PEGylation has been applied as post-modification, in order to 

improve the biomedical efficiency of therapeutic proteins 83, biocompatibility, low enzymatic 

degradation (extended half-life), and minor toxicity have resulted in manufacture of PEGylated 

pharmaceuticals for many years 83. There are some reports on PEGylation of proteins82, 
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cellulose81, and other biological molecules 84, but none so far concerning research on PEGylation 

of synthetic polymers. This is most probably related to limited application for such type of 

polymers, or to the challenge it entails to create active sites for PEG conjugation, which would 

increase the functionality of the synthetic polymers. In addition, hydrophilic functionalization of 

hydrophobic synthetic polymers requires dissolution of the synthetic polymers in an aprotic 

solvent, allowing transfer and elimination of polar leaving groups (HCl or H2O). In accordance 

with our accumulated knowledge, PA 46, or its derivatives, acquired by dissolution in the aprotic 

solvent formic acid, is our preference among the synthetic polymers. Results showed that 

PEGylation is an appropriate method for improving hydrophilicity of macromolecules81, and 

solubility of single molecules85, due to the mass ratio between PEG and host molecules.  

 

There are some reported methods for activating either PEGs or the reagents for PEGylation. One 

of these methods involves the activation of PEGs for amino group conjugation. In polypeptides, 

the reactive functional groups engaging in conjugation are nucleophiles, such as α- or ε- amino 

groups, thiols, carboxylates, and hydroxylate residues 82. Hydroxylate and carboxylate groups in 

proteins are coupled inter- or intra-molecularly at neutral pH, and consequently, the challenge 

lies in the transformation of the terminal hydroxyl groups of PEG, that will allow reaction solely 

with free amino groups 86, 87. Hence, the activation of PEGs is limited to a terminal hydroxyl 

transformation88. The derivatives obtained are PEG-aldehyde (PEG propionaldehyde)89, 

tresylated PEG 90, PEG epoxide 82, and acylated PEG 91. Another method for PEGylation is to 

activate the reagents in order to make them capable of esterification of the terminal OH-groups 

of PEG 92, 93. PEGylation of propionic acid in the presence of formic acid as a catalyst has been 

reported by Kozlowski et.al 94, and PEGylated fatty acid (PEG-150 distearate) is e.g. used for 

diagnostic purposes 95. 

In the present study, PEGylation of polyamide 46 was preceded by carboxylated groups being 

introduced to the polyamide, followed by cross-linking with tartaric acid, thus improving the 

mechanical aptness of the polymer, which in turn was followed by esterification between the 

cross-linked carboxymethyl PA 46 and PEG in the presence of formic acid. Formic acid, being a 

strong hygroscopic organic acid, catalyzes the esterification process at elevated temperature. 
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Repeated units of O-CH2 in PEG improve the hydrophilicity of the final molecule (Figure 3.6). 

In order to attach the carboxylate PA 46 to PEG, tartaric acid (as a quaternary linker 96, 97), was 

used by the esterification, thus bettering the arrangement of the molecule and yielding robustness 

to the membrane (Figure 3.7). 

Hydrophilic cross-linkers not only adhere to polymer chains, but are also able to compensate for 

low hydrophilicity of polymers 98. Tartaric acid 99, citric acid 100, and glycolic acid 101 are some 

of the hydrophilic cross-linkers. 

 

Figure 3.6 Surface morphology study of the rough globular surface of PEGylated carboxymethyl PA 46: (A) 
globular aggregation of PEGylated carboxymethyl PA 46 (Magnification 10671X), (B) Surface of globular 
PEGylated carboxymethyl PA 46 (Magnification 65653X). 

 

                      

Tartaric Acid Linker Carboxylated PA 46

PEG chain

PEG chain  
 

  Figure 3.7 Schematic structure of globular PEGylated polyamide 46. 
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3.2. Surface functionalization 

 
Surface functionalization of polymers is a method for changing the outer layer of the polymer, 

and is performed by substitution with a thin layer of functional groups. However, the low 

thickness resulted in non-durability and weakness of the modified surface, and the method was 

thus deemed unsuitable. Appropriate engineering, by combining bulk features with functional 

surface features, can expand the aptitudes of materials.  

The principle of surface functionalization is localization of polar functional groups on the 

membrane surface. This opens for development of wettability, paintability, and biocompatibility 

as well as permission or prevention to adhere materials or biomass onto the surface. Several 

methods are available to achieve this aim, e.g. corona discharge, plasma treatment (paper ІІ), 

flame treatment, and irradiation with UV-light or γ-rays in the presence of ionizable gases102. 

The techniques for surface functionalization are classified as either physical deposition 

(adsorption) or chemical modification. Physical deposition leads to reversible changes of the 

surface morphology and rheology, without chemical reactions, while the chemical binding to the 

surface form irreversible covalent bonds.  

