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Abstract

In this thesis report we consider k-token dissemination algorithms that makes
use of network coding. The k-token dissemination problem consists of prop-
agating a total number of k tokens to all nodes in the network. The tokens
are distributed between one or more nodes before the algorithm is executed,
and the final goal is that all nodes must eventually have the same set of k
tokens.

Network coding is a recent technique that, implemented in a proper way,
helps to save bandwidth and improves the speed of distributed computation.
The network model consists of a network that can change completely from
round to round, therefore the nodes do not know anything about their neigh-
bours. Moreover, when a node broadcasts a message, it does not know which
are the receivers, thus, it is not possible for the nodes to know which are the
tokens that their neighbours need. By using network coding, the time needed
to achieve the final goal (all nodes possess the same k tokens) is drastically
reduced in comparison to a simple random forwarding algorithm, which, as
its name infers, randomly broadcasts the tokens possessed by a node.

We study the session management problem, and present two algorithms
to solve it. The problem consists of limiting the total number of sessions that
concurrently coexist in the system. In the context of dissemination problems
and network coding, we consider a session as an index according to which the
information is codded by the session initiator. Since in dynamic networks
nodes can crash and recover, we wish to allow sessions to accomplish their
tasks, while limiting the amount of overall system resources in use.

We propose solutions for the session management problem, and by that
facilitate the solution of the k-token dissemination problem in dynamic net-
works. By solving the session management problem, we can also solve the
k-token dissemination problem in a more robust way, in the sense that the al-
gorithms can deal with several types of failures, such as, crashes and crashes-
recoveries.
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1 INTRODUCTION

1 Introduction

In existing computer networks, information is transmitted from the sender
to the receiver through a set of intermediary nodes, which are responsible for
forwarding the data in order to deliver it to the final destination. Normally,
information received by intermediary nodes is stored and forwarded, this
method is known as store-and-forward. In general, computer networks rely
on routing schemes which allow the nodes in the network to select the right
destination when a packet needs to be sent or forwarded.

A recent technique, known as Network Coding, breaks with the traditional
paradigm of routing, in the sense that the packets are no longer needed to
be treated as untouchable atomic packets since Network Coding permits the
packets to be mixed with the aim of saving bandwidth. Therefore, when
using Network Coding, the intermediary nodes have a more important task
than merely acting as switches that receive information from an input link
and then relay that information to an output link or set of output links.
Network Coding is based on that, from the information-theoretic point of
view, there is no reason to not use the intermediary nodes as encoders [3].

Network Coding has had a great impact in several areas of research such
as networking, coding theory, complexity theory, cryptography, etc. due to
its vast application potential [8]. It has been developed in various directions,
and new and different applications continue to emerge [19] [7] [20] [18].

In this report, one of the algorithms introduced by Haeupler et al. [15]
is studied. This algorithm solves the problem of k-token dissemination in
dynamic networks by means of Network Coding. The problem is defined as
follows: initially there are a total number of k tokens in the network, some/all
of these tokens are held by one or more nodes. The main goal is that at the
end of the execution of the algorithm all participating (correct) nodes must
possess the same set of k tokens.

The network model that this algorithm is intended for, represents many
modern networks where the topology of the network is changing constantly.
The topology of the network may change totally from round to round, hence
it offers a challenging scenario, since the nodes in the network do not know
neither which are their current neighbours nor which neighbours they will
have in the next round. This leads to a model where the only knowledge
that nodes have is the tokens that they have received so far.

In the algorithm showed by Haeupler et al., faulty nodes are not consid-
ered. For that reason, we present a session management problem.
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1 INTRODUCTION

1.1 Related Work

Haeupler et al. [15] does not consider how to know that all nodes in the
network possess the same knowledge or not. The authors of the studied al-
gorithm assume that after a finite number of rounds, all nodes will gather the
same information, but there is no mechanism implemented in the algorithm
that can actually verify this. We provide two different mechanisms that al-
low the nodes to know when all nodes in the network possess the same set
of coded tokens and plaint-text tokens.

Haeupler et al. [15] does not consider node failure. It is assumed that
both, the nodes responsible for starting sending coded tokens and the rest
of the nodes, will not crash throughout the execution of the algorithm. We
present two algorithms that contain a failure detection mechanism that allows
the nodes in the network to sense and deal different types of failures failures,
i.e. crash-stop, crash-recovery and crash-reboot.

Conan et al. [9] introduce a distributed failure detector which periodically
provides to all (correct) nodes in the network, a list of processes or nodes that
are suspected to be unreachable. This way the (correct) nodes are able to
know whether there has been a failure, a partition or a disconnection in the
network. The failure detector used by our algorithms makes use of counters
instead of sending a list of suspected unreachable processes. One of those
counters is the Incarnation number counter, which, through the execution of
the algorithm, can reach the maximum value of the data-type that defines
it. This leads to the Wrapping Around Problem [16, 10, 4, 11], which, along
with its solution, is presented in the following sections.

On the other hand, if failures are allowed in the system, another problem
emerge: work disruption. This issue arises when a node that crashed, recovers
and interrupts the work done by another node. As a result , we introduce
the concept of stable leader election, which was first proposed by Aguilera et
al. in [2].

The Greedy-forward algorithm [15] considers one leader or identified node
at a time. This identified node is the node responsible for starting sending
network coding packets. Since in our system, nodes can fail, letting a sin-
gle node send coding packets at a time can lead to a noticeable inefficient
performance. Consequently, one of our presented algorithm permits to have
more than one identified node in the system at a time, so, in case that the
identified node, which is currently carrying out the network coding phase,
crashes, another identified node can take over.
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1 INTRODUCTION

1.2 Our Contribution

We provide two solutions for knowing when all nodes in the network have
the same information. The first mechanism is used by the nodes to check
whether they have the same set of tokens or not. On the other hand, the
second mechanism helps the nodes to figure out whether they posses the
same information about the coded tokens belonging to a session or not. A
solution to the wrapping around problem, which slightly differs from other
previously presented solutions, is also given.

Our main contribution is the session management problem and the al-
gorithm that solves it. The problem itself consists of limiting the amount
of overall system resources in use, in a dynamic network where nodes can
crash and recover. Solving the session management problem will serve us as
a channel to resolve the initial k-token dissemination problem. In addition,
the session management algorithm, presented in this work, possesses ex-
tra properties compared to the studied algorithm, such as: self-organization
and-recovery [1, 6]. These properties provide the algorithm with some extra
robustness, which results to be essential in dynamic networks.

1.3 Structure of the report

The remainder of this report is organized as follows. In the second sec-
tion, we show the background of this report together with our contributions.
The third section contains a detailed description of the system settings is
given. The next section is Network Coding, where a brief introduction to
network coding and random network coding is presented. In addition, this
third section also includes some applications that employ the network coding
technique. In the fourth section, we define the problem that our algorithm
needs to solve. Following, in the fifth section, we present basic problems
that are associated to the k-token dissemination and session management
problem, along with their solutions. The next two sections present, respec-
tively, the design, explanation, lemmas, and proofs of two approaches to solve
the studied problems. Finally, the last section of the report consists of the
conclusions and advices for future work.
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2 BACKGROUND

2 Background

Haeupler et al. [15] show how to make use of network coding in order to
improve the performance of distributed computation in a dynamic network
model, which is previously presented by Kuhn, Lynch and Oshman [21].

The dynamic network model has very specific and restrictive system set-
tings which make this model representative of the highly dynamic and non-
converging nature of many modern networks, e.g., Wireless Sensor Networks
(WSN). These system settings consist of allowing the network to change com-
pletely in every round, but it is subject to the constrain that the network
must remain always connected, i.e. the topology might change in every round
but this changes can not end up with two or more sets of nodes that are not
connected between them. In each (synchronize) round, each node selects a
message from a pool of messages, and broadcasts it to its neighbours for that
particular round. In addition, the sender of the message does not know who
are going to be its recipients, and therefore, it does not know whether any of
its neighbours already has the message that it is going to broadcast or not.
The fact that the broadcast is “anonymous”, makes this problem particularly
challenging.

Along with the dynamic network model, Kuhn et al. [21] show how to
solve the problem of k-token dissemination in such model. The problem
consists of disseminating k tokens, in such a way that eventually all nodes
in the network possess the same set of tokens. The proposed approach to
solve the problem is called, token forwarding, and it is probably the most
“natural” approach. It consists of broadcasting a token during O(n) rounds,
so after O(nk) rounds all the tokens are disseminated. Furthermore, Kuhn
et al. provide a more general lower bound Ω(n log k) that applies even if the
algorithm is operated under a centralized control.

On the other hand, Haeupler et al. [15] show that this lower bound cease
to hold when tokens can be broadcast together. This is done by using network
coding, which allows to send out random linear combinations of tokens. If the
size of a token is O(log n), then in order to solve the k-token dissemination
problem the algorithm will need O(kn/log n) time to finish. This bound
clearly outperforms the O(nk) provided by Kuhn et al. In addition, the
authors of [15] show that the greater the size of the token is, the faster can
be disseminated. They state that using network coding, k tokens can be
disseminated in O(k(n log n)/d) time. Therefore, if the size of the token is
equal to O(n log n), the k-tokens will be disseminated in O(k) time which
also outperforms the lower bound Ω(n log k) associated to token-forwarding
algorithms.

Both papers, [15] and [21], talk about T -stable networks, where the topol-
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ogy of the network does not change during a T -interval of time. If the network
is stable for a certain period of time T , then it is possible to use other algo-
rithms that improve the running time. For instance, according to [21], the
complexity of the algorithms used for this kind of networks is O(nk/T + n)
time. In contrast, Haeupler et al. [15] show that network coding, instead
of achieving a factor-T speed-up, can achieve a factor-T 2 speed-up. In this
thesis, the described algorithm has been designed for networks that change in
every round. Networks that are T -stable are outside the scope of this work.
In case, the network only changes once every T rounds, then extra features
should be added to the algorithm in order to make it more efficient.

2.1 K-indexing

K-indexing is one of keys to solve in an efficient way the k-token dissem-
ination problem with network coding. Every coded packet has associated
a coefficient vector, that eventually will be used in order to decode the k-
linearly-independent coded tokens. All nodes in the network must agree on
which index is associated to which token, otherwise there will be inconsisten-
cies when doing Gaussian Elimination1. When talking about index, we refer
to the basis vector that is associated to each token, so, for instance, the basis
vector associated to the first token should be 〈0, ..., 0, 1〉, to the second token
〈0, ..., 1, 0〉 and so on. The size of this vector will be equal to the number of
tokens that need to be coded.

Once all nodes in the network agree on what token has what index, then
network coding can be used to disseminate such tokens. The problem is
how to make that all nodes agree on the same indexes for the same nodes.
Haeupler et al. show two different approaches:

1. Naive solution: All nodes give unique IDs of size O(log n) to their
tokens. Then they broadcast repeatedly the smallest Ω(b/log n) tokens
they have heard about, where b is the size of the message. After n
rounds of flooding, all nodes will have the unique IDs of the (b/logn)
smallest tokens, and therefore they will be able to agree on the indexes
associated to these tokens. But this approach is only a (log n/d) faster
than the forwarding algorithm which does not make use of network
coding. This is because the process of agreeing on the smallest tokens is
repeated k(log n/b) times, to this it is necessary to add the O(n) time2

1A extended explanation of the reason why Gaussian Elimination is needed is given
later on this report.

2With high probability.
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that network coding phase takes. Consequently, the total time required
to disseminate k tokens is O(nklog n/b) or O((log n/d) ∗ (nkd/b)).

2. Gathering tokens: A more efficient solution proposed by Haeupler et
al., where instead of making all nodes to participate in the indexing
problem, tokens are gathered in a single node which is the responsible
for assigning the indexes to them. In order to propagate and gather
the tokens, Haeupler et al. make use of a simple random forwarding
algorithm, which turns out to be the same as the one used for dissem-
inating k-tokens when network coding is not exploited. The authors
explain in the paper, how efficient this algorithm is at the beginning,
but as the time passes, nodes receive more and more packets that they
have already received. The expected time to disseminate all the to-
kens using this technique is O(nkd/b). Hence, it needs to be combined
with network coding in order to achieve a noticeable improvement in
the expected time. Haeupler et al. proposes to take advantage of the
efficiency of the random forwarding algorithm in its early stage in or-
der for a certain node in the network to gather an enough amount of
tokens, and later send the gathered tokens using network coding.

