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Abstract 

 

Multicore microprocessors have become the new way to improve the processor 
performance. Moreover, the multicore processor systems are currently the dominating 
computer resource in many products like mobile appliances, automotive and space-borne 
applications.  However, the last category’s challenge is that tasks can have various degrees 
of criticality concerning the response times. Therefore, the aim of this Master’s Thesis is to 
develop a method to derive a safe (the task execution time can never be longer) and a tight 
(worst-case execution time is off the real execution time by typically a small factor) worst-
case execution time estimates in multicore system with memory hierarchies. The produced 
method consists of an analytical model and gem5, which is a state-of-the-art computer 
architecture simulator. This Thesis has surprisingly discovered that the simulated multicore 
system’s throughput increases by close to linearly with the number of cores. This suggests 
that, contrary to common belief, it is possible to guarantee a safe worst-case execution time 
and still enjoy the increase in throughput offered by multicore systems. These findings are 
therefore encouraging for further investigations. Although, the outcome of this Thesis mainly 
focuses on LEON4FT, which is a SPARC V8 based System-on-a-Chip, it is also applicable to 
other multicore systems. Furthermore, the Thesis report introduces the previous studies’ 
arguments about the transition from uniprocessor to the multicore processors, memory 
hierarchies as well as worst-case execution time.  
 
Keywords: Multicore microprocessors, multilevel memory hierarchies, worst-case execution 

time, gem5, throughput, System-on-a-Chip, parallel execution, serial execution, cache, 
memory wall, power wall, SPARC V8.   
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1. Introduction 
 
 

Multicore microprocessors have in a few years’ time become the mainstream computer resource in a 

spectrum of products such as mobile appliances i.e. tablets and smart phones as well as in automotive 
and space-borne applications. In the latter category, a special challenge is that tasks can have various 

degrees of criticality concerning the response times. Some computational tasks will not jeopardize the 

functionality if computational deadlines are not met (non-critical tasks) whereas for safety-critical 

tasks (or critical tasks), a missed deadline can lead to catastrophic consequences. In general, a 
catastrophic consequence may arise when a control function is not executed on time such as a too late 

effect on the brake actuator. 

 
The goal of this project is to develop a method to derive a safe (the task execution time can never be 

longer) and a tight (worst-case execution time (WCET) is off the real execution time by typically a 

small factor) WCET estimates in multicore system with memory hierarchies. What is needed is to set 
up methods to analyse a task before its execution to establish the WCET.   

 

WCET must make sufficiently conservative assumptions to be safe and tight. To illustrate the 

challenges involved, imagine that we want to establish WCET for a task that does a memory access. A 
memory-access either hits or misses at any level in the memory hierarchy. A safe estimate would be to 

assume it misses at all levels. Such a WCET estimate would not be tight; it would be a large factor 

longer than the actual execution time. Good news is that prior art has established methods to estimate 
safe and acceptably tight bounds on memory access time [1] in single-processor systems. In multicore 

systems, the new issue is that several processors may concurrently access some of the levels in the 

memory hierarchy creating a new source of pessimism that make multicores unattractive in mixed 

criticality applications.  
 

Individual processors on a multicore platform logically share the same memory system. The memory 

system is typically implemented using a traditional memory hierarchy in which the first cache level is 
physically private to each processor whereas the next level is physically shared. The goal of this thesis 

is to define a method by which we can make safe and tight WCET estimates on a multicore platform 

taking into account that some of the levels of the memory hierarchy are shared. 
  

The method chosen consists of three components, namely: a simulation tool instead of a costly 

hardware option, an application that is representative for the application domain and test case that 

would verify the method before a full scale simulation is undertaken. The choice of the method would 
be based on the above project scope, time span and cost. Most importantly, the method should be able 

to derive a safe and a tight WCET estimates in multicore system with memory hierarchies as 

LEON4FT (LEON4), which is the target System-on-a-Chip (SoC) for space-born applications.  
 

The Computer Science and Engineering (CSE) department at Chalmers University of technology that 

facilitated this project has internationally recognised professors in the field of the computer 
architecture as well as Ph.D. students who are working with the latest researches in the genre of this 

master’s thesis. Therefore, it was obvious to start the search for the most appropriate method at the 

CSE department by presenting and discussing above criteria.  
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After consultation with the CSE department experts and studying other researchers’ work [2] [3] in the 
field, it has been identified that gem5, which is a state-of-the-art computer architecture simulator 

widely used by the computer architecture research community, would be the best tool to simulate a 

complete single/multicore system with multilevel caches and memory. One of the outstanding 

strengths that gem5 has over other similar simulators such as SimpleScalar is that it supports many 
different ISAs, CPU types, cache levels, memory and other components. Moreover, all the gem5 

components are highly configurable i.e. the CPU speed, the cache size and associativity etc.   More 

details about the gem5 simulator and scripts created to automatize the simulation and the data 
collection are presented in the system assumption chapter.  

 

A matrix multiplication (MM) application that multiplies two matrices and saves the result in a third 
matrix has been chosen to run on the simulation tool for measuring the WCET. MM was found to be 

flexible as test case since it is easy to increase the size of the matrix and/or the system capabilities 

while measuring the WCET changes due to the increase of the application workload. MM was also 

found to utilise the cache/memory locality hence is a good way to test the benefits of a multilevel 
cache systems and its influence on the WCET. Furthermore, it was found that MM is a common 

method used by many other researchers in the area [4] [5] [6]. 

 
Before porting the MM application onto the gem5 simulator it was important to verify that the tool is 

working as it was intended. Therefore, simple applications that make a controlled number of memory 

reads and writes were created to run on to the simulation tool. After the simulation tool parameters 
were configured correctly and many tests were carried out, the output statistics from the tool has been 

compared against the expected number of cache/memory access to verify that the simulator is working 

as expected. Finally, the software was ready to run a full scale simulation and to output the data 

needed to calculate the WCET. 
 

Prior to the simulation result, the presumption has been that by doing a pessimistic but safe estimation 

of the execution time, each task would execute so slowly that it does not pay off to run tasks in 
parallel. On the contrary, and quite surprisingly, it was found that the derived WCET estimate for 

parallel tasks has shown that it pays off to run tasks in parallel.  The main result of this thesis is based 

on simulations carried out for 18 applications that carry out matrix multiplications, whereas the first 

application’s matrix size is 32x32 and the 18th is 304x304. The cache miss-rates, the numbers of 
instructions and other parameters/variables from the simulation of these applications have been used to 

calculate the execution time for 4 tasks running serially and 4 running in parallel. The 4 serial tasks’ 

WCET are then divided by the 4 parallel tasks’ WCET. This revealed that the parallel tasks’ 
throughput is very close to 4, which is the optimal upper limit for 4 tasks. This result confirms that by 

running 4 tasks in parallel in a multicore system, one achieves safer and tighter WCET estimate than 

running them in serial. 
 

This thesis’s project is limited to 30 weeks. Therefore, the experiments are carried out using gem5, 

which is a state-of-the-art computer architecture simulator widely by the computer architecture 

research community [2]. Nevertheless, a continuation of the project, as a doctoral project, will 
consider the architectural support to bring down the software overheads further to open up for safe and 

tighter estimates. 

 
The multicore system being considered in the project is LEON4FT core, a SPARC V8 based System-

on-a-Chip. This system is used by RUAG, a company in Gothenburg, for space-borne applications 

(e.g., satellites) and this project is done in collaboration with RUAG. 
 

The remaining chapters of the report are structured as follows. Chapter 2 gives the theoretical 

background of this master’s thesis. Chapter 3 describes the simulated system, the application used to 

estimate the WCET, the simulation system and the equations used to measure the execution time. 
Chapter 4 presents the results whereas it is analysed and discussed in Chapter 5. Finally, the 

conclusion of this master’s thesis is presented in Chapter 6.
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2. Theory 
 
 
In this chapter, a brief history of the transformation of single-core systems to multicore 
systems will be presented. Then, memory hierarchies in general are discussed and multicore 
caches in particular will be introduced. Finally, the WCET, which is a central topic of this 
thesis, will be considered. 
  

2.1 Multicore Systems 

2.1.1 From Uniprocessors to Multicore processor  
Uniprocessors a.k.a. single-core processors have been the dominating technology of the 
desktop/general purpose computers, embedded systems and other specialised processors 
for decades until the beginning of the 2000s. In 1965 Gordon Moore predicted that transistor 
count would double every 18 month, this prophecy was later called Moore’s Law [7]. Figure 1 
illustrates the Moore’s prediction. The doubling transistor count was mainly apparent from 
1986 to 2003 [8]. During these days, higher chip speed and lower production cost has been 
achieved by shrinking the transistor size (also called transistor scale down) to integrate as 
many transistors as possible in the same die while increasing the clock frequency [7]. This 
approach that is to increase the uniprocessors speed to gain higher performance for the 
existing applications has been quite straightforward [9]. 
 

 
Figure 1: Moore’s prediction [10]. 
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Nevertheless, this trend of uniprocessor speed growth through transistor size scale down 
and clock frequency increase, as mentioned above, ended in the early 2000s. According to 
[11], [12] and others, the major cause that this trend could not be continued was the intense 
temperature rise due to the ever escalating power dissipation (see Equation 1, the power 
consumption). This is presumably a bigger drawback for the embedded systems since they 
usually have limited power source. One can say that the performance advancements of the 
single-core processors came to the point that the physical constants such as the speed of 
light, the size of electrons and the silicon operation temperature become the limit [13]. This is 
called the power wall [14]. 
 
Equation 1: Power = CV2f, (where C is capacitance, f is frequency and V is voltage) 

 
Another, challenge has been the memory wall phenomena, which is the widening speed gap 
been the uniprocessors and the memory [15]. Figure 2 is showing this phenomena starting 
from 1980 to 2010. Furthermore, deeper pipelines, instruction-level parallelism, and 
speculative execution no longer significantly improve uniprocessor performance [11] and it 
therefore became inevitable to take another path. It finally became inevitable for the 
semiconductor manufacturers to push forward the multi-core approach [14].  
 

 
Figure 2: Processor and memory gap [8]. 

 
In general, the aim of multicore computing has been to achieve higher system performance 
through computational parallelism. In fact, Wilkinson described the multicore processors as 
multiple processors integrated into a single die to gain higher overall performance [14]. The 
multicore processors made it possible to overcome the power dissipation problem by for 
instance doubling the cores in a single chip to execute more instructions per cycle at a lower 
clock frequency [16]. This new model has also reduced the memory versus the CPU speed 
constraints.  
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Figure 3: processor evolution: from layout to multicore [12]. 

 
The performance improvement is no longer gained through single-core speed increase but 
by adding multiple cores while keeping the clock frequency relatively constant. The image in 
Figure 3 summarises the computer/embedded systems’ both software and hardware’s 
evolution starting from the layout oriented to the current multicore oriented approach [12].  
 

2.1.2 Memory Hierarchies 
As described above the speed gap between the processor and the main memory known as 
memory wall has been one of the obstacles to continue increasing the single-core processor 
speed. To reduce this gap, multiple-levels of caches have been inserted between the CPU 
and the main memory [17] (see Figure 4).   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: memory hierarchy [17]. 

 
Figure 4 illustrates a typical multilevel memory hierarchy that is implemented in generic 
processors as well as embedded systems. The figure also shows that the levels closer to the 
CPU have shorter access time while the size of the memory gets smaller. Figure 5 shows the 
comparison between the speed, cost per bit and the size of the memory levels. 
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Figure 5: memory hierarchy’s speed vs. size and cost/bit [17]. 

 
As the above figure shows L1 and L2 caches are built from fast SRAM cells that are more 
expensive than the DRAM cells that are used to build the main memory and sometimes the 
L3, L4 and etc. cache levels [17]. 
 
Let’s also look into common multicore processors’ memory architectures: 
 

 
Figure 6: multicore memory architecture examples [18]. 
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Since, multicore systems usually have cores that are running in parallel the memory 
bandwidth and memory access latency are critical. Consequently, the cache structure, 
shared or private for each core, needs to be chosen with extra care [19]. [Jain] also 
emphasises in [19] the importance of the choice of coherence protocol that matches the 
cache architecture characteristics. Coherence mechanisms are commonly divided into 
directory-based and snooping protocols.  
 

2.1.3 The Locality Principle and Cache Parameters 
The desktop or general-purpose computer systems are designed to run different types of 
applications that are not predefined. Therefore their memory systems are also designed to 
be as generic as possible [19]. On the other hand, the embedded systems’ memory, 
particularly the cache architecture, can be customised since they run predefined applications 
that their memory access patterns can be established in advance [19]. Kumar et al. has also 
stated in [20] that designing a memory is a critical part of the SoC since the memory 
organisation has direct impact on the system parameters such as the area, power and 
performance. These constraints are even more limited in embedded systems than i.e. 
desktop. Therefore, choosing an optimal cache architecture for a given application is a 
significant step to boosting the overall system performance.   
 
Let us not forget that cache memory was mainly invented to mask the speed gap between 
the processor and the main memory by exploiting the instruction/data spatial and temporal 
locality [20]. The temporal locality (a.k.a. locality of reference) assumes that the latest 
accessed memory address is soon to be accessed. The spatial locality on the other hand 
assumes that the addresses close to the latest accessed memory location are likely to be 
accessed next. Below is a list of some cache parameters a designer can choose to optimise 
an embedded system for a specific application (more details about these parameters can be 
found in most textbooks on computer architecture).     
 
Cache Design Parameters [21], [17] and [8]: 
 

1. Cache mapping policies: 
- Direct Mapping: a given memory block always appears on the same cache 

line. It is fast but the mapping restriction increases conflict misses.  
- Fully associative Mapping: any given memory block can be mapped to any 

cache line. It is a flexible technique that reduces conflict misses but it is 
expensive and slower since a parallel search has to be made on all cache 
lines.  

- Set-Associative Mapping: a memory block is mapped to a fixed cache set, 

but this block can be located in any line of the set. This technique is a trade-
off between the fast direct-mapping and the flexible full associative. 

2. Write Policy: 
- Write through: all writes/stores are simultaneously done on the cache and 

the lower memory levels. This may lead to bottlenecks since the 
communication between the cache and the memory is frequent.  

- Write back: writes/stores are done to the cache but when a cache block is 

replaced it is written back to the main memory. This may cause inconsistency 
between the cache and memory contents. 

3. Replacement function:  
- Least Recently Used (LRU): records when each block is used and replaces 

the longest time ago used block on miss.  It is in general costly to implement. 
- Pseudo-LRU: Approximates LRU by lower cost approximations. 
- First-In-First-Out (FIFO):  Replacing the oldest block on a miss. 
- Least Frequently Used (LFU): replaces the least used block on miss. 
- Random: Replacing the blocks randomly. 
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4. Size: 
- Cache size - Large cache size means higher hit rate. On the other hand, 

larger size caches are more expensive and slightly slower than smaller 
caches due to the larger number of control gates.  

5. Number of Caches: 
- Multilevel Caches: Hierarchies of cache from L1 to Ln 
- Unified versus Split Caches: Unified cache is instructions and data shared 

L1 cache. Split cache is 2 L1 caches where one is for instructions and the 
other for data.  

6. Memory Block (Line) Sizes: 

- Large memory block size increase hit ratio. However, this effect is diminishes 
when certain point is reached since more cache data has to be replaced. 

 
Metrics such as miss-rate (MR), hit-rate (HR) and misses per instruction (MPI) are used to 
measure the performance of a certain cache configuration. Where the miss-rate is the 
number of misses per total cache access and the hit-rate is the number of cache hits per 
total accesses. However, two metrics that gives better overall cache performance 
measurement are the average memory access time (AMAT) and the impact of a miss on the 
CPI [17].    
 

2.2 WCET 
 
According to Lundqvist in [22] “the worst-case execution time (WCET) of a program that runs 
uninterrupted on a processor is defined as being the maximum possible execution time 
considering all combinations of input data and all possible execution histories of the system 
before the program is executed”.  

 
Then again, why would one want to know the WCET? The most obvious answer to this 
question would be that if a task executes longer than expected it would miss its deadline. 
The consequence of a task missing its deadline can be quite serious [23] for example a task 
that responds few seconds later to a car-brake request.  
 
Safety-critical embedded systems usually run tasks that have hard real-time structures [24]. 
It is therefore crucial to generate a safe and tight estimate of the WCET of the application 
[25] to provide the basis for the schedulability analysis of its real-time tasks [23].  
 
The problem with finding the WCET is that it is not always easy to obtain upper bounds of 
execution times for a program [Wilhelm et al.]. Nevertheless, as stated by Wilhelm; et al. in 
[26] real-time systems only applies a restricted programming methods that guarantee 
program termination, prohibits recursion and loop iteration counts unless they are explicitly 
bounded. 
 
There are two different classes of the WCET estimation methods namely Static methods and 
Measurement-based methods [26].  
 

1. Static methods do not run the application code on hardware or on a simulator but 
analyse the task code’s possible control flow paths with possibly some annotations. In 
addition, to obtain upper bounds control flow is combined with some abstract 
hardware architecture model.  
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2. Measurement-based methods run a task or part of it on a certain hardware or 
simulator for a combination of inputs. The maximum and minimum observed 
execution is then driven from the measurement.  
 

Mälardalen University in Sweden has during 2006, 2008 and 2011 hosted an event called 
WCET Tool Challenge. The aim of this event has been to study, compare and discuss the 
properties of the different WCET tools and methods. An important outcome of this event is 
the list of the participating tools that is updated each time the event is held [27]. This is the 
biggest collection of the WCET tools that could be found. Details of these tools, which consist 
of commercial and research tool, can be been in Table 1.  
 

