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ABSTRACT 

Polymer solar cells are a promising alternative to more traditional silicon solar 

cells. This is mainly due to the good solubility of organic semiconductors, which 

makes it possible to produce large-scale and mechanically flexible devices with 

roll-to-roll processes. To be able to fully utilise this promising technique the 

stability of the materials, used in these devices, must be guaranteed.  

The focus of this thesis is the stability of the active layers of polymer solar cells. 

Both, bleaching due to photo-oxidative degradation and thermal stability of the 

nanostructure have been studied. The presented work is mostly based on blends of 

a thiophene-quinoxaline based polymer (TQ1) and fullerene derivatives (PCBM). 

The first part of the thesis deals with the photo-oxidative stability of TQ1 and a 

pyrido pyrazine based polymer (TQN). To make those polymers more black they 

were co-polymerised with thiophene-hexylthiophene. The stability of TQN is 

shown to be un-effected by this incorporation whereas the stability of TQ1 

decreased. Moreover, the degradation rate of TQ1 seems to be independent of both 

molecular weight and film thickness. 

The stability of the nanostructure has been studied with various microscopy and 

spectroscopy methods. Below the glass transition temperature of the TQ1:PC61BM 

blend only local rearrangement of polymer chains is possible. This mild annealing 

is found to increase the device efficiency. In contrast, annealing at higher 

temperatures above the glass transition temperature led to a coarser nanostructure 

and formation of PCBM crystals, which was detrimental for the performance of 
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corresponding solar cells. Finally, this thesis demonstrates that the thermal 

stability of these blends can be significantly improved by inclusion of neat C60-

fullerene as well as the use of a mixture of two fullerene derivatives as the 

acceptor material. 

Keywords: Polymer solar cells, bulk-heterojunction, stability, nanostructure, 

PCBM crystallisation 
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Chapter 1 
INTRODUCTION 

 

The global demand for energy is increasing. Together with the concerns associated 

with fossil fuels, this is a problem that has to be solved, or at least partly solved, in 

the near future. The energy consumption is not increasing all around the world. For 

example here in Europe the consumption levels are relatively stable and according 

to predications by the U.S. Energy Information Administration (EIA)1 these levels 

will remain likewise over the coming 20 years. The long-term goal is to stop the 

worldwide increase in energy consumption, which implies that in some parts of the 

world the energy consumption has to decrease. This will mainly be done by using 

the produced energy in a more efficient way. The European Union (EU), as well as 

the individual governments, have put up goals regarding future energy 

consumption and production. Until 2020, following requirements should be met:2  

i) Greenhouse emissions (i.e. emissions of carbon dioxide, nitrogen oxides, 

methane etc.) have to be reduced by 20 %.  

ii) 20 % of the energy production should come from renewable energy 

sources.  

iii) There should be a 20 % improvement of the energy efficiency within the 

EU.  

In addition, the EU has more long-term goals; until 2050, greenhouse emissions 

should be reduced by 80 % and the energy consumption should be decreased by 30 

%. By fulfilling those criteria, the goal is to limit the global temperature increase 

to 2 ºC. The governments of the five Nordic countries have stated even higher 

goals for their own countries, with a long-term goal of reducing the greenhouse 

emissions by 85 %.3,4  

The need for more sustainable energy sources has become an urgent dilemma. In 

this context, “sustainable” has a double meaning; these energy sources should be 
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renewable as well as carbon dioxide neutral, i.e. they should not increase the 

amount of greenhouse gases in the atmosphere. This category of desired energy 

sources includes: wind power, hydroelectric power, wave power, biomass-based 

energy, geothermal energy and sun energy. Biomass-based energy as well as wind 

and hydroelectric power are already well developed in the Nordic countries but 

fossil fuels are still important for the electricity production in both Finland and 

Denmark.4 

The sun provides the Earth with more energy than the population needs. If it was 

possible to utilise a larger part of this energy than we do today, it could partially 

solve the problems we are facing. Solar cells of different technologies have gained 

a lot of interest during the last decades. The most commonly used solar cell 

technology is silicon based. Due to the earlier high prices and long energy payback 

times of these solar cells, considerable research efforts have been put into the 

development of alternative solar cell technologies and large improvements have 

been achieved in the last 10-20 years.  