2.2 Leader Election

When treating with dynamic networks, generally the methods and algorithms
used to solve problems in conventional distributed systems are not applicable.
One clear example of this is the leader election algorithm, where all correct
nodes in the network must eventually agree on the same leader which is
responsible of carrying out a specific task.

According to Haeupler et al.’s [15] greedy-forward algorithm, once a node
has gathered b2/d tokens, this node is identified as a leader, and it is the
responsible for broadcasting the coded packets. The process of electing a
leader will be finish within at most O(n) rounds if no other node proposes
itself as a leader. It can be the case, that two nodes are able to gather b2/d
tokens and thus they will have to “fight” for the leadership which will be
decided with respect to, for instance, the greatest lexicographic ID. This will
lead to a total of O(2n) rounds (in the worst-case scenario), in order for all
nodes to agree on the same leader. In fact, there is not a leader election
phase as such, but once a node reaches the threshold of minimum number
of tokens needed to start the network coding phase, it, indeed, indexes the
tokens and starts sending random linear combinations of them. Therefore,
as the reader may notice, one node can disrupt all the previous work done
from another node with greater ID.

12
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On the other hand, [15] does not deal with failures. What happens when
the leader goes down while sending random linear combinations of tokens?
How do the other nodes realize that the leader went down? What happens if
an old leader after going down “wakes up” again and it turns out that there
is already a node responsible for the network coding phase?, etc. These are
open questions that will be answered throughout this report.

In addition, Haeupler et al. base the good performance of its algorithm
on the synchronization feature of the network and the high probability of
finishing the network coding phase in O(n) rounds. But in a more realistic
scenario, where networks are not completely synchronized and where not all
nodes are able to decode all the tokens after O(n) rounds, problems may
arise. For example, suppose that after O(n) rounds sending random linear
combinations of packets, the leader stops with the network coding phase, but
one or more nodes in the network have not received all the necessary linear
independent vectors in order to decode the packets. Moreover, as stated in
the paper, once the network coding phase has finished, all broadcast tokens
are removed from consideration. Consequently, some of the k initial tokens
that need to be disseminated to all tokens in the network will never be
possessed by at least one node and hence, it will lead to the impossibility of
solving the k-token dissemination problem.

2.2.1 Stable Leader Election

One of the first conclusions that can be derived from the text above is that
once a node has already started the network coding phase, we do not want
another node with greater ID to disrupt all the work done by such node.
There are two case scenarios where this can occur. The first one is when two
nodes reach the threshold of minimum number of tokens needed to start the
network coding phase, in an interval no greater than n − 1, where n is the
total number of nodes in the network. In addition, none of the two nodes has
previously received a coded packet, since once a coded packet is received, the
node will continue with the network coding phase started by another node.
The second case scenario has to do with the disconnection and re-connection
of an old leader, i.e. a node that started the network coding phase but it
disconnected before finishing. If this “old” leader re-connects when there is
a current leader, and the reconnected leader has greater ID than the current
one, then it will disrupt all the work done by the newer leader.

For that reason, it is necessary to introduce the notion of stable leader
election [2]. Aguilera et al. propose three different algorithms that are in-
tended to provide stability to the leader. A leader election algorithm is said
to be stable, if once a leader is elected, it remains being the leader until it
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disconnects or crashes, independently of the behaviour of other nodes. The
model showed in [2] consists of a distributed system which is partially syn-
chronous, processes have a drift-free clock and there is an upper bound B
on the time within a process executes a step. Furthermore, Aguilera et al.
claim that the algorithms presented in the paper are self-stabilizing, a feature
that our algorithms also have. Even though, stable leader election algorithm
introduced in [2] seems a decent solution for the problem mentioned above,
we need another algorithm that is more suitable for solving the problem here
presented. In particular, a solution that could be easier to integrate with the
network coding and random forwarding phases of the original algorithm. The
idea is to use a piggybacking technique that allows the algorithm to work with
the network coding/ random forwarding and leader election in a coexisting
way.

2.3 Gaussian Elimination

Since, in order to encode packets during the network coding phase the pack-
ets are randomly linearly combined, an algorithm for solving linear equations
is needed. As mentioned earlier, the packets sent during the network coding
phase are composed by a coefficient vector and a vector with the combination
of the tokens that the coefficient vector indicates. For instance, if the coeffi-
cient vector, c, is equal to 〈1, 0, 1〉, that means that the vector that contains
the combination of tokens will have a combination of the first token and the
third one. Note that if a node has only received this packet, it will not be
able to decode the tokens, since it does not have enough number of equations
to solve the system. Thus, a node will be able to retrieve useful information
about one of these tokens, if more linear independent packets are received.
The algorithm used to carry out this task is Gaussian Elimination algorithm.

2.4 Failure Detection

The algorithms that have been designed through the life cycle of this project
make use of a failure detection technique in order to provide correct opera-
tion.

2.4.1 Failure Models

In a highly dynamic system, and in any system in general, mainly five types
of failures can take place:

1. Crashes. The processor or, in this case, a node stops functioning and
it never starts again.
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2. Omissions. Omission errors take place when one or more actions that
are carried out by a node fail.

3. Time errors. These type of failures take place when responses arrive
outside the specified time interval.

4. Crashes and Recoveries. A node halts, but eventually recovers.

5. Arbitrary or Byzantine. A node may fail in an arbitrary way, including
sending arbitrary data its neighbours in the network.

2.4.2 Failure Detector

Once we know which type of failures can occur in our system, it should be
stated which failures our algorithm will deal with.

Looking at the condition of the nodes, the same (crash) failure is treated
in two different ways:

1. Regular node. If a regular node crashes, the rest of the nodes will
not notice it, since it is just a node among many, whose failure will
not affect the performance of the algorithm. Note that all the tokens
that the crashed node possessed before crashing and which were not
possessed by any other node, will disappear forever from the system.

2. Node responsible for having started the Network Coding Phase. If a
node that is responsible for broadcasting random linear combinations
of tokens goes down before sending enough linear independent vectors
in order for the rest of the nodes to be able to decode all its tokens, it
must be known by the rest of the tokens in the network. Otherwise,
the rest of the nodes will be waiting until they have enough packets to
decode the coded tokens, but since the leader is down, these packets will
never arrive and therefore, the awaiting nodes will not move forward.

Moreover, Conan et al. [9] present in their paper an architecture of local
and distributed detectors for mobile networks. These detectors give the net-
work the ability to detect failures, disconnections and partitions. Partitions
are not allowed in our network model, but in case this extra feature wanted
to be added, we recommend the reader to have a look at [9]. Conan et al.
propose an eventually perfect unreliable partition detector that exploits in-
formation provided by a failure detector and disconnection detector in order
to identify partitions. Contrary to the failure detector given on our report,
where no list of processes is kept, the unreliable failure detector shown in
[9], regularly provides, for each process p in the network, a list of processes
suspected to be unreachable.
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2.5 Wrapping Around Problem

The two different approaches presented in this report use an incarnation
number counter in order to differentiate between correct nodes and nodes
that just joined the network or have crashed and recovered. Since the size
of the data type used for the counters is limited, it is necessary to find a
solution for when the bound value is increased by one.

Herman et al. [16] propose two different approaches to deal with this
problem. They have a bounded global clock with domain [0, L]. When the
event where the clock rolls over from L to zero takes place, it disrupts the
converge-to-max protocol presented on the paper [16]. The two techniques
showed by Herman et al. are obatined from the literature of self-stabilizing
phase-clocks and they consist of:

1. Redefining comparison of clock values in the clock protocol to behave
modulo L+ 1 [10].

2. Letting the event of a clock that reached L initiate a system reset, after
which all clocks begin from zero [4].

In [11], the authors also deal with the wrapping around problem and
make use of wrap around flags that indicate when a process has wrapped
its counter. Dolev et al. state that even though the size of the counter is
64-bits and therefore practically infinite, this assumption is not valid within
the scope of self-stabilization. The reason why it does not hold is because
a single transient-fault may lead a counter to reach the above mentioned
large number at once, and therefore it will disrupt the whole self-stabilizing
algorithm avoiding it to reach a safe configuration.

2.6 Estimating N

In this project we assume that we have a good estimation of N , where N is
an upper bound on the number of nodes in the network. Bellow we present
three different approaches of how this problem can be solved.

In [15], the authors propose an algorithm for the case of n-token dissemi-
nation, where the nodes ignore the value of n. It consists of starting guessing
an upper bound n = 2, and then the nodes count the number of node IDs
using token dissemination. If there is a failure, i.e., the number of received
tokens from different nodes exceeds n, the n estimation is doubled and the al-
gorithm restarted. This process is repeated every time a failure is detected.
A similar technique can be used together with the proposed algorithm in
order to make it more realistic and efficient.
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Dolev et al. [12] give a solution to this problem, in a self-stabilizing group
communication system for ad-hoc networks, in which the algorithm needs to
know N in order to reach stabilization. The authors state that having a
more accurate upper bound on n will ensure that the system will react in a
faster way to addition/removal changes. They also indicate that estimating
n will increase the number of short messages, which will lead to a trade-off
between the time needed to estimate n and a special type of messages, called
scouters.

In addition, Baldoni et al. [5] consider the problem of counting the num-
ber of nodes. The authors propose a more recent technique based on “energy
transfer” to calculate the size of the network on anonymous dynamic network.
They use the energy-transfer technique to deal with the dynamic environ-
ment and the absence of unique IDs. The solution proposed in [5] is leader
based and where each node owns a fixed energy charge. A node discharges
itself by exchanging at most half of its charge with its neighbours. Energy is
not created or destroyed, i.e. after every round, the sum of energy contained
in each node is the same. Nodes discharge themselves by exchanging at most
half of their charge with their neighbours. On the other hand, the leader
is responsible for absorbing all the energy, and thus, it does not transfer its
energy to its neighbours. In order to calculate the number of nodes in the
network, the leader measures the energy received.

2.7 Our Contributions (in detail)

With respect to the related work, the following points describe our contribu-
tions:

1. K-indexing. In both algorithms presented on this document, the
technique used to gather tokens is similar to the one used in the studied
algorithm. Nodes randomly forward plain-text tokens until a session
becomes stable. Note that there are no longer leaders but sessions and
session creators. The creator of a session is the responsible for carrying
out the indexing.

2. Stable Leader Election. The way of how a node is elected to start
sending random linear combinations of tokens is completely different to
the approach used in the studied algorithm. Instead of directly starting
with the network coding phase once a node gathers enough number of
tokens, a node will become eligible. And, if certain requirements are
fulfilled, then it will create a session. Once all nodes in the network
agree on this session, the session will become stable and the creator of
the session will be allowed to start with the network coding phase.
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3. Piggybacking. Piggybacking is the technique used in network trans-
mission, and more specifically, in the network layer of the OSI model. It
consists of adding the acknowledgements of previous received packets to
the data frame, thus instead of sending a confirmation in an individual
frame, i.e. a frame containing ACK information, the acknowledgement
is appended with the payload of the next packet that the receiver will
sent to the emitter. This practice saves bandwidth since it requires
fewer frames [23].

This technique allows us, for instance, to agree on the node responsible
for broadcasting random linear combinations of tokens, while plain-text
and coded packets are sent, without interrupting neither the network
coding phase nor the random forwarding phase. The main advantage of
using piggybacking is that the total number of packets used is reduced
and hence, the efficiency of the algorithm is incremented.

4. Gaussian Elimination. Considering that the base q used to encode
the packets is equal to 2, the general Gaussian Elimination algorithm
can be simplified. In addition, a minor modification has been carried
out in the algorithm in order for the nodes that have the same set of
linear independent packets to detect that they have the same informa-
tion.

The algorithm is well known and therefore it will not be described in
depth on this report. Basically, it consists of three main operations:

I Find the lexicographically lowest row that has a pivot correspond-
ing to the iteration of the algorithm. That means, in the first
iteration of the algorithm, we look for a pivot in the first column,
in the second iteration we look for a pivot in the second column
and so forth. The general algorithm does not look for the lexi-
cographically lowest row, instead, it uses the first row found that
has a pivot. The reason why this lexicographical order has been
implemented is for the nodes that have received the same set of
coded packets to have the same matrix independently of the order
in which they have received those packets. This will be explained
with more detail later on the report.

