

Chalmers University of Technology
University of Gothenburg

Department of Computer Science and Engineering
Göteborg, Sweden, October 2013

Analysing TCP performance when link experiencing
packet loss

Master of Science Thesis [in the Programme Networks and Distributed

System]

SHAHRIN CHOWDHURY

KANIZ FATEMA

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Analysing TCP performance when link experiencing packet loss

SHAHRIN CHOWDHURY,
KANIZ FATEMA

© SHAHRIN CHOWDHURY, October 2013.

© KANIZ FATEMA, October 2013.

Examiner: TOMAS OLOVSSON

Chalmers University of Technology

University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg

Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden October 2013

Acknowledgement

We are grateful to our supervisor and examiner Tomas Olovsson for his valuable time and

assistance in compilation for this thesis. We would like to pay our gratitude to CHALMERS

for providing us necessary equipment. We would also like to thank the Department of

Networks and Distributed Systems for giving us the opportunity to perform our thesis in the

department. Last but not the least we are grateful to our parents for encouraging us to achieve

our goal.

Abstract

TCP is a reliable protocol which is capable of handling retransmission and packet loss. In

TCP, packet loss is not expected to have a noticeable impact on bandwidth. However,

performance was affected even at low packet loss rates (1%) and with an increased rate of

packet loss, a drastic drop was observed. To uncover the cause of this unexpected behavior of

TCP, a deep analysis of TCP has been accomplished.

In this paper we have done a comparison between three different congestion control

algorithms (Cubic, Reno and H_TCP) and a deeper analysis of Reno by means of several

experimental tests in when the link experiences Data loss and ACK loss. Initially different

TCP congestion control algorithms were used to observe their influence on bandwidth rate.

Subsequently the TCP variables i.e. advanced window scaling, ECN value, window scaling,

TCP no-metric-save value were changed to examine their role in obtaining adequate

bandwidth rate with respect to packet drop. In addition to our experimental results, we also

include some possible reasons behind the drastic drop in performance rate which was

observed. Moreover, experimental results show that the congestion control algorithm H-TCP

performed better than Cubic and Reno while link was experiencing packet loss. However,

ACK loss didn‟t affect performance that much, and up to 50% loss of ACKs could be

tolerated with almost no performance degradation.

Keywords: TCP congestion control algorithms, TCP variables, Data loss, ACK loss, Packet

loss, Bandwidth rate etc.

Table of Content

Chapter 1: Introduction ... 12

1.1 Background..12

1.2 Outline of the paper ...12

Chapter 2: Problem description .. 13

2.1 Detected problem in TCP performance..13

2.2 Related work ...14

Chapter 3: TCP Concepts .. 17

3.1 TCP congestion avoidance algorithms ..17

3.2 TCP variables ..18

Chapter 4: Testing TCP performance... 20

4.1 Description of measurement tools ..20

4.1.1 Wireshark... 20

4.1.2 Linux Network Traffic control (tc) ... 20

4.1.3 IPERF .. 21

4.1.4 Netcat ... 21

4.2 Setting up the network..22

4.3 Measuring the impact of TCP drops ..24

4.3.1 Experiment when Data link experiencing Data Drop 24

4.3.2 Experiment when Data link experiencing ACK drop........................... 25

4.3.3 Tests with CUBIC when experiencing Data Drop 26

4.3.4 Tests with CUBIC when experiencing ACK drop 27

4.3.5 Tests with Reno when experiencing Data drop 28

4.3.6 Tests with Reno when experiencing ACK drop 28

Chapter 5: Tests with more algorithms and TCP variables 30

5.1 Experiments with different congestion avoidance algorithms for

data loss ...30

5.1.1 CUBIC.. 31

5.1.2 RENO... 31

5.1.3 H-TCP ... 32

5.1.4 Tests with different TCP variables: tcp_window_scaling 33

5.1.5 Tests with different TCP variables: tcp_adv_win_scale 34

5.1.6 Tests with different TCP variables: tcp_ecn.. 35

5.1.7 Tests with different TCP variables: tcp_no_metrics_save value 35

5.2 Experiments with different congestion avoidance algorithms for

ACK loss...36

5.2.1 CUBIC/RENO/H_TCP ... 36

5.2.2 Tests with different TCP variables: tcp_window_scaling 37

5.2.3 Tests with different TCP variables: tcp_adv_win_scale 38

5.2.4 Tests with different TCP variables: tcp_ecn.. 39

5.2.5 Tests with different TCP variables: tcp_no_metric_save value 39

Chapter 6: Discussion .. 41

6.1 Outcome from the experiments when link experiencing Data loss 41

6.2 Outcome from the experiments when link experiencing ACK loss........ 42

6.3 Possible reason behind the drastic drop when link experiencing

Data loss in RENO ... 45

Chapter 7: Conclusion .. 47

Chapter 8: Future Work .. 49

References ... 50

Appendix .. 52

1. Tests with different TCP variables in CUBIC for Data loss 52

1.2 tcp_adv_win_scale .. 52

1.3 tcp_ecn ... 53

1.4 tcp_no_metric_save.. 53

2 Tests with different TCP variables in CUBIC for ACK loss 54

2.1 tcp_window_scaling.. 54

2.2 tcp_adv_win_scale .. 54

2.3 tcp_ecn ... 55

2.4 tcp_ no_metric_save ... 55

Table of Figures

Figure 1: Throughput for Data drop (SSH over UDP) ... 13

Figure 2: Throughput for ACK drop (SSH over UDP) .. 14

Figure 3: IP Packet handling in the Linux Kernel ... 21

Figure 4: Network Topology... 22

Figure 5: Test Network (Before modifying the NIC) .. 23

Figure 6: Simple network ... 24

Figure 7: Performance rate of data drop ... 25

Figure 8: Performance of ACK drop.. 25

Figure 9: Performance for Data drop in CUBIC ... 27

Figure 10: Performance for ACK drop in CUBIC... 27

Figure 11: Performance for Data drop in Reno ... 28

Figure 12: Performance for ACK drop in Reno .. 28

Figure 13: Performance for Cubic ... 31

Figure 14: Performance for Reno .. 32

Figure 15: Performance for H-TCP ... 32

Figure 16: Performance of tcp_window_scaling when turned on ... 34

Figure 17: Performance of tcp_adv_win_scale when turned on ... 34

Figure 18: Performance of tcp_ecn value when turned on ... 35

Figure 19: Performance of tcp_no_metric_save value when turned on ... 36

Figure 20: Performance for ACK loss with all three congestion avoidance algorithm (Cubic, Reno and

H-TCP) ... 36

Figure 21: Performance for ACK loss with Reno when TCP variables were turned off 37

Figure 22: Performance of tcp_window_scaling when turned on ... 38

Figure 23: Performance of tcp_adv_win_scale when turned on ... 38

Figure 24: Performance of tcp_ecn when turned on .. 39

Figure 25: Performance of tcp no_metric_save value when turned on .. 39

Figure 26: Performance of three different congestion avoidance algorithms while experiencing data

loss ... 41

Figure 27: Comparison between four different TCP variables when turned off and when set to their

default values while experiencing data loss .. 42

Figure 28: Comparison of the three different congestion avoidance algorithms in case of ACK loss .. 43

