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Abstract 
 

Defect tolerance at chip level is currently an evolving field. With continues improvement in 

transistor feature size and device count the reliability of hardware has became a major 

concern for manufactures and designers alike. Hence  a solution that can address defects at 

lower level while maintaining a small implementation cost could not only help in keeping the 

manufacturing cost low but also serves as a base for future reliable yet cost effective devices. 

The topic of this thesis is related to a similar approach for a RISC processor. We began from 

previously designed coarse grain implementation of a defect tolerant multiprocessor array 

and supplement it with a fine-grain “wild-card” like block which could replace any one of the 

defective pipeline stages in the array when required. Thus would improve the availability of 

the multiprocessor array at high defect rates. However by doing so the performance of 

implemented pipeline stages suffers from inherit gate delay of the reconfigurable substrate. 

Therefore the design has been modified to provide functionality at reasonable performance 

cost. The proposed design offers graceful degradation and in a worst case scenario exhibits a 

performance & power overhead of 10X and 1.75X respectively as compare to the baseline 

processor. With respect to area utilization the proposed fine-grain block requires 2.6X the 

area of single baseline processor, while in terms of availability the benefit of this approach in 

a 4 core coarse-grain defect tolerant array becomes apparent at defect rates above 1.3 faults 

per core.   

 

 

Keywords: Defect tolerance, RISC Processor, FPGA, Mixed-grain, Reconfigurable, Pipeline 

stage sharing, RAW hazards, Dependable, ASIC, Virtex-5, Performance Improvement.  
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Introduction  1 
 

 

Since the invention of transistor in 1947 and then Integrated circuits in 1958, the world of 

electronics has grown exponentially while the size of a single device has shrank from 

centimeters to nanometers. This growth in technology and its applications has uncovered 

many new challenges for researchers in past decades. The most important challenge among 

them is to minimize the number of defects which unfortunately increases with technology 

scaling [1].  With current semiconductor industry trend of keeping up with Moore’s law the 

defect rate of semiconductor devices is expected to increase further in coming years.  

 

Besides feature size, there are other factors that affect the life span and performance of a 

semiconductor device such as atmospheric radiation, temperature and quality of materials 

used in manufacturing process etc. Design complexity is also increasing with every new 

functionality and tight area and power constraints. These factors push designers to 

compromise in reliability and the design becomes more vulnerable to manufacturing defects 

and unexpected failures.  

 

 

 
 

Fig 1.1 Soft-error failure rate over time [1] 

 

 In order to overcome these issues, techniques such as error detection & correction and 

defect tolerance are widely used in embedded designs. Implementation of such techniques 

is also considered mandatory in safety critical applications such as aerospace, automotive 

and medical lifesaving equipments. Common defect tolerance technique includes the usage 



 

2 

 

of spare components in the design which can be replaced with the defective ones when 

required. The focus of this thesis is also on a similar technique for RISC micro-processors.  

This chapter will discuss motivation behind this work, problems that are addressed and 

objectives of this thesis work.  

 

 

1.1 Motivation 

 

Safety critical applications require any design to remain functional even in the presence of 

faults; hence fault tolerance is an essential feature in all such designs. In embedded systems 

defect tolerance can be achieved by software, hardware techniques or their combination. 

Different techniques are used in each of these approaches and have their own advantages 

and disadvantages in terms of cost and performance of the final product.  Hardware based 

approaches have better performance and recovery rates but the design suffers from higher 

implementation and operating costs, while software based techniques enjoys lower cost at 

the expense of lower performance and recovery rates.  

 

An approach that exploits advantages of both hardware and software techniques can 

provide promising results in terms of both performance and reliability.  One such technique 

is to detect faults with the help of software and then use spare hardware resources to 

replace faulty ones or to discard the faulty components altogether and utilize remaining 

resources to accomplish required tasks. Such techniques introduce considerable overhead 

on one hand in terms of area and power while on the other in terms of performance and 

efficiency.       

 

In embedded systems a multiprocessor array possess inherit fault tolerance capabilities 

which can be further enhanced by making individual processor stages interchangeable. In 

this way working components in a faulty processor core will be available as spares for the 

remaining array. This concept of sparing of resources is exploited most recently [2] in which 

reconfiguration of processor pipeline stages is used in multiprocessor array as a fault 

recovery approach. With graceful degradation this technique offers a better performance –

cost ratio in comparison to other solutions such as core level redundancy which can provide 

high performance but suffers badly at higher defect rates while a full reconfigurable solution 

such as FPGA can tolerate much higher defect rates but at the cost of extensive 

performance degradation.   

 

 

1.2 Problem Statement  

 

A research project DeSyRe [3] (On-Demand System Reliability) is currently under way. The 

aim of this project is to develop a fault tolerant SoC for embedded applications. The SoC will 

consist of a fault-free and a fault-prone region. The actual functionality will be placed in the 

fault-prone area while the overall system management is performed from the fault-free 

section. The fault-prone area of the chip will made from a reconfigurable substrate that 

supports substitution at sub-component level. One of such component that will be 

implemented on this reconfigurable substrate is an adaptive defect-tolerant multiprocessor 



 

array [3]. It is a reconfigurable multiprocessor array in which pipeline stages can be shared 

among different processor cores through reconfigurable interconnects. The multiprocessor 

array consists of four 32-bit R

stage sharing. 

 

It is desired that a fine-

multiprocessor array. This reconfigurable node should act as a 

dynamically replace any faulty pipeline stage when required. Since this reconfigurable node 

will be implemented as a fine

implemented on this node will suffer from higher gate delays 

reconfigurable hardware. In order to provide dynamic replacement of any pipeline stage 

and compensate for extra delay added by the fine

needs to be defined.   

 

 

Fig 1.2 Coarse and fine

 

1.3 Objective 

 

The aim and objective of this thesis work are as follows:

 

 

1. Design and implement a fine

instantiate there faulty processor parts.   

 

2. Improve the performance of reconfigurable hardware so th

be reduced between 

multiprocessor array. This is a

parallelism to the parts instantiated in fine

3 

 

]. It is a reconfigurable multiprocessor array in which pipeline stages can be shared 

among different processor cores through reconfigurable interconnects. The multiprocessor 

bit RISC processors especially designed to accommodate pipeline 

-grain reconfigurable node is included with 

reconfigurable node should act as a “wild-

replace any faulty pipeline stage when required. Since this reconfigurable node 

will be implemented as a fine-grain FPGA like block therefore any pipelin

will suffer from higher gate delays that are 

rable hardware. In order to provide dynamic replacement of any pipeline stage 

and compensate for extra delay added by the fine-grain FPGA block a suitable approach 

 

Coarse and fine-grain reconfigurable array system [3]

 

The aim and objective of this thesis work are as follows: 

implement a fine-grain reconfigurable block for multiprocessor array to 

instantiate there faulty processor parts.    

Improve the performance of reconfigurable hardware so that the performance gap 

 fine-grain implementation and ASIC based fault tol

. This is achieved by attempting to pipeline and/or introduce 

the parts instantiated in fine-grain reconfigurable array

]. It is a reconfigurable multiprocessor array in which pipeline stages can be shared 

among different processor cores through reconfigurable interconnects. The multiprocessor 

ISC processors especially designed to accommodate pipeline 

with the existing 

-card” and able to 

replace any faulty pipeline stage when required. Since this reconfigurable node 

block therefore any pipeline stage 

that are associated with 

rable hardware. In order to provide dynamic replacement of any pipeline stage 

grain FPGA block a suitable approach 

 

grain reconfigurable array system [3] 

grain reconfigurable block for multiprocessor array to 

the performance gap can 

ASIC based fault tolerant 

pipeline and/or introduce 

grain reconfigurable array.   
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3. Generate reconfiguration settings for multiprocessor array with fine-grain 

reconfigurable block to dynamically replace faulty processor parts.   

 

4. Evaluate and measure performance, area  and power overhead of the proposed 

solution and determine the improvement in the availability of  multiprocessor array.  

 

 

 

1.4 Method 

 

In order to achieve the objectives mentioned in previous section within the time frame of 

this thesis following methods are used: 

 

 

For Objective-1:   

RTL modifications along with the Interconnect-Switch logic presented in  [2] will be used to 

connect extra reconfigurable pipeline stage with the multiprocessor  array. 

 

 

For Objective-2:   

Following two methods will be attempted to improve the performance of the fine-grain 

block by up to 5X of original. 

 

1- By pipelining the stage instantiated in the fine-grain reconfigurable block. 

2- By implementing multiple parallel instances of any pipeline stage in the fine-grain 

reconfigurable block. 

 

For Objective-3:   

This task requires modification in the source code of heuristic search algorithm that 

determines the number of working cores and their configuration for any defective array 

input. The program will provide switch settings of reconfigurable array and the type of 

pipeline stage fine-grain block instantiates for that particular configuration. 

 

 

For Objective-4:   

Xilinx X-power and Cadence RTL compiler will be used to determine power consumption of 

the reconfigurable hardware.  Xilinx ISE can provide logic area utilization and latency 

information. Availability of multiprocessor array with fine-grain reconfigurable block will be 

determined by obtaining its fault coverage with all possible reconfigurations.  
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1.5 Thesis Outline 

 

The rest of the thesis is organized as follows: 

 

Chapter-2 Includes background information. Starting with brief summary of related 

research and their comparison, it then provides introduction to DeSyRe project and coarse 

grain multiprocessor array.  

 

Chapter-3 Discusses implementation of fine-grain block for coarse grain multiprocessor 

array. It covers modifications in each pipeline stage and generation of array configuration 

bits. 

 

Chapter-4 Presents methods used in the evaluation of our design and experimental results 

of that evaluation which include area, performance, power & dependability analysis.            
 

Chapter-5 Provides conclusions of the work presented and give suggestions for future work 

and improvements. 
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Background  2 
 

 

This chapter will talk about basic concepts behind this thesis and previous research in the 

same area. It includes comparison of different approaches and discusses the basics of 

multiprocessor array. Starting with section 2.1, where we see how substitutable resources 

can be used for defect tolerance, we then shed light on some related work and their 

comparison in section 2.2. At the end in section 2.3 the basic concept of coarse grain 

reconfigurable multiprocessor array is discussed in detail. The work presented in this thesis 

is also an extension of this reconfigurable multiprocessor array.  

 

2.1                             Sparing Substitutable Units 

 

The concept of sparing resources to avoid faults is already common in data storage. DRAM 

and SRAM includes spare row and column cells which replaces defective ones when 

required. In general there are two main techniques that are commonly used in data storage 

devices at present. The first one is called Perfect Component Model [4] which handles the 

process of fault detection and then replace faulty components with spare ones in backend, 

thus hides faults from the user and the device appears fault free all the time. This approach 

is mainly used in DRAMs and SRAMs.  The second technique known as Defect map [4] 

reports the faulty components to the user and their usage is later avoided by recording their 

location at user level. This approach is common in magnetic disk storage such as computer 

hard drives.  

 

One issue with the sparing of resources approach is that it is not possible to have spares in 

design for all resources, power supply and clock nets for instance remain unique in the 

design and can be designated as non repairable resources. This problem can be overcome 

by minimizing the quantity of such components in the design or by improving their 

reliability. For this reason modern FPGAs usually have multiple clocks and IO nets that acts 

as spare components in implemented design. Granularity is another factor in sparing of 

components approach that limits the effectiveness and yield. The reason for this is twofold. 

First the defect rate of any component is proportional to the die area the component 

occupies and hence larger substitutable components means higher defect rates. Secondly a 

minor defect may result in discarding of entire components which are already limited in the 

design due to their larger size. Hence any design exploiting this approach needs to address 

the issues mentioned earlier.  

 

 

 

 

 



 

2.2                              Related Work 

 

In this section we will discuss some previous efforts and approaches that exploit the conce

of using redundant resources as spares. I

work that uses core level redundancy for fault tole

techniques in coarse grain reconfiguration are explored and then in sectio

recent work on similar approach but at a finer granularity.   

