

Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, August 2013

A Method for Estimation of Safe and Tight WCET in

Multicore Memory Hierarchies

Master of Science Thesis in Embedded Electronics System Design

Feysal Hashi

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

A Method for Estimation of Safe and Tight WCET in Multicore Memory Hierarchies

FEYSAL HASHI

© FEYSAL HASHI, August 2013.

Examiner: PER STENSTRÖM

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Quad-core LEON4, a fault-tolerant SPARC V8 architecture based 32-bit processor. See

Section 3.1.1 for more details about LEON4.

Department of Computer Science and Engineering

Göteborg, Sweden, August 2013

Chalmers | Abstract I

Abstract

Multicore microprocessors have become the new way to improve the processor
performance. Moreover, the multicore processor systems are currently the dominating
computer resource in many products like mobile appliances, automotive and space-borne
applications. However, the last category’s challenge is that tasks can have various degrees
of criticality concerning the response times. Therefore, the aim of this Master’s Thesis is to
develop a method to derive a safe (the task execution time can never be longer) and a tight
(worst-case execution time is off the real execution time by typically a small factor) worst-
case execution time estimates in multicore system with memory hierarchies. The produced
method consists of an analytical model and gem5, which is a state-of-the-art computer
architecture simulator. This Thesis has surprisingly discovered that the simulated multicore
system’s throughput increases by close to linearly with the number of cores. This suggests
that, contrary to common belief, it is possible to guarantee a safe worst-case execution time
and still enjoy the increase in throughput offered by multicore systems. These findings are
therefore encouraging for further investigations. Although, the outcome of this Thesis mainly
focuses on LEON4FT, which is a SPARC V8 based System-on-a-Chip, it is also applicable to
other multicore systems. Furthermore, the Thesis report introduces the previous studies’
arguments about the transition from uniprocessor to the multicore processors, memory
hierarchies as well as worst-case execution time.

Keywords: Multicore microprocessors, multilevel memory hierarchies, worst-case execution

time, gem5, throughput, System-on-a-Chip, parallel execution, serial execution, cache,
memory wall, power wall, SPARC V8.

 II Acknowledgements | Chalmers

Acknowledgements

I would like to express my gratitude to Professor Per Stenstrom for making this thesis
possible in many ways, particularly the lectures, encouragements, insightful comments and
suggestions. Without his guidance and persistent help, this thesis would not have been
possible. I would also like to show my greatest appreciation to Madhavan Manivannan for
helping with the simulation tool and always been there to support me. Special thanks also to
Angelos Arelakis for introducing me to the simulation tool. Last but not least I would like to
thank my family and all the people who helped me to complete this thesis.

Chalmers | Table of Contents III

Table of Contents

Abstract I

Acknowledgements II

Table of Contents III

List of Figures IV

List of Tables V

1. Introduction 1

2. Theory 3

2.1 Multicore Systems 3

2.1.1 From Uniprocessors to Multicore processor 3

2.1.2 Memory Hierarchies 5

2.1.3 The Locality Principle and Cache Parameters 7

2.2 WCET 8

3. System Assumptions 10

3.1 LEON4 10

3.1.1 Background 10

3.1.1 The Quad-core LEON4 Architecture 10

3.2 Simulation Model 12

3.3 Applications 15

4. Experimental Results 17

4.1 Simulation Results 17

4.2 Calculated Results 20

5. Discussion 24

6. Conclusion & Recommendations 26

6.1 Conclusion 26

6.2 Recommendations 26

References 27

Appendix A: Calculated Result for a System Frequency at 300MHz 29

Appendix B: Calculated Result for a System Frequency at 600MHz 30

Appendix C: Calculated Result for a System Frequency at 1200MHz 31

Appendix D: Conventional Matrix Multiplication 32

Appendix E: Blocking Algorithm Matrix Multiplication 33

Appendix F: BASH SCRIPT 1 - runsim.sh 34

Appendix G: BASH SCRIPT 2 - collectStats.sh 36

Appendix H: MAKEFILE 38

Appendix I: gem5 – Simulation configuration file 39

Appendix H: gem5 – Simulation stats file example 44

 IV List of Figures | Chalmers

List of Figures

Figure 1: Moore’s prediction [10]. .. 3
Figure 2: Processor and memory gap [8]. .. 4
Figure 3: processor evolution: from layout to multicore [12]. .. 5
Figure 4: memory hierarchy [17]. ... 5
Figure 5: memory hierarchy’s speed vs. size and cost/bit [17]. .. 6
Figure 6: multicore memory architecture examples [18]. .. 6
Figure 7: Quad-core LEON4FT Architecture overview. .. 11
Figure 8: LEON4 core block diagrams. .. 11
Figure 9: Quad-core LEON4 simulation setup. .. 12
Figure 10: the simulation model overview. ... 14
Figure 11: a) Conventional and b) blocking metrics multiplication C code. 16
Figure 12: P=4, calculated throughputs for the simulated system clock frequencies. 22
Figure 13: P=8, calculated throughputs for the simulated system clock frequencies. 23
Figure 14: P=16, calculated throughputs for the simulated system clock frequencies. 23

Chalmers | List of Tables V

List of Tables

Table 1: WCET Tools [27]. .. 9
Table 2: Proposed LEON4 technology implementations [31]. .. 10
Table 3: Simulation parameters and Cache latencies scaled for future technology nodes. .. 13
Table 4: calculating the AMAT, the Tproc, the Texe and the throughput. 13
Table 5: Conventional and blocking matrix multiplication result for a system freq. 150MHz. 18
Table 6: Conventional and blocking matrix multiplication result for a system freq. 300MHz. 18
Table 7: Conventional and blocking matrix multiplication result for a system freq. 600MHz. 19
Table 8: Conventional and blocking matrix multiplication result for a system freq. 1200MHz.
 .. 20
Table 9: Calculated WCET and Throughput for a system freq. 150MHz and P=4. 21
Table 10: Calculated WCET and Throughput for a system freq. 150MHz and P=8 21
Table 11: Calculated WCET and Throughput for a system freq. 150MHz and P=16 22

Chalmers | 1. Introduction 1

1. Introduction

Multicore microprocessors have in a few years’ time become the mainstream computer resource in a

spectrum of products such as mobile appliances i.e. tablets and smart phones as well as in automotive
and space-borne applications. In the latter category, a special challenge is that tasks can have various

degrees of criticality concerning the response times. Some computational tasks will not jeopardize the

functionality if computational deadlines are not met (non-critical tasks) whereas for safety-critical

tasks (or critical tasks), a missed deadline can lead to catastrophic consequences. In general, a
catastrophic consequence may arise when a control function is not executed on time such as a too late

effect on the brake actuator.

The goal of this project is to develop a method to derive a safe (the task execution time can never be

longer) and a tight (worst-case execution time (WCET) is off the real execution time by typically a

small factor) WCET estimates in multicore system with memory hierarchies. What is needed is to set
up methods to analyse a task before its execution to establish the WCET.

WCET must make sufficiently conservative assumptions to be safe and tight. To illustrate the

challenges involved, imagine that we want to establish WCET for a task that does a memory access. A
memory-access either hits or misses at any level in the memory hierarchy. A safe estimate would be to

assume it misses at all levels. Such a WCET estimate would not be tight; it would be a large factor

longer than the actual execution time. Good news is that prior art has established methods to estimate
safe and acceptably tight bounds on memory access time [1] in single-processor systems. In multicore

systems, the new issue is that several processors may concurrently access some of the levels in the

memory hierarchy creating a new source of pessimism that make multicores unattractive in mixed

criticality applications.

Individual processors on a multicore platform logically share the same memory system. The memory

system is typically implemented using a traditional memory hierarchy in which the first cache level is
physically private to each processor whereas the next level is physically shared. The goal of this thesis

is to define a method by which we can make safe and tight WCET estimates on a multicore platform

taking into account that some of the levels of the memory hierarchy are shared.

The method chosen consists of three components, namely: a simulation tool instead of a costly

hardware option, an application that is representative for the application domain and test case that

would verify the method before a full scale simulation is undertaken. The choice of the method would
be based on the above project scope, time span and cost. Most importantly, the method should be able

to derive a safe and a tight WCET estimates in multicore system with memory hierarchies as

LEON4FT (LEON4), which is the target System-on-a-Chip (SoC) for space-born applications.

The Computer Science and Engineering (CSE) department at Chalmers University of technology that

facilitated this project has internationally recognised professors in the field of the computer
architecture as well as Ph.D. students who are working with the latest researches in the genre of this

master’s thesis. Therefore, it was obvious to start the search for the most appropriate method at the

CSE department by presenting and discussing above criteria.

 2 1. Introduction | Chalmers

After consultation with the CSE department experts and studying other researchers’ work [2] [3] in the
field, it has been identified that gem5, which is a state-of-the-art computer architecture simulator

widely used by the computer architecture research community, would be the best tool to simulate a

complete single/multicore system with multilevel caches and memory. One of the outstanding

strengths that gem5 has over other similar simulators such as SimpleScalar is that it supports many
different ISAs, CPU types, cache levels, memory and other components. Moreover, all the gem5

components are highly configurable i.e. the CPU speed, the cache size and associativity etc. More

details about the gem5 simulator and scripts created to automatize the simulation and the data
collection are presented in the system assumption chapter.

A matrix multiplication (MM) application that multiplies two matrices and saves the result in a third
matrix has been chosen to run on the simulation tool for measuring the WCET. MM was found to be

flexible as test case since it is easy to increase the size of the matrix and/or the system capabilities

while measuring the WCET changes due to the increase of the application workload. MM was also

found to utilise the cache/memory locality hence is a good way to test the benefits of a multilevel
cache systems and its influence on the WCET. Furthermore, it was found that MM is a common

method used by many other researchers in the area [4] [5] [6].

Before porting the MM application onto the gem5 simulator it was important to verify that the tool is

working as it was intended. Therefore, simple applications that make a controlled number of memory

reads and writes were created to run on to the simulation tool. After the simulation tool parameters
were configured correctly and many tests were carried out, the output statistics from the tool has been

compared against the expected number of cache/memory access to verify that the simulator is working

as expected. Finally, the software was ready to run a full scale simulation and to output the data

needed to calculate the WCET.

Prior to the simulation result, the presumption has been that by doing a pessimistic but safe estimation

of the execution time, each task would execute so slowly that it does not pay off to run tasks in
parallel. On the contrary, and quite surprisingly, it was found that the derived WCET estimate for

parallel tasks has shown that it pays off to run tasks in parallel. The main result of this thesis is based

on simulations carried out for 18 applications that carry out matrix multiplications, whereas the first

application’s matrix size is 32x32 and the 18th is 304x304. The cache miss-rates, the numbers of
instructions and other parameters/variables from the simulation of these applications have been used to

calculate the execution time for 4 tasks running serially and 4 running in parallel. The 4 serial tasks’

WCET are then divided by the 4 parallel tasks’ WCET. This revealed that the parallel tasks’
throughput is very close to 4, which is the optimal upper limit for 4 tasks. This result confirms that by

running 4 tasks in parallel in a multicore system, one achieves safer and tighter WCET estimate than

running them in serial.

This thesis’s project is limited to 30 weeks. Therefore, the experiments are carried out using gem5,

which is a state-of-the-art computer architecture simulator widely by the computer architecture

research community [2]. Nevertheless, a continuation of the project, as a doctoral project, will
consider the architectural support to bring down the software overheads further to open up for safe and

tighter estimates.

The multicore system being considered in the project is LEON4FT core, a SPARC V8 based System-

on-a-Chip. This system is used by RUAG, a company in Gothenburg, for space-borne applications

(e.g., satellites) and this project is done in collaboration with RUAG.

The remaining chapters of the report are structured as follows. Chapter 2 gives the theoretical

background of this master’s thesis. Chapter 3 describes the simulated system, the application used to

estimate the WCET, the simulation system and the equations used to measure the execution time.
Chapter 4 presents the results whereas it is analysed and discussed in Chapter 5. Finally, the

conclusion of this master’s thesis is presented in Chapter 6.

Chalmers | 2. Theory 3

2. Theory

In this chapter, a brief history of the transformation of single-core systems to multicore
systems will be presented. Then, memory hierarchies in general are discussed and multicore
caches in particular will be introduced. Finally, the WCET, which is a central topic of this
thesis, will be considered.

2.1 Multicore Systems

2.1.1 From Uniprocessors to Multicore processor
Uniprocessors a.k.a. single-core processors have been the dominating technology of the
desktop/general purpose computers, embedded systems and other specialised processors
for decades until the beginning of the 2000s. In 1965 Gordon Moore predicted that transistor
count would double every 18 month, this prophecy was later called Moore’s Law [7]. Figure 1
illustrates the Moore’s prediction. The doubling transistor count was mainly apparent from
1986 to 2003 [8]. During these days, higher chip speed and lower production cost has been
achieved by shrinking the transistor size (also called transistor scale down) to integrate as
many transistors as possible in the same die while increasing the clock frequency [7]. This
approach that is to increase the uniprocessors speed to gain higher performance for the
existing applications has been quite straightforward [9].

Figure 1: Moore’s prediction [10].

 4 2. Theory | Chalmers

Nevertheless, this trend of uniprocessor speed growth through transistor size scale down
and clock frequency increase, as mentioned above, ended in the early 2000s. According to
[11], [12] and others, the major cause that this trend could not be continued was the intense
temperature rise due to the ever escalating power dissipation (see Equation 1, the power
consumption). This is presumably a bigger drawback for the embedded systems since they
usually have limited power source. One can say that the performance advancements of the
single-core processors came to the point that the physical constants such as the speed of
light, the size of electrons and the silicon operation temperature become the limit [13]. This is
called the power wall [14].

Equation 1: Power = CV2f, (where C is capacitance, f is frequency and V is voltage)

Another, challenge has been the memory wall phenomena, which is the widening speed gap
been the uniprocessors and the memory [15]. Figure 2 is showing this phenomena starting
from 1980 to 2010. Furthermore, deeper pipelines, instruction-level parallelism, and
speculative execution no longer significantly improve uniprocessor performance [11] and it
therefore became inevitable to take another path. It finally became inevitable for the
semiconductor manufacturers to push forward the multi-core approach [14].

Figure 2: Processor and memory gap [8].

In general, the aim of multicore computing has been to achieve higher system performance
through computational parallelism. In fact, Wilkinson described the multicore processors as
multiple processors integrated into a single die to gain higher overall performance [14]. The
multicore processors made it possible to overcome the power dissipation problem by for
instance doubling the cores in a single chip to execute more instructions per cycle at a lower
clock frequency [16]. This new model has also reduced the memory versus the CPU speed
constraints.

Chalmers | 2. Theory 5

Figure 3: processor evolution: from layout to multicore [12].

The performance improvement is no longer gained through single-core speed increase but
by adding multiple cores while keeping the clock frequency relatively constant. The image in
Figure 3 summarises the computer/embedded systems’ both software and hardware’s
evolution starting from the layout oriented to the current multicore oriented approach [12].

2.1.2 Memory Hierarchies
As described above the speed gap between the processor and the main memory known as
memory wall has been one of the obstacles to continue increasing the single-core processor
speed. To reduce this gap, multiple-levels of caches have been inserted between the CPU
and the main memory [17] (see Figure 4).

Figure 4: memory hierarchy [17].

Figure 4 illustrates a typical multilevel memory hierarchy that is implemented in generic
processors as well as embedded systems. The figure also shows that the levels closer to the
CPU have shorter access time while the size of the memory gets smaller. Figure 5 shows the
comparison between the speed, cost per bit and the size of the memory levels.

I-fetch

Register
file

LD/ST
Unit

I-cache

D-cache

L2

cache

L3

cache

Main

Memory
Disk

L1 cache

CPU

0.5 ns

5 ns

20 ns
200 ns

10 ms

Cache hierarchy
Virtual memory

hierarchy

 6 2. Theory | Chalmers

Figure 5: memory hierarchy’s speed vs. size and cost/bit [17].

As the above figure shows L1 and L2 caches are built from fast SRAM cells that are more
expensive than the DRAM cells that are used to build the main memory and sometimes the
L3, L4 and etc. cache levels [17].

Let’s also look into common multicore processors’ memory architectures:

Figure 6: multicore memory architecture examples [18].

Registers

L1 (cache)

L2 (cache)

Ln - 1 (Main memory - DRAM)

Ln (Secondary memory - Disk)

SRAM

 CPU

Speed

Cost/bit

Size

Chalmers | 2. Theory 7

Since, multicore systems usually have cores that are running in parallel the memory
bandwidth and memory access latency are critical. Consequently, the cache structure,
shared or private for each core, needs to be chosen with extra care [19]. [Jain] also
emphasises in [19] the importance of the choice of coherence protocol that matches the
cache architecture characteristics. Coherence mechanisms are commonly divided into
directory-based and snooping protocols.

2.1.3 The Locality Principle and Cache Parameters
The desktop or general-purpose computer systems are designed to run different types of
applications that are not predefined. Therefore their memory systems are also designed to
be as generic as possible [19]. On the other hand, the embedded systems’ memory,
particularly the cache architecture, can be customised since they run predefined applications
that their memory access patterns can be established in advance [19]. Kumar et al. has also
stated in [20] that designing a memory is a critical part of the SoC since the memory
organisation has direct impact on the system parameters such as the area, power and
performance. These constraints are even more limited in embedded systems than i.e.
desktop. Therefore, choosing an optimal cache architecture for a given application is a
significant step to boosting the overall system performance.

Let us not forget that cache memory was mainly invented to mask the speed gap between
the processor and the main memory by exploiting the instruction/data spatial and temporal
locality [20]. The temporal locality (a.k.a. locality of reference) assumes that the latest
accessed memory address is soon to be accessed. The spatial locality on the other hand
assumes that the addresses close to the latest accessed memory location are likely to be
accessed next. Below is a list of some cache parameters a designer can choose to optimise
an embedded system for a specific application (more details about these parameters can be
found in most textbooks on computer architecture).

Cache Design Parameters [21], [17] and [8]:

1. Cache mapping policies:
- Direct Mapping: a given memory block always appears on the same cache

line. It is fast but the mapping restriction increases conflict misses.
- Fully associative Mapping: any given memory block can be mapped to any

cache line. It is a flexible technique that reduces conflict misses but it is
expensive and slower since a parallel search has to be made on all cache
lines.