 
Graft polymerization is a versatile technique for both bulk and surface modifications. Chemical 

initiators (peroxides, diazos) or ionizing agents (plasma, radiation, UV-light) are in this 

method applied when the surface of the polymer is passive and physical treatments have no 

effect on the surface. If the surface of the substrate has active functional groups, such as OH, 

NH2, COOH, etc., the monomers are anchoring to the surface, after which the chemical initiator 

or the ionizing agent starts propagating them (paper ІІ), resulting in the formed polymer being 

localized on the surface in a right angle transverse orientation (Figure 3.8). The molecular weight 

of grafted polymers is dependent on the shelf life of the radicals and the concentration of the 

monomer.  
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Figure.3.8 Surface graft polymerization steps: (A) Polymeric substrate, (B) Graft polymerization of 
anchored monomer is initiated after exposure to plasma or UV-light, (C) Polymeric substrate after surface 
graft polymerization. 
 
 

3.2.1. Surface graft polymerization of polyamide 46 copolymer 

 

Graft polymerization of PA 46 was performed in order to produce an electroconductive 

membrane (ECM) (paper ΙΙ). Prior to bulk graft polymerization, PA 46 endured 

hydroxyethylation (paper Ι) in order to create active sites for binding with an inherent 

electroconductive monomer (hydroxymethyl 3,4-ethylenedioxythiophene). The obtained bulk 

graft copolymer subsequently took part in a surface graft copolymerization, in order to acquire 

an electroconductive membrane (paper ΙΙ). The liquid phase polymerization (LPP) method was 

applied for the surface graft polymerization. The membrane was immersed in a HMEDOT 

monomer solution, after which propagation was initiated by exposure to plasma radiation. 

 

 

3.2.2. Electroconductive Membrane (ECM) 

 

Polyaniline, as the first electroconductive polymer, was synthesized in 1834 by Runge103. Henry 

Letheby described the electrical properties of PANI in two forms: oxidized quinoid and reduced 

benzoid, in 1862 104. This characteristic opened up for a new initiative: to substitute metals with 

organic complexes 105. At the time, most scientists concentrated on other conjugated polymers, 

like polyacetylene, polypyrroles, polythiophenes, and polyphenylenevinylenes 106, 107. 

Conjugated polymers contain conjugated π-bonds, but with no resonance. Doping these polymers 



 
 

36 
 

with electron withdrawing groups, initiates electron resonance, and electrical conductivity 

ensues. Polyacetylene was the simplest structure among the conjugated polymers, and was 1977 

widely studied by Shirakawa et al.108 Investigations on electroconductive membranes date back 

to 1985, when Wagner wanted to find another application for polyacetylene 109. From then on, all 

the methods have been based on coating a polymeric matrix with different types of conjugated 

monomers. Supplementary development of electroconductive membranes (ECM) was also 

carried out by integration of electroconductive polymers (ECPs) with porous electrically 

insulated polymers 110. Dipping a cellulosic substrate in aniline monomers followed by in situ 

polymerization yields ECM, but with pore sizes varying tremendously, and being out of control 
111. Furthermore, coating PVC membranes by using polyaniline was studied by Shishkanova112. 

Fabrication of ECM by coating paper with carbon nanotubes is yet another coating technique 113, 

as is coating nylon-6 with carbon nanotubes114. In all these methods, ECPs are promoting 

conductivity of porous substrates. However, none of them is suitable for use in membranes for 

MBRs, due to low mechanical properties, and inappropriate binding between ECPs and non-

ECPs, resulting in low durability. This is why none of them currently is being used in the 

industry. In spite of showing the most superior electrical properties in comparison with other 

conjugated polymers115, polyacetylene is not possible to copolymerize with other polymers, 

simultaneously retaining its own electrical capacity. For this reason, the work in this thesis 

focused on 3, 4-ethylenedioxythiophene (PEDOT) and its derivatives, based on its electrical 

property, ability to copolymerize in a wide range of solvents, and its biocompatibility 116. 

Moreover, PEDOT and PA 46 have displayed biocompatibility 116, 117, meeting our requirements 

for use in MBRs. PA 46 is one of the polymers with highest crystallinity, and possess superior 

physicochemical properties 61. However, lack of active sites prevents reaction with HMEDOT. 

Hydroxyl groups make suitable anchor sites starting copolymerization between EDOT 

monomers and cellulose 118, 119. Thus, we concentrated on an introductory hydrophilization of PA 

46, followed by copolymerization with hydroxymethyl 3, 4-ethylenedioxythiophene (HMEDOT) 

(paper II).  