 

2.2.1                             Core Level Redundancy 

 

One way of having fault tolerance in processors is to use multiple cores as redundant 

elements. This approach has been adapted in many research 

challenges associated with this approach include f

and task migration from defective core. 

uses core domains to detect and contain faults

(Dual Modular Redundancy) or TMR (Triple Modular Redundancy) to r

order to contain faults only in the effected domain they proposed a technique called  

“configurable isolation”. Cores in each group shares 

interfaces in pairs.    

 

 

Fig 2.1 Four Fault Isolation Domains configured in TMR and DMR [5]

As an illustration of this approach 

TMR-DMR mode. Each colored domain contains two cores 

These colored domains are then used in both TMR and 

fault when required.    
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In this section we will discuss some previous efforts and approaches that exploit the conce

of using redundant resources as spares. In section 2.2.1 we will get some insight of previous 

work that uses core level redundancy for fault tolerance. Next in section 2.2.2 some 

grain reconfiguration are explored and then in sectio

recent work on similar approach but at a finer granularity.      

Core Level Redundancy  

One way of having fault tolerance in processors is to use multiple cores as redundant 

s been adapted in many research articles in the past. The main 

challenges associated with this approach include fault detection, fault isolation, recovery 

and task migration from defective core. In [5] a chip-multiprocessor CMP is proposed that 

to detect and contain faults. These processor domains works in DMR 

(Dual Modular Redundancy) or TMR (Triple Modular Redundancy) to recover from faults

order to contain faults only in the effected domain they proposed a technique called  

Cores in each group shares memory controller and communication 

 

Fig 2.1 Four Fault Isolation Domains configured in TMR and DMR [5]

 

As an illustration of this approach Fig 2.1 shows 8 core configuration of pro

mode. Each colored domain contains two cores in DMR with shared resources.

These colored domains are then used in both TMR and DMR fashion to compensate for any 

In this section we will discuss some previous efforts and approaches that exploit the concept 

section 2.2.1 we will get some insight of previous 

rance. Next in section 2.2.2 some 

grain reconfiguration are explored and then in section 2.2.3 we will see 

One way of having fault tolerance in processors is to use multiple cores as redundant 

articles in the past. The main 

ault detection, fault isolation, recovery 

multiprocessor CMP is proposed that 

These processor domains works in DMR 

ecover from faults.  In 

order to contain faults only in the effected domain they proposed a technique called  

memory controller and communication 

 

Fig 2.1 Four Fault Isolation Domains configured in TMR and DMR [5] 

of proposed CMP in 

with shared resources. 

MR fashion to compensate for any 
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Another effort involves a DMR variation called dynamic core coupling [6]. In this technique 

Instead of static coupling cores in CMP can verify each other’s output in a dynamic manner. 

This reduces design overheads by avoiding dedicated communication link and spare 

components and improves reliability by allowing more flexible and configurable coupling 

among cores. This means that any two available cores can be coupled to run a new thread. 

In their proposed scheme, fault recovery is employed in two ways. For soft errors by 

backward error recovery (BER) scheme, where both cores will rollback to a last known 

working state. For hard faults a forward recovery scheme is used in which a third core is 

brought in to coupling in TMR fashion and faulty core is bypassed.    

In another approach architectural redundancy is exploited to reuse a defective core in the 

event of hard faults [7].  The proposed technique is called “architectural core salvaging”.  

Here in the event of hard faults the working portion of defective core remains functional. 

Only those tasks that can no longer be executed in the defective core are migrated or 

exchanged with other fully functional core in CPU. Author claimed that this technique can 

cover larger core die area and require only minor architectural changes to implement. 

Yet another approach for core level fault tolerance is presented in [8]. It is called ElastIC 

architecture. It uses dynamic reliability management (DRM) scheme to deal with 

manufacturing defects and wear-out problems by applying voltage and frequency scaling 

techniques. Each processing units in this approach contains sensors to measure reliability, 

performance and power utilization. These measurements are then used by top software 

layer to initialize required bias voltages and clock delays to mask defects in that particular 

core. To summarize this discussion we can say that core redundancy is a suitable option for 

fault tolerance in microprocessors where sufficient resources, power & area budget is 

available. For tighter constraints and higher defect rates these approaches turn out to be 

less efficient and costly to implement. 
 

 

 

 

 
 

Fig 2.2  Performance degradation is mask by tunable flip-flops  [8] 
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2.2.2                             Fine-grain reconfiguration   

 

With the advancements in programmable logic, FPGAs are becoming more viable solution 

for fault tolerant designs. Their inherent redundancy in the form of LUTs and multiple I/O 

banks provides excellent base for defect tolerance.  Moreover in some solutions only their 

reprogramability is exploited to address manufacturing defects in integrated circuits.  One 

such example is an approach proposed by Ilya Wagner, Valeria Bertacco & Todd Austin [9]. 

In this method a FPGA module is used to check control flow in a processor pipeline. The map 

of faulty states is loaded in the FPGA module which is then compared with processor states 

in each cycle and upon match the processor is switched to a low performance mode. The 

normal performance mode will be restored once the faulty sate is passed. As this method is 

solely used to counter manufacturing defects therefore defects that are need to be patched 

are identified by other means a priory.       

 

In another approach the architectural redundancy of FPGA is used to recover from faults as 

mentioned earlier. For instance NASA’s Johnson Space center proposed a reconfigurable 

fault tolerance technique for space applications [10]. With this technique the hardware 

redundancy in FPGA chip can be reduced via mode selection in order to obtain more logic 

area. In this way the same FPGA chip can accommodate larger designs when reliability 

requirements are low. In another work instead of replacing defective components with 

spare ones a technique to reuse faulty components is presented [11].  Here a diagnostic 

scheme is used for FPGA cells at a finer grain to locate and categorize faulty elements. The 

working sections are then utilized to perform other operations.      

 

Dynamic partial reconfiguration is another interesting development in FPGAs. In this 

approach configuration of a particular portion in FPGA can be changed without causing any 

interruption in the working of remaining design. This technique has been exploited to 

recover from both soft & hard faults [12, 13]. Despite of its effectiveness this technique is 

expensive to implement as it requires extra control logic to detect faults in FPGA and 

perform partial reconfiguration to recover from these faults. This extra logic also needed to 

be fault tolerant in order to make the overall system reliable. From the above discussion we 

can conclude that FPGA based fault tolerance techniques have an edge over previous 

approaches mainly because of their inherent redundancy and re-programmability. But 

tradeoff associated with these approaches includes higher performance, area & power 

overheads that limits their feasibility in space & medical applications.  

 

 

2.2.3                             Coarse grain Reconfiguration 

 

With core level reconfiguration some level of fault tolerance can be achieved in exchange of 

significantly high area and power overheads. While on the other hand by using a fine-grain 

reconfiguration we can obtain much better defect coverage but will have to bear higher 

performance losses and implementation cost. Hence any solution that leverages the 

features of both coarse and fine-grain reconfiguration can potentially lower the gap 

between high performance and reliability at a reasonable cost.  One such solution is to use 

pipeline stages as a unit of reconfiguration in processor based designs.  



 

This idea has been explored

Architecture (CCA).  Another architecture that exploited this concept is called VIPER

Pipelines for Enhanced Reliability)

Based Reliable Architecture [

thesis is also based on a similar approach

 

In StageNet as shown in fig 

modified so that they can be detached when required to form new cores. Thei

technique uses crossbar interconnects

Some of the enhancements done in pipeline stages 

stage as a substitute of forwarding logic

register cache is used to support 

replaced by status register in each stage which allows stages to flush their contents 

automatically when branch mis

performance a data cache is also included in memory stage which can reduce the number of 

stalls required in any thread.  

 
 

Fig 2.3 Core Cannibalization Architecture [15]

 

 

The channel width of crossbar link also has an impact 

demonstrated in the paper by using three different channel widths. One last point to note 

about this architecture is that their proposed crossbar link imposes a constant overhead on 

performance, irrespective of any configuration. 

 

The Core Cannibalization Architecture (CCA) 

borrowing in multi processor environment. The key differences between CCA and StageNet 

lies in the interconnect logic. In CCA

be cannibalized. The rest of the 

borrow stages from a cannibalizable core

flexibility of reconfiguration compare

presented to handle performance penalties due to stage sharing. 
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has been explored in [14] as StageNet and in [15] as Core Cannibalization 

Another architecture that exploited this concept is called VIPER

Pipelines for Enhanced Reliability) [16] and more recently COBRA (Comprehensive Bundle

[17] which is an improved version of VIPER. 

similar approach. 

as shown in fig 2.5; 5 pipeline stages of a general purpose processor are 

modified so that they can be detached when required to form new cores. Thei

technique uses crossbar interconnects to facilitate pipeline stage sharing

done in pipeline stages include inclusion of scoreboard in issue 

forwarding logic for hazard resolution. Extra program counters and 

to support multiple threads on shared stages. Global flush signal is 

replaced by status register in each stage which allows stages to flush their contents 

automatically when branch miss-prediction occurs. Moreover in order to improve 

performance a data cache is also included in memory stage which can reduce the number of 

 

Fig 2.3 Core Cannibalization Architecture [15] 

The channel width of crossbar link also has an impact on performance which is 

demonstrated in the paper by using three different channel widths. One last point to note 

about this architecture is that their proposed crossbar link imposes a constant overhead on 

performance, irrespective of any configuration.  

The Core Cannibalization Architecture (CCA) (fig 2.3) also demonstrates pipeline stage 

in multi processor environment. The key differences between CCA and StageNet 

lies in the interconnect logic. In CCA only few cores in multi core processor 

the cores are regarded as non cannibalizable  (NC) 

borrow stages from a cannibalizable core (CC) to repair their faults. This approach limits the 

compared to StageNet. In their paper a number of solutions are 

presented to handle performance penalties due to stage sharing.  

] as Core Cannibalization 

Another architecture that exploited this concept is called VIPER (Virtual 

(Comprehensive Bundle-

s an improved version of VIPER. The topic of this 

5 pipeline stages of a general purpose processor are 

modified so that they can be detached when required to form new cores. Their proposed 

to facilitate pipeline stage sharing and borrowing. 

inclusion of scoreboard in issue 

xtra program counters and 

Global flush signal is 

replaced by status register in each stage which allows stages to flush their contents 

in order to improve 

performance a data cache is also included in memory stage which can reduce the number of 

 

on performance which is 

demonstrated in the paper by using three different channel widths. One last point to note 

about this architecture is that their proposed crossbar link imposes a constant overhead on 

demonstrates pipeline stage 

in multi processor environment. The key differences between CCA and StageNet 

multi core processor are modified to 

as non cannibalizable  (NC) and can only 

This approach limits the 

paper a number of solutions are 
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In one solution clock period is decreased to accommodate higher delay while in another 

solution pipeline registers are used to compromise in IPC so that fixed clock frequency can 

be used in all cores. Their design also uses input and output buffering in each stage to 

handle control hazards due to pipelining. Moreover in order to lower this overhead in 

performance, borrowing of stages is also limited to only single stage per faulty core. This 

restriction further limits the reconfigurability and as a result the defect tolerance 

capabilities of this architecture.    

 

The VIPER [16] architecture (fig 2.4) offers a distributed service oriented design that consists 

of large number of hardware clusters connected in a mesh fashion. These hardware clusters 

can provide multiple services such as instruction fetch and decode etc. and together form a 

virtual out-of-order pipeline. This makes this design far more flexible than previously 

discussed CCA and StageNet. The instructions in VIPER architecture are issued in bundles to 

the clusters forming a virtual pipeline and these clusters are controlled by distributed 

control logic called BSU (Bundle Scheduling Units).  

