

A Method for Estimation of Safe and Tight WCET in Multicore Memory Hierarchies

Master of Science Thesis in Embedded Electronics System Design

Feysal Hashi

Chalmers University of Technology Department of Computer Science and Engineering Göteborg, Sweden, August 2013 The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet.

A Method for Estimation of Safe and Tight WCET in Multicore Memory Hierarchies

FEYSAL HASHI

© FEYSAL HASHI, August 2013.

Examiner: PER STENSTRÖM

Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000

Cover:

Quad-core LEON4, a fault-tolerant SPARC V8 architecture based 32-bit processor. See Section 3.1.1 for more details about LEON4.

Department of Computer Science and Engineering Göteborg, Sweden, August 2013

Abstract

Multicore microprocessors have become the new way to improve the processor performance. Moreover, the multicore processor systems are currently the dominating computer resource in many products like mobile appliances, automotive and space-borne applications. However, the last category's challenge is that tasks can have various degrees of criticality concerning the response times. Therefore, the aim of this Master's Thesis is to develop a method to derive a safe (the task execution time can never be longer) and a tight (worst-case execution time is off the real execution time by typically a small factor) worstcase execution time estimates in multicore system with memory hierarchies. The produced method consists of an analytical model and gem5, which is a state-of-the-art computer architecture simulator. This Thesis has surprisingly discovered that the simulated multicore system's throughput increases by close to linearly with the number of cores. This suggests that, contrary to common belief, it is possible to guarantee a safe worst-case execution time and still enjoy the increase in throughput offered by multicore systems. These findings are therefore encouraging for further investigations. Although, the outcome of this Thesis mainly focuses on LEON4FT, which is a SPARC V8 based System-on-a-Chip, it is also applicable to other multicore systems. Furthermore, the Thesis report introduces the previous studies' arguments about the transition from uniprocessor to the multicore processors, memory hierarchies as well as worst-case execution time.

Keywords: Multicore microprocessors, multilevel memory hierarchies, worst-case execution time, gem5, throughput, System-on-a-Chip, parallel execution, serial execution, cache, memory wall, power wall, SPARC V8.

Acknowledgements

I would like to express my gratitude to Professor Per Stenstrom for making this thesis possible in many ways, particularly the lectures, encouragements, insightful comments and suggestions. Without his guidance and persistent help, this thesis would not have been possible. I would also like to show my greatest appreciation to Madhavan Manivannan for helping with the simulation tool and always been there to support me. Special thanks also to Angelos Arelakis for introducing me to the simulation tool. Last but not least I would like to thank my family and all the people who helped me to complete this thesis.

Table of Contents

Abstract	I
Acknowledgements	II
Table of Contents	III
List of Figures	IV
List of Tables	V
1. Introduction	1
2. Theory	3
2.1 Multicore Systems	3
2.1.1 From Uniprocessors to Multicore processor	3
2.1.2 Memory Hierarchies	5
2.1.3 The Locality Principle and Cache Parameters	7
2.2 WCET	8
3. System Assumptions	10
3.1 LEON4	10
3.1.1 Background	10
3.1.1 The Quad-core LEON4 Architecture	10
3.2 Simulation Model	12
3.3 Applications	15
4. Experimental Results	17
4.1 Simulation Results	17
4.2 Calculated Results	20
5. Discussion	24
6. Conclusion & Recommendations	26
6.1 Conclusion	26
6.2 Recommendations	26
References	27
Appendix A: Calculated Result for a System Frequency at 300MHz	29
Appendix B: Calculated Result for a System Frequency at 600MHz	30
Appendix C: Calculated Result for a System Frequency at 1200MHz	31
Appendix D: Conventional Matrix Multiplication	32
Appendix E: Blocking Algorithm Matrix Multiplication	33
Appendix F: BASH SCRIPT 1 - runsim.sh	34
Appendix G: BASH SCRIPT 2 - collectStats.sh	36
Appendix H: MAKEFILE	38
Appendix I: gem5 – Simulation configuration file	39
Appendix H: gem5 – Simulation stats file example	44

List of Figures

Figure 1: Moore's prediction [10].	. 3
Figure 2: Processor and memory gap [8]	
Figure 3: processor evolution: from layout to multicore [12].	. 5
Figure 4: memory hierarchy [17].	. 5
Figure 5: memory hierarchy's speed vs. size and cost/bit [17]	. 6
Figure 6: multicore memory architecture examples [18]	. 6
Figure 7: Quad-core LEON4FT Architecture overview	11
Figure 8: LEON4 core block diagrams	11
Figure 9: Quad-core LEON4 simulation setup.	12
Figure 10: the simulation model overview	14
Figure 11: a) Conventional and b) blocking metrics multiplication C code	16
Figure 12: P=4, calculated throughputs for the simulated system clock frequencies	22
Figure 13: P=8, calculated throughputs for the simulated system clock frequencies	23
Figure 14: P=16, calculated throughputs for the simulated system clock frequencies	23

List of Tables

1. Introduction

Multicore microprocessors have in a few years' time become the mainstream computer resource in a spectrum of products such as mobile appliances i.e. tablets and smart phones as well as in automotive and space-borne applications. In the latter category, a special challenge is that tasks can have various degrees of criticality concerning the response times. Some computational tasks will not jeopardize the functionality if computational deadlines are not met (non-critical tasks) whereas for safety-critical tasks (or critical tasks), a missed deadline can lead to catastrophic consequences. In general, a catastrophic consequence may arise when a control function is not executed on time such as a too late effect on the brake actuator.

The goal of this project is to develop a method to derive a safe (the task execution time can never be longer) and a tight (worst-case execution time (WCET) is off the real execution time by typically a small factor) WCET estimates in multicore system with memory hierarchies. What is needed is to set up methods to analyse a task before its execution to establish the WCET.

WCET must make sufficiently conservative assumptions to be safe and tight. To illustrate the challenges involved, imagine that we want to establish WCET for a task that does a memory access. A memory-access either hits or misses at any level in the memory hierarchy. A safe estimate would be to assume it misses at all levels. Such a WCET estimate would not be tight; it would be a large factor longer than the actual execution time. Good news is that prior art has established methods to estimate safe and acceptably tight bounds on memory access time [1] in *single-processor* systems. In multicore systems, the new issue is that several processors may concurrently access some of the levels in the memory hierarchy creating a new source of pessimism that make multicores unattractive in mixed criticality applications.

Individual processors on a multicore platform logically share the same memory system. The memory system is typically implemented using a traditional memory hierarchy in which the first cache level is physically private to each processor whereas the next level is physically shared. The goal of this thesis is to define a method by which we can make safe and tight WCET estimates on a multicore platform taking into account that some of the levels of the memory hierarchy are shared.

The method chosen consists of three components, namely: a simulation tool instead of a costly hardware option, an application that is representative for the application domain and test case that would verify the method before a full scale simulation is undertaken. The choice of the method would be based on the above project scope, time span and cost. Most importantly, the method should be able to derive a safe and a tight WCET estimates in multicore system with memory hierarchies as LEON4FT (LEON4), which is the target System-on-a-Chip (SoC) for space-born applications.

The Computer Science and Engineering (CSE) department at Chalmers University of technology that facilitated this project has internationally recognised professors in the field of the computer architecture as well as Ph.D. students who are working with the latest researches in the genre of this master's thesis. Therefore, it was obvious to start the search for the most appropriate method at the CSE department by presenting and discussing above criteria.

After consultation with the CSE department experts and studying other researchers' work [2] [3] in the field, it has been identified that gem5, which is a state-of-the-art computer architecture simulator widely used by the computer architecture research community, would be the best tool to simulate a complete single/multicore system with multilevel caches and memory. One of the outstanding strengths that gem5 has over other similar simulators such as SimpleScalar is that it supports many different ISAs, CPU types, cache levels, memory and other components. Moreover, all the gem5 components are highly configurable i.e. the CPU speed, the cache size and associativity etc. More details about the gem5 simulator and scripts created to automatize the simulation and the data collection are presented in the system assumption chapter.

A matrix multiplication (MM) application that multiplies two matrices and saves the result in a third matrix has been chosen to run on the simulation tool for measuring the WCET. MM was found to be flexible as test case since it is easy to increase the size of the matrix and/or the system capabilities while measuring the WCET changes due to the increase of the application workload. MM was also found to utilise the cache/memory locality hence is a good way to test the benefits of a multilevel cache systems and its influence on the WCET. Furthermore, it was found that MM is a common method used by many other researchers in the area [4] [5] [6].

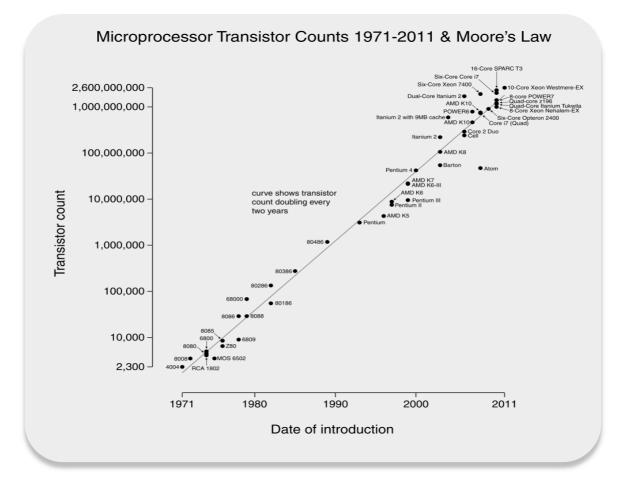
Before porting the MM application onto the gem5 simulator it was important to verify that the tool is working as it was intended. Therefore, simple applications that make a controlled number of memory reads and writes were created to run on to the simulation tool. After the simulation tool parameters were configured correctly and many tests were carried out, the output statistics from the tool has been compared against the expected number of cache/memory access to verify that the simulator is working as expected. Finally, the software was ready to run a full scale simulation and to output the data needed to calculate the WCET.

Prior to the simulation result, the presumption has been that by doing a pessimistic but safe estimation of the execution time, each task would execute so slowly that it does not pay off to run tasks in parallel. On the contrary, and quite surprisingly, it was found that the derived WCET estimate for parallel tasks has shown that it pays off to run tasks in parallel. The main result of this thesis is based on simulations carried out for 18 applications that carry out matrix multiplications, whereas the first application's matrix size is 32x32 and the 18th is 304x304. The cache miss-rates, the numbers of instructions and other parameters/variables from the simulation of these applications have been used to calculate the execution time for 4 tasks running serially and 4 running in parallel. The 4 serial tasks' WCET are then divided by the 4 parallel tasks' WCET. This revealed that the parallel tasks' throughput is very close to 4, which is the optimal upper limit for 4 tasks. This result confirms that by running 4 tasks in parallel in a multicore system, one achieves safer and tighter WCET estimate than running them in serial.

This thesis's project is limited to 30 weeks. Therefore, the experiments are carried out using gem5, which is a state-of-the-art computer architecture simulator widely by the computer architecture research community [2]. Nevertheless, a continuation of the project, as a doctoral project, will consider the architectural support to bring down the software overheads further to open up for safe and tighter estimates.

The multicore system being considered in the project is LEON4FT core, a SPARC V8 based Systemon-a-Chip. This system is used by RUAG, a company in Gothenburg, for space-borne applications (e.g., satellites) and this project is done in collaboration with RUAG.

The remaining chapters of the report are structured as follows. Chapter 2 gives the theoretical background of this master's thesis. Chapter 3 describes the simulated system, the application used to estimate the WCET, the simulation system and the equations used to measure the execution time. Chapter 4 presents the results whereas it is analysed and discussed in Chapter 5. Finally, the conclusion of this master's thesis is presented in Chapter 6.

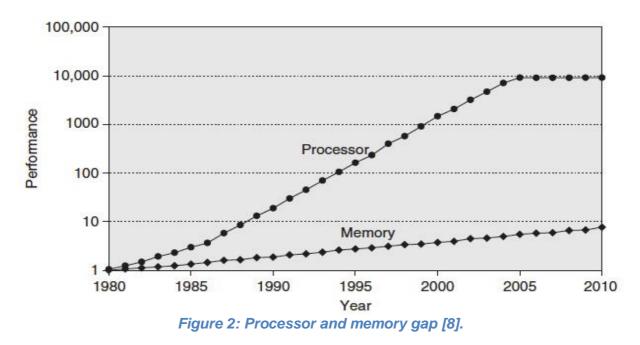

2. Theory

In this chapter, a brief history of the transformation of single-core systems to multicore systems will be presented. Then, memory hierarchies in general are discussed and multicore caches in particular will be introduced. Finally, the WCET, which is a central topic of this thesis, will be considered.

2.1 Multicore Systems

2.1.1 From Uniprocessors to Multicore processor

Uniprocessors a.k.a. single-core processors have been the dominating technology of the desktop/general purpose computers, embedded systems and other specialised processors for decades until the beginning of the 2000s. In 1965 Gordon Moore predicted that transistor count would double every 18 month, this prophecy was later called Moore's Law [7]. Figure 1 illustrates the Moore's prediction. The doubling transistor count was mainly apparent from 1986 to 2003 [8]. During these days, higher chip speed and lower production cost has been achieved by shrinking the transistor size (also called transistor scale down) to integrate as many transistors as possible in the same die while increasing the clock frequency [7]. This approach that is to increase the uniprocessors speed to gain higher performance for the existing applications has been quite straightforward [9].



Nevertheless, this trend of uniprocessor speed growth through transistor size scale down and clock frequency increase, as mentioned above, ended in the early 2000s. According to [11], [12] and others, the major cause that this trend could not be continued was the intense temperature rise due to the ever escalating power dissipation (see Equation 1, the power consumption). This is presumably a bigger drawback for the embedded systems since they usually have limited power source. One can say that the performance advancements of the single-core processors came to the point that the physical constants such as the speed of light, the size of electrons and the silicon operation temperature become the limit [13]. This is called the power wall [14].

Equation 1: Power = $CV^2 f$, (where C is capacitance, f is frequency and V is voltage)

Another, challenge has been the memory wall phenomena, which is the widening speed gap been the uniprocessors and the memory [15]. Figure 2 is showing this phenomena starting from 1980 to 2010. Furthermore, deeper pipelines, instruction-level parallelism, and speculative execution no longer significantly improve uniprocessor performance [11] and it therefore became inevitable to take another path. It finally became inevitable for the semiconductor manufacturers to push forward the multi-core approach [14].

In general, the aim of multicore computing has been to achieve higher system performance through computational parallelism. In fact, Wilkinson described the multicore processors as multiple processors integrated into a single die to gain higher overall performance [14]. The multicore processors made it possible to overcome the power dissipation problem by for instance doubling the cores in a single chip to execute more instructions per cycle at a lower clock frequency [16]. This new model has also reduced the memory versus the CPU speed constraints.

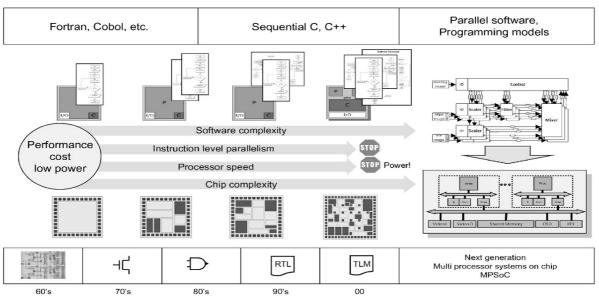


Figure 3: processor evolution: from layout to multicore [12].

The performance improvement is no longer gained through single-core speed increase but by adding multiple cores while keeping the clock frequency relatively constant. The image in Figure 3 summarises the computer/embedded systems' both software and hardware's evolution starting from the layout oriented to the current multicore oriented approach [12].

2.1.2 Memory Hierarchies

As described above the speed gap between the processor and the main memory known as memory wall has been one of the obstacles to continue increasing the single-core processor speed. To reduce this gap, multiple-levels of caches have been inserted between the CPU and the main memory [17] (see Figure 4).

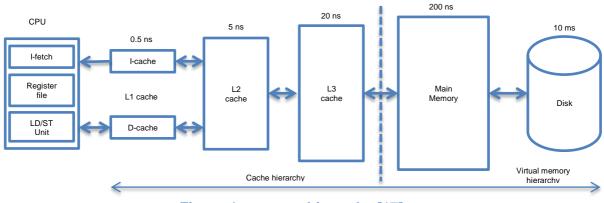


Figure 4: memory hierarchy [17].

Figure 4 illustrates a typical multilevel memory hierarchy that is implemented in generic processors as well as embedded systems. The figure also shows that the levels closer to the CPU have shorter access time while the size of the memory gets smaller. Figure 5 shows the comparison between the speed, cost per bit and the size of the memory levels.

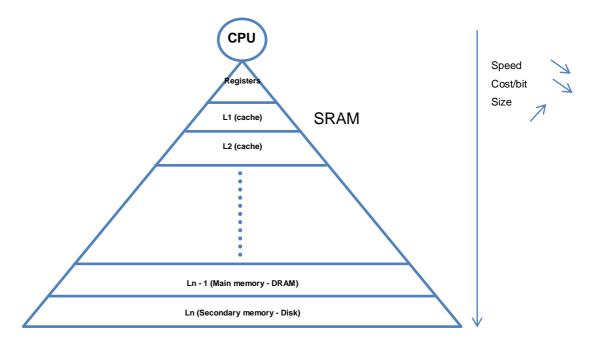
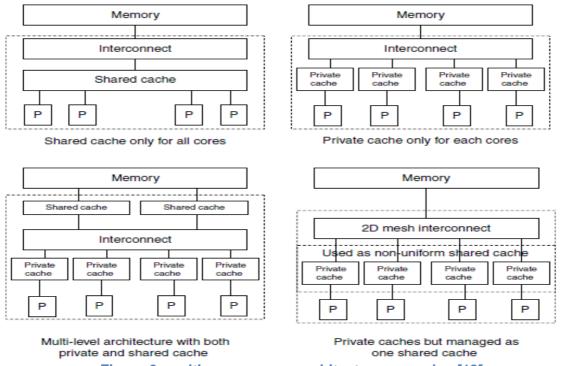



Figure 5: memory hierarchy's speed vs. size and cost/bit [17].

As the above figure shows L1 and L2 caches are built from fast SRAM cells that are more expensive than the DRAM cells that are used to build the main memory and sometimes the L3, L4 and etc. cache levels [17].

Let's also look into common multicore processors' memory architectures:

Since, multicore systems usually have cores that are running in parallel the memory bandwidth and memory access latency are critical. Consequently, the cache structure, shared or private for each core, needs to be chosen with extra care [19]. [Jain] also emphasises in [19] the importance of the choice of coherence protocol that matches the cache architecture characteristics. Coherence mechanisms are commonly divided into directory-based and snooping protocols.

2.1.3 The Locality Principle and Cache Parameters

The desktop or general-purpose computer systems are designed to run different types of applications that are not predefined. Therefore their memory systems are also designed to be as generic as possible [19]. On the other hand, the embedded systems' memory, particularly the cache architecture, can be customised since they run predefined applications that their memory access patterns can be established in advance [19]. Kumar et al. has also stated in [20] that designing a memory is a critical part of the SoC since the memory organisation has direct impact on the system parameters such as the area, power and performance. These constraints are even more limited in embedded systems than i.e. desktop. Therefore, choosing an optimal cache architecture for a given application is a significant step to boosting the overall system performance.

Let us not forget that cache memory was mainly invented to mask the speed gap between the processor and the main memory by exploiting the instruction/data spatial and temporal locality [20]. The temporal locality (a.k.a. locality of reference) assumes that the latest accessed memory address is soon to be accessed. The spatial locality on the other hand assumes that the addresses close to the latest accessed memory location are likely to be accessed next. Below is a list of some cache parameters a designer can choose to optimise an embedded system for a specific application (more details about these parameters can be found in most textbooks on computer architecture).

Cache Design Parameters [21], [17] and [8]:

1. Cache mapping policies:

- **Direct Mapping**: a given memory block always appears on the same cache line. It is fast but the mapping restriction increases conflict misses.
- **Fully associative Mapping**: any given memory block can be mapped to any cache line. It is a flexible technique that reduces conflict misses but it is expensive and slower since a parallel search has to be made on all cache lines.
- **Set-Associative Mapping**: a memory block is mapped to a fixed cache set, but this block can be located in any line of the set. This technique is a trade-off between the fast direct-mapping and the flexible full associative.
- 2. Write Policy:
 - Write through: all writes/stores are simultaneously done on the cache and the lower memory levels. This may lead to bottlenecks since the communication between the cache and the memory is frequent.
 - Write back: writes/stores are done to the cache but when a cache block is replaced it is written back to the main memory. This may cause inconsistency between the cache and memory contents.

3. Replacement function:

- Least Recently Used (LRU): records when each block is used and replaces the longest time ago used block on miss. It is in general costly to implement.
- **Pseudo-LRU:** Approximates LRU by lower cost approximations.
- **First-In-First-Out (FIFO):** Replacing the oldest block on a miss.
- Least Frequently Used (LFU): replaces the least used block on miss.
- Random: Replacing the blocks randomly.

- 4. Size:
 - **Cache size** Large cache size means higher hit rate. On the other hand, larger size caches are more expensive and slightly slower than smaller caches due to the larger number of control gates.
- 5. Number of Caches:
 - Multilevel Caches: Hierarchies of cache from L1 to Ln
 - **Unified versus Split Caches:** Unified cache is instructions and data shared L1 cache. Split cache is 2 L1 caches where one is for instructions and the other for data.
- 6. Memory Block (Line) Sizes:
 - Large memory block size increase hit ratio. However, this effect is diminishes when certain point is reached since more cache data has to be replaced.

Metrics such as miss-rate (MR), hit-rate (HR) and misses per instruction (MPI) are used to measure the performance of a certain cache configuration. Where the miss-rate is the number of misses per total cache access and the hit-rate is the number of cache hits per total accesses. However, two metrics that gives better overall cache performance measurement are the average memory access time (AMAT) and the impact of a miss on the CPI [17].

2.2 WCET

According to Lundqvist in [22] "the worst-case execution time (WCET) of a program that runs uninterrupted on a processor is defined as being the maximum possible execution time considering all combinations of input data and all possible execution histories of the system before the program is executed".