Table 1: WCET Tools [27]. 

Tool Source Contact Processors Analysis method Analysis type 

1 aiT AbsInt Simon Wegener simple (ARM7, ST10), complex (MPC55xx) static flow analysis, WCET analysis 

2 Astrée AbsInt Simon Wegener source-level tool (C) static flow analysis 

3 Bound-T Tidorum Niklas Holsti simple (ARM7) static control-flow analysis, WCET analysis 

4 FORTAS TU Vienna Sven Bünte TriCore 1796 measurement-based WCET estimation 

5 METAMOC Aalborg Univ. Mads Chr. Olesen simple (ARM7) static WCET analysis 

6 oRange+OTAWA IRIT Christine Rochange simple (ARM7) static control-flow analysis, WCET analysis 

7 TimeWeaver AbsInt Simon Wegener with NEXUS-like tracing facilities measurement based WCET estimation 

8 TuBound TU Vienna Jakob Zwirchmayr simple (Infineon C167) static WCET analysis 

9 WCA TU Vienna, TU Denmark Martin Schoeberl JOP (Java processor) static simple loop bound and receiver analysis (DFA), WCET analysis 

10 SWEET WCET group, Mälardalen University, Sweden Jan Gustafsson source-level tool (C) static flow analysis 
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3. System Assumptions 
 
 
The simulated processor (LEON4), the simulated tool (gem5), the simulation model 
overview, and the applications ported onto the simulation tool to estimate the WCET are 
described in this chapter. 
 

3.1 LEON4 
 

3.1.1 Background 
Aeroflex Gaisler AB, a Swedish company that develops and supports embedded system 
solutions, has been chosen by European Space Agency (ESA) to develop the Next 
Generation Microprocessor (NGMP) [28]. Aeroflex Gaisler has therefore since completing the 
LEON3 core processor in 2006 started to develop LEON4FT (LEON4), a fault-tolerant quad-
core SoC. Although the current prototype implementation of the LEON4 is based on FPGA 
that has a system frequency of 150MHz [29] [30], its final product is expected to run at 
1.5GHz using 32nm ASIC technology [30] (see Table 2).  
 

Table 2: Proposed LEON4 technology implementations [31]. 

Technology MHz Area

32 ns ASIC 1500 MHz 30 kgates

45 ns ASIC 1200 MHz 30 kgates

65 ns ASIC 800 MHz 30 kgates

130 ns ASIC 400 MHz 30 kgates

180 ns ASIC 250 MHz 30 kgates

Stratix3 FPGA 150 MHz 4000 LUT

Vertex5 FPGA 125 MHz 4000 LUT
 

 
Although, Aeroflex Gaisler developed LEON4 in cooperation with ESA, its licence is also 
available to other customers. RUAG Space AB, a Sweden based company that is specialised 
in on-board satellite equipment is one of the companies that is currently using this SoC. 
 
RUAG Space AB (RUAG) is considering utilising the 4 LEON4 cores concurrently. However, 
an important requirement is to establish safe and tight WCET estimate to avoid unexpected 
consequences.  Hence, RUAG has together with the Computer Science and Engineering 
(CSE) department at Chalmers University of technology initiated this master thesis project. 
The goal of this project has been to estimate the WCET of a multicore processor where the 
target system is the quad-core LEON4, although the method is generally applicable to any 
multicore system with a multi-level cache memory hierarchy.  
 

3.1.1 The Quad-core LEON4 Architecture 
The LEON4 core is a 32-bit processor based on SPARC V8 architecture. It is a highly 
configurable VHDL model that is particularly suitable for SoC designs on FPGA and ASIC.  
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Figure 7: Quad-core LEON4FT Architecture overview. 
 
As can be seen in Figure 7, each pair of the quad-cores shares one FPU unit. In addition, 
each core has a private split L1 cache, where the L2 cache is shared by all 4 cores. The 
architecture overview is also showing a 128-bit AHB bus connecting the memory levels to the 
cores as well as between the cores. The peripherals on the other hand are connected to 32-
bit AHB bus. Figure 8 on the other hand is also displaying more details about the LEON4 
core architecture.  
 

 
Figure 8: LEON4 core block diagrams. 

 
The quad-core leon4 details that are useful for the simulation tool are the system clock 
frequency, and the cache configuration, levels and sizes. These configuration parameters 
are collected from the latest LEON4 implementation on FPGA [30] (see Section 3.2).   
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3.2 Simulation Model 
 
gem5, which is a state-of-the-art modular platform for computer system architecture research 
[32], is this project’s simulation tool. The choice of this simulator was based on the project 
criteria and the CSE department’s subject experts’ advice. Furthermore, it is widely used by 
the computer architecture research community around the world. The main requirements of 
the simulator were: 
 

 It can be configured to a desired architecture (as LEON4 in this case) 
 It supports multilevel memory hierarchies  
 It can run C/C++ based applications  
 It can isolate a region of interest in the application’s code to extract this region’s 

simulation result separately   

 
Good news is that the selected simulator, gem5, has more than above described 
requirements. Its system-level architecture as well as processor microarchitecture can be 
configured to support many different systems. It currently supports Alpha, ARM, SPARC, 
MIPS, POWER and x86 ISA [33]. It even has the option to configure multicores. 
Nevertheless, the last option was not applied, since its complexity would require extra time 
and resources that perhaps would not be proportionate to the project duration. Therefore, an 
analytical model (see Table 4) is added to the simulation model to get the assumed multicore 
system result.  
 
This analytical model, offered by professor Per Stenstrom at the CSE department, calculates 
the WCET estimate and guarantees safe and tight WCET estimates. To guarantee a safe 
estimate, the model uses a worst-case assumption for estimating the cache miss penalty, 
i.e., the time it takes to service a cache miss. This worst-case assumption is that when a 
cache miss is serviced, there will be P-1 cores that have cache misses pending and these 
will be serviced first. As a result, assuming that the cache miss penalty is MP with no 
pending requests from other cores, it will take P x MP to service the cache miss. To get a 
tight WCET estimate, we ideally assume that the compiler can statically analyse whether a 
cache request will hit or miss the cache. This will provide an upper-bound on how well static 
analysis could be used to derive a tight estimate for the number of cache hits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Quad-core LEON4 simulation setup. 

 

P1 
150MHz 

I-L1 D-L1 

P2 
150MHz 

I-L1 D-L1 

P3 
150MHz 

I-L1 D-L1 

P4 
150MHz 

I-L1 D-L1 

L2 4-Way-4KB 

MEMORY 

L1 caches: 
Size: 4KB 
Way: 4  



  

 

Chalmers | 3. System Assumptions 13 

 

Figure 9 shows the simulated quad-core LEON4 and its memory levels. Also, Table 3 
displays the simulators key settings such as the clock frequency and the cache size. The 
simulation stats such as cache miss-penalties (MP) as well as constants like the CPU cycle 
time (Tc) and the number of cores (P) are also listed in Table 3. The equations listed in Table 
4, use the aforementioned values to calculate the WCET estimate of the quad-cores when 
they execute the 4 tasks serially and 4 in parallel. Moreover, the parallel tasks’ execution 
throughput (K), relative to the serial execution throughput, is calculated. It is assumed that, 
when 4 cores are running 4 tasks in parallel the closer K gets to 4 the safer and tighter the 
WCET estimate gets.   
 

Table 3: Simulation parameters and Cache latencies scaled for future technology nodes. 

 
 

Table 4:  calculating the AMAT, the Tproc, the Texe and the throughput. 

 
 
In order to speed up the simulation a sort of automation mechanism was needed. Therefore 
two bash scripts were created. These two scripts were designed to initiate the compiler and 
the simulator commander, simplify the simulation data collection and restructuring it into a 
desired format. Figure 10 illustrates the complete simulation model that includes the two 
scripts, the simulation tool and the analytical equations. 
 
  

Parameter Value (FPGA*) Value (ASIC**) Value (ASIC**) Value (ASIC**) Unit

CPU_Freq = 150 300 600 1200 MHz

CPU_Cycles = 6,67 3,33 1,67 0,83 ns

CPU_Type = timing timing timing timing  -

L1_Size = 4 8 16 32 kB

L1_Assoc = 4 4 4 4  -

L2_size = 256 256 256 256 kB

L2_assoc = 4 4 4 4  -

P = 4, 8, 16 4, 8, 16 4, 8, 16 4, 8, 16 CPUs

L1_MP 40 20 10 5 ns

L2_MP 200 100 50 25 ns

* Current Impementation  ** assumed future technology node upgrade

AMAT = MP-L1*L1-Miss-rate + MP-L2*L2-Miss-rate Average memory access time

Tproc=Instructions*Tc The total time the CPU is busy to decode instr. per task

Texe-1 = P(Tproc+AMAT) The WCET for executing 1 task at a time

Texe-4 = Tproc+P*AMAT The WCET for executing 4 tasks in parallel

K = Texe-1 / Texe-4 4 parallel tasks execution Throughput
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Figure 10: the simulation model overview. 

 
The diagram according to Figure 10 shows an overview of the simulation model and 
numbered labels highlight the order of the main simulation steps. One can also see that the 
simulation steps are split by two dotted boxes. This is to show that the simulation is divided 
into two phases. The first phase is an automated process starting from step 1 to step 5 then 
through step 6 feeds back to step 1. This iteration is carried out a number of times depending 
on the number of required simulation samples per application. During these iterations either 
the application or the simulation tool parameters are incremented. For example if an 
application is to be simulated with different cache sizes then the simulation tool’s cache size 
parameters are incremented  while the application’s input parameter(s) is/are kept 
unchanged. This project’s application workload is a matrix multiplication. Therefore, by 
increasing the matrices’ sizes, the application workload increases. Below is a summary of the 
simulation steps.  
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The simulation steps: 

1. The first bash script of the simulation model is initiated through the terminal 
command by entering its name and the C file of the application be simulated 
[ ./runsim matrix] 
1.1. The start script calls then a predefined makefile that compiles the C code using 

GCC with -2 optimisation option 
1.2. Once the executable file is created the script calls then gem5 by using terminal 

command format. All the necessary settings, parameters and variables such as 
CPU type and speed, cache levels, cache size etc. and of course the name and the 
path of the application under simulation are passed through this commands 
string.  

2. gem5 simulation 
2.1. gem5 applies the new settings and starts the simulation by running the ported 

application 
2.2.  Once the simulation is finished, gem5 saves the simulation stats in text file  

3. The start script gets reactivated again.  
4. The first script calls then the second script 
5. The second script  

5.1. It starts to search for the latest saved gem5 simulation stats to extract certain 
results.  

5.2. It then rearranges the extracted data into Microsoft Excel and Matlab friendly 
format and saves it into a new text file. 

6. This step loops back to the first script which increments some simulation tool or 
application parameters as was described above. Steps from 1 to 6 are repeated 
number of times, depending on the required number of simulation samples.  

7. The WCET and the throughput calculation 
7.1. Once, the automated steps from 1 to 6 are finished, the rearranged simulation 

stats file is then opened with Excel.   
7.2. Then the equations shown in Table 4 are applied to calculate the WCET and the 

parallel tasks’ throughput. 
7.3. The final result is then compiled into lists and diagram that will be presented in 

the result chapter as well as in the discussion chapter.   

 

3.3 Applications 
 

Finding a simulation tool that simplifies the WCET estimate was the first step of the execution phase 

of the project. Then creating an application that would run on the simulation software became the next 

challenge. Essentially, an application that utilises all system resources, particularly the multicore and 
the memory hierarchies, was the criterion. It should simply be a data and instruction intensive 

application. Moreover, since gem5, the simulation software, can only execute applications written in 

C/C++, C was chosen as the programming language.   
 

After considering above requirements and number of previous research that was discussed in the 

theory chapter, two applications carrying out matrix multiplication has been created. One that is doing 
conventional matrix multiplication and another one that is doing blocking (a.k.a. tiling) matrix 

multiplication, which is a cache optimisation algorithm [4]. Figure 11(a) shows the conventional 

matrix multiplication C code while Figure 11(b) shows the blocking algorithm code.  
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(a)                                                                       (b) 

Figure 11: a) Conventional and b) blocking metrics multiplication C code. 

 

The middle parts of the above codes are labelled as the region of interest (ROI) to indicate that these 
lines are where the interested workload is carried out. By inserting the gem5 functions 

m5_dumpreset_stats, m5_checkpoint and m5_exet before and after the ROI, gem5 returns a simulation 

result for only this region.      
 

Another, important fact about the matrix multiplication applications is that they both have one input 

parameter. This input parameter which is passed into the application at the start of simulation dictates 

the size of the matrix for example if it is equal to 32 then the A, B and C matrices sizes becomes 
32x32. As was stated before this is used to increase or decrease the simulation workload and to 

observe how it influenced the WCET estimate.          

 
More details about the gem5 commands, bash scripts and the application can be read in the 

appendices. 
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4. Experimental Results 
 
 
This chapter outlines the simulation and the calculation results of this Master’s Thesis.  The 
two top categories of the result are the two matrix multiplication algorithms, namely the 
conventional and the blocking algorithm. Equally important is to mention that the 
subcategories of the result are system clock frequency and the number of processors. 
 
Furthermore, the data is presented in the same order as the simulation model (see Figure 
10). This means that the simulation result collected from the automated simulation will be 
presented first. Then the calculated result from the manual stage of the simulation will be 
presented.  
 
As was stated in Section 3, a single core execution was carried out in the first stage of the 
simulation. Then this stage’s outcome is used to calculate a multicore system WCET 
estimate by using the equations presented in Table 4. The multicore WCET estimate is 
calculated for both serial and parallel execution of the applications.   
 

4.1 Simulation Results 
 
Again, according to Section 3, the conventional matrix multiplication application is first 
simulated then the blocking algorithm application. These two applications are repeated for 
four different system clock frequencies: 150MHz, 300MHz, 600MHz and 1200MHz. In 
addition, the caches are reconfigured for each clock frequency to match the system for an 
anticipated technology scaling. Each time the simulation is carried out for certain algorithm 
using a particular system clock frequency (for example: blocking algorithm running at 
150MHz), 18 result samples are collected. Each sample represents simulation result for a 
certain algorithm, clock frequency and matrix size.  
 
Table 5 shows the conventional and the blocking matrix multiplication algorithms’ simulation 
result. The columns of the table, which are the matrix sizes (NxN_Matrix), the number of 
application instructions (N_Instr), L1 miss-rate (L1_MR) and the L1 miss-rate (L2_MR), are 
the parameters necessary for the WCET calculation.  Moreover, the results in Table 5 are 
based on a system Clock=150MHz, L1_Size=4KB, L1_Assoc=4, L2_size=256kB and 
L2_assoc=4. 
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Table 5: Conventional and blocking matrix multiplication result for a system freq. 150MHz. 

 
 

Table 6 displays the conventional and blocking algorithm simulation result for a system 
frequency at 300MHz. In addition, these results are based on cache configurations were 
L1_Size=8KB, L1_Assoc=4, L2_size=256kB and L2_assoc=4. 

 

Table 6: Conventional and blocking matrix multiplication result for a system freq. 300MHz. 

 
 

NxN_Matrix N_Instr L1_MR L2_MR NxN_Matrix N_Instr L1_MR L2_MR

32x32 303303 0,002929 0,974747 32x32 354104 0,005863 0,463942

48x48 1014055 0,021949 0,087369 48x48 1195019 0,007811 0,231551

64x64 2392455 0,50841 0,002841 64x64 2832558 0,007707 0,175852

80x80 4659687 0,044128 0,02625 80x80 5532257 0,007576 0,143044

96x96 8036935 0,516922 0,001871 96x96 9559652 0,007517 0,120111

112x112 12745383 0,121472 0,006833 112x112 15180279 0,007475 0,10352

128x128 19006215 0,503974 0,001442 128x128 22659674 0,134349 0,00504

144x144 27040615 0,386968 0,001672 144x144 32263373 0,007419 0,081366

160x160 37069767 0,516795 0,001127 160x160 44256912 0,007399 0,075163

176x176 49314855 0,534058 0,000992 176x176 58905827 0,007383 0,081437

192x192 63997063 0,508341 0,000956 192x192 76475654 0,007391 0,068583

208x208 81337575 0,53363 0,000841 208x208 97231929 0,007358 0,070642

224x224 101557575 0,51674 0,001008 224x224 121440188 0,007348 0,103078

240x240 124878247 0,533315 0,002047 240x240 149365967 0,007339 0,170298

256x256 151520775 0,501922 0,025153 256x256 181274802 0,493437 0,004801

272x272 181706343 0,533074 0,035306 272x272 217432229 0,007325 0,261619

288x288 215656135 0,516709 0,060711 288x288 258103784 0,007319 0,275507

304x304 253591335 0,532883 0,058856 304x304 303555003 0,007314 0,274105

Conventional Matrix Multiplication Blocking Algorithm Matrix Multiplication
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Table 7 displays the conventional and blocking algorithm simulation result for a system 
frequency at 600MHz. Also, cache configurations of these results are L1_Size=16KB, 
L1_Assoc=4, L2_size=256kB and L2_assoc=4. 
 

Table 7: Conventional and blocking matrix multiplication result for a system freq. 600MHz. 