 

Their approach to distribute the control logic has improved the reliability of their design as 

compare to StageNet in which control logic is a single point of failure. Further multiple 

instance of same thread can be executed on independent virtual pipelines to obtain higher 

fault tolerance. The COBRA [17] architecture addresses the performance limitations of 

VIPER due to its distributed nature and offers multiple fault detection techniques to suit 

performance and fault tolerance requirements of the user. Their proposed architecture 

provides higher scalability with graceful performance degradation.  

 

 

 

 
 

Fig 2.4 VIPER architecture [16] 
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Fig 2.5 StageNet Multiprocessor Array [14] 

 

 

2.3                              Coarse Grain Reconfigurable Multiprocessor Array 

 

Now  that we have seen some earlier work on reconfigurable processor arrays Lets develop 

some understanding of the defect tolerant multiprocessor array this thesis is based on. This 

architecture is proposed by George Smaragdos in his Master’s Thesis [2].  As it is mentioned 

in sec 1.2, this defect tolerant multiprocessor array is one of the sub components in DeSyRe 

project. In this section we will see an introduction of DeSyRe project followed by a brief 

summary of this architecture.  

 

2.3.1                             DeSyRe (On-Demand System Reliability)  

 

DeSyRe is a research project sponsored by Euporean  Commission Seventh Framework 

program to built on-demand and reliable system-on-chip (SoCs) [3].  The main aim is to 

produce reliable and energy efficient devices from unreliable components. In order to 

achieve this task a System-on-chip framework based on reconfigurable hardware substrate 

is proposed. This SoCs consists of multiple design levels from software to all the way down 

to technology substrate. These levels can be broadly classified in to physical and logical 

domain. 

 

Physical abstraction deals with hardware components and is divided in to fault-free (FF) and 

fault-prone (FP) sections. Main functionality of the chip is place in FP region which consists 

of regular inexpensive components.  



 

13 

 

While the reconfiguration, communication and fault tolerance logic uses expensive FF 

region. Hence area of FF region is kept to minimum in order to reduce manufacturing cost. 

DeSyRe Soc uses a mix of fine (logic cell level) and coarse (Core level) grain hardware to 

provide fault tolerance at component level without compromising much on performance 

and power efficiency.  

 

Logical domain organizes DeDyRe SOC in three layers. These layers are termed as: 

 

 

- Component  

 

- Middleware 

 

- Runtime System 

 

 

Component layer provides actual functionality of the SOC. It consists of multiple 

components that lie under FP region. This layer is also responsible for fault tolerance in 

individual components and uses self-checking & correcting schemes to deal with faults at 

low level.  On top of component layer lays Middleware layer that facilitate reconfiguration 

of hardware and treats components as black boxes. It communicates with Runtime system 

in order to provide functional hardware. At the top most, Runtime system layer exists that 

deals with scheduling tasks and provide fault tolerance by selecting best possible task 

distribution that satisfies application requirements. The Runtime System is implemented in 

FF section of DeSyRe SOC.  

 

  

 

 
 

Fig 2.6 Three Abstraction Layers of DeSyRe SoC [3]  
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2.3.2                             Array Architecture  

 

The architecture of this multiprocessor array is similar to previously discussed StageNet and 

CCA. However here a reconfigurable interconnect is used to facilitate stage sharing. This 

approach provides higher flexibility in reconfiguration and also supports graceful 

performance degradation depending on number of defects.  

 

The array consists of 4 customized 32-bit RISC processors. Each of these processors has 4 

stage single issue pipeline: Instruction Fetch (IF), Decode (DEC), Execute (EX) and Memory 

(MEM) with Write Back (WB) combined. The Instruction set is 32-bits and can be divided in 

to 3 basic types: Integer arithmetic operations, memory operations and control-flow 

operations. The register file (RF) includes 16 32-bit registers and resides in DEC stage. The 

existing design has 8-kB instruction and 32-kB data memories which are part of IF and MEM 

stages respectively. The array is designed such that in the event of any defect the 

interconnect will reconfigures the array and forms new processor cores from available 

pipeline stages. In order to reduce wiring delay that is caused by long wires between distant 

cores, pipelining is used between cores. As a result of this pipelining, there are variable 

numbers of empty (Bubble) stages between the cores. The number of these bubble stages 

depends on the distance the data needs to travel from one core to another.      

 

 

The design supports following features, which are required for proper functioning: 

 

 

1- Binary Compatibility:  

Reconfigured cores can execute same binaries without recompilation.  

 

2- No Global Signals:  

No global signals are used for pipeline data hazard resolution. 

 

3- Reconfiguration only via interconnect:  

Reconfiguration is solely implemented by means of interconnect switches hence no 

architectural changes required.  

 

 

In order to handle pipeline data hazards in the absence of global signals a conflict table is 

used in EX and MEM stages. This table keeps record of all uncommitted instructions 

processed by each stage. The record is stored in a FIFO fashion and contains information 

about instruction type and result if there is any. In this way any subsequent instruction that 

requires an uncommitted value can get it from this conflict table without the need of any 

forwarding path. Uncommitted values in MEM stage can also be accessed by EX stage via 

MEM/EX feedback connection that is incorporated in the interconnect. IF the required value 

is not available in conflict table a pipeline data hazard occurs and all such hazards are 

resolved by flush & reload approach.  

 

Flush & reload mechanism works by resetting the pipeline register of EX stage and reloading 

the same instruction in the IF stage. This effectively provides extra clock cycles to pipeline 

stages for processing uncommitted instructions and it is anticipated that when the 
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instruction is executed again the hazard would already be resolved. Hence this mechanism 

works here as a substitute of global stall. The same approach is also employed for control 

hazard resolution. In addition a single ID bit is added in the instruction stream to indicate 

the validity of any instruction. In normal instruction flow this bit carries same value in both 

IF and EX stages. When a branch or function call occurs the EX stage flips the ID bit and 

triggers the same flush and reload mechanism but this time with the address of the next 

instruction in program flow. The IF stage then also flips this bit in new instructions while all 

other instructions with different ID bit are flushed upon arrival at the EX stage.  

 

The interconnect in this architecture consists of bi-directional tri-state switches and 

registers as shown in fig 2.8. Each switch has seven different configurations which allows 

signals to flow both vertically and horizontally in the interconnect matrix. Similarly 

interconnect registers can also pass signals vertically in either direction.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Different configuration settings of bi-directional switch and register   

 

As mentioned earlier the EX and MEM stages also have a feedback output for IF and EX 

stages respectively. Hence each of these stages has two switches at their output, as shown 

in fig 2.7.  The destination of each of these signals can be different from other and entirely 

depends on the location of respective stages in the array forming a particular core. 

 

This coarse grain reconfigurable multiprocessor array provides fault tolerance at the 

granularity of processor pipeline stages and it’s interconnect is more flexible and 

comparatively simpler to implement. This array can provide a working core as long as at 

least one instance of each of the four pipeline stages is available. In this thesis it is used as a 

four core multiprocessor array. 

SWITCH 

Control Signal Bit Pattern Function 

0001 In => North , Others Not Used 

0010 In => South , North => Out 

0011 North => Out ,  Others Not Used 

0100 North => South , In => Out 

0101 In => North , South => Out 

0110 South = > North , In => Out 

All Other In => Out  ,  Others Not Used 

REGISTER 

0 North => South 

1 South => North 
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Fig 2.7 Coarse Grain Reconfigurable Multiprocessor Array [2] 

 

 

 
 

Fig 2.8 Bi-directional switch and register used in the interconnect  

 

2.4                              Summary 

 

In this chapter essential background information was presented that will help the reader to 

follow coming chapters. In the beginning of this chapter some previous approaches that are 

related to the topic of this thesis are discussed. The differences in core level, fine-grain and 

coarse grain reconfiguration were presented. Later on the architecture of reconfigurable 

coarse grain multiprocessor array was discussed along with a short introduction of DeSyRe 

project. In the next chapter the design and implementation of a fine-grain wild-card for this 

multiprocessor array will be presented.  
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  3 

 

 
 

In this chapter the architecture of multicore array from section 2.3 is discussed with the 

addition of mixed grain reconfigurability. The array already supports coarse grain 

reconfigurability via its interchangeable pipeline stages. Now we will also include fine-grain 

reconfiguration with this array in order to improve its defect tolerance. This fine-grain 

section will act as a wild card in this array and provides extra pipeline stages to form a 

working core. In sec 3.1 design approach for instantiating pipeline stages within fine-grain 

block is presented. After that in sec 3.2 we will see how the objective of improving the 

performance of fine-grain block by 5X is achieved. At the end in sec 3.3 solution for 

generating configuration bits from the output of heuristic search algorithm is presented. 

 

3.1                              Implementation of Fine-Grain Block 

 

As it is mentioned earlier the fine-grain block is required to replace any of the four pipeline 

stages in the reconfigurable multiprocessor array. This level of programmability requires an 

approach similar to Field Programmable Gate Array (FPGA). As we know that this processor 

array is part of a customized SoC [3], hence actual implementation will most likely consist of 

a hybrid FPGA-ASIC design. However in this thesis as a proof of concept and for evaluation, 

Xilinx Virtex-5 FPGA is used to implement this fine-grain reconfigurable block. 

 

For proper integration with reconfigurable array, following are the design-constraints this 

fine-grain block needs to achieve: 

 

 

1- Existing interconnect should be used to connect the fine-grain block. 

 

2- Implemented stages should work as any other stage in the array. Hence no 

modifications should be made in the existing array and DT-core architecture. 

 

3- Instances of all four pipeline stages should be synthesizable with an FPGA, so that 

simulations and overhead estimation can be performed.  

 

4- Fine-Grain area should be not more than twice the area of single DT-Core. 

 

 

For the first constraint, the interconnect switch array is extended from one end so that a 

fine-grain block can be connected with the existing 4-core array as an extra processor core. 

The fine-grain block can be connected either at the top or bottom face of the array or in the 

middle (between two cores). The second option has a performance advantage over the first 

Mixed Grain Reconfigurable  

Multicore Array 
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one because the distance to the furthest core is reduced to half when fine-grain block is 

placed between the DT-array. Interconnect switches for the fine-grain block are configured 

along with the required pipeline stage externally when required. Implementation details of 

each pipeline stage are as follows:  

 

 

 

 
 

 

Fig 3.1  Two possible arrangements for 4-core Reconfigurable  

Multi-core array with Fine-Grain Block  

 

 

3.1.1                             IF (Instruction Fetch) Stage  

 

The Instruction Fetch stage mainly consists of program counter (PC) and instruction memory 

with its supporting logic. In the original defect tolerant pipeline, registers and memory 

elements resides outside of detachable pipeline stages. Hence these components always 

remain local to the particular core. For fine-grain implementation all related logic including 

registers and memory elements are also needed to be present in or near fine-grain along 

with respective stages. In any other arrangement extra wires will be required in the 

interconnect which would violate our main design constraint.    

 

While keeping these factors under consideration, The IF (Instruction Fetch) stage for fine- 

grain block includes: 

 

 

1- IF stage of DT-pipeline  

2- Program Counter  

3- Instruction ID register 

4- 8kB Instruction Memory  

5- Pipeline Register & Interconnect Switches 
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Among these five components, instruction memory requires special consideration as 

memory implementation usually varies with technology and tool vendors. Since our design 

will compose of both ASIC and FPGA portions therefore memory implementation will be 

different in each of these sections. In order to reduce area overhead of fine-grain block it is 

decided to place some heavy logic components in ASIC while remaining logic stays in FPGA 

substrate (Virtex-5). These components include memory blocks and registers from different 

stages. In current implementation a 2K x 32 bit single port ROM is used as instruction 

memory. 