- Set-Associative Mapping: a memory block is mapped to a fixed cache set,

but this block can be located in any line of the set. This technique is a trade-
off between the fast direct-mapping and the flexible full associative.

2. Write Policy:
- Write through: all writes/stores are simultaneously done on the cache and

the lower memory levels. This may lead to bottlenecks since the
communication between the cache and the memory is frequent.

- Write back: writes/stores are done to the cache but when a cache block is

replaced it is written back to the main memory. This may cause inconsistency
between the cache and memory contents.

3. Replacement function:
- Least Recently Used (LRU): records when each block is used and replaces

the longest time ago used block on miss. It is in general costly to implement.
- Pseudo-LRU: Approximates LRU by lower cost approximations.
- First-In-First-Out (FIFO): Replacing the oldest block on a miss.
- Least Frequently Used (LFU): replaces the least used block on miss.
- Random: Replacing the blocks randomly.

 8 2. Theory | Chalmers

4. Size:
- Cache size - Large cache size means higher hit rate. On the other hand,

larger size caches are more expensive and slightly slower than smaller
caches due to the larger number of control gates.

5. Number of Caches:
- Multilevel Caches: Hierarchies of cache from L1 to Ln
- Unified versus Split Caches: Unified cache is instructions and data shared

L1 cache. Split cache is 2 L1 caches where one is for instructions and the
other for data.

6. Memory Block (Line) Sizes:

- Large memory block size increase hit ratio. However, this effect is diminishes
when certain point is reached since more cache data has to be replaced.

Metrics such as miss-rate (MR), hit-rate (HR) and misses per instruction (MPI) are used to
measure the performance of a certain cache configuration. Where the miss-rate is the
number of misses per total cache access and the hit-rate is the number of cache hits per
total accesses. However, two metrics that gives better overall cache performance
measurement are the average memory access time (AMAT) and the impact of a miss on the
CPI [17].

2.2 WCET

According to Lundqvist in [22] “the worst-case execution time (WCET) of a program that runs
uninterrupted on a processor is defined as being the maximum possible execution time
considering all combinations of input data and all possible execution histories of the system
before the program is executed”.

Then again, why would one want to know the WCET? The most obvious answer to this
question would be that if a task executes longer than expected it would miss its deadline.
The consequence of a task missing its deadline can be quite serious [23] for example a task
that responds few seconds later to a car-brake request.

Safety-critical embedded systems usually run tasks that have hard real-time structures [24].
It is therefore crucial to generate a safe and tight estimate of the WCET of the application
[25] to provide the basis for the schedulability analysis of its real-time tasks [23].

The problem with finding the WCET is that it is not always easy to obtain upper bounds of
execution times for a program [Wilhelm et al.]. Nevertheless, as stated by Wilhelm; et al. in
[26] real-time systems only applies a restricted programming methods that guarantee
program termination, prohibits recursion and loop iteration counts unless they are explicitly
bounded.

There are two different classes of the WCET estimation methods namely Static methods and
Measurement-based methods [26].

1. Static methods do not run the application code on hardware or on a simulator but
analyse the task code’s possible control flow paths with possibly some annotations. In
addition, to obtain upper bounds control flow is combined with some abstract
hardware architecture model.

Chalmers | 2. Theory 9

2. Measurement-based methods run a task or part of it on a certain hardware or
simulator for a combination of inputs. The maximum and minimum observed
execution is then driven from the measurement.

Mälardalen University in Sweden has during 2006, 2008 and 2011 hosted an event called
WCET Tool Challenge. The aim of this event has been to study, compare and discuss the
properties of the different WCET tools and methods. An important outcome of this event is
the list of the participating tools that is updated each time the event is held [27]. This is the
biggest collection of the WCET tools that could be found. Details of these tools, which consist
of commercial and research tool, can be been in Table 1.

Table 1: WCET Tools [27].

Tool Source Contact Processors Analysis method Analysis type

1 aiT AbsInt Simon Wegener simple (ARM7, ST10), complex (MPC55xx) static flow analysis, WCET analysis

2 Astrée AbsInt Simon Wegener source-level tool (C) static flow analysis

3 Bound-T Tidorum Niklas Holsti simple (ARM7) static control-flow analysis, WCET analysis

4 FORTAS TU Vienna Sven Bünte TriCore 1796 measurement-based WCET estimation

5 METAMOC Aalborg Univ. Mads Chr. Olesen simple (ARM7) static WCET analysis

6 oRange+OTAWA IRIT Christine Rochange simple (ARM7) static control-flow analysis, WCET analysis

7 TimeWeaver AbsInt Simon Wegener with NEXUS-like tracing facilities measurement based WCET estimation

8 TuBound TU Vienna Jakob Zwirchmayr simple (Infineon C167) static WCET analysis

9 WCA TU Vienna, TU Denmark Martin Schoeberl JOP (Java processor) static simple loop bound and receiver analysis (DFA), WCET analysis

10 SWEET WCET group, Mälardalen University, Sweden Jan Gustafsson source-level tool (C) static flow analysis

 10 3. System Assumptions | Chalmers

3. System Assumptions

The simulated processor (LEON4), the simulated tool (gem5), the simulation model
overview, and the applications ported onto the simulation tool to estimate the WCET are
described in this chapter.

3.1 LEON4

3.1.1 Background
Aeroflex Gaisler AB, a Swedish company that develops and supports embedded system
solutions, has been chosen by European Space Agency (ESA) to develop the Next
Generation Microprocessor (NGMP) [28]. Aeroflex Gaisler has therefore since completing the
LEON3 core processor in 2006 started to develop LEON4FT (LEON4), a fault-tolerant quad-
core SoC. Although the current prototype implementation of the LEON4 is based on FPGA
that has a system frequency of 150MHz [29] [30], its final product is expected to run at
1.5GHz using 32nm ASIC technology [30] (see Table 2).

Table 2: Proposed LEON4 technology implementations [31].

Technology MHz Area

32 ns ASIC 1500 MHz 30 kgates

45 ns ASIC 1200 MHz 30 kgates

65 ns ASIC 800 MHz 30 kgates

130 ns ASIC 400 MHz 30 kgates

180 ns ASIC 250 MHz 30 kgates

Stratix3 FPGA 150 MHz 4000 LUT

Vertex5 FPGA 125 MHz 4000 LUT

Although, Aeroflex Gaisler developed LEON4 in cooperation with ESA, its licence is also
available to other customers. RUAG Space AB, a Sweden based company that is specialised
in on-board satellite equipment is one of the companies that is currently using this SoC.

RUAG Space AB (RUAG) is considering utilising the 4 LEON4 cores concurrently. However,
an important requirement is to establish safe and tight WCET estimate to avoid unexpected
consequences. Hence, RUAG has together with the Computer Science and Engineering
(CSE) department at Chalmers University of technology initiated this master thesis project.
The goal of this project has been to estimate the WCET of a multicore processor where the
target system is the quad-core LEON4, although the method is generally applicable to any
multicore system with a multi-level cache memory hierarchy.

3.1.1 The Quad-core LEON4 Architecture
The LEON4 core is a 32-bit processor based on SPARC V8 architecture. It is a highly
configurable VHDL model that is particularly suitable for SoC designs on FPGA and ASIC.

Chalmers | 3. System Assumptions 11

Figure 7: Quad-core LEON4FT Architecture overview.

As can be seen in Figure 7, each pair of the quad-cores shares one FPU unit. In addition,
each core has a private split L1 cache, where the L2 cache is shared by all 4 cores. The
architecture overview is also showing a 128-bit AHB bus connecting the memory levels to the
cores as well as between the cores. The peripherals on the other hand are connected to 32-
bit AHB bus. Figure 8 on the other hand is also displaying more details about the LEON4
core architecture.

Figure 8: LEON4 core block diagrams.

The quad-core leon4 details that are useful for the simulation tool are the system clock
frequency, and the cache configuration, levels and sizes. These configuration parameters
are collected from the latest LEON4 implementation on FPGA [30] (see Section 3.2).

 12 3. System Assumptions | Chalmers

3.2 Simulation Model

gem5, which is a state-of-the-art modular platform for computer system architecture research
[32], is this project’s simulation tool. The choice of this simulator was based on the project
criteria and the CSE department’s subject experts’ advice. Furthermore, it is widely used by
the computer architecture research community around the world. The main requirements of
the simulator were:

 It can be configured to a desired architecture (as LEON4 in this case)
 It supports multilevel memory hierarchies
 It can run C/C++ based applications
 It can isolate a region of interest in the application’s code to extract this region’s

simulation result separately

Good news is that the selected simulator, gem5, has more than above described
requirements. Its system-level architecture as well as processor microarchitecture can be
configured to support many different systems. It currently supports Alpha, ARM, SPARC,
MIPS, POWER and x86 ISA [33]. It even has the option to configure multicores.
Nevertheless, the last option was not applied, since its complexity would require extra time
and resources that perhaps would not be proportionate to the project duration. Therefore, an
analytical model (see Table 4) is added to the simulation model to get the assumed multicore
system result.

This analytical model, offered by professor Per Stenstrom at the CSE department, calculates
the WCET estimate and guarantees safe and tight WCET estimates. To guarantee a safe
estimate, the model uses a worst-case assumption for estimating the cache miss penalty,
i.e., the time it takes to service a cache miss. This worst-case assumption is that when a
cache miss is serviced, there will be P-1 cores that have cache misses pending and these
will be serviced first. As a result, assuming that the cache miss penalty is MP with no
pending requests from other cores, it will take P x MP to service the cache miss. To get a
tight WCET estimate, we ideally assume that the compiler can statically analyse whether a
cache request will hit or miss the cache. This will provide an upper-bound on how well static
analysis could be used to derive a tight estimate for the number of cache hits.

Figure 9: Quad-core LEON4 simulation setup.

P1
150MHz

I-L1 D-L1

P2
150MHz

I-L1 D-L1

P3
150MHz

I-L1 D-L1

P4
150MHz

I-L1 D-L1

L2 4-Way-4KB

MEMORY

L1 caches:
Size: 4KB
Way: 4

Chalmers | 3. System Assumptions 13

Figure 9 shows the simulated quad-core LEON4 and its memory levels. Also, Table 3
displays the simulators key settings such as the clock frequency and the cache size. The
simulation stats such as cache miss-penalties (MP) as well as constants like the CPU cycle
time (Tc) and the number of cores (P) are also listed in Table 3. The equations listed in Table
4, use the aforementioned values to calculate the WCET estimate of the quad-cores when
they execute the 4 tasks serially and 4 in parallel. Moreover, the parallel tasks’ execution
throughput (K), relative to the serial execution throughput, is calculated. It is assumed that,
when 4 cores are running 4 tasks in parallel the closer K gets to 4 the safer and tighter the
WCET estimate gets.

Table 3: Simulation parameters and Cache latencies scaled for future technology nodes.

Table 4: calculating the AMAT, the Tproc, the Texe and the throughput.

In order to speed up the simulation a sort of automation mechanism was needed. Therefore
two bash scripts were created. These two scripts were designed to initiate the compiler and
the simulator commander, simplify the simulation data collection and restructuring it into a
desired format. Figure 10 illustrates the complete simulation model that includes the two
scripts, the simulation tool and the analytical equations.

Parameter Value (FPGA*) Value (ASIC**) Value (ASIC**) Value (ASIC**) Unit

CPU_Freq = 150 300 600 1200 MHz

CPU_Cycles = 6,67 3,33 1,67 0,83 ns

CPU_Type = timing timing timing timing -

L1_Size = 4 8 16 32 kB

L1_Assoc = 4 4 4 4 -

L2_size = 256 256 256 256 kB

L2_assoc = 4 4 4 4 -

P = 4, 8, 16 4, 8, 16 4, 8, 16 4, 8, 16 CPUs

L1_MP 40 20 10 5 ns

L2_MP 200 100 50 25 ns

* Current Impementation ** assumed future technology node upgrade

AMAT = MP-L1*L1-Miss-rate + MP-L2*L2-Miss-rate Average memory access time

Tproc=Instructions*Tc The total time the CPU is busy to decode instr. per task

Texe-1 = P(Tproc+AMAT) The WCET for executing 1 task at a time

Texe-4 = Tproc+P*AMAT The WCET for executing 4 tasks in parallel

K = Texe-1 / Texe-4 4 parallel tasks execution Throughput

 14 3. System Assumptions | Chalmers

Figure 10: the simulation model overview.

The diagram according to Figure 10 shows an overview of the simulation model and
numbered labels highlight the order of the main simulation steps. One can also see that the
simulation steps are split by two dotted boxes. This is to show that the simulation is divided
into two phases. The first phase is an automated process starting from step 1 to step 5 then
through step 6 feeds back to step 1. This iteration is carried out a number of times depending
on the number of required simulation samples per application. During these iterations either
the application or the simulation tool parameters are incremented. For example if an
application is to be simulated with different cache sizes then the simulation tool’s cache size
parameters are incremented while the application’s input parameter(s) is/are kept
unchanged. This project’s application workload is a matrix multiplication. Therefore, by
increasing the matrices’ sizes, the application workload increases. Below is a summary of the
simulation steps.

6

Bash-script
START

[RE-START]

gem5
Simulate application

Output simulation-stats

Bash-script
Collect stats

Final result

Mathematical equations

Simulation

Stats

C/C++

Application

[Executable]

2

4

3

5

7

8

1

Automated iterative process

Manual process

Sim. stats

Rearanged
sim. stats

Chalmers | 3. System Assumptions 15

The simulation steps:

1. The first bash script of the simulation model is initiated through the terminal
command by entering its name and the C file of the application be simulated
[./runsim matrix]
1.1. The start script calls then a predefined makefile that compiles the C code using

GCC with -2 optimisation option
1.2. Once the executable file is created the script calls then gem5 by using terminal

command format. All the necessary settings, parameters and variables such as
CPU type and speed, cache levels, cache size etc. and of course the name and the
path of the application under simulation are passed through this commands
string.

2. gem5 simulation
2.1. gem5 applies the new settings and starts the simulation by running the ported

application
2.2. Once the simulation is finished, gem5 saves the simulation stats in text file

3. The start script gets reactivated again.
4. The first script calls then the second script
5. The second script

5.1. It starts to search for the latest saved gem5 simulation stats to extract certain
results.

5.2. It then rearranges the extracted data into Microsoft Excel and Matlab friendly
format and saves it into a new text file.

6. This step loops back to the first script which increments some simulation tool or
application parameters as was described above. Steps from 1 to 6 are repeated
number of times, depending on the required number of simulation samples.

7. The WCET and the throughput calculation
7.1. Once, the automated steps from 1 to 6 are finished, the rearranged simulation

stats file is then opened with Excel.
7.2. Then the equations shown in Table 4 are applied to calculate the WCET and the

parallel tasks’ throughput.
7.3. The final result is then compiled into lists and diagram that will be presented in

the result chapter as well as in the discussion chapter.

3.3 Applications

Finding a simulation tool that simplifies the WCET estimate was the first step of the execution phase

of the project. Then creating an application that would run on the simulation software became the next

challenge. Essentially, an application that utilises all system resources, particularly the multicore and
the memory hierarchies, was the criterion. It should simply be a data and instruction intensive

application. Moreover, since gem5, the simulation software, can only execute applications written in

C/C++, C was chosen as the programming language.

After considering above requirements and number of previous research that was discussed in the

theory chapter, two applications carrying out matrix multiplication has been created. One that is doing
conventional matrix multiplication and another one that is doing blocking (a.k.a. tiling) matrix

multiplication, which is a cache optimisation algorithm [4]. Figure 11(a) shows the conventional

matrix multiplication C code while Figure 11(b) shows the blocking algorithm code.

 16 3. System Assumptions | Chalmers

(a) (b)

Figure 11: a) Conventional and b) blocking metrics multiplication C code.

The middle parts of the above codes are labelled as the region of interest (ROI) to indicate that these
lines are where the interested workload is carried out. By inserting the gem5 functions

m5_dumpreset_stats, m5_checkpoint and m5_exet before and after the ROI, gem5 returns a simulation

result for only this region.

Another, important fact about the matrix multiplication applications is that they both have one input

parameter. This input parameter which is passed into the application at the start of simulation dictates

the size of the matrix for example if it is equal to 32 then the A, B and C matrices sizes becomes
32x32. As was stated before this is used to increase or decrease the simulation workload and to

observe how it influenced the WCET estimate.

More details about the gem5 commands, bash scripts and the application can be read in the

appendices.

The Region
of interest

The Region
of interest

Chalmers | 4. Experimental Results 17

4. Experimental Results

This chapter outlines the simulation and the calculation results of this Master’s Thesis. The
two top categories of the result are the two matrix multiplication algorithms, namely the
conventional and the blocking algorithm. Equally important is to mention that the
subcategories of the result are system clock frequency and the number of processors.

Furthermore, the data is presented in the same order as the simulation model (see Figure
10). This means that the simulation result collected from the automated simulation will be
presented first. Then the calculated result from the manual stage of the simulation will be
presented.

As was stated in Section 3, a single core execution was carried out in the first stage of the
simulation. Then this stage’s outcome is used to calculate a multicore system WCET
estimate by using the equations presented in Table 4. The multicore WCET estimate is
calculated for both serial and parallel execution of the applications.

4.1 Simulation Results

Again, according to Section 3, the conventional matrix multiplication application is first
simulated then the blocking algorithm application. These two applications are repeated for
four different system clock frequencies: 150MHz, 300MHz, 600MHz and 1200MHz. In
addition, the caches are reconfigured for each clock frequency to match the system for an
anticipated technology scaling. Each time the simulation is carried out for certain algorithm
using a particular system clock frequency (for example: blocking algorithm running at
150MHz), 18 result samples are collected. Each sample represents simulation result for a
certain algorithm, clock frequency and matrix size.

Table 5 shows the conventional and the blocking matrix multiplication algorithms’ simulation
result. The columns of the table, which are the matrix sizes (NxN_Matrix), the number of
application instructions (N_Instr), L1 miss-rate (L1_MR) and the L1 miss-rate (L2_MR), are
the parameters necessary for the WCET calculation. Moreover, the results in Table 5 are
based on a system Clock=150MHz, L1_Size=4KB, L1_Assoc=4, L2_size=256kB and
L2_assoc=4.