 

 
Table 8 is displays the conventional and blocking algorithm simulation result for system 
frequency at 1200MHz. Cache configurations used are L1_Size=32KB, L1_Assoc=4, 
L2_size=256kB and L2_assoc=4. 
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Table 8: Conventional and blocking matrix multiplication result for a system freq. 1200MHz. 

 
 

4.2 Calculated Results 
 
After the simulation result (above) has been acquired, the parameters presented in Table 3 
and the equations presented in Table 4 have been applied to calculate the final result. The 
average memory access time (AMAT) and the processor’s instruction execution time (Tproc) 
are first calculated, and then these values together with the number of tasks that are 
equivalent to the number of processor cores are used to calculate the WCET estimate for the 
serial and the parallel executions (Texe_1 and Texe_N respectively, where N is the number 
of tasks/Cores) of the tasks. 
 
Due to the large quantity of the calculated data, only calculated tables for the system clock 
frequency at 150MHz are presented in this section. The remaining tables are added into the 
appendices. Instead, charts illustrating the calculated throughput (K) for a number of 
multicore arrangements (P=4, P=8 and P=16) are presented in this section, since the 
throughput shows if the WCET estimate is safe and tight.  
 
Table 9 presents the calculated result for 4 cores. Texe_1 is the calculated WCET estimate 
for 4 serially executed tasks. Texe_4 on the other hand is the WCET estimate for 4 tasks 
executed in parallel. Finally, K, which is the throughput of the 4 the tasks running in parallel, 
is also presented in the table (below). 
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Table 9: Calculated WCET and Throughput for a system freq. 150MHz and P=4. 

 
 
Similar to Table 9, Tables 10 and 11 also show the calculated results for a system frequency 
of 150MHz, however both the processor cores and the executed tasks are increased to 8 
and 16. 
 
Overall, it is surprising to see that the throughput increases by close to linearly with the 
number of cores. This suggests that, contrary to common belief, it is possible to guarantee a 
safe WCET and still enjoy the increase in throughput offered by multicore systems. Of 
course, we have assumed that the compiler is capable of fully analysing the code statically. 
As Lundqvist points out [22], one has to conservatively assume a cache miss if the compiler 
cannot be certain of the outcome of a cache access. In any case, these results are promising 
and warrant further investigations.   
 

Table 10: Calculated WCET and Throughput for a system freq. 150MHz and P=8 

 
 

 

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32x32 9,57E-09 6,61E-08 0,0020220 0,0023607 0,0080881 0,0094430 0,0020221 0,0023610 3,9999432 3,9996641

48x48 8,10E-09 4,66E-08 0,0067604 0,0079668 0,0270415 0,0318674 0,0067604 0,0079670 3,9999856 3,9999298

64x64 2,09E-08 7,76E-09 0,0159497 0,0188837 0,0637989 0,0755349 0,0159498 0,0188838 3,9999843 3,9999951

80x80 2,19E-08 2,89E-08 0,0310646 0,0368817 0,1242584 0,1475270 0,0310647 0,0368818 3,9999915 3,9999906

96x96 2,11E-08 2,40E-08 0,0535796 0,0637310 0,2143184 0,2549242 0,0535797 0,0637311 3,9999953 3,9999955

112x112 2,17E-08 2,10E-08 0,0849692 0,1012019 0,3398770 0,4048075 0,0849693 0,1012019 3,9999969 3,9999975

128x128 2,04E-08 2,01E-08 0,1267081 0,1510645 0,5068325 0,6042581 0,1267082 0,1510646 3,9999981 3,9999984

144x144 2,16E-08 1,66E-08 0,1802708 0,2150892 0,7210832 0,8603567 0,1802709 0,2150892 3,9999986 3,9999991

160x160 2,09E-08 1,52E-08 0,2471318 0,2950461 0,9885272 1,1801844 0,2471319 0,2950461 3,9999990 3,9999994

176x176 2,16E-08 1,64E-08 0,3287657 0,3927055 1,3150629 1,5708221 0,3287658 0,3927056 3,9999992 3,9999995

192x192 2,05E-08 7,45E-09 0,4266471 0,5098377 1,7065884 2,0393508 0,4266472 0,5098377 3,9999994 3,9999998

208x208 2,15E-08 1,44E-08 0,5422505 0,6482129 2,1690021 2,5928515 0,5422506 0,6482129 3,9999995 3,9999997

224x224 2,09E-08 2,08E-08 0,6770505 0,8096013 2,7082021 3,2384051 0,6770506 0,8096013 3,9999996 3,9999997

240x240 2,17E-08 3,44E-08 0,8325216 0,9957731 3,3300867 3,9830926 0,8325217 0,9957733 3,9999997 3,9999996

256x256 2,51E-08 2,07E-08 1,0101385 1,2084987 4,0405541 4,8339948 1,0101386 1,2084988 3,9999997 3,9999998

272x272 2,84E-08 5,18E-08 1,2113756 1,4495482 4,8455026 5,7981930 1,2113757 1,4495484 3,9999997 3,9999996

288x288 3,28E-08 5,50E-08 1,4377076 1,7206919 5,7508304 6,8827678 1,4377077 1,7206921 3,9999997 3,9999996

304x304 3,31E-08 5,51E-08 1,6906089 2,0237000 6,7624357 8,0948003 1,6906090 2,0237002 3,9999998 3,9999997

Conventional/Blocking Matrix Multiplication

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_8_Conv Texe_8_Block K_Conv K_Block

32x32 9,56716E-09 6,60889E-08 0,0020220 0,0023607 0,0161762 0,0188861 0,0020221 0,0023612 7,9997350 7,9984326

48x48 8,09916E-09 4,66226E-08 0,0067604 0,0079668 0,0540830 0,0637347 0,0067604 0,0079672 7,9999329 7,9996723

64x64 2,09104E-08 7,75716E-09 0,0159497 0,0188837 0,1275978 0,1510698 0,0159499 0,0188838 7,9999266 7,9999770

80x80 2,19188E-08 2,89118E-08 0,0310646 0,0368817 0,2485168 0,2950539 0,0310648 0,0368819 7,9999605 7,9999561

96x96 2,10702E-08 2,40494E-08 0,0535796 0,0637310 0,4286367 0,5098483 0,0535797 0,0637312 7,9999780 7,9999789

112x112 2,17354E-08 2,1003E-08 0,0849692 0,1012019 0,6797539 0,8096150 0,0849694 0,1012020 7,9999857 7,9999884

128x128 2,04495E-08 2,01088E-08 0,1267081 0,1510645 1,0136650 1,2085161 0,1267083 0,1510647 7,9999910 7,9999925

144x144 2,1629E-08 1,657E-08 0,1802708 0,2150892 1,4421663 1,7207134 0,1802709 0,2150893 7,9999933 7,9999957

160x160 2,0909E-08 1,51996E-08 0,2471318 0,2950461 1,9770544 2,3603688 0,2471319 0,2950462 7,9999953 7,9999971

176x176 2,15607E-08 1,64243E-08 0,3287657 0,3927055 2,6301258 3,1416442 0,3287659 0,3927056 7,9999963 7,9999977

192x192 2,05276E-08 7,45032E-09 0,4266471 0,5098377 3,4131769 4,0787016 0,4266473 0,5098378 7,9999973 7,9999992

208x208 2,15134E-08 1,44227E-08 0,5422505 0,6482129 4,3380042 5,1857030 0,5422507 0,6482130 7,9999978 7,9999988

224x224 2,08794E-08 2,0766E-08 0,6770505 0,8096013 5,4164042 6,4768102 0,6770507 0,8096014 7,9999983 7,9999986

240x240 2,1742E-08 3,43532E-08 0,8325216 0,9957731 6,6601733 7,9661852 0,8325218 0,9957734 7,9999985 7,9999981

256x256 2,51061E-08 2,07363E-08 1,0101385 1,2084987 8,0811082 9,6679896 1,0101387 1,2084988 7,9999986 7,9999990

272x272 2,83842E-08 5,18232E-08 1,2113756 1,4495482 9,6910052 11,5963860 1,2113758 1,4495486 7,9999987 7,9999980

288x288 3,28151E-08 5,49764E-08 1,4377076 1,7206919 11,5016608 13,7655356 1,4377078 1,7206923 7,9999987 7,9999982

304x304 3,30865E-08 5,51136E-08 1,6906089 2,0237000 13,5248715 16,1896006 1,6906092 2,0237005 7,9999989 7,9999985

Conventional/Blocking Matrix Multiplication
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Table 11: Calculated WCET and Throughput for a system freq. 150MHz and P=16 

 
 
The remainder of this section presents charts comparing the calculated throughput. The 
varied parameters when calculating the throughput are among others the number of cores, 
the system frequency, the caches, algorithms etc. with respect to increased workload 
(increased matrix size).  
 
Figure 12, illustrates the calculated throughput for 4 cores running 4 tasks in parallel. The 
figure also shows 8 curves of throughput divided into 4 pairs (one conventional and one 
blocking algorithm), where each pair has the same system clock frequency. Additionally, the 
series of the clock frequencies used to calculate the 4 pairs are 150MHz, 300MHz, 600MHz 
and 1200MHz.  
 

 
Figure 12: P=4, calculated throughputs for the simulated system clock frequencies. 

 
Figures 13 and 14 are also showing the calculated throughput for 8 cores running 8 tasks in 
parallel and 16 cores running 16 tasks in parallel respectively. 
 

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_16_ConvTexe_16_Block K_Conv K_Block

32x32 9,57E-09 6,61E-08 0,0020220 0,0023607 0,0323525 0,0377722 0,0020222 0,0023618 15,9988645 15,9932841

48x48 8,10E-09 4,66E-08 0,0067604 0,0079668 0,1081660 0,1274694 0,0067605 0,0079675 15,9997125 15,9985956

64x64 2,09E-08 7,76E-09 0,0159497 0,0188837 0,2551955 0,3021396 0,0159500 0,0188838 15,9996854 15,9999014

80x80 2,19E-08 2,89E-08 0,0310646 0,0368817 0,4970336 0,5901079 0,0310649 0,0368822 15,9998307 15,9998119

96x96 2,11E-08 2,40E-08 0,0535796 0,0637310 0,8572734 1,0196966 0,0535799 0,0637314 15,9999056 15,9999094

112x112 2,17E-08 2,10E-08 0,0849692 0,1012019 1,3595079 1,6192301 0,0849696 0,1012022 15,9999386 15,9999502

128x128 2,04E-08 2,01E-08 0,1267081 0,1510645 2,0273299 2,4170322 0,1267084 0,1510648 15,9999613 15,9999681

144x144 2,16E-08 1,66E-08 0,1802708 0,2150892 2,8843326 3,4414267 0,1802711 0,2150894 15,9999712 15,9999815

160x160 2,09E-08 1,52E-08 0,2471318 0,2950461 3,9541088 4,7207375 0,2471321 0,2950463 15,9999797 15,9999876

176x176 2,16E-08 1,64E-08 0,3287657 0,3927055 5,2602515 6,2832885 0,3287660 0,3927058 15,9999843 15,9999900

192x192 2,05E-08 7,45E-09 0,4266471 0,5098377 6,8263537 8,1574032 0,4266474 0,5098378 15,9999885 15,9999965

208x208 2,15E-08 1,44E-08 0,5422505 0,6482129 8,6760083 10,3714060 0,5422508 0,6482131 15,9999905 15,9999947

224x224 2,09E-08 2,08E-08 0,6770505 0,8096013 10,8328083 12,9536204 0,6770508 0,8096016 15,9999926 15,9999938

240x240 2,17E-08 3,44E-08 0,8325216 0,9957731 13,3203467 15,9323704 0,8325220 0,9957737 15,9999937 15,9999917

256x256 2,51E-08 2,07E-08 1,0101385 1,2084987 16,1622164 19,3359792 1,0101389 1,2084990 15,9999940 15,9999959

272x272 2,84E-08 5,18E-08 1,2113756 1,4495482 19,3820104 23,1927719 1,2113761 1,4495490 15,9999944 15,9999914

288x288 3,28E-08 5,50E-08 1,4377076 1,7206919 23,0033216 27,5310712 1,4377081 1,7206928 15,9999945 15,9999923

304x304 3,31E-08 5,51E-08 1,6906089 2,0237000 27,0497429 32,3792012 1,6906094 2,0237009 15,9999953 15,9999935

Conventional/Blocking Matrix Multiplication
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Figure 13: P=8, calculated throughputs for the simulated system clock frequencies. 

 

 
Figure 14: P=16, calculated throughputs for the simulated system clock frequencies. 
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5. Discussion 
 
 
The findings of this Master’s Thesis are presented in the result chapter. These results are 
acquired by using the method described in the system assumption chapter, which mainly 
consists of a simulation tool and an analytical model and supporting scripts. The goal has 
been to develop a method that makes it possible to estimate a safe and tight WCET in 
multicore system like LEON4FT.    
 
Two matrix multiplication applications are used to evaluate the method. Prior to choosing this 
approach it is found that matrix multiplication is used in previous studies to evaluating cache 
efficiency and/or WCET. Moreover, it is found that matrix multiplication is a data intensive 
application that suites assessing multi-level memory systems as well as multicore 
performance. Matrix multiplication is a particularly good evaluation benchmark since by 
simply increasing or decreasing the matrix size, the application workload becomes higher or 
lower.  
 
The data collected from the simulation tool that is used to calculate the multicore system’s 
throughput, a metrics used to evaluate the safeness and tightness of an estimated WCET, is 
presented in Tables 5 through 8. These 4 tables show the results for the 4 different system 
clock frequencies and the 2 matrix multiplication algorithms. The measured parameters (the 
number of instruction, the L1 miss-rate and the L2 miss-rate) listed in these tables are used 
to calculate the average memory access-time, the worst case execution time and the 
throughput. These values were presented in Tables from 9 to 11. These tables display the 
result calculated for the system clock frequency at 150MHz, the algorithms and the number 
of processors are however changed. Since, these values are not directly illustrative and do 
not show whether the WCET estimated is safe or tight the result for the system clock 
frequencies are added into the appendices. Nevertheless, charts illustrating the throughput of 
the multicore running in parallel are added into the last part of the result chapter.  
 
Figures from 12 to 14 show the throughput of the tasks executed in parallel. As can be seen 
in these figures the throughput is lowest at the lowest simulated matrix size (32x32) for all the 
different number of multicores, algorithms and clock frequencies. Furthermore, the 
throughput improves as the matrix size gets bigger. This can be interpreted as follows: as the 
parallel tasks’ workload increases, the system’s throughput improves in reference to the 
serially executed tasks. 
 
Nevertheless, the aforementioned figures expose that there is relative throughput gap 
between the different system clock frequencies. The highest throughput for all the simulated 
matrix sizes is reached when the system is running conventional matrix multiplication at 
150MHz (the lowest simulated system clock frequency). This is to be expected as the 
bottleneck is then in instruction processing. Conversely, the lowest throughput for all the 
simulated matrix sizes is reached when the system is running conventional matrix 
multiplication at 1200MHz (the highest simulated system clock frequency). Again, as was 
discussed in Section 2 the higher the CPU’s clock frequency gets the bigger the speed gap 
between the CPU and memory gets a.k.a. memory wall. The two simulated algorithms in 
relation to the different matrix sizes seem to have different effect on the throughput.  For 
example, at the lower matrix size, the conventional matrix multiplication applications have the 
lowest throughput for all system clocks except 300MHz. Yet again, this supports that the 
lower system frequencies’ bottleneck is the instruction processing. Looking into the 
simulation result tables presented in Section 4.1 and in the appendices one can see that the 
blocking algorithm has higher instructions than the conventional algorithm.    
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An overall observation made is that the blocking algorithm has a bit higher throughput for 
most of the smaller matrices compared to the conventional algorithm. However, this slight 
improvement of the throughput with the blocking algorithm was not as significant as was 
anticipated. Previous studies, discussed in Section 2, present that the blocking algorithm 
would be more optimal than the conventional in terms of the cache utilisation etc. On the 
other hand, this Master Thesis did not seek to optimise the blocking algorithm’s parameters 
such as the so called the blocking factor. The blocking factor, which is the size of the block of 
data the algorithm can copy from a memory to a cache or vice-versa in each access, can be 
calculated based on the cache size to get an optimal blocking algorithm. 
 
Finally, it was found that the throughput of the simulated matrix sizes from 112x112 to 
304x304 is almost optimal for all the multicore arrangements (P=4, P=8 and P=16) 
regardless the range of system speed and algorithm. 
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6. Conclusion & Recommendations 
 
 

6.1 Conclusion 
 
The aim of this Master’s Thesis has been to find a method to estimate a safe and tight WCET 
in multicore system with multilevel memory hierarchies. The first step taken to find a solution 
was to study the prior work in the field to lay a foundation for the project. It has been found 
that prior research has established methods to estimate safe and acceptably tight bounds on 
memory access time in single-processor systems. The multicore systems, the embedded 
multicore systems in particularly, on the other hand do not have well established WCET 
estimation methods. The multicores have in a few years become the new performance 
improvement approach, since single-core solutions are no longer able to deliver a 
performance boost. However, the software designers are still searching better ways to fully 
utilise the multicore performance. 
 
LEON4 is an example of the new multicore SoC systems that the designers are currently 
exploring to fully utilise its multicores concurrently. Actually, RUAG, which is the company 
that together with Chalmers initiated this Master’s Thesis project, is currently using the 
LEON4 in serial execution mode. This thesis project is therefore part of on-going efforts that 
are striving to explore new ways to improve the multicore systems throughput, particularly by 
developing a method to estimate LEON4’s WCET estimate. 
 