Then again, why would one want to know the WCET? The most obvious answer to this question would be that if a task executes longer than expected it would miss its deadline. The consequence of a task missing its deadline can be quite serious [23] for example a task that responds few seconds later to a car-brake request.

Safety-critical embedded systems usually run tasks that have hard real-time structures [24]. It is therefore crucial to generate a safe and tight estimate of the WCET of the application [25] to provide the basis for the schedulability analysis of its real-time tasks [23].

The problem with finding the WCET is that it is not always easy to obtain upper bounds of execution times for a program [Wilhelm et al.]. Nevertheless, as stated by Wilhelm; et al. in [26] real-time systems only applies a restricted programming methods that guarantee program termination, prohibits recursion and loop iteration counts unless they are explicitly bounded.

There are two different classes of the WCET estimation methods namely Static methods and Measurement-based methods [26].

1. Static methods do not run the application code on hardware or on a simulator but analyse the task code's possible control flow paths with possibly some annotations. In addition, to obtain upper bounds control flow is combined with some abstract hardware architecture model.

2. Measurement-based methods run a task or part of it on a certain hardware or simulator for a combination of inputs. The maximum and minimum observed execution is then driven from the measurement.

Mälardalen University in Sweden has during 2006, 2008 and 2011 hosted an event called WCET Tool Challenge. The aim of this event has been to study, compare and discuss the properties of the different WCET tools and methods. An important outcome of this event is the list of the participating tools that is updated each time the event is held [27]. This is the biggest collection of the WCET tools that could be found. Details of these tools, which consist of commercial and research tool, can be been in Table 1.

Table	1: W	CET	Tools	[27].
-------	------	-----	-------	-------

	Tool	Source	Contact	Processors	Analysis method	Analysis type
1	aiT	AbsInt	Simon Wegener	simple (ARM7, ST10), complex (MPC55xx)	static	flow analysis, WCET analysis
2	Astrée	AbsInt	Simon Wegener	source-level tool (C)	static	flow analysis
3	Bound-T	Tidorum	Niklas Holsti	simple (ARM7)	static	control-flow analysis, WCET analysis
4	FORTAS	TU Vienna	Sven Bünte	TriCore 1796	measurement-based	WCET estimation
5	METAMOC	Aalborg Univ.	Mads Chr. Olesen	simple (ARM7)	static	WCET analysis
6	oRange+OTAWA	IRIT	Christine Rochange	simple (ARM7)	static	control-flow analysis, WCET analysis
7	TimeWeaver	AbsInt	Simon Wegener	with NEXUS-like tracing facilities	measurement based	WCET estimation
8	TuBound	TU Vienna	Jakob Zwirchmayr	simple (Infineon C167)	static	WCET analysis
9	WCA	TU Vienna, TU Denmark	Martin Schoeberl	JOP (Java processor)	static	simple loop bound and receiver analysis (DFA), WCET analysis
10	SWEET	WCET group, Mälardalen University, Sweden	Jan Gustafsson	source-level tool (C)	static	flow analysis

3. System Assumptions

The simulated processor (LEON4), the simulated tool (gem5), the simulation model overview, and the applications ported onto the simulation tool to estimate the WCET are described in this chapter.

3.1 LEON4

3.1.1 Background

Aeroflex Gaisler AB, a Swedish company that develops and supports embedded system solutions, has been chosen by European Space Agency (ESA) to develop the Next Generation Microprocessor (NGMP) [28]. Aeroflex Gaisler has therefore since completing the LEON3 core processor in 2006 started to develop LEON4FT (LEON4), a fault-tolerant quad-core SoC. Although the current prototype implementation of the LEON4 is based on FPGA that has a system frequency of 150MHz [29] [30], its final product is expected to run at 1.5GHz using 32nm ASIC technology [30] (see Table 2).

Technology	MHz	Area	
32 ns ASIC	1500 MHz	30 kgates	
45 ns ASIC	1200 MHz	30 kgates	
65 ns ASIC	800 MHz	30 kgates	
130 ns ASIC	400 MHz	30 kgates	
180 ns ASIC	250 MHz	30 kgates	
Stratix3 FPGA	150 MHz	4000 LUT	
Vertex5 FPGA	125 MHz	4000 LUT	

			· · · · · · · · · · · · · · · · · · ·	
Table 2: Proi	posed LEON4	technology	implementations	s [31].

Although, Aeroflex Gaisler developed LEON4 in cooperation with ESA, its licence is also available to other customers. RUAG Space AB, a Sweden based company that is specialised in on-board satellite equipment is one of the companies that is currently using this SoC.

RUAG Space AB (RUAG) is considering utilising the 4 LEON4 cores concurrently. However, an important requirement is to establish safe and tight WCET estimate to avoid unexpected consequences. Hence, RUAG has together with the Computer Science and Engineering (CSE) department at Chalmers University of technology initiated this master thesis project. The goal of this project has been to estimate the WCET of a multicore processor where the target system is the quad-core LEON4, although the method is generally applicable to any multicore system with a multi-level cache memory hierarchy.

3.1.1 The Quad-core LEON4 Architecture

The LEON4 core is a 32-bit processor based on SPARC V8 architecture. It is a highly configurable VHDL model that is particularly suitable for SoC designs on FPGA and ASIC.

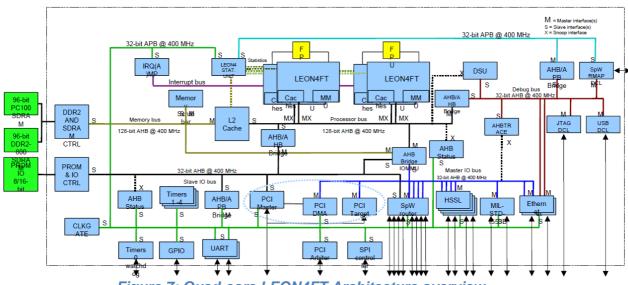
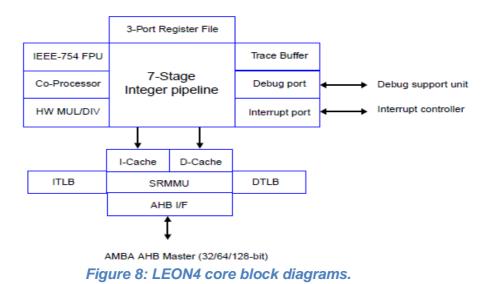



Figure 7: Quad-core LEON4FT Architecture overview.

As can be seen in Figure 7, each pair of the quad-cores shares one FPU unit. In addition, each core has a private split L1 cache, where the L2 cache is shared by all 4 cores. The architecture overview is also showing a 128-bit AHB bus connecting the memory levels to the cores as well as between the cores. The peripherals on the other hand are connected to 32-bit AHB bus. Figure 8 on the other hand is also displaying more details about the LEON4 core architecture.

The quad-core leon4 details that are useful for the simulation tool are the system clock frequency, and the cache configuration, levels and sizes. These configuration parameters are collected from the latest LEON4 implementation on FPGA [30] (see Section 3.2).

3.2 Simulation Model

gem5, which is a state-of-the-art modular platform for computer system architecture research [32], is this project's simulation tool. The choice of this simulator was based on the project criteria and the CSE department's subject experts' advice. Furthermore, it is widely used by the computer architecture research community around the world. The main requirements of the simulator were:

- It can be configured to a desired architecture (as LEON4 in this case)
- It supports multilevel memory hierarchies
- It can run C/C++ based applications
- It can isolate a region of interest in the application's code to extract this region's simulation result separately

Good news is that the selected simulator, gem5, has more than above described requirements. Its system-level architecture as well as processor microarchitecture can be configured to support many different systems. It currently supports Alpha, ARM, SPARC, MIPS, POWER and x86 ISA [33]. It even has the option to configure multicores. Nevertheless, the last option was not applied, since its complexity would require extra time and resources that perhaps would not be proportionate to the project duration. Therefore, an analytical model (see Table 4) is added to the simulation model to get the assumed multicore system result.

This analytical model, offered by professor Per Stenstrom at the CSE department, calculates the WCET estimate and guarantees safe and tight WCET estimates. To guarantee a safe estimate, the model uses a worst-case assumption for estimating the cache miss penalty, i.e., the time it takes to service a cache miss. This worst-case assumption is that when a cache miss is serviced, there will be P-1 cores that have cache misses pending and these will be serviced first. As a result, assuming that the cache miss penalty is MP with no pending requests from other cores, it will take P x MP to service the cache miss. To get a tight WCET estimate, we ideally assume that the compiler can statically analyse whether a cache request will hit or miss the cache. This will provide an upper-bound on how well static analysis could be used to derive a tight estimate for the number of cache hits.

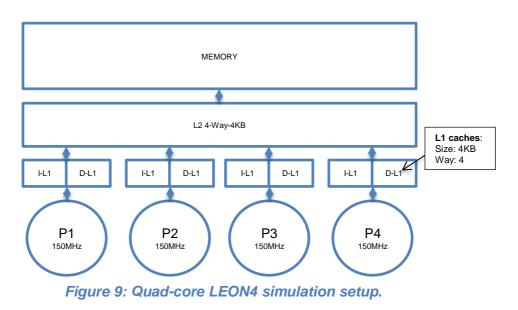


Figure 9 shows the simulated quad-core LEON4 and its memory levels. Also, Table 3 displays the simulators key settings such as the clock frequency and the cache size. The simulation stats such as cache miss-penalties (MP) as well as constants like the CPU cycle time (Tc) and the number of cores (P) are also listed in Table 3. The equations listed in Table 4, use the aforementioned values to calculate the WCET estimate of the quad-cores when they execute the 4 tasks serially and 4 in parallel. Moreover, the parallel tasks' execution throughput (K), relative to the serial execution throughput, is calculated. It is assumed that, when 4 cores are running 4 tasks in parallel the closer K gets to 4 the safer and tighter the WCET estimate gets.

Parameter	Value (FPGA*)	Value (ASIC**)	Value (ASIC**)	Value (ASIC**)	Unit
CPU_Freq =	150	300	600	1200	MHz
CPU_Cycles =	6,67	3,33	1,67	0,83	ns
CPU_Type =	timing	timing	timing	timing	-
L1_Size =	4	8	16	32	kB
L1_Assoc =	4	4	4	4	-
L2_size =	256	256	256	256	kВ
L2_assoc =	4	4	4	4	-
P =	4, 8, 16	4, 8, 16	4, 8, 16	4, 8, 16	CPUs
L1_MP	40	20	10	5	ns
L2_MP	200	100	50	25	ns

Table 2. Cimulation	parameters and Cache latencies scaled for future	s taabnalaay nadaa
	Darameters and Cache latencies scaled for iutur	e technology nodes.

* Current Impementation ** assumed future technology node upgrade

Table 4: calculating the AMAT, the Tproc, the Texe and the throughput.

AMAT = MP-L1*L1-Miss-rate + MP-L2*L2-Miss-rate	Average memory access time
Tproc=Instructions*Tc	The total time the CPU is busy to decode instr. per task
Texe-1 = P(Tproc+AMAT)	The WCET for executing 1 task at a time
Texe-4 = Tproc+P*AMAT	The WCET for executing 4 tasks in parallel
K = Texe-1 / Texe-4	4 parallel tasks execution Throughput

In order to speed up the simulation a sort of automation mechanism was needed. Therefore two bash scripts were created. These two scripts were designed to initiate the compiler and the simulator commander, simplify the simulation data collection and restructuring it into a desired format. Figure 10 illustrates the complete simulation model that includes the two scripts, the simulation tool and the analytical equations.

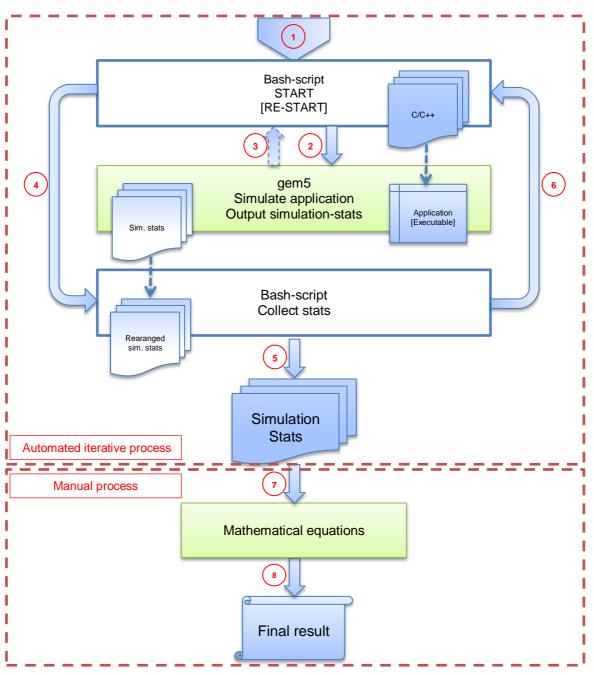


Figure 10: the simulation model overview.

The diagram according to Figure 10 shows an overview of the simulation model and numbered labels highlight the order of the main simulation steps. One can also see that the simulation steps are split by two dotted boxes. This is to show that the simulation is divided into two phases. The first phase is an automated process starting from step 1 to step 5 then through step 6 feeds back to step 1. This iteration is carried out a number of times depending on the number of required simulation samples per application. During these iterations either the application or the simulation tool parameters are incremented. For example if an application is to be simulated with different cache sizes then the simulation tool's cache size parameters are incremented while the application's input parameter(s) is/are kept unchanged. This project's application workload is a matrix multiplication. Therefore, by increasing the matrices' sizes, the application workload increases. Below is a summary of the simulation steps.

The simulation steps:

- 1. The first bash script of the simulation model is initiated through the terminal command by entering its name and the C file of the application be simulated [./runsim matrix]
 - 1.1. The start script calls then a predefined makefile that compiles the C code using GCC with -2 optimisation option
 - 1.2. Once the executable file is created the script calls then gem5 by using terminal command format. All the necessary settings, parameters and variables such as CPU type and speed, cache levels, cache size etc. and of course the name and the path of the application under simulation are passed through this commands string.
- 2. gem5 simulation
 - 2.1. gem5 applies the new settings and starts the simulation by running the ported application
 - 2.2. Once the simulation is finished, gem5 saves the simulation stats in text file
- 3. The start script gets reactivated again.
- 4. The first script calls then the second script
- 5. The second script
 - 5.1. It starts to search for the latest saved gem5 simulation stats to extract certain results.
 - 5.2. It then rearranges the extracted data into Microsoft Excel and Matlab friendly format and saves it into a new text file.
- 6. This step loops back to the first script which increments some simulation tool or application parameters as was described above. Steps from 1 to 6 are repeated number of times, depending on the required number of simulation samples.
- 7. The WCET and the throughput calculation
 - 7.1. Once, the automated steps from 1 to 6 are finished, the rearranged simulation stats file is then opened with Excel.
 - 7.2. Then the equations shown in Table 4 are applied to calculate the WCET and the parallel tasks' throughput.
 - 7.3. The final result is then compiled into lists and diagram that will be presented in the result chapter as well as in the discussion chapter.

3.3 Applications

Finding a simulation tool that simplifies the WCET estimate was the first step of the execution phase of the project. Then creating an application that would run on the simulation software became the next challenge. Essentially, an application that utilises all system resources, particularly the multicore and the memory hierarchies, was the criterion. It should simply be a data and instruction intensive application. Moreover, since gem5, the simulation software, can only execute applications written in C/C++, C was chosen as the programming language.

After considering above requirements and number of previous research that was discussed in the theory chapter, two applications carrying out matrix multiplication has been created. One that is doing conventional matrix multiplication and another one that is doing blocking (a.k.a. tiling) matrix multiplication, which is a cache optimisation algorithm [4]. Figure 11(a) shows the conventional matrix multiplication C code while Figure 11(b) shows the blocking algorithm code.

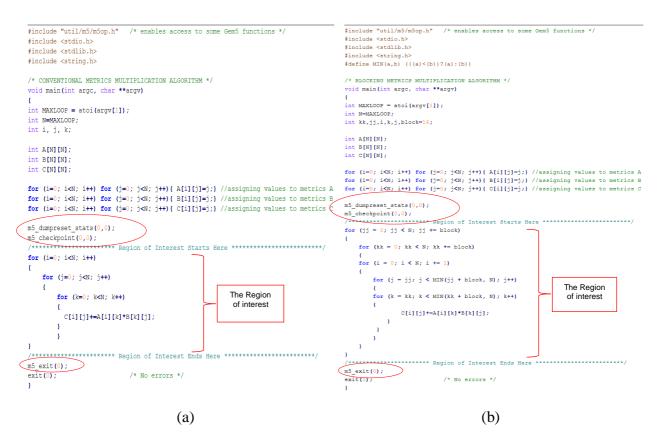


Figure 11: a) Conventional and b) blocking metrics multiplication C code.

The middle parts of the above codes are labelled as the region of interest (ROI) to indicate that these lines are where the interested workload is carried out. By inserting the gem5 functions $m5_dumpreset_stats$, $m5_checkpoint$ and $m5_exet$ before and after the ROI, gem5 returns a simulation result for only this region.

Another, important fact about the matrix multiplication applications is that they both have one input parameter. This input parameter which is passed into the application at the start of simulation dictates the size of the matrix for example if it is equal to 32 then the A, B and C matrices sizes becomes 32x32. As was stated before this is used to increase or decrease the simulation workload and to observe how it influenced the WCET estimate.

More details about the gem5 commands, bash scripts and the application can be read in the appendices.

4. Experimental Results

This chapter outlines the simulation and the calculation results of this Master's Thesis. The two top categories of the result are the two matrix multiplication algorithms, namely the conventional and the blocking algorithm. Equally important is to mention that the subcategories of the result are system clock frequency and the number of processors.

Furthermore, the data is presented in the same order as the simulation model (see Figure 10). This means that the simulation result collected from the automated simulation will be presented first. Then the calculated result from the manual stage of the simulation will be presented.

As was stated in Section 3, a single core execution was carried out in the first stage of the simulation. Then this stage's outcome is used to calculate a multicore system WCET estimate by using the equations presented in Table 4. The multicore WCET estimate is calculated for both serial and parallel execution of the applications.

4.1 Simulation Results

Again, according to Section 3, the conventional matrix multiplication application is first simulated then the blocking algorithm application. These two applications are repeated for four different system clock frequencies: 150MHz, 300MHz, 600MHz and 1200MHz. In addition, the caches are reconfigured for each clock frequency to match the system for an anticipated technology scaling. Each time the simulation is carried out for certain algorithm using a particular system clock frequency (for example: blocking algorithm running at 150MHz), 18 result samples are collected. Each sample represents simulation result for a certain algorithm, clock frequency and matrix size.

Table 5 shows the conventional and the blocking matrix multiplication algorithms' simulation result. The columns of the table, which are the matrix sizes (NxN_Matrix), the number of application instructions (N_Instr), L1 miss-rate (L1_MR) and the L1 miss-rate (L2_MR), are the parameters necessary for the WCET calculation. Moreover, the results in Table 5 are based on a system Clock=150MHz, L1_Size=4KB, L1_Assoc=4, L2_size=256kB and L2_assoc=4.

Cor	ventional N	latrix Multip	lication	Blocki	ng Algorithn	n Matrix Mul	tiplication
NxN_Matrix	N_Instr	L1_MR	L2_MR	NxN_Matrix	N_Instr	L1_MR	L2_MR
32x32	303303	0,114759	0,024884	32x32	354104	0,008273	0,32879
48x48	1014055	0,075524	0,025391	48x48	1195019	0,007811	0,231551
64x64	2392455	0,50856	0,00284	64x64	2832558	0,148204	0,009145
80x80	4659687	0,537189	0,002156	80x80	5532257	0,007576	0,143044
96x96	8036935	0,517409	0,001869	96x96	9559652	0,007605	0,118726
112x112	12745383	0,535634	0,00155	112x112	15180279	0,007475	0,10352
128x128	19006215	0,504027	0,001442	128x128	22659674	0,495896	0,001365
144x144	27040615	0,534674	0,00121	144x144	32263373	0,007419	0,081366
160x160	37069767	0,51709	0,001127	160x160	44256912	0,007464	0,074505
176x176	49314855	0,534058	0,000992	176x176	58905827	0,007383	0,080645
192x192	63997063	0,508409	0,000956	192x192	76475654	0,171363	0,002979
208x208	81337575	0,53363	0,000841	208x208	97231929	0,007358	0,070642
224x224	101557575	0,516951	0,001007	224x224	121440188	0,007405	0,102349
240x240	124878247	0,533315	0,002047	240x240	149365967	0,007339	0,170298
256x256	151520775	0,501922	0,025146	256x256	181274802	0,494452	0,004791
272x272	181706343	0,533074	0,035306	272x272	217432229	0,007439	0,257628
288x288	215656135	0,516972	0,060681	288x288	258103784	0,007376	0,273407
304x304	253591335	0,532883	0,058856	304x304	303555003	0,007314	0,274105

Table 5: Conventional and blocking matrix multiplication result for a system freq. 150MHz.

Table 6 displays the conventional and blocking algorithm simulation result for a system frequency at 300MHz. In addition, these results are based on cache configurations were L1_Size=8KB, L1_Assoc=4, L2_size=256kB and L2_assoc=4.

Conventional Matrix Multiplication				Blocking Al	gorithm Ma	atrix Multip	olication
NxN_Matrix	N_Instr	L1_MR	L2_MR	NxN_Matrix	N_Instr	L1_MR	L2_MR
32x32	303303	0,002929	0,974747	32x32	354104	0,005863	0,463942
48x48	1014055	0,021949	0,087369	48x48	1195019	0,007811	0,231551
64x64	2392455	0,50841	0,002841	64x64	2832558	0,007707	0,175852
80x80	4659687	0,044128	0,02625	80x80	5532257	0,007576	0,143044
96x96	8036935	0,516922	0,001871	96x96	9559652	0,007517	0,120111
112x112	12745383	0,121472	0,006833	112x112	15180279	0,007475	0,10352
128x128	19006215	0,503974	0,001442	128x128	22659674	0,134349	0,00504
144x144	27040615	0,386968	0,001672	144x144	32263373	0,007419	0,081366
160x160	37069767	0,516795	0,001127	160x160	44256912	0,007399	0,075163
176x176	49314855	0,534058	0,000992	176x176	58905827	0,007383	0,081437
192x192	63997063	0,508341	0,000956	192x192	76475654	0,007391	0,068583
208x208	81337575	0,53363	0,000841	208x208	97231929	0,007358	0,070642
224x224	101557575	0,51674	0,001008	224x224	121440188	0,007348	0,103078
240x240	124878247	0,533315	0,002047	240x240	149365967	0,007339	0,170298
256x256	151520775	0,501922	0,025153	256x256	181274802	0,493437	0,004801
272x272	181706343	0,533074	0,035306	272x272	217432229	0,007325	0,261619
288x288	215656135	0,516709	0,060711	288x288	258103784	0,007319	0,275507
304x304	253591335	0,532883	0,058856	304x304	303555003	0,007314	0,274105

Table 6: Conventional and blocking matrix multiplication result for a system freq. 300MHz.