 18 4. Experimental Results | Chalmers

Table 5: Conventional and blocking matrix multiplication result for a system freq. 150MHz.

Table 6 displays the conventional and blocking algorithm simulation result for a system
frequency at 300MHz. In addition, these results are based on cache configurations were
L1_Size=8KB, L1_Assoc=4, L2_size=256kB and L2_assoc=4.

Table 6: Conventional and blocking matrix multiplication result for a system freq. 300MHz.

NxN_Matrix N_Instr L1_MR L2_MR NxN_Matrix N_Instr L1_MR L2_MR

32x32 303303 0,002929 0,974747 32x32 354104 0,005863 0,463942

48x48 1014055 0,021949 0,087369 48x48 1195019 0,007811 0,231551

64x64 2392455 0,50841 0,002841 64x64 2832558 0,007707 0,175852

80x80 4659687 0,044128 0,02625 80x80 5532257 0,007576 0,143044

96x96 8036935 0,516922 0,001871 96x96 9559652 0,007517 0,120111

112x112 12745383 0,121472 0,006833 112x112 15180279 0,007475 0,10352

128x128 19006215 0,503974 0,001442 128x128 22659674 0,134349 0,00504

144x144 27040615 0,386968 0,001672 144x144 32263373 0,007419 0,081366

160x160 37069767 0,516795 0,001127 160x160 44256912 0,007399 0,075163

176x176 49314855 0,534058 0,000992 176x176 58905827 0,007383 0,081437

192x192 63997063 0,508341 0,000956 192x192 76475654 0,007391 0,068583

208x208 81337575 0,53363 0,000841 208x208 97231929 0,007358 0,070642

224x224 101557575 0,51674 0,001008 224x224 121440188 0,007348 0,103078

240x240 124878247 0,533315 0,002047 240x240 149365967 0,007339 0,170298

256x256 151520775 0,501922 0,025153 256x256 181274802 0,493437 0,004801

272x272 181706343 0,533074 0,035306 272x272 217432229 0,007325 0,261619

288x288 215656135 0,516709 0,060711 288x288 258103784 0,007319 0,275507

304x304 253591335 0,532883 0,058856 304x304 303555003 0,007314 0,274105

Conventional Matrix Multiplication Blocking Algorithm Matrix Multiplication

Chalmers | 4. Experimental Results 19

Table 7 displays the conventional and blocking algorithm simulation result for a system
frequency at 600MHz. Also, cache configurations of these results are L1_Size=16KB,
L1_Assoc=4, L2_size=256kB and L2_assoc=4.

Table 7: Conventional and blocking matrix multiplication result for a system freq. 600MHz.

Table 8 is displays the conventional and blocking algorithm simulation result for system
frequency at 1200MHz. Cache configurations used are L1_Size=32KB, L1_Assoc=4,
L2_size=256kB and L2_assoc=4.

 20 4. Experimental Results | Chalmers

Table 8: Conventional and blocking matrix multiplication result for a system freq. 1200MHz.

4.2 Calculated Results

After the simulation result (above) has been acquired, the parameters presented in Table 3
and the equations presented in Table 4 have been applied to calculate the final result. The
average memory access time (AMAT) and the processor’s instruction execution time (Tproc)
are first calculated, and then these values together with the number of tasks that are
equivalent to the number of processor cores are used to calculate the WCET estimate for the
serial and the parallel executions (Texe_1 and Texe_N respectively, where N is the number
of tasks/Cores) of the tasks.

Due to the large quantity of the calculated data, only calculated tables for the system clock
frequency at 150MHz are presented in this section. The remaining tables are added into the
appendices. Instead, charts illustrating the calculated throughput (K) for a number of
multicore arrangements (P=4, P=8 and P=16) are presented in this section, since the
throughput shows if the WCET estimate is safe and tight.

Table 9 presents the calculated result for 4 cores. Texe_1 is the calculated WCET estimate
for 4 serially executed tasks. Texe_4 on the other hand is the WCET estimate for 4 tasks
executed in parallel. Finally, K, which is the throughput of the 4 the tasks running in parallel,
is also presented in the table (below).

Chalmers | 4. Experimental Results 21

Table 9: Calculated WCET and Throughput for a system freq. 150MHz and P=4.

Similar to Table 9, Tables 10 and 11 also show the calculated results for a system frequency
of 150MHz, however both the processor cores and the executed tasks are increased to 8
and 16.

Overall, it is surprising to see that the throughput increases by close to linearly with the
number of cores. This suggests that, contrary to common belief, it is possible to guarantee a
safe WCET and still enjoy the increase in throughput offered by multicore systems. Of
course, we have assumed that the compiler is capable of fully analysing the code statically.
As Lundqvist points out [22], one has to conservatively assume a cache miss if the compiler
cannot be certain of the outcome of a cache access. In any case, these results are promising
and warrant further investigations.

Table 10: Calculated WCET and Throughput for a system freq. 150MHz and P=8

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32x32 9,57E-09 6,61E-08 0,0020220 0,0023607 0,0080881 0,0094430 0,0020221 0,0023610 3,9999432 3,9996641

48x48 8,10E-09 4,66E-08 0,0067604 0,0079668 0,0270415 0,0318674 0,0067604 0,0079670 3,9999856 3,9999298

64x64 2,09E-08 7,76E-09 0,0159497 0,0188837 0,0637989 0,0755349 0,0159498 0,0188838 3,9999843 3,9999951

80x80 2,19E-08 2,89E-08 0,0310646 0,0368817 0,1242584 0,1475270 0,0310647 0,0368818 3,9999915 3,9999906

96x96 2,11E-08 2,40E-08 0,0535796 0,0637310 0,2143184 0,2549242 0,0535797 0,0637311 3,9999953 3,9999955

112x112 2,17E-08 2,10E-08 0,0849692 0,1012019 0,3398770 0,4048075 0,0849693 0,1012019 3,9999969 3,9999975

128x128 2,04E-08 2,01E-08 0,1267081 0,1510645 0,5068325 0,6042581 0,1267082 0,1510646 3,9999981 3,9999984

144x144 2,16E-08 1,66E-08 0,1802708 0,2150892 0,7210832 0,8603567 0,1802709 0,2150892 3,9999986 3,9999991

160x160 2,09E-08 1,52E-08 0,2471318 0,2950461 0,9885272 1,1801844 0,2471319 0,2950461 3,9999990 3,9999994

176x176 2,16E-08 1,64E-08 0,3287657 0,3927055 1,3150629 1,5708221 0,3287658 0,3927056 3,9999992 3,9999995

192x192 2,05E-08 7,45E-09 0,4266471 0,5098377 1,7065884 2,0393508 0,4266472 0,5098377 3,9999994 3,9999998

208x208 2,15E-08 1,44E-08 0,5422505 0,6482129 2,1690021 2,5928515 0,5422506 0,6482129 3,9999995 3,9999997

224x224 2,09E-08 2,08E-08 0,6770505 0,8096013 2,7082021 3,2384051 0,6770506 0,8096013 3,9999996 3,9999997

240x240 2,17E-08 3,44E-08 0,8325216 0,9957731 3,3300867 3,9830926 0,8325217 0,9957733 3,9999997 3,9999996

256x256 2,51E-08 2,07E-08 1,0101385 1,2084987 4,0405541 4,8339948 1,0101386 1,2084988 3,9999997 3,9999998

272x272 2,84E-08 5,18E-08 1,2113756 1,4495482 4,8455026 5,7981930 1,2113757 1,4495484 3,9999997 3,9999996

288x288 3,28E-08 5,50E-08 1,4377076 1,7206919 5,7508304 6,8827678 1,4377077 1,7206921 3,9999997 3,9999996

304x304 3,31E-08 5,51E-08 1,6906089 2,0237000 6,7624357 8,0948003 1,6906090 2,0237002 3,9999998 3,9999997

Conventional/Blocking Matrix Multiplication

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_8_Conv Texe_8_Block K_Conv K_Block

32x32 9,56716E-09 6,60889E-08 0,0020220 0,0023607 0,0161762 0,0188861 0,0020221 0,0023612 7,9997350 7,9984326

48x48 8,09916E-09 4,66226E-08 0,0067604 0,0079668 0,0540830 0,0637347 0,0067604 0,0079672 7,9999329 7,9996723

64x64 2,09104E-08 7,75716E-09 0,0159497 0,0188837 0,1275978 0,1510698 0,0159499 0,0188838 7,9999266 7,9999770

80x80 2,19188E-08 2,89118E-08 0,0310646 0,0368817 0,2485168 0,2950539 0,0310648 0,0368819 7,9999605 7,9999561

96x96 2,10702E-08 2,40494E-08 0,0535796 0,0637310 0,4286367 0,5098483 0,0535797 0,0637312 7,9999780 7,9999789

112x112 2,17354E-08 2,1003E-08 0,0849692 0,1012019 0,6797539 0,8096150 0,0849694 0,1012020 7,9999857 7,9999884

128x128 2,04495E-08 2,01088E-08 0,1267081 0,1510645 1,0136650 1,2085161 0,1267083 0,1510647 7,9999910 7,9999925

144x144 2,1629E-08 1,657E-08 0,1802708 0,2150892 1,4421663 1,7207134 0,1802709 0,2150893 7,9999933 7,9999957

160x160 2,0909E-08 1,51996E-08 0,2471318 0,2950461 1,9770544 2,3603688 0,2471319 0,2950462 7,9999953 7,9999971

176x176 2,15607E-08 1,64243E-08 0,3287657 0,3927055 2,6301258 3,1416442 0,3287659 0,3927056 7,9999963 7,9999977

192x192 2,05276E-08 7,45032E-09 0,4266471 0,5098377 3,4131769 4,0787016 0,4266473 0,5098378 7,9999973 7,9999992

208x208 2,15134E-08 1,44227E-08 0,5422505 0,6482129 4,3380042 5,1857030 0,5422507 0,6482130 7,9999978 7,9999988

224x224 2,08794E-08 2,0766E-08 0,6770505 0,8096013 5,4164042 6,4768102 0,6770507 0,8096014 7,9999983 7,9999986

240x240 2,1742E-08 3,43532E-08 0,8325216 0,9957731 6,6601733 7,9661852 0,8325218 0,9957734 7,9999985 7,9999981

256x256 2,51061E-08 2,07363E-08 1,0101385 1,2084987 8,0811082 9,6679896 1,0101387 1,2084988 7,9999986 7,9999990

272x272 2,83842E-08 5,18232E-08 1,2113756 1,4495482 9,6910052 11,5963860 1,2113758 1,4495486 7,9999987 7,9999980

288x288 3,28151E-08 5,49764E-08 1,4377076 1,7206919 11,5016608 13,7655356 1,4377078 1,7206923 7,9999987 7,9999982

304x304 3,30865E-08 5,51136E-08 1,6906089 2,0237000 13,5248715 16,1896006 1,6906092 2,0237005 7,9999989 7,9999985

Conventional/Blocking Matrix Multiplication

 22 4. Experimental Results | Chalmers

Table 11: Calculated WCET and Throughput for a system freq. 150MHz and P=16

The remainder of this section presents charts comparing the calculated throughput. The
varied parameters when calculating the throughput are among others the number of cores,
the system frequency, the caches, algorithms etc. with respect to increased workload
(increased matrix size).

Figure 12, illustrates the calculated throughput for 4 cores running 4 tasks in parallel. The
figure also shows 8 curves of throughput divided into 4 pairs (one conventional and one
blocking algorithm), where each pair has the same system clock frequency. Additionally, the
series of the clock frequencies used to calculate the 4 pairs are 150MHz, 300MHz, 600MHz
and 1200MHz.

Figure 12: P=4, calculated throughputs for the simulated system clock frequencies.

Figures 13 and 14 are also showing the calculated throughput for 8 cores running 8 tasks in
parallel and 16 cores running 16 tasks in parallel respectively.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_16_ConvTexe_16_Block K_Conv K_Block

32x32 9,57E-09 6,61E-08 0,0020220 0,0023607 0,0323525 0,0377722 0,0020222 0,0023618 15,9988645 15,9932841

48x48 8,10E-09 4,66E-08 0,0067604 0,0079668 0,1081660 0,1274694 0,0067605 0,0079675 15,9997125 15,9985956

64x64 2,09E-08 7,76E-09 0,0159497 0,0188837 0,2551955 0,3021396 0,0159500 0,0188838 15,9996854 15,9999014

80x80 2,19E-08 2,89E-08 0,0310646 0,0368817 0,4970336 0,5901079 0,0310649 0,0368822 15,9998307 15,9998119

96x96 2,11E-08 2,40E-08 0,0535796 0,0637310 0,8572734 1,0196966 0,0535799 0,0637314 15,9999056 15,9999094

112x112 2,17E-08 2,10E-08 0,0849692 0,1012019 1,3595079 1,6192301 0,0849696 0,1012022 15,9999386 15,9999502

128x128 2,04E-08 2,01E-08 0,1267081 0,1510645 2,0273299 2,4170322 0,1267084 0,1510648 15,9999613 15,9999681

144x144 2,16E-08 1,66E-08 0,1802708 0,2150892 2,8843326 3,4414267 0,1802711 0,2150894 15,9999712 15,9999815

160x160 2,09E-08 1,52E-08 0,2471318 0,2950461 3,9541088 4,7207375 0,2471321 0,2950463 15,9999797 15,9999876

176x176 2,16E-08 1,64E-08 0,3287657 0,3927055 5,2602515 6,2832885 0,3287660 0,3927058 15,9999843 15,9999900

192x192 2,05E-08 7,45E-09 0,4266471 0,5098377 6,8263537 8,1574032 0,4266474 0,5098378 15,9999885 15,9999965

208x208 2,15E-08 1,44E-08 0,5422505 0,6482129 8,6760083 10,3714060 0,5422508 0,6482131 15,9999905 15,9999947

224x224 2,09E-08 2,08E-08 0,6770505 0,8096013 10,8328083 12,9536204 0,6770508 0,8096016 15,9999926 15,9999938

240x240 2,17E-08 3,44E-08 0,8325216 0,9957731 13,3203467 15,9323704 0,8325220 0,9957737 15,9999937 15,9999917

256x256 2,51E-08 2,07E-08 1,0101385 1,2084987 16,1622164 19,3359792 1,0101389 1,2084990 15,9999940 15,9999959

272x272 2,84E-08 5,18E-08 1,2113756 1,4495482 19,3820104 23,1927719 1,2113761 1,4495490 15,9999944 15,9999914

288x288 3,28E-08 5,50E-08 1,4377076 1,7206919 23,0033216 27,5310712 1,4377081 1,7206928 15,9999945 15,9999923

304x304 3,31E-08 5,51E-08 1,6906089 2,0237000 27,0497429 32,3792012 1,6906094 2,0237009 15,9999953 15,9999935

Conventional/Blocking Matrix Multiplication

Chalmers | 4. Experimental Results 23

Figure 13: P=8, calculated throughputs for the simulated system clock frequencies.

Figure 14: P=16, calculated throughputs for the simulated system clock frequencies.

 24 5. Discussion | Chalmers

5. Discussion

The findings of this Master’s Thesis are presented in the result chapter. These results are
acquired by using the method described in the system assumption chapter, which mainly
consists of a simulation tool and an analytical model and supporting scripts. The goal has
been to develop a method that makes it possible to estimate a safe and tight WCET in
multicore system like LEON4FT.

Two matrix multiplication applications are used to evaluate the method. Prior to choosing this
approach it is found that matrix multiplication is used in previous studies to evaluating cache
efficiency and/or WCET. Moreover, it is found that matrix multiplication is a data intensive
application that suites assessing multi-level memory systems as well as multicore
performance. Matrix multiplication is a particularly good evaluation benchmark since by
simply increasing or decreasing the matrix size, the application workload becomes higher or
lower.

The data collected from the simulation tool that is used to calculate the multicore system’s
throughput, a metrics used to evaluate the safeness and tightness of an estimated WCET, is
presented in Tables 5 through 8. These 4 tables show the results for the 4 different system
clock frequencies and the 2 matrix multiplication algorithms. The measured parameters (the
number of instruction, the L1 miss-rate and the L2 miss-rate) listed in these tables are used
to calculate the average memory access-time, the worst case execution time and the
throughput. These values were presented in Tables from 9 to 11. These tables display the
result calculated for the system clock frequency at 150MHz, the algorithms and the number
of processors are however changed. Since, these values are not directly illustrative and do
not show whether the WCET estimated is safe or tight the result for the system clock
frequencies are added into the appendices. Nevertheless, charts illustrating the throughput of
the multicore running in parallel are added into the last part of the result chapter.

Figures from 12 to 14 show the throughput of the tasks executed in parallel. As can be seen
in these figures the throughput is lowest at the lowest simulated matrix size (32x32) for all the
different number of multicores, algorithms and clock frequencies. Furthermore, the
throughput improves as the matrix size gets bigger. This can be interpreted as follows: as the
parallel tasks’ workload increases, the system’s throughput improves in reference to the
serially executed tasks.

Nevertheless, the aforementioned figures expose that there is relative throughput gap
between the different system clock frequencies. The highest throughput for all the simulated
matrix sizes is reached when the system is running conventional matrix multiplication at
150MHz (the lowest simulated system clock frequency). This is to be expected as the
bottleneck is then in instruction processing. Conversely, the lowest throughput for all the
simulated matrix sizes is reached when the system is running conventional matrix
multiplication at 1200MHz (the highest simulated system clock frequency). Again, as was
discussed in Section 2 the higher the CPU’s clock frequency gets the bigger the speed gap
between the CPU and memory gets a.k.a. memory wall. The two simulated algorithms in
relation to the different matrix sizes seem to have different effect on the throughput. For
example, at the lower matrix size, the conventional matrix multiplication applications have the
lowest throughput for all system clocks except 300MHz. Yet again, this supports that the
lower system frequencies’ bottleneck is the instruction processing. Looking into the
simulation result tables presented in Section 4.1 and in the appendices one can see that the
blocking algorithm has higher instructions than the conventional algorithm.