 

The obtained semi-electroconductive copolymer in reality showed to be inherently hydrophobic, 

as a result of the hydroxyl groups of the hydrophilized PA 46 being occupied with HMEDOT in 
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an etherification reaction (paper II). The hydrophilic capability of the obtained copolymer was 

therefore limited to forming low hydrophilic ether bonds between HEPA 46 and HMEDOT. In 

order to create pores in the bulk of the semi-electroconductive copolymer, urea was applied. The 

urea was completely dissolved in the copolymer solution as a continuous transparent phase, and 

easily leached out after drying the polymer solution. The selection of urea as a pore maker was 

based on the Biginelli reaction 120: during the reaction with a thiophene derivative, urea binds to 

the aromatic rings forming an intermediate. The reaction will never proceed to ring formation 

being created, due to absence of another reagent (ethyl acetoacetate) 121. The urea is hence easily 

washed out and hydrolyzed by water wash. By this strategy, nanopores were obtained, and the 

copolymer was ready for surface polymerization with HMEDOT. The final product is a surface 

hydrophilized and electroconductivated membrane suitable for MBR purposes. 

 

 

3.3.  Characterization of modified polyamide 46 

 

 

Functionalized polyamide 46 and poly(hydroxymethyl 3,4-ethylenedioxythiophene) were 

characterized through chemical and physical analyses. Surface morphology and pore size 

distribution were measured by means of AFM, and a Zetasizer instrument was used to analyze 

surface charge domains of carboxylated and cross-linked, carboxylated membranes. Surface 

tension and contact angle were determined by using a Dynamic Absorption tester. Chemical 

structures and reaction yields were investigated by 1H-NMR and 13C-NMR. Thermal properties 

of the functionalized polymers were tested with a differential scanning calorimeter (DSC) and a 

thermogravimetric analysis (TGA) was carried out, measuring crystallization temperature, 

melting point, and energy content of each transition, as well as uncovering volatile functional 

groups and assessing thermal consistency. Porosity and pore size were studied, using the bubble 

point method. Finally, water flux was measured by a dead-end filtration cell. 
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3.3.1. Surface morphology of the electroconductive membranes 

 

Surface morphology of the electroconductive membranes was inspected by means of atomic 

force microscope (AFM/SPM NETGERA prima, NT-MDT Inc., Russia), measuring pore size, 

nodule size, porosity, pore size distribution, and roughness. The mean value of the roughness 

(Ra) of both membranes was used for determining the roughness of coated as well as uncoated 

membranes, and was, due to surface dimensions being dependent on the center plane, calculated 

as: 

ܴ௔ = ଵ
௅ೣ௅೤

∫ ∫ ,ݔ)݂ ௅೤(ݕ
଴ ௅ೣݕ݀ݔ݀

଴ 									                                    (3.1) 

Where f(x,y) is roughness height on the surface, while Lx and Ly are the surface dimensions 

(dependent on the center plane 122. The AFM micrographs revealed that surface polymerization 

resulted in roughness increasing by 11.81%, and a simultaneous increase in membrane thickness 

by 12.61%. It is reasonable to believe that these increases were an effect of the implemented 

method. It stands to reason that the surface of membranes should be impregnated with monomers 

prior to plasma treatment, in order to safeguard anchoring of the monomers to the surface, and 

consequently, the starting point of polymerization is limited to the amount of monomer available. 

If vaporized monomers are injected continuously to the plasma chamber, the layer of monomers 

on the surface increases, resulting in improved electroconductivity. The plasma vapor-phase 

polymerization (PVPP) method could however not be employed in the present work due to 

instrumental limitations. The dark area in figure 3.9 implies absence of homopolymer on the 

surface of the electroconductive membrane (paper II). 
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Figure 3.9 Surface topography of the electroconductive membrane after plasma polymerization based on 
poly(hydroxymethyl-3,4-ethylenedioxythiophene-co-tetramethylene-N-hydroxyethyl adipamide)  
 

3.3.2. Charge domains on the membrane surface 

Determination of surface charge of polymers can well be performed by means of for instance 

surface potential imaging (SPM) and electric force imaging (EFM) modes in atomic forced 

microscopy (AFM). Notwithstanding, one of the most effective techniques for measuring charge 

domains on the surface of polymer particles suspended in water involves the measurement of the 

speed with which the particles move in an electric field. For the study of charge domain on the 

membrane surface, examining the substitution of COOH in bulk and membrane surface films, 

Zeta potential (ζ) measurements were carried out. Measurements of Zeta potentials were also, 

along with measurements of isoelectric points (pI), carried out in order to study the electrokinetic 

behavior at the solid/liquid interface. A Zetasizer instrument of the model Nano-ZS (Malvern 

instruments, UK), applying the Laser Doppler Velocimetry (LDV) technique, was used for the 

measurements. This instrument calculates the zeta potential by measuring the electrophoretic 

mobility, using the Henry equation (3.2): 

 

     ܷ = ଶக୸௙(௞ೌ	)
ଷఎ

                                                              (3.2) 
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where, 

U is the electrophoretic mobility, 

ε is the dielectric constant of water,  

η is the viscosity (cp) of water at a certain temperature, 

f (ka) is Henry’s function, which is equal to 1.5 following the Smoluchowski approximation 123. 