Table 7 displays the conventional and blocking algorithm simulation result for a system frequency at 600MHz. Also, cache configurations of these results are L1_Size=16KB, L1_Assoc=4, L2_size=256kB and L2_assoc=4.

Conven	tional Matri	ix Multiplic	ation	Blocking Algorithm Matrix Multiplication					
NxN_Matrix	N_Instr	L1_MR	L2_MR	NxN_Matrix	N_Instr	L1_MR	L2_MR		
32x32	303303	0,002855	1	32x 32	354104	0,00272	1		
48x48	1014055	0,001922	0,997696	48x48	1195019	0,003362	0,537888		
64x 64	2392455	0,054315	0,026589	64x 64	2832558	0,006069	0,223287		
80x 80	4659687	0,03179	0,036438	80x 80	5532257	0,007257	0,149322		
96x 96	8036935	0,04938	0,019584	96x 96	9559652	0,007517	0,120111		
112x112	12745383	0,031605	0,026261	112x112	15180279	0,007448	0,103899		
128x 128	19006215	0,503936	0,001443	128x 128	22659674	0,007454	0,090828		
144x 144	27040615	0,031513	0,020527	144x 144	32263373	0,007419	0,081366		
160x160	37069767	0,516135	0,001129	160x 160	44256912	0,007399	0,075163		
176x176	49314855	0,031601	0,016766	176x176	58905827	0,007383	0,081437		
192x 192	63997063	0,508219	0,000956	192x 192	76475654	0,007369	0,068769		
208x 208	81337575	0,071637	0,006263	208x 208	97231929	0,007358	0,070642		
224x 224	101557575	0,516264	0,001008	224x 224	121440188	0,007348	0,104057		
240x 240	124878247	0,15126	0,007569	240x 240	149365967	0,007339	0,170443		
256x 256	151520775	0,501909	0,025127	256x 256	181274802	0,128265	0,018434		
272x 272	181706343	0,296399	0,063492	272x 272	217432229	0,007325	0,261955		
288x 288	215656135	0,516337	0,060755	288x 288	258103784	0,007319	0,275507		
304x 304	253591335	0,465541	0,067369	304x 304	303555003	0,007314	0,274105		

Table 7: Conventional and blocking matrix multiplication result for a system freq. 600MHz.

Table 8 is displays the conventional and blocking algorithm simulation result for system frequency at 1200MHz. Cache configurations used are L1_Size=32KB, L1_Assoc=4, L2_size=256kB and L2_assoc=4.

Convent	tional Matri	x Multiplic	ation	Blocking Algorithm Matrix Multiplication					
NxN_Matrix	N_Instr	L1_MR	L2_MR	NxN_Matrix	N_Instr	L1_MR	L2_MR		
32	303303	0,00284	1	32	354104	0,00272	1		
48	1014055	0,001913	1	48	1195019	0,001808	1		
64	2392455	0,001451	0,993532	64	2832558	0,002881	0,470336		
80	4659687	0,001746	0,662617	80	5532257	0,002651	0,408781		
96	8036935	0,019548	0,049441	96	9559652	0,002868	0,314822		
112	12745383	0,031605	0,02625	112	15180279	0,003355	0,230596		
128	19006215	0,503847	0,001442	128	22659674	0,007443	0,090958		
144	27040615	0,031513	0,020522	144	32263373	0,005682	0,106233		
160	37069767	0,035904	0,016221	160	44256912	0,006647	0,083663		
176	49314855	0,031458	0,01684	176	58905827	0,007208	0,084252		
192	63997063	0,507949	0,000956	192	76475654	0,007369	0,068769		
208	81337575	0,031422	0,014277	208	97231929	0,007358	0,070642		
224	101557575	0,073961	0,006993	224	121440188	0,007348	0,10465		
240	124878247	0,031396	0,029172	240	149365967	0,007339	0,171231		
256	151520775	0,501899	0,02504	256	181274802	0,007334	0,268935		
272	181706343	0,031377	0,592052	272	217432229	0,007325	0,262334		
288	215656135	0,337485	0,092958	288	258103784	0,007319	0,275507		
304	253591335	0,031404	0,999047	304	303555003	0,007314	0,274105		

Table 8: Conventional and blocking matrix multiplication result for a system freq. 1200MHz.

4.2 Calculated Results

After the simulation result (above) has been acquired, the parameters presented in Table 3 and the equations presented in Table 4 have been applied to calculate the final result. The average memory access time (AMAT) and the processor's instruction execution time (Tproc) are first calculated, and then these values together with the number of tasks that are equivalent to the number of processor cores are used to calculate the WCET estimate for the serial and the parallel executions (Texe_1 and Texe_N respectively, where N is the number of tasks.

Due to the large quantity of the calculated data, only calculated tables for the system clock frequency at 150MHz are presented in this section. The remaining tables are added into the appendices. Instead, charts illustrating the calculated throughput (K) for a number of multicore arrangements (P=4, P=8 and P=16) are presented in this section, since the throughput shows if the WCET estimate is safe and tight.

Table 9 presents the calculated result for 4 cores. Texe_1 is the calculated WCET estimate for 4 serially executed tasks. Texe_4 on the other hand is the WCET estimate for 4 tasks executed in parallel. Finally, K, which is the throughput of the 4 the tasks running in parallel, is also presented in the table (below).

	Conventional/Blocking Matrix Multiplication										
NxN_Matrix	AMAT_Conv	AMAT_Block	Tproc_Conv	Tproc_Block	Texe_1_Conv	Texe_1_Block	Texe_4_Conv	Texe_4_Block	K_Conv	K_Block	
32x32	9,57E-09	6,61E-08	0,0020220	0,0023607	0,0080881	0,0094430	0,0020221	0,0023610	3,9999432	3,9996641	
48x48	8,10E-09	4,66E-08	0,0067604	0,0079668	0,0270415	0,0318674	0,0067604	0,0079670	3,9999856	3,9999298	
64x64	2,09E-08	7,76E-09	0,0159497	0,0188837	0,0637989	0,0755349	0,0159498	0,0188838	3,9999843	3,9999951	
80x80	2,19E-08	2,89E-08	0,0310646	0,0368817	0,1242584	0,1475270	0,0310647	0,0368818	3,9999915	3,9999906	
96x96	2,11E-08	2,40E-08	0,0535796	0,0637310	0,2143184	0,2549242	0,0535797	0,0637311	3,9999953	3,9999955	
112x112	2,17E-08	2,10E-08	0,0849692	0,1012019	0,3398770	0,4048075	0,0849693	0,1012019	3,9999969	3,9999975	
128x128	2,04E-08	2,01E-08	0,1267081	0,1510645	0,5068325	0,6042581	0,1267082	0,1510646	3,9999981	3,9999984	
144x144	2,16E-08	1,66E-08	0,1802708	0,2150892	0,7210832	0,8603567	0,1802709	0,2150892	3,9999986	3,9999991	
160x160	2,09E-08	1,52E-08	0,2471318	0,2950461	0,9885272	1,1801844	0,2471319	0,2950461	3,9999990	3,9999994	
176x176	2,16E-08	1,64E-08	0,3287657	0,3927055	1,3150629	1,5708221	0,3287658	0,3927056	3,9999992	3,9999995	
192x192	2,05E-08	7,45E-09	0,4266471	0,5098377	1,7065884	2,0393508	0,4266472	0,5098377	3,9999994	3,9999998	
208x208	2,15E-08	1,44E-08	0,5422505	0,6482129	2,1690021	2,5928515	0,5422506	0,6482129	3,9999995	3,9999997	
224x224	2,09E-08	2,08E-08	0,6770505	0,8096013	2,7082021	3,2384051	0,6770506	0,8096013	3,9999996	3,9999997	
240x240	2,17E-08	3,44E-08	0,8325216	0,9957731	3,3300867	3,9830926	0,8325217	0,9957733	3,9999997	3,9999996	
256x256	2,51E-08	2,07E-08	1,0101385	1,2084987	4,0405541	4,8339948	1,0101386	1,2084988	3,9999997	3,9999998	
272x272	2,84E-08	5,18E-08	1,2113756	1,4495482	4,8455026	5,7981930	1,2113757	1,4495484	3,9999997	3,9999996	
288x288	3,28E-08	5,50E-08	1,4377076	1,7206919	5,7508304	6,8827678	1,4377077	1,7206921	3,9999997	3,9999996	
304x304	3,31E-08	5,51E-08	1,6906089	2,0237000	6,7624357	8,0948003	1,6906090	2,0237002	3,9999998	3,9999997	

Table 9: Calculated WCET and Throughput for a system freq. 150MHz and P=4.

Similar to Table 9, Tables 10 and 11 also show the calculated results for a system frequency of 150MHz, however both the processor cores and the executed tasks are increased to 8 and 16.

Overall, it is surprising to see that the throughput increases by close to linearly with the number of cores. This suggests that, contrary to common belief, it is possible to guarantee a safe WCET and still enjoy the increase in throughput offered by multicore systems. Of course, we have assumed that the compiler is capable of fully analysing the code statically. As Lundqvist points out [22], one has to conservatively assume a cache miss if the compiler cannot be certain of the outcome of a cache access. In any case, these results are promising and warrant further investigations.

Conventional/Blocking Matrix Multiplication										
NxN_Matrix	AMAT_Conv	AMAT_Block	Tproc_Conv	Tproc_Block	Texe_1_Conv	Texe_1_Block	Texe_8_Conv	Texe_8_Block	K_Conv	K_Block
32x32	9,56716E-09	6,60889E-08	0,0020220	0,0023607	0,0161762	0,0188861	0,0020221	0,0023612	7,9997350	7,9984326
48x48	8,09916E-09	4,66226E-08	0,0067604	0,0079668	0,0540830	0,0637347	0,0067604	0,0079672	7,9999329	7,9996723
64x64	2,09104E-08	7,75716E-09	0,0159497	0,0188837	0,1275978	0,1510698	0,0159499	0,0188838	7,9999266	7,9999770
80x80	2,19188E-08	2,89118E-08	0,0310646	0,0368817	0,2485168	0,2950539	0,0310648	0,0368819	7,9999605	7,9999561
96x96	2,10702E-08	2,40494E-08	0,0535796	0,0637310	0,4286367	0,5098483	0,0535797	0,0637312	7,9999780	7,9999789
112x112	2,17354E-08	2,1003E-08	0,0849692	0,1012019	0,6797539	0,8096150	0,0849694	0,1012020	7,9999857	7,9999884
128x128	2,04495E-08	2,01088E-08	0,1267081	0,1510645	1,0136650	1,2085161	0,1267083	0,1510647	7,9999910	7,9999925
144x144	2,1629E-08	1,657E-08	0,1802708	0,2150892	1,4421663	1,7207134	0,1802709	0,2150893	7,9999933	7,9999957
160x160	2,0909E-08	1,51996E-08	0,2471318	0,2950461	1,9770544	2,3603688	0,2471319	0,2950462	7,9999953	7,9999971
176x176	2,15607E-08	1,64243E-08	0,3287657	0,3927055	2,6301258	3,1416442	0,3287659	0,3927056	7,9999963	7,9999977
192x192	2,05276E-08	7,45032E-09	0,4266471	0,5098377	3,4131769	4,0787016	0,4266473	0,5098378	7,9999973	7,9999992
208x208	2,15134E-08	1,44227E-08	0,5422505	0,6482129	4,3380042	5,1857030	0,5422507	0,6482130	7,9999978	7,9999988
224x224	2,08794E-08	2,0766E-08	0,6770505	0,8096013	5,4164042	6,4768102	0,6770507	0,8096014	7,9999983	7,9999986
240x240	2,1742E-08	3,43532E-08	0,8325216	0,9957731	6,6601733	7,9661852	0,8325218	0,9957734	7,9999985	7,9999981
256x256	2,51061E-08	2,07363E-08	1,0101385	1,2084987	8,0811082	9,6679896	1,0101387	1,2084988	7,9999986	7,9999990
272x272	2,83842E-08	5,18232E-08	1,2113756	1,4495482	9,6910052	11,5963860	1,2113758	1,4495486	7,9999987	7,9999980
288x288	3,28151E-08	5,49764E-08	1,4377076	1,7206919	11,5016608	13,7655356	1,4377078	1,7206923	7,9999987	7,9999982
304x304	3,30865E-08	5,51136E-08	1,6906089	2,0237000	13,5248715	16,1896006	1,6906092	2,0237005	7,9999989	7,9999985

Table 10: Calculated WCET and Throughput for a system freq. 150MHz and P=8

	Conventional/Blocking Matrix Multiplication										
NxN_Matrix	AMAT_Conv	AMAT_Block	Tproc_Conv	Tproc_Block	Texe_1_Conv	Texe_1_Block	Texe_16_Conv	Texe_16_Block	K_Conv	K_Block	
32x32	9,57E-09	6,61E-08	0,0020220	0,0023607	0,0323525	0,0377722	0,0020222	0,0023618	15,9988645	15,9932841	
48x48	8,10E-09	4,66E-08	0,0067604	0,0079668	0,1081660	0,1274694	0,0067605	0,0079675	15,9997125	15,9985956	
64x64	2,09E-08	7,76E-09	0,0159497	0,0188837	0,2551955	0,3021396	0,0159500	0,0188838	15,9996854	15,9999014	
80x80	2,19E-08	2,89E-08	0,0310646	0,0368817	0,4970336	0,5901079	0,0310649	0,0368822	15,9998307	15,9998119	
96x96	2,11E-08	2,40E-08	0,0535796	0,0637310	0,8572734	1,0196966	0,0535799	0,0637314	15,9999056	15,9999094	
112x112	2,17E-08	2,10E-08	0,0849692	0,1012019	1,3595079	1,6192301	0,0849696	0,1012022	15,9999386	15,9999502	
128x128	2,04E-08	2,01E-08	0,1267081	0,1510645	2,0273299	2,4170322	0,1267084	0,1510648	15,9999613	15,9999681	
144x144	2,16E-08	1,66E-08	0,1802708	0,2150892	2,8843326	3,4414267	0,1802711	0,2150894	15,9999712	15,9999815	
160x160	2,09E-08	1,52E-08	0,2471318	0,2950461	3,9541088	4,7207375	0,2471321	0,2950463	15,9999797	15,9999876	
176x176	2,16E-08	1,64E-08	0,3287657	0,3927055	5,2602515	6,2832885	0,3287660	0,3927058	15,9999843	15,9999900	
192x192	2,05E-08	7,45E-09	0,4266471	0,5098377	6,8263537	8,1574032	0,4266474	0,5098378	15,9999885	15,9999965	
208x208	2,15E-08	1,44E-08	0,5422505	0,6482129	8,6760083	10,3714060	0,5422508	0,6482131	15,9999905	15,9999947	
224x224	2,09E-08	2,08E-08	0,6770505	0,8096013	10,8328083	12,9536204	0,6770508	0,8096016	15,9999926	15,9999938	
240x240	2,17E-08	3,44E-08	0,8325216	0,9957731	13,3203467	15,9323704	0,8325220	0,9957737	15,9999937	15,9999917	
256x256	2,51E-08	2,07E-08	1,0101385	1,2084987	16,1622164	19,3359792	1,0101389	1,2084990	15,9999940	15,9999959	
272x272	2,84E-08	5,18E-08	1,2113756	1,4495482	19,3820104	23,1927719	1,2113761	1,4495490	15,9999944	15,9999914	
288x288	3,28E-08	5,50E-08	1,4377076	1,7206919	23,0033216	27,5310712	1,4377081	1,7206928	15,9999945	15,9999923	
304x304	3,31E-08	5,51E-08	1,6906089	2,0237000	27,0497429	32,3792012	1,6906094	2,0237009	15,9999953	15,9999935	

Table 11: Calculated WCET and Throughput for a system freq. 150MHz and P=16

The remainder of this section presents charts comparing the calculated throughput. The varied parameters when calculating the throughput are among others the number of cores, the system frequency, the caches, algorithms etc. with respect to increased workload (increased matrix size).

Figure 12, illustrates the calculated throughput for 4 cores running 4 tasks in parallel. The figure also shows 8 curves of throughput divided into 4 pairs (one conventional and one blocking algorithm), where each pair has the same system clock frequency. Additionally, the series of the clock frequencies used to calculate the 4 pairs are 150MHz, 300MHz, 600MHz and 1200MHz.

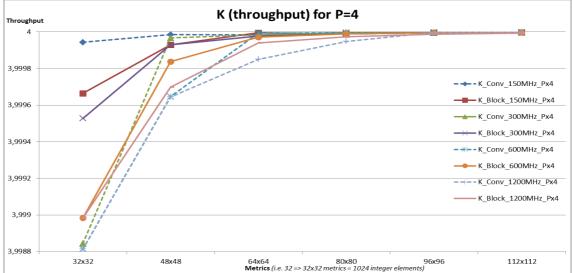


Figure 12: P=4, calculated throughputs for the simulated system clock frequencies.

Figures 13 and 14 are also showing the calculated throughput for 8 cores running 8 tasks in parallel and 16 cores running 16 tasks in parallel respectively.

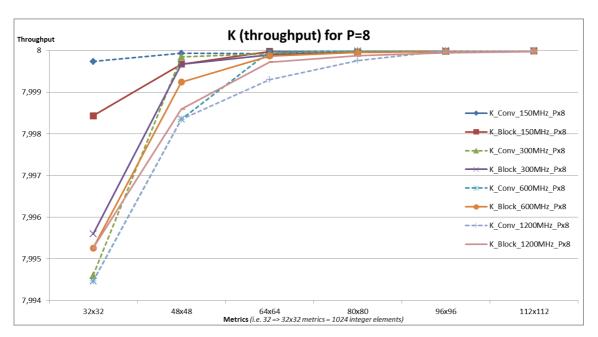


Figure 13: P=8, calculated throughputs for the simulated system clock frequencies.

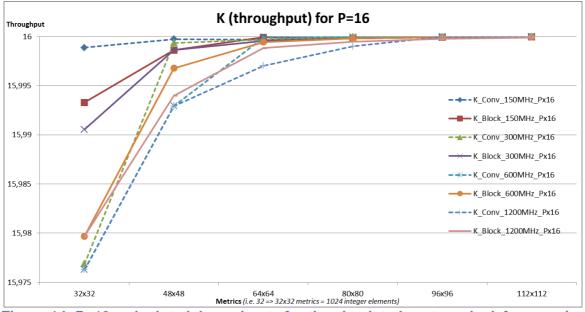


Figure 14: P=16, calculated throughputs for the simulated system clock frequencies.

5. Discussion

The findings of this Master's Thesis are presented in the result chapter. These results are acquired by using the method described in the system assumption chapter, which mainly consists of a simulation tool and an analytical model and supporting scripts. The goal has been to develop a method that makes it possible to estimate a safe and tight WCET in multicore system like LEON4FT.

Two matrix multiplication applications are used to evaluate the method. Prior to choosing this approach it is found that matrix multiplication is used in previous studies to evaluating cache efficiency and/or WCET. Moreover, it is found that matrix multiplication is a data intensive application that suites assessing multi-level memory systems as well as multicore performance. Matrix multiplication is a particularly good evaluation benchmark since by simply increasing or decreasing the matrix size, the application workload becomes higher or lower.

The data collected from the simulation tool that is used to calculate the multicore system's throughput, a metrics used to evaluate the safeness and tightness of an estimated WCET, is presented in Tables 5 through 8. These 4 tables show the results for the 4 different system clock frequencies and the 2 matrix multiplication algorithms. The measured parameters (the number of instruction, the L1 miss-rate and the L2 miss-rate) listed in these tables are used to calculate the average memory access-time, the worst case execution time and the throughput. These values were presented in Tables from 9 to 11. These tables display the result calculated for the system clock frequency at 150MHz, the algorithms and the number of processors are however changed. Since, these values are not directly illustrative and do not show whether the WCET estimated is safe or tight the result for the system clock frequencies are added into the appendices. Nevertheless, charts illustrating the throughput of the multicore running in parallel are added into the last part of the result chapter.

Figures from 12 to 14 show the throughput of the tasks executed in parallel. As can be seen in these figures the throughput is lowest at the lowest simulated matrix size (32x32) for all the different number of multicores, algorithms and clock frequencies. Furthermore, the throughput improves as the matrix size gets bigger. This can be interpreted as follows: as the parallel tasks' workload increases, the system's throughput improves in reference to the serially executed tasks.

Nevertheless, the aforementioned figures expose that there is relative throughput gap between the different system clock frequencies. The highest throughput for all the simulated matrix sizes is reached when the system is running conventional matrix multiplication at 150MHz (the lowest simulated system clock frequency). This is to be expected as the bottleneck is then in instruction processing. Conversely, the lowest throughput for all the simulated matrix sizes is reached when the system is running conventional matrix multiplication at 1200MHz (the highest simulated system clock frequency). Again, as was discussed in Section 2 the higher the CPU's clock frequency gets the bigger the speed gap between the CPU and memory gets a.k.a. memory wall. The two simulated algorithms in relation to the different matrix sizes seem to have different effect on the throughput. For example, at the lower matrix size, the conventional matrix multiplication applications have the lowest throughput for all system clocks except 300MHz. Yet again, this supports that the lower system frequencies' bottleneck is the instruction processing. Looking into the simulation result tables presented in Section 4.1 and in the appendices one can see that the blocking algorithm has higher instructions than the conventional algorithm.