 

For fine-grain we had two options for memory implementation. Fine-grain block can either 

have its own set of instruction and data memories or it can borrow them from nearest faulty 

stage. Since there are other ways available to protect memory from defects, it is undesirable 

to have an extra set of them in the defect tolerant array. Hence it is decided to incorporate 

extra logic in the array that will allow the fine-grain block to access instruction and data 

memories of adjacent defect tolerant core. Although this arrangement limits configuration 

options for the array but it is sufficient enough o allow fine-grain bock to replace any of the 

four pipeline stages of adjacent cores.        

 

3.1.2                             DC (Decode) Stage  

 

The Decode stage receives inputs from IF (Instruction Fetch) stage and outputs to EX 

(Execution) stage for further processing. It is mainly composed of instruction and address 

decoding logic along with register file for data storage. This register file in our case includes 

16 32-bit registers as mentioned in sec 2.3.2. The list of components included in the fine- 

grain implementation of DC stage is as follows: 

 

1- DC stage of DT-Core 

2- Register File  

3- Pipeline Register  

4- Interconnect Switches 

 

In order to minimize area overhead only the DC stage from DT-core is implemented in fine- 

grain area. This includes all main functions of decoding stage: 

 

1- Instruction Decoding 

2- Branch address generation 

3- Operand selection 

 

All other logic including register file and pipeline register is placed in ASIC section.  This logic 

distribution allows the DC-stage to remain under our area limits.     

 

3.1.3                             EX (Execution) Stage  

 

The Execution stage performs the main processing. It receives decoded instructions and 

their operands from DC (Decoding) stage and outputs the result to MEM (Memory) stage for 

data saving and write-back. In our DT-core EX-stage also execute branch instructions by 
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feeding back the new program counter value to IF (Instruction Fetch) stage. The fine-grain 

implementation of EX-stage consists of following components: 

 

1- ALU (Arithmetic & Logic Unit)  

2- Branch Execution Logic 

3- Conflict Table  

4- Pipeline Register 

5- Instruction ID register 

6- Interconnect Switches 

 

Out of these six components the conflict table, pipeline register and interconnect switches 

are placed in ASIC as part of area reduction approach. In order to deal with data hazards the 

EX-stage of DT-Core can access uncommitted instruction results from two sources, the 

memory feedback and conflict table. As it is stated in sec 2.3.2 the conflict table is a FIFO 

register that keeps record of uncommitted instructions. The size of this register depends on 

the maximum number of uncommitted instructions that can exist in the pipeline in any 

given configuration. Since the number of bubble stages varies with each configuration 

therefore a table that can service worst-case pipeline configuration has been implemented 

in the DT-array. The minimum required size for conflict table can be determined by Eq. 3.1: 

 

 

                    Minimum No. of fields in Conflict Table  =  2N -1         (3.1) 

 

Where,  

 

N = Number of processors we want to reach.  

 

 

The instruction ID register in EX-stage functions as explained in sec 2.3.2. Its purpose is to 

differentiate between valid and invalid instructions so that the results of invalid instructions 

can be discarded. Instructions present between IF and MEM stages of pipeline become 

invalid when a branch operation is taken. In this case EX-stage feeds-back the new program 

counter value to IF stage via interconnect switches. This same mechanism (Fetch & Reload) 

is also used to handle data hazards that cannot be resolved by conflict table and memory 

feedback. Hence the EX-stage in reconfigurable block works the same way as it does in DT-

Core (Sec 2.3.2). 

 

 

3.1.4                             MEM (Memory) Stage  

 

Memory stage of DT-Core performs both data-memory access and write-back operations. It 

receives input from EX-stage via interconnect and it outputs to DC & EX stages as part of 

write-back and EX-MEM feedback operation respectively. In fine-grain version, MEM-stage 

includes: 
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1- MEM-Stage of DT-Core 

2- 32kB Data Memory 

3- Conflict Table 

4- Pipeline Register 

5- Interconnect Switches 

 
 

 

 

 Fig 3.2  Fine-Grain Block with related components in ASIC 

 

 

Data memory is the main component in MEM-stage. In current implementation it is an 8K x 

32 bit single port byte-addressable RAM.  Like instruction memory the data memory is also 

borrowed from nearest MEM-stage in the DT-Array. MEM-stage also includes a conflict 

table to store produced values. These values are feedback to EX-stage in order to resolve 

data hazards due to Load/Store instructions.  The size of both conflict tables (in EX & MEM 

stages) is kept the same and its value is calculated from Eq.3 as shown earlier. Other than 

the MEM-stage from DT-core (that includes logic for Load/Store operations) the remaining 

components are placed in ASIC section of the SoC.   

 

 

3.2                              Bridging the performance gap between Coarse & Fine-Grain Blocks 

 

While reconfigurable logic brought much more flexibility and defect tolerance in the design 

its main drawbacks include higher logic footprint and extensive performance degradation. 

Both of these factors are highly technology dependent and also vary with CLB architecture 
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in FPGA chips. In our prototype, highest capacity Virtex-5 FPGA is used for fine-grain block 

implementation. This FPGA is based on 65nm technology and can work at a clock frequency 

of up to 500MHz. 

 

One of the main objectives of this thesis is to improve the fine-grain block performance by a 

factor of 5 or more so that the performance overhead associated with the usage of fine- 

grain reconfiguration can be reduced. This requires some micro-architectural modifications 

in the fine-grain versions of pipeline stages. From the synthesis of pipeline stages in their 

original form (on Virtex-5 FPGA) it is determined that a 5X performance improvement would 

require the critical path delay to be reduced from 30ns (EX-stage) to at least 6ns in all five 

instances of pipeline stages.  

 

 

Pipeline Stage Critical Path Delay in Fine-Grain (65nm) 

 (ns) 

IF 3.76 

DC 2.00 

EX 29.07 

MEM 12.33 

 

Table 3.1 Critical Path delay of unmodified pipeline stages    

 

 

According to table 3.1 MEM stage has the second highest delay at 12.3ns, while IF & DC 

stages are already far below the 6ns constraint. Due to this reason it is decided that only the 

architecture of EX & MEM stages will be analyzed in order to determine possible design 

modifications necessary for achieving 6ns or lower clock period in fine-grain block. Rest of 

this section will address issues related to performance improvement in fine-grain and 

present proposed solution for EX & MEM pipeline stages. 

 

  

3.2.1                             Performance Improvement for MEM (Memory) Stage  

 

The MEM-stage requires at least 50% reduction in its critical path delay so that it can meet 

the clock period requirement of 6ns.  After detailed analysis of its architecture the critical 

path is determined with the help of place & route delay reports. As it is stated in sec 3.1.4 

the MEM stage includes a FIFO buffer called Conflict Table. This table registers uncommitted 

instructions which can be searched within a single cycle in order to resolve data hazards.  It 

is observed that the critical path in MEM stage passes through this combinational search 

logic. Further it is also determined that the logic depth of search logic is proportional to the 

size of conflict table. Hence the impact of conflict table size on critical path delay is 

determined for different values of ‘N’ in Eq. 3.1.         

 



 

23 

 

 

 

 

Stage N = 4 N = 3 N = 2 N = 1 

 (ns) (ns) (ns) (ns) 

 

MEM 
 

12.33 
 

10.20 
 

7.42 
 

7.32 

 

Table 3.2 Original critical path delay of MEM-stage for different values of ‘N’    

 

 

It is apparent from table 3.2 that the minimum critical path delay achievable with this 

approach is 7.32 ns. Besides this, a table that can hold at least three records is required to 

support data hazard resolution between adjacent cores of DT-array. Due to this constraint it 

is decided to limit the conflict table size to three fields (N = 2) and then apply logic level 

reduction techniques to further decrease this critical path delay as much as possible. There 

are two commonly used techniques for this purpose: 

 

 

1- Pipelining 

 

2- Parallelism   

 

 

Pipelining approach is not the best choice in our case since each new pipeline level would 

add another bubble stage in the instruction flow, hence raises the need of larger conflict 

table to cover for one extra clock cycle. Therefore parallelism approach is adapted to 

decrease logic levels in conflict table. The conflict table search logic works by matching the 

required register name with the previously stored destination register names in the table. 

The search starts from most recent record and proceed downwards until either a match is 

occurred or the table ends. In hardware this functionality is produced by comparators and 

priority encoders.    

 

The conflict table includes three pieces of information in each record, out of which two 

(Reg. Name & Instruction Type) are used to select particular record in the table. This results 

in cascaded comparator & priority encoder logic for each record entry. Final output of this 

logic is used as ‘select’ input of a multiplexer which selects stored register value from the 

third column of record. These cascaded priority encoders are generated during the synthesis 

process due to nested IF-ELSE conditions in the RTL. It is discovered that these cascaded 

priority encoders are the main cause of higher number of logic levels in conflict table which 

essentially makes it a critical path in MEM-stage. 
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Fig 3.3 Original search logic of Conflict Table  

 

 

In order to reduce this critical path, cascaded priority encoders are replaced by decoder 

priority encoder pairs. This approach uses “when-else” statements in VHDL code of conflict 

table. It is a concurrent statement contrary to IF-ELSE which is sequential. This modification 

results in 30% reduction of critical path delay according to synthesis reports from Xilinx ISE.  

Moreover delay in conflict table search logic is further reduced by eliminating address and 

enable signals used to access each record from other components. Instead the whole 

conflict table is routed to each component that accesses it. This approach results in a higher 

logic area due to greater number of fan-outs but the overall access time of conflict table is 

improved.  

 
 

                

 
 

 

Fig 3.4 Modified search logic of Conflict Table  
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With all these measures the critical path delay of MEM-stage has been successfully reduced 

to 5ns, which is well under the original 6ns constraint. The synthesis tool (Xilinx ISE) also 

plays a part in achieving this value by providing timing optimizations during synthesis 

process.    

 

 

3.2.2                             Performance Improvement for EX (Execute) Stage  

 

The EX stage exhibits highest critical path delay among the four pipeline stages as shown in 

table 3.1. In order for the fine-grain block to work at 200 MHz (5ns Clk period) the critical 

path delay in EX stage needs to be reduced by at least 83%. As mentioned in sec 3.1.3 the 

EX-stage also includes a conflict table which is exactly the same as in MEM-stage. Therefore 

same performance improvement measures are implemented for this conflict table that are 

used in MEM-stage as mentioned in sec 3.2.1.   

 

 

 

Stage N = 4 N = 3 N = 2 N = 1 

 (ns) (ns) (ns) (ns) 

 

EX 
 

29.07 
 

22.78 
 

16.50 
 

9.85 

 

Table 3.3 Original critical path delay of EX-stage for different values of ‘N’    

 

 

Since we already decided to limit conflict table size to 3 fields in previous section, therefore 

here we will take this as a constraint for EX-stage and try to achieve 5ns clock period. After 

similar modifications in conflict table search logic we are able to achieve clock period of 

10.85 ns (for N =2). At this point from place & route delay reports it is determined that new 

critical path passes through ALU block in EX-stage.   

 

Detailed study of EX-stage architecture revealed that parallelism in micro-architectural level 

cannot further improve the critical path delay.  The ripple carry adder in ALU uses fast carry 

chains available in Virtex-5 FPGA, hence it is already faster and smaller than any carry tree 

adder at 32-bits [18]. Further the 32-bit shifter in ALU (VHDL ‘sll’ & ‘slr’ operators) already 

uses multiplexers to perform shifting operations, hence cannot be optimized further.  Due 

to these reasons we decided to attempt following two approaches: 

 

 

1- Pipeline EX-stage by two levels to decrease the critical path delay by 50%. 

 

2- Double the number of execution stages to increase throughput by 50%. 
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By Two Parallel Execution Stages  

     

As stated earlier in sec 2.3.2 the defect tolerant pipeline we are using is single issue only 

therefore in order to obtain benefit of having two execution units we have to include a 

demultiplexer at the input and a multiplexer at the output of dual EX-stage setup. 

Instructions from decoding stage are then feed to each of the execution stage on alternate 

clock cycles. In this way theoretically the throughput of EX-stage that is running at half the 

clock frequency of other stages can be doubled to meet our performance goal (5ns clock 

period).   