Conversion of Henry’s law into the Smoluchowski equation yields the Zeta potential (ζ): 

 

ߞ = ସగఎ
க
⨯ ܷ ⨯ 300 ⨯ 300 ⨯ 1000                                      (3.3) 

 

where, 

 ζ = Zeta potential (mV) 

U = ν / (V/L) 

ν = Speed of particles in the electrical field (cm/sec) 

V= Voltage (V) 

L= Distance between electrodes (cm) 

 

The polarity of carboxylated PA 46 was measured using a Zeta analyzer. The analysis conducted 

by this equipment is based on light scattering of colloidal polymeric particles in a solution, at 

different pH-values. The velocity of the particles is correlated to the amount of surface charge; 

the higher the surface charge, the faster the speed of the particles in the electrical field. This 

technique was thus utilized for measuring the Zeta potential and the isoelectric points. This 

system includes a modulator for laser beams, and an oscillating mirror detects the position of the 

particles. The change in position of particles is monitored by a change in the angle of the 

reflected beams (Figure 3.10). 
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Figure 3.10 (A) Malvern capillary cell. (B) The conceptual mechanism of a Zetasizer Nano includes a Laser 
Doppler Velocimeter.  
 

Since polyamide 46 derivatives are completely soluble in formic acid, the pH was at the starting 

point set to zero for all samples. The analysis revealed that the negatively charged COO¯ of 

cross-linked carboxylated PA 46 moved fast toward the positive charge. This might be due to the 

concentration of COO¯ in the cross-linked polymer being lower than in the carboxylated PA 46, 

which in turn might be due to most of the carboxylic groups being consumed during cross-

linking. In PEGylated PA 46, the terminal OH-groups showed a tendency to convert into the 

negatively charged O¯, the amount of zeta potential is being higher than the carboxylated as well 

as the cross-linked carboxylated derivatives (-4.9 mV). Polyamide 46 showed a positive zeta 

potential (12.8 mV) due to presence of amidic nitrogen groups. The absolute amounts of zeta 

potential of polymers did not change in polyamide 46 and cross-linked carboxylated PA 46 after 

their respective isoelectric point. PEGylated PA 46 and carboxylated PA 46, on the other hand, 

showed positive potential at higher pH-values, indicating amphoteric properties (paper IV). We 

can conclude only polyamide 46 and crosslinked polyamide 46 are resistance to pHs changes. 

Since polyamide is not hydrophilic polymer, crosslinked carboxylated PA 46 is the best choice 

for MBRs due to hydrophilicity and stability at wide range pHs. 
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3.3.3. Surface tension and contact angle 

To assess the wetting behavior of the surfaces when in contact with fresh deionized water, 

contact angle and surface tension were investigated, using captive bubbles. The surface tension 

was investigated with the Dynamic Absorption Tester (DAT) model Fibro's DAT 1100 (Thwing-

Albert Instrument Co., USA), applying the pendant drop method. The instrument software was 

set in accordance with the Owens-Wendt model124, which is obtained from the Young-Dupré 

equation, which is defined as the relation between the contact angle and the surface energy:  

୐(1 + cos) = 2ටௌ஽ට௅஽ + 2ටௌ௉ට௅			௉                          (3.4)  

where  is the contact angle between the liquid and the solid, L is the surface tension of the 

liquid, ௌ
஽ is the dispersive component of the substrate (Lifshitz-Van der Waals interactions), and 

ௌ
௉ is the non-dispersive component (polar interactions, Lewis acid/base) 125. The instrument was 

calibrated at 20 °C each time, using water as the dispersive liquid, having a surface tension at 

72.8 mN/m, and employing diiodomethane as the non-dispersive liquid, its surface tension being 

50.8 mN/m 126. 

 

Hydrophilicity is one of the crucial membrane features. Water flux and biofouling are directly 

correlated to the degree of hydrophilicity of the membranes. Measuring the contact angle at 

which the water interacts with the surface of the solid is a useful method for investigating 

hydrophilicity in terms of wettability of the substrate surface, and the Owens-Wendt equation 

determines the level of interaction energy between the solid surface and the water droplets. The 

sessile drop method (Figure 3.11) was used to verify the surface hydrophilicity of the control and 

the modified film. The angles with which droplets of water (with a surface tension of 72.8 

mN/m) and diiodomethane (with a surface tension of 50.8 mN/m) [droplet size 5 (paper ΙΙ) or 10 

(paper Ι) L] interact with the membrane surface within 10 sec at 20 °C were studied by using 

the Dynamic Absorption Tester (Fibro's DAT 1100, Thwing-Albert instrument Co., USA) and a 

Tensiometer (KRUSS G10, Germany). Mean values were calculated from three (paper Ι) or ten 
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(paper ΙΙ) repetitions of each measurement. Increasing surface tension and decreasing contact 

angle indicates improving hydrophilicity after functionalization (papers I, II, IV). 