II Once the row with the pivot has been found, it must be placed in
the correct row. If it turns out that the selected row is already
placed in the correct row, nothing is done, otherwise, the positions
of two rows are swapped.

III XOR all the rows that have the same leading coefficient as the

18



2 BACKGROUND

selected row, with the selected row itself. Hence, all rows that had
the same leading coefficient but were not selected, end up with
these coefficients equal to zero.

5. Failure Detector. The algorithms that will be shown and described
later on this report, implement a detection failure technique that allows
the nodes in the network to notice if the node responsible for sending
coded packets has crashed or not. A proper explanation of how the
failure detector is implemented will be given later on this document.

On the other hand, nodes that crash and resume or reboot later are
also tolerated. It might be the case, that a node, independently of
its condition, crashes and eventually recovers being able to retrieve
complete, partial or none of the tokens that has been sent while it was
absent. It is assumed, that no node that has gone down will recover
after a certain number of rounds, i.e. if a node crashes it has a certain
time to recover, if this time is exceeded then it is assumed that this
node will remain in a crashed state “forever”.

Our failure detector has two properties: Completeness and Accuracy.
Completeness refers to the fact that every crashed node is eventually
suspected by every correct node. And accuracy refers to the fact that
no correct node is ever suspected. This will hold as long as no partition
occurs in the network.

6. Wrapping Around Problem. Redefining comparison technique,
first presented in [10] will be the one used to deal with the wrapping
around problem. Moreover, a similar technique to the system reset in-
troduced by Arora and Gouda in [4], can be used in the algorithm for
the cases where two incarnation numbers are not comparable3.

Finally, our main contributions are the session management problem to-
gether with two different approaches to solve it. The session manager is used
to solve the k-token dissemination problem providing a robust solution that
is capable of detecting certain failures. In addition, both algorithms pre-
sented on this paper are self-organizing and-recovering. A strong property
that allows the system to eventually reach a legitimate state, independently
of node failures.

3In this project, we assume that all incarnation numbers that exist in the system are
comparable
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3 System Settings

We consider a distributed system formed by nodes or processors: p1,p2,...,pN ,
where N is a known upper-bound on the number of nodes. Nodes may crash-
stop4, crash-reboot5 and crash-resume6, but always respecting the upper-
bound N . During the execution of the algorithm, processes that have not
crashed are said to be correct. All nodes in the system have unique identifiers.

The nodes in the network may send and receive messages to and from their
set of neighbours. The communication between two nodes pi and pj, where
i 6= j, is modelled by a FIFO queue. Whenever a processor pi broadcasts a
messagem to its neighbours, m is appended to all queues of all the neighbours
of pi. Whenever there is a pending message in the queue, this message
is immediately processed by the node. For each neighbour, there exists a
queue.

At every round, the network topology may change, however it is assumed
that it is always connected. The network topology is defined by a connected
undirected graph G. For every round r, any node in G(r) can reach any
other node that also belongs to G(r). Partitions in the network are not
allowed. It is assumed that there are no collisions in the system, hence for
the sake of simplicity the nodes are connected by directed communication
links. When communication takes place, nodes broadcast anonymous packets
through these links to all their neighbours, where a packet sent from pi to pj
will make use of the (directed) link lij and a packet sent form pj to pi will
make use of the (directed) link lji. We assume that in every round all correct
nodes broadcast only one packet to their neighbours, and since the network
is always connected, all correct nodes expect to receive at least one packet.
In addition, a packet sent by a node is received by all its correct neighbours,
therefore the network is assumed to be free of packets losses. It is assumed
that the local operations are insignificant and thus, they do not affect the
communications in the network.

The system possesses the property of self-organization and-recovery [1, 6].
If any of the previously mentioned failures occurs in the system, the system
should recover and exhibit a desired legal behaviour in a finite number of
steps. The algorithm executed by the nodes in the system does not need to
be initialized, since regardless the of its initial state, it eventually reaches a

4A node that crashes and stops is a node that after crashing will be never part of the
network again.

5A node that crashes and reboots is a node that after crashing it may join again the
network with an initial configuration state.

6A node that crashes and resumes is a node that after crashing it may join again the
network with the same state as the state it had just before crashing.
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correct state. Once the system has reached a correct state, it will remain in
this correct state as long as no fault occurs.

Every node pi executes an algorithm which is composed by a sequence of
steps. A step may start several local computations, but ends with a single
computation either send or receive of a packet.
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4 Network Coding

In the following section, a more detailed description of network coding will
be given, along with an introduction to some of its applications.

Network coding is a relatively new technique that can significantly im-
prove the networks’ throughput, efficiency and scalability. In the classical
paradigm of routing, the packets are simply relayed when they are received,
however, when using network coding, the nodes of a network gather a certain
amount of packets and mix them for transmission.

In order to clearly show how network coding can outperform routing,
a typical example, known as “the butterfly network” is described in the
following paragraphs.

Suppose there is a total number of six nodes in a directed oriented graph,
as shown in Figure 1. Where S1 and S2 are the sources of the network, i.e.
the ones responsible for injecting information into the network, and T1 and
T2 are the sinks. The capacity of each edge is one bit, thus the maximum
data that one node can send to a neighbour in every time slot is only one
bit. For this example, A = 1 and B = 0, are transmitted from S1 and S2
respectively.

Figure 1: Butterfly network.

If classical routing is used, after the first round one of the central nodes
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will receive A and B, and the exterior nodes (T1 and T2) only A or B. In the
next round, the central link will be able to carry only one value or bit, that
will be either A or B. In case A is transmitted the left destination (T1) would
receive A twice, and the same will happen to the right (T2) destination if B
is sent. It is trivial to see that there is no routing scheme that can transmit
both A and B simultaneously to the two final destinations.

On the other hand, if network coding is used, when the first intermediary
node receives A and B will use the XOR operation and generate a bit that
will be equal to A⊕B = 1. When T1 receives A XOR B, it will simply use
XOR (i.e. A ⊕ A ⊕ B) to retrieve B and T2 will similarly retrieve A. It is
evident that when using routing, three more bits have to be sent in order for
T1 and T2 to recover A and B, whereas network coding only needs to send
9 bits to achieve it. Therefore, 25% of bandwidth can be saved in this basic
scenario by using a simple network coding scheme.

4.1 Random Network Coding

When the network is dynamic or the topology of the network is not known
and some information need to be broadcast to all nodes in the network,
random network coding [17] can be used to solve the problem in an efficient
way. Random network coding is a powerful coding scheme which provides a
close to optimal throughput. When network coding was first stated in [3], it
was presented as a technique to achieve optimality. The scenarios mentioned
by Ahlswede et al. describe networks containing sources and sinks. The rest
of the nodes are considered as intermediate nodes, which act according to a
predefined coding scheme.

On the other hand, random network coding is also a type of coding scheme
which, in contrast to “regular” coding schemes, behaves as a decentralized
algorithm. When random network coding is deployed in the network, all the
nodes function in a same manner. Nodes transmit random linear combina-
tions of the packets they receive. These packets are mainly divided in two
parts, one is the coefficient part and the other the coded part. The coef-
ficients are chosen from a Galois field. Once a node has received enough
number of packets, it can decoded them and thus, retrieve the original infor-
mation generated by the sources.

4.1.1 How fast does information spread?

Haeupler, introduces in [14] a simple projection analysis technique that shows
how fast information spreads when network coding is used and therefore, how
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much time is needed for all the nodes in the network to be able to decode all
coded tokens.

Haeupler states that the right way to look at the spreading of information
is to look at the orthogonal complement of the coefficient subspaces. In
[15] and [14] a definition of knowledge is given, which says that a node u
knows about a coefficient vector −→µ ∈ Fq if it has received a message with
a coefficient vector −→µ ′ that it is not orthogonal to −→µ . Note that the bigger
the q is, the more the probability to learn something new.

Right after, in [15], the Haeupler et al. give a lemma that basically
shows that any node that knows about −→µ will pass that knowledge to their
neighbours with probability at least 1 − 1/q. Finally, it is proved that the
network coding algorithm with q ≥ 2 solves the k-indexed-broadcast problem
in an always connected dynamic network with probability at least 1− q−n in
time O(n+ k).

4.2 Applications

Despite network coding is an arguably recent technique, it has already been
implemented and proved that it is useful in many different areas:

1. Avalanche: It is a research project carried out at Microsoft, which is
claimed to provide a cost effective, scalable and very fast file distribu-
tion solution compare to existing P2P systems[13]. The authors of the
project propose a solution for the well known problem of Peer-Assisted
file delivery systems, where the last “rarest pieces” of a file are harder
to obtain. This, at the end, will result in slower downloads. In order to
fix the problem, network coding is used. Instead of simply distributing
the blocks of the file, peers transmit linear combinations of the blocks
they already hold together with a tag that indicates the parameters
used in the combination. This approach clearly solves the problem,
since a peer does need to find specific pieces; any subset of encoded
pieces suffices.

2. COPE [19]: It is an architecture for wireless mesh networks that uti-
lizes network coding to increase network throughput. The routers mix
the information content in the packets before forwarding them. The
example given in the paper to briefly explain how COPE works consists
of three computers: Alice’s computer, Bob’s computer and a computer
that acts as a relay. Alice wants to transmit a packet to Bob and Bob
wants to do the same with Alice. If network coding is not used, the relay
will receive one packet at a time(otherwise there will be a collision) and
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forward it. Four transmissions will be needed in total in order for Alice
and Bob to receive each others packets. However, if network coding is
used; for instance, Alice will send first the packet and the relay will
receive it, but instead of directly forward it, the relay will hold it for
a certain period of time. During this period Bob will send his packet,
and the central computer will only have to “XOR” the packets and
forward the resulting packet. By using network coding, the number of
transmissions is reduced from four to three. From this simple example,
it can be also observed that using COPE leads to bandwidth savings.

3. Spatial Buffer Multiplexing [7]: It is a technique to reduce buffer uti-
lization and delay. This approach makes use of a scheme where the
intermediary nodes have no buffering capabilities for queuing transient
packets (in contrast to traditional approaches). In spatial buffer multi-
plexing, the buffering and coding is implemented at the source and the
authors of the paper claim that this will compensate for packet loss at
any downstream buffer-less link.

4. CTCP [20]: It is a reliable transport protocol based on network coding.
It incorporates same features of TCP such as reliability, congestion
control and fairness but it additionally improves TCP’s performance
in lossy, interference-limited and/or dynamic networks. The authors
affirm that the combination of TCP transport layer and network coding
yields to performance gains in the presence of interference.

5. AdapCode [18]: It is a reliable data dissemination protocol that makes
use of network coding in order to reduce the total amount of traffic
during the process of code updates. The main idea behind AdapCode
is that the network coding schemes change according to the quality of
the links.

Hou et al. state that the broadcast used when doing troubleshooting,
which requires frequent upload of new code, must be fast, reliable and
minimal in terms of network bandwidth consumed. AdapCode is in-
tended for wireless sensor networks, it takes advantage of the fact that
network coding reduces the total amount of traffic although increases
the local computation, which is ideal for such kind of networks since
the communication is slower and needs more energy compared to local
computation.

The network coding methodology used in [18] consists of the random
combination of N coefficients and the computation of the linear com-
bination of N packets. A node dynamically decides on N based on the
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number of neighbours it has. In other words, AdapCode adaptively de-
cides on its coding scheme using the local knowledge of each node. In
the paper, AdapCode is compared with Deluge, which is a state-of-the-
art protocol used to propagate new code images, in TinyOS version 2.
Deluge can disseminate data with 100% reliability at a speed of approx-
imately 90 bytes per second. And according to Hou et al. the results of
the comparison show that AdapCode uses less packets than Deluge to
disseminate a image of the same size. An example of a code image of
1024 packets is given, which is sent by AdapCode with a reduction up
to 40% of the total number of packets that are needed to disseminate
the same image using Deluge.

In order to achieve 100% reliability, AdapCode makes use of Negative-
ACK. Nevertheless, it is worth to mention that, in the paper, the au-
thors do not address temporary node failures or reboots. In addition,
in contrast to the network model that this report is based on, they
consider that there is a single source of data, instead of having more
than one source disseminating data at the same time. The reason why
Hou et al. consider only one source is because normally the scenarios
that are presented in wireless sensor networks, contain a single source
which is responsible for broadcasting the packets.
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5 Defining the problem

The following section provides a definition of the k-token dissemination prob-
lem, together with some of its most relevant key points. Moreover, the core
problem of this thesis is presented: a session management problem. Solving
this problem will help us to resolve the problem here studied, the k-token
dissemination problem.