Organic thin-film solar cell technologies, e.g. dye-sensitized solar cells and 

polymer solar cells (PSCs), have gained a lot of interest and have shown to be a 

promising alternative to their silicon-based counterpart. PSCs normally consist of a 

blend of a conjugated polymer acting as the light absorber as well as electron 

donor and a second material, most often a fullerene derivative, acting as electron 

acceptor. This type of solar cells is the topic of this thesis.  

The research efforts within the field of PSCs have resulted in efficiencies of lab-

scale devices approaching ~	9-10 %, for single layer solar cells.5,6 This is still 

lower than the efficiency of silicon-based solar cells, but PSCs have the potential 

to provide cheaper production and also mechanically flexible devices. One 

important aspect that needs to be addressed is the relatively low stability and short 

lifetime of PSCs. Device stability has to be ensured if PSCs should be a 

competitive alternative to the silicon based solar cells and to other energy sources.  
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This thesis aims provide a better understanding of the stability of PSCs. The light 

stability of the polymers as well as the thermal stability of the active layers has 

been studied. The outline of the thesis is as follows: Chapter 2 introduces PSCs in 

general. The light stability of the materials within the active layer is discussed in 

Chapter 3 as well as in Paper I. Subsequently, the thermal stability of the active 

layer blend is discussed in Chapter 4 together with Paper II-VI. Finally, Chapter 5 

will provide concluding remarks. 

The work was financed by the Swedish Research Council through the Linnaeus 

Centre for Bioinspired Supramolecular Function and Design (SUPRA). Electron 

microscopy was carried out in collaboration with Eva Olsson’s group at the 

Department of Applied Physics, Chalmers University of Technology. Devices 

were fabricated and characterized in collaboration with the group of Olle Inganäs 

at the Department of Physics, Chemistry and Biology (IFM), Linköping 

University. 
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Chapter 2 

POLYMER SOLAR CELLS 

 This chapter provides a general description of the working principles of polymer 

solar cells (PSCs). 

 2.1 Background  

The active layer of PSCs comprises one electron donating and one electron 

accepting material, of which at least the donor material is a semi-conducting 

polymer. Most often, the acceptor material is a small molecule, e.g. a fullerene 

derivative, but it can also be another conjugated polymer or a semi-conducting 

metal oxide.7-9 The latter case is usually referred to as hybrid solar cells. 

Other organic solar cells technologies use small organic molecules as donor 

materials. An early organic photovoltaic was made from anthracene in 1959 by 

Kallmann and Pope.10 Today, solution processed small-molecule solar cells give 

efficiencies of to ~ 7 %,11 which can be compared with the efficiency of ~ 9-10 % 

achieved with PSCs.5,6 In addition, dye-sensitized solar cells use organic 

compounds for light absorption, and they are reaching efficiencies up to ~ 11 %.12  

 2.2 Conjugated polymers 

Polymers used for solar cell applications comprise a fully conjugated backbone 

with alternating single and double bonds. The simplest example is poly(acetylene) 

(Table 2.1).13 

    

  



Polymer Solar Cells 

 

-6- 

Table 2.1: Conjugated polymers mentioned within this thesis. 
 

Polymer Chemical Structure 

APFO-3 
 

MDMO-PPV 

P3HT 

PEDOT:PSS 

Poly(acetylene)  

PTI-1 

 

THT 
 

TQ1 
 

TQN 
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The alternation of single and double bonds enables delocalisation of electrons 

across the polymer backbone, due to overlap of p-orbitals. The resulting semi-

conductor comprises a highest occupied molecular orbital (HOMO) and a lowest 

unoccupied molecular orbital (LUMO). The difference between these energy 

levels defines the band gap of the material and determines the minimum energy 

needed to excite an electron. Conducting materials, e.g. metals, do not possess a 

band gap since there is no or only a small energetic difference between the valence 

and the conduction band. For an insulating material this difference between the 

energy levels is large and it is therefore more difficult to excite the electrons from 