     

However in order for this setup to work properly some modifications in EX-stage are 

required so that both stages can share uncommitted instruction values via a shared conflict 

table. This conflict table sharing is necessary since the result of instruction processed in one 

EX-stage may be required in the second one on subsequent cycles due to alternating 

instruction issue scheme, as shown in fig 3.5.     

 

Moreover in case of stalls & branch operations the clock cycle penalty will be similar to a 

pipelined design. This is due to the usage of “flush & reload” mechanism to handle not only 

branch operations but also stalls (Sec 2.2.3). With all these issues there seems to be no 

apparent advantage in this approach over pipelining. Instead the area utilization will be 

more than doubled which not only increases the power consumption but also exacerbate 

the defect probability.         

 
 

  
     

Fig 3.5 Performance improvement of EX-stage by parallelism  
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By Pipelining the Execution Stage  

 

Another option to decrease critical path delay is by pipelining the design. Since we only 

require reducing the critical path delay of EX-Stage by 50%, therefore two-level pipelining is 

sufficient to achieve our target of 5ns. In the following text we will describe how EX-stage is 

pipelined and how new data & control hazards due to pipelined EX-stage are resolved.    

 

The process of pipelining a design involves addition of registers in the design hierarchy so 

that critical path delay can be broken down in to a number of levels hence improves 

maximum clock frequency requirement. The first step in this process is to draw a data flow 

graph (DFG) of the design. A DFG shows the flow of data between input and output passing 

through different components in the design. Fig 3.6 shows DFG of EX-stage with critical path 

market in red color. As we can see there are both feedforward and feedback paths in our 

design. Since the critical path is on feed-forward direction therefore we will use feedforward 

cut-set technique to determine the location of registers. 

             
 

 

Fig 3.6 Data Flow Graph of EX-Stage-Critical Path in Red  

 

In the second step the ALU node is broken down into two nodes. Ideally these two nodes 

should have exactly same latencies in order to achieve 2X improvement in clock frequency. 

However in reality achieving such accurate delay distribution is sometimes too complicated 

and may require more registers. Therefore designers usually prefer convenience over 

optimality when pipelining any design [19 , 20].  

 

In our case the ALU is partitioned in to Opcode decoder and Adder/Shifter sections, which is 

easier to implement as compare to partitioning the adder or shifter from a specific point.  
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After that a feedforward cut-set line is drawn on DFG. A feedforward cut-set line is defined 

as: 

 

A cut-set line that joins the edges of the graph on which data flows in forward direction such 

that if those edges are removed the graph becomes disjoint [19].       

 

As we can see in Fig 3.7 the ALU is divided in to two ALU components ALU1 & ALU2 and then 

a feedforward cut-set line is drawn between ALU1-ALU2 & Comparator-ALU2 edges on the 

DFG. These are the only two forward paths in EX-stage which if removed will completely 

disconnect all inputs from the output node.  Therefore these are the points where we will 

add one register each in order to make EX-stage two-level pipelined. By adding pipeline 

registers with this method the data coherency is guaranteed which requires that in a 

pipelined design all forward paths should contain equal number of registers.  

 

              

 
 

Fig 3.7 DFG of EX-Stage with split ALU & Feedforward Cut-set line 

 

 

The exact location of these registers in the hardware is determined by register balancing. In 

our case it is automatically resolved by FPGA synthesis tool (Xilinx-ISE). Now in the third & 

last step registers are added at the selected locations in RTL of the design (EX-stage). It is 

worth mentioning here that the process of adding registers in the RTL requires careful study 

of component hierarchy in the RTL as well, which may be slightly different then DFG. 

Therefore this process may require modifications in RTL at multiple locations.  

 

The EX-stage in our design also includes branch determination and execution logic along 

with the ALU. The architecture of branch logic is very similar to ALU and some of the logic is 

shared between these two components. Due to this reason the branch logic is also pipelined 
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in a similar fashion as we have seen for ALU. However unlike ALU the output of branch 

operations are feed to IF-stage via EX-feedback line as described in sec 3.1.3. 

             
 

Fig 3.8 DFG of Pipelined EX-Stage  

 

 

 

 

                        

              

 
 

 

Fig 3.9 Block Diagram of Pipelined EX-Stage  
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3.2.3                             Data Hazard Resolution in Pipelined EX-Stage 

 

Pipelining even though improves the throughput of a design but it comes with a cost in 

terms of latency.  Moreover in a processor based design (Instruction Pipeline) performance 

cost is not just limited to higher latency caused by pipelining. The addition of pipeline 

registers also increases data hazards as there are now more uncommitted instructions in the 

pipeline then before. These data hazards are also a major concern in our pipelined EX-stage. 

In order to deal with this issue extra hazard detection logic is incorporated at the input of 

EX-stage. 

 

The original design (DT- Pipeline) doesn’t have the provision to handle new data hazards 

due to extra pipeline stage latency. The existing stall detection logic assumes that all 

required values should be either available in the register file or can be found in conflict table 

and memory feedback line. The stall signal is asserted if required value is not available in 

any of these locations. This can only happen with instructions that require memory access 

(load/store), hence hazards caused by these operations are already taken care of in the EX-

stage.    

 

 

The additional hazard detection logic works as follows: 

 

 

1- All incoming instructions, their operands and states of program counter & 

Instruction ID register are hold for one cycle using a register.  

 

 

2- Potential hazards are checked only if EX-stage is not already executing a branch or 

initiated flush & reload operation due to previous stall. 

 

 

3- Type of current and previous instruction is checked for dependency, i.e. if a RAW or 

WAR hazard can be caused by them. 

 

 

4- Hazard Flag is set when source register of current instruction is same as the 

destination register of previous instruction. 

 

 

 

As stated earlier, in our design all pipeline hazards are resolved by “flush & reload” 

mechanism. Hence detection of any RAW or WAR hazard will be followed by flushing of the 

pipeline registers and re-fetching the same instruction in the next cycle. Since until the re-

fetched instruction reaches the EX-stage there will be un-executed instructions in the 

pipeline that were previously fetched. All such instructions needed to be flushed as well in 

order to avoid incorrect program flow. For this purpose a mechanism based on Instruction 

ID matching is already part of DT-pipeline and discussed in sec 2.3.2.            
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Besides the addition of hazard detection logic to handle data hazards in pipelined EX-stage, 

two more issues are identified in the pipelined design. One issue is that in an un-pipelined 

design when the branch or stall (flush & reload) operation initiates, the pipeline register at 

the output of EX-stage is flushed and the logic will keep it in reset state until a valid 

instruction arrives at the input of EX-stage.  Now in a pipelined version when a branch 

instruction is resolved there will be an under-process instruction in the second stage of the 

pipeline. Hence if pipelined is flushed in next cycle the result of this instruction will be lost. 

This issue is solved by delaying the flushing signal for one cycle so that the result of last 

instruction can be saved in the conflict table before pipeline flushing occurs.    

 

The second issue is caused by the hazard detection logic that we have implemented at the 

input of EX-stage. In a scenario when a hazard is detected by our additional hazard 

detection logic there will be an under-process instruction in the second stage of pipeline. 

The result of this instruction will be available at the output of EX-Stage pipeline register in 

the next cycle while in the same cycle flush & reload operation is also initiated. Since during 

flush &  reload operation the contents of conflict table are not updated in original design 

therefore the result of last instruction will not be saved in the conflict table, instead it is 

expected that the register file will get updated before a valid instruction arrives at the input 

of DC-stage. In order for that to happen we have to delay the EX-feedback signal by one 

cycle so that new data can arrive from write-back path in DC stage before the required 

instruction is fetched. 

 

 

                        

 
   

 Fig 3.10 Data Hazard Resolution by delaying Re-fetch by one cycle 
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With this approach we would experience minimum penalty of 4 cycles whenever our 

additional logic detects a hazard.  This penalty can be reduced by one cycle with a slightly 

different approach. Instead of adding a register at the output of EX-feedback line so that the 

DC-stage can have enough time to update register file we can store the result in the conflict 

table by just allowing it to shift values once during the flush & reload operation in EX-stage.  

 

In this way even though register file is not yet updated when a new instruction arrives at DC 

stage, the updated value will be found in EX-stage through the conflict table and in an ideal 

scenario data hazards can be resolved in three cycles instead of four. We also need to flush 

EX-feedback output for invalid instructions like we are doing for EX-stage pipeline register. 

This functionality is already available in DT-pipeline and it doesn’t allow invalid branch 

instructions to use EX-feedback line. It is part of flush & reload mechanism and its details 

can be found in [2].     

 

       

 
    

Fig 3.11 Data Hazard Resolution by allowing conflict table 

 shifting during flush & reload operation 

 
 

With these modifications the pipelined EX-stage is able to process all types of instructions 

available in our ISA with some performance loss. The effect on performance would get even 

worse as we add bubble stages in the pipeline to form new cores. This is expected as 

pipelining causes more data hazards and the sole remedy EX-stage has for all types of 

pipeline hazards is to re-fetch the instruction and flush the pipeline.  Hence more flush & 

reload operations are expected in the pipelined version as compare to an un-pipelined EX-

stage. 
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Fig 3.12 Flow Chart of Additional Hazard Detection Logic 
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3.3                              Configuration bitstream generation for 4-core Mixed-Grain DT-Array  

 

Up till now we have discussed how Fine-grain bock is used as a wild card to provide extra 

pipeline stage in DT-Array. As mentioned before the DT-array consist of 4-DT cores that 

supports pipeline stage sharing via interconnect switches.  These switches are configured by 

a higher level application (Middleware layer in DeSyRe) according to the results of a 

heuristic search algorithm called “Greedy” [21 , 22]. This algorithm receives the location of 

defective stages at regular intervals and based on this information it dynamically 

reconfigures the DT-Array so that it can provide maximum number of working cores at any 

given time.  

 

The existing implementation of “Greedy” algorithm doesn’t consider fine-grain block when 

determining new configurations. Therefore before configuration bits for switches can be 

generated we have to include support for our fine-grain block in this algorithm along with 

the constraints mentioned in previous sections, such as: 

 

1- Fine-grain block is implemented in the middle of 4-core DT-Array. 

 

2- IF & MEM stages in fine-grain can only replace corresponding stages in adjacent DT-

cores. 

 

3- Fine-grain block should only be used to increase the number of working cores, hence 

needs to be avoided whenever possible. 

 

4- When fine-grain block is not required, it should be bypassed in order to obtain 

maximum performance. 

 

The Greedy algorithm works by starting from first available pipeline stage (from the top) in 

the bottleneck column and then searching for nearest available stages one after another in 

both left and right directions in the array until a four stage pipeline is completed. After that 

the same process is repeated for second working core starting from the next available stage 

in bottleneck column and so on.  The bottleneck column is the one which contains least 

number of working stages. When there is no unique bottleneck column exists the algorithm 

considers the first discovered bottleneck column as the starting point.   

 

Since our fine-grain block can only provide one stage at a time, it can be included with the 

array matrix as an extra 4-stage pipeline with only one functional stage.  In this way the 

stage implemented in fine-grain block can be used by existing algorithm to form new cores 

without any major changes. In order to decide which stage should be implemented on fine- 

grain block if any, following approach is adapted: 

 

1- Search for unique bottleneck column. 

 

2- If a unique bottleneck column exists, fine-grain block will be used. 

 

3- Fine-grain block implements the stage represented by that unique bottleneck 

column. 
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The condition of unique bottleneck column ensures that the fine-grain block will only be 

used when a working core can be made with its help. Since if there exist more than one 

bottleneck column, replacing one of the defective stages with fine-grain version won’t help 

in building a new working core.  Once the decision about fine-grain block is taken we will 

proceed with greedy algorithm to produce combinations for working cores based on the 

input DT-Array matrix. If we decided to use the fine-grain block, it will be included in the 

middle of array matrix as an extra core with only one working stage.    