5.1 K-token Dissemination: Problem description

The problem that needs to be solved is based on the dynamic network model
first proposed by Kuhn et al. [21] and on the greedy-forward algorithm given
by Haeupler et al. [15]. As explained in section 2 (Background and Our Con-
tributions), the problem that needs to be solved is the k-token dissemination
problem, where there are a total number of k tokens distributed throughout
the network and all nodes need to possess them eventually. Network coding
can be used to solve the problem in a efficient way. However, it can not be
directly used. First it is necessary that a node gathers enough number of
tokens in order to start sending random linear combinations of tokens.

The algorithms described in this thesis are based on the algorithm pro-
vided by [15]. However, the k-token dissemination algorithm shown by [15]
does not explain how to deal with some of the problems that raise in networks
of such characteristics, such as: When do all nodes know that they have the
same set of tokens?, When does the identified node, which is responsible for
broadcasting up to b2/d know that the rest of the nodes can decode all b2/d
tokens?, How do all nodes know whether the node responsible for broadcast-
ing random linear combinations of tokens has crashed?, etc. Hence, we want
our algorithm to be able to deal with the following problems:

• If the node responsible for starting sending random linear combinations
of tokens crashes, all correct nodes should eventually notice it.

• All nodes must agree on the same elected node before this starts broad-
casting random linear combinations of tokens.

• The system should be self-organizing and-recovering [1, 6].

• If a node that has crashed suddenly recovers, it shall not disrupt the
self-organizing and-recovering condition. In other words, the node may
make the system to enter in a non-legitimate state, but after a finite
number of rounds the system will exhibit a desired legal behaviour.
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5.2 Session Management Problem

In the context of the k-token dissemination problem, a session represents
a node that is able to start with the network coding phase because it has
reached the minimum number of tokens needed to do so. When a node
reaches such threshold, we say that this node is eligible. In the moment that
a session is created, every node in the network will eventually notice this
event and allocate buffer space to store the information associated to the
session. One of the reasons why the sessions must be handled is that the set
of eligible nodes is unknown and thus, if every eligible node creates a session,
all nodes need to allocate buffer space to store the information associated to
each single session. For instance, in the k-token dissemination problem each
node stores all the coded packets (coefficients and coded tokens) associated
to a session in order to decode the tokens. Consequently, in a system where
the nodes have limited resources, we do not want all (eligible) nodes in the
network, which can start with the network coding phase, to immediately
create a session. Therefore, it is needed to limit the total number of sessions
existing in the system at the same time to a bounded number, S, of sessions.
In this document, we propose two different approaches, one for when S = 1
and the other one for a general S. The advantages and disadvantages of
using one or another approach will be shown later on this report.

We define a session as an expirable lease that grants a node the permission
to perform a “dissemination” task. In addition, only eligible nodes can create
a session. The session manager bounds the number, S, of sessions that may
concurrently exist in the system. The exact problem definition considers
three main events:

1. Session Creation. There are two preconditions that must be fulfilled
before this event is triggered. The first precondition is that a node
must be eligible. In the context of the k-token dissemination problem,
in order for a node to become eligible, it has to gather the minimum
number of tokens needed to start sending coded tokens. The second
precondition is that the limit of current sessions in the system is not
exceeded if the eligible node creates a session. If a node satisfies these
two preconditions, then it is allowed to create a session. In the context
of k-token dissemination problem, once a node has enough tokens, if
the limit of current sessions in the system has not been reached, then
the node can immediately create a session. Once a session is created,
the session creation event is triggered. Both the creator of a session
and the rest of the nodes must allocate buffer space for the information
associated to the created session.
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Finally, the creator of the session needs to wait for the session to become
stable7 in order to start sending random linear combinations of tokens.
Meanwhile, the rest of the nodes in the network must verify that the
creator of a session stays eligible and connected. Furthermore, there
can only be one creator of a session performing its task at a time.

2. Session Termination. A session should terminate, once all correct
nodes have received all the information associated to the task. In the
context of k-token dissemination problem, this means that a node re-
sponsible for a session has to be sure that all nodes in the network are
able to decode all tokens associated to that session before terminating
it.

In addition, a node, which is not responsible for a session, can not
deliberately end such session, unless the session has expired. Once the
node responsible for a created session is completely sure that all nodes
in the network have received the information associated to the task,
then it must end such session. As soon as a session is ended by its
creator, the rest of the nodes in the network must eventually realize of
this event and remove the session and its associated information from
the system.

3. Session Expiration. The precondition for a session expiration event
to be triggered is that a node realizes that the creator of a session, which
currently exists in the system, is not connected to the network. Since
the creator of the session is the only one capable of terminating the
session, the action that needs to be carried out by the rest of the nodes
once this event is triggered consists of removing the session from the
system within a finite time. Otherwise, the session and its associated
information will remain in the system “forever”.

7A session becomes stable when all nodes agree on that session for at most 2(n − 1)
consecutive rounds in a highly dynamic network. This will be explained with more detail
in Section 7.
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6 Basic Techniques

In this section, we show different basic problems and their respective tech-
niques to solve them. These problems consist of minor issues associated
to the more general studied k-token dissemination and session management
problems, which need to be solved in order to provide a correct functioning
of the algorithms. We present a comparison problem for knowing when all
nodes in the network have the same information, along with two solutions
for such problem. The first described solution is used by the nodes to know
when all nodes have gathered the k-tokens. The second solution provides the
nodes a mechanism to know whether all nodes possess the same information
associated to a particular session. Finally, we talk about the wrapping around
problem and its solution.

6.1 Knowing that All Nodes Possess Same Information

The two approaches for solving the k-token dissemination and session man-
agement problems have in common the way they deal with the problem of
knowing when all nodes have the same information.

When Haeupler et al. [15] describe their algorithm, greedy-forward, they
assume that after O(n) rounds of network coding phase, all nodes will be able
to decode the tokens. But what if it takes more time for the nodes to be able
to decode the tokens, or on the other hand, it takes less time. It is necessary
that all nodes in the network know exactly when they have the same set of
k tokens so the algorithm can finish. In addition, it is also needed that the
creators of sessions know the exact moment when all nodes can decode the
tokens associated to their sessions.

6.1.1 Comparing Tokens

On one hand, in order to check if all nodes have the same set of tokens,
these nodes append to the packet a hash value of the ordered list of tokens
that they possess together with a Time To End counter. Two nodes agree
to have the same list of tokens if the hash value is the same. Every time
there is an agreement between two nodes, the maximum of the two counters
is taken and is decreased by one, otherwise is set to8 N . In this way, when
the counter reaches value 0, it means that all nodes have the same set of
tokens, and therefore the algorithm must trigger an event indicating that all
nodes in the network possess the same set of tokens.

8Where N is an upper-bound on the number of nodes in the network.
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6.1.2 Comparing Coded Tokens

On the other hand, a creator of a session needs to know when the rest of the
nodes have received enough number of linear independent packets so they
can decode the tokens that those packets contain. Hence, it is necessary to
implement a similar technique as the previous one. But this time, instead
of just having plain-text tokens, there are coded tokens together with their
respective coefficient vectors which need to be compared. It is not possible
to lexicographically order these vectors and hash them as done in the above
mentioned approach. The reason why this cannot be carried out is because
it is possible that two nodes have received different packets but they actually
have the same information or knowledge. For instance, suppose that a node u
receives two packets9 〈1, 0, 0, 1〉 and 〈0, 1, 1, 0〉, and another node v receives
also two packets: 〈1, 1, 1, 1〉 and 〈0, 1, 1, 0〉. It can be observed, that both
nodes do not have enough packets to be able to decode at least one token,
but they have the same knowledge about the tokens. In order words, in
terms of knowledge, it can be stated that both nodes know the same, but
the vectors that they have are not the same.

For this reason, it is necessary to devise a method that allows the nodes
to know whether they have the same knowledge about the coded tokens,
even though they have received different packets. The solution proposed for
this problem consists of calculating and keeping the Gaussian Elimination10

matrix of the packets received so far. This matrix will be hashed and sent
together with the Time To End counter (as well as when comparing the set
of tokens).

Moreover, it should be mentioned that this technique is not only useful
for the creator of a session, but also for the rest of nodes. This is because,
if the creator crashes, the rest of nodes eventually will notice it due to the
fact that they all will have the same knowledge about the same coded tokens
and if they can not decode all the tokens, they will realize that the node
responsible for the network coding has crashed. Thereby, this method can
be also used as a fault detector with weak completeness because it can be the
case, that the elected node crashes, but before doing it, it has sent enough
linear independent packets to the rest of the nodes in order for them to be
able to decode all tokens, and consequently, the correct nodes will not detect
that the elected node has crashed.

9We only look at the coefficient vector.
10As explained in the Introduction, the Gaussian Elimination algorithm employed to

calculate the matrix has a small modification in comparison to the general algorithm.
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6.2 Wrapping Around Problem

Both proposed algorithms make use of incarnation numbers. These incarna-
tions numbers are counters that tell the nodes whether a node just joined
the network after crashing. Since the size of the data type used for the coun-
ters is limited, it is necessary to find a solution for when the bound value is
increased by one. For the sake of simplicity, suppose that the incarnation
number is represented by 28 bits value and that the current value of the
incarnation number is 255. The next time a node creates a session, it will
increase by one the incarnation number, resulting in zero value. When com-
paring the new created session with incarnation number equal to 0 and older
ones, by default, the comparison will return that the newest created session
is the oldest one, which is not true. Therefore, the comparison method must
be modified in order to solve this problem.

6.2.1 Comparing Incarnation Numbers

To solve the problem, we need to redefine the comparison technique when
the incarnation numbers that need to be compared are close to the boundary.
An incarnation number is close to the boundary if it belongs to the interval
(I−R, (I+R) mod (I+1)]. In order to use the redefined comparison method,
at least one of the incarnation numbers has to belong to the interval (I−R, I]
and the other one has to belong to (I − R, (I + R) mod (I + 1)]. If one of
the two incarnation numbers that need to be compared does not belong to
the big interval, then a regular comparison method is used.

Suppose there exist two nodes pi and pj that are neighbours. And pj sends
a packet to pi containing IncarnationNumberj, which belongs to the inter-
val (I −R, I]. When pi compares IncarnationNumberj with its incarnation
number, IncarnationNumberi, which belongs to the interval (I −R, (I +R)
mod (I + 1)], instead of directly comparing them, it uses a redefined com-
parison method that behaves modulo I + 1, where I is the maximum value
the incarnation number can reach. In addition it is required to add R to
the incarnation number, where R represents the maximum difference be-
tween incarnation numbers11. Furthermore, R should satisfy two conditions:
R � I and R ≥ S, where S is the maximum number of sessions allowed
in the system at the same time. Thereby, the resultant comparison method
will look like this: (IncarnationNumberj +R) mod (I + 1) compared with
(IncarnationNumberi +R) mod (I + 1).

11We assume that all the incarnation numbers existing in the system are comparable,
i.e. ∀ pi, pj ,@ IncarnationNumberi, IncarnationNumberj , s.t. |IncarnationNumberi −
IncarnationNumberj | mod (I + 1) > R.
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For sake of simplicity, suppose we have the previous scenario where the
maximum value of I is 255, and the incarnation number, IncarnationNumberi,
of a processor pi is equal to 255. Now suppose, that the maximum allowed
difference between incarnation numbers is two, R = 2. A node pj creates a
session and therefore, it increases the incarnation number by 1, ((255 + 2)
mod (255+1)), IncarnationNumberj = 1. When pi receives pj’s packet and
vice-versa, they will make use of the redefined comparison method: (0 + 2)
mod (255 + 1) compared with (255 + 2) mod (255 + 1). The result of the
comparison shows that the session created by pi is older than the one created
by pj.