An overall observation made is that the blocking algorithm has a bit higher throughput for most of the smaller matrices compared to the conventional algorithm. However, this slight improvement of the throughput with the blocking algorithm was not as significant as was anticipated. Previous studies, discussed in Section 2, present that the blocking algorithm would be more optimal than the conventional in terms of the cache utilisation etc. On the other hand, this Master Thesis did not seek to optimise the blocking algorithm's parameters such as the so called the blocking factor. The blocking factor, which is the size of the block of data the algorithm can copy from a memory to a cache or vice-versa in each access, can be calculated based on the cache size to get an optimal blocking algorithm.

Finally, it was found that the throughput of the simulated matrix sizes from 112x112 to 304x304 is almost optimal for all the multicore arrangements (P=4, P=8 and P=16) regardless the range of system speed and algorithm.

6. Conclusion & Recommendations

6.1 Conclusion

The aim of this Master's Thesis has been to find a method to estimate a safe and tight WCET in multicore system with multilevel memory hierarchies. The first step taken to find a solution was to study the prior work in the field to lay a foundation for the project. It has been found that prior research has established methods to estimate safe and acceptably tight bounds on memory access time in single-processor systems. The multicore systems, the embedded multicore systems in particularly, on the other hand do not have well established WCET estimation methods. The multicores have in a few years become the new performance improvement approach, since single-core solutions are no longer able to deliver a performance boost. However, the software designers are still searching better ways to fully utilise the multicore performance.

LEON4 is an example of the new multicore SoC systems that the designers are currently exploring to fully utilise its multicores concurrently. Actually, RUAG, which is the company that together with Chalmers initiated this Master's Thesis project, is currently using the LEON4 in serial execution mode. This thesis project is therefore part of on-going efforts that are striving to explore new ways to improve the multicore systems throughput, particularly by developing a method to estimate LEON4's WCET estimate.

The simulation results were presented in the result chapter, and then discussed in the discussion chapter. These results reveal that the simulated system's throughput is almost close to the maximum expected throughput when the tasks are executed in parallel. Additionally, the calculated WCET for the parallel tasks (Texe_N) is significantly lower than the serial tasks (Texe_1). Therefore, the conclusion drawn is that these findings indicate that by running 4 tasks on the LEON4's 4 cores, the WCET is not only safe and tight but also the system's throughput is better off than when running the tasks serially.

6.2 Recommendations

Although, this Master's Thesis project's findings are encouraging there are some work left. Below are the future recommendations for possible continuation of the project. These recommendations can be followed sequentially or any desired point can be picked and carried out.

Recommendations point:

- 1. Carry out further testing on the this project's method by using Mibench (the automotive category) benchmark
- 2. Use gem5's SPARC architecture, which is the architecture that LEON4 is based, if the simulation tool is made stable to support this option.
- 3. Use gem5 in multicore configuration
- 4. Implement LEON4 on FPGA and carry out WCET estimation on hardware

References

- [1] T. Lundqvist and P. Stenstrom, "A method to improve the estimated worst-case performance of data caching," in *In RTCSA '99: Proceedings of the Sixth International Conference on Real-Time Computing Systems and Applications*, 1999.
- [2] N. Binkert, B. Beckmann and Et Al., "The gem5 Simulator," ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7, May 2011.
- [3] T. Sherwood and J. Yi, "Guest Editors' Introduction: Computer Architecture Simulation and Modeling," *IEEE Computer Society*, vol. 26, no. 4, pp. 5-7, July/August 2006.
- [4] M. Lam, E. Rothberg and M. Wolf, "The cache performance and optimizations of blocked algorithms," in *Proceedings of the fourth international conference on Architectural support for programming languages and operating systems*, New York, 1991.
- [5] C. Ferdinad and R. Wilhelm, "On Predicting Data Cache Behavior for Real-Time Systems," in *Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems*, London, 1998.
- [6] A. Demirhan, "On Increasing the Effective Blocking Factor of a Matrix for a Given Cache Organization," Monterey, CA, 1992.
- [7] D. Harris and N. Weste , Integrated Circuit Design, Fourth ed., Boston: Pearson Education, Inc., 2011.
- [8] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Fourth ed., Amsterdam: Elsevier, 2012.
- [9] A. Chandrakasan, Integrated Circuits and Systems, S. Keckler, K. Olukotun and H. Hofstee, Eds., New York: Springer Science+Business Media, LLC, 2009.
- [10] "Wikipedia.org," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Moore%27s_law. [Accessed 20 July 2013].
- [11] V. Pankratius, A.-R. Adl-Tabatabai and W. Tichy, "Introduction," in *Development, Fundamentals of Multicore Software*, T. Walter, Ed., Boca Raton, CRC Press, Inc., 2011, pp. 1-5.
- [12] F. Schirrmeister, "Multicore Architectures," in *Real World Multicore Embedded Systems*, B. Moyer, Ed., Amsterdam, Elsevier Inc., 2013, pp. 33-73.
- [13] D. Fittes, "Using Multicore Processors in Embedded Systems," Coventry, 2009.
- [14] B. Wilkinson, "Fundamentals of Multicore Hardware and Parallel Programming," in Fundamentals of Multicore Software Development, W. Tichy, Ed., Boca Raton, CRC Press, LLC, 2011, pp. 9-29.
- [15] S. McKee and W. A. Wulf, "Hitting the Memory Wall: Implications of the Obvious," Computer Architecture News, vol. 23, no. 1, pp. 20-24, March 1995.
- [16] M. Rani and A. Asaduzzaman, "Power Aware Design of Second Level Cache for Multicore Embedded Systems," in *Proceedings of the IEEE SoutheastCon*, Concord, 2010.
- [17] M. Dubois, M. Annavaran and P. Stenstrom, Parallel Computer Organization and Design, Cambridge: Cambridge University Press, 2012.
- [18] A. Vajda, "Multi-core and Many-core Processor Architectures," in *Programming Many-Core Chips*, New York, Springer, 2011, pp. 9-43.
- [19] G. Jain, "Memory Models for Embedded Multicore Architecture," in *Real World Multicore Embedded Systems*, B. Moyer, Ed., Amsterdam, Elsevier Inc., 2013, pp. 75-116.
- [20] T. R. Kumar, C. Ravikumar and R. Govindarajan, "Memory Architecture Exploration Framework for Cache Based Embedded SoC," in *Proceedings of the 21st International Conference on VLSI Design*, Hyderabad, 2008.

- [21] "Computer Science & Information Technology," July 2013. [Online]. Available: http://csitnotes.blogspot.se/2011/12/cache-design-parameters.html.
- [22] T. Lundqvist, "A WCET Analysis Method for Pipelined Microprocessors with Cache Memories," Gothenburg, 2002.
- [23] J. Yan and W. Zhang, "WCET Analysis for Multi-Core Processors with Shared L2 Instruction Caches," in *Proceedings of the Real-Time and Embedded Technology and Applications Symposium*, St. Louis, 2008.
- [24] R. Heckmann and C. Ferdinand, "Worst-Case Execution Time Prediction by Static Program Analysis," in *Proceesings of 18th International Parallel and Distributed Processing Symposium*, Santa Fe, 2004.
- [25] L. Kong, "A Worst-Case Execution Time Analysis Approach Based on Independent Paths for ARM Programs," *Wuhan University journal of natural sciences*, vol. 17, no. 5, pp. 391-399, 2012.
- [26] Wilhelm and et al., "The Worst-Case Execution Time Problem Overview of Methods and Survey of Tools," ACM Transactions on Embedded Computing Systems, vol. 7, no. 3, pp. 1-53, April 2008.
- [27] July 2013. [Online]. Available: http://www.mrtc.mdh.se/projects/WCC/.
- [28] "Microelectronics," European Space Agency, 31 05 2013. [Online]. Available: http://microelectronics.esa.int/ngmp/ngmp.htm. [Accessed 04 08 2013].
- [29] "Microelectronics," 31 05 2013. [Online]. Available: http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-2-1.pdf. [Accessed 05 08 2013].
- [30] "Microelectronics," 31 05 2013. [Online]. Available: http://microelectronics.esa.int/ngmp/LEON4-N2X-DS-1-8.pdf. [Accessed 05 08 2013].
- [31] "Gaisler," 2013. [Online]. Available: http://www.gaisler.com/doc/LEON4_32bit_processor_core.pdf. [Använd 05 08 2013].
- [32] "The gem5 Simulator System," 18 02 2013. [Online]. Available: http://www.m5sim.org/Main_Page. [Accessed 06 08 2013].
- [33] "The gem5 Simulator System," 18 02 2013. [Online]. Available: http://www.m5sim.org/Architecture_Support. [Accessed 08 08 2013].
- [34] D. Hardy, T. Piquet and I. Puaut, "Using bypass to tighten WCET estimates for multicore processors with shared instruction caches," in *Proceedings of the 30th Real-Time Systems Symposium*, Washington D.C., 2009.
- [35] B. Lesage, D. Hardy and I. Puauat, "Shared Data Cache Conflicts Reduction for WCET Computation in Multicore Architectures," in *18th International Conference on Real-Time and Network Systems*, 2010.
- [36] A. Saulsbury, F. Pong and A. Nowatzyk, "Missing the Memory Wall: The Case for Processor/Memory Integration," in *Proceedings of the 23rd annual international symposium on Computer architecture*, New York, 1996.
- [37] V. Suhendra and T. Mitra, "Exploring locking & partitioning for predictable shared caches on multi-cores," in *In DAC '08: Proceedings of the 45th annual Design Automation Conference*, New York, 2008.

Appendix A: Calculated Result for a System Frequency at 300MHz

		roughput for				i i i cqu	chey at	50010111		
culculated .		reagnpacyer		-	ng Metrics M	ultiplication				
NxN_Metrics	AMAT_Conv	AMAT_Block	Tproc_Conv	Tproc_Block	Texe_1_Conv	Texe_1_Block	Texe_4_Conv	Texe_4_Block	K_Conv	K_Block
32	9,75333E-08	4,65115E-08	0,00101101	0,001180347	0,00404443	0,004721573	0,0010114	0,001180533	3,998842793	3,999527216
48	9,17588E-09	2,33113E-08	0,003380183		0,01352077	0,01593368	0,00338022	0,00398349	3,999967425	3,999929776
64	1,04523E-08	1,77393E-08	0,00797485	0,00944186	0,031899442	0,037767511	0,007974892	0,009441931	3,999984272	3,999977455
80	3,50756E-09	1,44559E-08	0,01553229	0,018440857	0,062129174	0,073763484	0,015532304	0,018440914	3,99999729	3,999990593
96 112	1,05255E-08 3,11274E-09	1,21614E-08 1,05015E-08	0,026789783 0,04248461	0,031865507 0,05060093	0,107159175 0,169938452	0,127462075 0,202403762	0,026789825	0,031865555 0,050600972	3,999995285 3,999999121	3,99999542 3,99999751
112	1,02237E-08	3,19098E-09	0,06335405	0,075532247	0,253416241	0,302128999	0,063354091	0,075532259	3,999998064	3,9999999493
144	7,90656E-09	8,28498E-09	0,090135383		0,360541565	0,43017834	0,090135415	0,10754461	3,999998947	3,9999999076
160	1,04486E-08	7,66428E-09	0,12356589	0,14752304	0,494263602	0,590092191	0,123565932	0,147523071	3,999998985	3,999999377
176	1,07804E-08	8,29136E-09	0,16438285	0,196352757	0,657531443	0,78541106	0,164382893	0,19635279	3,999999213	3,9999999493
192	1,02624E-08	7,00612E-09	0,213323543	0,254918847	0,853294214	1,019675415	0,213323584	0,254918875	3,999999423	3,99999967
208	1,07567E-08	7,21136E-09	0,27112525	0,32410643	1,084501043	1,296425749	0,271125293	0,324106459	3,999999524	3,999999733
224	1,04356E-08	1,04548E-08	0,33852525	0,404800627	1,354101042	1,619202548	0,338525292	0,404800668	3,99999963	3,999999969
240	1,0871E-08	1,71766E-08	0,416260823		1,665043337	1,991546295	0,416260867	0,497886625	3,999999687	3,999999586
256	1,25537E-08	1,03488E-08	0,50506925	0,60424934	2,02027705	2,416997401	0,5050693	0,604249381	3,999999702	3,999999794
272	1,41921E-08	2,63084E-08	0,60568781	0,724774097	2,422751297	2,899096492	0,605687867	0,724774202	3,999999719	3,999999564
288	1,64053E-08	2,76971E-08	0,718853783	0,860345947	2,875415199	3,441383897	0,718853849	0,860346057	3,999999726 3,999999765	3,999999614
304	1,65433E-08	2,75568E-08	0,84530445	1,01185001	3,381217866	4,04740015	0,845304516	1,01185012	3,9999999765	3,9999999673
Calculated V	NCET and Th	roughput for	a system fre	200MHz	and P=8					
culculated		roughputjoi			ng Metrics M	ultiplication				
NxN_Metrics	AMAT_Conv	AMAT_Block		-		Texe_1_Block	Texe_4_Conv	Texe_4_Block	K_Conv	K_Block
32	9,75333E-08	9,29057E-08	0,00101101	0,001180347	0,00808886	0,009443517	0,00101179	0,00118109	7,994601783	7,995594987
48	9,17588E-09	2,33113E-08	0,003380183	0,003983397	0,02704154	0,03186736	0,003380257	0,003983583	7,999847985	7,999672297
64	1,04523E-08	1,77393E-08	0,00797485	0,00944186	0,063798884	0,075535022	0,007974934	0,009442002	7,999926604	7,999894789
80	3,50756E-09	1,44559E-08	0,01553229	0,018440857	0,124258348	0,147526969	0,015532318	0,018440972	7,999987354	7,999956101
96	1,05255E-08	1,21614E-08	0,026789783	0,031865507	0,214318351	0,254924151	0,026789868	0,031865604	7,999977998	7,999978628
112	3,11274E-09	1,05015E-08	0,04248461	0,05060093	0,339876905	0,404807524	0,042484635	0,050601014	7,999995897	7,999988378
128	1,02237E-08	3,19098E-09	0,06335405	0,075532247	0,506832482	0,604257999	0,063354132	0,075532272	7,999990963	7,999997634
144	7,90656E-09	8,28498E-09	0,090135383		0,72108313	0,86035668	0,090135447	0,107544643	7,999995088	7,999995686
160	1,04486E-08	7,66428E-09	0,12356589	0,14752304	0,988527204	1,180184381	0,123565974	0,147523101	7,999995265	7,999997091
176	1,07804E-08	8,29136E-09	0,16438285	0,196352757	1,315062886	1,57082212	0,164382936	0,196352823	7,999996327	7,999997635
192 208	1,02624E-08 1,07567E-08	7,00612E-09 7,21136E-09	0,213323543 0,27112525	0,254918847 0,32410643	1,706588429 2,169002086	2,039350829 2,592851498	0,213323625 0,271125336	0,254918903 0,324106488	7,999997306	7,999998461 7,999998754
208	1,04356E-08	1,04548E-08	0,33852525	0,404800627	2,708202083	3,238405097	0,338525333	0,40480071	7,999998274	
240	1,0871E-08	1,71766E-08	0,416260823		3,330086674	3,983092591	0,41626091	0,497886694		7,999998068
256	1,25537E-08	1,03488E-08	0,50506925	0,60424934	4,0405541	4,833994803	0,50506935	0,604249423	7,999998608	7,9999999041
272	1,41921E-08	2,63084E-08	0,60568781	0,724774097	4,845502594	5,798192984	0,605687924	0,724774307	7,999998688	7,999997967
288	1,64053E-08	2,76971E-08	0,718853783	0,860345947	5,750830398	6,882767795	0,718853915	0,860346168	7,999998722	7,999998197
304	1,65433E-08	2,75568E-08	0,84530445	1,01185001	6,762435732	8,0948003	0,845304582	1,01185023	7,999998904	7,999998475
Calculated V	NCET and Th	roughput for								
NWN Motrice	ANAAT Conv			-	ng Metrics M	-	Toyo A Conv	Toyo 4 Diask	K Canu	K Dlock
NxN_Metrics	9,75333E-08		0,00101101	0,001180347	Texe_1_Conv 0,016177721	Texe_1_Block 0,018886291	Texe_4_Conv 0,001012571	Texe_4_Block 0,001181091	K_Conv 15,97688261	K_Block 15,99054878
32 48	9,17588E-09	4,65115E-08 2,33113E-08	0,003380183	,	0,016177721	0,018888291	0,001012371	0,001181091	15,99934852	15,99054878
64	1,04523E-08	1,77393E-08	0,00797485	0,003983397	0,03408308	0,151070044	0,007975017	0,009442144	15,99968545	15,9995491
80	3,50756E-09	1,44559E-08	0,01553229	0,018440857	0,248516696	0,295053938	0,015532346	0,018441088	15,9999458	15,99981186
96	1,05255E-08	1,21614E-08	0,026789783		0,428636702	0,509848301	0,026789952	0,031865701	15,99990571	15,9999084
112	3,11274E-09	1,05015E-08	0,04248461	0,05060093	0,67975381	0,809615048	0,04248466	0,050601098		15,99995019
128	1,02237E-08	3,19098E-09	0,06335405	0,075532247	1,013664964	1,208515998	0,063354214	0,075532298	15,99996127	15,99998986
144	7,90656E-09	8,28498E-09	0,090135383	0,107544577	1,44216626	1,720713359	0,09013551	0,107544709	15,99997895	15,99998151
160	1,04486E-08	7,66428E-09	0,12356589	0,14752304	1,977054407	2,360368763	0,123566057	0,147523163	15,99997971	15,99998753
176	1,07804E-08	8,29136E-09	0,16438285	0,196352757	2,630125772	3,141644239	0,164383022	0,196352889	15,99998426	15,99998987
192	1,02624E-08	7,00612E-09	0,213323543		3,413176858	4,078701659	0,213323708	0,254918959	15,99998845	15,9999934
208	1,07567E-08	7,21136E-09	0,27112525	0,32410643	4,338004172	5,185702995	0,271125422	0,324106545		15,99999466
224	1,04356E-08	1,04548E-08	0,33852525	0,404800627	5,416404167	6,476810194	0,338525417	0,404800794	15,9999926	15,9999938
240	1,0871E-08	1,71766E-08	0,416260823		6,660173347	7,966185181	0,416260997	0,497886831		15,99999172
256	1,25537E-08	1,03488E-08	0,50506925	0,60424934	8,081108201	9,667989606	0,505069451	0,604249506	15,99999403	
272	1,41921E-08	2,63084E-08	0,60568781	0,724774097	9,691005187	11,59638597	0,605688037	0,724774518		15,99999129
288 304	1,64053E-08 1,65433E-08	2,76971E-08 2,75568E-08	0,718853783 0,84530445	0,860345947 1,01185001	11,5016608 13,52487146	13,76553559 16,1896006	0,718854046 0,845304715	0,86034639 1,011850451	15,99999452 15,9999953	15,99999227 15,99999346
504	1,00400E-08	2,73300E-U8	0,04000445	1,01103001	13,3240/140	10,1090000	0,040504715	1,011050451	13,33333223	10,59599346