Figure 29: Performance of TCP Congestion Avoidance algorithms while experiencing different

amount of ACK loss... 43

Figure 30: Comparison between four different TCP variables when turned off and TCP variables when

set to their default values while experiencing ACK loss .. 44

Figure 31: Performance during congestion in the general network ... 45

Figure 32: Drastic drop in performance in the experimental network ... 46

Figure 33: Performance of tcp_window_scaling when turned on ... 52

Figure 34: Performance for tcp_adv_win_scale when turned on .. 52

Figure 35: Performance of tcp_ecn when turned on .. 53

Figure 36: Performance of tcp_no_metric_save when turned on .. 53

Figure 37: Performance of tcp_window_scaling when turned on ... 54

Figure 38: Performance of tcp_adv_win_scale when turned on ... 54

Figure 39: Performance of tcp_ecn when turned on .. 55

Figure 40: Performance of tcp_no_metric_save when turned on .. 55

Chapter 1: Introduction

1.1 Background

TCP is a protocol offering reliable communication between two communicating parties. It

takes care of communication problems from the underlying layers, it retransmits lost packets

(segments), detects duplicates and reorders unordered packets when needed, problems that

may be caused by network congestion, dynamic load balancing and other unpredictable

events.

TCP uses a number of mechanisms to deal with network congestion and packet loss. These

mechanisms control the rate of traffic in order to maximize performance and network link

utilization. When packet loss increases in the network, the number of retransmissions increase

which, in turn, decreases effective bandwidth and causes longer and more unpredictable

delays.

In this thesis work, we have analyzed TCP behavior when it experiences packet drops in a

small network. We have found that TCP is unable to handle even 1% packet loss. We would

have expected a reasonable small performance drop, but instead a drastic drop in performance

was observed. We have investigated the nature of this problem and tested different TCP

congestion avoidance algorithms under Linux (e.g. Reno, Cubic and H-TCP). We have also

investigated the effect of changing some TCP parameter settings, such as tcp_adv_win_scale,

tcp_ecn, tcp_window_scaling, tcp_no_metrics_save.

1.2 Outline of the paper

The outline of this paper is as follows. First, Chapter 2 explains the detected problem of TCP

performance, and related work. In Chapter 3 contains a TCP concepts of the various TCP

congestion avoidance algorithms and TCP variables have been described briefly. Chapter 4

continues with a description of measurement tools used in this thesis work, basic setup of the

network along with test scenarios and measurements of packet drop has presented. Chapter 5

contains an analysis of all experiments performed. In Chapter 6 the paper is summarized,

Chapter 7 contains conclusions and finally Chapter 8 discusses future work.

Chapter 2: Problem description

2.1 Detected problem in TCP performance

This thesis is an extension of a previous thesis called „SSH Over UDP‟: “In ‟SSH over UDP‟ a

UDP based solution was implemented for OpenSSH. OpenSSH uses tunneling of one TCP

connection within another TCP connection for its VPN features. But various sources claim

that using such TCP in TCP in practice; will raise some conflicts between the two TCP

implementations especially when experiencing packet loss. The general recommended is

therefore to avoid tunneling TCP in TCP. The goal with their work was to see whether a UDP

based solution works better than a TCP based solution when links experience packet loss.” [4]

Tunneling is a secure and trusted way to transfer data between the two networks. Tunneling

protocols may use data encryption to transport the data over a public network. Details

information about Tunneling, OpenSSH and VPN is not included in this thesis.

While they were testing the throughput for different rates of packet loss, a problem was

detected. The throughput had dropped more drastically than expected when packet loss

increased. Finding out the reason behind the unexpected performance drop; therefore become

the scope of our research project.

The identified problem is shown in Figure 1 below.

Figure 1: Throughput for Data drop (SSH over UDP)

When no packet loss was experienced in the network the throughput was 94.3 Mbits/s. With

only 3% packet drop, throughput decreased to 25.06 Mbits/s, thus a huge drop in performance

was observed. We expected that TCP would have adequate functionality to handle packet

drops in the network, at least when the link only experiences 3% packet drop. Even in the case

of 1% packet loss, performance dropped from 94.3 Mbits/s to 71.88 Mbits/s which is also

noticeable to the user.

Figure 2: Throughput for ACK drop (SSH over UDP)

On the other hand, from Figure-2 it is possible to see that there is almost no variation in the

throughput when ACKs were dropped.

TCP shows different behavior for data drop and ACK drop and the reasons behind this

dissimilar behavior will be discussed later in this thesis.

2.2 Related work

Robert Morris [13] has described in the paper, the effect of congestion window size on TCP

flow control. The author has identified that TCP‟s minimum congestion window of one

packet is the reason behind the reduced data flow which occurs due to packet loss. Packet

transmission rate decreases up to 50% after a single packet loss in the network which in turns

generates delays which will be noticeable to the users. Routers also drops packet when their

queue is overflowed. TCP is able to overcome the loss of a packet in a single round trip time

by increasing its window size larger than 4 packets. The author has suggested a solution by

increasing router buffer space together with limits on per-flow queue length. In this paper no

external packet loss has been introduced; but for a single packet loss up to 50% decrease in

performance has been observed. Hence, initiating external packet loss will end up with huge

performance loss.

Christian et al. [14] has offered a complete comparison among TCP‟s 12 different variants i.e.

TCP (TCP Reno) and its improved version (TCP Vegas), variants for wireless networks (TCP

Veno and TCP Westwood), variants for high-speed networks (TCP BIC, TCP CUBIC), and

variants satellite networks (HSTCP, TCP Hybla, TCP Illinois, Scalable TCP, and TCP

YeAH), and also a low-priority version (TCP-LP) in terms of achieved throughput and

fairness. TCP YeAH performed a little bit better compared to Scalable TCP and TCP Illinois,

considering achieved throughput. On the other hand when comparing fairness to other TCP

variants; TCP-LP showed much lower throughput. From this paper, we have taken Reno and

Cubic throughput graphs and compared them with the graphs generated in our experiments.

Honda and Osamu [2] presented in their paper that, end-to-end TCP performance is thought to

be affected by some factors such as link bandwidth, propagation delay, MTU and router

buffer size. The authors have focused on how these variables as well as the TCP tunneling

affect end to end performance. From the observation it has been found that TCP tunneling

causes degradation in end-to-end goodput when the network propagation delay is large. The

buffer size has impact on goodput regardless of whether it‟s for end host or tunnel

connections, which means that the decreasing goodput can be analyzed with the use of small

buffer size. The paper has also proposed that the SACK option can be an alternative to

increase goodput.

Titz [3] stated that TCP over TCP is thought to be an inappropriate combination when

tunneling TCP over TCP due to the different timers in the different TCP stacks, which results

in a meltdown problem. Due to the presence of a faster timer in the upper layer of TCP, it

performs more retransmissions compared to the lower timer, which means that stacking of

TCP messages makes the connection to break down as supposed to plain TCP which is able to

bear more packet loss as it can avoid congestion. Because of these problems the author has

suggested to use UDP as an alternative of TCP for the SSH tunnel.

Canberk, Berk and Jaya Dhanesh [5] have focused on the TCP meltdown problem. The

hypothesis was that using the same TCP implementation for the tunnel connection and the

forwarded connection leads to TCP meltdown. More over using same TCP implementation

one over the other, increases the performance loss almost twice compared to a single TCP

connection. To avoid this, the authors suggest the use of mixed TCP implementations, for

example a TAHOE implementation of TCP for forwarded connection and a Reno

implementation for the other. Another suggestion was to use UDP instead of TCP when

tunneling traffic. The authors concluded with the statement that TCP over TCP is not as bad

as it thought to be; moreover using UDP creates new firewall problems.