Finally, in order to give some intuition for how large R should be, suppose
that R < S. In addition, suppose that there currently exists S sessions in the
system, and all sessions have a unique incarnation number, where the first
session is s1 and its incarnation number is IncarnationNumber1, and the
last session is sS and its incarnation number is IncarnationNumberS. The
difference between both incarnation numbers is S (IncarnationNumberS −
IncarnationNumber1 = S). Since S is greater than R (and R > 1), it
can be the case that we are comparing IncarnationNumber1 and Incar-
nationNumberS, where IncarnationNumber1 is equal to I, and hence, it
belongs to the interval (I −R, I]. And where IncarnationNumberS is equal
to I + S mod (I + 1) = S − 1, therefore, it does not belong to the in-
terval (I − R, (I + R) mod (I + 1)]. When comparing both incarnation
numbers, since IncarnationNumberS does not belong to the interval, the
regular comparison method is used. The comparison method will return
that IncarnationNumberS is lower than IncarnationNumber1, i.e. In-
carnationNumberS is older than IncarnationNumber1 which is not true.
Moreover, if R = S, the comparison may also fail if the difference between
IncarnationNumberS−IncarnationNumber 1 is greater than S. Thus, it is
necessary to set a large enough value to R, in order to avoid these scenarios
where the comparison method misbehaves.
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7 Algorithm Design: One Session at a Time

In this section, a first approach to solve the k-token dissemination and session
management problems is described. The main algorithm consists of several
algorithms and whose main purpose is to provide a stable session once a node
has reached the threshold of minimum number of tokens needed to start the
network coding phase and all nodes agree on that particular session. It is
stable in the sense that no other node will start its own network coding phase
even though it has also reached the threshold. While there is an agreement,
the nodes send network coded packets, if not, packets containing plain-text
tokens are sent. Moreover, this algorithm provides a mechanism to have a
back-up session in case the current session terminates or expires.

7.1 Session Management: One Session at a Time

For this problem, it is allowed to have in the system only one session at a
time. Thus, the nodes keep information associated to only one session. In
addition, there exists the possibility for the nodes to switch to a back-up
session, in case the node responsible for the an existing session crashes or
terminates the session. However, the nodes do not allocate buffer space for
the back-up session and its associated information until the session leaves the
back-up condition to become principal session. The associated information
of a session consists of all the coded packets (coefficients and coded tokens)
received by a node, together with the generated Gaussian Elimination Matrix
is needed to decode such tokens. The main goal of the algorithm is that
all nodes agree on the same session for the session to become stable. And
consequently, the node responsible for such session can start with the network
coding phase.

7.1.1 Failure-Free Legal Execution

Here, we explain how the algorithm should behave when no failures take
place in the network.

• When a node, pi, gathers the minimum number of tokens needed to
start broadcasting random linear combinations of tokens, an abstract
event is triggered. This event indicates that the node is ready to start
sending coded tokens, i.e. the node is eligible. Once this event is
triggered, if there is no stable session existing in the system and the
existent session (if any) is lexicographically lower, then the node creates
a session, si. This session will be broadcast by its creator to all its
neighbours.
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• Once pi broadcasts si, all its neighbours immediately receive it. The
goal of broadcasting si is that all nodes eventually agree on si.

• While all nodes try to agree on one session, plain-text tokens are sent
(piggybacking technique).

• Once all nodes have agreed on si, this session becomes stable and the
node responsible for si, i.e. pi, is allowed to start sending random linear
combinations of tokens.

• When all nodes have enough number of linear independent tokens in
order to decode all tokens belonging to a particular session, si, pi will
terminate si. This event will eventually be noticed by all nodes in the
network, and thereby, the session will eventually become obsolete and
removed from the system together with its associated information.

• After the termination of a session, If all nodes have agreed on a back-up
session, such session becomes the principal session.

7.1.2 Non-Failure-Free Legal Execution

A node can be affected by three different types of failures: crash-stop, crash-
reboot and crash-resume.

7.1.2.1 Crash-stop. If a node is affected by a crash-stop failure, once
the node crashes, it will never be part of the network again. Depending
on the node affected by this failure, the failure will lead to two different
consequences.

1. If the crashed node was not responsible for any session (principal session
or back-up session), the rest of the nodes will not even notice that
another node has crashed.

2. If the crashed node, pi, is the responsible for a stable principal session,
si, or back-up session, bsi, the rest of the nodes will eventually notice
that the node responsible for si or bsi is not longer in the system. Once
the rest of the nodes realize that no node is maintaining session si
or bsi, the session expires and therefore, they will remove it from the
system. In the case of si, its associated information (if any) will be also
removed.
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7.1.2.2 Crash-reboot. A node pi may crash and reboot. The main dif-
ference between this type of failure and the previous one is that after crashing,
the node may join the network again with all its variables set to their respec-
tive initial values. After the node reboots and unless the current Incarnation
number is equal to 0, all nodes will have to agree on a new Incarnation
number.

As in the previous failure, if pi was responsible for a session si or bsi that
still exists in the system after the node crashes, this session will eventually
disappear from the system.

7.1.2.3 Crash-resume. A node pi may also crash and resume. That
means that after crashing, the node may join the network with the same state
as right before crashing. During the time that the node is absent, the rest
of the nodes may make some progress (e.g., creating and removing principal
and back-up sessions, etc.). Depending on the progress made, the crashed-
resumed node may recover all, partial or none of the tokens associated to a
session.

• If pi has an older Incarnation number 12 than the rest of the nodes, it
will lead to a disagreement in the network and the calculation of the
new Incarnation number.

• If pi has the same Incarnation number as the rest of the nodes, nothing
will happen.

• If pi created a session si before crashing, once the node has resumed
and as long as all nodes agree on the same incarnation number, the
node will keep maintaining the session and broadcasting random linear
combinations of tokens until all correct nodes in the network can decode
all tokens associated to that particular session.

• If pi has a session, sj, that the rest of the nodes still agree on, pi will
have the chance to retrieve the tokens belonging to that session. This
chance will depend on two factors: a) the node, pj, responsible for that
session does not crash. And b) pj notices on time that pi still needs to
receive more packets in order to decode the tokens associated to the
session.

12As mentioned in sectin 5.2, an incarnation number is a counter that tells the nodes
whether a node just joined the network after crashing.
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7.2 White and Black nodes Algorithm

Before defining the main algorithm, it is necessary to know how information
is spread in a highly dynamic network. In order to do that, the White and
Black nodes algorithm is described in this section. For the sake of simplicity,
the proofs used in the main algorithm will make use of the lemma of this
basic algorithm. In addition, this algorithm is also going to be exploited by
the second approach, which can be viewed in the next section.

Intuition. If a black node is neighbour of a white node, then the white
node becomes black.

Lemma 7.1. In an always connected dynamic graph, where the graph can
change completely from round to round, suppose an initial configuration where
all nodes are coloured with white color but one, which is coloured with black.
We say that after at most N − 1 rounds, where N is the number of nodes in
the graph, all nodes will be black.

Proof. Since the graph is always connected, in every round, at least one black
coloured node is the neighbour of at least one white coloured node, i.e. in
every round at least one white coloured node becomes black. Thus, after
at most N − 1 rounds we can assert that all the nodes in the network are
black.

7.2.1 Why do we use N − 1 instead of D?

Suppose that the graph is always connected and dynamic, and that D (di-
ameter of the graph) remains the same value throughout the execution of the
algorithm, independently of the topology changes that the graph may suffer.

If the graph is static, we know that the number of steps needed for all
nodes in the graph to become black coloured is D. Can we state the same for
an always connected dynamic graph where D remains constant during the
execution of the algorithm? The answer is: No. It can be proved with the
following counter example, where D is equal to 3 throughout the execution
of the algorithm:
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(a) Initial Configuration (b) After Round 1

(c) After Round 2 (d) After Round 3

(e) After Round 4

Figure 2: Counterexample

In Figure 2, it can be observed that due to the dynamic nature of the
graph the total number of steps needed to color the entire graph is 4 instead of
3, even though the diameter of the network remains unchanged throughout
the execution of the algorithm. Note that a small change in the topology
has been made in the first round (see Figure 2b) with respect to the Initial
Configuration. Therefore, we conclude that at most N−1 rounds are needed
to spread the information from one node to the rest of the nodes in a dynamic
network.

7.3 Self-Organizing Wave Algorithm

A distributed algorithm is a Wave algorithm if the three following require-
ments are satisfied [24]:

• Termination: Each computation is finite.

• Decision: Each computation contains at least one decide event.

• Dependence: In each computation each decide event is casually pre-
ceded by an event in each process.

A wave algorithm exchanges a finite number of messages and then makes a
decision, which depends on the events that take place in each process.
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This algorithm is used a template for three other different algorithms that
run concurrently in order to solve the session management and k-token dis-
semination problems. The other three algorithms are: Maximum ID, Session
Verifier and Maximum Incarnation Number.

The algorithm makes use of 5 main variables: N , X, x, StabilityCounter,
and ExistenceCounter.

• N : It is an upper bound on the total number of nodes in the network.

• X: It represents a small x.

• x: A unique value composed of an incarnation number and a unique
ID.

• StabilityCounter: It indicates whether X is stable or not.

• ExistenceCounter: It is used by the nodes to know whether the re-
sponsible for X exists in the system or not.

The reason why we make use of these two counters is because the nodes need
to know whether a session is stable or not. In addition, they also need to know
whether its creator exists in the system or not. The counters will provide
such information, becoming this way in key elements for our algorithms.

7.3.1 Algorithm

Algorithm 1 Self-Organizing Wave (Template)

Require: Xi, xi, StabilityCounteri, and ExistenceCounteri;
1: function Upon New Round
2: StabilityCounteri ← StabilityCounteri + 1
3: ExistenceCounteri ← ExistenceCounteri + 1
4: StabilityCounteri ← min(StabilityCounteri, N)
5: ExistenceCounteri ← min(ExistenceCounteri, N)
6: if Xi = xi then
7: ExistenceCounteri ← 0
8: else
9: if ExistenceCounteri = N then

10: raise INEXISTENCE INDICATION();
11: end if
12: end if
13: SEND(Xi, StabilityCounteri, ExistenceCounteri);
14: end function
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15: function Upon Receive(Xj , StabilityCounterj , ExistenceCounterj)
16: if Xj = Xi then
17: StabilityCounteri ← min(N , StabilityCounteri, StabilityCounterj)

# Converge to the min
18: ExistenceCounteri ← min(N − 1, ExistenceCounteri,

ExistenceCounterj)
19: else
20: raise DISAGREEMENT INDICATION(Xj , StabilityCounterj ,

ExistenceCounterj)
21: Refresh() # Set stability counter to 0
22: end if
23: end function
24: function Restart # Reset the variables
25: Xi ← xi
26: StabilityCounteri ← 0
27: ExistenceCounteri ← 0
28: end function
29: function Refresh
30: StabilityCounteri ← 0
31: end function
32: function Adopt(〈Incarnation,NodeID〉X, int StabilityCounter, int

ExistenceCounter))
33: Xi ← X
34: StabilityCounteri ← StabilityCounter
35: ExistenceCounteri ← ExistenceCounter
36: end function
37: function IsStable
38: if StabilityCounteri = N and ExistenceCounteri < N then
39: return true
40: end if
41: return false
42: end function

7.3.2 Properties

Property 1. In every round, both counters (StabilityCounter and Exis-
tenceCounter) are increased by one, being N the maximum value they
can reach.

Property 2. Every time a message, containing an Xj 6= Xi, is received,
StabilityCounteri is set to 0.

Property 3. Every time a message, containing an Xj = Xi, is received,
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StabilityCounteri converges to the minimum value out of N , Stabili-
tyCounter j and itself. And ExistenceCounteri is set to the minimum
value out of N − 1, ExistenceCounterj and itself.

Property 4. When ExistenceCounteri reaches value N , an non-existence
indication is raised. This means that either Xi does not longer exist in
the system or it has been disconnected from the network for at least
one round.

Property 5. A node is considered to be in a stable configuration, when
the stability counter is equal to N and the existence counter does not
exceed N − 1.

Lemma 7.2. If there is a node in the network with different X than the rest
of nodes, all nodes in the network will become aware of this in at most N − 1
rounds. After N − 1 rounds and while there exists at least one node with
different X, the stability counters of all nodes will never reach value N .

Proof. According to lemma 7.1, we know that the information spreads from
one node to the whole network in at most N −1 rounds. Hence, if there is at
least one node that has a different X, this will be known by the rest of the
nodes in at most N − 1 rounds. Looking at the neighbours, there are two
different cases for any arbitrary configuration:

I Neighbour with different X. Suppose that pi and pj are neighbours
throughout the execution of the algorithm and have different X (Xi 6=
Xj). After one round, they will send to each other a message containing
their X, and since they are not equal, the stability counter will be set to
0 according to Property 2. In the next round, the stability counter will
be increased by one, but once they receive the message from the other
node, they will set it again to 0. The same will happen in all successive
rounds, therefore StabilityCounter will never reach N for none of these
two nodes.