Appendix B: Calculated Result for a System Frequency at 600MHz

Calculated	NCET and Th	roughput for	a system fre	eq. 600MHz	and P=4.					
				-	ng Matrix Mu	-				
			· -				Texe_4_Conv	Texe_4_Block	K_Conv	K_Block
32	5,00286E-08	5,00272E-08	0,000505505	0,000590173	0,00202222	0,002360893	0,000505705	0,000590373	3,99881286	3,998983141
48	4,9904E-08	2,6928E-08	0,001690092		0,006760566	0,007966901	0,001690291	0,001991806	3,999645713	3,999837767
64	1,8726E-09	1,1225E-08	0,003987425	0,00472093	0,015949707	0,018883765	0,003987432	0,004720975	3,999994364	3,999971468
80	2,1398E-09	7,53867E-09		0,009220428	0,031064589	0,036881743	0,007766154	0,009220458	3,999996694	3,999990189
96 112	1,473E-09 1,6291E-09	6,08072E-09 5,26943E-09	0,013394892 0,021242305	0,015932753 0,025300465	0,053579573 0,084969227	0,063731038 0,101201881	0,013394898 0,021242312	0,015932778 0,025300486	3,99999868 3,99999908	3,99999542 3,999997501
112	5,11151E-09	4,61594E-09	0,021242303		0,084969227	0,101201881	0,021242312	0,023300488	3,9999998064	3,9999998533
128	1,34148E-09	4,14249E-09	0,045067692	0,053772288	0,12070812	0,21508917	0,045067697	0,0537700142	3,9999999643	3,9999999076
144	5,2178E-09	3,83214E-09	0,061782945	0,07376152	0,247131801	0,295046095	0,061782966	0,073761535	3,999998987	3,9999999377
176	1,15431E-09	4,14568E-09		0,098176378	0,328765705	0,39270553	0,08219143	0,098176395	3,999999831	3,9999999493
192	5,12999E-09	3,51214E-09	0,106661772	0,127459423	0,426647107	0,509837707	0,106661792	0,127459437	3,9999999423	3,999999669
208	1,02952E-09	3,60568E-09	0,135562625	0,162053215	0,542250504	0,648212874	0,135562629	0,162053229	3,9999999909	3,999999733
224	5,21304E-09	5,27633E-09	0,169262625	0,202400313	0,677050521	0,809601274	0,169262646	0,202400334	3,99999963	3,999999687
240	1,89105E-09	8,59554E-09		0,248943278	0,832521654	0,995773148	0,208130419	0,248943313	3,999999891	3,999999586
256	6,27544E-09	2,20435E-09	0,252534625	0,30212467	1,010138525	1,208498689	0,25253465	0,302124679	3,999999702	3,9999999912
272	6,13859E-09	1,3171E-08	0,302843905	0,362387048	1,211375645	1,449548246	0,30284393	0,362387101	3,999999757	3,999999564
288	8,20112E-09	1,38485E-08	0,359426892	0,430172973	1,437707599	1,720691949	0,359426924	0,430173029	3,999999726	3,999999614
304	8,02386E-09	1,37784E-08	0,422652225	0,505925005	1,690608932	2,023700075	0,422652257	0,50592506	3,999999772	3,999999673
Calculated V	NCET and Th	roughput for	a system fre	eq. 600MHz	and P=8.					
			Convent	ional/Blocki	ng Matrix Mu	ultiplication				
NxN_Matrix	AMAT_Conv	AMAT_Block	Tproc_Conv	Tproc_Block	Texe_1_Conv	Texe_1_Block	Texe_4_Conv	Texe_4_Block	K_Conv	K_Block
32	5,00286E-08	5,00272E-08	0,000505505	0,000590173	0,00404444	0,004721787	0,000505905	0,000590574	7,994462206	7,995256267
48	4,9904E-08	2,6928E-08	0,001690092	0,001991698	0,013521133	0,015933802	0,001690491	0,001991914	7,998346856	7,999242955
64	1,8726E-09	1,1225E-08	0,003987425	0,00472093	0,031899415	0,03776753	0,00398744	0,00472102	7,999973701	7,99986685
80	2,1398E-09	7,53867E-09	0,007766145	0,009220428	0,062129177	0,073763487	0,007766162	0,009220489	7,99998457	7,999954214
96	1,473E-09	6,08072E-09	0,013394892	0,015932753	0,107159145	0,127462075	0,013394903	0,015932802	7,999993842	7,999978628
112	1,6291E-09	5,26943E-09	0,021242305	0,025300465	0,169938453	0,202403762	0,021242318	0,025300507	7,999995705	7,999988337
128	5,11151E-09	4,61594E-09	0,031677025	0,037766123	0,253416241	0,302129024	0,031677066	0,03776616	7,999990964	7,999993155
144	1,34148E-09	4,14249E-09	0,045067692	0,053772288	0,360541544	0,43017834	0,045067702	0,053772321	7,999998333	
160	5,2178E-09	3,83214E-09	0,061782945	0,07376152	0,494263602	0,590092191	0,061782987	0,073761551	7,999995271	7,999997091
176	1,15431E-09	4,14568E-09	0,082191425	0,098176378	0,657531409	0,78541106	0,082191434	0,098176411	7,999999214	
192	5,12999E-09	3,51214E-09	0,106661772	0,127459423	0,853294214	1,019675415	0,106661813	0,127459451	7,999997307	7,999998457
208	1,02952E-09	3,60568E-09	0,135562625	0,162053215	1,084501008	1,296425749	0,135562633	0,162053244		7,999998754
224	5,21304E-09	5,27633E-09	0,169262625	0,202400313	1,354101042	1,619202549	0,169262667	0,202400356	7,999998275	7,99999854
240	1,89105E-09	8,59554E-09	0,208130412		1,665043308	1,991546295	0,208130427	0,248943347	7,9999999491	7,999998066
256 272	6,27544E-09 6,13859E-09	2,20435E-09 1,3171E-08	0,252534625	0,30212467 0,362387048	2,02027705 2,422751289	2,416997378 2,899096492	0,252534675 0,302843954	0,302124688 0,362387154	7,999998608 7,999998865	7,999999591 7,999997965
272	8,20112E-09	1,38485E-08	0,359426892	0,302387048	2,422731289	3,441383897	0,359426957	0,430173084	7,999998722	7,999998197
304	8,02386E-09	1,37784E-08		0,505925005	3,381217864	4,04740015	0,422652289	0,505925115		7,999998475
504	0,023001-03	1,577841-08	0,422032223	0,505525005	3,381217804	4,04740015	0,422032203	0,505525115	1,222,223,223	7,555556475
Calculated V	NCET and Th	roughput for	a system fre	pa. 600MHz	and P=16					
					ng Matrix Mu	ultiplication				
NxN_Matrix	AMAT_Conv	AMAT_Block	Tproc_Conv	Tproc_Block	Texe_1_Conv	Texe_1_Block	Texe_4_Conv	Texe_4_Block	K_Conv	K_Block
32	5,00286E-08	5,00272E-08	0,000505505		0,00808888	0,009443574	0,000506305	0,000590974	15,97628536	15,97968348
48	4,9904E-08	2,6928E-08	0,001690092	0,001991698	0,027042265	0,031867604	0,00169089	0,001992129		15,99675587
64	1,8726E-09	1,1225E-08	0,003987425	0,00472093	0,06379883	0,07553506	0,003987455	0,00472111	15,99988729	15,99942937
80	2,1398E-09	7,53867E-09	0,007766145	0,009220428	0,124258354	0,147526974	0,007766179	0,009220549	15,99993387	15,99980378
				0.045022752	0,21431829	0,254924151	0,013394915	0.015033051	45 00007064	15,9999084
96	1,473E-09	6,08072E-09	0,013394892	0,015932753	0,21431025	0,234524151	0,013334313	0,015932851	15,99997361	13,3333004
96 112	1,473E-09 1,6291E-09	6,08072E-09 5,26943E-09	0,013394892 0,021242305		0,339876906	0,404807524	0,021242331	0,015932851		15,99995001
				0,025300465						15,99995001
112	1,6291E-09	5,26943E-09	0,021242305	0,025300465 0,037766123	0,339876906	0,404807524	0,021242331	0,025300549	15,99998159	15,99995001 15,99997067
112 128	1,6291E-09 5,11151E-09	5,26943E-09 4,61594E-09	0,021242305 0,031677025	0,025300465 0,037766123	0,339876906 0,506832482	0,404807524 0,604258047	0,021242331 0,031677107	0,025300549 0,037766197	15,99998159 15,99996127 15,99999286	15,99995001 15,99997067 15,99998151
112 128 144	1,6291E-09 5,11151E-09 1,34148E-09	5,26943E-09 4,61594E-09 4,14249E-09	0,021242305 0,031677025 0,045067692	0,025300465 0,037766123 0,053772288 0,07376152	0,339876906 0,506832482 0,721083088	0,404807524 0,604258047 0,86035668	0,021242331 0,031677107 0,045067713	0,025300549 0,037766197 0,053772355	15,99998159 15,99996127 15,99999286 15,99997973	15,99995001 15,99997067 15,99998151
112 128 144 160	1,6291E-09 5,11151E-09 1,34148E-09 5,2178E-09	5,26943E-09 4,61594E-09 4,14249E-09 3,83214E-09	0,021242305 0,031677025 0,045067692 0,061782945	0,025300465 0,037766123 0,053772288 0,07376152 0,098176378	0,339876906 0,506832482 0,721083088 0,988527203	0,404807524 0,604258047 0,86035668 1,180184381	0,021242331 0,031677107 0,045067713 0,061783028	0,025300549 0,037766197 0,053772355 0,073761581	15,99998159 15,99996127 15,99999286 15,99997973	15,99995001 15,99997067 15,99998151 15,99998753 15,99998987
112 128 144 160 176	1,6291E-09 5,11151E-09 1,34148E-09 5,2178E-09 1,15431E-09	5,26943E-09 4,61594E-09 4,14249E-09 3,83214E-09 4,14568E-09	0,021242305 0,031677025 0,045067692 0,061782945 0,082191425	0,025300465 0,037766123 0,053772288 0,07376152 0,098176378 0,127459423	0,339876906 0,506832482 0,721083088 0,988527203 1,315062818	0,404807524 0,604258047 0,86035668 1,180184381 1,57082212	0,021242331 0,031677107 0,045067713 0,061783028 0,082191443	0,025300549 0,037766197 0,053772355 0,073761581 0,098176445	15,99998159 15,99996127 15,99999286 15,99997973 15,99999663	15,99995001 15,99997067 15,99998151 15,99998753 15,99998987 15,99999339
112 128 144 160 176 192	1,6291E-09 5,11151E-09 1,34148E-09 5,2178E-09 1,15431E-09 5,12999E-09	5,26943E-09 4,61594E-09 4,14249E-09 3,83214E-09 4,14568E-09 3,51214E-09	0,021242305 0,031677025 0,045067692 0,061782945 0,082191425 0,106661772 0,135562625	0,025300465 0,037766123 0,053772288 0,07376152 0,098176378 0,127459423	0,339876906 0,506832482 0,721083088 0,988527203 1,315062818 1,706588429	0,404807524 0,604258047 0,86035668 1,180184381 1,57082212 2,03935083	0,021242331 0,031677107 0,045067713 0,061783028 0,082191443 0,106661854	0,025300549 0,037766197 0,053772355 0,073761581 0,098176445 0,12745948	15,99998159 15,99996127 15,99999286 15,99997973 15,99999663 15,99998846	15,99995001 15,99997067 15,99998151 15,99998753 15,99998987 15,99999339
112 128 144 160 176 192 208	1,6291E-09 5,11151E-09 1,34148E-09 5,2178E-09 1,15431E-09 5,12999E-09 1,02952E-09	5,26943E-09 4,61594E-09 4,14249E-09 3,83214E-09 4,14568E-09 3,51214E-09 3,60568E-09	0,021242305 0,031677025 0,045067692 0,061782945 0,082191425 0,106661772 0,135562625	0,025300465 0,037766123 0,053772288 0,07376152 0,098176378 0,127459423 0,162053215 0,202400313	0,339876906 0,506832482 0,721083088 0,988527203 1,315062818 1,706588429 2,169002016	0,404807524 0,604258047 0,86035668 1,180184381 1,57082212 2,03935083 2,592851498	0,021242331 0,031677107 0,045067713 0,061783028 0,082191443 0,106661854 0,135562641	0,025300549 0,037766197 0,053772355 0,073761581 0,098176445 0,12745948 0,162053273	15,99998159 15,99996127 15,9999286 15,99997973 15,99998846 15,99998848	15,99995001 15,99997067 15,99998151 15,99998753 15,99998987 15,99999339 15,99999466 15,99999374
112 128 144 160 176 192 208 224	1,6291E-09 5,11151E-09 1,34148E-09 5,2178E-09 1,15431E-09 5,12999E-09 1,02952E-09 5,21304E-09	5,26943E-09 4,61594E-09 3,83214E-09 4,14568E-09 3,51214E-09 3,60568E-09 5,27633E-09	0,021242305 0,031677025 0,045067692 0,061782945 0,082191425 0,106661772 0,135562625 0,169262625	0,025300465 0,037766123 0,053772288 0,07376152 0,098176378 0,127459423 0,162053215 0,202400313	0,339876906 0,506832482 0,721083088 0,988527203 1,315062818 1,706588429 2,169002016 2,708202083	0,404807524 0,604258047 0,86035668 1,180184381 1,57082212 2,03935083 2,592851498 3,238405098	0,021242331 0,031677107 0,045067713 0,061783028 0,082191443 0,106661854 0,135562641 0,169262708	0,025300549 0,037766197 0,053772355 0,073761581 0,098176445 0,12745948 0,162053273 0,202400398	15,99998159 15,99996127 15,99999286 15,99997973 15,9999863 15,9999818 15,99999261	15,99995001 15,99997067 15,99998151 15,99998753 15,99998987 15,9999333 15,9999466 15,9999374
112 128 144 160 176 192 208 224 240	1,6291E-09 5,11151E-09 1,34148E-09 5,2178E-09 1,15431E-09 5,12999E-09 1,02952E-09 5,21304E-09 1,89105E-09	5,26943E-09 4,61594E-09 4,14249E-09 3,83214E-09 4,14568E-09 3,51214E-09 3,60568E-09 5,27633E-09 8,59554E-09	0,021242305 0,031677025 0,045067692 0,061782945 0,082191425 0,106661772 0,135562625 0,169262625 0,208130412 0,252534625	0,025300465 0,037766123 0,053772288 0,07376152 0,098176378 0,127459423 0,162053215 0,202400313 0,248943278	0,339876906 0,506832482 0,721083088 0,988527203 1,315062818 1,706588429 2,169002016 2,708202083 3,330086617	0,404807524 0,604258047 0,86035668 1,180184381 1,57082212 2,03935083 2,592851498 3,238405098 3,983092591	0,021242331 0,031677107 0,045067713 0,061783028 0,082191443 0,106661854 0,135562641 0,169262708 0,208130442	0,025300549 0,037766197 0,053772355 0,073761581 0,098176445 0,12745948 0,162053273 0,202400398 0,248943416	15,9998159 15,9999286 15,9999793 15,9999684 15,9999884 15,9999884 15,9999261 15,9999782 15,9999782	15,9995001 15,9997067 15,9998151 15,9998753 15,9999873 15,99993374 15,9999374 15,9999171
112 128 144 160 176 192 208 224 240 256	1,6291E-09 5,11151E-09 1,34148E-09 5,2178E-09 1,15431E-09 5,1299E-09 1,02952E-09 5,21304E-09 1,89105E-09 6,27544E-09	5,26943E-09 4,61594E-09 4,14249E-09 4,14568E-09 3,51214E-09 3,60568E-09 5,27633E-09 8,59554E-09 2,20435E-09	0,021242305 0,031677025 0,045067692 0,061782945 0,082191425 0,106661772 0,135562625 0,169262625 0,208130412 0,252534625	0,025300465 0,037766123 0,053772288 0,07376152 0,127459423 0,1224594321 0,202400313 0,248943278 0,30212467 0,362387048	0,339876906 0,506832482 0,721083088 0,988527203 1,315062818 1,706588429 2,169002016 2,708202083 3,330086617 4,0405541	0,404807524 0,604258047 0,86035668 1,180184381 1,57082212 2,03935083 2,592851498 3,238405098 3,983092591 4,833994755	0,021242331 0,031677107 0,045067713 0,061783028 0,082191443 0,106661854 0,135562641 0,169262708 0,208130442 0,252534725	0,025300549 0,037766197 0,053772355 0,073761581 0,098176445 0,12745948 0,162053273 0,202400398 0,248943416 0,302124705	15,9998159 15,9999286 15,9999793 15,9999684 15,9999884 15,9999884 15,9999261 15,9999782 15,9999782	15,9995001 15,9997057 15,9998753 15,9998753 15,9999875 15,9999366 15,9999374 15,9999171 15,9999825