 

                 
Figure 3.11 Camera views of water droplets on the surface of poly(tetramethylene-N-hydroxyethyl 
adipamide) in a contact angle analyzer: (A) the water droplet on the membrane film at the time zero, (B) the 
water droplet on the membrane film after 10 sec. 
 

 
3.3.4. Nuclear magnetic resonance (NMR) 
 
Nuclear magnetic resonance is a sensitive technique capable of determining the chemical 

structures of materials in bulk, qualitatively as well as quantitatively. The molecular information 

is provided by the nuclear resonance frequency being altered when a molecule is placed in an 

external magnetic field. Since each nucleus has an intramolecular magnetic field around itself 

(due to the nuclear spin), atoms in the external electromagnetic field are able to absorb 

electromagnetic radiation at a certain frequency, characteristic of the isotope in question (1H, 13C, 
15N, 31P, 19F). The proportion of energy absorbed correlates to the signal intensity. The atoms in a 

molecule are identified by the interaction of intramolecular magnetic fields of the neighboring 

atoms. Different nuclei have different neighbors, and thus resonate at different frequencies. The 

nuclear resonant frequency, when compared with a reference [usually tetramethylsilane, 

Si(CH3)4], is termed the chemical shift (NMR is an appropriate instrument for detecting 

functional groups  only in a bulk modification of a polymer chain, in spite of the minute weight 

ratio of the functional groups to the polymer backbone. 
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3.3.5. Thermal properties  
 

Thermal degradation was studied by using a thermogravimetric analyzer (TGA) model Q500 

(TA Instruments, Delaware, USA). This instrument evaluates the stability of the polymer at 

elevated temperatures, based on weight loss in the absence of oxygen. The thermogravimetric 

analysis is a suitable method for determining the percentage of functional groups in the modified 

polymer in comparison with a non-modified polymer. The degree of crystallinity and the 

enthalpy of fusion (i.e. the melting point, which decides the degree of crystallinity) were studied 

by employing a differential scanning calorimeter (DSC) (model Q2000, TA Instruments, 

Delaware, USA). Pure nitrogen was injected as the inert purge gas to clean the furnace chamber 

from any residues of oxygen and water. 

 

The term differential scanning calorimetry (DSC) is used for the quantitative comparison of heat 

absorption/desorption between samples and reference under isothermal conditions, expressed as 

a function of temperature or time, whereas the thermogravimetric analysis (TGA) technique is 

used for analyzing thermal consistency of the molecules at different temperatures.   

 

The thermal analyses in the present study (utilizing DSC) disclosed a decrease of glass transition 

(Tg) and crystallization (Tc) in hydroxyethylated, carboxymethylated, and PEGylated PA 46. This 

resulted in increased amorphism due to scanty formation of spherical units (papers I, IV). The 

thermal analyses furthermore revealed that after functionalization, polyamide 46 showed reduced 

Tg and Tc, as well as lowered Tm (i.e. phase transition enthalpy) of melting (ΔHm) and 

crystallization (ΔHc). This could be related to spherical aggregation being curtailed, resulting in 

reduced order of the dense structure of PA 46. Since bulky pendant groups, such as 

hydroxyethyl, carboxymethyl, and polyethylene glycol, create gaps between contiguous nodules, 

the convergence of polymeric chains is hampered, thus resulting in reduced glass transition (Tg) 

and crystallization (Tc), and lowered melting temperature (Tm). 
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Thermal gravimetric analysis (TGA) is one of the appropriate techniques for estimating stability 

of polymers at elevated temperatures, and during the analysis in the present study, mass changes 

of the polymers were monitored under nitrogen gas. The polymer in the present study lost no 

weight due to oxidation, and thus, the process might be labeled carbonization.  The pendant 

groups on the functionalized polyamide 46 in this study displayed instability. Thermograms 

revealed that while carboxylated PA 46 exhibited the lowest stability, cross-linking of the 

carboxylated PA 46 resulted in higher stability (paper III). Molecular studies on carboxylated 

compounds have uncovered that when carboxyl groups are attached to a carbon situated adjacent 

to electron withdrawing groups, e.g. amidic nitrogen, the molecule becomes unstable 127, which 

supports the results in the present study that increased molecular weight of functionalized 

polyamide increased molecular stability. This might explain development of internal hydrogen 

bonds in polymers, and also that PEGylated derivatives become entangled. Entanglement 

depends on the length of the polymer chain and also its polarity, and affects the stiffness of the 

chain 128.  

 

3.3.6. Porosity and pore size distribution 

 

There are several techniques for determination of pore size. The main ones are described below: 

(a) Bubble point: This method was first presented by Bechhold 129.A membrane is fixed into a 

membrane holder (Figure 3.12). Compressed air is passed through a closed system that is open to 

the outside solely via the membrane holder. A pressure gauge is used to monitor the gas pressure. 