II Neighbour with same X. Assume we have the same scenario as in (I),
but this time there is one more node pr, whose Xr = Xi . Even if
pr does not receive any message from pj (it only receives it from pi
) throughout the execution of the algorithm, according to property 3,
StabilityCounter will converge to the min, and thus it will adopt the
value of StabilityCounteri. Which will never be greater than 1 for this
case. Therefore its StabilityCounter will never reach N .
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7.4 Maximum X Algorithm

Maximum X algorithm is an algorithm that inherits from Self-Organizing
Wave algorithm and its purpose is to continuously find the greater X among
all nodes in the network. Moreover, the information given by this algorithm
allows a node to know whether the node to which X belongs, is connected
to the network or not.

7.4.1 Algorithm

Algorithm 2 Maximum X

Require: Xi, xi, StabilityCounteri, and ExistenceCounteri;
1: function Upon Event Inexistence Indication
2: Restart()
3: end function
4: function Upon Event Disagreement Indication(Xj , StabilityCounterj ,

ExistenceCounterj)
5: if LexicographicalCompare(Xi, Xj) = GREATER then # Xj > Xi

6: Adopt(Xj , StabilityCounterj , ExistenceCounterj)
7: end if
8: end function

As it can be observed in the pseudo-code above, Maximum X algorithm im-
plements two event listeners (line 1 and 4). The variable xi represents a
value(e.g., numerical, character, etc.) and Xi represents the greatest lexico-
graphical value seen by a node.

7.4.2 Properties

Property 1. Once an non-existence indication has been triggered, the coun-
ters are set to 0 and Xi = xi.

Property 2. When a disagreement event is triggered and Xj is greater than
Xi, then the node pi adopts the values of counters of pj and its Xj.

Lemma 7.3. We can relate the black and white nodes lemma to our Maxi-
mum X algorithm, where the node with greater xi is the black node, and the
rest are white nodes. Therefore, we assert that after at most N − 1 rounds
Xi = Xj, ∀ pi, pj where i 6= j. In other words, after at most N − 1 rounds
all nodes in the network have the same X.
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Lemma 7.4. After at most N−1 rounds all the floating X(s)13 will disappear
from the system.

Proof. According to Lemma 7.1, we know that the information spreads from
one node to the whole network in at most N − 1 rounds. There are two
different cases for any arbitrary configuration:

I Suppose that ∀ pi,∃ Xj, Xi s.t. Xi > Xj and ∃xi = Xi, but @ xj
s.t. xj = Xj. For this first case is trivial to see that since Xj is not the
greatest value in the network, after at most N−1 rounds, when the node
having its X equal to Xj, receive Xi, it will keep the one with greater
value, in this case Xi, and thus, Xj will disappear from the system.

II Suppose that ∀ pi, Xi = X and @ xi s.t. xi = X. The ExistenceCounter
of the nodes will be not equal to 0. 0, since the only one allowed to set
this counter to 0 is pi with xi = X, which does not exist in the system any
more. The existence counters of the nodes can only increase according
to Property 1.1, thus after N − 1 rounds, the existence counters of all
nodes will reach the value N , which means, according to Property 2.1,
the nodes have to reset their counters and set their Xi = xi. Therefore,
the floating value disappears from the network.

Corollary 7.5. After at most 2(N−1) rounds, ∀ pj,∃ xi ≥ xj, s.t. Xi = xi,
and Xi = Xj. And within N extra rounds, all nodes know that the rest of
the nodes in the network agree on the same Xi , i.e. ∀ pi, pj where i 6= j,
StabilityCounteri = StabilityCounterj = N .

Proof. Suppose there is at least one node such that its X is floating, and
X is greater than any xi existing in the network. According to Lemma 7.4,
within at most N − 1 rounds, this value will disappear from the system.
Once the floating X has vanished, the nodes will set Xi = xi , and the
StabilityCounter to 0. According to Lemma 7.3, within N −1 extra rounds,
all nodes will have the same X. Now, in order for the nodes to know that the
rest of the nodes have the same X, it is necessary that the StabilityCounter
reaches N , which will happen within at most N rounds after all nodes have
the same X. The reason why N rounds are enough, is because once all the
nodes have the same X, the StabilityCounter will never be reset to 0 since
all the nodes possess the same X, therefore the counter can only increase.
According to the algorithm, each round StabilityCounter increases by 1,

13Floating X(s) are all the Xj whose xj does no longer exist in the system.
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hence, after N rounds its value will be equal to N . Consequently, within a
total number of 3N − 2 rounds all nodes know that they agree on the same
X.

7.4.3 Maximum ID and Incarnation Number

The Incarnation Number and Maximum ID algorithms are instantiations of
the Maximum X algorithm. The only difference between them are the values
that xi and Xi represent.

In the case of the Incarnation Number algorithm, the small x is a numer-
ical value that represents the incarnation number and the big X represents
the maximum incarnation number that all nodes will eventually agree on.

On the other hand, in the case of the Maximum ID algorithm, the small x
is a numerical or character value that represents a unique ID of a particular
node and the big X represents the maximum ID that exists in the system
and which all nodes will eventually agree on.

7.5 Session Verifier Algorithm

The Session Verifier algorithm is responsible for, as it can be deduced from
its name, verifying two things: (a) The session is stable and (b) the node
responsible for that session exists in the network.

7.5.1 Algorithm and Properties

Session Verifier algorithm is simply an instantiation of the Self-Organizing
Wave algorithm without any extension. Thus, it shares all its properties.

The variable xi consists of an incarnation number and the ID of the node
(xi = 〈IncarnationNumber,NodeID〉). Xi represents the session that all
nodes agree on.

As explained earlier, this algorithm only verifies that all nodes agree on
the same session (〈IncarnationNumber, CreatorOfSessionID〉). At the
exact moment when there is a disagreement on the session, the stability is
broken and this will spread to all nodes in the network. This leads to the
following Corollary.

Corollary 7.6. According to Lemma 7.2, if there is a node with different
Xi, all nodes will notice it after at most N − 1 rounds.

The reason for having this algorithm is to ensure that once a session has
been created and becomes stable , this session will remain in a stable status,
even though another eligible node with greater ID joins the network.
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7.6 Session Manager Algorithm

The function of this algorithm is to unify all the previous mentioned algo-
rithms, and make them work together in order to end up with a final algo-
rithm that is able to switch from one session to another in case, for instance,
the creator of the current session is down and all nodes agree on the same
MaximumID. It is also the node responsible for increasing the incarnation
number every time a change of session takes place.

7.6.1 Algorithm

Algorithm 3 Session Manager

Require: Session,MaximumID, Incarnation;
1: function Upon End Of Round
2: if Session.IsStable() = false and MaximumID.IsStable = true and

Incarnation.IsStable() = true then
3: Incarnation.xi ← Incarnation.xi + 1
4: Incarnation.Xi ← Incarnation.Xi + 1
5: Session.Adopt(〈Incarnation.Xi, MaximumID.Xi〉,

MaximumID.StabilityCounteri, MaximumID.ExistenceCounteri)
6: end if
7: end function

The three variables required by the algorithm are instantiations of the previ-
ous algorithms. Session is an instantiation of the Session Verifier algorithm.
MaximumID is an instantiation of the Maximum ID algorithm and Incarna-
tion is an instantiation of the Incarnation Number algorithm.

The Session Manager algorithm is executed at the end of each round, and
as shown in line 4 of the pseudo-code, it checks if there is a stable session,
i.e. all nodes agree on the same session. In negative case, it tries to switch to
the current maximumID. To do so, it also checks if all nodes agree on the
same maximumID and on the same incarnation number. In case these two
verifications return true, then the current maximumID is taken as a new
session, and the incarnation number is increased by one.

Remark 7.7. Once all nodes know that they agree on the same Xi, there is
not agreement on the session and all nodes agree on the same incarnation
number, then according to the session manager algorithm, Xi will be the
session and will not change unless pi goes down or a node with different
CreatorOfSessionID or incarnation number joins the network.
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7.7 Advantages and Disadvantages of the Algorithm

7.7.1 Advantages of Allowing One Session at a Time

The main benefit of using an algorithm that allows only one session in the
system at a time is that the nodes only have to store the information asso-
ciated to that session. Therefore, this algorithm is recommended to be used
in systems where their devices have memory constrains.

The information associated to a session is all coded packets received as-
sociated to that session and the Gaussian Elimination Matrix generated to
decode the tokens contained in those packets. If t is the number of coded
tokens and l the size of a token, then the maximum size required to store
the matrix will be multiple of: t× (t+ l). Where (t× t) is the square matrix
containing the coefficient part, and (t×l) refers to the right side of the matrix
containing the tokens.

7.7.2 Disadvantages of Allowing One Session at a Time

During the analysis of the algorithm a series of scenarios for which this algo-
rithm can become really inefficient have been discovered:

1. Session Agreement - O(n2). Suppose the following scenario: the incar-
nation number is stable and the node with the lowest ID in the network
is the first reaching the minimum threshold of tokens, therefore it be-
comes an eligible node, and since there is no other session, it creates
one. According to Corollary 7.5, we know that after 2(N −1) all nodes
in the network will agree on the same session. But, now suppose that
after 2(N − 1)− 1 rounds, the node with the second lowest ID reaches
the threshold and also becomes eligible and creates a session, avoiding
that the previous session becomes stable. The same can happen with
the node with the third lowest ID, and so forth. All nodes will agree on
the same session in this really pessimistic and unlikely scenario after
O(n2) rounds, which is the same time that the simple random forward-
ing algorithm needs to solve the problem.

2. Recovered node may disrupt all previous work. A less unlikely scenario
is that a crashed node recovers after a while, having an incarnation
number that does not correspond to the incarnation number agreed by
the rest of the nodes in the network. This disagreement, will lead to
a change of current session (if there exists one), and therefore, all the
work down by the creator of that session and the rest of the nodes, in
terms of amount of random linear combinations packets that have been
broadcast, will be disrupted by the recently joint node.
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Moreover, it can be the case that a node crashes while there exist a creator
of a session sending random linear combinations of tokens. If the creator of
the session terminates such session before the crashed node resumes, the
crashed node will not be able to obtain any of the already sent information.
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8 Algorithm Design: S Sessions at a Time

In this section, the design of the algorithm that solves the k-token dissemina-
tion and session management problems allowing the existence of S sessions in
the system at the same time is introduced. The full version of the algorithm
can be seen in the appendix. Here, only the most relevant and interesting
parts of it are presented.

8.1 Lessons learned from previous approach

There are several points that needed to be taken into consideration before
starting designing the second algorithm. Some of these points are:

• Minimize disruption. One of the things that need to be mitigated with
respect to the previous approach is the capacity that a node has to
disrupt all the work done by a previous node.

• Avoid indefinite session agreement. If a node becomes eligible and
creates a session, then after at most 2(N − 1) rounds, this node or
another node will start with the network coding phase, independently
of if one or more nodes have created a session.

• Extend the back-up property. In the previous approach, if the creator of
a session fails, then it is checked if there is agreement on the Maximum
ID node and in affirmative case, the Maximum ID becomes the new
creator of a session. It would be interesting to extend this property, so
instead of having only one back-up, it is possible to have L back-ups.
Thereby, the algorithm will be able to tolerate until L − 1 failures of
session creators.

• Add possibility for a crashed-recovered node to recover some useful
information. It is interesting if a node that has gone down and recovered
within a limited period of time can have the chance to recover some of
the coded tokens that have been sent while the node was absent.

8.2 Session Management: S Sessions at a Time

For this problem, instead of allowing only one session in the system, there
can be up to O(S) sessions existing in the system at the same time.

How these sessions must be handled is part of the new problem, as well as,
how the algorithm can tolerate session failures. The final goal is that all nodes
agree on the same set of sessions or at least in the same subset of sessions,
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so these sessions can become stable, and therefore the nodes responsible for
those sessions can start broadcasting random linear combinations of tokens.

Before explaining the design of the algorithm, it is necessary to define
the problem itself. These are some of the points that should be taken into
account:

• A session becomes stable if all correct nodes agree on that session for
at most 2N − 1 consecutive rounds.