HOMO to LUMO. A semi-conductor behaves like an insulator in its neutral state, 

but via doping the material become an electrical conductor.14 For poly(acetylene) 

this can be done with halogen vapours as shown by Shirakawa et al. in 1977.15  

Considerable research efforts have been put into the design of polymers for solar 

cell applications. The polymers that are developed today comprise more 

complicated chemical structures than that of poly(acetylene). Poly(acetylene) 

shows poor solubility in organic solvents and therefore the processability is 

limited.16,17 Many conjugated polymers are based on aromatic units, which allows 

for easy chemical modification and thereby easy alteration of various properties 

such as processability, opto-electronic properties and stability. The simplest 

polymer with an aromatic backbone is poly(paraphenylene) (PPP, see figure 2.1). 

Aromatic polymers have two resonance forms, i.e. the aromatic and the quinoid 

form, that provide a good description of the polymer structure. To achieve the 

smallest possible band gap, both resonance structures should describe the polymer 

equally good. In that case, the bond-length difference between single and the 

double bonds is as small as possible. Most often the aromatic structure is the one 

describing the polymer the best. To stabilise the quinoid form, donor (D) and 

acceptor (A) moieties are co-polymerised, forming a so-called DA-polymer.18 
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Figure 2.1: Chemical structure of poly(paraphenylene);aromatic (left) and quinoid form (right) 

Even small variations in the chemical structure usually change several properties at 

once.19 The chemical structure of the polymers can be divided into two parts; i.e. 

the conjugated backbone and the side-chains. Both parts can be chemically 

modified to achieve desired properties. Examples of properties that could be 

influenced via such structural changes are listed here below: 

o The band gap - a smaller band gap offers a better overlap with the solar 

spectrum and thus higher photon absorption. The polymer absorbs most 

of the light in the active layer so it is of high importance for the device 

performance that the polymers comprise broad absorption spectra.  

o The energy levels - the polymer energy levels should not only be altered 

to cover a broader part of the solar spectrum, they should also match the 

energy levels of the acceptor material to guarantee a high potential 

difference during charge separation. Energy levels are also important for 

the photo-oxidative stability of the polymers. 

o The solubility - to improve the polymer solubility in common organic 

solvents, long alkyl side-chains are introduced. Side-chains will not only 

influence the interactions with the solvent, but also the interactions with 

acceptor molecules and thereby influence the nanostructure. The 

solubility is a crucial factor for solution processing but on the other hand, 

the introduction of side chains can affect the photo-oxidative stability 

negatively. 

Another property of the polymer that is important for the device performance as 

well as the processability of the polymer is the molecular weight. A higher 

molecular weight can give rise to higher device efficiencies, but it also means that 

the polymer will be less soluble.20, 21 Different molecular weights of the same 
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polymer will show variations in the absorbance spectra due to differences in 

aggregation of the polymer chains. Aggregation of polymer chains will also 

increase the hole mobility polymer resulting in a higher device efficiency. 

Connected to the molecular weight, band gap and backbone planarity another term 

is often used: conjugation length. Torsion of polymer chains results in saturation 

of the effective conjugation length with increasing degree of polymerisation.21    

To absorb more photons, one goal is to make the polymers as black as possible, 

since that means that a larger amount of photons is absorbed. This could for 

example be achieved via incorporation of an additional monomer that absorbs light 

at wavelengths where the original polymer lacks in absorption.22 

The polymer crystallinity can vary, ranging from completely disordered, i.e. 

amorphous, to semi-crystalline with varying crystallinity. Two often  used 

polymers for solar cell devices are poly(3-hexylthiophene) (P3HT) and poly((9,9-

dioctylfluorenyl-2,7-diyl)-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’ -benzothiadiazole)) 

(APFO-3). These examples represent different classes of polymers where the 

former is a semi-crystalline polymer and the latter is an amorphous polymer.  

In the manuscripts included in this thesis, mainly a quinoxaline-thiophene based 

polymer (TQ1, Table 2.1) is used. Devices based on this polymer offers promising 

efficiencies up to ~ 6-7 %23,24 and it can be easily synthesised, which is critical for 

up scaling. Hence, TQ1 is a good choice for large-scale production of PSCs. 