A very thin layer of water is allowed onto the membrane in the membrane holder. After opening 

the valve, thus increasing the pressure, the first bubbles are observed in the middle of the 

membrane (see Figure 3.12). The pressure at which this occurs is put into equation 3.5: 
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ݎ = ଶ௞ఊ	௖௢௦ఏ
∆௣

    (3.5) 

  

where, 

 r is the membrane pore diameter in m,  

Δp is the bubble point pressure in psi, 

 k is the conversion factor (Table 1),  

is the liquid surface tension in dyn/cm,  

 θ is the Liquid-membrane contact angle in degrees.  

At complete wetting, θ is equal to 0º, and thus, cos θ is equal to 1.      

                                                                                                       

 

 Figure 3.12 Bubble point measurement device: pressure gauge, membrane holder, valve for controlling 
gas pressure, and cylinder with compressed air  
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Table 1. Surface tension of some liquids versus conversion factor (k) 7 

Liquid Surface tension 
(dyn/cm) Conversion factor (k) 

Water 72 42 

Kerosene 30 17 

Isopropanol 21.3 12 

Silicon fluida 18.7 11 

Fluorocarbon fluidb 16 9 
 

  aDow corning 200 fluid, 2.0 cSt.                                                                                                                                                                                  
b3M Company, Fluorochemical FC-43 

 

(b) Direct visualizing technique: Various types of microscopy techniques are employed for 

visualizing pores in membranes, e.g. SEM (scanning electron microscopy), ESEM 

(environmental scanning electron microscopy), FESEM (field effect scanning electron 

microscopy), TEM (transmission electron microscopy), STEM (scanning transmission electron 

microscopy), and AFM (atomic force microscopy). Supplementary software is required for 

measuring pore diameters by AFM. 

(c) Adsorption-base techniques: This technique is based on adsorption and desorption of an 

ideal gas (following thermodynamic rules) under isothermal conditions. Gas pressure and 

temperature are monitored, and results are evaluated, using the Kelvin equation.130 This method 

allows measurement of the total volume of pores (porosity). 

 

(d) Thermoporometry method: Changes in crystallization enthalpy (Hc) of liquids inside pores 

are measured by means of DSC (diffraction scanning calorimetry) 131. Since change of enthalpy 

is dependent on the amount of fluid, estimation of the ΔHc requires a comparison between a 

control prototype and a sample saturated with liquid, which will indicate the amount of localized 

fluid inside the pores. This method also reveals the porosity of membranes. 
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(e) NMR method: This method entails analysis of water contents in saturated membranes, using 
1H-NMR, and thus indicates the porosity of the membrane 132. Excess of water should by 

centrifugation be removed from the membrane prior to the NMR study, and thus this technique 

reveals the amount of water being entrapped inside the pores. 

 

(f) Swelling ratio: Porosity was also determined by investigating the water-swelling capacity 

(percentage) of the membranes, as this gives the total volume of pores. Dried membranes were 

immersed in Milli-Q water at 20 °C overnight, attaining equilibrium swelling. Excess water was 

removed from the membranes by using a tissue, after which the membranes were promptly 

weighed (W = mass symbol in equation). The membranes were subsequently dried for 2h in an 

oven at 105 ºC, after which they were weighed (= W0). The water uptake capacity at 20 °C was 

calculated, using equation 3.6:  

 		Water	uptake	(20	°C) = ୛ି୛బ
୛బ

                                              (3.6) 

where W and W0 correspond to the weights of wet and dry membranes, respectively 133. To 

determine porosity, the volume (mass converted into volume expressed as cm3; dH2O = 1) of the 

retained water in the membrane is divided by the total volume of the membrane, multiplied by 

100, thus yielding porosity (3.7): 

Prosity	% = ୖୣ୲ୟ୧୬ୣୢ	୛ୟ୲ୣ୰	
௏

× 100                                            (3.7) 

where V is the total volume of the membrane 134. 
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3.3.7.   Water flux  

The water flux through membranes at 14.5 psi (1 bar) was studied by using a dead-end cell. 

Three types of membranes with 64 mm Ø and of various thicknesses (0.11, 0.125, and 0.13 mm) 

were fixed inside the cell. Membranes were immersed in Milli-Q water for 3h, after which a 

tissue was used to remove excess water. Water flux (Jw) was then calculated by following 

equation (3.8): 

௪ܬ = ୚
୅∆୲

                                                                                   (3.8) 

where, 

V is the volume of permeated water (L) 

A is the area of membrane (m2)  

 .t is the permeation time (h) 135߂
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4 

 
Functionalized polyamide 46 in membrane bioreactors  
 

The designing of a submerged bioreactor was based on cross-flow diffusion in a multi-layer 

membrane module for uprising feeding flow. In the bioreactor, minimal gaps (1.5 cm) between 

the membrane beds forms very narrow tunnels, thus yielding maximal membrane surface area, 

and thereby providing maximal mass transfer, which in turn results in higher efficiency. Each 

bed comprises five parts: two membrane films, two stainless steel sieve supports, and a rubber 