The simulation results were presented in the result chapter, and then discussed in the 
discussion chapter. These results reveal that the simulated system’s throughput is almost 
close to the maximum expected throughput when the tasks are executed in parallel. 
Additionally, the calculated WCET for the parallel tasks (Texe_N) is significantly lower than 
the serial tasks (Texe_1). Therefore, the conclusion drawn is that these findings indicate that 
by running 4 tasks on the LEON4’s 4 cores, the WCET is not only safe and tight but also the 
system’s throughput is better off than when running the tasks serially.  
 

6.2 Recommendations 
  
Although, this Master’s Thesis project’s findings are encouraging there are some work left. 
Below are the future recommendations for possible continuation of the project. These 
recommendations can be followed sequentially or any desired point can be picked and 
carried out. 

Recommendations point: 

1. Carry out further testing on the this project’s method by using Mibench (the 
automotive category) benchmark 

2. Use gem5’s SPARC architecture, which is the architecture that LEON4 is based, if 
the simulation tool is made stable to support this option.  

3. Use gem5 in multicore configuration 
4. Implement LEON4 on FPGA and carry out WCET estimation on hardware    
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Appendix A: Calculated Result for a System Frequency at 300MHz  

 

 Calculated WCET and Throughput for a system freq. 300MHz and P=4.

NxN_Metrics AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 9,75333E-08 4,65115E-08 0,00101101 0,001180347 0,00404443 0,004721573 0,0010114 0,001180533 3,998842793 3,999527216

48 9,17588E-09 2,33113E-08 0,003380183 0,003983397 0,01352077 0,01593368 0,00338022 0,00398349 3,999967425 3,999929776

64 1,04523E-08 1,77393E-08 0,00797485 0,00944186 0,031899442 0,037767511 0,007974892 0,009441931 3,999984272 3,999977455

80 3,50756E-09 1,44559E-08 0,01553229 0,018440857 0,062129174 0,073763484 0,015532304 0,018440914 3,99999729 3,999990593

96 1,05255E-08 1,21614E-08 0,026789783 0,031865507 0,107159175 0,127462075 0,026789825 0,031865555 3,999995285 3,99999542

112 3,11274E-09 1,05015E-08 0,04248461 0,05060093 0,169938452 0,202403762 0,042484622 0,050600972 3,999999121 3,99999751

128 1,02237E-08 3,19098E-09 0,06335405 0,075532247 0,253416241 0,302128999 0,063354091 0,075532259 3,999998064 3,999999493

144 7,90656E-09 8,28498E-09 0,090135383 0,107544577 0,360541565 0,43017834 0,090135415 0,10754461 3,999998947 3,999999076

160 1,04486E-08 7,66428E-09 0,12356589 0,14752304 0,494263602 0,590092191 0,123565932 0,147523071 3,999998985 3,999999377

176 1,07804E-08 8,29136E-09 0,16438285 0,196352757 0,657531443 0,78541106 0,164382893 0,19635279 3,999999213 3,999999493

192 1,02624E-08 7,00612E-09 0,213323543 0,254918847 0,853294214 1,019675415 0,213323584 0,254918875 3,999999423 3,99999967

208 1,07567E-08 7,21136E-09 0,27112525 0,32410643 1,084501043 1,296425749 0,271125293 0,324106459 3,999999524 3,999999733

224 1,04356E-08 1,04548E-08 0,33852525 0,404800627 1,354101042 1,619202548 0,338525292 0,404800668 3,99999963 3,99999969

240 1,0871E-08 1,71766E-08 0,416260823 0,497886557 1,665043337 1,991546295 0,416260867 0,497886625 3,999999687 3,999999586

256 1,25537E-08 1,03488E-08 0,50506925 0,60424934 2,02027705 2,416997401 0,5050693 0,604249381 3,999999702 3,999999794

272 1,41921E-08 2,63084E-08 0,60568781 0,724774097 2,422751297 2,899096492 0,605687867 0,724774202 3,999999719 3,999999564

288 1,64053E-08 2,76971E-08 0,718853783 0,860345947 2,875415199 3,441383897 0,718853849 0,860346057 3,999999726 3,999999614

304 1,65433E-08 2,75568E-08 0,84530445 1,01185001 3,381217866 4,04740015 0,845304516 1,01185012 3,999999765 3,999999673

 Calculated WCET and Throughput for a system freq. 300MHz and P=8.

NxN_Metrics AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 9,75333E-08 9,29057E-08 0,00101101 0,001180347 0,00808886 0,009443517 0,00101179 0,00118109 7,994601783 7,995594987

48 9,17588E-09 2,33113E-08 0,003380183 0,003983397 0,02704154 0,03186736 0,003380257 0,003983583 7,999847985 7,999672297

64 1,04523E-08 1,77393E-08 0,00797485 0,00944186 0,063798884 0,075535022 0,007974934 0,009442002 7,999926604 7,999894789

80 3,50756E-09 1,44559E-08 0,01553229 0,018440857 0,124258348 0,147526969 0,015532318 0,018440972 7,999987354 7,999956101

96 1,05255E-08 1,21614E-08 0,026789783 0,031865507 0,214318351 0,254924151 0,026789868 0,031865604 7,999977998 7,999978628

112 3,11274E-09 1,05015E-08 0,04248461 0,05060093 0,339876905 0,404807524 0,042484635 0,050601014 7,999995897 7,999988378

128 1,02237E-08 3,19098E-09 0,06335405 0,075532247 0,506832482 0,604257999 0,063354132 0,075532272 7,999990963 7,999997634

144 7,90656E-09 8,28498E-09 0,090135383 0,107544577 0,72108313 0,86035668 0,090135447 0,107544643 7,999995088 7,999995686

160 1,04486E-08 7,66428E-09 0,12356589 0,14752304 0,988527204 1,180184381 0,123565974 0,147523101 7,999995265 7,999997091

176 1,07804E-08 8,29136E-09 0,16438285 0,196352757 1,315062886 1,57082212 0,164382936 0,196352823 7,999996327 7,999997635

192 1,02624E-08 7,00612E-09 0,213323543 0,254918847 1,706588429 2,039350829 0,213323625 0,254918903 7,999997306 7,999998461

208 1,07567E-08 7,21136E-09 0,27112525 0,32410643 2,169002086 2,592851498 0,271125336 0,324106488 7,999997778 7,999998754

224 1,04356E-08 1,04548E-08 0,33852525 0,404800627 2,708202083 3,238405097 0,338525333 0,40480071 7,999998274 7,999998554

240 1,0871E-08 1,71766E-08 0,416260823 0,497886557 3,330086674 3,983092591 0,41626091 0,497886694 7,999998538 7,999998068

256 1,25537E-08 1,03488E-08 0,50506925 0,60424934 4,0405541 4,833994803 0,50506935 0,604249423 7,999998608 7,999999041

272 1,41921E-08 2,63084E-08 0,60568781 0,724774097 4,845502594 5,798192984 0,605687924 0,724774307 7,999998688 7,999997967

288 1,64053E-08 2,76971E-08 0,718853783 0,860345947 5,750830398 6,882767795 0,718853915 0,860346168 7,999998722 7,999998197

304 1,65433E-08 2,75568E-08 0,84530445 1,01185001 6,762435732 8,0948003 0,845304582 1,01185023 7,999998904 7,999998475

 Calculated WCET and Throughput for a system freq. 300MHz and P=16.

NxN_Metrics AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 9,75333E-08 4,65115E-08 0,00101101 0,001180347 0,016177721 0,018886291 0,001012571 0,001181091 15,97688261 15,99054878

48 9,17588E-09 2,33113E-08 0,003380183 0,003983397 0,05408308 0,06373472 0,00338033 0,00398377 15,99934852 15,99859562

64 1,04523E-08 1,77393E-08 0,00797485 0,00944186 0,127597767 0,151070044 0,007975017 0,009442144 15,99968545 15,9995491

80 3,50756E-09 1,44559E-08 0,01553229 0,018440857 0,248516696 0,295053938 0,015532346 0,018441088 15,9999458 15,99981186

96 1,05255E-08 1,21614E-08 0,026789783 0,031865507 0,428636702 0,509848301 0,026789952 0,031865701 15,99990571 15,9999084

112 3,11274E-09 1,05015E-08 0,04248461 0,05060093 0,67975381 0,809615048 0,04248466 0,050601098 15,99998242 15,99995019

128 1,02237E-08 3,19098E-09 0,06335405 0,075532247 1,013664964 1,208515998 0,063354214 0,075532298 15,99996127 15,99998986

144 7,90656E-09 8,28498E-09 0,090135383 0,107544577 1,44216626 1,720713359 0,09013551 0,107544709 15,99997895 15,99998151

160 1,04486E-08 7,66428E-09 0,12356589 0,14752304 1,977054407 2,360368763 0,123566057 0,147523163 15,99997971 15,99998753

176 1,07804E-08 8,29136E-09 0,16438285 0,196352757 2,630125772 3,141644239 0,164383022 0,196352889 15,99998426 15,99998987

192 1,02624E-08 7,00612E-09 0,213323543 0,254918847 3,413176858 4,078701659 0,213323708 0,254918959 15,99998845 15,9999934

208 1,07567E-08 7,21136E-09 0,27112525 0,32410643 4,338004172 5,185702995 0,271125422 0,324106545 15,99999048 15,99999466

224 1,04356E-08 1,04548E-08 0,33852525 0,404800627 5,416404167 6,476810194 0,338525417 0,404800794 15,9999926 15,9999938

240 1,0871E-08 1,71766E-08 0,416260823 0,497886557 6,660173347 7,966185181 0,416260997 0,497886831 15,99999373 15,99999172

256 1,25537E-08 1,03488E-08 0,50506925 0,60424934 8,081108201 9,667989606 0,505069451 0,604249506 15,99999403 15,99999589

272 1,41921E-08 2,63084E-08 0,60568781 0,724774097 9,691005187 11,59638597 0,605688037 0,724774518 15,99999438 15,99999129

288 1,64053E-08 2,76971E-08 0,718853783 0,860345947 11,5016608 13,76553559 0,718854046 0,86034639 15,99999452 15,99999227

304 1,65433E-08 2,75568E-08 0,84530445 1,01185001 13,52487146 16,1896006 0,845304715 1,011850451 15,9999953 15,99999346

Conventional/Blocking Metrics Multiplication

Conventional/Blocking Metrics Multiplication

Conventional/Blocking Metrics Multiplication
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Appendix B: Calculated Result for a System Frequency at 600MHz  

 Calculated WCET and Throughput for a system freq. 600MHz and P=4.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 5,00286E-08 5,00272E-08 0,000505505 0,000590173 0,00202222 0,002360893 0,000505705 0,000590373 3,99881286 3,998983141

48 4,9904E-08 2,6928E-08 0,001690092 0,001991698 0,006760566 0,007966901 0,001690291 0,001991806 3,999645713 3,999837767

64 1,8726E-09 1,1225E-08 0,003987425 0,00472093 0,015949707 0,018883765 0,003987432 0,004720975 3,999994364 3,999971468

80 2,1398E-09 7,53867E-09 0,007766145 0,009220428 0,031064589 0,036881743 0,007766154 0,009220458 3,999996694 3,999990189

96 1,473E-09 6,08072E-09 0,013394892 0,015932753 0,053579573 0,063731038 0,013394898 0,015932778 3,99999868 3,99999542

112 1,6291E-09 5,26943E-09 0,021242305 0,025300465 0,084969227 0,101201881 0,021242312 0,025300486 3,99999908 3,999997501

128 5,11151E-09 4,61594E-09 0,031677025 0,037766123 0,12670812 0,151064512 0,031677045 0,037766142 3,999998064 3,999998533

144 1,34148E-09 4,14249E-09 0,045067692 0,053772288 0,180270772 0,21508917 0,045067697 0,053772305 3,999999643 3,999999076

160 5,2178E-09 3,83214E-09 0,061782945 0,07376152 0,247131801 0,295046095 0,061782966 0,073761535 3,999998987 3,999999377

176 1,15431E-09 4,14568E-09 0,082191425 0,098176378 0,328765705 0,39270553 0,08219143 0,098176395 3,999999831 3,999999493

192 5,12999E-09 3,51214E-09 0,106661772 0,127459423 0,426647107 0,509837707 0,106661792 0,127459437 3,999999423 3,999999669

208 1,02952E-09 3,60568E-09 0,135562625 0,162053215 0,542250504 0,648212874 0,135562629 0,162053229 3,999999909 3,999999733

224 5,21304E-09 5,27633E-09 0,169262625 0,202400313 0,677050521 0,809601274 0,169262646 0,202400334 3,99999963 3,999999687

240 1,89105E-09 8,59554E-09 0,208130412 0,248943278 0,832521654 0,995773148 0,208130419 0,248943313 3,999999891 3,999999586

256 6,27544E-09 2,20435E-09 0,252534625 0,30212467 1,010138525 1,208498689 0,25253465 0,302124679 3,999999702 3,999999912

272 6,13859E-09 1,3171E-08 0,302843905 0,362387048 1,211375645 1,449548246 0,30284393 0,362387101 3,999999757 3,999999564

288 8,20112E-09 1,38485E-08 0,359426892 0,430172973 1,437707599 1,720691949 0,359426924 0,430173029 3,999999726 3,999999614

304 8,02386E-09 1,37784E-08 0,422652225 0,505925005 1,690608932 2,023700075 0,422652257 0,50592506 3,999999772 3,999999673

 Calculated WCET and Throughput for a system freq. 600MHz and P=8.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 5,00286E-08 5,00272E-08 0,000505505 0,000590173 0,00404444 0,004721787 0,000505905 0,000590574 7,994462206 7,995256267

48 4,9904E-08 2,6928E-08 0,001690092 0,001991698 0,013521133 0,015933802 0,001690491 0,001991914 7,998346856 7,999242955

64 1,8726E-09 1,1225E-08 0,003987425 0,00472093 0,031899415 0,03776753 0,00398744 0,00472102 7,999973701 7,99986685

80 2,1398E-09 7,53867E-09 0,007766145 0,009220428 0,062129177 0,073763487 0,007766162 0,009220489 7,99998457 7,999954214

96 1,473E-09 6,08072E-09 0,013394892 0,015932753 0,107159145 0,127462075 0,013394903 0,015932802 7,999993842 7,999978628

112 1,6291E-09 5,26943E-09 0,021242305 0,025300465 0,169938453 0,202403762 0,021242318 0,025300507 7,999995705 7,999988337

128 5,11151E-09 4,61594E-09 0,031677025 0,037766123 0,253416241 0,302129024 0,031677066 0,03776616 7,999990964 7,999993155

144 1,34148E-09 4,14249E-09 0,045067692 0,053772288 0,360541544 0,43017834 0,045067702 0,053772321 7,999998333 7,999995686

160 5,2178E-09 3,83214E-09 0,061782945 0,07376152 0,494263602 0,590092191 0,061782987 0,073761551 7,999995271 7,999997091

176 1,15431E-09 4,14568E-09 0,082191425 0,098176378 0,657531409 0,78541106 0,082191434 0,098176411 7,999999214 7,999997635

192 5,12999E-09 3,51214E-09 0,106661772 0,127459423 0,853294214 1,019675415 0,106661813 0,127459451 7,999997307 7,999998457

208 1,02952E-09 3,60568E-09 0,135562625 0,162053215 1,084501008 1,296425749 0,135562633 0,162053244 7,999999575 7,999998754

224 5,21304E-09 5,27633E-09 0,169262625 0,202400313 1,354101042 1,619202549 0,169262667 0,202400356 7,999998275 7,99999854

240 1,89105E-09 8,59554E-09 0,208130412 0,248943278 1,665043308 1,991546295 0,208130427 0,248943347 7,999999491 7,999998066

256 6,27544E-09 2,20435E-09 0,252534625 0,30212467 2,02027705 2,416997378 0,252534675 0,302124688 7,999998608 7,999999591

272 6,13859E-09 1,3171E-08 0,302843905 0,362387048 2,422751289 2,899096492 0,302843954 0,362387154 7,999998865 7,999997965

288 8,20112E-09 1,38485E-08 0,359426892 0,430172973 2,875415199 3,441383897 0,359426957 0,430173084 7,999998722 7,999998197

304 8,02386E-09 1,37784E-08 0,422652225 0,505925005 3,381217864 4,04740015 0,422652289 0,505925115 7,999998937 7,999998475

 Calculated WCET and Throughput for a system freq. 600MHz and P=16.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 5,00286E-08 5,00272E-08 0,000505505 0,000590173 0,00808888 0,009443574 0,000506305 0,000590974 15,97628536 15,97968348

48 4,9904E-08 2,6928E-08 0,001690092 0,001991698 0,027042265 0,031867604 0,00169089 0,001992129 15,99291677 15,99675587

64 1,8726E-09 1,1225E-08 0,003987425 0,00472093 0,06379883 0,07553506 0,003987455 0,00472111 15,99988729 15,99942937

80 2,1398E-09 7,53867E-09 0,007766145 0,009220428 0,124258354 0,147526974 0,007766179 0,009220549 15,99993387 15,99980378

96 1,473E-09 6,08072E-09 0,013394892 0,015932753 0,21431829 0,254924151 0,013394915 0,015932851 15,99997361 15,9999084

112 1,6291E-09 5,26943E-09 0,021242305 0,025300465 0,339876906 0,404807524 0,021242331 0,025300549 15,99998159 15,99995001