Lee et al. [6] present in their paper a comparison between TCP and UDP traffic in order to

recognize which one performs the best in the TCP tunnel when there is a bottleneck in the

link. Only the path MTU size was investigated to analyze the performance of the TCP flow,

and factors like link bandwidth, buffer size, propagation delay was ignored. In addition, other

things like the number of TCP flows, TCP patterns and TCP tunnels, the traffic pattern of

TCP flows, TCP congestion avoidance algorithms, presence of SACK option and the socket

buffer size was also not considered.

Chapter 3: TCP Concepts

In this chapter we give a brief overview of various TCP congestion avoidance algorithms and

different TCP variables analyzed later in this thesis work.

3.1 TCP congestion avoidance algorithms

“The TCP Congestion avoidance algorithm is the primary basis for congestion control in the

internet”[7]. The congestion avoidance algorithm detects congestion by observing

retransmission timer expiration and the reception of duplicate ACKs. As a remedy to this

situation, the sender decreases its transmission window, i.e. its number of unacknowledged

packets in transit to one half of the current window size.

There are various types of congestion avoidance algorithms. For example: Tahoe, Reno, New

Reno, Vegas, BIC, CUBIC, H-TCP etc. In this work, three algorithms were chosen for

analysis: CUBIC, Reno and H-TCP.

When we installed the Linux operating system, the default TCP congestion avoidance

algorithm was Cubic. Cubic implements an enhanced congestion control algorithm called

Binary Congestion Control shortly BIC. The BIC congestion window control function

improves the RTT (round trip time) fairness and TCP friendliness. The BIC growth function

plays an aggressive role for TCP in low speed networks with short RTTs. Cubic is compatible

with both short and long RTTs which mean good scalability. “The congestion epoch period

(time period between two consecutive loss events) of CUBIC is determined by the packet loss

rate alone.”

The main feature of CUBIC is that its window growth function is defined in real-time so that

its growth will be independent of RTT [8].

In TCP, normally for each received ACK, the congestion window is increased by one segment

per round trip time (RTT) this mechanism is called slow start. On the other hand when packet

loss occurs; TCP applies a mechanism called Multiplicative Decrease Congestion Avoidance

(MDCA) which decreases congestion window to half per round-trip time [24].

Timeout occurs when sender doesn‟t receive ACK within a given time. This initiates

retransmission of lost segment. Fortunately, Reno has got fast retransmission feature which

reduces the time a sender waits before retransmitting. But MDCA mechanism doesn‟t work

properly in Reno; so the fast retransmitted packets also starts dropping at the receiver end.

Because retransmission rate is not proportionate to the receivers receiving capability which

results in huge number of packet drops. Hence, Reno only performs well against very small

packet loss [8,24].

Retransmission rate is not proportionate to the receivers receiving capability which results in

huge number of packet drops.

H-TCP is the third congestion avoidance algorithm used in our experiments. H-TCP has some

strong features; it can operate in a high speed network and H-TCP also performs better in

long-distance networks. This protocol is capable of rapidly adapting to changes in existing

bandwidth, which makes it a bandwidth efficient protocol [15].

3.2 TCP variables

A number of TCP variables were assumed to have influence on performance. Because of the

different features the TCP variables control, we believed that they should have some impact

on performance. In order to verify it, these four TCP variables were analyzed in this work.

tcp_window_scaling enables a TCP option which makes it possible to scale TCP windows to

a size to accommodate “Large Fat Pipes (LPF)” i.e. links with a high bandwidth-delay

product.TCP may experience bandwidth loss while passing TCP packets over the large pipes;

as the channels are not being fully filled while waiting for ACK‟s for previously transmitted

segments. The TCP window scaling option allows the TCP protocol to use a scaling factor to

the windows, i.e. to use window sizes larger than the original TCP standard defined and

ensures utilizing nearly all of the available bandwidth. The tcp_window_scaling is by default

is set to 1, or true. To turning it off set it to 0[9, 16]. We have analyzed this feature in order to

reduce performance loss while passing large amounts of data (10 MB, 25 MB etc) through the

network.

The total buffer space available to a socket is shared between a buffer for the incoming data

(TCP receiver window) and an application data buffer. The tcp_adv_win_scale is used to

inform the kernel about how much socket buffer size should be saved for the application

buffer and how much should be used for the TCP window size. The tcp_adv_win_scale is by

default set to 2 which mean that the application buffer is using one fourth of the total space [9,

16]. In our experiments initially it was set to 0 which means that all available memory is

allocated to the incoming data buffer. Afterwards we have checked its impact on performance

by setting it to default value. We used this variable with the expectation that it‟s going to

reduce performance loss more than what the tcp_window_scaling did.

The tcp_ecn (Explicit Congestion Notification) variable automatically informs the host

when there is congestion in a route towards a specific host or a network by turning on an

Explicit Congestion Notification in TCP connections. The tcp_ecn by default is turned on and

set to 2, on the other hand to turn it off change the value to 0. To turn it on in the kernel it

should be set to 1[9, 16]. This TCP variable was chosen to check whether there is any

congestion in the network.

The tcp_no_metrics_save controls a function that allows the system to remember the last

slow start threshold (ssthresh) when it is turned on. This feature modifies the result of the

second test and leads to error. When the previous connection holds the better result the

outcome of the second test will show a modified result (better) rather than the original result.

The tcp_no_metrics_save in default is set to 0 and to turn this function off, it is set to1 [9, 16].

The reason behind selecting this variable was to observe its impact on performance, as it

normally offers an overall performance improvement since by remembering what

characteristics the link had last time, it does not have to start so slowly when searching for the

congestion point.

Chapter 4: Testing TCP performance

This chapter contains a description of the test network including the network configuration

and also about the data obtained from the tests. Our initial data is presented and is also

compared with the test data achieved by the “SSH Over UDP” project.

4.1 Description of measurement tools

The following tools have been used when testing TCP performance, and a brief introduction

of the tools are presented below.

4.1.1 Wireshark

 Wireshark is a network protocol analyzer developed by an international team of

networking experts. It is a tool for capturing traffic on a computer network and also one of the

best open-source tools for displaying the contents from a network packet. It is the de facto

standard across many industries and educational institutions. It runs on Windows, UNIX, OS

X [10, 19, 20].

4.1.2 Linux Network Traffic control (tc)

 Linux Network Traffic Control, tc, was the main network emulator in our tests. “It

enables us to realistically recreate a wide variety of network conditions like packet

loss/error/reordering, latency, bandwidth restrictions and jitter.”[22] Only unidirectional

packet loss was emulated during the tests. Using the „tc‟ command, it is possible to specify

the percentage of random packet loss. For initializing packet loss on the router host the

following command was used:

 tc qdisc add eth<x> root netem loss <percentage> [4,17]

The procedure of handling an IP packet inside a Linux-based router is shown in Fig.4.When a

packet enters a network interface card (NIC), it is classified (see below) and enqueued (in

ingress qdisc) before going through linux internal packet handling. Upon the completion of

the packet handling procedure, packets are again classified and enqueued (in egress qdisc) for

transmission on the egress NIC [23].