• Once a session expires all nodes must eventually notice it.

• A node may crash and recover without disrupting all the work done by
the current nodes in the network.

• The system should tolerate O(S) session failures.

The idea to improve fault tolerance is that it is possible to have up to
O(S) stable sessions at the same time, so if one of the stable sessions fails
then another stable session will take over.

8.2.1 Failure-Free Legal Execution

As with the previous algorithm, in the following points, we explain how the
algorithm should behave when no failures take place in the network.

• When a node, pi, gathers the minimum number of tokens needed to
start broadcasting random linear combinations of tokens, an abstract
event is triggered. This event indicates that the node is ready to start
sending coded tokens. Once this event is triggered, the node creates a
session, si, and places it in a list of sessions, li that will be broadcast
to all its neighbours.

• Once pi broadcasts li, all its neighbours immediately receive it. The
goal of broadcasting si is that all nodes eventually agree on si.

• While all nodes try to agree on one or more sessions, together with the
list of sessions, plain-text tokens are sent.

• Once all nodes have agreed on si, that session becomes stable and the
node responsible for si, i.e. pi, will be able to start sending random
linear combinations of tokens (As long as si is the first stable session
on the list of sessions.).
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• When all nodes have enough number of linear independent tokens in
order to decode all tokens belonging to a particular session, si, pi will
stop maintaining si. Therefore, it will eventually become obsolete.
Before being removed from the list of sessions of all nodes in the network
together with its associated information, it will be kept for a certain
period in the system. The reason why it is not directly removed is
because we want the nodes to have a chance to recover or provide
useful information in case an crash-resume failure occurs.

8.2.2 Non-Failure-Free Legal Execution

A node can be affected by three different types of failures: crash-stop, crash-
reboot and crash-resume. Note that the behaviour is similar to the algorithm
where only one session is allowed, but instead of having one principal session
and a back-up session, we have a list of sessions of size S.

8.2.2.1 Crash-stop. Depending on the node affected by this failure, the
failure will lead to two different consequences.

1. If the crashed node was not responsible for any session, the rest of the
nodes will not even notice that another node has crashed.

2. However, if the crashed node, pi, had created and broadcast a session si
before crashing, all nodes will eventually notice that the node responsi-
ble for si is not longer in the system. Once the rest of the nodes realize
that no node is maintaining session si, they will remove it from the
main list of sessions, and placed temporally in another list. Eventually
the session, together with its associated information, will be removed
from the system.

8.2.2.2 Crash-reboot. As in the previous failure, if pi was responsible
for a session si that still exists in the system after crashing, this session will
eventually disappear from the list of sessions of the rest of the nodes, but it
will be kept for a while in another list.

8.2.2.3 Crash-resume. A node pi may also crash and resume. That
means that after crashing, the node may join the network with the same state
as right before crashing. During the time that the node is absent, the rest
of the nodes may do some progress (e.g., creating new sessions, removing all
sessions, etc.). Depending on the progress made, the crashed-resumed node
may recover all, partial or none of the tokens associated to the sessions.
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• If pi has an older Incarnation number, it will lead to a disagreement in
the network and the calculation of the new Incarnation number.

• If pi has the same Incarnation number as the rest of the nodes, nothing
will happen.

• If pi created a session si before crashing, once the node has resumed, it
will keep maintaining the session until all correct nodes in the network
can decode all tokens associated to that particular session.

• If pi has in its list of sessions, sessions that are still maintained by other
nodes in the network, pi will have the chance to retrieve the tokens
belonging to that sessions. This chance will depend on two factors: a)
the nodes responsible for that sessions do not crash. And b) the nodes
responsible for the sessions notice on time that pi still needs to receive
more packets in order to decode the tokens.

8.2.3 Managing S Sessions

In this approach, all nodes will possess a list of size S. The list is divided in
three different lists of size S: Old, Current and Future.

• Old list. All sessions placed in this sub-list are either sessions whose
creator is not longer in the system or sessions that have been finished
because all nodes have the same information about the coded tokens
or both of them14.

• Current list. All sessions that belong to this sub-list are broadcast to
the neighbours after the beginning of each round. Moreover, this list
will indicate which kind of packet is transmitted, either a plain-text
packet or a coded packet. If there is no stable session in this sub-list,
then the content of the packet will be in plain-text.

• Future list. All sessions located in this sub-list are sessions which the
node will potentially work with in the future. Every time a node reaches
the threshold will firstly check if there is space in this list and if so, it
will create and place the session in it.

When a node receives the sub-list of sessions, CurrentList, it will merge
it with its Current list, and all the exceeding stable sessions will be merged
with the sessions placed in Future list.

14It is possible that the node responsible for the session has crashed after having already
started to send coded tokens.
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All sessions placed in Current list that either their ExistenceCounter has
reached value N (i.e. the node responsible for that session does not longer
exists in the system) or their Time To End counter has value 0 (i.e all correct
nodes in the network have the same knowledge about the coded tokens and
they can not learn anything new), are merged with the sessions located in
Old list.

8.3 Archives

An archive is associated to a session and consists of: the Gaussian Elimina-
tion Matrix and all the random linear combinations of tokens belonging to
that session. Once a session is removed from all sub-lists, its archive is also
removed.

In the first approach, the nodes only store the coded tokens that belonged
to the current elected node and its respective Gaussian Elimination Matrix.
Once all nodes are able to decode the tokens or all nodes agree on a new
session, the archives belonging to the previous session are removed. However,
in this second approach a node can store up to O(S) archives, since it can
have up to S sessions.
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8.4 S Sessions Manager Algorithm

Algorithm 4 S Sessions Manager

Require: session : 〈IncarnationNumber, ID〉 , FutureList[S] : 〈session〉,
CurrentList[S] : 〈session〉 , OldList[S] : 〈session〉;

1: function Upon New Round
2: if All nodes have same GE Matrix from the same session si then
3: Move si from CurrentList to OldList
4: end if
5: while CurrentList is not REPLETE and FutureList is not EMPTY

do
6: Move sessions from FutureList to CurrentList
7: end while
8: for all sessions in CurrentList do
9: UpdateCounters(session)

10: end for
11: if session si from CurrentList is in OldList then
12: Remove si from OldList
13: end if
14: end function
15: function Upon Receive(listj)
16: Merge(CurrentList, listj);
17: Move to FutureList, sessions that are stable, have archives and that are

no longer in CurrentList
18: end function
19: function UpdateCounters(Si, StabilityCounteri, ExistenceCounteri )
20: StabilityCounteri ← StabilityCounteri + 1
21: ExistenceCounteri ← ExistenceCounteri + 1
22: StabilityCounteri ← min(N , StabilityCounteri) # Converge to

the min
23: ExistenceCounteri ← min(N , ExistenceCounteri)
24: if (Si = si) or (Si.ID is = si.ID and there are archives for Si) then
25: ExistenceCounteri ← 0
26: else if ExistenceCounteri = N then # If the session’s owner has

crashed
27: Remove Si from CurrentList
28: if there are archives for Si then
29: Move Si to OldList
30: end if
31: end if
32: end function
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8.5 Local Properties

Property 1. If all nodes agree on the same Gaussian Elimination Matrix
from a session Si and this session is placed in CurrentList then, it is
moved from CurrentList to OldList.

Property 2. If any session in CurrentList is also located in OldList, then
it is removed from OldList.

Property 3. If OldList is full and a new session is added, then the first
session is removed from OldList along with its archives. Note that if
the added session turns to be the first session, it is not even added to
the list.

Property 4. If FutureList is full and a session is added to the list, the
last session along with its archives is removed from the list. Note that
if the added session turns to be the last session, it is not even added to
the list.

Property 5. When a list, listj, is received from a neighbour, Pj, this list is
merged with CurrentList. All the stable sessions(with stored archives)
that are no longer in the final list, are added to the FutureList.

Property 6. The existence counter is set to 0, if and only if, Si corresponds
to a current session si, or if there exists any archive belonging to Si.

Property 7. If a session in CurrentList no longer exists, i.e. Existence-
Counter is equal to N , then this session is removed from CurrentList
and moved to OldList only if there are some archives belonging to the
session.

Property 8. A session is removed from OldList when S newer sessions are
added to the list.

Property 9. In every round if CurrentList is not replete and FutureList
is not empty, sessions from FutureList are moved to CurrentList until
CurrentList is replete or FutureList is empty.

Property 10. All the sessions stored in the lists are ordered according to
their incarnation numbers (in case two sessions have the same incar-
nation number then the order will depend on the lexicographic value,
where the session with greater ID is the first).
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Lemma 8.1. Once the creator of a session Si, has removed this session
from CurrentList and OldList, this session will eventually disappear from
the lists of the rest of the nodes.

Proof. Suppose that there is a node that introduces a session si in the system.
This can occur when a node has gone down and then it recovers after a while.
In addition, without loss of generality, suppose that this session is the first
session among the already-existing sessions in CurrentList. The list of this
node will be broadcast and, consequently, the session Si. According to the
Black and White lemma, this session will be received by all the nodes in
at most N − 1 rounds. When the node with the same ID as the session,
receives Si, will see that Si is no longer in CurrentList or OldList, therefore
according to Property 6 it will not set its ExistenceCounter to 0, hence
after at most N − 1 rounds all the ExistenceCounter of all nodes will reach
value N . According to property 7, all nodes that do not have any archive
belonging to session Si will remove it from CurrentList. On the other hand,
the nodes possessing archives that belong to this session will move Si to
OldList. Finally, according to Property 8, Si will disappear from the system
once all nodes that have Si in their OldList store S newer sessions.

Remark 8.2. A session is removed from the lists in two possible ways: a)
When the existence counter of a session reaches N and it does not have
any archives belonging to it, then the session is immediately removed. b) In
contrast, if there are archives belonging to the session, then the session is
moved to OldList and according to property 8, eventually removed from this
list too.

Lemma 8.3. A session can always be recovered as long as the creator of the
session keeps the session in one of its lists. (and as long as it behaves as a
correct node.)

Proof. There can be three possible scenarios by looking at where the session
is placed:

I The session is placed in OldList. When a node receives a list containing
a session Si of which that node is the creator, and that session is placed in
OldList, according to Property 6, the ExistenceCounter of that session
is set to 0. In addition, the session will be removed from OldList and
will be treated as a current session with its stability counter set to 1. In
case, the node that receives the list is not the creator of Si , the only
difference is that the node will not set the ExistenceCounter to 0.

II The session is placed in CurrentList. When a node receives a list con-
taining a session Si of which that node is the creator, and that session is
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placed in CurrentList, according to Property 6, the ExistenceCounter
of that session is set to 0 and the StabilityCounter increased by one. In
case, the node is not the creator both, the ExistenceCounter and the
StabilityCounter are increased by one.

III The session is placed in FutureList. The session will eventually be
moved to CurrentList.

Lemma 8.4. There is no session in FutureList with lower identification
than at least one session in CurrentList.

Proof. Assume to the contrary that there is a session in FutureList with
lower identification than at least one session in CurrentList. Note that there
are two possible ways to add sessions to the CurrentList: by merging or by
moving sessions from FutureList to CurrentList. According to property
10, all lists are ordered, therefore, when there is space in CurrentList for
more sessions, the ones (if any) moved from FutureList to CurrentList
are already ordered, hence all the remaining sessions(if any) in FutureList
will have a greater identification. Contradiction!. On the other hand, when
merging two lists, the resulting list will be also ordered and all the exceeding
sessions will be placed in FutureList(if possible). Therefore in order to have
a session in CurrentList with greater identification than at least one session
in FutureList after merging, one of the exceeding session that was moved
to FutureList had lower identification than at least another session that
was placed in CurrentList, but since the sessions are ordered this leads to
another contradiction!

Lemma 8.5. After merging two lists, it is not possible to have the same
session in both CurrentList and FutureList.

Proof. Assume to the contrary that after merging two lists there is a session
Si that is placed both in CurrentList and FutureList, that means that the
received list, listj, contained a session Si which after the merging process was
added to CurrentList. If this is the case, that means that before merging
there were sessions in CurrentList that had a greater identification than
Si or that the union of CurrentList and listj did not exceed the length
(S) of the list. For the first case, we refer to Lemma 8.4 that shows that
this is not possible. For the second case, according to property 9, at the
beginning of every if CurrentList is not replete and FutureList is not empty,
sessions from FutureList are moved to CurrentList until CurrentList is
replete or FutureList is empty, therefore Si should have be placed before in
CurrentList and removed from FinalList. Contradiction!
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8.6 Global Properties

Lemma 8.6. Once a session, si has been created, this session or another
session created during the interval, N − 1, will become stable after at most
2(N−1) rounds after the moment it has been created. (As long as no creator
of a session crashes during this period.)