Appendix C: Calculated Result for a System Frequency at 1200MHz

			Convent	ional/Blocki	ng Matrix Mu	ltiplication				
NxN_Matrix	AMAT_Conv	AMAT_Block	Tproc_Conv	Tproc_Block	Texe_1_Conv	Texe_1_Block	Texe_4_Conv	Texe_4_Block	K_Conv	K_Block
32	2,50142E-08	2,50136E-08	0,000252753	0,000295087	0,00101111	0,001180447	0,000252853	0,000295187	3,998812864	3,99898314
48	2,50096E-08	2,5009E-08	0,000845046	0,000995849	0,003380283	0,003983497	0,000845146	0,000995949	3,999644896	3,99969867
64	2,48456E-08	1,17728E-08	0,001993713	0,002360465	0,007974949	0,009441907	0,001993812	0,002360512	3,999850464	3,9999401
80	1,65742E-08	1,02328E-08	0,003883073	0,004610214	0,015532356	0,018440898	0,003883139	0,004610255	3,999948781	3,99997336
96	1,33377E-09	7,88489E-09	0,006697446	0,007966377	0,026789789	0,031865538	0,006697451	0,007966408	3,99999761	3,99998812
112	8,14275E-10	5,78168E-09	0,010621153		0,042484613	0,050600953	0,010621156	0,012650256	3,99999908	3,9999945
128	2,55529E-09	2,31117E-09	0,015838513		0,06335406	0,075532256	0,015838523	0,018883071	3,999998064	3,9999985
144	6,70615E-10	2,68424E-09	0,022533846	0,026886144	0,090135386	0,107544587	0,022533849	0,026886155	3,999999643	3,9999988
160	5,85045E-10	2,12481E-09	0,030891473	0,03688076	0,123565892	0,147523048	0,030891475	0,036880768	3,9999999773	3,9999993
176	5,7829E-10	2,14234E-09	0,041095713		0,164382852	0,196352765	0,041095715	0,049088198	3,999999831	3,9999994
192	2,56365E-09	1,75607E-09	0,053330886	0,063729712	0,213323554	0,254918854	0,053330896	0,063729719	3,9999999423	3,99999996
208	5,14035E-10	1,80284E-09	0,067781313	0,081026608	0,271125252	0,324106437	0,067781315	0,081026615	3,9999999909	3,99999997
200	5,4463E-10	2,65299E-09	0,084631313		0,338525252	0,404800637	0,084631315	0,101200167	3,9999999923	3,99999996
240	8,8628E-10	4,31747E-09	0,104065206		0,416260827	0,497886574	0,104065209	0,124471656	3,999999898	3,99999995
240		6,76005E-09	0,126267313		0,505069263		0,126267325		3,9999999702	3,99999994
272	3,1355E-09 1,49582E-08	6,59498E-09	0,151421953		0,60568787	0,604249367 0,724774123	0,151422012	0,151062362 0,181193551	3,999998815	3,99999995
272	4,01138E-09	6,92427E-09	0,131421955	0,215086487	0,718853799		0,131422012		3,9999999732	3,99999996
						0,860345974		0,215086514		,
304	2,51332E-08	6,8892E-09	0,211326113	0,252962503	0,845304551	1,011850038	0,211326213	0,25296253	3,999998573	3,9999996
Calaulated I	ALCET and Th		a avatara fu	~ 12001411-	and D-O					
alculatea V	WCET and Th	rougnput for				14 to 11 o o 41 o oo				
	ANAAT C	ANAAT DI		-	ng Matrix Mu		Taura di C	Taura di Di Li	KC	KOL
IxN_Matrix	AMAT_Conv					Texe_1_Block		Texe_4_Block	K_Conv	K_Block
32	2,50142E-08	2,50136E-08	0,000252753	0,000295087	0,00202222	0,002360893	0,000252953	0,000295287	7,994462223	7,9952562
48	2,50096E-08	2,5009E-08	0,000845046	0,000995849	0,006760567	0,007966993	0,000845246	0,000996049	7,998343044	7,9985939
64	2,48456E-08	1,17728E-08	0,001993713	0,002360465	0,015949899	0,018883814	0,001993911	0,002360559	7,9993022	7,9997207
80	1,65742E-08	1,02328E-08	0,003883073	0,004610214	0,031064713	0,036881795	0,003883205	0,004610296	7,999760983	7,9998757
96	1,33377E-09	7,88489E-09	0,006697446	0,007966377	0,053579577	0,063731076	0,006697457	0,00796644	7,999988848	7,9999445
112	8,14275E-10	5,78168E-09	0,010621153	0,012650233	0,084969227	0,101201906	0,010621159	0,012650279	7,999995707	7,9999744
128	2,55529E-09	2,31117E-09	0,015838513	0,018883062	0,12670812	0,151064512	0,015838533	0,01888308	7,999990965	7,9999931
144	6,70615E-10	2,68424E-09	0,022533846	0,026886144	0,180270772	0,215089175	0,022533851	0,026886166	7,999998333	7,9999944
160	5,85045E-10	2,12481E-09	0,030891473	0,03688076	0,247131785	0,295046097	0,030891477	0,036880777	7,999998939	7,9999967
176	5,7829E-10	2,14234E-09	0,041095713	0,049088189	0,328765705	0,39270553	0,041095717	0,049088206	7,999999212	7,9999975
192	2,56365E-09	1,75607E-09	0,053330886	0,063729712	0,426647107	0,509837707	0,053330906	0,063729726	7,999997308	7,9999984
208	5,14035E-10	1,80284E-09	0,067781313	0,081026608	0,542250504	0,648212874	0,067781317	0,081026622	7,999999575	7,9999987
224	5,4463E-10	2,65299E-09	0,084631313	0,101200157	0,677050504	0,809601275	0,084631317	0,101200178	7,99999964	7,9999985
240	8,8628E-10	4,31747E-09	0,104065206	0,124471639	0,832521654	0,995773148	0,104065213	0,124471674	7,999999523	7,9999980
256	3,1355E-09	6,76005E-09	0,126267313	0,151062335	1,010138525	1,208498734	0,126267338	0,151062389	7,999998609	7,9999974
272	1,49582E-08	6,59498E-09	0,151421953	0,181193524	1,21137574	1,449548246	0,151422072	0,181193577	7,999994468	7,9999979
288	4,01138E-09	6,92427E-09	0,179713446	0,215086487	1,437707599	1,720691949	0,179713478	0,215086542	7,99999875	7,9999981
304	2,51332E-08	6,8892E-09		0,252962503	1,690609101	2,023700075	0,211326314	0,252962558	7,99999334	7,9999984
		-,			_,				.,	.,
Calculated V	WCET and Th	roughput for	a system fre	a 1200MHz	and P=16					
ulculuccu		oughputjoi			ng Matrix Mu	Itinlication				
IvN Matrix	AMAT Conv	AMAT Block		-	-	Texe_1_Block	Texe / Conv	Texe_4_Block	K_Conv	K_Block
ININ IVIALIIA				трюс_вюск	TEXE_1_CONV	TEXE_T_DIOCK				
	2 501 425 00	2 501265 00	0.000252752	0.000205007	0.00404444	0.004724707				15,979683
32	2,50142E-08	2,50136E-08		0,000295087	0,00404444	0,004721787	0,000253153	0,000295487	15,97628543	
32 48	2,50096E-08	2,5009E-08	0,000845046	0,000995849	0,013521133	0,015933987	0,000845446	0,000996249	15,99290044	15,993975
32 48 64	2,50096E-08 2,48456E-08	2,5009E-08 1,17728E-08	0,000845046 0,001993713	0,000995849 0,002360465	0,013521133 0,031899798	0,015933987 0,037767628	0,000845446 0,00199411	0,000996249 0,002360653	15,99290044 15,99700973	15,993975 15,998803
32 48 64 80	2,50096E-08 2,48456E-08 1,65742E-08	2,5009E-08 1,17728E-08 1,02328E-08	0,000845046 0,001993713 0,003883073	0,000995849 0,002360465 0,004610214	0,013521133 0,031899798 0,062129425	0,015933987 0,037767628 0,07376359	0,000845446 0,00199411 0,003883338	0,000996249 0,002360653 0,004610378	15,99290044 15,99700973 15,99897568	15,993975 15,998803 15,999467
32 48 64 80 96	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09	0,000845046 0,001993713 0,003883073 0,006697446	0,000995849 0,002360465 0,004610214 0,007966377	0,013521133 0,031899798 0,062129425 0,107159155	0,015933987 0,037767628 0,07376359 0,127462153	0,000845446 0,00199411 0,003883338 0,006697467	0,000996249 0,002360653 0,004610378 0,007966503	15,99290044 15,99700973 15,99897568 15,99995221	15,993975 15,998803 15,999467 15,999762
32 48 64 80 96 112	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09 5,78168E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153	0,000995849 0,002360465 0,004610214 0,007966377 0,012650233	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325	15,99290044 15,99700973 15,99897568 15,99995221 15,9999816	15,993975 15,998803 15,999467 15,999762 15,999890
32 48 64 80 96	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09 5,78168E-09 2,31117E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513	0,000995849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453 0,253416241	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813 0,302129024	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325 0,018883099	15,99290044 15,99700973 15,99897568 15,99995221 15,9999816 15,99996128	15,993975 15,998803 15,999467 15,999762 15,999890 15,999970
32 48 64 80 96 112	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09 5,78168E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513	0,000995849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325	15,99290044 15,99700973 15,99897568 15,99995221 15,9999816	15,993975 15,998803 15,999467 15,999762 15,999890 15,999970 15,999976
32 48 64 80 96 112 128	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09 5,78168E-09 2,31117E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513	0,000995849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453 0,253416241	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813 0,302129024	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325 0,018883099	15,99290044 15,99700973 15,99897568 15,99995221 15,9999816 15,99996128	15,993975 15,998803 15,999467 15,999762 15,999890 15,999970 15,999976
32 48 64 80 96 112 128 144	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09 6,70615E-10	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09 5,78168E-09 2,31117E-09 2,68424E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513 0,022533846 0,030891473	0,000995849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453 0,253416241 0,360541544	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813 0,302129024 0,43017835	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553 0,022533857	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325 0,018883099 0,026886187	15,99290044 15,99700973 15,99897568 15,99995221 15,9999816 15,99996128 15,9999286	15,993975 15,998803 15,999467 15,999762 15,999800 15,999970 15,999976 15,999976
32 48 64 80 96 112 128 144 160	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09 6,70615E-10 5,85045E-10	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09 5,78168E-09 2,31117E-09 2,68424E-09 2,12481E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513 0,022533846 0,030891473 0,041095713	0,000995849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144 0,03688076	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453 0,253416241 0,360541544 0,494263569	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813 0,302129024 0,43017835 0,590092194	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553 0,022533857 0,030891482	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325 0,018883099 0,026886187 0,036880794	15,99290044 15,99700973 15,99897568 15,99995221 15,9999816 15,99996128 15,99999286 15,99999545	15,993975 15,998803 15,999467 15,999762 15,999970 15,999970 15,999976 15,999986 15,999989
32 48 64 80 96 112 128 144 160 176	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09 6,70615E-10 5,85045E-10 5,7829E-10	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09 5,78168E-09 2,31117E-09 2,68424E-09 2,12481E-09 2,14234E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513 0,022533846 0,030891473 0,041095713 0,053330886	0,000995849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144 0,03688076 0,049088189	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453 0,253416241 0,360541544 0,494263569 0,657531409	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813 0,302129024 0,43017835 0,590092194 0,785411061	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553 0,022533857 0,030891482 0,041095722	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325 0,018883099 0,026886187 0,036880794 0,049088223	15,99290044 15,99700973 15,99897568 15,99995221 15,99998108 15,99996128 15,99999286 15,99999545 15,99999662	15,993975 15,998803 15,999467 15,999762 15,999970 15,999970 15,999980 15,999989 15,999989
32 48 64 80 96 112 128 144 160 176 192	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09 6,70615E-10 5,85045E-10 5,7829E-10 2,56365E-09	2,5009E-08 1,17728E-08 1,02328E-08 7,88489E-09 2,78168E-09 2,31117E-09 2,68424E-09 2,12481E-09 2,14234E-09 1,75607E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513 0,022533846 0,030891473 0,041095713 0,053330886	0,00095849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144 0,03688076 0,049088189 0,063729712 0,081026608	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453 0,253416241 0,360541544 0,494263569 0,657531409 0,853294214	0,015933987 0,037767628 0,127462153 0,202403813 0,302129024 0,43017835 0,590092194 0,785411061 1,019675415	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553 0,022533857 0,030891482 0,041095722 0,053330927	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325 0,018883099 0,026886187 0,036880794 0,049088223 0,06372974	15,99290044 15,99700973 15,99897568 15,99995221 15,99996128 15,99999286 15,99999545 15,99999662 15,99998846	15,993975 15,99880 15,999762 15,999700 15,999970 15,999976 15,999986 15,999989 15,99993 15,99993
32 48 64 80 96 112 128 144 160 176 192 208	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09 6,70615E-10 5,85045E-10 5,7829E-10 2,56365E-09 5,14035E-10	2,5009E-08 1,17728E-08 1,02328E-08 5,78168E-09 2,31117E-09 2,268424E-09 2,12481E-09 2,14234E-09 1,75607E-09 1,80284E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513 0,022533846 0,030891473 0,041095713 0,053330886 0,067781313 0,084631313	0,00095849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144 0,03688076 0,049088189 0,063729712 0,081026608	0,013521133 0,031899798 0,062129425 0,107159155 0,169938453 0,253416241 0,360541544 0,494263569 0,657531409 0,853294214 1,084501008	0,015933987 0,037767628 0,127462153 0,202403813 0,302129024 0,43017835 0,590092194 0,785411061 1,019675415 1,296425749	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553 0,022533857 0,030891482 0,041095722 0,053330927 0,067781321	0,000996249 0,002360653 0,004610378 0,007966503 0,012650325 0,018883099 0,026886187 0,036880794 0,049088223 0,06372974 0,081026636	15,99290044 15,99700973 15,99897568 15,99995221 15,99996128 15,99999265 15,99999545 15,99999684 15,99999884 15,99999846	15,993975 15,99860 15,999467 15,999467 15,99980 15,999970 15,999976 15,999986 15,999989 15,999993 15,999994 15,999994
32 48 64 80 96 112 128 144 160 176 192 208 224 240	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09 6,70615E-10 5,7829E-10 2,56365E-09 5,14035E-10 5,4463E-10 8,8628E-10	2,5009E-08 1,17728E-08 1,02328E-08 5,78168E-09 2,31117E-09 2,68424E-09 2,12481E-09 2,14234E-09 1,75607E-09 1,80284E-09 2,65299E-09 4,31747E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513 0,022533846 0,030891473 0,041095713 0,053330886 0,067781313 0,084631313 0,104065206	0,000995849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144 0,03688076 0,03688076 0,049088189 0,063729712 0,081026088 0,101200157 0,124471639	0,013521133 0,031899798 0,062129425 0,107159155 0,253416241 0,360541544 0,494263569 0,657531409 0,853294214 1,084501008 1,354101009 1,665043308	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813 0,302129024 0,43017835 0,590092194 0,785411061 1,019675415 1,296425749 1,619202549 1,991546296	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553 0,022533857 0,030891482 0,041095722 0,053330927 0,067781321 0,084631321 0,10406522	0,000996249 0,002360653 0,004610378 0,0079665032 0,012650325 0,018883099 0,026886187 0,036880794 0,049088223 0,06372974 0,081026636 0,101200199 0,124471708	15,99290044 15,99700973 15,99897568 15,99995221 15,99996128 15,99999265 15,99999545 15,99999846 15,99999846 15,99999846 15,9999976	15,993975 15,99880; 15,999467 15,999762 15,999970 15,999976 15,999986 15,999989 15,999989 15,999993 15,999994 15,999993 15,999991
32 48 64 80 96 112 128 144 160 176 192 208 224 240 256	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09 6,70615E-10 5,7829E-10 2,56365E-09 5,14035E-10 8,8628E-10 3,1355E-09	2,5009E-08 1,17728E-08 1,02328E-08 5,78168E-09 2,31117E-09 2,68424E-09 2,12481E-09 2,14234E-09 1,75607E-09 1,80284E-09 2,65299E-09 4,31747E-09 6,76005E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513 0,022533846 0,030891473 0,041095713 0,053330886 0,067781313 0,084631313 0,124065206 0,126267313	0,00095849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144 0,03688076 0,03688076 0,049088189 0,063729712 0,08102608 0,101200157 0,124471639 0,151062335	0,013521133 0,031899798 0,062129425 0,107159155 0,253416241 0,360541544 0,494263569 0,657531409 0,853294214 1,084501008 1,354101009 1,665043308 2,02027705	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813 0,302129024 0,43017835 0,590092194 0,785411061 1,019675415 1,296425749 1,619202549 1,991546296 2,416997468	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553 0,022533857 0,030891482 0,041095722 0,053330927 0,067781321 0,084631321 0,10406522 0,126267363	0,000996249 0,002360653 0,004610378 0,0079665032 0,012650325 0,018883099 0,026886187 0,036880794 0,049088223 0,06372974 0,081026636 0,101200199 0,124471708 0,151062443	15,99290044 15,99700973 15,99897568 15,99995221 15,99991628 15,99999265 15,99999545 15,99999846 15,99999846 15,99999740 15,99999740	15,993975 15,99880 15,999467 15,999762 15,999970 15,999976 15,999986 15,999989 15,999993 15,999994 15,999994 15,999991 15,999991
32 48 64 80 96 112 128 144 160 176 192 208 224 240	2,50096E-08 2,48456E-08 1,65742E-08 1,33377E-09 8,14275E-10 2,55529E-09 6,70615E-10 5,7829E-10 2,56365E-09 5,14035E-10 5,4463E-10 8,8628E-10	2,5009E-08 1,17728E-08 1,02328E-08 5,78168E-09 2,31117E-09 2,68424E-09 2,12481E-09 2,14234E-09 1,75607E-09 1,80284E-09 2,65299E-09 4,31747E-09	0,000845046 0,001993713 0,003883073 0,006697446 0,010621153 0,015838513 0,022533846 0,030891473 0,041095713 0,053330886 0,067781313 0,084631313 0,124065206 0,126267313	0,00095849 0,002360465 0,004610214 0,007966377 0,012650233 0,018883062 0,026886144 0,03688076 0,03688076 0,049088189 0,063729712 0,08102608 0,101200157 0,124471639 0,151062335 0,181193524	0,013521133 0,031899798 0,062129425 0,107159155 0,253416241 0,360541544 0,494263569 0,657531409 0,853294214 1,084501008 1,354101009 1,665043308	0,015933987 0,037767628 0,07376359 0,127462153 0,202403813 0,302129024 0,43017835 0,590092194 0,785411061 1,019675415 1,296425749 1,619202549 1,991546296	0,000845446 0,00199411 0,003883338 0,006697467 0,010621166 0,015838553 0,022533857 0,030891482 0,041095722 0,053330927 0,067781321 0,084631321 0,10406522	0,000996249 0,002360653 0,004610378 0,0079665032 0,012650325 0,018883099 0,026886187 0,036880794 0,049088223 0,06372974 0,081026636 0,101200199 0,124471708	15,99290044 15,99700973 15,99897568 15,99995221 15,99996128 15,99999265 15,99999545 15,99999846 15,99999846 15,99999846 15,9999976	15,993975 15,99880 15,999762 15,999700 15,999970 15,999976 15,999986 15,999989 15,99993 15,99993

Appendix D: Conventional Matrix Multiplication

```
CONVENTIONAL MATRIX MULTIPLICATION
/*
       mconv.c
                   */
#include "util/m5/m5op.h"
                           /* enables access to some Gem5 functions */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* CONVENTIONAL METRICS MULTIPLICATION ALGORITHM */
void main(int argc, char **argv)
{
int MAXLOOP = atoi(argv[1]);
int N=MAXLOOP;
int i, j, k;
int A[N][N];
int B[N][N];
int C[N][N];
for (i=0; i<N; i++) for (j=0; j<N; j++) { A[i][j]=j; } //assigning values
to metrics A
for (i=0; i<N; i++) for (j=0; j<N; j++) { B[i][j]=j; } //assigning values
to metrics B
for (i=0; i<N; i++) for (j=0; j<N; j++) { C[i][j]=j; } //assigning values
to metrics C
m5 dumpreset stats(0,0);
m5 checkpoint(0,0);
/****************** Region of Interest Starts Here ******************/
for (i=0; i<N; i++)
{
      for (j=0; j<N; j++)
      {
            for (k=0; k<N; k++)
            {
              C[i][j]+=A[i][k]*B[k][j];
            }
        }
}
/******************** Region of Interest Ends Here ************************/
m5 exit(0);
exit(0);
                                   /* No errors */
}
```

Appendix E: Blocking Algorithm Matrix Multiplication

```
#include "util/m5/m5op.h" /* enables access to some Gem5 functions */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MIN(a,b) (((a)<(b))?(a):(b))</pre>
/* BLOCKING METRICS MULTIPLICATION ALGORITHM */
void main(int argc, char **argv)
int MAXLOOP = atoi(argv[1]);
int N=MAXLOOP;
int kk,jj,i,k,j,block=16;
int A[N][N];
int B[N][N];
int C[N][N];
for (i=0; i<N; i++) for (j=0; j<N; j++) { A[i][j]=j; } //assigning values
to metrics A
for (i=0; i<N; i++) for (j=0; j<N; j++) { B[i][j]=j; } //assigning values
to metrics B
for (i=0; i<N; i++) for (j=0; j<N; j++) { C[i][j]=j; } //assigning values
to metrics C
m5 dumpreset stats(0,0);
m5 checkpoint(0,0);
/******
                            Region of Interest
                                                         Starts
                                                                   Here
****************************/
for (jj = 0; jj < N; jj += block)
{
    for (kk = 0; kk < N; kk += block)
    {
     for (i = 0; i < N; i += 1)
      {
         for (j = jj; j < MIN(jj + block, N); j++)
          {
           for (k = kk; k < MIN(kk + block, N); k++)
           {
               C[i][j] += A[i][k] * B[k][j];
           }
          }
     }
    }
}
/******
                            Region
                                     of
                                              Interest Ends
                                                                   Here
****************************
m5 exit(0);
exit(0);
                                  /* No errors */
}
```

Appendix F: BASH SCRIPT 1 - runsim.sh

```
#!/bin/bash
SHOME="/home/feysal/gem5"
clear
#runsim.sh
INC START=32 #Start matrix size 32x32
INC STOP=305 #Last matrix size 304x304
INC STEPS=16 #18 matrix size intervals: 32x32, 48x48 ... 304x304
SIM FILE NAME=$2 #reads the file through parameter 2: example:
"mconv.c" #"mblock.c"
******
COUNT=$INC START
Nfiles=$INC STOP
                          #Temp file to copy the code to for
     rm multipalgorithm.c
compiling and then simulating
     cp SIMFILES/$SIM FILE NAME multipalgorithm.c #enter the file to
be compiled and then simulated
    sleep 1
     #n=1
     simfile="output"
    make clean
    echo Starting compilation ...
    make EXEC=$simfile #call makefile to compile the code
*****
    Running a number of simulation iterations
#
****
while [ $COUNT -lt $Nfiles ]; do
    echo Starting simulation [$COUNT] ...
    sleep 1
    rm -rf m5out/trial/cpt*
    rm m5out/trial/config*
     sleep 1
     ./build/X86/gem5.opt --outdir=m5out/trial configs/example/se.py -n
1 -o $COUNT -c ./output --caches --l2cache --l1i size=4kB --l1i assoc=4
--11d size=4kB --11d assoc=4 --12 size=256kB --12 assoc=4 --cpu-type
timing --clock=150MHz
     sleep 1
     ./build/X86/gem5.opt --outdir=m5out/trial configs/example/se.py -n
1 -o $COUNT -c ./output --caches --l2cache --l1i size=4kB --l1i assoc=4
--11d size=4kB --11d assoc=4 --12 size=256kB --12 assoc=4 --cpu-type
timing --clock=150MHz --checkpoint-dir=m5out/trial -r 1
```

echo simulation ended successfully

#Calling the second bash script: script name + iterations number+ start matrix size+C code file name source collectSats.sh \$COUNT \$INC_START \$SIM_FILE_NAME

let COUNT=COUNT+\$INC_STEPS #Count the number of application
iterations

sleep 1

done

##--help -> lists the options available
##--debug-flag=list of flags that need to be traced
##--debug-flags=WorkItems

Appendix G: BASH SCRIPT 2 - collectStats.sh

```
#!/bin/bash
SHOME="/home/feysal/gem5"
fstatsSummary="${SHOME}/stats summary.txt"
COUNT=$1
                   #Reading parameter from script 1
INC START=$2
                   # --//--
SIM FILE NAME=$3 # --//--
# Function: searching and extracting digits from the stats file text #
function findDigits()
{
    #----- findig digits in the stats file
    stringTmp=$(grep "$1" m5out/trial/stats.txt)
    stringTmp=${stringTmp//"l2"/"lt"} #Changed l2 into lt to again
digit search function return the "2" after 1 in 12 cache string
    charCount="${stringTmp//[^#]}"
    if [ ${#charCount} -gt '1' ]; then
         string=${stringTmp:`expr index "$stringTmp" '#'`}
    else
         string=$stringTmp
    fi
    pattern1='([[:digit:]].[[:digit:]]+)'
    [[ $string =~ $pattern1 ]]
    tmpvar1=${BASH REMATCH[1]}
    pattern2='([[:digit:]]+)'
    [[ $string =~ $pattern2 ]]
    tmpvar2=${BASH REMATCH[1]}
    if [ -n "$tmpvar1" ]; then
         digits=$tmpvar1
      elif [ -n "$tmpvar2" ]; then
         digits=$tmpvar2
      else
         digits=0
    fi
*****
echo "....."
echo "Saving statistics summary in stats summary.txt "
sleep 1
fstatssearch=$(find -name $fstatsSummary)
if [ $fstatssearch and "./stats summary.txt" ] #save stats if file
found else create file then save stats
then
echo "Done ....."
else
touch $fstatsSummary # create file if not found"
echo "Done ....."
fi
```

#%%%%%%%% Passing search string to findDigits function %%%%%%%% findDigits "sim insts" n insts=\$digits findDigits "12.overall hits::switch cpus.data" 12hits=\$digits findDigits "12.overall misses::switch cpus.data" l2misses=\$digits findDigits "12.overall accesses::switch_cpus.data" 12accesses=\$digits findDigits "12.overall miss rate::switch cpus.data" 12miss rate=\$digits findDigits "dcache.overall hits::switch cpus.data" dhits=\$digits findDigits "dcache.overall misses::switch cpus.data" dmisses=\$digits findDigits "dcache.overall accesses::switch cpus.data" daccesses=\$digits findDigits "dcache.overall miss rate::switch cpus.data" dmiss rate=\$digits collected/recalculated data #응응응응응응응응 Saving the into the if [\$daccesses -gt '0']; then dmiss rate=\$(bc <<< "scale = 6; \$dmisses/\$daccesses") #BC is used to divide 2 variables and return the result with floating-point else let dmiss rate=0 fi if [\$COUNT -eq \$INC START]; then # Prints the headers and the first line echo -e "\n\$SIM FILE NAME" >> \$fstatsSummary echo -e "N-Metrics\tL1-Hits\tL1-Misses\tL1-Accesses\tL1-Miss-rate\tN-Instractions\tL2-Hits\tL2-Misses\tL2-Accesses\tL2-Miss-rate" >> \$fstatsSummary echo -0 "\$COUNT\t\t\$dhits\t\$dmisses\t\t\$daccesses\t\t\$dmiss_rate\t\t\$n_insts\t\ t\$12hits\t\$12misses\t\t\$12accesses\t\t\$12miss rate">>\$fstatsSummary else # Prints the remaining lines (if more than 1 line is to be printed) echo "\$COUNT\t\t\$dhits\t\$dmisses\t\t\$daccesses\t\t\$dmiss rate\t\t\$n insts\t\ t\$12hits\t\$12misses\t\t\$12accesses\t\t\$12miss rate">>\$fstatsSummary fi echo "Stats summary saved in gem5/stats summary.txt...." sleep 1

Appendix H: MAKEFILE

```
CC=gcc
#CC=gcc
CFLAGS= -D M5 -O2 -g
\#CFLAGS = -02 -g
#LD FLAGS= -lpthread
LD FLAGS=--static
OUTPUT= output
OBJS= multipalgorithm.o
M5 OBJ=util/m5/m5op x86.S
all: $(OUTPUT)
$(OUTPUT):$(OBJS)
      $(CC) -o $(OUTPUT) $(OBJS) $(M5_OBJ) $(LD_FLAGS)
      #$(CC) -o $(OUTPUT) $(OBJS) $(M5_OBJ) $(LD_FLAGS)
.c.o:
      $(CC) -c $(CFLAGS) $*.c
clean:
     rm *.o output
```