Figure 3: IP Packet handling in the Linux Kernel

Packet header fields (source and destination IP addresses, port numbers etc) are analyzed

when performing packet classification and the Traffic control tool, tc, is used to configure

qdisc (short for queuing discipline) as well as configure packet classification into qdisc.

Packets are enqueued in one of the ingress/egress queues, based on this classification. A FIFO

method is then applied to process packets. Qdisc is defined as, the combination from queue

and algorithm that decides when to send which packet [23].

4.1.3 IPERF

 IPERF was developed by NLANR/DAST and it‟s a network testing tool that is able to

generate TCP and UDP data streams and measure TCP and UDP performance. IPERF reports

bandwidth, delay jitter and datagram loss. Various parameters e.g. data size, testing time etc.,

can be set in IPERF in order to test the network. IPERF consists of a client a server and

allows for unidirectional or bi-directional throughput measurements [11].

4.1.4 Netcat

 Netcat is a simple networking utility for reading from and writing to network

connections using TCP or UDP. It is a feature-rich network debugging and exploration tool;

and it is capable of creating almost any kind of connection one would need and has several

interesting built-in capabilities. This tool is designed in such a way that it can be run by other

programs and scripts [12, 21].

http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol

In the beginning of the experiments both the IPERF and Netcat was used to generate the

traffic. Since they have shown the same results, we selected IPERF for the rest of the

experiments.

4.2 Setting up the network

Figure 4: Network Topology

A small network was created consisting with two hosts (server and client) and a middle

computer (a router). The middle computer was used to disturb the communication between

the server and the client by introducing packet loss. Wireshark was used to analyze the traffic

passing between the server and the client. Linux Network Traffic Control, tc was used to

introduce packet loss in the router. We then used IPERF on the client host to generate traffic

where the amount of data sent on the link was specified. The Maximum transmission unit

(MTU) was also set to its default value which is used to specify the largest data unit that is

allowed to be forward through a link. Ethernet at the link layer allows maximum 1500-byte

packets. In this thesis work, the MTU size was set to 1400-bytes [18].

The configuration of Host A:

 CPU: AMD Athlon ® 64 Processor 3200+ 2000MHz

 Operating system: Ubuntu Server (Linux)

 Network card: 100 Mbits (Eth0)

The configuration of Host C:

 CPU: Intel® Pentium ® 4 3.60GHz

 Operating system: Ubuntu Client (Linux)

 Network card: 1000 Mbits (Eth2)

Sender

Linux router

Receiver

The configuration of Router:

 CPU: Intel® Pentium ® 4 3.00GHz

 Operating system: Debian (Linux)

 Network cards: 100 Mbit (Eth0) and 1000 Mbit (Eth2).

A TCP connection was established between the two end hosts. The Network Interface Card

(NIC) was configured for 100Mbit/s on host A and 1000Mbit/s on host C. Later on it was

modified to be same for all hosts.

 Host C Router Host A

Figure 5: Test Network (Before modifying the NIC)

The above figure is the physical picture of the network. A more simplified picture is shown

below in order to understand the test scenarios more clearly.

 Measured bandwidth in Eth0 = Bandwidth rate for Data

Measured bandwidth in Eth2 = Bandwidth rate for ACK (Acknowledgement)

Figure 6: Simple network

4.3 Measuring the impact of TCP drops

Initially the default congestion avoidance algorithm in the Linux TCP implementation called

Cubic (See Chapter 3.1) was running in the three computers. TCP variables were set to their

default value (See Chapter 3.2). Using IPERF, performance was measured during 30 seconds.

When packet loss increased, performance decreased. For 0% packet loss the performance was

94.1 Mbits/s whereas for 10% packet loss it decreased to 2.89 Mbits/s. The initial data and the

graph for data drop are presented in the following sub sections.

Measurement specifications for the following experiments are:

Emulator: tc, bandwidth measurement: IPERF, test-time: 30 s

Link speed: 1000Mbits/s- Host C, 100Mbits/s – Host A

Maximum Transmission Unit (MTU), Router=1500, Host A&C=1400

4.3.1 Experiment when Data link experiencing Data Drop

In this first experiment, only six measurement values were taken to observe whether the

network really experienced a drastic drop when the link experienced data loss. After this

experiment our experimental results confirm the results obtained by the “SSH Over UDP”

project [4].

ACK Drop

Host C Host A
Data
Drop

Eth2 Eth

0

Figure 7: Performance rate of data drop

From the above figure (Figure 7) it can be clearly seen that performance decreased in a drastic

way when data loss was introduced to the network. The bandwidth was almost fully used for

data transmission when there were no data losses (or 0% packet loss) in the network.

Surprisingly, even when introducing only 1% packet loss, the performance drops to 88.5

Mbits/s. And the decrease continues down to 2.89 Mbits/s when data loss reaches 10%.

4.3.2 Experiment when Data link experiencing ACK drop

Six measurement values were taken to observe the performance when ACKs were dropped

instead of data. No performance drop was found as in the previous test (4.3.1).

Figure 8: Performance of ACK drop

The described drastic drop when experiencing data loss mentioned in the “SSH Over UDP”

[4] (Stated in chapter 2 section 2.1) was also experienced in this network. To verify this

drastic drop in performance some more measurements were made. These results are shown in

section 4.3.3, 4.3.4, 4.3.5 and 4.3.6. Some changes were made for these experiments. Instead

of transmitting the data for 30 seconds, 25MByte of data was transferred. MTU was set to

1400 for host A, C and the Router.

4.3.3 Tests with CUBIC when experiencing Data Drop

For this experiment some changes were made. CUBIC was again chosen because it is the

default congestion avoidance algorithm in the systems running on the two hosts and in the

router. Only values that have changed from the previous experiments are given below.

Initialized Value:

Data Size =25 MB instead of test-time: 30 s

MTU = 1400 for all hosts

Using the above configuration; two tests were made. One for data drop and the other for ACK

drop in the network.

While generating traffic for 30 seconds, IPERF was sending as much packets as it could

within this period of time. WireShark was used in the router to inspect all these packets over

the network. Processing and analyzing that amount of traffic was bit difficult for Wireshark

which might had occurred because of the slower processing speed (router´s speed) of the CPU

where wireshark was installed. As a result, Wireshark was taking more time to capture

packets for every experiment. It was suspected that the large amount of data was creating an

overflow in the data path which could be a possible reason behind the drastic drop. Hence, to

simplify the analysis, a small amount of traffic (25MB) was generated.

Figure 9: Performance for Data drop in CUBIC

The experienced performance when the link is experiencing data loss is shown in Figure 9.

Here, again performance decreased radically with an increasing data loss.

4.3.4 Tests with CUBIC when experiencing ACK drop

A similar type of experiment in CUBIC was made for ACK drop. The obtained result is

shown in the following Figure.

Figure 10: Performance for ACK drop in CUBIC

As shown in Figure 10, performance remains constant at 93.7 Mbits/s even when

experiencing 10% of ACK loss.

4.3.5 Tests with Reno when experiencing Data drop

Similar experiments like 4.3.3 and 4.3.4 was now made with the Reno congestion avoidance

algorithm (detailed information about Reno is given in chapter 3 section 3.1). The only

change that was made here is the change of congestion avoidance algorithm. Data size was

also kept to 25MB. Two tests were made with Reno and performance was measured both for

data drop and for ACK drop. The tests outcomes are described below.