128 5,11151E-09 4,61594E-09 0,031677025 0,037766123 0,506832482 0,604258047 0,031677107 0,037766197 15,99996127 15,99997067

144 1,34148E-09 4,14249E-09 0,045067692 0,053772288 0,721083088 0,86035668 0,045067713 0,053772355 15,99999286 15,99998151

160 5,2178E-09 3,83214E-09 0,061782945 0,07376152 0,988527203 1,180184381 0,061783028 0,073761581 15,99997973 15,99998753

176 1,15431E-09 4,14568E-09 0,082191425 0,098176378 1,315062818 1,57082212 0,082191443 0,098176445 15,99999663 15,99998987

192 5,12999E-09 3,51214E-09 0,106661772 0,127459423 1,706588429 2,03935083 0,106661854 0,12745948 15,99998846 15,99999339

208 1,02952E-09 3,60568E-09 0,135562625 0,162053215 2,169002016 2,592851498 0,135562641 0,162053273 15,99999818 15,99999466

224 5,21304E-09 5,27633E-09 0,169262625 0,202400313 2,708202083 3,238405098 0,169262708 0,202400398 15,99999261 15,99999374

240 1,89105E-09 8,59554E-09 0,208130412 0,248943278 3,330086617 3,983092591 0,208130442 0,248943416 15,99999782 15,99999171

256 6,27544E-09 2,20435E-09 0,252534625 0,30212467 4,0405541 4,833994755 0,252534725 0,302124705 15,99999404 15,99999825

272 6,13859E-09 1,3171E-08 0,302843905 0,362387048 4,845502578 5,798192984 0,302844003 0,362387259 15,99999514 15,99999128

288 8,20112E-09 1,38485E-08 0,359426892 0,430172973 5,750830398 6,882767795 0,359427023 0,430173195 15,99999452 15,99999227

304 8,02386E-09 1,37784E-08 0,422652225 0,505925005 6,762435728 8,0948003 0,422652353 0,505925225 15,99999544 15,99999346

Conventional/Blocking Matrix Multiplication

Conventional/Blocking Matrix Multiplication

Conventional/Blocking Matrix Multiplication
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Appendix C: Calculated Result for a System Frequency at 1200MHz  
 Calculated WCET and Throughput for a system freq. 1200MHz and P=4.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 2,50142E-08 2,50136E-08 0,000252753 0,000295087 0,00101111 0,001180447 0,000252853 0,000295187 3,998812864 3,998983141

48 2,50096E-08 2,5009E-08 0,000845046 0,000995849 0,003380283 0,003983497 0,000845146 0,000995949 3,999644896 3,999698671

64 2,48456E-08 1,17728E-08 0,001993713 0,002360465 0,007974949 0,009441907 0,001993812 0,002360512 3,999850464 3,999940151

80 1,65742E-08 1,02328E-08 0,003883073 0,004610214 0,015532356 0,018440898 0,003883139 0,004610255 3,999948781 3,999973365

96 1,33377E-09 7,88489E-09 0,006697446 0,007966377 0,026789789 0,031865538 0,006697451 0,007966408 3,99999761 3,999988123

112 8,14275E-10 5,78168E-09 0,010621153 0,012650233 0,042484613 0,050600953 0,010621156 0,012650256 3,99999908 3,999994516

128 2,55529E-09 2,31117E-09 0,015838513 0,018883062 0,06335406 0,075532256 0,015838523 0,018883071 3,999998064 3,999998531

144 6,70615E-10 2,68424E-09 0,022533846 0,026886144 0,090135386 0,107544587 0,022533849 0,026886155 3,999999643 3,999998802

160 5,85045E-10 2,12481E-09 0,030891473 0,03688076 0,123565892 0,147523048 0,030891475 0,036880768 3,999999773 3,999999309

176 5,7829E-10 2,14234E-09 0,041095713 0,049088189 0,164382852 0,196352765 0,041095715 0,049088198 3,999999831 3,999999476

192 2,56365E-09 1,75607E-09 0,053330886 0,063729712 0,213323554 0,254918854 0,053330896 0,063729719 3,999999423 3,999999669

208 5,14035E-10 1,80284E-09 0,067781313 0,081026608 0,271125252 0,324106437 0,067781315 0,081026615 3,999999909 3,999999733

224 5,4463E-10 2,65299E-09 0,084631313 0,101200157 0,338525252 0,404800637 0,084631315 0,101200167 3,999999923 3,999999685

240 8,8628E-10 4,31747E-09 0,104065206 0,124471639 0,416260827 0,497886574 0,104065209 0,124471656 3,999999898 3,999999584

256 3,1355E-09 6,76005E-09 0,126267313 0,151062335 0,505069263 0,604249367 0,126267325 0,151062362 3,999999702 3,999999463

272 1,49582E-08 6,59498E-09 0,151421953 0,181193524 0,60568787 0,724774123 0,151422012 0,181193551 3,999998815 3,999999563

288 4,01138E-09 6,92427E-09 0,179713446 0,215086487 0,718853799 0,860345974 0,179713462 0,215086514 3,999999732 3,999999614

304 2,51332E-08 6,8892E-09 0,211326113 0,252962503 0,845304551 1,011850038 0,211326213 0,25296253 3,999998573 3,999999673

 Calculated WCET and Throughput for a system freq. 1200MHz and P=8.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 2,50142E-08 2,50136E-08 0,000252753 0,000295087 0,00202222 0,002360893 0,000252953 0,000295287 7,994462223 7,995256267

48 2,50096E-08 2,5009E-08 0,000845046 0,000995849 0,006760567 0,007966993 0,000845246 0,000996049 7,998343044 7,998593939

64 2,48456E-08 1,17728E-08 0,001993713 0,002360465 0,015949899 0,018883814 0,001993911 0,002360559 7,9993022 7,999720711

80 1,65742E-08 1,02328E-08 0,003883073 0,004610214 0,031064713 0,036881795 0,003883205 0,004610296 7,999760983 7,999875705

96 1,33377E-09 7,88489E-09 0,006697446 0,007966377 0,053579577 0,063731076 0,006697457 0,00796644 7,999988848 7,999944573

112 8,14275E-10 5,78168E-09 0,010621153 0,012650233 0,084969227 0,101201906 0,010621159 0,012650279 7,999995707 7,999974406

128 2,55529E-09 2,31117E-09 0,015838513 0,018883062 0,12670812 0,151064512 0,015838533 0,01888308 7,999990965 7,999993146

144 6,70615E-10 2,68424E-09 0,022533846 0,026886144 0,180270772 0,215089175 0,022533851 0,026886166 7,999998333 7,999994409

160 5,85045E-10 2,12481E-09 0,030891473 0,03688076 0,247131785 0,295046097 0,030891477 0,036880777 7,999998939 7,999996774

176 5,7829E-10 2,14234E-09 0,041095713 0,049088189 0,328765705 0,39270553 0,041095717 0,049088206 7,999999212 7,999997556

192 2,56365E-09 1,75607E-09 0,053330886 0,063729712 0,426647107 0,509837707 0,053330906 0,063729726 7,999997308 7,999998457

208 5,14035E-10 1,80284E-09 0,067781313 0,081026608 0,542250504 0,648212874 0,067781317 0,081026622 7,999999575 7,999998754

224 5,4463E-10 2,65299E-09 0,084631313 0,101200157 0,677050504 0,809601275 0,084631317 0,101200178 7,99999964 7,999998532

240 8,8628E-10 4,31747E-09 0,104065206 0,124471639 0,832521654 0,995773148 0,104065213 0,124471674 7,999999523 7,999998058

256 3,1355E-09 6,76005E-09 0,126267313 0,151062335 1,010138525 1,208498734 0,126267338 0,151062389 7,999998609 7,999997494

272 1,49582E-08 6,59498E-09 0,151421953 0,181193524 1,21137574 1,449548246 0,151422072 0,181193577 7,999994468 7,999997962

288 4,01138E-09 6,92427E-09 0,179713446 0,215086487 1,437707599 1,720691949 0,179713478 0,215086542 7,99999875 7,999998197

304 2,51332E-08 6,8892E-09 0,211326113 0,252962503 1,690609101 2,023700075 0,211326314 0,252962558 7,99999334 7,999998475

 Calculated WCET and Throughput for a system freq. 1200MHz and P=16.

NxN_Matrix AMAT_Conv AMAT_Block Tproc_Conv Tproc_Block Texe_1_Conv Texe_1_Block Texe_4_Conv Texe_4_Block K_Conv K_Block

32 2,50142E-08 2,50136E-08 0,000252753 0,000295087 0,00404444 0,004721787 0,000253153 0,000295487 15,97628543 15,97968348

48 2,50096E-08 2,5009E-08 0,000845046 0,000995849 0,013521133 0,015933987 0,000845446 0,000996249 15,99290044 15,99397523

64 2,48456E-08 1,17728E-08 0,001993713 0,002360465 0,031899798 0,037767628 0,00199411 0,002360653 15,99700973 15,9988031

80 1,65742E-08 1,02328E-08 0,003883073 0,004610214 0,062129425 0,07376359 0,003883338 0,004610378 15,99897568 15,99946732

96 1,33377E-09 7,88489E-09 0,006697446 0,007966377 0,107159155 0,127462153 0,006697467 0,007966503 15,99995221 15,99976246

112 8,14275E-10 5,78168E-09 0,010621153 0,012650233 0,169938453 0,202403813 0,010621166 0,012650325 15,9999816 15,99989031

128 2,55529E-09 2,31117E-09 0,015838513 0,018883062 0,253416241 0,302129024 0,015838553 0,018883099 15,99996128 15,99997063

144 6,70615E-10 2,68424E-09 0,022533846 0,026886144 0,360541544 0,43017835 0,022533857 0,026886187 15,99999286 15,99997604

160 5,85045E-10 2,12481E-09 0,030891473 0,03688076 0,494263569 0,590092194 0,030891482 0,036880794 15,99999545 15,99998617

176 5,7829E-10 2,14234E-09 0,041095713 0,049088189 0,657531409 0,785411061 0,041095722 0,049088223 15,99999662 15,99998953

192 2,56365E-09 1,75607E-09 0,053330886 0,063729712 0,853294214 1,019675415 0,053330927 0,06372974 15,99998846 15,99999339

208 5,14035E-10 1,80284E-09 0,067781313 0,081026608 1,084501008 1,296425749 0,067781321 0,081026636 15,99999818 15,99999466

224 5,4463E-10 2,65299E-09 0,084631313 0,101200157 1,354101009 1,619202549 0,084631321 0,101200199 15,99999846 15,99999371

240 8,8628E-10 4,31747E-09 0,104065206 0,124471639 1,665043308 1,991546296 0,10406522 0,124471708 15,99999796 15,99999168

256 3,1355E-09 6,76005E-09 0,126267313 0,151062335 2,02027705 2,416997468 0,126267363 0,151062443 15,99999404 15,99998926

272 1,49582E-08 6,59498E-09 0,151421953 0,181193524 2,422751479 2,899096492 0,151422192 0,18119363 15,99997629 15,99999126

288 4,01138E-09 6,92427E-09 0,179713446 0,215086487 2,875415198 3,441383897 0,17971351 0,215086597 15,99999464 15,99999227

304 2,51332E-08 6,8892E-09 0,211326113 0,252962503 3,381218202 4,04740015 0,211326515 0,252962613 15,99997146 15,99999346

Conventional/Blocking Matrix Multiplication

Conventional/Blocking Matrix Multiplication

Conventional/Blocking Matrix Multiplication
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Appendix D: Conventional Matrix Multiplication 
 

CONVENTIONAL MATRIX MULTIPLICATION 
/*     mconv.c     */ 

#include "util/m5/m5op.h"   /* enables access to some Gem5 functions */ 

#include <stdio.h>    

#include <stdlib.h>    

#include <string.h>   

 

/* CONVENTIONAL METRICS MULTIPLICATION ALGORITHM */  

void main(int argc, char **argv) 

{ 

int MAXLOOP = atoi(argv[1]);  

int N=MAXLOOP; 

int i, j, k; 

 

int A[N][N]; 

int B[N][N]; 

int C[N][N]; 

   

for (i=0; i<N; i++) for (j=0; j<N; j++){ A[i][j]=j;} //assigning values 

to metrics A 

for (i=0; i<N; i++) for (j=0; j<N; j++){ B[i][j]=j;} //assigning values 

to metrics B 

for (i=0; i<N; i++) for (j=0; j<N; j++){ C[i][j]=j;} //assigning values 

to metrics C 

 

m5_dumpreset_stats(0,0); 

m5_checkpoint(0,0); 

/***************** Region of Interest Starts Here ********************/ 

for (i=0; i<N; i++)  

{ 

 for (j=0; j<N; j++)  

 { 

  for (k=0; k<N; k++)  

  { 

    C[i][j]+=A[i][k]*B[k][j]; 

  } 

        } 

} 

/******************* Region of Interest Ends Here ********************/ 

m5_exit(0); 

exit(0);     /* No errors */ 

} 
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Appendix E: Blocking Algorithm Matrix Multiplication 
 

#include "util/m5/m5op.h"   /* enables access to some Gem5 functions */ 

#include <stdio.h>    

#include <stdlib.h>    

#include <string.h>    

#define MIN(a,b) (((a)<(b))?(a):(b)) 

 

/* BLOCKING METRICS MULTIPLICATION ALGORITHM */ 

void main(int argc, char **argv) 

{ 

int MAXLOOP = atoi(argv[1]);  

int N=MAXLOOP; 

int kk,jj,i,k,j,block=16; 

 

int A[N][N]; 

int B[N][N]; 

int C[N][N]; 

 

for (i=0; i<N; i++) for (j=0; j<N; j++){ A[i][j]=j;} //assigning values 

to metrics A 

for (i=0; i<N; i++) for (j=0; j<N; j++){ B[i][j]=j;} //assigning values 

to metrics B 

for (i=0; i<N; i++) for (j=0; j<N; j++){ C[i][j]=j;} //assigning values 

to metrics C 

 

m5_dumpreset_stats(0,0); 

m5_checkpoint(0,0); 

/*********************** Region of Interest Starts Here 

*************************/ 

for (jj = 0; jj < N; jj += block) 

{ 

    for (kk = 0; kk < N; kk += block) 

    { 

 for (i = 0; i < N; i += 1) 

 { 

     for (j = jj; j < MIN(jj + block, N); j++) 

     { 

  for (k = kk; k < MIN(kk + block, N); k++)  

  { 

          C[i][j]+=A[i][k]*B[k][j];      

         }   

      } 

      } 

    } 

} 

/*********************** Region of Interest Ends Here 

*************************/ 

m5_exit(0); 

exit(0);     /* No errors */ 

} 
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Appendix F: BASH SCRIPT 1 - runsim.sh 
 

#!/bin/bash 

 

SHOME="/home/feysal/gem5" 

clear 

#runsim.sh 

################### (1)BASH SCRIPT SIM CONFIG ############## 

 

INC_START=32  #Start matrix size 32x32 

INC_STOP=305  #Last matrix size 304x304 

INC_STEPS=16  #18 matrix size intervals: 32x32, 48x48 ... 304x304 

 

SIM_FILE_NAME=$2 #reads the file through parameter 2: example: 

"mconv.c" #"mblock.c" 

 

####################################################################### 

 

COUNT=$INC_START 

Nfiles=$INC_STOP 

# 

 

 rm multipalgorithm.c    #Temp file to copy the code to for 

compiling and then simulating 

 cp SIMFILES/$SIM_FILE_NAME multipalgorithm.c  #enter the file to 

be compiled and then simulated 

 sleep 1 

 

 #n=1 

 simfile="output" 

 

 make clean 

 

 echo Starting compilation ... 

 make EXEC=$simfile      #call makefile to compile the code 

  

 

######################################################### 

# Running a number of simulation iterations #  

######################################################### 

while [ $COUNT -lt $Nfiles ]; do         

 

 echo Starting simulation [$COUNT] ... 

 sleep 1 

 

 rm -rf m5out/trial/cpt* 

 rm m5out/trial/config* 

 sleep 1 

 ./build/X86/gem5.opt --outdir=m5out/trial configs/example/se.py -n 

1 -o $COUNT -c ./output --caches --l2cache --l1i_size=4kB --l1i_assoc=4 

--l1d_size=4kB --l1d_assoc=4 --l2_size=256kB --l2_assoc=4 --cpu-type 

timing --clock=150MHz 

 sleep 1 

 ./build/X86/gem5.opt --outdir=m5out/trial configs/example/se.py -n 

1 -o $COUNT -c ./output --caches --l2cache --l1i_size=4kB --l1i_assoc=4 

--l1d_size=4kB --l1d_assoc=4 --l2_size=256kB --l2_assoc=4 --cpu-type 

timing --clock=150MHz --checkpoint-dir=m5out/trial -r 1 
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 echo simulation ended successfully 

 

 #Calling the second bash script: script name + iterations number+ 

start matrix size+C code file name 

 source collectSats.sh $COUNT $INC_START $SIM_FILE_NAME 

 

 let COUNT=COUNT+$INC_STEPS   #Count the number of application 

iterations 

 

 sleep 1 

done 

 

 

 

 

##--help -> lists the options available 

##--debug-flag=list of flags that need to be traced 

##--debug-flags=WorkItems 
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Appendix G: BASH SCRIPT 2 - collectStats.sh 
 

#!/bin/bash 

SHOME="/home/feysal/gem5" 

fstatsSummary="${SHOME}/stats_summary.txt" 