2.3 Fullerene derivatives 

Fullerenes have excellent electron accepting and transporting properties, which 

makes them a suitable acceptor material in PSCs. Due to the limited solubility of 

C60 as well as C70, functionalised derivatives have been developed.25 Most 

frequently used are [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM25) and 

[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM26) (Figure 2.2). Besides 

PCBM, there are several other fullerene derivatives that have been tested for solar 
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cell applications, such as bis-PCBM27, 28 (with two functionalising side chains 

instead of one) and indene-C60 bisadduct (ICBA).29  

 

 

 

Figure 2.2: Chemical structures of (a) PC61BM and (b) PC71BM 

PC61BM and PC71BM have different shapes because of a different amount of 

carbon atoms that comprise the cage. PC71BM has a broader spectrum than 

PC61BM (Figure 2.3), which in some cases can increase the device efficiency due 

to a larger number absorbed photons.26 On the other hand, PC61BM shows better 

miscibility with some conjugated polymers and a finer and more homogenous 

nanostructure can therefore be achieved.30   

Fullerenes and their derivatives can crystallise. In thin films together with a 

polymer, the crystals can grow several micrometres long after prolonged 

annealing, which negatively affect the performance of solar cells,31-33 as will be 

further discussed in Chapter 4. 

 

 

 

 

 

Figure 2.3: UV-Vis spectra of PC61BM (black) and PC71BM (red) in CHCl3 
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2.4 Bulk-heterojunctions  

Various active layer architectures have been explored since the introduction of 

PSCs (Figure 2.4). The first reported PSC was based on a single layer of 

poly(acetylene), which showed a very low device efficiency.34 The introduction of 

a bi-layer architecture significantly improved the device performance.35,36 Today, 

the most commonly used architecture is the so-called bulk-heterojunction (BHJ), 

where the two components are intimately mixed in one layer. The first BHJs was 

presented by the groups of Friend8 (polymer-polymer solar cells) and Heeger37 

(polymer-fullerene solar cells) almost simultaneously in 1995, and it has been 

shown to be superior to earlier architectures. Compared to the bi-layer architecture, 

the BHJ provides a larger interfacial area between the donor and the acceptor 

material, which is beneficial for the formation of the charge-transfer state (CT-

state) as well as charge separation (see Section 2.7).   

 

Figure 2.4: Schematics of examples of different solar cell architectures; (a) single layer (b) 

bilayer and (c) BHJ 

The BHJ must comprise polymer- and PCBM-rich pathways, allowing electron 

and hole transport to the electrodes (Figure 2.5). Formation of islands or dead ends 

of either phase will result in a decrease of the overall conductivity. Phase purity 

can only be achieved if the compounds crystallise strongly, which rarely is the 

case for high-performance PSC materials. Therefore, the phases can be considered 

to be polymer- and PCBM-rich, respectively.  

The nanostructure of the BHJ is very important for the solar cell performance. The 

appearance is governed by (i) the chemical structure of both, the polymer and 

fullerenes, and (ii) the processing conditions. The chemical structures influence, 

for example, the miscibility of the materials as well as their crystallinity. Changing 
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Cathode 

Anode

the chemical structure may change the nanostructure due to altered interaction 

between the donor and acceptor material.19 By varying processing conditions, e.g. 

solvent,38 solution temperature and type of substrate,39 large variations of the 

nanostructure could be achieved. In addition, the nanostructure is not in thermal 

equilibrium after deposition and can change upon thermal31,40,41 and solvent 

annealing.42,43 This can be used to optimise the devices44,45 but annealing during 

fabrication as well as storage and operation can be detrimental for the device 

performance.31-33 This will be further discussed in Chapter 4. 

 

 

 

 

 

 
 

 

Figure 2.5 Schematic of a BHJ with polymer- (blue) and PCBM-rich (black) phases 

2.5 Characterisation of the nanostructure 

Characterisation of BHJ nanostructures is a key focus of this thesis. Here, the 

different methods that have been used are listed:  

2.5.1. Optical microscopy 

Structural changes that occur on a length scale larger than 500 nm can be observed 

with an optical microscope. A light source is used to image the sample, which 

implies that the resolution is limited by the wavelength of visible light.46 Cross-

polarisers can be used to study anisotropy in thin films of the material and it is 

commonly used to study both semi-crystalline and liquid-crystalline polymers. 