O-ring (Figure 4.1). The rubber O-rings are located between the two membranes, creating a 2 

mm gap into which the microorganisms are loaded. Two stainless steel supporters are by means 

of six long screws compressing the two membranes. After all the membrane beds have been 

joined together (by the six screws), the membrane module is installed in a double layer 

polymethylmethacrylate vessel (Figure 4.2). An entry to the reactor allowed injection of the 

medium, and two outlets provided for circulation of the medium and for sampling of the 

produced biogas. The bioreactor was also connected to a control system, furnished with a 

computer that recorded the acquired data, and to an Automatic methane potential test system 

(AMPTS) that analyzed the obtained biogas. The reactor was designed for obtaining maximal 

surface contact with the medium, and used 17 submerged packed beds for the uprising plug flow. 

The beds could all be fixed inside the reactor, since the gaps between the membranes were only 

1.5 cm, and the reactor was subsequently plugged over the culture medium, which contained 

fatty acids (propionic, butyric, and acetic acids), glucose, and methanol. The working volume 

and the head space volume were 800 mL and 1.5 mL, respectively. The total height and diameter 

of the reactor were 220 mm and 120 mm, respectively. The anaerobic digestion in the reactor 
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was controlled by circulation of warm water through the reactor jacket, keeping the temperature 

of the reactor at 55 ± 5 ºC, and allowing circulation of the medium through the vessel. 

 

The produced biogas accumulated at the top of the reactor, after which it passed through the 

Automatic Methane Potential Test System (AMPTS). Different types of synthetic membranes 

were tested in this study, by loading 9 g of inoculum onto each bed between two membrane 

sheets (Figure 4.3). 

 

 

 

 
Figure 4.1 Stainless steel supporters for the compression of the membranes. 
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 Figure 4.2 A compact multi-layer membrane bioreactor (MMBR). 
 

 
Figure 4.3. Scheme of an anaerobic multi-layer membrane bioreactor (MMBR), used for rapid biogas 
production (paper III). 
 
 

 



 
 

53 
 

4.1. Membranes in biogas production 

 

Cross-flow of water-soluble components is prohibited through unmodified polyamide 46 since it, 

due to lack of hydrophilic functional groups, is not permeable. Polyamide 46 is highly resistant 

to common solvents, such as terpenes and tetrahydrofuran (THF), which might be present in 

wastewater, and as a consequence, the water treatment process might be thwarted due to 

microorganisms being killed by these solvents. In order to develop permeability of PA 46, two 

methods were used. Polyamide 46 was dissolved in a solvent together with a hydrophilic 

polymer (such as PVP) that acted as pore maker. The other method entailed functionalization of 

polyamide 46 into a homogenous hydroxylated derivative, which improved capillary flow. The 

difference between these two methods was that the latter method changed the polarity of the 

polymer. Hydroxyl groups, being moist groups, intend to bind to polar solvents by hydrogen 

bonding, while unmodified polyamide 46, because of its low polarity even in the presence of 

electrolytes, reduced the cross-flow rate due to presence of biological foulants. The hydroxylated 

polyamide 46 in this study displayed, thanks to the presence of hydroxyl groups, a high flow rate 

for nutrients and biogas production up to 18 days (paper III). After 18 days, however, the OH-

groups in the hydroxylated PA 46 probably started to react with the anions of the carboxylic fatty 

acids, resulting in blockage and neutralization of the hydroxyl groups on the polymer chain, and 

consequently, bio-foulants started to stick onto the surface of the membrane in the same manner 

as when unmodified PA 46 is used. Accordingly, the flow of nutrients and biogas across the 

membrane gradually decreased (Figure 4.4). In accordance with this hypothesis, the reaction 

should be reversible by washing the membranes with very dilute non-oxidative mineral acids, 

such as hydrochloric or sulfuric acids, for regeneration of the membranes. However, this 

phenomenon was not observed when using PVDF membranes, due to their unwillingness to react 

and their lack of affinity toward anions. The rate of permeate flow through membranes is 

governed (directly or indirectly) by Fick’s Law, involving parameters such as temperature, size 

of molecules, surface area of membrane, concentration of gradient, and polarity of both 

membrane and gradient 136. Figure 4.5 illustrates diffusivities of fatty acids through the 

membranes used in the present study. Diffusion under isothermal conditions, using equally sized 

membrane areas was correlated to size of the fatty acids and the polarity of the membrane. 