 

 

COUNT=$1           #Reading parameter from script 1 

INC_START=$2  # --//-- 

SIM_FILE_NAME=$3 # --//-- 

 

# Function: searching and extracting digits from the stats file text # 

function findDigits() 

{ 

 #----------  findig digits in the stats file  

 stringTmp=$(grep "$1" m5out/trial/stats.txt) 

 stringTmp=${stringTmp//"l2"/"lt"}  #Changed l2 into lt to again 

digit search function return the "2" after l in l2 cache string 

 charCount="${stringTmp//[^#]}" 

 if [ ${#charCount} -gt '1' ]; then 

  string=${stringTmp:`expr index "$stringTmp" '#'`} 

 else 

  string=$stringTmp 

 fi   

 pattern1='([[:digit:]].[[:digit:]]+)' 

 [[ $string =~ $pattern1  ]] 

 tmpvar1=${BASH_REMATCH[1]}  

 pattern2='([[:digit:]]+)' 

 [[ $string =~ $pattern2  ]] 

 tmpvar2=${BASH_REMATCH[1]}   

         

 if [ -n "$tmpvar1" ]; then 

      digits=$tmpvar1 

        elif [ -n "$tmpvar2" ]; then 

  

      digits=$tmpvar2 

        else 

  digits=0 

 fi 

} 

####################################################################### 

 

 

#%%%%%%%%%%%%%%%% Create empty stats_summary.txt file if it does not 

exist %%%%%%%%%%%%%%%%%%%% 

echo "..............................." 

echo "Saving statistics summary in stats_summary.txt " 

sleep 1 

fstatssearch=$(find -name $fstatsSummary) 

if [ $fstatssearch and "./stats_summary.txt" ]  #save stats if file 

found else create file then save stats 

then 

echo "Done ......" 

else 

touch $fstatsSummary # create file if not found" 

echo "Done ......" 

fi 

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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#%%%%%%%%  Passing search string to findDigits function %%%%%%%% 

findDigits "sim_insts" 

n_insts=$digits 

 

findDigits "l2.overall_hits::switch_cpus.data" 

l2hits=$digits 

findDigits "l2.overall_misses::switch_cpus.data" 

l2misses=$digits 

findDigits "l2.overall_accesses::switch_cpus.data" 

l2accesses=$digits  

findDigits "l2.overall_miss_rate::switch_cpus.data" 

l2miss_rate=$digits 

 

findDigits "dcache.overall_hits::switch_cpus.data" 

dhits=$digits 

findDigits "dcache.overall_misses::switch_cpus.data" 

dmisses=$digits 

findDigits "dcache.overall_accesses::switch_cpus.data" 

daccesses=$digits  

findDigits "dcache.overall_miss_rate::switch_cpus.data" 

dmiss_rate=$digits 

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

 

#%%%%%%%% Saving the collected/recalculated data into the 

stats_summary.txt file %%%%%%%%%% 

 

if [ $daccesses -gt '0' ]; then 

  dmiss_rate=$(bc <<< "scale = 6; $dmisses/$daccesses") #BC is used to 

divide 2 variables and return the result with floating-point 

else 

  let dmiss_rate=0 

fi 

 

 

if [ $COUNT -eq $INC_START ]; then    # Prints the headers and the 

first line 

  echo -e "\n$SIM_FILE_NAME ..." >> $fstatsSummary 

  echo -e "N-Metrics\tL1-Hits\tL1-Misses\tL1-Accesses\tL1-Miss-rate\tN-

Instractions\tL2-Hits\tL2-Misses\tL2-Accesses\tL2-Miss-rate" >> 

$fstatsSummary 

  echo -e 

"$COUNT\t\t$dhits\t$dmisses\t\t$daccesses\t\t$dmiss_rate\t\t$n_insts\t\

t$l2hits\t$l2misses\t\t$l2accesses\t\t$l2miss_rate">>$fstatsSummary 

else     # Prints the remaining lines (if more than 

1 line is to be printed) 

  echo -e 

"$COUNT\t\t$dhits\t$dmisses\t\t$daccesses\t\t$dmiss_rate\t\t$n_insts\t\

t$l2hits\t$l2misses\t\t$l2accesses\t\t$l2miss_rate">>$fstatsSummary 

fi 

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

echo "Stats summary saved in gem5/stats_summary.txt...." 

sleep 1 
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Appendix H: MAKEFILE 
 

################################################################ 

 

CC=gcc 

#CC=gcc 

CFLAGS= -D_M5 -O2 -g  

#CFLAGS= -O2 -g 

#LD_FLAGS= -lpthread 

LD_FLAGS=--static 

OUTPUT= output 

OBJS= multipalgorithm.o 

M5_OBJ=util/m5/m5op_x86.S 

all: $(OUTPUT)  

 

$(OUTPUT):$(OBJS) 

 $(CC) -o $(OUTPUT) $(OBJS) $(M5_OBJ) $(LD_FLAGS) 

 #$(CC) -o $(OUTPUT) $(OBJS) $(M5_OBJ) $(LD_FLAGS)  

 

.c.o: 

 $(CC) -c $(CFLAGS) $*.c 

 

clean: 

 rm *.o output  

 

 

################################################################ 
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Appendix I: gem5 – Simulation configuration file 
 

config.ini 

[root] 

type=Root 

children=system 

full_system=false 

time_sync_enable=false 

time_sync_period=100000000000 

time_sync_spin_threshold=100000000 

 

[system] 

type=System 

children=cpu l2 membus physmem tol2bus 

boot_osflags=a 

clock=1000 

init_param=0 

kernel= 

load_addr_mask=1099511627775 

mem_mode=timing 

mem_ranges= 

memories=system.physmem 

num_work_ids=16 

readfile= 

symbolfile= 

work_begin_ckpt_count=0 

work_begin_cpu_id_exit=-1 

work_begin_exit_count=0 

work_cpus_ckpt_count=0 

work_end_ckpt_count=0 

work_end_exit_count=0 

work_item_id=-1 

system_port=system.membus.slave[0] 

 

[system.cpu] 

type=TimingSimpleCPU 

children=dcache dtb dtb_walker_cache icache interrupts isa itb 

itb_walker_cache tracer workload 

branchPred=Null 

checker=Null 

clock=6667 

cpu_id=0 

do_checkpoint_insts=true 

do_quiesce=true 

do_statistics_insts=true 

dtb=system.cpu.dtb 

function_trace=false 

function_trace_start=0 

interrupts=system.cpu.interrupts 

isa=system.cpu.isa 

itb=system.cpu.itb 

max_insts_all_threads=0 

max_insts_any_thread=0 

max_loads_all_threads=0 

max_loads_any_thread=0 

numThreads=1 
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profile=0 

progress_interval=0 

switched_out=false 

system=system 

tracer=system.cpu.tracer 

workload=system.cpu.workload 

dcache_port=system.cpu.dcache.cpu_side 

icache_port=system.cpu.icache.cpu_side 

 

[system.cpu.dcache] 

type=BaseCache 

addr_ranges=0:18446744073709551615 

assoc=4 

block_size=64 

clock=6667 

forward_snoops=true 

hit_latency=2 

is_top_level=true 

max_miss_count=0 

mshrs=1 

prefetch_on_access=false 

prefetcher=Null 

response_latency=2 

size=4096 

system=system 

tgts_per_mshr=1 

two_queue=false 

write_buffers=8 

cpu_side=system.cpu.dcache_port 

mem_side=system.tol2bus.slave[1] 

 

[system.cpu.dtb] 

type=X86TLB 

children=walker 

size=64 

walker=system.cpu.dtb.walker 

 

[system.cpu.dtb.walker] 

type=X86PagetableWalker 

clock=6667 

system=system 

port=system.cpu.dtb_walker_cache.cpu_side 

 

[system.cpu.dtb_walker_cache] 

type=BaseCache 

addr_ranges=0:18446744073709551615 

assoc=2 

block_size=64 

clock=6667 

forward_snoops=true 

hit_latency=2 

is_top_level=true 

max_miss_count=0 

mshrs=10 

prefetch_on_access=false 

prefetcher=Null 

response_latency=2 

size=1024 
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system=system 

tgts_per_mshr=12 

two_queue=false 

write_buffers=8 

cpu_side=system.cpu.dtb.walker.port 

mem_side=system.tol2bus.slave[3] 

 

[system.cpu.icache] 

type=BaseCache 

addr_ranges=0:18446744073709551615 

assoc=4 

block_size=64 

clock=6667 

forward_snoops=true 

hit_latency=2 

is_top_level=true 

max_miss_count=0 

mshrs=1 

prefetch_on_access=false 

prefetcher=Null 

response_latency=2 

size=4096 

system=system 

tgts_per_mshr=1 

two_queue=false 

write_buffers=8 

cpu_side=system.cpu.icache_port 

mem_side=system.tol2bus.slave[0] 

 

[system.cpu.interrupts] 

type=X86LocalApic 

clock=106667 

int_latency=1000 

pio_addr=2305843009213693952 

pio_latency=100000 

system=system 

int_master=system.membus.slave[2] 

int_slave=system.membus.master[2] 

pio=system.membus.master[1] 

 

[system.cpu.isa] 

type=X86ISA 

 

[system.cpu.itb] 

type=X86TLB 

children=walker 

size=64 

walker=system.cpu.itb.walker 

 

[system.cpu.itb.walker] 

type=X86PagetableWalker 

clock=6667 

system=system 

port=system.cpu.itb_walker_cache.cpu_side 

 

[system.cpu.itb_walker_cache] 

type=BaseCache 

addr_ranges=0:18446744073709551615 
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assoc=2 

block_size=64 

clock=6667 

forward_snoops=true 

hit_latency=2 

is_top_level=true 

max_miss_count=0 

mshrs=10 

prefetch_on_access=false 

prefetcher=Null 

response_latency=2 

size=1024 

system=system 

tgts_per_mshr=12 

two_queue=false 

write_buffers=8 

cpu_side=system.cpu.itb.walker.port 

mem_side=system.tol2bus.slave[2] 

 

[system.cpu.tracer] 

type=ExeTracer 

 

[system.cpu.workload] 

type=LiveProcess 

cmd=./output 2 

cwd= 

egid=100 

env= 

errout=cerr 

euid=100 

executable=./output 

gid=100 

input=cin 

max_stack_size=67108864 

output=cout 

pid=100 

ppid=99 

simpoint=0 

system=system 

uid=100 

 

[system.l2] 

type=BaseCache 

addr_ranges=0:18446744073709551615 

assoc=4 

block_size=64 

clock=6667 

forward_snoops=true 

hit_latency=20 

is_top_level=false 

max_miss_count=0 

mshrs=1 

prefetch_on_access=false 

prefetcher=Null 

response_latency=20 

size=262144 

system=system 

tgts_per_mshr=1 
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two_queue=false 

write_buffers=8 

cpu_side=system.tol2bus.master[0] 

mem_side=system.membus.slave[1] 

 

[system.membus] 

type=CoherentBus 

block_size=64 

clock=1000 

header_cycles=1 

system=system 

use_default_range=false 

width=8 

master=system.physmem.port system.cpu.interrupts.pio 

system.cpu.interrupts.int_slave 

slave=system.system_port system.l2.mem_side 

system.cpu.interrupts.int_master 

 

[system.physmem] 

type=SimpleMemory 

bandwidth=73.000000 

clock=1000 

conf_table_reported=false 

in_addr_map=true 

latency=30000 

latency_var=0 

null=false 

range=0:536870911 

zero=false 

port=system.membus.master[0] 

 

[system.tol2bus] 

type=CoherentBus 

block_size=64 

clock=6667 

header_cycles=1 

system=system 

use_default_range=false 

width=32 

master=system.l2.cpu_side 

slave=system.cpu.icache.mem_side system.cpu.dcache.mem_side 

system.cpu.itb_walker_cache.mem_side 

system.cpu.dtb_walker_cache.mem_side 
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Appendix H: gem5 – Simulation stats file example 
 

Stats.txt 

 

---------- Begin Simulation Statistics ---------- 

sim_seconds                                  0.000191                       

# Number of seconds simulated 

sim_ticks                                   190896211                       

# Number of ticks simulated 

final_tick                                  190896211                       

# Number of ticks from beginning of simulation (restored from 

checkpoints and never reset) 

sim_freq                                 1000000000000                       

# Frequency of simulated ticks 

host_inst_rate                                  66084                       

# Simulator instruction rate (inst/s) 

host_op_rate                                   130339                       

# Simulator op (including micro ops) rate (op/s) 

host_tick_rate                             3573265852                       

# Simulator tick rate (ticks/s) 

host_mem_usage                                 637244                       

# Number of bytes of host memory used 

host_seconds                                     0.05                       

# Real time elapsed on the host 

sim_insts                                        3524                       

# Number of instructions simulated 

sim_ops                                          6957                       

# Number of ops (including micro ops) simulated 

system.physmem.bytes_read::cpu.inst             12032                       

# Number of bytes read from this memory 

system.physmem.bytes_read::cpu.data              8512                       

# Number of bytes read from this memory 

system.physmem.bytes_read::total                20544                       

# Number of bytes read from this memory 

system.physmem.bytes_inst_read::cpu.inst        12032                       

# Number of instructions bytes read from this memory 

system.physmem.bytes_inst_read::total           12032                       

# Number of instructions bytes read from this memory 

system.physmem.num_reads::cpu.inst                188                       

# Number of read requests responded to by this memory 

system.physmem.num_reads::cpu.data                133                       

# Number of read requests responded to by this memory 

system.physmem.num_reads::total                   321                       

# Number of read requests responded to by this memory 

system.physmem.bw_read::cpu.inst             63029014                       

# Total read bandwidth from this memory (bytes/s) 

system.physmem.bw_read::cpu.data             44589675                       

# Total read bandwidth from this memory (bytes/s) 

system.physmem.bw_read::total               107618689                       

# Total read bandwidth from this memory (bytes/s) 

system.physmem.bw_inst_read::cpu.inst        63029014                       

# Instruction read bandwidth from this memory (bytes/s) 

system.physmem.bw_inst_read::total           63029014                       

# Instruction read bandwidth from this memory (bytes/s) 

system.physmem.bw_total::cpu.inst            63029014                       

# Total bandwidth to/from this memory (bytes/s) 
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system.physmem.bw_total::cpu.data            44589675                       

# Total bandwidth to/from this memory (bytes/s) 

system.physmem.bw_total::total              107618689                       

# Total bandwidth to/from this memory (bytes/s) 

system.l2.replacements                              0                       

# number of replacements 

system.l2.tagsinuse                        143.252491                       

# Cycle average of tags in use 

system.l2.total_refs                                0                       

# Total number of references to valid blocks. 

system.l2.sampled_refs                              0                       

# Sample count of references to valid blocks. 

system.l2.avg_refs                                nan                       

# Average number of references to valid blocks. 

system.l2.warmup_cycle                              0                       

# Cycle when the warmup percentage was hit. 

system.l2.occ_blocks::writebacks            14.403625                       

# Average occupied blocks per requestor 

system.l2.occ_blocks::cpu.inst              93.592710                       

# Average occupied blocks per requestor 

system.l2.occ_blocks::cpu.data              35.256156                       

# Average occupied blocks per requestor 

system.l2.occ_percent::writebacks            0.003517                       

# Average percentage of cache occupancy 

system.l2.occ_percent::cpu.inst              0.022850                       

# Average percentage of cache occupancy 

system.l2.occ_percent::cpu.data              0.008607                       

# Average percentage of cache occupancy 

system.l2.occ_percent::total                 0.034974                       

# Average percentage of cache occupancy 

system.l2.ReadReq_hits::cpu.inst                   19                       

# number of ReadReq hits 

system.l2.ReadReq_hits::cpu.data                   24                       

# number of ReadReq hits 

system.l2.ReadReq_hits::total                      43                       

# number of ReadReq hits 

system.l2.Writeback_hits::writebacks               72                       

# number of Writeback hits 

system.l2.Writeback_hits::total                    72                       

# number of Writeback hits 

system.l2.ReadExReq_hits::cpu.data                  8                       

# number of ReadExReq hits 

system.l2.ReadExReq_hits::total                     8                       

# number of ReadExReq hits 

system.l2.demand_hits::cpu.inst                    19                       

# number of demand (read+write) hits 

system.l2.demand_hits::cpu.data                    32                       

# number of demand (read+write) hits 

system.l2.demand_hits::total                       51                       

# number of demand (read+write) hits 

system.l2.overall_hits::cpu.inst                   19                       

# number of overall hits 

system.l2.overall_hits::cpu.data                   32                       

# number of overall hits 

system.l2.overall_hits::total                      51                       

# number of overall hits 

system.l2.ReadReq_misses::cpu.inst                188                       

# number of ReadReq misses 
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system.l2.ReadReq_misses::cpu.data                 59                       