Chalmers | 5. Discussion 25

An overall observation made is that the blocking algorithm has a bit higher throughput for
most of the smaller matrices compared to the conventional algorithm. However, this slight
improvement of the throughput with the blocking algorithm was not as significant as was
anticipated. Previous studies, discussed in Section 2, present that the blocking algorithm
would be more optimal than the conventional in terms of the cache utilisation etc. On the
other hand, this Master Thesis did not seek to optimise the blocking algorithm’s parameters
such as the so called the blocking factor. The blocking factor, which is the size of the block of
data the algorithm can copy from a memory to a cache or vice-versa in each access, can be
calculated based on the cache size to get an optimal blocking algorithm.

Finally, it was found that the throughput of the simulated matrix sizes from 112x112 to
304x304 is almost optimal for all the multicore arrangements (P=4, P=8 and P=16)
regardless the range of system speed and algorithm.

 26 6. Conclusion & Recommendations | Chalmers

6. Conclusion & Recommendations

6.1 Conclusion

The aim of this Master’s Thesis has been to find a method to estimate a safe and tight WCET
in multicore system with multilevel memory hierarchies. The first step taken to find a solution
was to study the prior work in the field to lay a foundation for the project. It has been found
that prior research has established methods to estimate safe and acceptably tight bounds on
memory access time in single-processor systems. The multicore systems, the embedded
multicore systems in particularly, on the other hand do not have well established WCET
estimation methods. The multicores have in a few years become the new performance
improvement approach, since single-core solutions are no longer able to deliver a
performance boost. However, the software designers are still searching better ways to fully
utilise the multicore performance.

LEON4 is an example of the new multicore SoC systems that the designers are currently
exploring to fully utilise its multicores concurrently. Actually, RUAG, which is the company
that together with Chalmers initiated this Master’s Thesis project, is currently using the
LEON4 in serial execution mode. This thesis project is therefore part of on-going efforts that
are striving to explore new ways to improve the multicore systems throughput, particularly by
developing a method to estimate LEON4’s WCET estimate.

The simulation results were presented in the result chapter, and then discussed in the
discussion chapter. These results reveal that the simulated system’s throughput is almost
close to the maximum expected throughput when the tasks are executed in parallel.
Additionally, the calculated WCET for the parallel tasks (Texe_N) is significantly lower than
the serial tasks (Texe_1). Therefore, the conclusion drawn is that these findings indicate that
by running 4 tasks on the LEON4’s 4 cores, the WCET is not only safe and tight but also the
system’s throughput is better off than when running the tasks serially.

6.2 Recommendations

Although, this Master’s Thesis project’s findings are encouraging there are some work left.
Below are the future recommendations for possible continuation of the project. These
recommendations can be followed sequentially or any desired point can be picked and
carried out.

Recommendations point:

1. Carry out further testing on the this project’s method by using Mibench (the
automotive category) benchmark

2. Use gem5’s SPARC architecture, which is the architecture that LEON4 is based, if
the simulation tool is made stable to support this option.

3. Use gem5 in multicore configuration
4. Implement LEON4 on FPGA and carry out WCET estimation on hardware

Chalmers | References 27

References

[1] T. Lundqvist and P. Stenstrom, “A method to improve the estimated worst-case
performance of data caching,” in In RTCSA ’99: Proceedings of the Sixth International
Conference on Real-Time Computing Systems and Applications, 1999.

[2] N. Binkert, B. Beckmann and Et Al., “The gem5 Simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1-7, May 2011.

[3] T. Sherwood and J. Yi, “Guest Editors' Introduction: Computer Architecture Simulation
and Modeling,” IEEE Computer Society, vol. 26, no. 4, pp. 5-7, July/August 2006.

[4] M. Lam, E. Rothberg and M. Wolf, “The cache performance and optimizations of blocked
algorithms,” in Proceedings of the fourth international conference on Architectural
support for programming languages and operating systems, New York, 1991.

[5] C. Ferdinad and R. Wilhelm, “On Predicting Data Cache Behavior for Real-Time
Systems,” in Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Embedded Systems, London, 1998.

[6] A. Demirhan, “On Increasing the Effective Blocking Factor of a Matrix for a Given Cache
Organization,” Monterey, CA, 1992.

[7] D. Harris and N. Weste , Integrated Circuit Design, Fourth ed., Boston: Pearson
Education, Inc., 2011.

[8] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Fourth
ed., Amsterdam: Elsevier, 2012.

[9] A. Chandrakasan, Integrated Circuits and Systems, S. Keckler, K. Olukotun and H.
Hofstee, Eds., New York: Springer Science+Business Media, LLC, 2009.

[10] “Wikipedia.org,” Wikipedia, [Online]. Available:
http://en.wikipedia.org/wiki/Moore%27s_law. [Accessed 20 July 2013].

[11] V. Pankratius, A.-R. Adl-Tabatabai and W. Tichy, “Introduction,” in Development,
Fundamentals of Multicore Software, T. Walter, Ed., Boca Raton, CRC Press, Inc., 2011,

pp. 1-5.

[12] F. Schirrmeister, “Multicore Architectures,” in Real World Multicore Embedded Systems,
B. Moyer, Ed., Amsterdam, Elsevier Inc., 2013, pp. 33-73.

[13] D. Fittes, “Using Multicore Processors in Embedded Systems,” Coventry, 2009.

[14] B. Wilkinson, “Fundamentals of Multicore Hardware and Parallel Programming,” in
Fundamentals of Multicore Software Development, W. Tichy, Ed., Boca Raton, CRC
Press, LLC, 2011, pp. 9-29.

[15] S. McKee and W. A. Wulf, “Hitting the Memory Wall: Implications of the Obvious,”
Computer Architecture News, vol. 23, no. 1, pp. 20-24, March 1995.

[16] M. Rani and A. Asaduzzaman, “Power Aware Design of Second Level Cache for
Multicore Embedded Systems,” in Proceedings of the IEEE SoutheastCon, Concord,

2010.

[17] M. Dubois, M. Annavaran and P. Stenstrom, Parallel Computer Organization and
Design, Cambridge: Cambridge University Press, 2012.

[18] A. Vajda, “Multi-core and Many-core Processor Architectures,” in Programming Many-
Core Chips, New York, Springer, 2011, pp. 9-43.

[19] G. Jain, “Memory Models for Embedded Multicore Architecture,” in Real World Multicore
Embedded Systems, B. Moyer, Ed., Amsterdam, Elsevier Inc., 2013, pp. 75-116.

[20] T. R. Kumar, C. Ravikumar and R. Govindarajan, “Memory Architecture Exploration
Framework for Cache Based Embedded SoC,” in Proceedings of the 21st International
Conference on VLSI Design, Hyderabad, 2008.

 28 References | Chalmers

[21] “Computer Science & Information Technology,” July 2013. [Online]. Available:
http://csitnotes.blogspot.se/2011/12/cache-design-parameters.html.

[22] T. Lundqvist, “A WCET Analysis Method for Pipelined Microprocessors with Cache
Memories,” Gothenburg, 2002.

[23] J. Yan and W. Zhang, “WCET Analysis for Multi-Core Processors with Shared L2
Instruction Caches,” in Proceedings of the Real-Time and Embedded Technology and
Applications Symposium, St. Louis, 2008.

[24] R. Heckmann and C. Ferdinand, “Worst-Case Execution Time Prediction by Static
Program Analysis,” in Proceesings of 18th International Parallel and Distributed
Processing Symposium, Santa Fe, 2004.

[25] L. Kong, “A Worst-Case Execution Time Analysis Approach Based on Independent
Paths for ARM Programs,” Wuhan University journal of natural sciences, vol. 17, no. 5,
pp. 391-399, 2012.

[26] Wilhelm and et al., “The Worst-Case Execution Time Problem - Overview of Methods
and Survey of Tools,” ACM Transactions on Embedded Computing Systems, vol. 7, no.

3, pp. 1-53, April 2008.

[27] July 2013. [Online]. Available: http://www.mrtc.mdh.se/projects/WCC/.

[28] “Microelectronics,” European Space Agency, 31 05 2013. [Online]. Available:
http://microelectronics.esa.int/ngmp/ngmp.htm. [Accessed 04 08 2013].

[29] “Microelectronics,” 31 05 2013. [Online]. Available:
http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-2-1.pdf. [Accessed 05 08
2013].

[30] “Microelectronics,” 31 05 2013. [Online]. Available:
http://microelectronics.esa.int/ngmp/LEON4-N2X-DS-1-8.pdf. [Accessed 05 08 2013].

[31] ”Gaisler,” 2013. [Online]. Available: http://www.gaisler.com/doc/LEON4_32-
bit_processor_core.pdf. [Använd 05 08 2013].

[32] “The gem5 Simulator System,” 18 02 2013. [Online]. Available:
http://www.m5sim.org/Main_Page. [Accessed 06 08 2013].

[33] “The gem5 Simulator System,” 18 02 2013. [Online]. Available:
http://www.m5sim.org/Architecture_Support. [Accessed 08 08 2013].

[34] D. Hardy, T. Piquet and I. Puaut, “Using bypass to tighten WCET estimates for multi-
core processors with shared instruction caches,” in Proceedings of the 30th Real-Time
Systems Symposium, Washington D.C., 2009.

[35] B. Lesage, D. Hardy and I. Puauat, “Shared Data Cache Conflicts Reduction for WCET
Computation in Multicore Architectures,” in 18th International Conference on Real-Time
and Network Systems, 2010.

[36] A. Saulsbury, F. Pong and A. Nowatzyk, “Missing the Memory Wall: The Case for
Processor/Memory Integration,” in Proceedings of the 23rd annual international
symposium on Computer architecture, New York, 1996.

[37] V. Suhendra and T. Mitra, “Exploring locking & partitioning for predictable shared caches
on multi-cores,” in In DAC ’08: Proceedings of the 45th annual Design Automation
Conference, New York, 2008.

Chalmers | Appendix A: Calculated Result for a System Frequency at 300MHz 29

Appendix A: Calculated Result for a System Frequency at 300MHz

 Calculated WCET and Throughput for a system freq. 300MHz and P=4.

NxN_Metrics AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 9,75333E-08 4,65115E-08 0,00101101 0,001180347 0,00404443 0,004721573 0,0010114 0,001180533 3,998842793 3,999527216

48 9,17588E-09 2,33113E-08 0,003380183 0,003983397 0,01352077 0,01593368 0,00338022 0,00398349 3,999967425 3,999929776

64 1,04523E-08 1,77393E-08 0,00797485 0,00944186 0,031899442 0,037767511 0,007974892 0,009441931 3,999984272 3,999977455

80 3,50756E-09 1,44559E-08 0,01553229 0,018440857 0,062129174 0,073763484 0,015532304 0,018440914 3,99999729 3,999990593

96 1,05255E-08 1,21614E-08 0,026789783 0,031865507 0,107159175 0,127462075 0,026789825 0,031865555 3,999995285 3,99999542

112 3,11274E-09 1,05015E-08 0,04248461 0,05060093 0,169938452 0,202403762 0,042484622 0,050600972 3,999999121 3,99999751

128 1,02237E-08 3,19098E-09 0,06335405 0,075532247 0,253416241 0,302128999 0,063354091 0,075532259 3,999998064 3,999999493

144 7,90656E-09 8,28498E-09 0,090135383 0,107544577 0,360541565 0,43017834 0,090135415 0,10754461 3,999998947 3,999999076

160 1,04486E-08 7,66428E-09 0,12356589 0,14752304 0,494263602 0,590092191 0,123565932 0,147523071 3,999998985 3,999999377

176 1,07804E-08 8,29136E-09 0,16438285 0,196352757 0,657531443 0,78541106 0,164382893 0,19635279 3,999999213 3,999999493

192 1,02624E-08 7,00612E-09 0,213323543 0,254918847 0,853294214 1,019675415 0,213323584 0,254918875 3,999999423 3,99999967

208 1,07567E-08 7,21136E-09 0,27112525 0,32410643 1,084501043 1,296425749 0,271125293 0,324106459 3,999999524 3,999999733

224 1,04356E-08 1,04548E-08 0,33852525 0,404800627 1,354101042 1,619202548 0,338525292 0,404800668 3,99999963 3,99999969

240 1,0871E-08 1,71766E-08 0,416260823 0,497886557 1,665043337 1,991546295 0,416260867 0,497886625 3,999999687 3,999999586

256 1,25537E-08 1,03488E-08 0,50506925 0,60424934 2,02027705 2,416997401 0,5050693 0,604249381 3,999999702 3,999999794

272 1,41921E-08 2,63084E-08 0,60568781 0,724774097 2,422751297 2,899096492 0,605687867 0,724774202 3,999999719 3,999999564

288 1,64053E-08 2,76971E-08 0,718853783 0,860345947 2,875415199 3,441383897 0,718853849 0,860346057 3,999999726 3,999999614

304 1,65433E-08 2,75568E-08 0,84530445 1,01185001 3,381217866 4,04740015 0,845304516 1,01185012 3,999999765 3,999999673

 Calculated WCET and Throughput for a system freq. 300MHz and P=8.

NxN_Metrics AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 9,75333E-08 9,29057E-08 0,00101101 0,001180347 0,00808886 0,009443517 0,00101179 0,00118109 7,994601783 7,995594987

48 9,17588E-09 2,33113E-08 0,003380183 0,003983397 0,02704154 0,03186736 0,003380257 0,003983583 7,999847985 7,999672297

64 1,04523E-08 1,77393E-08 0,00797485 0,00944186 0,063798884 0,075535022 0,007974934 0,009442002 7,999926604 7,999894789

80 3,50756E-09 1,44559E-08 0,01553229 0,018440857 0,124258348 0,147526969 0,015532318 0,018440972 7,999987354 7,999956101

96 1,05255E-08 1,21614E-08 0,026789783 0,031865507 0,214318351 0,254924151 0,026789868 0,031865604 7,999977998 7,999978628

112 3,11274E-09 1,05015E-08 0,04248461 0,05060093 0,339876905 0,404807524 0,042484635 0,050601014 7,999995897 7,999988378

128 1,02237E-08 3,19098E-09 0,06335405 0,075532247 0,506832482 0,604257999 0,063354132 0,075532272 7,999990963 7,999997634

144 7,90656E-09 8,28498E-09 0,090135383 0,107544577 0,72108313 0,86035668 0,090135447 0,107544643 7,999995088 7,999995686

160 1,04486E-08 7,66428E-09 0,12356589 0,14752304 0,988527204 1,180184381 0,123565974 0,147523101 7,999995265 7,999997091

176 1,07804E-08 8,29136E-09 0,16438285 0,196352757 1,315062886 1,57082212 0,164382936 0,196352823 7,999996327 7,999997635

192 1,02624E-08 7,00612E-09 0,213323543 0,254918847 1,706588429 2,039350829 0,213323625 0,254918903 7,999997306 7,999998461

208 1,07567E-08 7,21136E-09 0,27112525 0,32410643 2,169002086 2,592851498 0,271125336 0,324106488 7,999997778 7,999998754

224 1,04356E-08 1,04548E-08 0,33852525 0,404800627 2,708202083 3,238405097 0,338525333 0,40480071 7,999998274 7,999998554

240 1,0871E-08 1,71766E-08 0,416260823 0,497886557 3,330086674 3,983092591 0,41626091 0,497886694 7,999998538 7,999998068

256 1,25537E-08 1,03488E-08 0,50506925 0,60424934 4,0405541 4,833994803 0,50506935 0,604249423 7,999998608 7,999999041

272 1,41921E-08 2,63084E-08 0,60568781 0,724774097 4,845502594 5,798192984 0,605687924 0,724774307 7,999998688 7,999997967

288 1,64053E-08 2,76971E-08 0,718853783 0,860345947 5,750830398 6,882767795 0,718853915 0,860346168 7,999998722 7,999998197

304 1,65433E-08 2,75568E-08 0,84530445 1,01185001 6,762435732 8,0948003 0,845304582 1,01185023 7,999998904 7,999998475

 Calculated WCET and Throughput for a system freq. 300MHz and P=16.