Figure 11: Performance for Data drop in Reno

From this analysis it was found that performance becomes more drastic than for CUBIC. The

performance was the same when no data loss was introduced but for 10% data loss the rate

falls into 1.93 Mbits/s. This rate is lower than the achieved performance in CUBIC (See

Figure 8).

4.3.6 Tests with Reno when experiencing ACK drop

Figure 12: Performance for ACK drop in Reno

The above figure shows that the ACK drop in the network does not vary when the TCP

congestion avoidance algorithm was changed to Reno. The performance remains same even

for 10% packet loss 93.7 Mbits/s.

Chapter 5: Tests with more algorithms and TCP variables

To identify the reason behind TCP´s behavior as explained in chapter 4; several experiments

were done both for links experiencing data drop and ACK drop. We also saw that different

TCP congestion avoidance algorithms had some impact on performance while experiencing

data drop, and that performance didn´t change for ACK drop. So, in order to observe the TCP

performance during data loss; different congestion avoidance algorithms were tested i.e.

Cubic, Reno and H-TCP along with changing four different TCP variables. The reason for

experimenting with different TCP variables and their impact has been discussed in 5.1 and

5.2.

Before starting the experiments we have configured and changed some network settings. In

the previous experiments, the speed of the NIC (Network Interface Card) for all three

computers was not same, but it was set to the maximum value supported by the NIC´s. Hence

to reduce the possible impacts on the experimental results, we now use the same values for all

NICs.

5.1 Experiments with different congestion avoidance algorithms for data

loss

Prior to start, all NICs are set to 10Mbit/s for all links. The link speed was reduced (from 100

Mbit/s to 10 Mbit/s on the server side and 1000 Mbit/s to 10 Mbit/s on the client side) to have

the same link speed in the network. The same congestion avoidance algorithm was then set in

all the three hosts. First, the hosts were configured with Cubic, and then changed to Reno and

at last to H-TCP to observe the results. To begin with, all four TCP variables considered in

this thesis (described earlier in chapter 3) were turned off.

All important settings for the experiments are highlighted below.

Tools used to analyze the data: IPERF

Link speed, in all links (outgoing and Incoming) = 10 Mbit/s

Data Size = 25MB

MTU for all three hosts = 1400

5.1.1 CUBIC

Cubic is the default congestion avoidance algorithm in the Linux operating system. So the

first experiment was done with Cubic to observe the performance. From theory (details in

chapter 3 sections 3.1) it is already known that Cubic is compatible with both short and long

round trip times. It is also supposed to give good performance while links are experiencing

data loss.

Figure 13: Performance for Cubic

From the above figure (figure 13) it can be seen that when the link was not experiencing any

data loss, then the link was fully utilizing its bandwidth and the performance rate was quite

high 9.37 Mbits/s. 1% of data loss decreased the performance rate to 9.19 Mbits/s. At 4% data

loss, performance went down to 7.85 Mbits/s. After that, the decrease continued and for 10%

of data loss performance was down to 2.34 Mbits/s.

5.1.2 RENO

From the earlier theoretical discussion (section 3.1), Reno was not expected to be a

competitive congestion avoidance algorithm when experiencing large amount of data loss.

Due to its fast retransmission policy, it worked well while small data loss was experienced.

Figure 14: Performance for Reno

From figure 14 it can be seen that the initial performance was similar to Cubic for no data

loss, and Reno also gave 9.37 Mbits/s in performance. But performance decreased drastically

when experiencing 3% of data loss. Thereafter, performance went down with increased data

loss. At 10% data loss, performance had decreased to 1.93 Mbits/s. The conclusion is that

Reno is not able to handle data loss of 10%. It also performed worse than Cubic as was

expected from the theory.

5.1.3 H-TCP

According to the theory (chapter 3.1) H-TCP has some strong features to handle data loss

over a long distance network. It has also the capability of rapidly adapting changes in existing

bandwidth which makes it a bandwidth efficient protocol. Because of these features, H-TCP

was one of the selected algorithms among all the congestion avoidance algorithms for this

work.

Figure 15: Performance for H-TCP

Figure 15 shows the performance of H-TCP. At the beginning when no data loss was

introduced to the network, then H-TCP was also utilizing the full bandwidth of the link like

Cubic and Reno; and showed a high performance of 9.37 Mbits/s. But later on with an

increasing rate of data loss in the network, it also experiences a performance drop. But this

drop is slightly better than Cubic and Reno, and from the graph it can be seen that a more

drastic drop starts for H-TCP from 5% of data loss. After introducing 10% data loss

performance decreases to 2.64 Mbits/s.

From these experiments, we can conclude that different congestion avoidance algorithms have

impact on performance when links experience data loss.

Although the performance of H-TCP was better than Reno and Cubic, for the further

experiments with TCP variables Reno was chosen since it had the worst performance among

these three congestion avoidance algorithms. It was expected that, if Reno manages to survive

with the performance loss; the other two algorithms will definitely show better performance.

5.1.4 Tests with different TCP variables: tcp_window_scaling

A brief description and possible impact of the TCP variables has been described in section

3.2.

Initially, tcp_window_scaling was set to 1 or true (which means it was turned on). This means

that it will automatically scale the window size according to large fat pipes which ensures

utilizing nearly all available bandwidth, which directly reduces the performance loss.

Tcp_window_scaling was turned off in the other experiments where the other TCP variables

were changed. The network settings for this test are shown below.

Congestion Avoidance Algorithm = RENO

Tools used to analyze the data: IPERF

Link speed, in all links (outgoing and Incoming) = 10 Mbits/s

Data Size = 25MB

MTU for all three hosts = 1400

tcp_window_scaling = 1

Figure 16: Performance of tcp_window_scaling when turned on

After setting the variable tcp_window_scaling = 1 the above table and graph was obtained.

Even now with an increased amount of data loss, performance starts decreasing. For 3% of

data loss, performance decreases to 8.4 Mbits/s, and for 10% data drop performance is down

to 1.91 Mbits/s. Although this TCP variable has the function to reduce performance loss, in

this case it doesn´t show any remarkable changes compared to figure 14 where

tcp_window_scaling is turned off.

5.1.5 Tests with different TCP variables: tcp_adv_win_scale

In figure 14 tcp_adv_win_scale was turned off. Tcp_adv_win_scale was initially turned on

and set to its default value 2, which means that the application buffer was using one fourth of

the total space (details given in section 3.2). This TCP variable can be turned off by setting its

value to 0. So, to observe the impact on performance of tcp_adv_win_scale, it was turned on

and the other TCP variables were turned off.

tcp_adv_win_scale= 2

Figure 17: Performance of tcp_adv_win_scale when turned on

From the above figure, it can be seen that a drastic drop was noticed from 4% of data loss and

ended up with only 1.77 Mbits/s for 10% data drop. As in our previous test, it was not able to

give a good performance for 10% data drop. However, when compared to figure 14, it

performed slightly better from the beginning when packet loss was rather small.