Appendix I: gem5 – Simulation configuration file

config.ini

```
[root]
type=Root
children=system
full system=false
time_sync_enable=false
time sync period=10000000000
time sync spin threshold=10000000
[system]
type=System
children=cpu 12 membus physmem tol2bus
boot osflags=a
clock=1000
init param=0
kernel=
load addr mask=1099511627775
mem mode=timing
mem ranges=
memories=system.physmem
num work ids=16
readfile=
symbolfile=
work begin_ckpt_count=0
work begin cpu id exit=-1
work begin exit count=0
work cpus ckpt count=0
work end ckpt count=0
work end exit count=0
work item id=-1
system_port=system.membus.slave[0]
[system.cpu]
type=TimingSimpleCPU
children=dcache dtb
                      dtb walker cache icache interrupts isa
                                                                      itb
itb walker cache tracer workload
branchPred=Null
checker=Null
clock=6667
cpu id=0
do checkpoint insts=true
do quiesce=true
do statistics insts=true
dtb=system.cpu.dtb
function trace=false
function trace start=0
interrupts=system.cpu.interrupts
isa=system.cpu.isa
itb=system.cpu.itb
max_insts_all_threads=0
max_insts_any_thread=0
max_loads_all_threads=0
max_loads_any_thread=0
numThreads=1
```

profile=0 progress interval=0 switched out=false system=system tracer=system.cpu.tracer workload=system.cpu.workload dcache port=system.cpu.dcache.cpu side icache port=system.cpu.icache.cpu side [system.cpu.dcache] type=BaseCache addr ranges=0:18446744073709551615 assoc=4 block size=64 clock=6667 forward snoops=true hit latency=2 is top level=true max miss count=0 mshrs=1 prefetch on access=false prefetcher=Null response_latency=2 size=4096 system=system tgts per mshr=1 two queue=false write buffers=8 cpu side=system.cpu.dcache port mem side=system.tol2bus.slave[1] [system.cpu.dtb] type=X86TLB children=walker size=64 walker=system.cpu.dtb.walker [system.cpu.dtb.walker] type=X86PagetableWalker clock=6667 system=system port=system.cpu.dtb walker cache.cpu side [system.cpu.dtb walker cache] type=BaseCache addr_ranges=0:18446744073709551615 assoc=2 block size=64 clock=6667 forward snoops=true hit latency=2 is top level=true max miss count=0 mshrs=10 prefetch_on_access=false prefetcher=Null response latency=2 size=1024

system=system tgts per mshr=12 two queue=false write buffers=8 cpu_side=system.cpu.dtb.walker.port mem side=system.tol2bus.slave[3] [system.cpu.icache] type=BaseCache addr ranges=0:18446744073709551615 assoc=4 block size=64 clock=6667 forward snoops=true hit latency=2 is top level=true max miss count=0 mshrs=1 prefetch on access=false prefetcher=Null response_latency=2 size=4096 system=system tgts per mshr=1 two_queue=false write buffers=8 cpu side=system.cpu.icache port mem side=system.tol2bus.slave[0] [system.cpu.interrupts] type=X86LocalApic clock=106667 int latency=1000 pio addr=2305843009213693952 pio latency=100000 system=system int master=system.membus.slave[2] int_slave=system.membus.master[2] pio=system.membus.master[1] [system.cpu.isa] type=X86ISA [system.cpu.itb] type=X86TLB children=walker size=64 walker=system.cpu.itb.walker [system.cpu.itb.walker] type=X86PagetableWalker clock=6667 system=system port=system.cpu.itb walker cache.cpu side [system.cpu.itb walker cache]

type=BaseCache addr_ranges=0:18446744073709551615 assoc=2 block size=64 clock=6667 forward snoops=true hit latency=2 is top level=true max_miss_count=0 mshrs=10 prefetch_on_access=false prefetcher=Null response latency=2 size=1024 system=system tgts_per_mshr=12 two queue=false write_buffers=8 cpu side=system.cpu.itb.walker.port mem side=system.tol2bus.slave[2] [system.cpu.tracer] type=ExeTracer [system.cpu.workload] type=LiveProcess cmd=./output 2 cwd= egid=100 env= errout=cerr euid=100 executable=./output gid=100 input=cin max stack size=67108864 output=cout pid=100 ppid=99 simpoint=0 system=system uid=100 [system.12] type=BaseCache addr ranges=0:18446744073709551615 assoc=4 block_size=64 clock=6667 forward snoops=true hit latency=20 is top level=false max miss count=0 mshrs=1 prefetch on access=false prefetcher=Null response_latency=20 size=262144 system=system tgts_per_mshr=1

two_queue=false
write_buffers=8
cpu_side=system.tol2bus.master[0]
mem_side=system.membus.slave[1]

[system.membus] type=CoherentBus block_size=64 clock=1000 header_cycles=1 system=system use_default_range=false width=8 master=system.physmem.port system.cpu.interrupts.int_slave slave=system.system_port system.cpu.interrupts.int_master

[system.physmem] type=SimpleMemory bandwidth=73.000000 clock=1000 conf_table_reported=false in_addr_map=true latency=30000 latency_var=0 null=false range=0:536870911 zero=false port=system.membus.master[0]

[system.tol2bus] type=CoherentBus block_size=64 clock=6667 header_cycles=1 system=system use_default_range=false width=32 master=system.l2.cpu_side slave=system.cpu.icache.mem_side system.cpu.itb_walker_cache.mem_side system.cpu.dtb_walker_cache.mem_side system.cpu.interrupts.pio

system.12.mem side

system.cpu.dcache.mem_side

Appendix H: gem5 – Simulation stats file example

Stats.txt

Begin Simulation Statistics	
sim_seconds	0.000191
# Number of seconds simulated	
sim_ticks	190896211
# Number of ticks simulated	
final_tick	190896211
# Number of ticks from beginning of simulation	(restored from
checkpoints and never reset)	
sim_freq	1000000000000
# Frequency of simulated ticks	
host_inst_rate	66084
<pre># Simulator instruction rate (inst/s)</pre>	
host_op_rate	130339
<pre># Simulator op (including micro ops) rate (op/s)</pre>	
host_tick_rate	3573265852
<pre># Simulator tick rate (ticks/s)</pre>	
host_mem_usage	637244
# Number of bytes of host memory used	
host_seconds	0.05
# Real time elapsed on the host	
sim_insts	3524
# Number of instructions simulated	
sim_ops	6957
# Number of ops (including micro ops) simulated	
system.physmem.bytes_read::cpu.inst	12032
# Number of bytes read from this memory	
system.physmem.bytes_read::cpu.data	8512
# Number of bytes read from this memory	
system.physmem.bytes_read::total	20544
# Number of bytes read from this memory	
system.physmem.bytes_inst_read::cpu.inst	12032
# Number of instructions bytes read from this memory	
system.physmem.bytes_inst_read::total	12032
# Number of instructions bytes read from this memory	
system.physmem.num_reads::cpu.inst	188
# Number of read requests responded to by this memory	
system.physmem.num_reads::cpu.data	133
# Number of read requests responded to by this memory	
system.physmem.num_reads::total	321
# Number of read requests responded to by this memory	
system.physmem.bw_read::cpu.inst	63029014
<pre># Total read bandwidth from this memory (bytes/s)</pre>	
system.physmem.bw_read::cpu.data	44589675
<pre># Total read bandwidth from this memory (bytes/s)</pre>	
system.physmem.bw_read::total	107618689
<pre># Total read bandwidth from this memory (bytes/s)</pre>	
system.physmem.bw_inst_read::cpu.inst	63029014
<pre># Instruction read bandwidth from this memory (bytes/s)</pre>	
system.physmem.bw_inst_read::total	63029014
<pre># Instruction read bandwidth from this memory (bytes/s)</pre>	6000005 F
system.physmem.bw_total::cpu.inst	63029014
# Total bandwidth to/from this memory (bytes/s)	

system.physmem.bw_total::cpu.data	44589675
# Total bandwidth to/from this memory (bytes/s)	107610600
<pre>system.physmem.bw_total::total # Total bandwidth to/from this memory (bytes/s)</pre>	107618689
system.12.replacements	0
# number of replacements	
system.12.tagsinuse	143.252491
# Cycle average of tags in use	
system.12.total_refs # Total number of references to valid blocks.	0
system.12.sampled refs	0
# Sample count of references to valid blocks.	0
system.l2.avg refs	nan
# Average number of references to valid blocks.	
system.12.warmup_cycle	0
# Cycle when the warmup percentage was hit.	14 402025
system.l2.occ_blocks::writebacks # Average occupied blocks per requestor	14.403625
system.12.occ blocks::cpu.inst	93.592710
# Average occupied blocks per requestor	50,052,20
system.12.occ_blocks::cpu.data	35.256156
# Average occupied blocks per requestor	
system.12.occ_percent::writebacks	0.003517
# Average percentage of cache occupancy	0 022050
system.l2.occ_percent::cpu.inst # Average percentage of cache occupancy	0.022850
system.12.occ percent::cpu.data	0.008607
# Average percentage of cache occupancy	
system.12.occ_percent::total	0.034974
# Average percentage of cache occupancy	
system.12.ReadReq_hits::cpu.inst	19
<pre># number of ReadReq hits system.l2.ReadReq_hits::cpu.data</pre>	24
# number of ReadReq hits	2 7
system.12.ReadReq hits::total	43
# number of ReadReq hits	
system.l2.Writeback_hits::writebacks	72
# number of Writeback hits	
system.l2.Writeback_hits::total # number of Writeback hits	72
system.12.ReadExReq hits::cpu.data	8
# number of ReadExReq hits	0
system.12.ReadExReq_hits::total	8
<pre># number of ReadExReq hits</pre>	
system.12.demand_hits::cpu.inst	19
<pre># number of demand (read+write) hits system.l2.demand hits::cpu.data</pre>	32
# number of demand (read+write) hits	52
system.12.demand hits::total	51
# number of demand (read+write) hits	
system.l2.overall_hits::cpu.inst	19
<pre># number of overall hits</pre>	2.0
system.l2.overall_hits::cpu.data # number of overall hits	32
system.12.overall hits::total	51
<pre># number of overall hits</pre>	01
system.12.ReadReq_misses::cpu.inst	188
# number of ReadReq misses	

system.12.ReadReq_misses::cpu.data	59
# number of ReadReq misses	047
system.12.ReadReq_misses::total # number of ReadReq misses	247
system.12.ReadExReq misses::cpu.data	74
# number of ReadExReq misses	
system.12.ReadExReq_misses::total	74
<pre># number of ReadExReq misses</pre>	
system.12.demand_misses::cpu.inst	188
<pre># number of demand (read+write) misses</pre>	100
system.12.demand_misses::cpu.data	133
<pre># number of demand (read+write) misses system.l2.demand misses::total</pre>	321
<pre># number of demand (read+write) misses</pre>	021
system.12.overall misses::cpu.inst	188
# number of overall misses	
system.l2.overall_misses::cpu.data	133
# number of overall misses	0.01
system.12.overall_misses::total	321
<pre># number of overall misses system.l2.ReadReq miss latency::cpu.inst</pre>	56243734
<pre># number of ReadReq miss cycles</pre>	50245754
system.12.ReadReq miss latency::cpu.data	17647611
# number of ReadReq miss cycles	
system.12.ReadReq_miss_latency::total	73891345
<pre># number of ReadReq miss cycles</pre>	
system.12.ReadExReq_miss_latency::cpu.data	22138329
# number of ReadExReq miss cycles	22138329
<pre>system.l2.ReadExReq_miss_latency::total # number of ReadExReq miss cycles</pre>	22130329
system.12.demand miss latency::cpu.inst	56243734
<pre># number of demand (read+write) miss cycles</pre>	
system.12.demand_miss_latency::cpu.data	39785940
<pre># number of demand (read+write) miss cycles</pre>	
system.12.demand_miss_latency::total	96029674
# number of demand (read+write) miss cycles	E () 1 2 7 2 1
<pre>system.l2.overall_miss_latency::cpu.inst # number of overall miss cycles</pre>	56243734
system.12.overall miss latency::cpu.data	39785940
<pre># number of overall miss cycles</pre>	007000910
system.12.overall miss latency::total	96029674
# number of overall miss cycles	
system.12.ReadReq_accesses::cpu.inst	207
<pre># number of ReadReq accesses(hits+misses)</pre>	0.0
<pre>system.l2.ReadReq_accesses::cpu.data # number of ReadReq accesses(hits+misses)</pre>	83
system.12.ReadReq_accesses::total	290
<pre># number of ReadReq accesses(hits+misses)</pre>	250
system.12.Writeback accesses::writebacks	72
# number of Writeback accesses(hits+misses)	
<pre>system.l2.Writeback_accesses::total</pre>	72
<pre># number of Writeback accesses(hits+misses)</pre>	
system.12.ReadExReq_accesses::cpu.data	82
<pre># number of ReadExReq accesses(hits+misses) system.l2.ReadExReq accesses::total</pre>	82
<pre># number of ReadExReq accesses(hits+misses)</pre>	02
system.12.demand accesses::cpu.inst	207
# number of demand (read+write) accesses	

system.12.demand_accesses::cpu.data	165
# number of demand (read+write) accesses	372
<pre>system.l2.demand_accesses::total # number of demand (read+write) accesses</pre>	572
system.12.overall accesses::cpu.inst	207
<pre># number of overall (read+write) accesses</pre>	
system.12.overall accesses::cpu.data	165
<pre># number of overall (read+write) accesses</pre>	
<pre>system.l2.overall_accesses::total</pre>	372
<pre># number of overall (read+write) accesses</pre>	0 000010
system.l2.ReadReq_miss_rate::cpu.inst # miss rate for ReadReq accesses	0.908213
system.12.ReadReq_miss_rate::cpu.data	0.710843
# miss rate for ReadReq accesses	0.710010
system.12.ReadReq miss rate::total	0.851724
<pre># miss rate for ReadReq accesses</pre>	
system.l2.ReadExReq_miss_rate::cpu.data	0.902439
<pre># miss rate for ReadExReq accesses</pre>	0 000400
system.l2.ReadExReq_miss_rate::total # miss rate for ReadExReq accesses	0.902439
system.12.demand miss rate::cpu.inst	0.908213
# miss rate for demand accesses	0.900213
system.12.demand miss rate::cpu.data	0.806061
# miss rate for demand accesses	
<pre>system.l2.demand_miss_rate::total</pre>	0.862903
# miss rate for demand accesses	0 000010
system.l2.overall_miss_rate::cpu.inst # miss rate for overall accesses	0.908213
<pre># MISS fale for overall accesses system.l2.overall miss rate::cpu.data</pre>	0.806061
# miss rate for overall accesses	0.000001
system.12.overall miss rate::total	0.862903
# miss rate for overall accesses	
<pre>system.l2.ReadReq_avg_miss_latency::cpu.inst</pre>	299168.797872
# average ReadReq miss latency	000110 050045
system.12.ReadReq_avg_miss_latency::cpu.data	299112.050847
<pre># average ReadReq miss latency system.l2.ReadReq_avg_miss_latency::total</pre>	299155.242915
# average ReadReq miss latency	299100.212910
system.12.ReadExReq avg miss latency::cpu.data	299166.608108
# average ReadExReq miss latency	
<pre>system.l2.ReadExReq_avg_miss_latency::total</pre>	299166.608108
# average ReadExReq miss latency	
<pre>system.l2.demand_avg_miss_latency::cpu.inst # average overall miss latency</pre>	299168.797872
system.12.demand avg miss latency::cpu.data	299142.406015
<pre># average overall miss latency</pre>	233112.100010
system.12.demand_avg_miss_latency::total	299157.862928
# average overall miss latency	
<pre>system.l2.overall_avg_miss_latency::cpu.inst</pre>	299168.797872
# average overall miss latency	000140 400015
<pre>system.l2.overall_avg_miss_latency::cpu.data # average overall miss latency</pre>	299142.406015
system.12.overall avg miss latency::total	299157.862928
<pre># average overall miss latency</pre>	
system.12.blocked_cycles::no_mshrs	8025
<pre># number of cycles access was blocked</pre>	
system.12.blocked_cycles::no_targets	0
# number of cycles access was blocked	

system.12.blocked::no_mshrs	321
<pre># number of cycles access was blocked system.l2.blocked::no targets</pre>	0
# number of cycles access was blocked	0
system.12.avg blocked cycles::no mshrs	25
# average number of cycles each access was blocked	
<pre>system.l2.avg_blocked_cycles::no_targets</pre>	nan
<pre># average number of cycles each access was blocked</pre>	
system.12.fast_writes	0
<pre># number of fast writes performed system.l2.cache copies</pre>	0
<pre># number of cache copies performed</pre>	0
system.12.ReadReq mshr misses::cpu.inst	188
# number of ReadReq MSHR misses	
system.12.ReadReq_mshr_misses::cpu.data	59
# number of ReadReq MSHR misses	0.45
system.12.ReadReq_mshr_misses::total	247
<pre># number of ReadReq MSHR misses system.l2.ReadExReq mshr misses::cpu.data</pre>	74
# number of ReadExReq MSHR misses	/4
system.12.ReadExReq mshr misses::total	74
# number of ReadExReq MSHR misses	
system.12.demand_mshr_misses::cpu.inst	188
<pre># number of demand (read+write) MSHR misses</pre>	
system.12.demand_mshr_misses::cpu.data	133
<pre># number of demand (read+write) MSHR misses</pre>	201
system.l2.demand_mshr_misses::total # number of demand (read+write) MSHR misses	321
system.12.overall mshr misses::cpu.inst	188
<pre># number of overall MSHR misses</pre>	100
system.12.overall mshr misses::cpu.data	133
# number of overall MSHR misses	
system.l2.overall_mshr_misses::total	321
# number of overall MSHR misses	
system.12.ReadReq_mshr_miss_latency::cpu.inst	30707920
<pre># number of ReadReq MSHR miss cycles system.l2.ReadReq mshr miss latency::cpu.data</pre>	9637060
<pre># number of ReadReq MSHR miss cycles</pre>	2037000
system.12.ReadReq mshr miss latency::total	40344980
# number of ReadReq MSHR miss cycles	
system.12.ReadExReq_mshr_miss_latency::cpu.data	12087160
<pre># number of ReadExReq MSHR miss cycles</pre>	
system.12.ReadExReq_mshr_miss_latency::total	12087160
# number of ReadExReq MSHR miss cycles	30707920
<pre>system.l2.demand_mshr_miss_latency::cpu.inst # number of demand (read+write) MSHR miss cycles</pre>	30707920
system.12.demand mshr miss latency::cpu.data	21724220
# number of demand (read+write) MSHR miss cycles	
system.12.demand_mshr_miss_latency::total	52432140
<pre># number of demand (read+write) MSHR miss cycles</pre>	
system.12.overall_mshr_miss_latency::cpu.inst	30707920
# number of overall MSHR miss cycles	01704000
<pre>system.l2.overall_mshr_miss_latency::cpu.data # number of overall MSHR miss cycles</pre>	21724220
system.12.overall mshr miss latency::total	52432140
# number of overall MSHR miss cycles	52152110
system.12.ReadReq mshr miss rate::cpu.inst	0.908213
# mshr miss rate for ReadReq accesses	

system.12.ReadReq_mshr_miss_rate::cpu.data	0.710843
<pre># mshr miss rate for ReadReq accesses system.l2.ReadReq mshr miss rate::total</pre>	0.851724
# mshr miss rate for ReadReq accesses	
system.12.ReadExReq_mshr_miss_rate::cpu.data	0.902439
<pre># mshr miss rate for ReadExReq accesses system.l2.ReadExReq mshr miss rate::total</pre>	0.902439
# mshr miss rate for ReadExReq accesses	
system.l2.demand_mshr_miss_rate::cpu.inst # mshr miss rate for demand accesses	0.908213
system.12.demand mshr miss rate::cpu.data	0.806061
# mshr miss rate for demand accesses	
system.12.demand_mshr_miss_rate::total # mshr miss rate for demand accesses	0.862903
<pre># msnr miss rate for demand accesses system.l2.overall mshr miss rate::cpu.inst</pre>	0.908213
# mshr miss rate for overall accesses	0.900210
<pre>system.l2.overall_mshr_miss_rate::cpu.data</pre>	0.806061
# mshr miss rate for overall accesses	0.862903
system.l2.overall_mshr_miss_rate::total # mshr miss rate for overall accesses	0.002903
system.12.ReadReq avg mshr miss latency::cpu.inst	163340
# average ReadReq mshr miss latency	
<pre>system.l2.ReadReq_avg_mshr_miss_latency::cpu.data # average ReadReq mshr miss latency</pre>	163340
system.12.ReadReq avg mshr miss latency::total	163340
# average ReadReq mshr miss latency	
<pre>system.l2.ReadExReq_avg_mshr_miss_latency::cpu.data # average ReadExReq mshr miss latency</pre>	163340
system.12.ReadExReq avg mshr miss latency::total	163340
# average ReadExReq mshr miss latency	
<pre>system.l2.demand_avg_mshr_miss_latency::cpu.inst # average overall mshr miss latency</pre>	163340
system.12.demand avg mshr miss latency::cpu.data	163340
# average overall mshr miss latency	
system.l2.demand_avg_mshr_miss_latency::total	163340
<pre># average overall mshr miss latency system.l2.overall avg mshr miss latency::cpu.inst</pre>	163340
<pre># average overall mshr miss latency</pre>	100010
<pre>system.l2.overall_avg_mshr_miss_latency::cpu.data</pre>	163340
<pre># average overall mshr miss latency system.l2.overall_avg_mshr_miss_latency::total</pre>	162240
# average overall mshr miss latency::total	163340
system.12.no_allocate_misses	0
# Number of misses that were no-allocate	<i>c</i>
system.cpu.workload.num_syscalls # Number of system calls	6
system.cpu.numCycles	28633
# number of cpu cycles simulated	
system.cpu.numWorkItemsStarted # number of work items this cpu started	0
system.cpu.numWorkItemsCompleted	0
# number of work items this cpu completed	
system.cpu.committedInsts	3524
<pre># Number of instructions committed system.cpu.committedOps</pre>	6957
# Number of ops (including micro ops) committed	
system.cpu.num_int_alu_accesses	6850
# Number of integer alu accesses	

system.cpu.num_fp_alu_accesses	123
# Number of float alu accesses	
system.cpu.num_func_calls	0
<pre># number of times a function call or return occured system.cpu.num conditional control insts</pre>	545
# number of instructions that are conditional controls	545
system.cpu.num int insts	6850
# number of integer instructions	
system.cpu.num_fp_insts	123
# number of float instructions	1 (0 0 4
<pre>system.cpu.num_int_register_reads # number of times the integer registers were read</pre>	16884
system.cpu.num int register writes	7756
<pre># number of times the integer registers were written</pre>	
system.cpu.num_fp_register_reads	199
# number of times the floating registers were read	
system.cpu.num_fp_register_writes	99
<pre># number of times the floating registers were written avatam any num mem refa</pre>	1285
system.cpu.num_mem_refs # number of memory refs	1285
system.cpu.num load insts	585
# Number of load instructions	
system.cpu.num_store_insts	700
# Number of store instructions	
system.cpu.num_idle_cycles	0
# Number of idle cycles	28633
system.cpu.num_busy_cycles # Number of busy cycles	20033
system.cpu.not idle fraction	1
# Percentage of non-idle cycles	
system.cpu.idle_fraction	0
# Percentage of idle cycles	
system.cpu.icache.replacements	143
<pre># number of replacements system.cpu.icache.tagsinuse</pre>	51.798109
# Cycle average of tags in use	51.790109
system.cpu.icache.total refs	3277
# Total number of references to valid blocks.	
system.cpu.icache.sampled_refs	143
# Sample count of references to valid blocks.	
system.cpu.icache.avg_refs	22.916084
# Average number of references to valid blocks.	125958340
<pre>system.cpu.icache.warmup_cycle # Cycle when the warmup percentage was hit.</pre>	123930340
system.cpu.icache.occ blocks::cpu.inst	51.798109
# Average occupied blocks per requestor	
system.cpu.icache.occ_percent::cpu.inst	0.809345
# Average percentage of cache occupancy	
system.cpu.icache.occ_percent::total	0.809345
<pre># Average percentage of cache occupancy system.cpu.icache.ReadReq hits::cpu.inst</pre>	4349
<pre># number of ReadReq hits</pre>	4349
system.cpu.icache.ReadReq hits::total	4349
# number of ReadReq hits	-
system.cpu.icache.demand_hits::cpu.inst	4349
<pre># number of demand (read+write) hits</pre>	
system.cpu.icache.demand_hits::total	4349
<pre># number of demand (read+write) hits</pre>	