NxN_Metrics AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 9,75333E-08 4,65115E-08 0,00101101 0,001180347 0,016177721 0,018886291 0,001012571 0,001181091 15,97688261 15,99054878

48 9,17588E-09 2,33113E-08 0,003380183 0,003983397 0,05408308 0,06373472 0,00338033 0,00398377 15,99934852 15,99859562

64 1,04523E-08 1,77393E-08 0,00797485 0,00944186 0,127597767 0,151070044 0,007975017 0,009442144 15,99968545 15,9995491

80 3,50756E-09 1,44559E-08 0,01553229 0,018440857 0,248516696 0,295053938 0,015532346 0,018441088 15,9999458 15,99981186

96 1,05255E-08 1,21614E-08 0,026789783 0,031865507 0,428636702 0,509848301 0,026789952 0,031865701 15,99990571 15,9999084

112 3,11274E-09 1,05015E-08 0,04248461 0,05060093 0,67975381 0,809615048 0,04248466 0,050601098 15,99998242 15,99995019

128 1,02237E-08 3,19098E-09 0,06335405 0,075532247 1,013664964 1,208515998 0,063354214 0,075532298 15,99996127 15,99998986

144 7,90656E-09 8,28498E-09 0,090135383 0,107544577 1,44216626 1,720713359 0,09013551 0,107544709 15,99997895 15,99998151

160 1,04486E-08 7,66428E-09 0,12356589 0,14752304 1,977054407 2,360368763 0,123566057 0,147523163 15,99997971 15,99998753

176 1,07804E-08 8,29136E-09 0,16438285 0,196352757 2,630125772 3,141644239 0,164383022 0,196352889 15,99998426 15,99998987

192 1,02624E-08 7,00612E-09 0,213323543 0,254918847 3,413176858 4,078701659 0,213323708 0,254918959 15,99998845 15,9999934

208 1,07567E-08 7,21136E-09 0,27112525 0,32410643 4,338004172 5,185702995 0,271125422 0,324106545 15,99999048 15,99999466

224 1,04356E-08 1,04548E-08 0,33852525 0,404800627 5,416404167 6,476810194 0,338525417 0,404800794 15,9999926 15,9999938

240 1,0871E-08 1,71766E-08 0,416260823 0,497886557 6,660173347 7,966185181 0,416260997 0,497886831 15,99999373 15,99999172

256 1,25537E-08 1,03488E-08 0,50506925 0,60424934 8,081108201 9,667989606 0,505069451 0,604249506 15,99999403 15,99999589

272 1,41921E-08 2,63084E-08 0,60568781 0,724774097 9,691005187 11,59638597 0,605688037 0,724774518 15,99999438 15,99999129

288 1,64053E-08 2,76971E-08 0,718853783 0,860345947 11,5016608 13,76553559 0,718854046 0,86034639 15,99999452 15,99999227

304 1,65433E-08 2,75568E-08 0,84530445 1,01185001 13,52487146 16,1896006 0,845304715 1,011850451 15,9999953 15,99999346

Conventional/Blocking Metrics Multiplication

Conventional/Blocking Metrics Multiplication

Conventional/Blocking Metrics Multiplication

 30 Appendix B: Calculated Result for a System Frequency at 600MHz | Chalmers

Appendix B: Calculated Result for a System Frequency at 600MHz

 Calculated WCET and Throughput for a system freq. 600MHz and P=4.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 5,00286E-08 5,00272E-08 0,000505505 0,000590173 0,00202222 0,002360893 0,000505705 0,000590373 3,99881286 3,998983141

48 4,9904E-08 2,6928E-08 0,001690092 0,001991698 0,006760566 0,007966901 0,001690291 0,001991806 3,999645713 3,999837767

64 1,8726E-09 1,1225E-08 0,003987425 0,00472093 0,015949707 0,018883765 0,003987432 0,004720975 3,999994364 3,999971468

80 2,1398E-09 7,53867E-09 0,007766145 0,009220428 0,031064589 0,036881743 0,007766154 0,009220458 3,999996694 3,999990189

96 1,473E-09 6,08072E-09 0,013394892 0,015932753 0,053579573 0,063731038 0,013394898 0,015932778 3,99999868 3,99999542

112 1,6291E-09 5,26943E-09 0,021242305 0,025300465 0,084969227 0,101201881 0,021242312 0,025300486 3,99999908 3,999997501

128 5,11151E-09 4,61594E-09 0,031677025 0,037766123 0,12670812 0,151064512 0,031677045 0,037766142 3,999998064 3,999998533

144 1,34148E-09 4,14249E-09 0,045067692 0,053772288 0,180270772 0,21508917 0,045067697 0,053772305 3,999999643 3,999999076

160 5,2178E-09 3,83214E-09 0,061782945 0,07376152 0,247131801 0,295046095 0,061782966 0,073761535 3,999998987 3,999999377

176 1,15431E-09 4,14568E-09 0,082191425 0,098176378 0,328765705 0,39270553 0,08219143 0,098176395 3,999999831 3,999999493

192 5,12999E-09 3,51214E-09 0,106661772 0,127459423 0,426647107 0,509837707 0,106661792 0,127459437 3,999999423 3,999999669

208 1,02952E-09 3,60568E-09 0,135562625 0,162053215 0,542250504 0,648212874 0,135562629 0,162053229 3,999999909 3,999999733

224 5,21304E-09 5,27633E-09 0,169262625 0,202400313 0,677050521 0,809601274 0,169262646 0,202400334 3,99999963 3,999999687

240 1,89105E-09 8,59554E-09 0,208130412 0,248943278 0,832521654 0,995773148 0,208130419 0,248943313 3,999999891 3,999999586

256 6,27544E-09 2,20435E-09 0,252534625 0,30212467 1,010138525 1,208498689 0,25253465 0,302124679 3,999999702 3,999999912

272 6,13859E-09 1,3171E-08 0,302843905 0,362387048 1,211375645 1,449548246 0,30284393 0,362387101 3,999999757 3,999999564

288 8,20112E-09 1,38485E-08 0,359426892 0,430172973 1,437707599 1,720691949 0,359426924 0,430173029 3,999999726 3,999999614

304 8,02386E-09 1,37784E-08 0,422652225 0,505925005 1,690608932 2,023700075 0,422652257 0,50592506 3,999999772 3,999999673

 Calculated WCET and Throughput for a system freq. 600MHz and P=8.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 5,00286E-08 5,00272E-08 0,000505505 0,000590173 0,00404444 0,004721787 0,000505905 0,000590574 7,994462206 7,995256267

48 4,9904E-08 2,6928E-08 0,001690092 0,001991698 0,013521133 0,015933802 0,001690491 0,001991914 7,998346856 7,999242955

64 1,8726E-09 1,1225E-08 0,003987425 0,00472093 0,031899415 0,03776753 0,00398744 0,00472102 7,999973701 7,99986685

80 2,1398E-09 7,53867E-09 0,007766145 0,009220428 0,062129177 0,073763487 0,007766162 0,009220489 7,99998457 7,999954214

96 1,473E-09 6,08072E-09 0,013394892 0,015932753 0,107159145 0,127462075 0,013394903 0,015932802 7,999993842 7,999978628

112 1,6291E-09 5,26943E-09 0,021242305 0,025300465 0,169938453 0,202403762 0,021242318 0,025300507 7,999995705 7,999988337

128 5,11151E-09 4,61594E-09 0,031677025 0,037766123 0,253416241 0,302129024 0,031677066 0,03776616 7,999990964 7,999993155

144 1,34148E-09 4,14249E-09 0,045067692 0,053772288 0,360541544 0,43017834 0,045067702 0,053772321 7,999998333 7,999995686

160 5,2178E-09 3,83214E-09 0,061782945 0,07376152 0,494263602 0,590092191 0,061782987 0,073761551 7,999995271 7,999997091

176 1,15431E-09 4,14568E-09 0,082191425 0,098176378 0,657531409 0,78541106 0,082191434 0,098176411 7,999999214 7,999997635

192 5,12999E-09 3,51214E-09 0,106661772 0,127459423 0,853294214 1,019675415 0,106661813 0,127459451 7,999997307 7,999998457

208 1,02952E-09 3,60568E-09 0,135562625 0,162053215 1,084501008 1,296425749 0,135562633 0,162053244 7,999999575 7,999998754

224 5,21304E-09 5,27633E-09 0,169262625 0,202400313 1,354101042 1,619202549 0,169262667 0,202400356 7,999998275 7,99999854

240 1,89105E-09 8,59554E-09 0,208130412 0,248943278 1,665043308 1,991546295 0,208130427 0,248943347 7,999999491 7,999998066

256 6,27544E-09 2,20435E-09 0,252534625 0,30212467 2,02027705 2,416997378 0,252534675 0,302124688 7,999998608 7,999999591

272 6,13859E-09 1,3171E-08 0,302843905 0,362387048 2,422751289 2,899096492 0,302843954 0,362387154 7,999998865 7,999997965

288 8,20112E-09 1,38485E-08 0,359426892 0,430172973 2,875415199 3,441383897 0,359426957 0,430173084 7,999998722 7,999998197

304 8,02386E-09 1,37784E-08 0,422652225 0,505925005 3,381217864 4,04740015 0,422652289 0,505925115 7,999998937 7,999998475

 Calculated WCET and Throughput for a system freq. 600MHz and P=16.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 5,00286E-08 5,00272E-08 0,000505505 0,000590173 0,00808888 0,009443574 0,000506305 0,000590974 15,97628536 15,97968348

48 4,9904E-08 2,6928E-08 0,001690092 0,001991698 0,027042265 0,031867604 0,00169089 0,001992129 15,99291677 15,99675587

64 1,8726E-09 1,1225E-08 0,003987425 0,00472093 0,06379883 0,07553506 0,003987455 0,00472111 15,99988729 15,99942937

80 2,1398E-09 7,53867E-09 0,007766145 0,009220428 0,124258354 0,147526974 0,007766179 0,009220549 15,99993387 15,99980378

96 1,473E-09 6,08072E-09 0,013394892 0,015932753 0,21431829 0,254924151 0,013394915 0,015932851 15,99997361 15,9999084

112 1,6291E-09 5,26943E-09 0,021242305 0,025300465 0,339876906 0,404807524 0,021242331 0,025300549 15,99998159 15,99995001

128 5,11151E-09 4,61594E-09 0,031677025 0,037766123 0,506832482 0,604258047 0,031677107 0,037766197 15,99996127 15,99997067

144 1,34148E-09 4,14249E-09 0,045067692 0,053772288 0,721083088 0,86035668 0,045067713 0,053772355 15,99999286 15,99998151

160 5,2178E-09 3,83214E-09 0,061782945 0,07376152 0,988527203 1,180184381 0,061783028 0,073761581 15,99997973 15,99998753

176 1,15431E-09 4,14568E-09 0,082191425 0,098176378 1,315062818 1,57082212 0,082191443 0,098176445 15,99999663 15,99998987

192 5,12999E-09 3,51214E-09 0,106661772 0,127459423 1,706588429 2,03935083 0,106661854 0,12745948 15,99998846 15,99999339

208 1,02952E-09 3,60568E-09 0,135562625 0,162053215 2,169002016 2,592851498 0,135562641 0,162053273 15,99999818 15,99999466

224 5,21304E-09 5,27633E-09 0,169262625 0,202400313 2,708202083 3,238405098 0,169262708 0,202400398 15,99999261 15,99999374

240 1,89105E-09 8,59554E-09 0,208130412 0,248943278 3,330086617 3,983092591 0,208130442 0,248943416 15,99999782 15,99999171

256 6,27544E-09 2,20435E-09 0,252534625 0,30212467 4,0405541 4,833994755 0,252534725 0,302124705 15,99999404 15,99999825

272 6,13859E-09 1,3171E-08 0,302843905 0,362387048 4,845502578 5,798192984 0,302844003 0,362387259 15,99999514 15,99999128

288 8,20112E-09 1,38485E-08 0,359426892 0,430172973 5,750830398 6,882767795 0,359427023 0,430173195 15,99999452 15,99999227

304 8,02386E-09 1,37784E-08 0,422652225 0,505925005 6,762435728 8,0948003 0,422652353 0,505925225 15,99999544 15,99999346

Conventional/Blocking Matrix Multiplication

Conventional/Blocking Matrix Multiplication

Conventional/Blocking Matrix Multiplication

Chalmers | Appendix C: Calculated Result for a System Frequency at 1200MHz 31

Appendix C: Calculated Result for a System Frequency at 1200MHz
 Calculated WCET and Throughput for a system freq. 1200MHz and P=4.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 2,50142E-08 2,50136E-08 0,000252753 0,000295087 0,00101111 0,001180447 0,000252853 0,000295187 3,998812864 3,998983141

48 2,50096E-08 2,5009E-08 0,000845046 0,000995849 0,003380283 0,003983497 0,000845146 0,000995949 3,999644896 3,999698671

64 2,48456E-08 1,17728E-08 0,001993713 0,002360465 0,007974949 0,009441907 0,001993812 0,002360512 3,999850464 3,999940151

80 1,65742E-08 1,02328E-08 0,003883073 0,004610214 0,015532356 0,018440898 0,003883139 0,004610255 3,999948781 3,999973365

96 1,33377E-09 7,88489E-09 0,006697446 0,007966377 0,026789789 0,031865538 0,006697451 0,007966408 3,99999761 3,999988123

112 8,14275E-10 5,78168E-09 0,010621153 0,012650233 0,042484613 0,050600953 0,010621156 0,012650256 3,99999908 3,999994516

128 2,55529E-09 2,31117E-09 0,015838513 0,018883062 0,06335406 0,075532256 0,015838523 0,018883071 3,999998064 3,999998531

144 6,70615E-10 2,68424E-09 0,022533846 0,026886144 0,090135386 0,107544587 0,022533849 0,026886155 3,999999643 3,999998802

160 5,85045E-10 2,12481E-09 0,030891473 0,03688076 0,123565892 0,147523048 0,030891475 0,036880768 3,999999773 3,999999309

176 5,7829E-10 2,14234E-09 0,041095713 0,049088189 0,164382852 0,196352765 0,041095715 0,049088198 3,999999831 3,999999476

192 2,56365E-09 1,75607E-09 0,053330886 0,063729712 0,213323554 0,254918854 0,053330896 0,063729719 3,999999423 3,999999669

208 5,14035E-10 1,80284E-09 0,067781313 0,081026608 0,271125252 0,324106437 0,067781315 0,081026615 3,999999909 3,999999733

224 5,4463E-10 2,65299E-09 0,084631313 0,101200157 0,338525252 0,404800637 0,084631315 0,101200167 3,999999923 3,999999685

240 8,8628E-10 4,31747E-09 0,104065206 0,124471639 0,416260827 0,497886574 0,104065209 0,124471656 3,999999898 3,999999584

256 3,1355E-09 6,76005E-09 0,126267313 0,151062335 0,505069263 0,604249367 0,126267325 0,151062362 3,999999702 3,999999463

272 1,49582E-08 6,59498E-09 0,151421953 0,181193524 0,60568787 0,724774123 0,151422012 0,181193551 3,999998815 3,999999563

288 4,01138E-09 6,92427E-09 0,179713446 0,215086487 0,718853799 0,860345974 0,179713462 0,215086514 3,999999732 3,999999614

304 2,51332E-08 6,8892E-09 0,211326113 0,252962503 0,845304551 1,011850038 0,211326213 0,25296253 3,999998573 3,999999673

 Calculated WCET and Throughput for a system freq. 1200MHz and P=8.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 2,50142E-08 2,50136E-08 0,000252753 0,000295087 0,00202222 0,002360893 0,000252953 0,000295287 7,994462223 7,995256267

48 2,50096E-08 2,5009E-08 0,000845046 0,000995849 0,006760567 0,007966993 0,000845246 0,000996049 7,998343044 7,998593939

64 2,48456E-08 1,17728E-08 0,001993713 0,002360465 0,015949899 0,018883814 0,001993911 0,002360559 7,9993022 7,999720711

80 1,65742E-08 1,02328E-08 0,003883073 0,004610214 0,031064713 0,036881795 0,003883205 0,004610296 7,999760983 7,999875705

96 1,33377E-09 7,88489E-09 0,006697446 0,007966377 0,053579577 0,063731076 0,006697457 0,00796644 7,999988848 7,999944573

112 8,14275E-10 5,78168E-09 0,010621153 0,012650233 0,084969227 0,101201906 0,010621159 0,012650279 7,999995707 7,999974406

128 2,55529E-09 2,31117E-09 0,015838513 0,018883062 0,12670812 0,151064512 0,015838533 0,01888308 7,999990965 7,999993146

144 6,70615E-10 2,68424E-09 0,022533846 0,026886144 0,180270772 0,215089175 0,022533851 0,026886166 7,999998333 7,999994409

160 5,85045E-10 2,12481E-09 0,030891473 0,03688076 0,247131785 0,295046097 0,030891477 0,036880777 7,999998939 7,999996774

176 5,7829E-10 2,14234E-09 0,041095713 0,049088189 0,328765705 0,39270553 0,041095717 0,049088206 7,999999212 7,999997556

192 2,56365E-09 1,75607E-09 0,053330886 0,063729712 0,426647107 0,509837707 0,053330906 0,063729726 7,999997308 7,999998457

208 5,14035E-10 1,80284E-09 0,067781313 0,081026608 0,542250504 0,648212874 0,067781317 0,081026622 7,999999575 7,999998754

224 5,4463E-10 2,65299E-09 0,084631313 0,101200157 0,677050504 0,809601275 0,084631317 0,101200178 7,99999964 7,999998532

240 8,8628E-10 4,31747E-09 0,104065206 0,124471639 0,832521654 0,995773148 0,104065213 0,124471674 7,999999523 7,999998058

256 3,1355E-09 6,76005E-09 0,126267313 0,151062335 1,010138525 1,208498734 0,126267338 0,151062389 7,999998609 7,999997494

272 1,49582E-08 6,59498E-09 0,151421953 0,181193524 1,21137574 1,449548246 0,151422072 0,181193577 7,999994468 7,999997962

288 4,01138E-09 6,92427E-09 0,179713446 0,215086487 1,437707599 1,720691949 0,179713478 0,215086542 7,99999875 7,999998197

304 2,51332E-08 6,8892E-09 0,211326113 0,252962503 1,690609101 2,023700075 0,211326314 0,252962558 7,99999334 7,999998475

 Calculated WCET and Throughput for a system freq. 1200MHz and P=16.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 2,50142E-08 2,50136E-08 0,000252753 0,000295087 0,00404444 0,004721787 0,000253153 0,000295487 15,97628543 15,97968348

48 2,50096E-08 2,5009E-08 0,000845046 0,000995849 0,013521133 0,015933987 0,000845446 0,000996249 15,99290044 15,99397523

64 2,48456E-08 1,17728E-08 0,001993713 0,002360465 0,031899798 0,037767628 0,00199411 0,002360653 15,99700973 15,9988031

80 1,65742E-08 1,02328E-08 0,003883073 0,004610214 0,062129425 0,07376359 0,003883338 0,004610378 15,99897568 15,99946732

96 1,33377E-09 7,88489E-09 0,006697446 0,007966377 0,107159155 0,127462153 0,006697467 0,007966503 15,99995221 15,99976246

112 8,14275E-10 5,78168E-09 0,010621153 0,012650233 0,169938453 0,202403813 0,010621166 0,012650325 15,9999816 15,99989031

128 2,55529E-09 2,31117E-09 0,015838513 0,018883062 0,253416241 0,302129024 0,015838553 0,018883099 15,99996128 15,99997063

144 6,70615E-10 2,68424E-09 0,022533846 0,026886144 0,360541544 0,43017835 0,022533857 0,026886187 15,99999286 15,99997604

160 5,85045E-10 2,12481E-09 0,030891473 0,03688076 0,494263569 0,590092194 0,030891482 0,036880794 15,99999545 15,99998617

176 5,7829E-10 2,14234E-09 0,041095713 0,049088189 0,657531409 0,785411061 0,041095722 0,049088223 15,99999662 15,99998953

192 2,56365E-09 1,75607E-09 0,053330886 0,063729712 0,853294214 1,019675415 0,053330927 0,06372974 15,99998846 15,99999339

208 5,14035E-10 1,80284E-09 0,067781313 0,081026608 1,084501008 1,296425749 0,067781321 0,081026636 15,99999818 15,99999466

224 5,4463E-10 2,65299E-09 0,084631313 0,101200157 1,354101009 1,619202549 0,084631321 0,101200199 15,99999846 15,99999371

240 8,8628E-10 4,31747E-09 0,104065206 0,124471639 1,665043308 1,991546296 0,10406522 0,124471708 15,99999796 15,99999168