Initially, diffusion of acetic acid was rapid in all membranes, due to high portability. However, 
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once the concentration of gradient was equal on both sides of the membrane, consumption as 

well as diffusion rate decreased dramatically, and was eventually dependent only on the 

microorganisms’ consumption of acetate anions. In terms of the other fatty acids tested in the 

present study, the initial permeate flow was lower than for acetic acid, most likely due to their 

larger molecular size and their lower mobility. The different permeate flows over the three 

membranes was correlated to polarity of the membranes136, whereas the driving force behind 

mass transport trough the membranes was regulated by the chemical potential of permeate, cell 

consumption and osmotic pressure. Since the microorganisms were of the same type in all tests, 

they were not involved in the control of permeate flow or mass transport 136. The reason for 

lower accumulation of propionic acid than of butyric acid when using hydroxylated PA 46 was 

most likely related to the propionate anion having a lower ratio of molecular weight to charge 

number than the butyric acid anion, results in higher diffusivity of propionate anions. 

Notwithstanding, as the butyrate anion possesses less polarity, and therefore has a lower affinity 

to the hydroxyl groups in hydroxylated PA 46, the diffusivity of the butyrate anion is inferior to 

the propionate anion diffusivity. Unlike hydroxylated PA 46, the PVDF membrane does not 

interact with acetate, propionate, and butyrate anions. Hence, lateral diffusivity of chemicals over 

this membrane is only correlated to molecular weight or mobility of permeate137 and osmotic 

pressure. To sum up, due to lower molecular weight and higher mobility, propionate displays a 

higher diffusion rate than butyrate, resulting in very minute accumulation in the medium (paper 

III). 

 

 



 
 

55 
 

                            
Figure 4.4. Volume of biogas production vs. time, using PVDF, hydroxylated PA 46, and unmodified PA 46 
membranes. 
 

 

As is shown in figure 4.4, hydroxyethylated PA 46 competed with PVDF up to 18 days, after 

which fouling of the membranes resulted in decreasing biogas production. The advantage of this 

type of design is that multi-unit membranes create a large surface area that maximizes mass 

transport of the medium through the membrane, in form of compact submerged membrane 

reactor (paper III). 
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Figure 4.5. Fatty acids consumption (Acetate, butyrate, propionate) in MMBR: (A) Unmodified PA 46 
membrane, (B) Hydroxylated PA 46 membrane, (C) PVDF membrane. 
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5 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

 

 

5.1. Conclusions 

 

The present thesis has brought to attention membranes based on polyamide 46 and their use in 

submerged MBRs (multi-layer membrane bioreactors). Studying the processes of synthesizing 

this type of membrane aimed at obtaining high performance membranes for fermentation 

processes in MBRs, through which a continuous and distributive feeding of medium would be 

optimized. Increasing the hydrophilicity of bulk membranes or the membrane surface would 

reduce biofouling and as a result increase the flux of nutrients and metabolites through the 

membranes.  Highly porous and hydrophilic membranes revealed high yield in the bioreactor due 

to the surface being unable to attach microorganisms that otherwise would be blocking the 

membrane pores. Results also disclosed that increased hydrophilicity of membranes caused 

decreased crystallinity and lowered the mechanical properties of the membranes. However, 

significantly fewer such observations were noted for polyamide 46, a highly crystalline polymer.  

Copolymerization of hydrophilized PA 46 with an electroconductive monomer HMEDOT 

yielded a robust electroconductive polymer. Thus, hydroxyethylated PA 46 is a suitable choice 

for manufacturing a mechanically highly apt electroconductive membrane, useful for many 

applications. The negative charge of this type of membrane is very high, but entrapping living 
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cells minimized biofouling. In addition, plasma polymerization might be a suitable technique in 

order to coat any type of membrane of minimal thickness, and still retain high effectiveness.  

 

5.2. Future Work 

 

The method of functionalization of polyamide 46, thereby obtaining modified semi-permeable 

polyamide has in the present thesis proved its eligibility for further applications in various areas 

as synthetic cellulose. The hydrophilized polyamide show physical properties similar to 

cellulose, but is much stronger. Moreover, durability (due to ability to dissolve in common 

solvents) and recyclability are other advantages after functionalization of this polymer. Future 

potential applications consist of: 

 

 Anti-bacterial membranes for water treatment in MBRs 

 Gas or heavy metal sorption in MBRS.  

 Reactive membranes to adsorb toxic materials from effluents. 

 Ionomer membranes to facilitate hydrogen exchange in fuel cells or biofuel cells. 

 Catalytic membranes for promotion of chemical reactions, including separation processes.  

 Inherent electroconductive membranes can be developed in other areas; e.g. smart membranes 

to be used in: the human body, electrobioreactors, solar cells, and fuel cells, as an alternative 

to the expensive Nafion membrane.  

 Fluffy functional polyamide 46 is suitable for wastewater treatment, heavy metal removal, gas 

adsorption, water decoloration, and deodorizing.  

 Biocompatibility of hydrophilized polyamides provides motivation for implantation of its 

derivatives in the form of an artificial kidney or liver. 

 Embedment of drugs in functionalized polyamides is suitable for dermally administered drugs 

and for healing patches.  

 Ability to synthesize superhydrophobic polymers, using the method described in this thesis 

might be an alternative to Teflon. 
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