Proof. According to Lemma 7.1, we know that the information spreads from
one node to the whole network in at most N − 1 rounds. And there can be
two different scenarios for any arbitrary configuration (supposing that the 3
lists are empty):

I Suppose that in the interval of N − 1, apart from the creation of si,
a number of R sessions have been created, where R > S. Since R is
greater than the size of the list, some sessions must be dismissed. Now,
suppose that si is removed because it has lower id than any of the R
sessions. Thus, si will never become stable, but there will be at least a
session sr that after N − 1 rounds is located in the list of every correct
node and after N extra rounds will become stable. This is due to the
fact that every time the nodes send the list, they agree at least on sr
and therefore, they increase by one its stability counter, which after N
rounds reaches its maximum value, N . This indicates that the session
has become stable.

II Suppose that in the interval of N − 1, apart from the creation of si, a
number of R sessions have been created, where R > S. But this time,
si is allocated in the list because of its ID. Consequently, after N − 1
rounds, all nodes in the network will possess si in their lists. And after
N extra rounds, its stability counter will reach value N , indicating that
this session is stable.

Lemma 8.7. If both lists, Current and Future, are replete of stable ses-
sions. The system can tolerate up to 2S − 1 failures, leading to a maximum
period of (2S − 1) ∗ (N − 1) rounds without sending coded tokens.

Proof. Suppose the creators, Ci, of the stable sessions, start crashing in the
order their sessions are placed in the lists and with an interval of N − 1
rounds. When the last session, s2S, becomes the first element in the list, the
node responsible for that session does not crash. For instance, the creator,
c1, of the first session, s1, crashes. This will be noticed by the rest of the
nodes within N − 1 rounds. Once the rest of the nodes realize that the

57



8 ALGORITHM DESIGN: S SESSIONS AT A TIME

creator of s1 is down, the session is removed from the list, Current. And
the second session, s2, becomes the first session in the list. But, it turns out
that its creator, c2, also crashes in that particular moment. Therefore, after
N − 1 rounds all nodes will now that c2 is also down, and so on. Since, the
maximum number of sessions that can be located in Current and Future
sub-lists is (2S), c2S will need to wait (2S − 1) ∗ (N − 1) rounds until it can
start sending random linear combinations of tokens.
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9 Conclusions

The greedy-forward algorithm given in [15], solves the k-token dissemination
problem by means of network coding in a more efficient way than using
a simple random forwarding approach. In this thesis report, we present the
session management problem and two algorithms to solve it. By solving such
a problem, we can also resolve k-token dissemination problem, providing a
robust solution that can deal with certain failures, such as, crash-stop, crash-
reboot and crash-recovery.

Two different algorithms have been designed during the realization of the
project. The first algorithm provides a realistic and robust solution for the k-
token dissemination and session management problems for when one session
at a time is allowed in the system. The main advantage of using the first
algorithm is that it is ideal for systems with memory constrains. However,
there are some scenarios for which this algorithm becomes very inefficient.
Whereas the second presented algorithm, which can handle S sessions at
a time, needs more memory resources. But at the same time, besides the
properties of the first algorithm, it also has some extra features that makes
it more robust and to be able to perform efficiently in scenarios where the
first proposed algorithm does not.

Moreover, even thought, no implementation or test of the algorithms has
been carried out, the algorithms described in this work are accompanied by
several lemmas and their respective formal proofs, which show the correctness
of the algorithms themselves.
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A Algorithm Design

Algorithm 5 S Sessions Token Dissemination Algorithm

Require: session : 〈IncarnationNumber, ID〉, knownTokens[],
tokensToBeSent[], codedPackets[], storedSessions[], GE Matrix[][][],
TTE, L TTE[], sessionsManager, nodeID;

1: function Upon New Round
2: if tokensToBeSent.length() ≥M then
3: if sessionsManager.F ind(nodeID) = ⊥ then
4: sessionsManager.CreateSession();
5: end if
6: else if sessionsManager.F ind(nodeID) 6= ⊥ then
7: sessionsManager.StopMantainingSession();
8: end if
9: session← sessionsManager.GetStableSession();

10: if session = ⊥ then
11: TTE ← TTE − 1;
12: TTE ←Max(0, TTE);
13: if TTE = 0 then
14: return knownTokens[];
15: else if elements in tokensToBeSent > 0 then
16: message← ChooseTokens(MSG SIZE, TOKEN SIZE);
17: SEND(〈PLAINTEXT, TTE,message,Hash(knownTokens)〉);
18: end if
19: else
20: index ← sessionsManager.F ind(session); # Try to find ”ses-

sion” on the lists
21: if index = ⊥ then
22: storedSessions.Add(session);
23: index← lastPosition;
24: end if
25: L TTE ← L TTE − 1;
26: L TTE[index]←Max(0, L TTE[index]);
27: if L TTE[index] = 0 then
28: decodedTokens← Decode(index);
29: RemoveTokens(decodedTokens);
30: knownTokens← knownTokens ∪ decodedTokens;
31: sessionsManager.Remove(CurrentList, session);
32: sessionsManager.Add(OldList, session);
33: else
34: rlc ← [0...0]; # Set the Random Linear Combination to ze-

roed vector
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35: if codedPackets[index] is empty and session.ID = nodeID then
36: codedPackets[index]← IndexTokens(M);
37: end if
38: for i = 0..number of elements in codedPackets[index]− 1 do
39: selection← GenerateRandomNumber() mod 2;
40: if selection = 0 then
41: vector ← [0...0];
42: else
43: vector ← codedPackets[index][i];
44: end if
45: rlc← XOR(rlc, vector);
46: end for
47: SEND(〈CODED,L TTE, rlc,Hash(GE Matrix[index])〉);
48: end if
49: end if
50: end function
51: function Upon Receive(session, packetType, TTEj , msg, hash )
52: if packetType = PLAINTEXT then
53: tokens← msg.getTokens(TOKEN SIZE);
54: tokensToBeSent← tokensToBeSent ∪ tokens;
55: knownTokens← knownTokens ∪ tokens;
56: myHash← Hash(knownTokens);
57: if hash = myHash then
58: TTEi ←Max(TTEi, TTEj);
59: else
60: TTEi ← N ;
61: end if
62: else if packetType = CODED then
63: index← Find(session);
64: if index = ⊥ then
65: storedSessions.Add(session);
66: index← lastPosition;
67: end if
68: codedPackets[index]← codedPackets[index] ∪msg
69: GaussianElimination(GE Matrix[index],msg);
70: myNCHash← Hash(GE Matrix[index]);
71: if hash = myNCHash then
72: L TTE[index]←Max(L TTE[index], L TTEj);
73: else
74: L TTE[index]← N
75: end if
76: end if
77: end function
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Brief Explanation:
From line 2 until line 8 : If the minimum number of tokens needed to

start the network coding phase is reached, then we check whether that nodes
has already created a session or not. In negative case, a new session is created
as long as there is space in the list. If the threshold is not reached, but there
exists a session belonging to the node, we immediately stop maintaining the
session.

From line 9 until line 49 : If there is no stable session, then a plain
text packet is sent. Otherwise, we send a packet containing coded tokens
associated to the stable session.

From line 50 until line 76 : When receiving a packet, the algorithm checks
whether it is a plain-text packet or a coded packet.The tokens (coded or not
coded) are stored, and the algorithm checks whether the receiver has the
same information as the sender of the packet. In affirmative case, the Time
To End counters are set to he maximum of both sender’s and receiver’s TTE,
otherwise they are set to N .
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Algorithm 6 S Sessions Manager

Require: session : 〈IncarnationNumber, ID〉, FutureList[S] : 〈session〉,
CurrentList[S] : 〈session〉, OldList[S] : 〈session〉, incarnation;

1: function Upon New Round
2: while CurrentList is not REPLETE and FutureList is not EMPTY

do
3: Move sessions from FutureList to CurrentList;
4: end while
5: for all sessions〈Si, StabilityCounteri, ExistenceCounteri〉 in

CurrentList do
6: UpdateCounters(〈Si, StabilityCounteri, ExistenceCounteri〉);
7: end for
8: if session si from CurrentList is in OldList then
9: Remove si from OldList;

10: end if
11: end function
12: function Upon Receive(listj)
13: Merge(CurrentList, listj);
14: Move to FutureList, sessions that are stable, have archives and that are

no longer in CurrentList;
15: end function
16: function UpdateCounters(〈Si, StabilityCounteri, ExistenceCounteri〉)
17: StabilityCounteri ← StabilityCounteri + 1;
18: ExistenceCounteri ← ExistenceCounteri + 1;
19: StabilityCounteri ← min(N , StabilityCounteri); # Converge to

the min
20: ExistenceCounteri ← min(N , ExistenceCounteri);
21: if (Si = si) or (Si.ID is = si.ID and there are archives for Si) then
22: ExistenceCounteri ← 0;
23: else if ExistenceCounteri = N then # If the session’s owner has

crashed
24: Remove Si from CurrentList;
25: if there are archives for Si then
26: Move Si to OldList;
27: end if
28: end if
29: end function
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30: function CreateSession
31: if CurrentList is not REPLETE and Incarnation.IsStable() = true then
32: incarnation.ii ← incarnation.ii + 1;
33: incarnation.Ii ← incarnation.Ii + 1;
34: si ← 〈incarnation.Ii, node.ID〉;
35: Add(currentList, 〈si, 0, 0〉); # Add session to correct position of

the ordered Current list.
36: end if
37: end function
38: function StopMantainingSession
39: si ← ⊥
40: end function
41: function GetStableSession
42: for i = 0 to CurrentList.length− 1 do
43: if IsStable(CurrentList[i]) = true then
44: return CurrentList[i].S;
45: end if
46: end for
47: return ⊥;
48: end function
49: function IsStable(〈S, StabilityCounter, ExistenceCounter〉)
50: if StabilityCounter = N and ExistenceCounter < N then
51: return true;
52: end if
53: return false;
54: end function
55: function CompareIncarnationNumbers(〈IncarnationNumber a,

IncarnationNumber b〉)
56: if a = b then
57: return EQUAL;
58: else if (a belongs to (L−R,L] and b belongs to (L−R,L+R mod (L+1)])

or (b belongs to (L − R,L] and a belongs to (L − R,L + R mod (L + 1)])
then

59: if (a + R mod (L + 1)) > (b + R mod (L + 1)) then
60: return GREATER;
61: else
62: return LOWER;
63: end if
64: else
65: if a > b then
66: return GREATER;
67: else
68: return LOWER;
69: end if
70: end if
71: end function 67
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Brief Explanation:
From line 30 until line 38 : A session is created as long as there is space

in CurrentList and the incarnation number is stable. Once the session is
created, the incarnation number is increased by one.

From line 56 until line 72 : When comparing sessions to be place it in
the right position of the lists, both incarnation number and ID are checked.
This method is used by the algorithm to compare the incarnation numbers
of two sessions. I represents the maximum value an incarnation number can
reach and S is the maximum number of sessions allowed in the system at the
same time.

Algorithm 7 Main Algorithm

Require: incarnationNumber : 〈I, StabilityCounter, ExistenceCounter〉,
sessionsManager, tokenDisseminator, incarnation;

1: function Upon New Round
2: sessionsManager.NEW ROUND();
3: incarnation.NEW ROUND();
4: tokenDisseminator.NEW ROUND();
5: end function
6: function Upon Receive(〈sessions listj , incarnationNumberj , sessionj ,

packetTypej , TTEj , msgj , hashj〉)
7: incarnation.RECEIV E(〈incarnationNumberj〉);
8: sessionsManager.RECEIV E(〈sessions listj〉);
9: tokenDisseminator.RECEIV E(〈sessionj , packetTypej , TTEj , msgj ,

hashj〉);
10: end function

Brief Explanation:
The variables sessionsManager and tokenDisseminator are instances

of the S Session Manager and S Session Token Dissemination algorithms
respectively. The variable incarnation is an instantiation of the Maximum X
algorithm presented in Section 6, where xi : 〈Integer〉 that represents the
incarnation number.
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