256 3,1355E-09 6,76005E-09 0,126267313 0,151062335 2,02027705 2,416997468 0,126267363 0,151062443 15,99999404 15,99998926

272 1,49582E-08 6,59498E-09 0,151421953 0,181193524 2,422751479 2,899096492 0,151422192 0,18119363 15,99997629 15,99999126

288 4,01138E-09 6,92427E-09 0,179713446 0,215086487 2,875415198 3,441383897 0,17971351 0,215086597 15,99999464 15,99999227

304 2,51332E-08 6,8892E-09 0,211326113 0,252962503 3,381218202 4,04740015 0,211326515 0,252962613 15,99997146 15,99999346

Conventional/Blocking Matrix Multiplication

Conventional/Blocking Matrix Multiplication

Conventional/Blocking Matrix Multiplication

 32 Appendix D: Conventional Matrix Multiplication | Chalmers

Appendix D: Conventional Matrix Multiplication

CONVENTIONAL MATRIX MULTIPLICATION
/* mconv.c */

#include "util/m5/m5op.h" /* enables access to some Gem5 functions */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/* CONVENTIONAL METRICS MULTIPLICATION ALGORITHM */

void main(int argc, char **argv)

{

int MAXLOOP = atoi(argv[1]);

int N=MAXLOOP;

int i, j, k;

int A[N][N];

int B[N][N];

int C[N][N];

for (i=0; i<N; i++) for (j=0; j<N; j++){ A[i][j]=j;} //assigning values

to metrics A

for (i=0; i<N; i++) for (j=0; j<N; j++){ B[i][j]=j;} //assigning values

to metrics B

for (i=0; i<N; i++) for (j=0; j<N; j++){ C[i][j]=j;} //assigning values

to metrics C

m5_dumpreset_stats(0,0);

m5_checkpoint(0,0);

/***************** Region of Interest Starts Here ********************/

for (i=0; i<N; i++)

{

 for (j=0; j<N; j++)

 {

 for (k=0; k<N; k++)

 {

 C[i][j]+=A[i][k]*B[k][j];

 }

 }

}

/******************* Region of Interest Ends Here ********************/

m5_exit(0);

exit(0); /* No errors */

}

Chalmers | Appendix E: Blocking Algorithm Matrix Multiplication 33

Appendix E: Blocking Algorithm Matrix Multiplication

#include "util/m5/m5op.h" /* enables access to some Gem5 functions */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MIN(a,b) (((a)<(b))?(a):(b))

/* BLOCKING METRICS MULTIPLICATION ALGORITHM */

void main(int argc, char **argv)

{

int MAXLOOP = atoi(argv[1]);

int N=MAXLOOP;

int kk,jj,i,k,j,block=16;

int A[N][N];

int B[N][N];

int C[N][N];

for (i=0; i<N; i++) for (j=0; j<N; j++){ A[i][j]=j;} //assigning values

to metrics A

for (i=0; i<N; i++) for (j=0; j<N; j++){ B[i][j]=j;} //assigning values

to metrics B

for (i=0; i<N; i++) for (j=0; j<N; j++){ C[i][j]=j;} //assigning values

to metrics C

m5_dumpreset_stats(0,0);

m5_checkpoint(0,0);

/*********************** Region of Interest Starts Here

*************************/

for (jj = 0; jj < N; jj += block)

{

 for (kk = 0; kk < N; kk += block)

 {

 for (i = 0; i < N; i += 1)

 {

 for (j = jj; j < MIN(jj + block, N); j++)

 {

 for (k = kk; k < MIN(kk + block, N); k++)

 {

 C[i][j]+=A[i][k]*B[k][j];

 }

 }

 }

 }

}

/*********************** Region of Interest Ends Here

*************************/

m5_exit(0);

exit(0); /* No errors */

}

 34 Appendix F: BASH SCRIPT 1 - runsim.sh | Chalmers

Appendix F: BASH SCRIPT 1 - runsim.sh

#!/bin/bash

SHOME="/home/feysal/gem5"

clear

#runsim.sh

################### (1)BASH SCRIPT SIM CONFIG ##############

INC_START=32 #Start matrix size 32x32

INC_STOP=305 #Last matrix size 304x304

INC_STEPS=16 #18 matrix size intervals: 32x32, 48x48 ... 304x304

SIM_FILE_NAME=$2 #reads the file through parameter 2: example:

"mconv.c" #"mblock.c"

COUNT=$INC_START

Nfiles=$INC_STOP

 rm multipalgorithm.c #Temp file to copy the code to for

compiling and then simulating

 cp SIMFILES/$SIM_FILE_NAME multipalgorithm.c #enter the file to

be compiled and then simulated

 sleep 1

 #n=1

 simfile="output"

 make clean

 echo Starting compilation ...

 make EXEC=$simfile #call makefile to compile the code

Running a number of simulation iterations #

while [$COUNT -lt $Nfiles]; do

 echo Starting simulation [$COUNT] ...

 sleep 1

 rm -rf m5out/trial/cpt*

 rm m5out/trial/config*

 sleep 1

 ./build/X86/gem5.opt --outdir=m5out/trial configs/example/se.py -n

1 -o $COUNT -c ./output --caches --l2cache --l1i_size=4kB --l1i_assoc=4

--l1d_size=4kB --l1d_assoc=4 --l2_size=256kB --l2_assoc=4 --cpu-type

timing --clock=150MHz

 sleep 1

 ./build/X86/gem5.opt --outdir=m5out/trial configs/example/se.py -n

1 -o $COUNT -c ./output --caches --l2cache --l1i_size=4kB --l1i_assoc=4

--l1d_size=4kB --l1d_assoc=4 --l2_size=256kB --l2_assoc=4 --cpu-type

timing --clock=150MHz --checkpoint-dir=m5out/trial -r 1

Chalmers | Appendix F: BASH SCRIPT 1 - runsim.sh 35

 echo simulation ended successfully

 #Calling the second bash script: script name + iterations number+

start matrix size+C code file name

 source collectSats.sh $COUNT $INC_START $SIM_FILE_NAME

 let COUNT=COUNT+$INC_STEPS #Count the number of application

iterations

 sleep 1

done

##--help -> lists the options available

##--debug-flag=list of flags that need to be traced

##--debug-flags=WorkItems

 36 Appendix G: BASH SCRIPT 2 - collectStats.sh | Chalmers

Appendix G: BASH SCRIPT 2 - collectStats.sh

#!/bin/bash

SHOME="/home/feysal/gem5"

fstatsSummary="${SHOME}/stats_summary.txt"

COUNT=$1 #Reading parameter from script 1

INC_START=$2 # --//--

SIM_FILE_NAME=$3 # --//--

Function: searching and extracting digits from the stats file text #

function findDigits()

{

 #---------- findig digits in the stats file

 stringTmp=$(grep "$1" m5out/trial/stats.txt)

 stringTmp=${stringTmp//"l2"/"lt"} #Changed l2 into lt to again

digit search function return the "2" after l in l2 cache string

 charCount="${stringTmp//[^#]}"

 if [${#charCount} -gt '1']; then

 string=${stringTmp:`expr index "$stringTmp" '#'`}

 else

 string=$stringTmp

 fi

 pattern1='([[:digit:]].[[:digit:]]+)'

 [[$string =~ $pattern1]]

 tmpvar1=${BASH_REMATCH[1]}

 pattern2='([[:digit:]]+)'

 [[$string =~ $pattern2]]

 tmpvar2=${BASH_REMATCH[1]}

 if [-n "$tmpvar1"]; then

 digits=$tmpvar1

 elif [-n "$tmpvar2"]; then

 digits=$tmpvar2

 else

 digits=0

 fi

}

#%%%%%%%%%%%%%%%% Create empty stats_summary.txt file if it does not

exist %%%%%%%%%%%%%%%%%%%%

echo "..............................."

echo "Saving statistics summary in stats_summary.txt "

sleep 1

fstatssearch=$(find -name $fstatsSummary)

if [$fstatssearch and "./stats_summary.txt"] #save stats if file

found else create file then save stats

then

echo "Done"

else

touch $fstatsSummary # create file if not found"

echo "Done"

fi

#%%

Chalmers | Appendix G: BASH SCRIPT 2 - collectStats.sh 37

#%%%%%%%% Passing search string to findDigits function %%%%%%%%

findDigits "sim_insts"

n_insts=$digits

findDigits "l2.overall_hits::switch_cpus.data"

l2hits=$digits

findDigits "l2.overall_misses::switch_cpus.data"

l2misses=$digits

findDigits "l2.overall_accesses::switch_cpus.data"

l2accesses=$digits

findDigits "l2.overall_miss_rate::switch_cpus.data"

l2miss_rate=$digits

findDigits "dcache.overall_hits::switch_cpus.data"

dhits=$digits

findDigits "dcache.overall_misses::switch_cpus.data"

dmisses=$digits

findDigits "dcache.overall_accesses::switch_cpus.data"

daccesses=$digits

findDigits "dcache.overall_miss_rate::switch_cpus.data"

dmiss_rate=$digits

#%%

%%%%%%%%%%%%%%%%%%

#%%%%%%%% Saving the collected/recalculated data into the

stats_summary.txt file %%%%%%%%%%

if [$daccesses -gt '0']; then

 dmiss_rate=$(bc <<< "scale = 6; $dmisses/$daccesses") #BC is used to

divide 2 variables and return the result with floating-point

else

 let dmiss_rate=0

fi

if [$COUNT -eq $INC_START]; then # Prints the headers and the

first line

 echo -e "\n$SIM_FILE_NAME ..." >> $fstatsSummary

 echo -e "N-Metrics\tL1-Hits\tL1-Misses\tL1-Accesses\tL1-Miss-rate\tN-

Instractions\tL2-Hits\tL2-Misses\tL2-Accesses\tL2-Miss-rate" >>

$fstatsSummary

 echo -e

"$COUNT\t\t$dhits\t$dmisses\t\t$daccesses\t\t$dmiss_rate\t\t$n_insts\t\

t$l2hits\t$l2misses\t\t$l2accesses\t\t$l2miss_rate">>$fstatsSummary

else # Prints the remaining lines (if more than

1 line is to be printed)

 echo -e

"$COUNT\t\t$dhits\t$dmisses\t\t$daccesses\t\t$dmiss_rate\t\t$n_insts\t\

t$l2hits\t$l2misses\t\t$l2accesses\t\t$l2miss_rate">>$fstatsSummary

fi

#%%

echo "Stats summary saved in gem5/stats_summary.txt...."

sleep 1

 38 Appendix H: MAKEFILE | Chalmers

Appendix H: MAKEFILE

CC=gcc

#CC=gcc

CFLAGS= -D_M5 -O2 -g

#CFLAGS= -O2 -g

#LD_FLAGS= -lpthread

LD_FLAGS=--static

OUTPUT= output

OBJS= multipalgorithm.o

M5_OBJ=util/m5/m5op_x86.S

all: $(OUTPUT)

$(OUTPUT):$(OBJS)

 $(CC) -o $(OUTPUT) $(OBJS) $(M5_OBJ) $(LD_FLAGS)

 #$(CC) -o $(OUTPUT) $(OBJS) $(M5_OBJ) $(LD_FLAGS)

.c.o:

 $(CC) -c $(CFLAGS) $*.c

clean:

 rm *.o output

Chalmers | Appendix I: gem5 – Simulation configuration file 39

Appendix I: gem5 – Simulation configuration file

config.ini

[root]

type=Root

children=system

full_system=false

time_sync_enable=false

time_sync_period=100000000000

time_sync_spin_threshold=100000000

[system]

type=System

children=cpu l2 membus physmem tol2bus

boot_osflags=a

clock=1000

init_param=0

kernel=

load_addr_mask=1099511627775

mem_mode=timing

mem_ranges=

memories=system.physmem

num_work_ids=16

readfile=

symbolfile=

work_begin_ckpt_count=0

work_begin_cpu_id_exit=-1

work_begin_exit_count=0

work_cpus_ckpt_count=0

work_end_ckpt_count=0

work_end_exit_count=0

work_item_id=-1

system_port=system.membus.slave[0]

[system.cpu]

type=TimingSimpleCPU

children=dcache dtb dtb_walker_cache icache interrupts isa itb

itb_walker_cache tracer workload

branchPred=Null

checker=Null

clock=6667

cpu_id=0

do_checkpoint_insts=true

do_quiesce=true

do_statistics_insts=true

dtb=system.cpu.dtb

function_trace=false

function_trace_start=0

interrupts=system.cpu.interrupts

isa=system.cpu.isa

itb=system.cpu.itb

max_insts_all_threads=0

max_insts_any_thread=0

max_loads_all_threads=0

max_loads_any_thread=0

numThreads=1

 40 Appendix I: gem5 – Simulation configuration file | Chalmers

profile=0

progress_interval=0

switched_out=false

system=system

tracer=system.cpu.tracer

workload=system.cpu.workload

dcache_port=system.cpu.dcache.cpu_side

icache_port=system.cpu.icache.cpu_side

[system.cpu.dcache]

type=BaseCache

addr_ranges=0:18446744073709551615

assoc=4

block_size=64

clock=6667

forward_snoops=true

hit_latency=2

is_top_level=true

max_miss_count=0

mshrs=1

prefetch_on_access=false

prefetcher=Null

response_latency=2

size=4096

system=system

tgts_per_mshr=1

two_queue=false

write_buffers=8

cpu_side=system.cpu.dcache_port

mem_side=system.tol2bus.slave[1]

[system.cpu.dtb]

type=X86TLB

children=walker

size=64

walker=system.cpu.dtb.walker

[system.cpu.dtb.walker]

type=X86PagetableWalker

clock=6667

system=system

port=system.cpu.dtb_walker_cache.cpu_side

[system.cpu.dtb_walker_cache]

type=BaseCache

addr_ranges=0:18446744073709551615

assoc=2

block_size=64

clock=6667

forward_snoops=true

hit_latency=2

is_top_level=true

max_miss_count=0

mshrs=10

prefetch_on_access=false

prefetcher=Null

response_latency=2

size=1024

Chalmers | Appendix I: gem5 – Simulation configuration file 41

system=system

tgts_per_mshr=12

two_queue=false

write_buffers=8

cpu_side=system.cpu.dtb.walker.port

mem_side=system.tol2bus.slave[3]

[system.cpu.icache]

type=BaseCache

addr_ranges=0:18446744073709551615

assoc=4

block_size=64

clock=6667

forward_snoops=true

hit_latency=2

is_top_level=true

max_miss_count=0

mshrs=1

prefetch_on_access=false

prefetcher=Null

response_latency=2

size=4096

system=system

tgts_per_mshr=1

two_queue=false

write_buffers=8

cpu_side=system.cpu.icache_port

mem_side=system.tol2bus.slave[0]

[system.cpu.interrupts]

type=X86LocalApic

clock=106667

int_latency=1000

pio_addr=2305843009213693952

pio_latency=100000

system=system

int_master=system.membus.slave[2]

int_slave=system.membus.master[2]

pio=system.membus.master[1]

[system.cpu.isa]

type=X86ISA

[system.cpu.itb]

type=X86TLB

children=walker

size=64

walker=system.cpu.itb.walker

[system.cpu.itb.walker]

type=X86PagetableWalker

clock=6667

system=system

port=system.cpu.itb_walker_cache.cpu_side

[system.cpu.itb_walker_cache]

type=BaseCache

addr_ranges=0:18446744073709551615

 42 Appendix I: gem5 – Simulation configuration file | Chalmers

assoc=2

block_size=64

clock=6667

forward_snoops=true

hit_latency=2

is_top_level=true

max_miss_count=0

mshrs=10

prefetch_on_access=false

prefetcher=Null

response_latency=2

size=1024

system=system

tgts_per_mshr=12

two_queue=false

write_buffers=8

cpu_side=system.cpu.itb.walker.port

mem_side=system.tol2bus.slave[2]

[system.cpu.tracer]

type=ExeTracer

[system.cpu.workload]

type=LiveProcess

cmd=./output 2

cwd=

egid=100

env=

errout=cerr

euid=100

executable=./output

gid=100

input=cin

max_stack_size=67108864

output=cout

pid=100

ppid=99

simpoint=0

system=system

uid=100

[system.l2]

type=BaseCache

addr_ranges=0:18446744073709551615

assoc=4

block_size=64

clock=6667

forward_snoops=true

hit_latency=20

is_top_level=false

max_miss_count=0

mshrs=1

prefetch_on_access=false

prefetcher=Null

response_latency=20

size=262144

system=system

tgts_per_mshr=1

Chalmers | Appendix I: gem5 – Simulation configuration file 43

two_queue=false

write_buffers=8

cpu_side=system.tol2bus.master[0]

mem_side=system.membus.slave[1]

[system.membus]

type=CoherentBus

block_size=64

clock=1000

header_cycles=1

system=system

use_default_range=false

width=8

master=system.physmem.port system.cpu.interrupts.pio

system.cpu.interrupts.int_slave

slave=system.system_port system.l2.mem_side

system.cpu.interrupts.int_master

[system.physmem]

type=SimpleMemory

bandwidth=73.000000

clock=1000

conf_table_reported=false

in_addr_map=true

latency=30000

latency_var=0

null=false

range=0:536870911

zero=false

port=system.membus.master[0]