 

Sine in the original implementation of greedy algorithm the search for working stages 

always starts by looking downwards in the array; it is observed that the greedy algorithm 

fails to take advantage of fine-grain block in those cases when the defective stage exists on 

the top of fine-grain block (first two cores) in the DT-array matrix. This problem is solved by 

distributing 4 DT-cores in the array in to top and bottom sections. The bottleneck column of 

top section is determined separately. If this column is found to be same as the bottleneck 

column of the entire array then the greedy algorithm will start its search by first looking 

upwards in the array, otherwise it will look downwards as usual.  

 

 

 

 
  

 

Fig 3.13 Formation of cores by Greedy Algorithm  

Left-Original vs. Right-Improved 

 

 

After obtaining number of new cores and their configuration in DT-Array matrix from the 

output of greedy algorithm we can now generate interconnect switch settings which will 

implement that configuration in the hardware. As it is mentioned earlier in sec 2.3.2 the 

interconnect in our DT-array consists of bidirectional switches and registers. The switches 

can be configured in seven different ways while registers have only two modes as shown in 

table 2.1.   

 

In order to produce required switch settings for the array each set of pipeline stages that 

will form a working core are arranged in a sequence. In this sequence stages appear in pairs 

with stage that receives data always on the right side and the stage that outputs data on the 

left. As a result for any core configuration we will get a ten stage sequence, as shown in fig 

3.14. 

 



 

36 

 

 
 

 

 

Fig 3.14 Flow chart of Greedy Algorithm 
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In a C-language code it is implemented as a 1-D array of size ten where each location 

represents a particular pipeline stage and the value stored in that location represents the 

core that stage belongs to.      

 

 

 
 

Fig 3.15 Stage sequence used for the generation of array switch settings 

  

 

This sequence is then used as a true core configuration which clearly specifies the direction 

of data flow between stages. In the next step switches of each stage in the sequence are 

assigned a particular setting depending on their location in the DT-array. If a stage that 

outputs data is located at a higher point in the array as compare to its receiving counterpart 

the relevant switches are configured to allow data flow from north to south and vice versa. 

This whole process is repeated for every core configuration produced by the greedy 

algorithm along with the settings for pipeline registers in the interconnect. The assignment 

procedure for registers is similar to the switches and takes place simultaneously in the code. 

 

The constraint check for IF & MEM-stage replacement is included in the beginning of the 

code where the decision to including fine-grain block is taken. Hence if the bottleneck 

column represents IF or MEM stage and the faulty stage is found to be from distant core 

then the fine-grain block will not be included in the array matrix. As a result the greedy 

algorithm will process only a 4-core DT-array and generate possible core combinations 

based on that.   

 

The software to generate array switch settings is programmed in C language. It is then 

integrated with the existing program that takes a text file containing defect layout of the 4 

core DT-array as input and produces new core combinations for it. Later on the program is 

updated to include the provision of fine-grain block in the algorithm and display the entire 

switch and register settings of 4core DT-Array along with the name of the stage that fine- 

grain block implements when in use.      
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Fig 3.16 Flow chart for generation of DT-Array switch configuration  
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Fig 3.17 Illustration of configuration generation program 

 

 

 

3.4                              Summary   

 

In this chapter the implementation of fine-grain block for our mixed grain DT array was 

discussed in detail. All related aspects regarding the placement of fine-grain block in the 

array and the instantiation of individual pipeline stages were covered. We have seen the 

realization of two different performance improvement methods, pipelining and parallelism 

and their impact on our design constraints. An improvement on conflict table logic was 

proposed to further reduce critical path delay in EX-stage. Then a solution for handling data 

hazards caused by pipelining was presented in detail. It was shown that with some minor 

modifications the hazard resolution penalty can be reduced in pipelined version. In the end 

the process of determining working cores in the DT-array was discussed along with the 

inclusion of fine-grain block and the generation of switch settings for any given array 

configuration.  The next chapter will present our design evaluation approach and its results 

for the 4 core DT-array with fine-grain reconfigurability. 
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  4 

 

 
 

In chapter 3 we have seen the implementation of fine-grain block for 4 core DT-Array. Now 

this chapter will describe the evaluation procedure adapted in this thesis to measure and 

verify different attributes of this fine-grain block when it is used with the 4-core DT array. 

The fine-grain block is evaluated for area utilization both in ASIC and FPGA , power 

consumption, its best and worst case performance  and the improvement in availability of 

working cores by the inclusion of fine-grain block. In sec 4.1 we will see how the initial RTL 

code and C-compiler is obtained for fine-grain implementation. Sec 4.2 will talk about 

synthesis procedure and measurements for fine-grain area.  Evaluation for performance and 

power consumption is presented in sec 4.3. In the end sec 4.4 includes dependability 

analysis. 

 

4.1                              Acquisition of initial RTL Code and C-Compiler  

 

The original DT-Core was developed from a demo 5-stage RISC processor model in Synopsys 

Processor Designer suit [2]. The demo processor with some modifications was used as a 

baseline core in previous work and in this thesis we have also considered it as a baseline for 

our analysis and comparison. The need to regenerate RTL files for fine-grain version arises 

due to our reduction in conflict table size for performance gains as discussed in Chapter-3. 

The Synopsys processor designer suit uses a processor description language called LISA 

(Language for Instruction Set Architecture) to develop processor models which can be 

converted to synthesizable RTL when required. Moreover it also generates simulation files 

and a C-compiler for the given processor design using its compiler designer tool.  

 

In order to change the conflict table size the LISA model of DT-core is revised in PD suit and 

new VHDL description of the DT-core is obtained. This VHDL code is then used to manually 

develop fine-grain versions of pipeline stages. The C-compiler of DT-core is also an extension 

of the C-compiler from baseline design. For DT-core this compiler was modified in previous 

work so that the delay slots in assembly code will not be filled by NOPs instructions [2]. In 

our analysis we decided to use the same compiler even though the compiler produced by 

newer version of PD (PD-2011) generates more optimized binaries. The old compiler is 

chosen because new 2011 version of PD lacks in the support for old processor models, due 

to which new C-compiler for baseline processor cannot be obtained. Hence in order to have 

a fair comparison we have no other choice but to use compilers generated by older version 

of PD suit with both baseline and DT-core.   

 

 

 

 

 

Evaluation & Results 



 

4.2                              Synthesis and Area Utilization  

 

The actual implementation of 

as shown in fig 3.2.  Therefore 

the RTL of fine grain versions of all four 

ASIC technology using same feature size of 65nm. 

are then compared to compile the actual area utilization for each stage. 

Xilinx Virtex-5 FPGA is used and 

terms of Registers and LUTs, while for ASIC synthesis Cadence RTL compiler is used and logic 

area is obtained from its area reports in micrometer squares.  The RTL compiler obtains area 

values from technology library

from ST microelectronics are used

 

In order to compare both ASIC and FPGA area reports we need to convert the logic 

utilization reported by Xilinx from number of registers and LUTs to 

unit such as micrometer squares.  

the area utilization of ASIC and ALTER FPGAs at 65nm scale [2

of a single ALTERA LUT (ALUT) in millimeter squares.  From there 

both Xilinx Virtex-5 and ALTERA Startex III FPGA are compared and it is found that Xilinx 

Virtex-5 LUT-Register pair only takes half of the Startex III ALUT area and it is found to be 

about 0.55 micrometer squares. In this way we are 

our design in both ASIC and FPGA and by 

FPGA according to our implementation a realistic estimate regarding the area utilization for 

each pipeline stage has been made.  

 

 

 

 

Fig 4.1 Area utilization of each reconfigurable stage in relation
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Synthesis and Area Utilization   

The actual implementation of fine-grain block is distributed among FPGA

as shown in fig 3.2.  Therefore in order to obtain a realistic estimate of their area utilization 

the RTL of fine grain versions of all four pipeline stages are synthesized with

hnology using same feature size of 65nm. The area reports of both implementations

are then compared to compile the actual area utilization for each stage. For FPGA synthesis 

5 FPGA is used and logic utilization is obtained from Xilinx ISE’s m

terms of Registers and LUTs, while for ASIC synthesis Cadence RTL compiler is used and logic 

from its area reports in micrometer squares.  The RTL compiler obtains area 

from technology library files. In our case 65nm standard cell and memory libraries 

are used for ASIC synthesis.   

In order to compare both ASIC and FPGA area reports we need to convert the logic 

utilization reported by Xilinx from number of registers and LUTs to a more comprehend

micrometer squares.  For this purpose we exploited a research conducted on

and ALTER FPGAs at 65nm scale [23]. The paper provides

of a single ALTERA LUT (ALUT) in millimeter squares.  From there the architecture of LUTs in 

5 and ALTERA Startex III FPGA are compared and it is found that Xilinx 

Register pair only takes half of the Startex III ALUT area and it is found to be 

about 0.55 micrometer squares. In this way we are able to compare the 

ASIC and FPGA and by distributing logic components between ASIC and 

FPGA according to our implementation a realistic estimate regarding the area utilization for 

each pipeline stage has been made.    

4.1 Area utilization of each reconfigurable stage in relation

to Baseline and DT-core area 

DC EX MEM

Baseline

DT-Core

Fine Grain Block

among FPGA and ASIC sections 

in order to obtain a realistic estimate of their area utilization 

with both FPGA and 

of both implementations 

For FPGA synthesis 

logic utilization is obtained from Xilinx ISE’s map report in 

terms of Registers and LUTs, while for ASIC synthesis Cadence RTL compiler is used and logic 

from its area reports in micrometer squares.  The RTL compiler obtains area 

andard cell and memory libraries 

In order to compare both ASIC and FPGA area reports we need to convert the logic 

a more comprehendible 

a research conducted on 

]. The paper provides us area 

chitecture of LUTs in 

5 and ALTERA Startex III FPGA are compared and it is found that Xilinx 

Register pair only takes half of the Startex III ALUT area and it is found to be 

able to compare the area utilization of 

distributing logic components between ASIC and 

FPGA according to our implementation a realistic estimate regarding the area utilization for 

 

4.1 Area utilization of each reconfigurable stage in relation 

Baseline

Core

Fine Grain Block
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In figure 4.1 we can see that the EX-stage occupies more than twice the area of a complete 

DT-core.  The area reports show that 60 % of this area is used by ALU in EX-stage alone and 

hence it is the main reason for having such a high area value.  Since the fine-grain block is 

designed to replace any of the 4 pipeline stages therefore its size in the DT-array should be 

at least equal to the size of an EX-stage. i.e. 1.1 mm
2 

approx. 

 

 

 

 

 
 

 

 

Fig 4.2 Synthesis flow in ASIC & FPGA environment 

 

 

4.3                              Performance and Power Consumption  

 

In this section we will present the method and tools used to assess the performance and 

power consumption of 4-core DT-Array with Fine-grain block. At first we will discuss 

benchmark applications that are used in this analysis, and then we will describe the test 

setup used to acquire performance and power values. Next details of adapted procedure 

are presented and at the end we will see the results of this analysis.   

 

4.3.1                              Benchmarks  

 

In order to evaluate performance and power consumption we required a set of benchmark 

applications to run with our design. In previous work four such benchmarks were used to 

assess the performance and power of 4-Core DT-array [2]. We decided to use the same 

benchmarks as they are equally suitable for providing reasonable workload to pipelined 

version of EX-stage in Fine-grain. A short description of these benchmarks is as follows: 

 

 



 

43 

 

1- Function Argument Heavy Code: 

This code contains function calls having a high number of arguments. It is designed 

to simulate data hazards due to memory load / store operations. These instructions 

will cause flush & reloads even in normal DT-pipeline but the penalty will be high 

when Fine-grain EX-stage and/or bubble stages are involved.  