system.cpu.icache.overall_hits::cpu.inst # number of overall hits	4349
system.cpu.icache.overall_hits::total	4349
# number of overall hits	207
system.cpu.icache.ReadReq_misses::cpu.inst # number of ReadReq misses	207
system.cpu.icache.ReadReq_misses::total	207
<pre># number of ReadReq misses system.cpu.icache.demand misses::cpu.inst</pre>	207
# number of demand (read+write) misses	
<pre>system.cpu.icache.demand_misses::total # number of demand (read+write) misses</pre>	207
system.cpu.icache.overall misses::cpu.inst	207
# number of overall misses	
<pre>system.cpu.icache.overall_misses::total # number of overall misses</pre>	207
<pre># number of overall misses system.cpu.icache.ReadReq miss latency::cpu.inst</pre>	67216694
<pre># number of ReadReq miss cycles</pre>	07210001
system.cpu.icache.ReadReq_miss_latency::total	67216694
<pre># number of ReadReq miss cycles system.cpu.icache.demand miss latency::cpu.inst</pre>	67216694
<pre># number of demand (read+write) miss cycles</pre>	
<pre>system.cpu.icache.demand_miss_latency::total</pre>	67216694
# number of demand (read+write) miss cycles	67016604
<pre>system.cpu.icache.overall_miss_latency::cpu.inst # number of overall miss cycles</pre>	67216694
system.cpu.icache.overall_miss_latency::total	67216694
# number of overall miss cycles	
<pre>system.cpu.icache.ReadReq_accesses::cpu.inst # number of ReadReq accesses(hits+misses)</pre>	4556
system.cpu.icache.ReadReq_accesses::total	4556
<pre># number of ReadReq accesses(hits+misses)</pre>	
<pre>system.cpu.icache.demand_accesses::cpu.inst # number of demand (read+write) accesses</pre>	4556
system.cpu.icache.demand accesses::total	4556
<pre># number of demand (read+write) accesses</pre>	
system.cpu.icache.overall_accesses::cpu.inst	4556
<pre># number of overall (read+write) accesses system.cpu.icache.overall accesses::total</pre>	4556
<pre># number of overall (read+write) accesses</pre>	4000
system.cpu.icache.ReadReq_miss_rate::cpu.inst	0.045435
# miss rate for ReadReq accesses	0 045425
system.cpu.icache.ReadReq_miss_rate::total # miss rate for ReadReq accesses	0.045435
system.cpu.icache.demand_miss_rate::cpu.inst	0.045435
# miss rate for demand accesses	0.045405
<pre>system.cpu.icache.demand_miss_rate::total # miss rate for demand accesses</pre>	0.045435
system.cpu.icache.overall_miss_rate::cpu.inst	0.045435
# miss rate for overall accesses	
<pre>system.cpu.icache.overall_miss_rate::total # miss rate for overall accesses</pre>	0.045435
system.cpu.icache.ReadReq avg miss latency::cpu.inst	324718.328502
# average ReadReq miss latency	
<pre>system.cpu.icache.ReadReq_avg_miss_latency::total # average ReadReq miss latency</pre>	324718.328502
system.cpu.icache.demand avg miss latency::cpu.inst	324718.328502
# average overall miss latency	

system.cpu.icache.demand_avg_miss_latency::total # average overall miss latency	324718.328502
<pre>system.cpu.icache.overall_avg_miss_latency::cpu.inst</pre>	324718.328502
<pre># average overall miss latency system.cpu.icache.overall avg miss latency::total</pre>	324718.328502
# average overall miss latency	
<pre>system.cpu.icache.blocked_cycles::no_mshrs # number of cycles access was blocked</pre>	9254
system.cpu.icache.blocked_cycles::no_targets	0
<pre># number of cycles access was blocked system.cpu.icache.blocked::no mshrs</pre>	207
# number of cycles access was blocked	207
system.cpu.icache.blocked::no_targets	0
<pre># number of cycles access was blocked system.cpu.icache.avg blocked cycles::no mshrs</pre>	44.705314
# average number of cycles each access was blocked	11.703311
system.cpu.icache.avg_blocked_cycles::no_targets	nan
<pre># average number of cycles each access was blocked system.cpu.icache.fast writes</pre>	0
# number of fast writes performed	° °
system.cpu.icache.cache_copies	0
<pre># number of cache copies performed system.cpu.icache.ReadReq mshr misses::cpu.inst</pre>	207
<pre># number of ReadReq MSHR misses</pre>	207
system.cpu.icache.ReadReq_mshr_misses::total	207
<pre># number of ReadReq MSHR misses system.cpu.icache.demand mshr misses::cpu.inst</pre>	207
# number of demand (read+write) MSHR misses	207
system.cpu.icache.demand_mshr_misses::total	207
<pre># number of demand (read+write) MSHR misses system.cpu.icache.overall mshr misses::cpu.inst</pre>	207
# number of overall MSHR misses	207
system.cpu.icache.overall_mshr_misses::total	207
<pre># number of overall MSHR misses system.cpu.icache.ReadReq mshr miss latency::cpu.inst</pre>	61537332
# number of ReadReq MSHR miss cycles	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<pre>system.cpu.icache.ReadReq_mshr_miss_latency::total # number of ReadReq MSHR miss cycles</pre>	61537332
system.cpu.icache.demand_mshr_miss_latency::cpu.inst	61537332
<pre># number of demand (read+write) MSHR miss cycles system.cpu.icache.demand mshr miss latency::total</pre>	61537332
<pre># number of demand (read+write) MSHR miss cycles</pre>	01007002
<pre>system.cpu.icache.overall_mshr_miss_latency::cpu.inst # number of overall MSHR miss cycles</pre>	61537332
system.cpu.icache.overall_mshr_miss_latency::total	61537332
<pre># number of overall MSHR miss cycles system.cpu.icache.ReadReq mshr miss rate::cpu.inst</pre>	0.045435
# mshr miss rate for ReadReq accesses	0.045455
system.cpu.icache.ReadReq_mshr_miss_rate::total	0.045435
<pre># mshr miss rate for ReadReq accesses system.cpu.icache.demand mshr miss rate::cpu.inst</pre>	0.045435
# mshr miss rate for demand accesses	
<pre>system.cpu.icache.demand_mshr_miss_rate::total # mshr miss rate for demand accesses</pre>	0.045435
system.cpu.icache.overall_mshr_miss_rate::cpu.inst	0.045435
<pre># mshr miss rate for overall accesses system.cpu.icache.overall mshr miss rate::total</pre>	0.045435
<pre># mshr miss rate for overall accesses</pre>	0.010100

system.cpu.icache.ReadReq_avg_mshr_miss_latency::cpu.inst	297281.797101
<pre># average ReadReq mshr miss latency system.cpu.icache.ReadReq_avg_mshr_miss_latency::total</pre>	297281.797101
# average ReadReq mshr miss latency	207201 707101
<pre>system.cpu.icache.demand_avg_mshr_miss_latency::cpu.inst # average overall mshr miss latency</pre>	297281.797101
system.cpu.icache.demand_avg_mshr_miss_latency::total	297281.797101
<pre># average overall mshr miss latency system.cpu.icache.overall avg mshr miss latency::cpu.inst</pre>	297281.797101
# average overall mshr miss latency	
<pre>system.cpu.icache.overall_avg_mshr_miss_latency::total # average overall mshr miss latency</pre>	297281.797101
system.cpu.icache.no_allocate_misses	0
# Number of misses that were no-allocate	
system.cpu.itb_walker_cache.replacements	0
# number of replacements	0
system.cpu.itb_walker_cache.tagsinuse # Cycle average of tags in use	0
<pre>system.cpu.itb_walker_cache.total_refs</pre>	0
# Total number of references to valid blocks.	
system.cpu.itb_walker_cache.sampled_refs	0
# Sample count of references to valid blocks.	
system.cpu.itb_walker_cache.avg_refs	nan
# Average number of references to valid blocks.	0
<pre>system.cpu.itb_walker_cache.warmup_cycle # Cycle when the warmup percentage was hit.</pre>	0
system.cpu.itb walker cache.blocked cycles::no mshrs	0
<pre># number of cycles access was blocked</pre>	0
<pre>system.cpu.itb_walker_cache.blocked_cycles::no_targets</pre>	0
<pre># number of cycles access was blocked system.cpu.itb walker cache.blocked::no mshrs</pre>	0
# number of cycles access was blocked	0
system.cpu.itb_walker_cache.blocked::no_targets	0
<pre># number of cycles access was blocked</pre>	
<pre>system.cpu.itb_walker_cache.avg_blocked_cycles::no_mshrs # average number of cycles each access was blocked</pre>	nan
	n - n
<pre>system.cpu.itb_walker_cache.avg_blocked_cycles::no_targets # average number of cycles each access was blocked</pre>	nan
system.cpu.itb_walker_cache.fast_writes	0
# number of fast writes performed	0
system.cpu.itb_walker_cache.cache_copies # number of cache copies performed	0
system.cpu.itb_walker_cache.no_allocate_misses	0
# Number of misses that were no-allocate	0
<pre>system.cpu.dtb_walker_cache.replacements # number of replacements</pre>	0
system.cpu.dtb_walker_cache.tagsinuse	0
<pre># Cycle average of tags in use system.cpu.dtb walker cache.total refs</pre>	0
# Total number of references to valid blocks.	0
system.cpu.dtb_walker_cache.sampled_refs	0
<pre># Sample count of references to valid blocks. system.cpu.dtb walker cache.avg refs</pre>	nan
# Average number of references to valid blocks.	IIdll
system.cpu.dtb_walker_cache.warmup_cycle	0
# Cycle when the warmup percentage was hit.	
<pre>system.cpu.dtb_walker_cache.blocked_cycles::no_mshrs # number of cycles access was blocked</pre>	0
# number of cycles access was blocked	

<pre>system.cpu.dtb_walker_cache.blocked_cycles::no_targets</pre>	0
<pre># number of cycles access was blocked system.cpu.dtb_walker_cache.blocked::no_mshrs</pre>	0
<pre># number of cycles access was blocked</pre>	° °
system.cpu.dtb_walker_cache.blocked::no_targets	0
# number of cycles access was blocked	
<pre>system.cpu.dtb_walker_cache.avg_blocked_cycles::no_mshrs # average number of cycles each access was blocked</pre>	nan
system.cpu.dtb walker cache.avg blocked cycles::no targets	nan
# average number of cycles each access was blocked	
system.cpu.dtb_walker_cache.fast_writes	0
<pre># number of fast writes performed system.cpu.dtb walker cache.cache copies</pre>	0
# number of cache copies performed	0
system.cpu.dtb walker cache.no allocate misses	0
# Number of misses that were no-allocate	
system.cpu.dcache.replacements	101
# number of replacements	50.901255
system.cpu.dcache.tagsinuse # Cycle average of tags in use	50.901255
system.cpu.dcache.total refs	573
# Total number of references to valid blocks.	
system.cpu.dcache.sampled_refs	101
# Sample count of references to valid blocks.	
<pre>system.cpu.dcache.avg_refs # Average number of references to valid blocks.</pre>	5.673267
system.cpu.dcache.warmup cycle	96330340
# Cycle when the warmup percentage was hit.	
system.cpu.dcache.occ_blocks::cpu.data	50.901255
# Average occupied blocks per requestor	0 705000
system.cpu.dcache.occ_percent::cpu.data # Average percentage of cache occupancy	0.795332
system.cpu.dcache.occ percent::total	0.795332
# Average percentage of cache occupancy	
system.cpu.dcache.ReadReq_hits::cpu.data	502
# number of ReadReq hits	500
system.cpu.dcache.ReadReq_hits::total # number of ReadReq hits	502
system.cpu.dcache.WriteReq hits::cpu.data	618
# number of WriteReq hits	010
system.cpu.dcache.WriteReq_hits::total	618
# number of WriteReq hits	1100
system.cpu.dcache.demand_hits::cpu.data # number of demand (read+write) hits	1120
system.cpu.dcache.demand hits::total	1120
<pre># number of demand (read+write) hits</pre>	1120
system.cpu.dcache.overall_hits::cpu.data	1120
# number of overall hits	1100
<pre>system.cpu.dcache.overall_hits::total # number of overall hits</pre>	1120
system.cpu.dcache.ReadReq misses::cpu.data	83
# number of ReadReq misses	
system.cpu.dcache.ReadReq_misses::total	83
# number of ReadReq misses	
system.cpu.dcache.WriteReq_misses::cpu.data # number of WriteReq misses	82
system.cpu.dcache.WriteReq misses::total	82
# number of WriteReq misses	

system.cpu.dcache.demand_misses::cpu.data	165
<pre># number of demand (read+write) misses system.cpu.dcache.demand misses::total</pre>	165
# number of demand (read+write) misses	
system.cpu.dcache.overall_misses::cpu.data	165
<pre># number of overall misses system.cpu.dcache.overall misses::total</pre>	165
# number of overall misses	100
system.cpu.dcache.ReadReq_miss_latency::cpu.data	24221211
<pre># number of ReadReq miss cycles system.cpu.dcache.ReadReq miss latency::total</pre>	24221211
<pre># number of ReadReq miss cycles</pre>	
<pre>system.cpu.dcache.WriteReq_miss_latency::cpu.data</pre>	26547994
<pre># number of WriteReq miss cycles system.cpu.dcache.WriteReq miss latency::total</pre>	26547994
# number of WriteReq miss cycles	20347994
system.cpu.dcache.demand_miss_latency::cpu.data	50769205
<pre># number of demand (read+write) miss cycles system.cpu.dcache.demand miss latency::total</pre>	50769205
# number of demand (read+write) miss cycles	50769205
<pre>system.cpu.dcache.overall_miss_latency::cpu.data</pre>	50769205
# number of overall miss cycles	E07(000E
<pre>system.cpu.dcache.overall_miss_latency::total # number of overall miss cycles</pre>	50769205
system.cpu.dcache.ReadReq_accesses::cpu.data	585
<pre># number of ReadReq accesses(hits+misses)</pre>	
<pre>system.cpu.dcache.ReadReq_accesses::total # number of ReadReq accesses(hits+misses)</pre>	585
system.cpu.dcache.WriteReq_accesses::cpu.data	700
<pre># number of WriteReq accesses(hits+misses)</pre>	200
<pre>system.cpu.dcache.WriteReq_accesses::total # number of WriteReq accesses(hits+misses)</pre>	700
system.cpu.dcache.demand_accesses::cpu.data	1285
<pre># number of demand (read+write) accesses</pre>	
<pre>system.cpu.dcache.demand_accesses::total # number of demand (read+write) accesses</pre>	1285
system.cpu.dcache.overall accesses::cpu.data	1285
<pre># number of overall (read+write) accesses</pre>	
<pre>system.cpu.dcache.overall_accesses::total # number of overall (read+write) accesses</pre>	1285
system.cpu.dcache.ReadReq miss rate::cpu.data	0.141880
# miss rate for ReadReq accesses	
system.cpu.dcache.ReadReq_miss_rate::total # miss rate for ReadReq accesses	0.141880
system.cpu.dcache.WriteReq miss rate::cpu.data	0.117143
# miss rate for WriteReq accesses	
system.cpu.dcache.WriteReq_miss_rate::total # miss rate for WriteReq accesses	0.117143
<pre>system.cpu.dcache.demand_miss_rate::cpu.data</pre>	0.128405
# miss rate for demand accesses	
system.cpu.dcache.demand_miss_rate::total	0.128405
<pre># miss rate for demand accesses system.cpu.dcache.overall miss rate::cpu.data</pre>	0.128405
# miss rate for overall accesses	
system.cpu.dcache.overall_miss_rate::total	0.128405
<pre># miss rate for overall accesses system.cpu.dcache.ReadReq avg miss latency::cpu.data</pre>	291821.819277
# average ReadReq miss latency	

system.cpu.dcache.ReadReq_avg_miss_latency::total	291821.819277
<pre># average ReadReq miss latency system.cpu.dcache.WriteReq_avg_miss_latency::cpu.data</pre>	323756.024390
<pre># average WriteReq miss latency system.cpu.dcache.WriteReq avg miss latency::total</pre>	323756.024390
# average WriteReq miss latency	
<pre>system.cpu.dcache.demand_avg_miss_latency::cpu.data # average overall miss latency</pre>	307692.151515
system.cpu.dcache.demand_avg_miss_latency::total	307692.151515
<pre># average overall miss latency system.cpu.dcache.overall avg miss latency::cpu.data</pre>	307692.151515
# average overall miss latency	
<pre>system.cpu.dcache.overall_avg_miss_latency::total # average overall miss latency</pre>	307692.151515
<pre>system.cpu.dcache.blocked_cycles::no_mshrs</pre>	6955
<pre># number of cycles access was blocked</pre>	
<pre>system.cpu.dcache.blocked_cycles::no_targets</pre>	0
<pre># number of cycles access was blocked</pre>	
system.cpu.dcache.blocked::no_mshrs	165
# number of cycles access was blocked	0
system.cpu.dcache.blocked::no_targets	0
# number of cycles access was blocked	40 151515
<pre>system.cpu.dcache.avg_blocked_cycles::no_mshrs # average number of cycles each access was blocked</pre>	42.151515
system.cpu.dcache.avg blocked cycles::no targets	nan
# average number of cycles each access was blocked	IIdII
system.cpu.dcache.fast writes	0
# number of fast writes performed	0
system.cpu.dcache.cache copies	0
<pre># number of cache copies performed</pre>	-
system.cpu.dcache.writebacks::writebacks	72
# number of writebacks	
system.cpu.dcache.writebacks::total	72
# number of writebacks	0.0
system.cpu.dcache.ReadReq_mshr_misses::cpu.data # number of ReadReq MSHR misses	83
system.cpu.dcache.ReadReq_mshr_misses::total # number of ReadReq MSHR misses	83
system.cpu.dcache.WriteReq_mshr_misses::cpu.data	82
# number of WriteReq MSHR misses	
system.cpu.dcache.WriteReq_mshr_misses::total # number of WriteReq MSHR misses	82
system.cpu.dcache.demand_mshr_misses::cpu.data	165
<pre># number of demand (read+write) MSHR misses system.cpu.dcache.demand mshr misses::total</pre>	165
# number of demand (read+write) MSHR misses	165
system.cpu.dcache.overall_mshr_misses::cpu.data	165
<pre># number of overall MSHR misses system.cpu.dcache.overall mshr misses::total</pre>	165
# number of overall MSHR misses	105
system.cpu.dcache.ReadReq_mshr_miss_latency::cpu.data	21954493
<pre># number of ReadReq MSHR miss cycles system.cpu.dcache.ReadReq mshr miss latency::total</pre>	21954493
# number of ReadReq MSHR miss cycles	01000107
<pre>system.cpu.dcache.WriteReq_mshr_miss_latency::cpu.data # number of WriteReq MSHR miss cycles</pre>	24298437
<pre>system.cpu.dcache.WriteReq_mshr_miss_latency::total</pre>	24298437
# number of WriteReq MSHR miss cycles	

system.cpu.dcache.demand_mshr_miss_latency::cpu.data	46252930
<pre># number of demand (read+write) MSHR miss cycles system.cpu.dcache.demand_mshr_miss_latency::total</pre>	46252930
<pre># number of demand (read+write) MSHR miss cycles system.cpu.dcache.overall_mshr_miss_latency::cpu.data</pre>	46252930
<pre># number of overall MSHR miss cycles system.cpu.dcache.overall_mshr_miss_latency::total</pre>	46252930
<pre># number of overall MSHR miss cycles system.cpu.dcache.ReadReq_mshr_miss_rate::cpu.data</pre>	0.141880
<pre># mshr miss rate for ReadReq accesses system.cpu.dcache.ReadReq_mshr_miss_rate::total</pre>	0.141880
<pre># mshr miss rate for ReadReq accesses system.cpu.dcache.WriteReq mshr miss rate::cpu.data</pre>	0.117143
<pre># mshr miss rate for WriteReq accesses system.cpu.dcache.WriteReq mshr miss rate::total</pre>	0.117143
<pre># mshr miss rate for WriteReq accesses system.cpu.dcache.demand mshr miss rate::cpu.data</pre>	0.128405
<pre># mshr miss rate for demand accesses system.cpu.dcache.demand mshr miss rate::total</pre>	0.128405
# mshr miss rate for demand accesses	
<pre>system.cpu.dcache.overall_mshr_miss_rate::cpu.data # mshr miss rate for overall accesses</pre>	0.128405
system.cpu.dcache.overall_mshr_miss_rate::total # mshr miss rate for overall accesses	0.128405
<pre>system.cpu.dcache.ReadReq_avg_mshr_miss_latency::cpu.data # average ReadReq mshr miss latency</pre>	264511.963855
<pre>system.cpu.dcache.ReadReq_avg_mshr_miss_latency::total # average ReadReq mshr miss latency</pre>	264511.963855
<pre>system.cpu.dcache.WriteReq_avg_mshr_miss_latency::cpu.data 296322.402439 # average Write</pre>	
latency	
<pre>system.cpu.dcache.WriteReq_avg_mshr_miss_latency::total # average WriteReq mshr miss latency</pre>	296322.402439
<pre>system.cpu.dcache.demand_avg_mshr_miss_latency::cpu.data # average overall mshr miss latency</pre>	280320.787879
<pre>system.cpu.dcache.demand_avg_mshr_miss_latency::total # average overall mshr miss latency</pre>	280320.787879
<pre>system.cpu.dcache.overall_avg_mshr_miss_latency::cpu.data # average overall mshr miss latency</pre>	280320.787879
<pre>system.cpu.dcache.overall_avg_mshr_miss_latency::total # average overall mshr miss latency</pre>	280320.787879
<pre># average overall mish miss fatency system.cpu.dcache.no_allocate_misses # Number of misses that were no-allocate</pre>	0
" NUMBER OF MESSES CHAL WELE HU ALLOCALE	

----- End Simulation Statistics -----