5.1.6 Tests with different TCP variables: tcp_ecn

In the earlier test shown in figure 14 tcp_ecn was turned off (tcp_ecn=0). Tcp_ecn (Explicit

Congestion Notification) is by default turned on (tcp_ecn=2). In this test, we wanted to

observe the impact on performance when tcp_ecn was turned on and compare it with the

performance shown in figure 14. This variable was turned on only in this particular

experiment. In other cases it was set to 0.

tcp_ecn = 2 (default)

Figure 18: Performance of tcp_ecn value when turned on

Figure 18 shows the experimental result when tcp_ecn is set to 2. After analyzing the above

graph it can be seen that turning on this variable doesn´t make it differs very much from the

experimental result of figure 14. As before, performance drops drastically when data drop

exceeds 4%.

5.1.7 Tests with different TCP variables: tcp_no_metrics_save value

The value of tcp_no_metrics_save was set to 1(save functionality disabled) in figure 14. But

tcp_no_metrics_save value is by default set to 0(save functionality enabled). It controls a

function that has got a function of remembering the last slow start threshold (ssthresh) when it

is turned on. So we chose this variable to observe if it affects performance. A performance

increase was expected from this experiment because it normally offers an overall performance

improvement by remembering the previous results of the link, so it does not have to start

slowly while searching for the congestion point. This functionality was turned off in all other

experiments except in this experiment.

tcp_no_metriic_save = 0

Figure 19: Performance of tcp_no_metric_save value when turned on

From the above figure (Figure 19) it can be observed that the performance was slightly better

compared to Figure 14. For 10% of data drop the performance becomes 2.09 Mbits/s while in

figure 14 for 10% data drop the performance was 1.93 Mbits/s.

5.2 Experiments with different congestion avoidance algorithms for ACK

loss

5.2.1 CUBIC/RENO/H_TCP

All of three congestion avoidance algorithms have given the same experimental results when

Acknowledgements are dropped. All TCP variables are turned off here for this experiment.

Figure 20: Performance for ACK loss with all three congestion avoidance algorithm (Cubic,

Reno and H-TCP)

Figure 20 shows the performance while links are experiencing ACK loss. It can be seen that

there was no change in performance regardless of whether the loss was 1% or 10% for all

three congestion avoidance algorithms. This experiment shows that even a relatively high

amount of acknowledgement loss doesn´t have any impact on the performance. But to make

this statement stronger further experiments with ACK loss have been done.

From experiment 5.2.1 it has been understood that small amount of ACK loss doesn´t have

any impact on the performance. So the ACK loss was increased ten times from the previous

test. That means 10%, 20%, 30%…100% of ACK loss was introduced to the network instead

of 1%, 2%, 3%...10%.

 Now, another test was done with congestion avoidance algorithm Reno; applying the

increased amount of ACK loss. The obtained figure is given below.

Figure 21: Performance for ACK loss with Reno when TCP variables were turned off

In figure 21, after increasing the loss, performance remains unchanged till 50% of ACK loss.

At 60% of ACK loss the performance dropped to almost 0(i.e. 0.0000004).

Now, similar tests were done with the four TCP variables by turning them on separately in

each test. To compare the performance of four TCP variables (when they were turned on)

with figure 21, the following tests (5.2.2, 5.2.3, 5.2.4, 5.2.5) were done.

5.2.2 Tests with different TCP variables: tcp_window_scaling

The first test was done with tcp_window_scaling. It was turned on for this experiment.

tcp_window_scaling = 1 for ACK loss

Figure 22: Performance of tcp_window_scaling when turned on

After increasing the loss, performance remained unchanged till 30% of ACK loss although

performance decreased slightly when 40% of acknowledgments were lost. Similarly to figure

21, increasing the ACK loss to 60% caused performance to drop to almost 0(i.e. 0.00014).

5.2.3 Tests with different TCP variables: tcp_adv_win_scale

In this test tcp_adv_win_scale was turned on (set to 2). The meaning of the value has been

discussed in 5.15 during the experiments of data loss. The same experiments were done for

ACK loss to see its impact on the performance.

tcp_adv_win_scale = 2

Figure 23: Performance of tcp_adv_win_scale when turned on

The above figure shows a drop in performance at 40% ACK loss, otherwise there is no

significant difference from earlier experiments. As before, when we have reached 60% loss;

performance was down to 0 (0.001535).

5.2.4 Tests with different TCP variables: tcp_ecn

In this test; tcp_ecn (Explicit Congestion Notification) was turned on, so that explicit

notifications were delivered while congestion occurred.

tcp_ecn = 2 for ACK loss

Figure 24: Performance of tcp_ecn when turned on

Performance was unchanged up to 50% of ACK loss i.e. 9.37 Mbits/s. For 60% of ACK loss

performance dropped to 7.08 Mbits/s. However, compared with the figure 21 tcp_ecn was

able to improve the performance at 60% quite significantly, but it wasn‟t able to handle 70%

of ACK loss.

5.2.5 Tests with different TCP variables: tcp_no_metric_save value

Now, tcp_no_metric_save value was turned on to compare its performance with figure 21.

The graph for ACK loss is shown in figure below.

tcp_no_metric_save = 0 for ACK loss

Figure 25: Performance of tcp no_metric_save value when turned on

In figure 25 it can be seen that performance drops already at 50% of ACK loss and goes down

to 1.65 Mbits/s.

To conclude the experiments with ACK loss and as seen in the above graphs (Figure 21 to

Figure 25) it is clear that changing the values of TCP variables doesn´t have much impact on

performance when experiencing ACK loss.

Some extra experiments have been done with TCP variables both for data loss and ACK loss

with Cubic in order to verify the results of Reno. But there were no major differences found in

the results. These figures are presented in the appendix to avoid redundancy.

Chapter 6: Discussion

Chapter 5 contains description of all the experiments that were done during this thesis work.

The results from these tests are presented in this chapter.

6.1 Outcome from the experiments when link experiencing Data loss

During data drop, the analysis of the three different congestion avoidance algorithms didn‟t

show that much dissimilarity in performance drop from each other. A huge drop was observed

for all the congestion avoidance algorithms. Only H-TCP showed slightly better performance

(figure 26).

Figure 26: Performance of three different congestion avoidance algorithms while

experiencing data loss

In figure 26 for 1% packet drop the bandwidth rates were 9.18, 9.19, and 9.19 for Reno, Cubic

and H-TCP respectively. For 5% data drop these bandwidth decreased to 5.86, 7.07 and 7.58.

While introducing 10% data loss the bandwidth rates declined to 1.93, 2.34 and 2.64.

Four different TCP variables (tcp_window_scaling, tcp_ecn, tcp_adv_win_scale,

tcp_no_metrics_save) were analyzed first with their default values and then by changing them

one by one. Performance drop was quite similar for all four variables while they were turned

off. A small raise in performance was observed when disabling tcp_no_metrics_save.

Figure 27: Comparison between four different TCP variables when turned off and when set

to their default values while experiencing data loss

In figure 27 for 1% packet drop the bandwidth rates were 9.18, 9.26, 9.28, 9.18 and 9.28 with

the different TCP variables (tcp_window_scaling, tcp_ecn, tcp_adv_win_scale,

tcp_no_metrics_save) set to default and turning them off (individually) respectively. For 5%

performance drop the bandwidth rates fall down to 5.86, 6.13, 5.62, 5.83 and 6.17. While

introducing 10% data loss the bandwidth rates declined to 1.93, 1.77, 1.91, 2.09 and 1.78

respectively.