[system.tol2bus]

type=CoherentBus

block_size=64

clock=6667

header_cycles=1

system=system

use_default_range=false

width=32

master=system.l2.cpu_side

slave=system.cpu.icache.mem_side system.cpu.dcache.mem_side

system.cpu.itb_walker_cache.mem_side

system.cpu.dtb_walker_cache.mem_side

 44 Appendix H: gem5 – Simulation stats file example | Chalmers

Appendix H: gem5 – Simulation stats file example

Stats.txt

---------- Begin Simulation Statistics ----------

sim_seconds 0.000191

Number of seconds simulated

sim_ticks 190896211

Number of ticks simulated

final_tick 190896211

Number of ticks from beginning of simulation (restored from

checkpoints and never reset)

sim_freq 1000000000000

Frequency of simulated ticks

host_inst_rate 66084

Simulator instruction rate (inst/s)

host_op_rate 130339

Simulator op (including micro ops) rate (op/s)

host_tick_rate 3573265852

Simulator tick rate (ticks/s)

host_mem_usage 637244

Number of bytes of host memory used

host_seconds 0.05

Real time elapsed on the host

sim_insts 3524

Number of instructions simulated

sim_ops 6957

Number of ops (including micro ops) simulated

system.physmem.bytes_read::cpu.inst 12032

Number of bytes read from this memory

system.physmem.bytes_read::cpu.data 8512

Number of bytes read from this memory

system.physmem.bytes_read::total 20544

Number of bytes read from this memory

system.physmem.bytes_inst_read::cpu.inst 12032

Number of instructions bytes read from this memory

system.physmem.bytes_inst_read::total 12032

Number of instructions bytes read from this memory

system.physmem.num_reads::cpu.inst 188

Number of read requests responded to by this memory

system.physmem.num_reads::cpu.data 133

Number of read requests responded to by this memory

system.physmem.num_reads::total 321

Number of read requests responded to by this memory

system.physmem.bw_read::cpu.inst 63029014

Total read bandwidth from this memory (bytes/s)

system.physmem.bw_read::cpu.data 44589675

Total read bandwidth from this memory (bytes/s)

system.physmem.bw_read::total 107618689

Total read bandwidth from this memory (bytes/s)

system.physmem.bw_inst_read::cpu.inst 63029014

Instruction read bandwidth from this memory (bytes/s)

system.physmem.bw_inst_read::total 63029014

Instruction read bandwidth from this memory (bytes/s)

system.physmem.bw_total::cpu.inst 63029014

Total bandwidth to/from this memory (bytes/s)

Chalmers | Appendix H: gem5 – Simulation stats file example 45

system.physmem.bw_total::cpu.data 44589675

Total bandwidth to/from this memory (bytes/s)

system.physmem.bw_total::total 107618689

Total bandwidth to/from this memory (bytes/s)

system.l2.replacements 0

number of replacements

system.l2.tagsinuse 143.252491

Cycle average of tags in use

system.l2.total_refs 0

Total number of references to valid blocks.

system.l2.sampled_refs 0

Sample count of references to valid blocks.

system.l2.avg_refs nan

Average number of references to valid blocks.

system.l2.warmup_cycle 0

Cycle when the warmup percentage was hit.

system.l2.occ_blocks::writebacks 14.403625

Average occupied blocks per requestor

system.l2.occ_blocks::cpu.inst 93.592710

Average occupied blocks per requestor

system.l2.occ_blocks::cpu.data 35.256156

Average occupied blocks per requestor

system.l2.occ_percent::writebacks 0.003517

Average percentage of cache occupancy

system.l2.occ_percent::cpu.inst 0.022850

Average percentage of cache occupancy

system.l2.occ_percent::cpu.data 0.008607

Average percentage of cache occupancy

system.l2.occ_percent::total 0.034974

Average percentage of cache occupancy

system.l2.ReadReq_hits::cpu.inst 19

number of ReadReq hits

system.l2.ReadReq_hits::cpu.data 24

number of ReadReq hits

system.l2.ReadReq_hits::total 43

number of ReadReq hits

system.l2.Writeback_hits::writebacks 72

number of Writeback hits

system.l2.Writeback_hits::total 72

number of Writeback hits

system.l2.ReadExReq_hits::cpu.data 8

number of ReadExReq hits

system.l2.ReadExReq_hits::total 8

number of ReadExReq hits

system.l2.demand_hits::cpu.inst 19

number of demand (read+write) hits

system.l2.demand_hits::cpu.data 32

number of demand (read+write) hits

system.l2.demand_hits::total 51

number of demand (read+write) hits

system.l2.overall_hits::cpu.inst 19

number of overall hits

system.l2.overall_hits::cpu.data 32

number of overall hits

system.l2.overall_hits::total 51

number of overall hits

system.l2.ReadReq_misses::cpu.inst 188

number of ReadReq misses

 46 Appendix H: gem5 – Simulation stats file example | Chalmers

system.l2.ReadReq_misses::cpu.data 59

number of ReadReq misses

system.l2.ReadReq_misses::total 247

number of ReadReq misses

system.l2.ReadExReq_misses::cpu.data 74

number of ReadExReq misses

system.l2.ReadExReq_misses::total 74

number of ReadExReq misses

system.l2.demand_misses::cpu.inst 188

number of demand (read+write) misses

system.l2.demand_misses::cpu.data 133

number of demand (read+write) misses

system.l2.demand_misses::total 321

number of demand (read+write) misses

system.l2.overall_misses::cpu.inst 188

number of overall misses

system.l2.overall_misses::cpu.data 133

number of overall misses

system.l2.overall_misses::total 321

number of overall misses

system.l2.ReadReq_miss_latency::cpu.inst 56243734

number of ReadReq miss cycles

system.l2.ReadReq_miss_latency::cpu.data 17647611

number of ReadReq miss cycles

system.l2.ReadReq_miss_latency::total 73891345

number of ReadReq miss cycles

system.l2.ReadExReq_miss_latency::cpu.data 22138329

number of ReadExReq miss cycles

system.l2.ReadExReq_miss_latency::total 22138329

number of ReadExReq miss cycles

system.l2.demand_miss_latency::cpu.inst 56243734

number of demand (read+write) miss cycles

system.l2.demand_miss_latency::cpu.data 39785940

number of demand (read+write) miss cycles

system.l2.demand_miss_latency::total 96029674

number of demand (read+write) miss cycles

system.l2.overall_miss_latency::cpu.inst 56243734

number of overall miss cycles

system.l2.overall_miss_latency::cpu.data 39785940

number of overall miss cycles

system.l2.overall_miss_latency::total 96029674

number of overall miss cycles

system.l2.ReadReq_accesses::cpu.inst 207

number of ReadReq accesses(hits+misses)

system.l2.ReadReq_accesses::cpu.data 83

number of ReadReq accesses(hits+misses)

system.l2.ReadReq_accesses::total 290

number of ReadReq accesses(hits+misses)

system.l2.Writeback_accesses::writebacks 72

number of Writeback accesses(hits+misses)

system.l2.Writeback_accesses::total 72

number of Writeback accesses(hits+misses)

system.l2.ReadExReq_accesses::cpu.data 82

number of ReadExReq accesses(hits+misses)

system.l2.ReadExReq_accesses::total 82

number of ReadExReq accesses(hits+misses)

system.l2.demand_accesses::cpu.inst 207

number of demand (read+write) accesses

Chalmers | Appendix H: gem5 – Simulation stats file example 47

system.l2.demand_accesses::cpu.data 165

number of demand (read+write) accesses

system.l2.demand_accesses::total 372

number of demand (read+write) accesses

system.l2.overall_accesses::cpu.inst 207

number of overall (read+write) accesses

system.l2.overall_accesses::cpu.data 165

number of overall (read+write) accesses

system.l2.overall_accesses::total 372

number of overall (read+write) accesses

system.l2.ReadReq_miss_rate::cpu.inst 0.908213

miss rate for ReadReq accesses

system.l2.ReadReq_miss_rate::cpu.data 0.710843

miss rate for ReadReq accesses

system.l2.ReadReq_miss_rate::total 0.851724

miss rate for ReadReq accesses

system.l2.ReadExReq_miss_rate::cpu.data 0.902439

miss rate for ReadExReq accesses

system.l2.ReadExReq_miss_rate::total 0.902439

miss rate for ReadExReq accesses

system.l2.demand_miss_rate::cpu.inst 0.908213

miss rate for demand accesses

system.l2.demand_miss_rate::cpu.data 0.806061

miss rate for demand accesses

system.l2.demand_miss_rate::total 0.862903

miss rate for demand accesses

system.l2.overall_miss_rate::cpu.inst 0.908213

miss rate for overall accesses

system.l2.overall_miss_rate::cpu.data 0.806061

miss rate for overall accesses

system.l2.overall_miss_rate::total 0.862903

miss rate for overall accesses

system.l2.ReadReq_avg_miss_latency::cpu.inst 299168.797872

average ReadReq miss latency

system.l2.ReadReq_avg_miss_latency::cpu.data 299112.050847

average ReadReq miss latency

system.l2.ReadReq_avg_miss_latency::total 299155.242915

average ReadReq miss latency

system.l2.ReadExReq_avg_miss_latency::cpu.data 299166.608108

average ReadExReq miss latency

system.l2.ReadExReq_avg_miss_latency::total 299166.608108

average ReadExReq miss latency

system.l2.demand_avg_miss_latency::cpu.inst 299168.797872

average overall miss latency

system.l2.demand_avg_miss_latency::cpu.data 299142.406015

average overall miss latency

system.l2.demand_avg_miss_latency::total 299157.862928

average overall miss latency

system.l2.overall_avg_miss_latency::cpu.inst 299168.797872

average overall miss latency

system.l2.overall_avg_miss_latency::cpu.data 299142.406015

average overall miss latency

system.l2.overall_avg_miss_latency::total 299157.862928

average overall miss latency

system.l2.blocked_cycles::no_mshrs 8025

number of cycles access was blocked

system.l2.blocked_cycles::no_targets 0

number of cycles access was blocked

 48 Appendix H: gem5 – Simulation stats file example | Chalmers

system.l2.blocked::no_mshrs 321

number of cycles access was blocked

system.l2.blocked::no_targets 0

number of cycles access was blocked

system.l2.avg_blocked_cycles::no_mshrs 25

average number of cycles each access was blocked

system.l2.avg_blocked_cycles::no_targets nan

average number of cycles each access was blocked

system.l2.fast_writes 0

number of fast writes performed

system.l2.cache_copies 0

number of cache copies performed

system.l2.ReadReq_mshr_misses::cpu.inst 188

number of ReadReq MSHR misses

system.l2.ReadReq_mshr_misses::cpu.data 59

number of ReadReq MSHR misses

system.l2.ReadReq_mshr_misses::total 247

number of ReadReq MSHR misses

system.l2.ReadExReq_mshr_misses::cpu.data 74

number of ReadExReq MSHR misses

system.l2.ReadExReq_mshr_misses::total 74

number of ReadExReq MSHR misses

system.l2.demand_mshr_misses::cpu.inst 188

number of demand (read+write) MSHR misses

system.l2.demand_mshr_misses::cpu.data 133

number of demand (read+write) MSHR misses

system.l2.demand_mshr_misses::total 321

number of demand (read+write) MSHR misses

system.l2.overall_mshr_misses::cpu.inst 188

number of overall MSHR misses

system.l2.overall_mshr_misses::cpu.data 133

number of overall MSHR misses

system.l2.overall_mshr_misses::total 321

number of overall MSHR misses

system.l2.ReadReq_mshr_miss_latency::cpu.inst 30707920

number of ReadReq MSHR miss cycles

system.l2.ReadReq_mshr_miss_latency::cpu.data 9637060

number of ReadReq MSHR miss cycles

system.l2.ReadReq_mshr_miss_latency::total 40344980

number of ReadReq MSHR miss cycles

system.l2.ReadExReq_mshr_miss_latency::cpu.data 12087160

number of ReadExReq MSHR miss cycles

system.l2.ReadExReq_mshr_miss_latency::total 12087160

number of ReadExReq MSHR miss cycles

system.l2.demand_mshr_miss_latency::cpu.inst 30707920

number of demand (read+write) MSHR miss cycles

system.l2.demand_mshr_miss_latency::cpu.data 21724220

number of demand (read+write) MSHR miss cycles

system.l2.demand_mshr_miss_latency::total 52432140

number of demand (read+write) MSHR miss cycles

system.l2.overall_mshr_miss_latency::cpu.inst 30707920

number of overall MSHR miss cycles

system.l2.overall_mshr_miss_latency::cpu.data 21724220

number of overall MSHR miss cycles

system.l2.overall_mshr_miss_latency::total 52432140

number of overall MSHR miss cycles

system.l2.ReadReq_mshr_miss_rate::cpu.inst 0.908213

mshr miss rate for ReadReq accesses

Chalmers | Appendix H: gem5 – Simulation stats file example 49

system.l2.ReadReq_mshr_miss_rate::cpu.data 0.710843

mshr miss rate for ReadReq accesses

system.l2.ReadReq_mshr_miss_rate::total 0.851724

mshr miss rate for ReadReq accesses

system.l2.ReadExReq_mshr_miss_rate::cpu.data 0.902439

mshr miss rate for ReadExReq accesses

system.l2.ReadExReq_mshr_miss_rate::total 0.902439

mshr miss rate for ReadExReq accesses

system.l2.demand_mshr_miss_rate::cpu.inst 0.908213

mshr miss rate for demand accesses

system.l2.demand_mshr_miss_rate::cpu.data 0.806061

mshr miss rate for demand accesses

system.l2.demand_mshr_miss_rate::total 0.862903

mshr miss rate for demand accesses

system.l2.overall_mshr_miss_rate::cpu.inst 0.908213

mshr miss rate for overall accesses

system.l2.overall_mshr_miss_rate::cpu.data 0.806061

mshr miss rate for overall accesses

system.l2.overall_mshr_miss_rate::total 0.862903

mshr miss rate for overall accesses

system.l2.ReadReq_avg_mshr_miss_latency::cpu.inst 163340

average ReadReq mshr miss latency

system.l2.ReadReq_avg_mshr_miss_latency::cpu.data 163340

average ReadReq mshr miss latency

system.l2.ReadReq_avg_mshr_miss_latency::total 163340

average ReadReq mshr miss latency

system.l2.ReadExReq_avg_mshr_miss_latency::cpu.data 163340

average ReadExReq mshr miss latency

system.l2.ReadExReq_avg_mshr_miss_latency::total 163340

average ReadExReq mshr miss latency

system.l2.demand_avg_mshr_miss_latency::cpu.inst 163340

average overall mshr miss latency

system.l2.demand_avg_mshr_miss_latency::cpu.data 163340

average overall mshr miss latency

system.l2.demand_avg_mshr_miss_latency::total 163340

average overall mshr miss latency

system.l2.overall_avg_mshr_miss_latency::cpu.inst 163340

average overall mshr miss latency

system.l2.overall_avg_mshr_miss_latency::cpu.data 163340

average overall mshr miss latency

system.l2.overall_avg_mshr_miss_latency::total 163340

average overall mshr miss latency

system.l2.no_allocate_misses 0

Number of misses that were no-allocate

system.cpu.workload.num_syscalls 6

Number of system calls

system.cpu.numCycles 28633

number of cpu cycles simulated

system.cpu.numWorkItemsStarted 0

number of work items this cpu started

system.cpu.numWorkItemsCompleted 0

number of work items this cpu completed

system.cpu.committedInsts 3524

Number of instructions committed

system.cpu.committedOps 6957

Number of ops (including micro ops) committed

system.cpu.num_int_alu_accesses 6850

Number of integer alu accesses

 50 Appendix H: gem5 – Simulation stats file example | Chalmers

system.cpu.num_fp_alu_accesses 123

Number of float alu accesses

system.cpu.num_func_calls 0

number of times a function call or return occured

system.cpu.num_conditional_control_insts 545

number of instructions that are conditional controls

system.cpu.num_int_insts 6850

number of integer instructions

system.cpu.num_fp_insts 123

number of float instructions

system.cpu.num_int_register_reads 16884

number of times the integer registers were read

system.cpu.num_int_register_writes 7756

number of times the integer registers were written

system.cpu.num_fp_register_reads 199

number of times the floating registers were read

system.cpu.num_fp_register_writes 99

number of times the floating registers were written

system.cpu.num_mem_refs 1285

number of memory refs

system.cpu.num_load_insts 585

Number of load instructions

system.cpu.num_store_insts 700

Number of store instructions

system.cpu.num_idle_cycles 0

Number of idle cycles

system.cpu.num_busy_cycles 28633

Number of busy cycles

system.cpu.not_idle_fraction 1

Percentage of non-idle cycles

system.cpu.idle_fraction 0

Percentage of idle cycles

system.cpu.icache.replacements 143

number of replacements

system.cpu.icache.tagsinuse 51.798109

Cycle average of tags in use

system.cpu.icache.total_refs 3277

Total number of references to valid blocks.

system.cpu.icache.sampled_refs 143

Sample count of references to valid blocks.

system.cpu.icache.avg_refs 22.916084

Average number of references to valid blocks.

system.cpu.icache.warmup_cycle 125958340

Cycle when the warmup percentage was hit.