# number of ReadReq misses 

system.l2.ReadReq_misses::total                   247                       

# number of ReadReq misses 

system.l2.ReadExReq_misses::cpu.data               74                       

# number of ReadExReq misses 

system.l2.ReadExReq_misses::total                  74                       

# number of ReadExReq misses 

system.l2.demand_misses::cpu.inst                 188                       

# number of demand (read+write) misses 

system.l2.demand_misses::cpu.data                 133                       

# number of demand (read+write) misses 

system.l2.demand_misses::total                    321                       

# number of demand (read+write) misses 

system.l2.overall_misses::cpu.inst                188                       

# number of overall misses 

system.l2.overall_misses::cpu.data                133                       

# number of overall misses 

system.l2.overall_misses::total                   321                       

# number of overall misses 

system.l2.ReadReq_miss_latency::cpu.inst     56243734                       

# number of ReadReq miss cycles 

system.l2.ReadReq_miss_latency::cpu.data     17647611                       

# number of ReadReq miss cycles 

system.l2.ReadReq_miss_latency::total        73891345                       

# number of ReadReq miss cycles 

system.l2.ReadExReq_miss_latency::cpu.data     22138329                       

# number of ReadExReq miss cycles 

system.l2.ReadExReq_miss_latency::total      22138329                       

# number of ReadExReq miss cycles 

system.l2.demand_miss_latency::cpu.inst      56243734                       

# number of demand (read+write) miss cycles 

system.l2.demand_miss_latency::cpu.data      39785940                       

# number of demand (read+write) miss cycles 

system.l2.demand_miss_latency::total         96029674                       

# number of demand (read+write) miss cycles 

system.l2.overall_miss_latency::cpu.inst     56243734                       

# number of overall miss cycles 

system.l2.overall_miss_latency::cpu.data     39785940                       

# number of overall miss cycles 

system.l2.overall_miss_latency::total        96029674                       

# number of overall miss cycles 

system.l2.ReadReq_accesses::cpu.inst              207                       

# number of ReadReq accesses(hits+misses) 

system.l2.ReadReq_accesses::cpu.data               83                       

# number of ReadReq accesses(hits+misses) 

system.l2.ReadReq_accesses::total                 290                       

# number of ReadReq accesses(hits+misses) 

system.l2.Writeback_accesses::writebacks           72                       

# number of Writeback accesses(hits+misses) 

system.l2.Writeback_accesses::total                72                       

# number of Writeback accesses(hits+misses) 

system.l2.ReadExReq_accesses::cpu.data             82                       

# number of ReadExReq accesses(hits+misses) 

system.l2.ReadExReq_accesses::total                82                       

# number of ReadExReq accesses(hits+misses) 

system.l2.demand_accesses::cpu.inst               207                       

# number of demand (read+write) accesses 
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system.l2.demand_accesses::cpu.data               165                       

# number of demand (read+write) accesses 

system.l2.demand_accesses::total                  372                       

# number of demand (read+write) accesses 

system.l2.overall_accesses::cpu.inst              207                       

# number of overall (read+write) accesses 

system.l2.overall_accesses::cpu.data              165                       

# number of overall (read+write) accesses 

system.l2.overall_accesses::total                 372                       

# number of overall (read+write) accesses 

system.l2.ReadReq_miss_rate::cpu.inst        0.908213                       

# miss rate for ReadReq accesses 

system.l2.ReadReq_miss_rate::cpu.data        0.710843                       

# miss rate for ReadReq accesses 

system.l2.ReadReq_miss_rate::total           0.851724                       

# miss rate for ReadReq accesses 

system.l2.ReadExReq_miss_rate::cpu.data      0.902439                       

# miss rate for ReadExReq accesses 

system.l2.ReadExReq_miss_rate::total         0.902439                       

# miss rate for ReadExReq accesses 

system.l2.demand_miss_rate::cpu.inst         0.908213                       

# miss rate for demand accesses 

system.l2.demand_miss_rate::cpu.data         0.806061                       

# miss rate for demand accesses 

system.l2.demand_miss_rate::total            0.862903                       

# miss rate for demand accesses 

system.l2.overall_miss_rate::cpu.inst        0.908213                       

# miss rate for overall accesses 

system.l2.overall_miss_rate::cpu.data        0.806061                       

# miss rate for overall accesses 

system.l2.overall_miss_rate::total           0.862903                       

# miss rate for overall accesses 

system.l2.ReadReq_avg_miss_latency::cpu.inst 299168.797872                       

# average ReadReq miss latency 

system.l2.ReadReq_avg_miss_latency::cpu.data 299112.050847                       

# average ReadReq miss latency 

system.l2.ReadReq_avg_miss_latency::total 299155.242915                       

# average ReadReq miss latency 

system.l2.ReadExReq_avg_miss_latency::cpu.data 299166.608108                       

# average ReadExReq miss latency 

system.l2.ReadExReq_avg_miss_latency::total 299166.608108                       

# average ReadExReq miss latency 

system.l2.demand_avg_miss_latency::cpu.inst 299168.797872                       

# average overall miss latency 

system.l2.demand_avg_miss_latency::cpu.data 299142.406015                       

# average overall miss latency 

system.l2.demand_avg_miss_latency::total 299157.862928                       

# average overall miss latency 

system.l2.overall_avg_miss_latency::cpu.inst 299168.797872                       

# average overall miss latency 

system.l2.overall_avg_miss_latency::cpu.data 299142.406015                       

# average overall miss latency 

system.l2.overall_avg_miss_latency::total 299157.862928                       

# average overall miss latency 

system.l2.blocked_cycles::no_mshrs               8025                       

# number of cycles access was blocked 

system.l2.blocked_cycles::no_targets                0                       

# number of cycles access was blocked 
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system.l2.blocked::no_mshrs                       321                       

# number of cycles access was blocked 

system.l2.blocked::no_targets                       0                       

# number of cycles access was blocked 

system.l2.avg_blocked_cycles::no_mshrs             25                       

# average number of cycles each access was blocked 

system.l2.avg_blocked_cycles::no_targets          nan                       

# average number of cycles each access was blocked 

system.l2.fast_writes                               0                       

# number of fast writes performed 

system.l2.cache_copies                              0                       

# number of cache copies performed 

system.l2.ReadReq_mshr_misses::cpu.inst           188                       

# number of ReadReq MSHR misses 

system.l2.ReadReq_mshr_misses::cpu.data            59                       

# number of ReadReq MSHR misses 

system.l2.ReadReq_mshr_misses::total              247                       

# number of ReadReq MSHR misses 

system.l2.ReadExReq_mshr_misses::cpu.data           74                       

# number of ReadExReq MSHR misses 

system.l2.ReadExReq_mshr_misses::total             74                       

# number of ReadExReq MSHR misses 

system.l2.demand_mshr_misses::cpu.inst            188                       

# number of demand (read+write) MSHR misses 

system.l2.demand_mshr_misses::cpu.data            133                       

# number of demand (read+write) MSHR misses 

system.l2.demand_mshr_misses::total               321                       

# number of demand (read+write) MSHR misses 

system.l2.overall_mshr_misses::cpu.inst           188                       

# number of overall MSHR misses 

system.l2.overall_mshr_misses::cpu.data           133                       

# number of overall MSHR misses 

system.l2.overall_mshr_misses::total              321                       

# number of overall MSHR misses 

system.l2.ReadReq_mshr_miss_latency::cpu.inst     30707920                       

# number of ReadReq MSHR miss cycles 

system.l2.ReadReq_mshr_miss_latency::cpu.data      9637060                       

# number of ReadReq MSHR miss cycles 

system.l2.ReadReq_mshr_miss_latency::total     40344980                       

# number of ReadReq MSHR miss cycles 

system.l2.ReadExReq_mshr_miss_latency::cpu.data     12087160                       

# number of ReadExReq MSHR miss cycles 

system.l2.ReadExReq_mshr_miss_latency::total     12087160                       

# number of ReadExReq MSHR miss cycles 

system.l2.demand_mshr_miss_latency::cpu.inst     30707920                       

# number of demand (read+write) MSHR miss cycles 

system.l2.demand_mshr_miss_latency::cpu.data     21724220                       

# number of demand (read+write) MSHR miss cycles 

system.l2.demand_mshr_miss_latency::total     52432140                       

# number of demand (read+write) MSHR miss cycles 

system.l2.overall_mshr_miss_latency::cpu.inst     30707920                       

# number of overall MSHR miss cycles 

system.l2.overall_mshr_miss_latency::cpu.data     21724220                       

# number of overall MSHR miss cycles 

system.l2.overall_mshr_miss_latency::total     52432140                       

# number of overall MSHR miss cycles 

system.l2.ReadReq_mshr_miss_rate::cpu.inst     0.908213                       

# mshr miss rate for ReadReq accesses 
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system.l2.ReadReq_mshr_miss_rate::cpu.data     0.710843                       

# mshr miss rate for ReadReq accesses 

system.l2.ReadReq_mshr_miss_rate::total      0.851724                       

# mshr miss rate for ReadReq accesses 

system.l2.ReadExReq_mshr_miss_rate::cpu.data     0.902439                       

# mshr miss rate for ReadExReq accesses 

system.l2.ReadExReq_mshr_miss_rate::total     0.902439                       

# mshr miss rate for ReadExReq accesses 

system.l2.demand_mshr_miss_rate::cpu.inst     0.908213                       

# mshr miss rate for demand accesses 

system.l2.demand_mshr_miss_rate::cpu.data     0.806061                       

# mshr miss rate for demand accesses 

system.l2.demand_mshr_miss_rate::total       0.862903                       

# mshr miss rate for demand accesses 

system.l2.overall_mshr_miss_rate::cpu.inst     0.908213                       

# mshr miss rate for overall accesses 

system.l2.overall_mshr_miss_rate::cpu.data     0.806061                       

# mshr miss rate for overall accesses 

system.l2.overall_mshr_miss_rate::total      0.862903                       

# mshr miss rate for overall accesses 

system.l2.ReadReq_avg_mshr_miss_latency::cpu.inst       163340                       

# average ReadReq mshr miss latency 

system.l2.ReadReq_avg_mshr_miss_latency::cpu.data       163340                       

# average ReadReq mshr miss latency 

system.l2.ReadReq_avg_mshr_miss_latency::total       163340                       

# average ReadReq mshr miss latency 

system.l2.ReadExReq_avg_mshr_miss_latency::cpu.data       163340                       

# average ReadExReq mshr miss latency 

system.l2.ReadExReq_avg_mshr_miss_latency::total       163340                       

# average ReadExReq mshr miss latency 

system.l2.demand_avg_mshr_miss_latency::cpu.inst       163340                       

# average overall mshr miss latency 

system.l2.demand_avg_mshr_miss_latency::cpu.data       163340                       

# average overall mshr miss latency 

system.l2.demand_avg_mshr_miss_latency::total       163340                       

# average overall mshr miss latency 

system.l2.overall_avg_mshr_miss_latency::cpu.inst       163340                       

# average overall mshr miss latency 

system.l2.overall_avg_mshr_miss_latency::cpu.data       163340                       

# average overall mshr miss latency 

system.l2.overall_avg_mshr_miss_latency::total       163340                       

# average overall mshr miss latency 

system.l2.no_allocate_misses                        0                       

# Number of misses that were no-allocate 

system.cpu.workload.num_syscalls                    6                       

# Number of system calls 

system.cpu.numCycles                            28633                       

# number of cpu cycles simulated 

system.cpu.numWorkItemsStarted                      0                       

# number of work items this cpu started 

system.cpu.numWorkItemsCompleted                    0                       

# number of work items this cpu completed 

system.cpu.committedInsts                        3524                       

# Number of instructions committed 

system.cpu.committedOps                          6957                       

# Number of ops (including micro ops) committed 

system.cpu.num_int_alu_accesses                  6850                       

# Number of integer alu accesses 
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system.cpu.num_fp_alu_accesses                    123                       

# Number of float alu accesses 

system.cpu.num_func_calls                           0                       

# number of times a function call or return occured 

system.cpu.num_conditional_control_insts          545                       

# number of instructions that are conditional controls 

system.cpu.num_int_insts                         6850                       

# number of integer instructions 

system.cpu.num_fp_insts                           123                       

# number of float instructions 

system.cpu.num_int_register_reads               16884                       

# number of times the integer registers were read 

system.cpu.num_int_register_writes               7756                       

# number of times the integer registers were written 

system.cpu.num_fp_register_reads                  199                       

# number of times the floating registers were read 

system.cpu.num_fp_register_writes                  99                       

# number of times the floating registers were written 

system.cpu.num_mem_refs                          1285                       

# number of memory refs 

system.cpu.num_load_insts                         585                       

# Number of load instructions 

system.cpu.num_store_insts                        700                       

# Number of store instructions 

system.cpu.num_idle_cycles                          0                       

# Number of idle cycles 

system.cpu.num_busy_cycles                      28633                       

# Number of busy cycles 

system.cpu.not_idle_fraction                        1                       

# Percentage of non-idle cycles 

system.cpu.idle_fraction                            0                       

# Percentage of idle cycles 

system.cpu.icache.replacements                    143                       

# number of replacements 

system.cpu.icache.tagsinuse                 51.798109                       

# Cycle average of tags in use 

system.cpu.icache.total_refs                     3277                       

# Total number of references to valid blocks. 

system.cpu.icache.sampled_refs                    143                       

# Sample count of references to valid blocks. 

system.cpu.icache.avg_refs                  22.916084                       

# Average number of references to valid blocks. 

system.cpu.icache.warmup_cycle              125958340                       

# Cycle when the warmup percentage was hit. 

system.cpu.icache.occ_blocks::cpu.inst      51.798109                       

# Average occupied blocks per requestor 

system.cpu.icache.occ_percent::cpu.inst      0.809345                       

# Average percentage of cache occupancy 

system.cpu.icache.occ_percent::total         0.809345                       

# Average percentage of cache occupancy 

system.cpu.icache.ReadReq_hits::cpu.inst         4349                       

# number of ReadReq hits 

system.cpu.icache.ReadReq_hits::total            4349                       

# number of ReadReq hits 

system.cpu.icache.demand_hits::cpu.inst          4349                       

# number of demand (read+write) hits 

system.cpu.icache.demand_hits::total             4349                       

# number of demand (read+write) hits 
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system.cpu.icache.overall_hits::cpu.inst         4349                       

# number of overall hits 

system.cpu.icache.overall_hits::total            4349                       

# number of overall hits 

system.cpu.icache.ReadReq_misses::cpu.inst          207                       

# number of ReadReq misses 

system.cpu.icache.ReadReq_misses::total           207                       

# number of ReadReq misses 

system.cpu.icache.demand_misses::cpu.inst          207                       

# number of demand (read+write) misses 

system.cpu.icache.demand_misses::total            207                       

# number of demand (read+write) misses 

system.cpu.icache.overall_misses::cpu.inst          207                       

# number of overall misses 

system.cpu.icache.overall_misses::total           207                       

# number of overall misses 

system.cpu.icache.ReadReq_miss_latency::cpu.inst     67216694                       

# number of ReadReq miss cycles 

system.cpu.icache.ReadReq_miss_latency::total     67216694                       

# number of ReadReq miss cycles 

system.cpu.icache.demand_miss_latency::cpu.inst     67216694                       

# number of demand (read+write) miss cycles 

system.cpu.icache.demand_miss_latency::total     67216694                       

# number of demand (read+write) miss cycles 

system.cpu.icache.overall_miss_latency::cpu.inst     67216694                       

# number of overall miss cycles 

system.cpu.icache.overall_miss_latency::total     67216694                       

# number of overall miss cycles 

system.cpu.icache.ReadReq_accesses::cpu.inst         4556                       

# number of ReadReq accesses(hits+misses) 

system.cpu.icache.ReadReq_accesses::total         4556                       

# number of ReadReq accesses(hits+misses) 

system.cpu.icache.demand_accesses::cpu.inst         4556                       

# number of demand (read+write) accesses 

system.cpu.icache.demand_accesses::total         4556                       

# number of demand (read+write) accesses 

system.cpu.icache.overall_accesses::cpu.inst         4556                       

# number of overall (read+write) accesses 

system.cpu.icache.overall_accesses::total         4556                       

# number of overall (read+write) accesses 

system.cpu.icache.ReadReq_miss_rate::cpu.inst     0.045435                       

# miss rate for ReadReq accesses 

system.cpu.icache.ReadReq_miss_rate::total     0.045435                       

# miss rate for ReadReq accesses 

system.cpu.icache.demand_miss_rate::cpu.inst     0.045435                       

# miss rate for demand accesses 

system.cpu.icache.demand_miss_rate::total     0.045435                       

# miss rate for demand accesses 

system.cpu.icache.overall_miss_rate::cpu.inst     0.045435                       

# miss rate for overall accesses 

system.cpu.icache.overall_miss_rate::total     0.045435                       

# miss rate for overall accesses 

system.cpu.icache.ReadReq_avg_miss_latency::cpu.inst 324718.328502                       

# average ReadReq miss latency 

system.cpu.icache.ReadReq_avg_miss_latency::total 324718.328502                       

# average ReadReq miss latency 

system.cpu.icache.demand_avg_miss_latency::cpu.inst 324718.328502                       

# average overall miss latency 
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system.cpu.icache.demand_avg_miss_latency::total 324718.328502                       