 

2- Heavy Read After Write Conflict Code: 

This code generates high number of RAW hazards. In normal DT-pipeline they are 

covered by feedback (forwarding) but with Fine-grain version of EX-stage and/or 

when bubble stages are involved they would cause pipeline to stall.  

 

3- Heavy Branch Non-Taken Code: 

It is designed to assess branch miss-prediction handling. Like with previous 

benchmark the normal DT-pipeline handles these dependencies via feedback 

(forwarding) but with Fine-grain implementing EX-stage and/or with bubble stages 

higher number of flush and reload operations occurs.  

 

4- Normal C For-Loop Code: 

This code includes a for-loop without body. Other three benchmarks are consisting 

of similar for-loops with extra instructions in their body to generate respective 

pipeline hazards.  This benchmark represents a piece of code that is commonly found 

in any application.  As before the inclusion of bubble stages and/or Fine-grain 

implementation of EX-stage is likely to stall the pipeline more often. 

 

 

4.3.2                              Test Setup  

 

The fine-grain block is designed to provide pipeline stage replacement for up to two nearest 

processors only. Therefore we have placed it in the middle of the 4-core DT-array as shown 

earlier so that it can reach all four cores.  Hence In order to test its functionality and obtain 

performance and power results we just need to simulate cases that includes half of the 4-

core DT array since the values from other half will be exactly the same.    

 

The setup will include one fine-grain block along with two adjacent DT-cores where one of 

the DT-Core will be directly connected to the Fine-grain block (without any intermediate 

pipeline registers) while the other core links to the fine-grain block via a single layer of 

pipeline registers as in the actual implementation of our 4-core mixed-grain DT-Array. There 

will be two test cases for each fine-grain implementation of pipeline stages. One core 

configuration with lowest overhead in performance (Best case) and the other with highest 

overhead (worst case).  Fig 4.3 shows these cases, where we can see that the performance 

overhead is caused by pipeline registers between the two cores. Hence the more we switch 

stages between the two cores the more bubble stages will be added in the pipeline.   
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Fig 4.3 Test cases for performance and power evaluation - One Best Case and one Worst-  

Case configuration for each Fine-grain implementation of pipeline stage 

 

 

 

4.3.3                              Procedure 

 

Here we describe the procedure used to acquire performance and power results for test 

cases mentioned in previous section. We have already acquired ASIC netlist and FPGA post 

P&R simulation model for each fine-grain version of stages from the synthesis process 

described in sec 4.2. From synthesis process we also obtained the values of minimum clock 

periods possible along with the area reports. Initially a realistic target clock constraint is 

provided to the tool and by running the synthesis engine on the design it is determined if 

that constraint is achievable. If tool fails to achieve the required constraint we increases the 

clock period a little and thus through trial and error determines the maximum clock 

frequency of the design.  

 

Now the synthesized RTL files are simulated in QuestaSim simulation suit with all four 

benchmark applications in order to record execution time and switching activity (VCD files) 

for each case. The simulations are performed at maximum clock frequency of each 

component. For fine-grain the maximum clock frequency is 200MHz which corresponds to 

5ns clock period as discussed in chapter-3. It is assumed that the DT-core runs at its own 

maximum clock frequency in normal situation and when fine-grain block is used to replace 

any stage the whole core will switch to 200 MHz clock.  
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Fig 4.4 Flow chart for determining execution time and 

generating VCD files 

 

 

 

For execution time measurements only the FPGA post P&R model is used along with the 

behavioral description of 4-core DT-Array, while  for Power measurements both ASIC & 

FPGA versions are simulated in order to acquire two sets of VCD files for each benchmark. 

During simulation the VCD files are recorded for first 1000ns in order keep their size small 

while still capturing sufficient switching activity for power estimation. The power values 

obtained from these two versions of VCD files are later compared to compile a more 

realistic power estimate similar to the way it is done in area calculation. In order to 

determine execution time for each benchmark accurately the assembly versions of 

benchmark codes are slightly modified to indicate program termination by setting a bit in a 

register or memory location. These bits are then checked during the simulation by a *.do file 

script to record the execution time of each benchmark in a text file.      

 

The process of obtaining power reports from these VCD files is entirely different for FPGA 

and ASIC versions. In case of FPGA Xilinx X-Power tools is used, which takes design’s *.ncd 

,*.pcf files and post P&R simulation model as input and provides static and dynamic power 

consumption in both text and graphical format. In ASIC version Cadence RTL compiler is 

used to generate power reports. For this purpose we provide synthesized netlist, clock 

constraints, technology library and a VCD file as input to the tool and it will generate a text 

report containing static and dynamic power consumption values for each component in the 

design. The process of generating these power reports can be automized with the help of 

script files, while the comparison of these reports is completely done manually in order to 

obtain final power results.    
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Fig 4.5 Flow charts for obtaining power reports of ASIC 

and FPGA pipeline stage versions 

 

 

 

4.3.4                              Performance & Power Results 

 

In this section performance and power measurements for 4-core mixed grain DT-Array are 

presented.  Fig 4.6 displays maximum achievable clock frequencies for fine-grain 

implementation of each pipeline stage. These values are compared with maximum 

operating frequencies of Baseline and DT-Core. We can see that Baseline core can operate 

at up to 700 MHz and DT-core at a slightly lower clock of 550 MHz, while in fine-grain the 

operating frequency varies between stages, however since the lowest clock frequency in 

fine-grain is the limiting factor therefore in actual implementation all stages in fine-grain are 

likely to operate at the lowest clock frequency. i.e. 200 MHz.   

 

The performance of fine-grain block when running our benchmark applications is presented 

in fig 4.6 & 4.7.   In fig 4.6 the number of clock cycles spend by each case of pipeline stages 

are shown along with DT-core and baseline for comparison, while in fig 4.7 the result is 

shown in terms of execution time. The values are normalized to baseline so that the 

overhead in each case can be seen clearly. We can see that due to higher operating 

frequency the Baseline and DT-core executes benchmarks faster even though they spend 

same number of clock cycles as most of the best case versions of fine-grain 

implementations.   



 

Fig 4.6 Comparison of maximum operating frequencies for Baseline,

DT-Core and Fine
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omparison of maximum operating frequencies for Baseline,

Core and Fine-grain block with each pipeline stage 

is also apparent that the fine-grain version of EX-stage is the slowest configuration 

d takes about twice as much cycles in best case configuration and about 3 

times in worst case configuration when running same benchmarks.  The highest overhead of 

3 cycles (10X in execution time) is received from worst case configuration of EX

t is running high RAW conflict based benchmark application.     

 

on running each type of benchmark by Baseline, DT

& Worst cases of all four fine-grain implementations of pipeline 

Stages - Normalized to Baseline 
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It is followed by Heavy branch miss

the fine-grain version of EX-stage is pipelined and we are dealing with all data hazards by 

flushing and reloading the instruction therefore in pipelined ver

hazards and branch miss-predictions are treated in a similar way which results in similar 

clock cycle penalty in both benchmarks.

 

 

 

Fig 4.8 Execution time of each type of benchmark in Baseline, DT
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It is followed by Heavy branch miss-prediction benchmark with a slightly lower value. 

stage is pipelined and we are dealing with all data hazards by 

flushing and reloading the instruction therefore in pipelined version of EX

predictions are treated in a similar way which results in similar 

both benchmarks.  

 

4.8 Execution time of each type of benchmark in Baseline, DT

& Worst cases of all four fine-grain implementations of pipeline 

Stages - Normalized to Baseline 

It is also worth noting that the overhead in best and worst case configurations of fine

pipeline stages with the exception of EX-stage is nearly equal and only ca

operating frequency which is 3.5X slower than the Baseline clock. Moreover the charts 

shows that best and worst case configurations of each fine-grain stage exhibits lowest 

overhead difference when running Argument heavy benchmark code.  The 

this is that the Argument heavy code causes data hazards due to memory read & write 

operations and these hazards are not covered by conflict table and feedback lines due to 

which both best and worst configurations stalls at similar rate.     

 

Fig 4.9 shows the comparison in terms of IPS between different test cases when running our 

benchmarks. The Baseline and DT-core have quite high IPS values as expected due to their 

higher clock frequencies.  The chart shows that on average IPS value of fine
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grain version of stages the EX-stage has lowest values of IPS for all benchmarks.
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Fig 4.9 Comparison of Instructions Per Second (IPS) wh

on Baseline, DT-

implementations of pipeline Stages 
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Fig 4.10 Comparison of power consumption when running each type of benchmark 
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omparison of Instructions Per Second (IPS) when running each type of

-core and Best & Worst cases of all four fine-

implementations of pipeline Stages - Normalized to Baseline

is due to higher number of stalls (flush  & reload) in EX-stage that are generated by

additional hazard detection logic. The instructions that doesn’t cause 

grain stages would create data hazards in our pipelined EX

overall it takes longer to process same number of instructions in a pipelined design.   
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Fig 4.11 Power consumption normalized to Baseline 
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reference designs (Baseline & DT-core) and fine-grain versions can be 

seen in fig 4.10 for all four benchmarks. With exception of EX-stage the fine

as compare to baseline and DT-core mainly due to 

operating frequency (200MHz) and secondly also due to their relatively smaller

is distributed between ASIC & FPGA sections in the SoC. While the EX

highest power consumption, about 1.75X of baseline 

utilization as compare to other three pipeline stages.

evident from fig 4.10 & 4.11 that there is no considerable difference between the power 

of best & worst cases of the same stage due to similar switching rates in
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 4.4.1                              Considerations 

 

This dependability analysis includes measurements of availability in terms of average 

number of functional cores and the probability of having at least one functional core  for a 

given defect rate.  In order to compute these probabilities we would need a defect rate or 

defect probability for our design. Since the actual numbers are not available we will 

compute these probabilities for a range of defect rates starting from 0.0 to 2.8, similar to 

way it is done in previous work [2]. We assume that these are the defect rates for a Baseline 

core and further that in the DT-Core all stages have same area coverage and thus would 

have same defect rates. Here it is assumed that defect rate of ‘1’ corresponds to a single 

defect in one core and ‘2’ refers to two defects at a time in one core and so on. Further it is 

assumed that the array interconnect and fine-grain implementation of pipeline stages 

remains defect free at all time i.e. for all defect rates.  

 

We are interested in the dependability comparison of core redundancy and the 

reconfigurable multicore array of both coarse and mixed grain types.  To achieve this we 

have determined the configurations of Baseline cores, Coarse grain DT-Array and Mixed 

grain DT-Array that could occupy nearly equal chip area. With this approach we can 

demonstrate the possible advantage of having mixed grain reconfigurability over coarse 

grain reconfigurability and core redundancy in terms of defect tolerance. 

 

 

Baseline Coarse Grain DT-Array Mixed Grain DT-Array 

7 redundant cores 
6 CG Cores in 4 cores 

& 2 Cores Clusters 

4 Coarse Grain cores 

with 1 Fine-Grain Block 

 

Table 4.1 Three cases for dependability comparison    

 

Based on these assumptions we can drive the defect rates for 4-Core DT-Array.  Since now 

we know the ratio between numbers of cores in these cases occupying same area, we can 

say: 

 

7  x PsdBaseline     =  6 x K (PsdCG_Stages) 

 

Where,  

 

Psd = Defect Rate. 

 K = number of stages in each CG core. i.e. 4 in our case. 