system.cpu.icache.occ_blocks::cpu.inst 51.798109

Average occupied blocks per requestor

system.cpu.icache.occ_percent::cpu.inst 0.809345

Average percentage of cache occupancy

system.cpu.icache.occ_percent::total 0.809345

Average percentage of cache occupancy

system.cpu.icache.ReadReq_hits::cpu.inst 4349

number of ReadReq hits

system.cpu.icache.ReadReq_hits::total 4349

number of ReadReq hits

system.cpu.icache.demand_hits::cpu.inst 4349

number of demand (read+write) hits

system.cpu.icache.demand_hits::total 4349

number of demand (read+write) hits

Chalmers | Appendix H: gem5 – Simulation stats file example 51

system.cpu.icache.overall_hits::cpu.inst 4349

number of overall hits

system.cpu.icache.overall_hits::total 4349

number of overall hits

system.cpu.icache.ReadReq_misses::cpu.inst 207

number of ReadReq misses

system.cpu.icache.ReadReq_misses::total 207

number of ReadReq misses

system.cpu.icache.demand_misses::cpu.inst 207

number of demand (read+write) misses

system.cpu.icache.demand_misses::total 207

number of demand (read+write) misses

system.cpu.icache.overall_misses::cpu.inst 207

number of overall misses

system.cpu.icache.overall_misses::total 207

number of overall misses

system.cpu.icache.ReadReq_miss_latency::cpu.inst 67216694

number of ReadReq miss cycles

system.cpu.icache.ReadReq_miss_latency::total 67216694

number of ReadReq miss cycles

system.cpu.icache.demand_miss_latency::cpu.inst 67216694

number of demand (read+write) miss cycles

system.cpu.icache.demand_miss_latency::total 67216694

number of demand (read+write) miss cycles

system.cpu.icache.overall_miss_latency::cpu.inst 67216694

number of overall miss cycles

system.cpu.icache.overall_miss_latency::total 67216694

number of overall miss cycles

system.cpu.icache.ReadReq_accesses::cpu.inst 4556

number of ReadReq accesses(hits+misses)

system.cpu.icache.ReadReq_accesses::total 4556

number of ReadReq accesses(hits+misses)

system.cpu.icache.demand_accesses::cpu.inst 4556

number of demand (read+write) accesses

system.cpu.icache.demand_accesses::total 4556

number of demand (read+write) accesses

system.cpu.icache.overall_accesses::cpu.inst 4556

number of overall (read+write) accesses

system.cpu.icache.overall_accesses::total 4556

number of overall (read+write) accesses

system.cpu.icache.ReadReq_miss_rate::cpu.inst 0.045435

miss rate for ReadReq accesses

system.cpu.icache.ReadReq_miss_rate::total 0.045435

miss rate for ReadReq accesses

system.cpu.icache.demand_miss_rate::cpu.inst 0.045435

miss rate for demand accesses

system.cpu.icache.demand_miss_rate::total 0.045435

miss rate for demand accesses

system.cpu.icache.overall_miss_rate::cpu.inst 0.045435

miss rate for overall accesses

system.cpu.icache.overall_miss_rate::total 0.045435

miss rate for overall accesses

system.cpu.icache.ReadReq_avg_miss_latency::cpu.inst 324718.328502

average ReadReq miss latency

system.cpu.icache.ReadReq_avg_miss_latency::total 324718.328502

average ReadReq miss latency

system.cpu.icache.demand_avg_miss_latency::cpu.inst 324718.328502

average overall miss latency

 52 Appendix H: gem5 – Simulation stats file example | Chalmers

system.cpu.icache.demand_avg_miss_latency::total 324718.328502

average overall miss latency

system.cpu.icache.overall_avg_miss_latency::cpu.inst 324718.328502

average overall miss latency

system.cpu.icache.overall_avg_miss_latency::total 324718.328502

average overall miss latency

system.cpu.icache.blocked_cycles::no_mshrs 9254

number of cycles access was blocked

system.cpu.icache.blocked_cycles::no_targets 0

number of cycles access was blocked

system.cpu.icache.blocked::no_mshrs 207

number of cycles access was blocked

system.cpu.icache.blocked::no_targets 0

number of cycles access was blocked

system.cpu.icache.avg_blocked_cycles::no_mshrs 44.705314

average number of cycles each access was blocked

system.cpu.icache.avg_blocked_cycles::no_targets nan

average number of cycles each access was blocked

system.cpu.icache.fast_writes 0

number of fast writes performed

system.cpu.icache.cache_copies 0

number of cache copies performed

system.cpu.icache.ReadReq_mshr_misses::cpu.inst 207

number of ReadReq MSHR misses

system.cpu.icache.ReadReq_mshr_misses::total 207

number of ReadReq MSHR misses

system.cpu.icache.demand_mshr_misses::cpu.inst 207

number of demand (read+write) MSHR misses

system.cpu.icache.demand_mshr_misses::total 207

number of demand (read+write) MSHR misses

system.cpu.icache.overall_mshr_misses::cpu.inst 207

number of overall MSHR misses

system.cpu.icache.overall_mshr_misses::total 207

number of overall MSHR misses

system.cpu.icache.ReadReq_mshr_miss_latency::cpu.inst 61537332

number of ReadReq MSHR miss cycles

system.cpu.icache.ReadReq_mshr_miss_latency::total 61537332

number of ReadReq MSHR miss cycles

system.cpu.icache.demand_mshr_miss_latency::cpu.inst 61537332

number of demand (read+write) MSHR miss cycles

system.cpu.icache.demand_mshr_miss_latency::total 61537332

number of demand (read+write) MSHR miss cycles

system.cpu.icache.overall_mshr_miss_latency::cpu.inst 61537332

number of overall MSHR miss cycles

system.cpu.icache.overall_mshr_miss_latency::total 61537332

number of overall MSHR miss cycles

system.cpu.icache.ReadReq_mshr_miss_rate::cpu.inst 0.045435

mshr miss rate for ReadReq accesses

system.cpu.icache.ReadReq_mshr_miss_rate::total 0.045435

mshr miss rate for ReadReq accesses

system.cpu.icache.demand_mshr_miss_rate::cpu.inst 0.045435

mshr miss rate for demand accesses

system.cpu.icache.demand_mshr_miss_rate::total 0.045435

mshr miss rate for demand accesses

system.cpu.icache.overall_mshr_miss_rate::cpu.inst 0.045435

mshr miss rate for overall accesses

system.cpu.icache.overall_mshr_miss_rate::total 0.045435

mshr miss rate for overall accesses

Chalmers | Appendix H: gem5 – Simulation stats file example 53

system.cpu.icache.ReadReq_avg_mshr_miss_latency::cpu.inst 297281.797101

average ReadReq mshr miss latency

system.cpu.icache.ReadReq_avg_mshr_miss_latency::total 297281.797101

average ReadReq mshr miss latency

system.cpu.icache.demand_avg_mshr_miss_latency::cpu.inst 297281.797101

average overall mshr miss latency

system.cpu.icache.demand_avg_mshr_miss_latency::total 297281.797101

average overall mshr miss latency

system.cpu.icache.overall_avg_mshr_miss_latency::cpu.inst 297281.797101

average overall mshr miss latency

system.cpu.icache.overall_avg_mshr_miss_latency::total 297281.797101

average overall mshr miss latency

system.cpu.icache.no_allocate_misses 0

Number of misses that were no-allocate

system.cpu.itb_walker_cache.replacements 0

number of replacements

system.cpu.itb_walker_cache.tagsinuse 0

Cycle average of tags in use

system.cpu.itb_walker_cache.total_refs 0

Total number of references to valid blocks.

system.cpu.itb_walker_cache.sampled_refs 0

Sample count of references to valid blocks.

system.cpu.itb_walker_cache.avg_refs nan

Average number of references to valid blocks.

system.cpu.itb_walker_cache.warmup_cycle 0

Cycle when the warmup percentage was hit.

system.cpu.itb_walker_cache.blocked_cycles::no_mshrs 0

number of cycles access was blocked

system.cpu.itb_walker_cache.blocked_cycles::no_targets 0

number of cycles access was blocked

system.cpu.itb_walker_cache.blocked::no_mshrs 0

number of cycles access was blocked

system.cpu.itb_walker_cache.blocked::no_targets 0

number of cycles access was blocked

system.cpu.itb_walker_cache.avg_blocked_cycles::no_mshrs nan

average number of cycles each access was blocked

system.cpu.itb_walker_cache.avg_blocked_cycles::no_targets nan

average number of cycles each access was blocked

system.cpu.itb_walker_cache.fast_writes 0

number of fast writes performed

system.cpu.itb_walker_cache.cache_copies 0

number of cache copies performed

system.cpu.itb_walker_cache.no_allocate_misses 0

Number of misses that were no-allocate

system.cpu.dtb_walker_cache.replacements 0

number of replacements

system.cpu.dtb_walker_cache.tagsinuse 0

Cycle average of tags in use

system.cpu.dtb_walker_cache.total_refs 0

Total number of references to valid blocks.

system.cpu.dtb_walker_cache.sampled_refs 0

Sample count of references to valid blocks.

system.cpu.dtb_walker_cache.avg_refs nan

Average number of references to valid blocks.

system.cpu.dtb_walker_cache.warmup_cycle 0

Cycle when the warmup percentage was hit.

system.cpu.dtb_walker_cache.blocked_cycles::no_mshrs 0

number of cycles access was blocked

 54 Appendix H: gem5 – Simulation stats file example | Chalmers

system.cpu.dtb_walker_cache.blocked_cycles::no_targets 0

number of cycles access was blocked

system.cpu.dtb_walker_cache.blocked::no_mshrs 0

number of cycles access was blocked

system.cpu.dtb_walker_cache.blocked::no_targets 0

number of cycles access was blocked

system.cpu.dtb_walker_cache.avg_blocked_cycles::no_mshrs nan

average number of cycles each access was blocked

system.cpu.dtb_walker_cache.avg_blocked_cycles::no_targets nan

average number of cycles each access was blocked

system.cpu.dtb_walker_cache.fast_writes 0

number of fast writes performed

system.cpu.dtb_walker_cache.cache_copies 0

number of cache copies performed

system.cpu.dtb_walker_cache.no_allocate_misses 0

Number of misses that were no-allocate

system.cpu.dcache.replacements 101

number of replacements

system.cpu.dcache.tagsinuse 50.901255

Cycle average of tags in use

system.cpu.dcache.total_refs 573

Total number of references to valid blocks.

system.cpu.dcache.sampled_refs 101

Sample count of references to valid blocks.

system.cpu.dcache.avg_refs 5.673267

Average number of references to valid blocks.

system.cpu.dcache.warmup_cycle 96330340

Cycle when the warmup percentage was hit.

system.cpu.dcache.occ_blocks::cpu.data 50.901255

Average occupied blocks per requestor

system.cpu.dcache.occ_percent::cpu.data 0.795332

Average percentage of cache occupancy

system.cpu.dcache.occ_percent::total 0.795332

Average percentage of cache occupancy

system.cpu.dcache.ReadReq_hits::cpu.data 502

number of ReadReq hits

system.cpu.dcache.ReadReq_hits::total 502

number of ReadReq hits

system.cpu.dcache.WriteReq_hits::cpu.data 618

number of WriteReq hits

system.cpu.dcache.WriteReq_hits::total 618

number of WriteReq hits

system.cpu.dcache.demand_hits::cpu.data 1120

number of demand (read+write) hits

system.cpu.dcache.demand_hits::total 1120

number of demand (read+write) hits

system.cpu.dcache.overall_hits::cpu.data 1120

number of overall hits

system.cpu.dcache.overall_hits::total 1120

number of overall hits

system.cpu.dcache.ReadReq_misses::cpu.data 83

number of ReadReq misses

system.cpu.dcache.ReadReq_misses::total 83

number of ReadReq misses

system.cpu.dcache.WriteReq_misses::cpu.data 82

number of WriteReq misses

system.cpu.dcache.WriteReq_misses::total 82

number of WriteReq misses

Chalmers | Appendix H: gem5 – Simulation stats file example 55

system.cpu.dcache.demand_misses::cpu.data 165

number of demand (read+write) misses

system.cpu.dcache.demand_misses::total 165

number of demand (read+write) misses

system.cpu.dcache.overall_misses::cpu.data 165

number of overall misses

system.cpu.dcache.overall_misses::total 165

number of overall misses

system.cpu.dcache.ReadReq_miss_latency::cpu.data 24221211

number of ReadReq miss cycles

system.cpu.dcache.ReadReq_miss_latency::total 24221211

number of ReadReq miss cycles

system.cpu.dcache.WriteReq_miss_latency::cpu.data 26547994

number of WriteReq miss cycles

system.cpu.dcache.WriteReq_miss_latency::total 26547994

number of WriteReq miss cycles

system.cpu.dcache.demand_miss_latency::cpu.data 50769205

number of demand (read+write) miss cycles

system.cpu.dcache.demand_miss_latency::total 50769205

number of demand (read+write) miss cycles

system.cpu.dcache.overall_miss_latency::cpu.data 50769205

number of overall miss cycles

system.cpu.dcache.overall_miss_latency::total 50769205

number of overall miss cycles

system.cpu.dcache.ReadReq_accesses::cpu.data 585

number of ReadReq accesses(hits+misses)

system.cpu.dcache.ReadReq_accesses::total 585

number of ReadReq accesses(hits+misses)

system.cpu.dcache.WriteReq_accesses::cpu.data 700

number of WriteReq accesses(hits+misses)

system.cpu.dcache.WriteReq_accesses::total 700

number of WriteReq accesses(hits+misses)

system.cpu.dcache.demand_accesses::cpu.data 1285

number of demand (read+write) accesses

system.cpu.dcache.demand_accesses::total 1285

number of demand (read+write) accesses

system.cpu.dcache.overall_accesses::cpu.data 1285

number of overall (read+write) accesses

system.cpu.dcache.overall_accesses::total 1285

number of overall (read+write) accesses

system.cpu.dcache.ReadReq_miss_rate::cpu.data 0.141880

miss rate for ReadReq accesses

system.cpu.dcache.ReadReq_miss_rate::total 0.141880

miss rate for ReadReq accesses

system.cpu.dcache.WriteReq_miss_rate::cpu.data 0.117143

miss rate for WriteReq accesses

system.cpu.dcache.WriteReq_miss_rate::total 0.117143

miss rate for WriteReq accesses

system.cpu.dcache.demand_miss_rate::cpu.data 0.128405

miss rate for demand accesses

system.cpu.dcache.demand_miss_rate::total 0.128405

miss rate for demand accesses

system.cpu.dcache.overall_miss_rate::cpu.data 0.128405

miss rate for overall accesses

system.cpu.dcache.overall_miss_rate::total 0.128405

miss rate for overall accesses

system.cpu.dcache.ReadReq_avg_miss_latency::cpu.data 291821.819277

average ReadReq miss latency

 56 Appendix H: gem5 – Simulation stats file example | Chalmers

system.cpu.dcache.ReadReq_avg_miss_latency::total 291821.819277

average ReadReq miss latency

system.cpu.dcache.WriteReq_avg_miss_latency::cpu.data 323756.024390

average WriteReq miss latency

system.cpu.dcache.WriteReq_avg_miss_latency::total 323756.024390

average WriteReq miss latency

system.cpu.dcache.demand_avg_miss_latency::cpu.data 307692.151515

average overall miss latency

system.cpu.dcache.demand_avg_miss_latency::total 307692.151515

average overall miss latency

system.cpu.dcache.overall_avg_miss_latency::cpu.data 307692.151515

average overall miss latency

system.cpu.dcache.overall_avg_miss_latency::total 307692.151515

average overall miss latency

system.cpu.dcache.blocked_cycles::no_mshrs 6955

number of cycles access was blocked

system.cpu.dcache.blocked_cycles::no_targets 0

number of cycles access was blocked

system.cpu.dcache.blocked::no_mshrs 165

number of cycles access was blocked

system.cpu.dcache.blocked::no_targets 0

number of cycles access was blocked

system.cpu.dcache.avg_blocked_cycles::no_mshrs 42.151515

average number of cycles each access was blocked

system.cpu.dcache.avg_blocked_cycles::no_targets nan

average number of cycles each access was blocked

system.cpu.dcache.fast_writes 0

number of fast writes performed

system.cpu.dcache.cache_copies 0

number of cache copies performed

system.cpu.dcache.writebacks::writebacks 72

number of writebacks

system.cpu.dcache.writebacks::total 72

number of writebacks

system.cpu.dcache.ReadReq_mshr_misses::cpu.data 83

number of ReadReq MSHR misses

system.cpu.dcache.ReadReq_mshr_misses::total 83

number of ReadReq MSHR misses

system.cpu.dcache.WriteReq_mshr_misses::cpu.data 82

number of WriteReq MSHR misses

system.cpu.dcache.WriteReq_mshr_misses::total 82

number of WriteReq MSHR misses

system.cpu.dcache.demand_mshr_misses::cpu.data 165

number of demand (read+write) MSHR misses

system.cpu.dcache.demand_mshr_misses::total 165

number of demand (read+write) MSHR misses

system.cpu.dcache.overall_mshr_misses::cpu.data 165

number of overall MSHR misses

system.cpu.dcache.overall_mshr_misses::total 165

number of overall MSHR misses

system.cpu.dcache.ReadReq_mshr_miss_latency::cpu.data 21954493

number of ReadReq MSHR miss cycles

system.cpu.dcache.ReadReq_mshr_miss_latency::total 21954493

number of ReadReq MSHR miss cycles

system.cpu.dcache.WriteReq_mshr_miss_latency::cpu.data 24298437

number of WriteReq MSHR miss cycles

system.cpu.dcache.WriteReq_mshr_miss_latency::total 24298437

number of WriteReq MSHR miss cycles

Chalmers | Appendix H: gem5 – Simulation stats file example 57

system.cpu.dcache.demand_mshr_miss_latency::cpu.data 46252930

number of demand (read+write) MSHR miss cycles

system.cpu.dcache.demand_mshr_miss_latency::total 46252930

number of demand (read+write) MSHR miss cycles

system.cpu.dcache.overall_mshr_miss_latency::cpu.data 46252930

number of overall MSHR miss cycles

system.cpu.dcache.overall_mshr_miss_latency::total 46252930

number of overall MSHR miss cycles

system.cpu.dcache.ReadReq_mshr_miss_rate::cpu.data 0.141880

mshr miss rate for ReadReq accesses

system.cpu.dcache.ReadReq_mshr_miss_rate::total 0.141880

mshr miss rate for ReadReq accesses

system.cpu.dcache.WriteReq_mshr_miss_rate::cpu.data 0.117143

mshr miss rate for WriteReq accesses

system.cpu.dcache.WriteReq_mshr_miss_rate::total 0.117143

mshr miss rate for WriteReq accesses

system.cpu.dcache.demand_mshr_miss_rate::cpu.data 0.128405

mshr miss rate for demand accesses

system.cpu.dcache.demand_mshr_miss_rate::total 0.128405

mshr miss rate for demand accesses

system.cpu.dcache.overall_mshr_miss_rate::cpu.data 0.128405

mshr miss rate for overall accesses

system.cpu.dcache.overall_mshr_miss_rate::total 0.128405

mshr miss rate for overall accesses

system.cpu.dcache.ReadReq_avg_mshr_miss_latency::cpu.data 264511.963855

average ReadReq mshr miss latency

system.cpu.dcache.ReadReq_avg_mshr_miss_latency::total 264511.963855

average ReadReq mshr miss latency

system.cpu.dcache.WriteReq_avg_mshr_miss_latency::cpu.data

296322.402439 # average WriteReq mshr miss

latency

system.cpu.dcache.WriteReq_avg_mshr_miss_latency::total 296322.402439

average WriteReq mshr miss latency

system.cpu.dcache.demand_avg_mshr_miss_latency::cpu.data 280320.787879

average overall mshr miss latency

system.cpu.dcache.demand_avg_mshr_miss_latency::total 280320.787879

average overall mshr miss latency

system.cpu.dcache.overall_avg_mshr_miss_latency::cpu.data 280320.787879

average overall mshr miss latency

system.cpu.dcache.overall_avg_mshr_miss_latency::total 280320.787879

average overall mshr miss latency

system.cpu.dcache.no_allocate_misses 0

Number of misses that were no-allocate

---------- End Simulation Statistics ----------