# average overall miss latency 

system.cpu.icache.overall_avg_miss_latency::cpu.inst 324718.328502                       

# average overall miss latency 

system.cpu.icache.overall_avg_miss_latency::total 324718.328502                       

# average overall miss latency 

system.cpu.icache.blocked_cycles::no_mshrs         9254                       

# number of cycles access was blocked 

system.cpu.icache.blocked_cycles::no_targets            0                       

# number of cycles access was blocked 

system.cpu.icache.blocked::no_mshrs               207                       

# number of cycles access was blocked 

system.cpu.icache.blocked::no_targets               0                       

# number of cycles access was blocked 

system.cpu.icache.avg_blocked_cycles::no_mshrs    44.705314                       

# average number of cycles each access was blocked 

system.cpu.icache.avg_blocked_cycles::no_targets          nan                       

# average number of cycles each access was blocked 

system.cpu.icache.fast_writes                       0                       

# number of fast writes performed 

system.cpu.icache.cache_copies                      0                       

# number of cache copies performed 

system.cpu.icache.ReadReq_mshr_misses::cpu.inst          207                       

# number of ReadReq MSHR misses 

system.cpu.icache.ReadReq_mshr_misses::total          207                       

# number of ReadReq MSHR misses 

system.cpu.icache.demand_mshr_misses::cpu.inst          207                       

# number of demand (read+write) MSHR misses 

system.cpu.icache.demand_mshr_misses::total          207                       

# number of demand (read+write) MSHR misses 

system.cpu.icache.overall_mshr_misses::cpu.inst          207                       

# number of overall MSHR misses 

system.cpu.icache.overall_mshr_misses::total          207                       

# number of overall MSHR misses 

system.cpu.icache.ReadReq_mshr_miss_latency::cpu.inst     61537332                       

# number of ReadReq MSHR miss cycles 

system.cpu.icache.ReadReq_mshr_miss_latency::total     61537332                       

# number of ReadReq MSHR miss cycles 

system.cpu.icache.demand_mshr_miss_latency::cpu.inst     61537332                       

# number of demand (read+write) MSHR miss cycles 

system.cpu.icache.demand_mshr_miss_latency::total     61537332                       

# number of demand (read+write) MSHR miss cycles 

system.cpu.icache.overall_mshr_miss_latency::cpu.inst     61537332                       

# number of overall MSHR miss cycles 

system.cpu.icache.overall_mshr_miss_latency::total     61537332                       

# number of overall MSHR miss cycles 

system.cpu.icache.ReadReq_mshr_miss_rate::cpu.inst     0.045435                       

# mshr miss rate for ReadReq accesses 

system.cpu.icache.ReadReq_mshr_miss_rate::total     0.045435                       

# mshr miss rate for ReadReq accesses 

system.cpu.icache.demand_mshr_miss_rate::cpu.inst     0.045435                       

# mshr miss rate for demand accesses 

system.cpu.icache.demand_mshr_miss_rate::total     0.045435                       

# mshr miss rate for demand accesses 

system.cpu.icache.overall_mshr_miss_rate::cpu.inst     0.045435                       

# mshr miss rate for overall accesses 

system.cpu.icache.overall_mshr_miss_rate::total     0.045435                       

# mshr miss rate for overall accesses 
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system.cpu.icache.ReadReq_avg_mshr_miss_latency::cpu.inst 297281.797101                       

# average ReadReq mshr miss latency 

system.cpu.icache.ReadReq_avg_mshr_miss_latency::total 297281.797101                       

# average ReadReq mshr miss latency 

system.cpu.icache.demand_avg_mshr_miss_latency::cpu.inst 297281.797101                       

# average overall mshr miss latency 

system.cpu.icache.demand_avg_mshr_miss_latency::total 297281.797101                       

# average overall mshr miss latency 

system.cpu.icache.overall_avg_mshr_miss_latency::cpu.inst 297281.797101                       

# average overall mshr miss latency 

system.cpu.icache.overall_avg_mshr_miss_latency::total 297281.797101                       

# average overall mshr miss latency 

system.cpu.icache.no_allocate_misses                0                       

# Number of misses that were no-allocate 

system.cpu.itb_walker_cache.replacements            0                       

# number of replacements 

system.cpu.itb_walker_cache.tagsinuse               0                       

# Cycle average of tags in use 

system.cpu.itb_walker_cache.total_refs              0                       

# Total number of references to valid blocks. 

system.cpu.itb_walker_cache.sampled_refs            0                       

# Sample count of references to valid blocks. 

system.cpu.itb_walker_cache.avg_refs              nan                       

# Average number of references to valid blocks. 

system.cpu.itb_walker_cache.warmup_cycle            0                       

# Cycle when the warmup percentage was hit. 

system.cpu.itb_walker_cache.blocked_cycles::no_mshrs            0                       

# number of cycles access was blocked 

system.cpu.itb_walker_cache.blocked_cycles::no_targets            0                       

# number of cycles access was blocked 

system.cpu.itb_walker_cache.blocked::no_mshrs            0                       

# number of cycles access was blocked 

system.cpu.itb_walker_cache.blocked::no_targets            0                       

# number of cycles access was blocked 

system.cpu.itb_walker_cache.avg_blocked_cycles::no_mshrs          nan                       

# average number of cycles each access was blocked 

system.cpu.itb_walker_cache.avg_blocked_cycles::no_targets          nan                       

# average number of cycles each access was blocked 

system.cpu.itb_walker_cache.fast_writes             0                       

# number of fast writes performed 

system.cpu.itb_walker_cache.cache_copies            0                       

# number of cache copies performed 

system.cpu.itb_walker_cache.no_allocate_misses            0                       

# Number of misses that were no-allocate 

system.cpu.dtb_walker_cache.replacements            0                       

# number of replacements 

system.cpu.dtb_walker_cache.tagsinuse               0                       

# Cycle average of tags in use 

system.cpu.dtb_walker_cache.total_refs              0                       

# Total number of references to valid blocks. 

system.cpu.dtb_walker_cache.sampled_refs            0                       

# Sample count of references to valid blocks. 

system.cpu.dtb_walker_cache.avg_refs              nan                       

# Average number of references to valid blocks. 

system.cpu.dtb_walker_cache.warmup_cycle            0                       

# Cycle when the warmup percentage was hit. 

system.cpu.dtb_walker_cache.blocked_cycles::no_mshrs            0                       

# number of cycles access was blocked 
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system.cpu.dtb_walker_cache.blocked_cycles::no_targets            0                       

# number of cycles access was blocked 

system.cpu.dtb_walker_cache.blocked::no_mshrs            0                       

# number of cycles access was blocked 

system.cpu.dtb_walker_cache.blocked::no_targets            0                       

# number of cycles access was blocked 

system.cpu.dtb_walker_cache.avg_blocked_cycles::no_mshrs          nan                       

# average number of cycles each access was blocked 

system.cpu.dtb_walker_cache.avg_blocked_cycles::no_targets          nan                       

# average number of cycles each access was blocked 

system.cpu.dtb_walker_cache.fast_writes             0                       

# number of fast writes performed 

system.cpu.dtb_walker_cache.cache_copies            0                       

# number of cache copies performed 

system.cpu.dtb_walker_cache.no_allocate_misses            0                       

# Number of misses that were no-allocate 

system.cpu.dcache.replacements                    101                       

# number of replacements 

system.cpu.dcache.tagsinuse                 50.901255                       

# Cycle average of tags in use 

system.cpu.dcache.total_refs                      573                       

# Total number of references to valid blocks. 

system.cpu.dcache.sampled_refs                    101                       

# Sample count of references to valid blocks. 

system.cpu.dcache.avg_refs                   5.673267                       

# Average number of references to valid blocks. 

system.cpu.dcache.warmup_cycle               96330340                       

# Cycle when the warmup percentage was hit. 

system.cpu.dcache.occ_blocks::cpu.data      50.901255                       

# Average occupied blocks per requestor 

system.cpu.dcache.occ_percent::cpu.data      0.795332                       

# Average percentage of cache occupancy 

system.cpu.dcache.occ_percent::total         0.795332                       

# Average percentage of cache occupancy 

system.cpu.dcache.ReadReq_hits::cpu.data          502                       

# number of ReadReq hits 

system.cpu.dcache.ReadReq_hits::total             502                       

# number of ReadReq hits 

system.cpu.dcache.WriteReq_hits::cpu.data          618                       

# number of WriteReq hits 

system.cpu.dcache.WriteReq_hits::total            618                       

# number of WriteReq hits 

system.cpu.dcache.demand_hits::cpu.data          1120                       

# number of demand (read+write) hits 

system.cpu.dcache.demand_hits::total             1120                       

# number of demand (read+write) hits 

system.cpu.dcache.overall_hits::cpu.data         1120                       

# number of overall hits 

system.cpu.dcache.overall_hits::total            1120                       

# number of overall hits 

system.cpu.dcache.ReadReq_misses::cpu.data           83                       

# number of ReadReq misses 

system.cpu.dcache.ReadReq_misses::total            83                       

# number of ReadReq misses 

system.cpu.dcache.WriteReq_misses::cpu.data           82                       

# number of WriteReq misses 

system.cpu.dcache.WriteReq_misses::total           82                       

# number of WriteReq misses 
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system.cpu.dcache.demand_misses::cpu.data          165                       

# number of demand (read+write) misses 

system.cpu.dcache.demand_misses::total            165                       

# number of demand (read+write) misses 

system.cpu.dcache.overall_misses::cpu.data          165                       

# number of overall misses 

system.cpu.dcache.overall_misses::total           165                       

# number of overall misses 

system.cpu.dcache.ReadReq_miss_latency::cpu.data     24221211                       

# number of ReadReq miss cycles 

system.cpu.dcache.ReadReq_miss_latency::total     24221211                       

# number of ReadReq miss cycles 

system.cpu.dcache.WriteReq_miss_latency::cpu.data     26547994                       

# number of WriteReq miss cycles 

system.cpu.dcache.WriteReq_miss_latency::total     26547994                       

# number of WriteReq miss cycles 

system.cpu.dcache.demand_miss_latency::cpu.data     50769205                       

# number of demand (read+write) miss cycles 

system.cpu.dcache.demand_miss_latency::total     50769205                       

# number of demand (read+write) miss cycles 

system.cpu.dcache.overall_miss_latency::cpu.data     50769205                       

# number of overall miss cycles 

system.cpu.dcache.overall_miss_latency::total     50769205                       

# number of overall miss cycles 

system.cpu.dcache.ReadReq_accesses::cpu.data          585                       

# number of ReadReq accesses(hits+misses) 

system.cpu.dcache.ReadReq_accesses::total          585                       

# number of ReadReq accesses(hits+misses) 

system.cpu.dcache.WriteReq_accesses::cpu.data          700                       

# number of WriteReq accesses(hits+misses) 

system.cpu.dcache.WriteReq_accesses::total          700                       

# number of WriteReq accesses(hits+misses) 

system.cpu.dcache.demand_accesses::cpu.data         1285                       

# number of demand (read+write) accesses 

system.cpu.dcache.demand_accesses::total         1285                       

# number of demand (read+write) accesses 

system.cpu.dcache.overall_accesses::cpu.data         1285                       

# number of overall (read+write) accesses 

system.cpu.dcache.overall_accesses::total         1285                       

# number of overall (read+write) accesses 

system.cpu.dcache.ReadReq_miss_rate::cpu.data     0.141880                       

# miss rate for ReadReq accesses 

system.cpu.dcache.ReadReq_miss_rate::total     0.141880                       

# miss rate for ReadReq accesses 

system.cpu.dcache.WriteReq_miss_rate::cpu.data     0.117143                       

# miss rate for WriteReq accesses 

system.cpu.dcache.WriteReq_miss_rate::total     0.117143                       

# miss rate for WriteReq accesses 

system.cpu.dcache.demand_miss_rate::cpu.data     0.128405                       

# miss rate for demand accesses 

system.cpu.dcache.demand_miss_rate::total     0.128405                       

# miss rate for demand accesses 

system.cpu.dcache.overall_miss_rate::cpu.data     0.128405                       

# miss rate for overall accesses 

system.cpu.dcache.overall_miss_rate::total     0.128405                       

# miss rate for overall accesses 

system.cpu.dcache.ReadReq_avg_miss_latency::cpu.data 291821.819277                       

# average ReadReq miss latency 
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system.cpu.dcache.ReadReq_avg_miss_latency::total 291821.819277                       

# average ReadReq miss latency 

system.cpu.dcache.WriteReq_avg_miss_latency::cpu.data 323756.024390                       

# average WriteReq miss latency 

system.cpu.dcache.WriteReq_avg_miss_latency::total 323756.024390                       

# average WriteReq miss latency 

system.cpu.dcache.demand_avg_miss_latency::cpu.data 307692.151515                       

# average overall miss latency 

system.cpu.dcache.demand_avg_miss_latency::total 307692.151515                       

# average overall miss latency 

system.cpu.dcache.overall_avg_miss_latency::cpu.data 307692.151515                       

# average overall miss latency 

system.cpu.dcache.overall_avg_miss_latency::total 307692.151515                       

# average overall miss latency 

system.cpu.dcache.blocked_cycles::no_mshrs         6955                       

# number of cycles access was blocked 

system.cpu.dcache.blocked_cycles::no_targets            0                       

# number of cycles access was blocked 

system.cpu.dcache.blocked::no_mshrs               165                       

# number of cycles access was blocked 

system.cpu.dcache.blocked::no_targets               0                       

# number of cycles access was blocked 

system.cpu.dcache.avg_blocked_cycles::no_mshrs    42.151515                       

# average number of cycles each access was blocked 

system.cpu.dcache.avg_blocked_cycles::no_targets          nan                       

# average number of cycles each access was blocked 

system.cpu.dcache.fast_writes                       0                       

# number of fast writes performed 

system.cpu.dcache.cache_copies                      0                       

# number of cache copies performed 

system.cpu.dcache.writebacks::writebacks           72                       

# number of writebacks 

system.cpu.dcache.writebacks::total                72                       

# number of writebacks 

system.cpu.dcache.ReadReq_mshr_misses::cpu.data           83                       

# number of ReadReq MSHR misses 

system.cpu.dcache.ReadReq_mshr_misses::total           83                       

# number of ReadReq MSHR misses 

system.cpu.dcache.WriteReq_mshr_misses::cpu.data           82                       

# number of WriteReq MSHR misses 

system.cpu.dcache.WriteReq_mshr_misses::total           82                       

# number of WriteReq MSHR misses 

system.cpu.dcache.demand_mshr_misses::cpu.data          165                       

# number of demand (read+write) MSHR misses 

system.cpu.dcache.demand_mshr_misses::total          165                       

# number of demand (read+write) MSHR misses 

system.cpu.dcache.overall_mshr_misses::cpu.data          165                       

# number of overall MSHR misses 

system.cpu.dcache.overall_mshr_misses::total          165                       

# number of overall MSHR misses 

system.cpu.dcache.ReadReq_mshr_miss_latency::cpu.data     21954493                       

# number of ReadReq MSHR miss cycles 

system.cpu.dcache.ReadReq_mshr_miss_latency::total     21954493                       

# number of ReadReq MSHR miss cycles 

system.cpu.dcache.WriteReq_mshr_miss_latency::cpu.data     24298437                       

# number of WriteReq MSHR miss cycles 

system.cpu.dcache.WriteReq_mshr_miss_latency::total     24298437                       

# number of WriteReq MSHR miss cycles 
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system.cpu.dcache.demand_mshr_miss_latency::cpu.data     46252930                       

# number of demand (read+write) MSHR miss cycles 

system.cpu.dcache.demand_mshr_miss_latency::total     46252930                       

# number of demand (read+write) MSHR miss cycles 

system.cpu.dcache.overall_mshr_miss_latency::cpu.data     46252930                       

# number of overall MSHR miss cycles 

system.cpu.dcache.overall_mshr_miss_latency::total     46252930                       

# number of overall MSHR miss cycles 

system.cpu.dcache.ReadReq_mshr_miss_rate::cpu.data     0.141880                       

# mshr miss rate for ReadReq accesses 

system.cpu.dcache.ReadReq_mshr_miss_rate::total     0.141880                       

# mshr miss rate for ReadReq accesses 

system.cpu.dcache.WriteReq_mshr_miss_rate::cpu.data     0.117143                       

# mshr miss rate for WriteReq accesses 

system.cpu.dcache.WriteReq_mshr_miss_rate::total     0.117143                       

# mshr miss rate for WriteReq accesses 

system.cpu.dcache.demand_mshr_miss_rate::cpu.data     0.128405                       

# mshr miss rate for demand accesses 

system.cpu.dcache.demand_mshr_miss_rate::total     0.128405                       

# mshr miss rate for demand accesses 

system.cpu.dcache.overall_mshr_miss_rate::cpu.data     0.128405                       

# mshr miss rate for overall accesses 

system.cpu.dcache.overall_mshr_miss_rate::total     0.128405                       

# mshr miss rate for overall accesses 

system.cpu.dcache.ReadReq_avg_mshr_miss_latency::cpu.data 264511.963855                       

# average ReadReq mshr miss latency 

system.cpu.dcache.ReadReq_avg_mshr_miss_latency::total 264511.963855                       

# average ReadReq mshr miss latency 

system.cpu.dcache.WriteReq_avg_mshr_miss_latency::cpu.data 

296322.402439                       # average WriteReq mshr miss 

latency 

system.cpu.dcache.WriteReq_avg_mshr_miss_latency::total 296322.402439                       

# average WriteReq mshr miss latency 

system.cpu.dcache.demand_avg_mshr_miss_latency::cpu.data 280320.787879                       

# average overall mshr miss latency 

system.cpu.dcache.demand_avg_mshr_miss_latency::total 280320.787879                       

# average overall mshr miss latency 

system.cpu.dcache.overall_avg_mshr_miss_latency::cpu.data 280320.787879                       

# average overall mshr miss latency 

system.cpu.dcache.overall_avg_mshr_miss_latency::total 280320.787879                       

# average overall mshr miss latency 

system.cpu.dcache.no_allocate_misses                0                       

# Number of misses that were no-allocate 

 

---------- End Simulation Statistics   ---------- 

 

 

 

 