 

From here the defect rate of each coarse grain stage is calculated to be: 

 

PsdCG_Stages  = (7 /24) (PsdBaseline) 

 

The defect rate of mixed grain DT-Array should be the same as coarse grain since in this case 

the fine-grain block is occupying the area of 2 coarse grain cores therefore the defect 
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probability still remains the same since we assumes that defects in fine-grain block would 

not cause failures.  Therefore: 

 

PsdMG_stages   =   PsdCG_Stages 

 

We have also computed the relation between IPS (Instruction per second) of each test case 

and different defect rates. For this purpose the best case and worst case IPS values of each 

architecture (Baseline, 4-core CG Array and 4 Core CG with 1 Fine-Grain) are used as given in 

sec 4.3.4. It is assumed that minimum overall IPS is observed when in the coarse and mixed 

grain array only one of the core will be running at slowest IPS due to worst case 

configuration overhead while remaining cores will be working at best case IPS values. This 

assumption is quite realistic for coarse grain and mixed grain arrays as the worst case 

configurations are only implemented when higher number of pipeline stages in the array 

becomes defective. For maximum overall IPS it is assumed that all cores in the array will be 

running at their maximum IPS values.   

 

4.4.2                              Procedure 

 

The method of calculating probability distribution and availability for baseline and coarse 

grain array is already available to us from the previous work [2].  We used MATLAB to 

perform calculations and plotting results. For Baseline the probability of having at least a 

specific number of functional cores is calculated as: 

 

 

          ���, ��  = 	 �!
�! ∗ �� − ��!�����

∗ ������ ∗ �1 − �����                �4.1� 

 

Where, 

 

N = Total Number of cores 

M = Minimum number of functional cores 

Psd = Defect rate  

 

By using equation 4.1 we calculate probabilities of having minimum one to maximum N 

number of cores for all values of defect rates. The probability for having at least one 

working core at different defect rates is also called reliability and it will be plotted 

separately for comparison. For Coarse grain array the probability calculation will be slightly 

different due to large number of combinations resulting from interchangeable pipeline 

stages. We again use equation 4.1 but with ‘Psd’ values of coarse grain array this time: 

 

 

         ���, �������� ���� =  ���, ��!        �4.2� 

 

 

Where, 

 

N = Total number of cores 
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M = Minimum number of functional cores 

K = Number of stages in each core. i.e. 4 in our case. 

 

Now for mixed grain DT-array we have to consider those case as well in which fine-grain can 

replace any stage and repair the coarse grain array. Hence effectively increases the overall 

probability of having at least particular number of cores. Further we also have take in to 

account the limitations of our fine-grain block when it repair stages, such as the IF & MEM 

stages can only be repaired / replaced in two out of four DT-cores. This is achieved by 

generating all possible stage combinations in a 4-Core DT-array and then using a verifying 

scheme to check if a particular combination can form at least N working cores. i.e. Have N 

stages of each type. Where N varies from 1 to 4 in our case.  

 

 When a particular combination cannot form a working core we repair one of the defective 

stages in the combination to depict that it is replaced by our fine-grain block. Then the same 

combination is once again verified to see if a working core can be formed now. During this 

process all working combinations are stored in a text file and later we calculate the 

probability of all these combinations which will be our final result. Although this method is 

quite computational extensive but the advantage we get from it is that we can include 

desired conditions in the verifying scheme and therefore can obtain probability of working 

cores at a greater accuracy and according to the actual implementation of our design. In the 

end the average number of functional cores for each defect rate is computed by summing 

all the probabilities. i.e. probability of having at least 1 to 4 working cores: 

 

 

#$%&��'(�  �����   =  	 ���, ��
)����

         �4.3� 

 

Where,  

 

N = Total number of Cores 

 

The IPS values in IPS vs. Defect rate analysis are computed as follows for coarse & mixed 

grain arrays at each defect rate: 

 

 

+�,-./    =  0#$%&��'� (_�����  − 1 2 ∗  +�,3��4_����    +   +�,&���4_����       �4.4� 

 

 

 

+�,-67    =  #$%&��'� (_����� ∗  +�,3��4_����         �4.5� 

 

 

 

+�,9:;     = �  +�,-./    +   +�,-67    �
2                       �4.6� 
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4.4.3                             Dependability Results 

 

Now we will look at the dependability results of our mixed grain DT-array. Fig 4.12 shows 

average number of available cores for each test case we mentioned in table 4.1.  We can see 

that baseline version which is exploiting core-level redundancy fails very rapidly and for 

defect rates greater than one there will be no working core available. In coarse grain case 

there will be at least one working core available up to 2X defect rate while the mixed grain 

version even though initially have lower number of total cores, will out-perform the coarse 

grain array in terms of availability at defect rates higher than 1.3X.  Hence at 2X defect rate 

the mixed grain version can still provide one working core while the coarse grain array 

would have no working core available.    

 

 
 

Fig 4.12 Number of average working cores at different defect rates  

  

 

The reliability plots for the three test cases are presented in fig 4.13. It is apparent that the 

mixed grain version of DT-array offers much better reliability especially at higher defect 

rates. We can see that at defect rate of 2.5X the reliability of coarse grain version drops to 

30% while the mixed grain array still holds a reliability value close to 70%.  

 

In this dependability analysis another interesting comparison can be made for amount of 

instructions that can be executed per second in each test case at different defect rate 

values. This measurement also incorporates performance of each test case in the 

dependability analysis.  
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Fig 4.13 Reliability comparison in three test cases  

 

 

 
Fig 4.14 Comparison of Instructions per  second (IPS) vs. defect  

rate for three test cases – indicating max & min IPS with error bars 

 

 

We can see in fig 4.14 the IPS of mixed grain array is about 40% lower than coarse grain 

version at very low defect rates. While the difference gradually decreases as the defect rate 

increases and at defect rates above 1.5X the IPS of Mixed grain becomes higher than the 

coarse grain array. 
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Another point to note in this plot is that the difference in minimum and maximum IPS values 

in mixed grain version is higher due to slower clock rate of fine-grain block while in coarse 

grain version this difference is low. This also indicate lower performance overhead of worst 

case configuration in coarse grain array as compare to the mixed grain version.      

 

 

4.5                              Summary 

 

In this chapter we have seen the evaluation procedure used in this work and the results of 

this evaluation. In the beginning we mentioned the source of design RTL files and the 

corresponding C-compiler. Then we talked about synthesis process and the method we used 

to determine area utilization in FPGA and ASIC sections of our design. The benchmarks and 

test cases adapted for performance and power measurements were discussed along with 

the description of main procedure and tools. Then we have seen the results of performance 

and power analysis for different core configurations. At the end the procedure used to 

measure availability and reliability of our design was presented and these values were 

compared with two other scenarios, one using core-level redundancy and other coarse grain 

reconfiguration. It was shown that the mixed grain version can out-perform coarse grain 

version at higher defect rates. In the next chapter we will present our conclusions and the 

outcomes of this thesis along with future recommendations and suggestions.    
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   5 
 

 

In this thesis work we took coarse grain implementation of defect-tolerant array and tried to 

include a fine-grain wild-card like block which could replace any one of the defective 

pipeline stages in the array when required. Thus would improve the availability of the 

multiprocessor array at higher defect rates.  During this endeavor we identified many design 

challenges and proposed solutions for them. We presented the implementation and 

evaluation process adapted and then discussed the results of this evaluation at the end. In 

this chapter we will present the conclusions we drawn from this work and the goals that we 

achieved along with some suggestions for future work in this direction.      

 

5.1                              Conclusions  

 

We have presented the implementation and evaluation details of a fine-grain wild-card 

block that can instantiate and replace any one of the pipeline stages in the coarse grain 

defect-tolerant multiprocessor array. From the evaluation results of this design we can say 

that the major drawback of this approach is the area overhead of fine-grain implementation 

which is about 58% (2.4X) of the complete defect tolerant core. Although some area 

optimization techniques have been employed such as reduction in logic size and distributing 

it between FPGA and ASIC portions, however the ratio is still inadequate to provide 

reasonable advantage at lower defect rates as compare to coarse grain only approach. The 

large area of fine-grain is caused by execution stage which includes highest logic density (5X) 

as compare to other stages. Further the fine-grain implementation also includes other 

supporting logic such as conflict table which is not part of execution stage in the coarse 

grain version.    

 

In terms of performance the main limiting factor came from lower operating frequencies of 

pipeline stages in fine-grain block. The stages in fine-grain can work at up to 200 MHz while 

the baseline and defect-tolerant core can attain clock frequencies of up to 556 MHz and 

690MHz respectively. Hence it is already about 64 to 70% slower without taking in to 

account the pipeline overhead of EX-stage. In worst case configuration the performance 

overhead can reach up to 10X of the baseline in terms of execution time with the inclusion 

of pipeline latencies and re-fetch delays caused by data hazards. The same trend is observed 

in instruction per second values however in terms of clock cycles the overhead would be 

just 3X of the baseline in a worst case scenario. This is about 25% lower than the overhead 

of worst case configuration in a 4-core coarse grain DT-array.  Therefore we can conclude 

that at lower clock frequencies the performance of mixed-grain DT-array will be similar to 

the coarse grain only version and hence would be much viable approach to use due to its 

higher defect tolerance capabilities. Further by using a better compiler such as the one 

available in latest version of Processor Designer suit the performance of fine-grain block can 
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be improved considerably as the main cause of stalls in this case is due to the inefficient use 

of  available registers in the assembly code.  

 

The major portion of power consumption in fine-grain block comes from static power of EX-

stage due to its larger logic area. Therefore the power overhead is also about 1.8X as 

compare to baseline in a worst case scenario. While in the case of other three stages the 

power consumption is just 40 to 60% of the baseline core. This lower power is a result of 

lower clock frequencies the concerned core is running on when utilizing fine-grain block. 

Overall due to the inclusion of more pipeline registers and hazard detection logic in the fine- 

grain version of EX-stage the power consumption of a core using a fine-grain block would be 

in worst case 60% higher than a coarse grain DT-core when run at same clock frequencies.  

 

In terms of dependability due to much greater fine-grain area the mixed grain array only 

exhibit advantage over coarse grain version at very high defect rates. In our dependability 

analysis we divided the coarse grain array in to clusters of 4 & 2 cores and thus avoid those 

array configurations that are not supported by the hardware implementation. This results in 

a more realistic comparison between two variants. From the results it can be concluded that 

core redundancy achieved by clustering of baseline cores is in most cases sufficient to 

provide defect tolerance at lower defect rates. The coarse grain version on the other hand 

offers much better defect tolerance at a higher performance cost and can only be 

outperformed by an equivalent mixed grain version when defect rate would be as high as 

one fault per core at the least.     

 

 

5.2                              Thesis Contributions 

 

In this thesis work we have successfully: 

 

• Designed and implemented a fine-grain reconfigurable block that works as a wild-

card in the coarse grain DT-array and provides replacement for defective pipeline 

stages.  

 

• Implemented performance improvement measures in the fine-grain versions of 

pipeline stages and reduced the performance gap between ASIC and reconfigurable 

sections with the help of pipelining and logic optimization.   

 

• Developed a C-program to generate reconfiguration bits for mixed grain DT-array 

and determines which stage the fine-grain block instantiates when in use in order to 

dynamically produce maximum number of working cores in a defective array.  

 

• Evaluated and measured the performance , area and power overhead of the fine- 

grain block in the mixed grain DT-array and determined availability improvements 

the 4-core mixed grain DT-array provides as compare to coarse grain array of the 

same area utilization.  
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5.3                              Future Work 

 

In continuation of the work presented in this thesis, we like to suggest following 

improvements that can be explored in future: 

 

• Data hazard handling can be improved by incorporating a local stall mechanism in 

pipelined EX-stage. This can be achieved by using a FIFO buffer at the input of EX-

stage which can act as a temporary delay slot when a RAW hazard is detected and 

would be bypassed in normal pipeline execution. Such approach can reduce the 

number of flush & reloads in a typical program by up to 50%.  

 

• The EX-stage can be split in to 2 to 3 smaller stages in order to reduce the fine-grain 

area. With a lower fine-grain area more coarse grain cores can be included in the 

array which would ultimately improves the overall availability of the mixed-grain DT-

Array. In order to achieve this we would have to decide how the logic will be 

distributed in different sub sections and how it will impact the performance and 

interconnect area of the array. 
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