6.2 Outcome from the experiments when link experiencing ACK loss

During the experiments, when the link was experiencing ACK drop, it could be seen that

performance was not affected by a small number of acknowledgement drops. In the case of

data drops, even for 1% packet drop, a decrease in performance was noticeable. While the

ACK drop occurred, performance was unchanged for the link and remained constant at 9.37

Mbits/s even when the link experienced 10% of ACK loss.

Figure 28: Comparison of the three different congestion avoidance algorithms in case of

ACK loss

To see the performance when link experiences a high amount of ACK drops, we have

increased the quantity of ACK drop to 10 times. Instead of 1%, 2%, 3%... 10% ACK drop

rate, we observed the performance for 10%, 20%, 30%.....100% ACK drop. In these

experiments; a temporary performance drop was noticed after 40% acknowledgement drop.

At one stage congestion occurred in the network when the ACK drop was huge (70%).

The same experiments were repeated three times to ensure these results. Each time it showed

performance drop after 40% acknowledgement drop and communication completely stalled at

60% acknowledgement drop.

Figure 29: Performance of TCP Congestion Avoidance algorithms while experiencing

different amount of ACK loss

We also tested to use different congestion avoidance algorithms (Reno, H-TCP, and Cubic)

and when different TCP variables (tcp_window_scaling, tcp_ecn, tcp_adv_win_scale,

tcp_no_metrics_save) were set to their default values. This shows that performance doesn‟t

fall with a small amount of ACK drops.

Experiments were also done by turning off TCP the variables (tcp_window_scaling, tcp_ecn,

tcp_adv_win_scale, tcp_no_metrics_save). This time a huge drop was observed when

exceeding 50% of acknowledgement drop.

Figure 30: Comparison between four different TCP variables when turned off and TCP

variables when set to their default values while experiencing ACK loss

In figure 30 when TCP variables were set to default (ON) bandwidth remain constant at 9.37

Mbps from 0% to 40 % ACK drop. For 50% ACK drop bandwidth declined to 0.0000004

Mbps. While TCP variables were turned off one by one, tcp_window_scaling and

tcp_adv_win_scale showed a huge decrease in bandwidth rates with 60% ACK drop, at that

time the bandwidth rates were 0.00014 Mbps and 0.0001535 Mbps respectively. With 70%

ACK drop for tcp_ecn; bandwidth declined to 0.00013 Mbps. TCP_no_metrics_save showed

a very low bandwidth rate which was 1.65 Mbps for 50% ACK drop.

6.3 Possible reason behind the drastic drop when link experiencing Data

loss in RENO

The department of Information Engineering of University of Pisa of Italy has published a

paper on the analysis of the TCP‟s behavior where they faced no packet loss [14].

Figure 31: Performance during congestion in the general network

When Reno was running as the congestion control algorithm, even for a single packet loss,

the throughput observed by them decreased from 120 to 60 Mbps which means that current

transmission rate is temporarily decreased to 50% (Figure 31) and then increases linearly until

another loss occurs.

The design of the congestion avoidance methods can be likely the reason behind the

remarkable performance drop during heavy packet loss. Since transmission rate goes down to

50% for each lost packet and then the transmission rate is increased linearly. But after the next

packet loss, transmission rate again decreases to 50% of the last value. There will be an

imbalance in increase (linear) and decrease (cut in half) in transmission rate which will

decrease the performance too fast. This can be one of the reasons behind declined

performance of TCP.

Figure 32: Drastic drop in performance in the experimental network

 (In this thesis work)

Our findings are supported by [25] where the authors have simulated TCP Reno behavior

during multiple packet loss. In Reno, upon receiving duplicate ACKs, the sender initiates a

fast retransmission mechanism. When the fast retransmit mechanism signals congestion, the

sender, instead of returning to Slow Start uses a Multiplicative Decrease Congestion

Avoidance (MDCA) which is a part of the fast recovery mechanism. During transmission

dropping two packets in the same window often leads to force the Reno sender to wait till

retransmission timeout. During this drop, if the congestion window is less than 10 packets or

the congetion window is within two packets of the receiver‟s advertised window Fast

Recovery mechanism will be initiated. When three packets are dropped in the single window

of data and the number of packets between the first and second dropped packets is less than

2+3W/4 (W is the congestion window just before the Fast Retransmit) the Reno sender will

wait for a retransmit timeout. When four packets are dropped in a single window Reno sender

have to wait for a retransmit timeout. With the increased number of dropped packets in the

same window, the likelihood to wait till retransmits occurs increases, which disrupts data

transmission and halts the transmission at a certain stage. When the fast retransmission

mechanism is disrupted, the fast recovery mechanism will not be able to perform properly

[25]. In our thesis work, by introducing packet loss we have dropped the packets randomly.

So, there is a high possibility that more than one packet has been dropped in the same

window. This indicates an inefficient use of the fast retransmission and fast recovery

mechanism which can be a probable reason behind huge performance drop.

Chapter 7: Conclusion

In order to understand the reason behind TCP‟s drastic drop behavior with increasing packet

loss, three different congestion avoidance algorithms (Reno, H-TCP, and Cubic) along with

four different types of TCP variables (tcp_window_scaling, tcp_ecn, tcp_adv_win_scale,

tcp_no_metrics_save) have been analyzed. The department of Information Engineering of

University of Pisa of Italy has mentioned in a paper that they have also observed a decrease in

transmission rate with single packet loss which leads to significant performance drop; similar

to the drastic performance drop we have observed in our thesis work.

In a small network we have analyzed the behaviour of TCP Reno by introducing packet loss.

TCP Reno performed well when no packet loss was introduced, but by introducing 1% packet

loss, the performance went down from 9.37 Mbps to 9.18 Mbps which means a 2%

performance decrement and it linearly decreases. When reaching 10% packet loss,

performance went down to 1.93 Mbps.

A similar type of experiment was done while introducing external ACK loss. A small amount

of ACK loss did not affect performance at all; it remained constant at 9.37 Mbps. But a large

amount of ACK loss for example 40% ACK loss caused performance to drop from 9.13 Mbps

to 8.18 Mbps and with 60% ACK drop, performance went down to 0.00014 Mbps.

Comparing Cubic and Reno, Cubic performed better. In Cubic the performance was constant

at 93.7 Mbps till 60% of ACK drop. In Reno, performance decreased to 17.9 Mbps while link

was experiencing 30% ACK drop and for 60% ACK loss, performance declined to 0% like

Cubic. ACK loss is not as serious as loss of data packets since they are accumulative,

meaning that a missing ACK will be covered for when the next ACK is delivered. However,

when excessive ACK loss occurs, the sender has to retransmit the packets again, and it is

likely that high ACK loss rate will rapidly increase the amount of retransmitted packets that,

again will be lost and retransmitted, will create huge load in the network which likely is the

reason for this performance drop.

We have compared three congestion avoidance algorithms with respect to packet loss; Reno‟s

performance was the worst among the three algorithms. In Theory H-TCP was expected to be

the best performing algorithm because this algorithm uses network resources efficiently, it is

also able to acquire and release bandwidth fast in response to changing network conditions.

H-TCP is also suitable for using with simple and complex networks. Our analysis also

showed that performance improved slightly with H-TCP.

We have also investigated how Four TCP variables (tcp_window_scaling, tcp_ecn,

tcp_adv_win_scale, tcp_no_metrics_save) affected performance and they only slightly

changed performance. Most of the experiments were done with Reno. Because Reno was the

worst performing algorithm; if Reno can survive through the drastic drop in the performance

with the increment of packet loss than other two algorithms will likely show better results in

the same environment, in our experiments when experiencing packet loss and ACK loss. In

the case of packet loss all the four TCP variables show almost the same drastic drop as before.

Experiments were done by turning off the TCP variables for both packet drop and ACK drop;

slightly better performance was observed (2.09 Mbps) with tcp_no_metric_save. On the other

hand, a huge amount of ACK loss for example, 40% ACK loss caused performance to drop to

8.18 Mbps and 60% ACK drop to 0.00014 Mbps.

In conclusion we can conclude from all the experimental results that congestion control

algorithm H-TCP performs slightly better than Cubic and Reno while the link was

experiencing packet loss. A small amount of ACK loss doesn´t affect the performance while a

large amount of ACK loss could not be handled by TCP.

Chapter 8: Future Work

The following is a list of recommendations for continued work on this topic.

In the network setup of our thesis, only the Linux (Ubuntu and Debian) operating systems

were used. Instead of Linux, other operating systems like Windows and Mac can use to see

their impact on bandwidth.

By using more powerful processors and hardware configurations, data processing speed will

be increased which may reduce the amount of packet loss. It is also expected that it will have

a positive impact on performance.

Four TCP variables were used in this thesis work. There are lots of other variables as well.

The possible impact of other TCP variables may also have some influence of the bandwidth

rate.

Other Congestion Avoidance Algorithms‟ behavior during multiple packet loss in the network

will also be an interesting factor to discover in future. TCP may survive a single packet loss;

but the real challenge is to cope up with the multiple packet loss.

References
1. Tunneling, http://www.tech-faq.com/tunneling.html [Acc. 19 Sep. 2011]

2. Honda, Osamu, Hiroyuki Ohsaki, Makoto Imase, Mika Ishizuka and Junichi

Murayama, “Understanding TCP over TCP: Effects of TCP Tunneling on End-to-End

Throughput and Latency”, http://www.ispl.jp/~oosaki/papers/Honda05_ITCom.pdf

[Acc. Date September 19, 2011]

3. Titz ,Olaf ,“Why TCP Over TCP Is A Bad Idea”,

 http://sites.inka.de/sites/bigred/devel/tcp- tcp.html [Acc. 19 Oct. 2010]

4. Karlsson, Magnus Ullholm and MD. Ahasan habib, “SSH over UDP”

http://publications.lib.chalmers.se/records/fulltext/123799.pdf [Accessed: November 4,

 2010]

5. Canberk, Berk and Jaya Dhanesh,“Tunneling TCP over TCP”, CHALMERS

 UNIVERSITY OF TECHNOLOGY, Göteborg 2004.

6. Lee, B.P., R.K. Balan, L. Jacob, W.K.G. Seah and A.L. Ananda, “Avoiding congestion

 collapse on the Internet using TCP tunnels”, Computer Networks 39 (2002) 207-219

7. TCP congestion avoidance algorithm,

 http://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm [Acc. 28 Oct.

2011]

8. Habibullah Jamal and Kiran Sultan, “Performance Analysis of TCP Congestion

Control Algorithms”, http://www.wseas.us/journals/cc/cc-27.pdf [Acc. 28 Oct. 2011]

9. Ipsysctl tutorial 1.0.4 Chapter 3. IPv4 variable reference

http://www.frozentux.net/ipsysctl-tutorial/chunkyhtml/tcpvariables.html [Acc. 28 Oct.

 2011]

10. About Wireshark, http://www.wireshark.org/about.html [Acc. 28 Oct. 2011]

11. Iperf, http://iperf.sourceforge.net/ [Acc. 28 Oct. 2011]

12. Netcat for Windows, April 10, 2009 19:52, http://joncraton.org/blog/46 [Acc. 28 Oct.

 2011]

13. Robert Moris , “TCP Behavior with Many Flows”, Harvard University, Atlanta,

Georgia, October 1997.

14. Christian Callegari, Stefano Giordano, Michele Pagano, and Teresa Pepe, “Behavior

 Analysis of TCP Linux Variants”, Dept. of Information Engineering, University of

Pisa, ITALY

mailto:olaf@bigred.inka.de
http://sites.inka.de/sites/bigred/devel/tcp-%20tcp.html

15. D.Leith and R.Shorten, “H-TCP:TCP for high-speed and long-distance networks”,

http://www.hamilton.ie/net/htcp3.pdf[Acc. 11 Dec. 2011]

16. tcp_adv_win_scale, tcp_ecn, tcp_no_metrics_save, tcp_window_scaling,

http://linux.die.net/man/7/tcp [Acc.12 Dec. 2011]

17. Packet loss, http://swik.net/netem/Examples+of+Use [Acc.17 Dec. 2011]

18. MTU, http://www.dslreports.com/faq/7801[Acc.25 Dec. 2011]

19. Wireshark, http://sourceforge.net/projects/wireshark/ [Acc.4 Apr.2012]

20. Wireshark, http://technofriends.in/2009/01/22/how-to-using-wireshark-for-packet-

analysis-part-1/ [Acc. 4Apr. 2012]

21. Netcat, http://netcat.sourceforge.net/[Acc. 13Apr. 2012]

22. Network Emulator, http://www.itrinegy.com/index.php/products/network-

emulators[Acc. 15 Apr. 2012]

23. Ariane Keller, “Manual tc Packet Filtering and netem”, ETH, Zurich, 20 July 2006.

24. D.E.Comer, Internetworking with tcp/ip. 5th ed., New Jersy: Prentice Hall, 2006,

pp.212-213.

25. Kevin Fall and Sally Floyd, “Simulation-based Comparisons of Tahoe, Reno, and

SACK TCP”, ee.lbl.gov/papers/sacks.pdf [Acc. 5 Jun. 2013]

http://www.hamilton.ie/net/htcp3.pdf%5bAcc
http://linux.die.net/man/7/tcp
http://www.dslreports.com/faq/7801
http://sourceforge.net/projects/wireshark/%20%5bAcc.4
http://technofriends.in/2009/01/22/how-to-using-wireshark-for-packet-analysis-part-1/
http://technofriends.in/2009/01/22/how-to-using-wireshark-for-packet-analysis-part-1/
http://netcat.sourceforge.net/%5bAcc
http://www.itrinegy.com/index.php/products/network-emulators%5bAcc
http://www.itrinegy.com/index.php/products/network-emulators%5bAcc

Appendix

1. Tests with different TCP variables in CUBIC for Data loss

1.1 tcp_window_scaling

Figure 33: Performance of tcp_window_scaling when turned on

1.2 tcp_adv_win_scale

Figure 34: Performance for tcp_adv_win_scale when turned on

1.3 tcp_ecn

Figure 35: Performance of tcp_ecn when turned on

1.4 tcp_no_metric_save

Figure 36: Performance of tcp_no_metric_save when turned on

2 Tests with different TCP variables in CUBIC for ACK loss

2.1 tcp_window_scaling

Figure 37: Performance of tcp_window_scaling when turned on

2.2 tcp_adv_win_scale

Figure 38: Performance of tcp_adv_win_scale when turned on

2.3 tcp_ecn

Figure 39: Performance of tcp_ecn when turned on

2.4 tcp_ no_metric_save

Figure 40: Performance of tcp_no_metric_save when turned on