Most modern microscopes can operate both with transmitted and reflected light. 
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The transmission mode provides information about the bulk structure since the 

light passes through the sample, whereas the reflection mode gives information 

about the surface and its topography.47 In this thesis, optical microscopy was 

mainly used to monitor the crystallisation of PCBM. 

2.5.2. Atomic force microscopy 

The surface composition and topography can be studied by atomic force 

microscopy (AFM), where phase and height images can be recorded. The phase 

image can display differences in the surface composition whereas the height image 

provides information about the topography. In addition, the surface roughness can 

be measured. An oscillating cantilever is used to image the sample and depending 

on the interaction between the tip of the cantilever and the different regions of the 

sample, the strength of oscillations varies. The resolution limit depends on the size 

of the cantilever tip, which normally has a diameter of several tenths of 

nanometres. Here, AFM has been used to explore the phase separation in BHJ 

blends within this thesis. 

2.5.3. Scanning electron microscopy 

In scanning electron microscopy (SEM), an electron beam is used to image the 

sample, which makes it possible to achieve a higher resolution compared to an 

optical microscope. The electrons are scattered by the surface of the sample and 

subsequently collected with different types of detectors, providing different 

information about the surface. A SEM micrograph can be recorded by either using 

backscattered or secondary electrons.46 

To be able to analyse the sample without additional preparation the analysed 

sample has to be either conducting or semi-conducting, since charges induced by 

the electron beam have to be transported away from the area that is analysed. Non-

conductive samples can be covered by a thin metal layer, allowing imaging of 

those samples. Within this thesis, most samples have been studied without this 
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extra layer, which has made it possible to image both, PCBM crystals and phase 

separation, in BHJ blends.       

2.5.4. Transmission electron microscopy 

Transmission electron microscopy (TEM) image the sample with transmitted 

electrons, which implies that the sample has to be very thin.46 The incident 

electrons will be scattered when passing through a sample: To what extent the 

electrons will be scattered depends on the density of the different materials. This 

gives rise to darker and brighter domains in the image. When imaging a BHJ 

blend, PCBM-rich areas usually appear darker than polymer-rich ones, due to the 

higher density of PCBM compared to the conjugated polymers.  

In addition, electron diffraction patterns can be recorded when analysing a sample 

with TEM. This provides information about the crystalline nature of the sample. 

This has been useful within this thesis when studying the crystallisation of PCBM. 

2.5.5. Spectroscopic methods  

Changes of the nanostructure can occur on length scale that is smaller than what 

microscopic methods permit to monitor. Instead, spectroscopic methods, e.g. UV-

Vis absorbance or transmittance and in particular photo- and electroluminescence 

spectroscopy, can be used to detect those changes. 

The photoluminescence from the excited state of the polymer is quenched when 

mixed with PCBM. By monitoring the degree of photoluminescence quenching it 

is possible to follow small-scale structural changes. Electroluminescence 

spectroscopy measures the emission energy associated with radiative 

recombination. A coarser phase separation results in stronger emission from 

polymer- or PCBM-rich phases, whereas a fine nanostructure gives rise to 

emission from the CT- state (see Section 2.7).  
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2.6 Device architecture 

Lab-scale devices are often prepared on glass substrates, and the different layers 

are commonly deposited either by spin-coating or by evaporation. The active area 

of the device is commonly only a few mm2, since larger devices often give a lower 

device performance due to resistive losses in the bottom electrode.48 There are two 

main types of devices architectures; the main difference is the direction from 

which the light enters the devices. Another difference is whether indium tin oxide 

(ITO) is employed as the anode (normally referred to as the conventional 

architecture) or the cathode (inverted architecture). An advantage of inverted 

devices is that they do not require a transparent bottom electrode. Hence, other 

materials than rather expensive ITO can be used as the bottom electrode material. 

The layers of the two architectures can be varied in different ways but the 

following sections describe mainly the devices used in this thesis. A schematic 

picture of the two architectures is found in Figure 2.6. The conventional type is 

used for Paper III, V and VI whereas an inverted type is used in Paper I. 

 

 

 
Figure 2.6: Cross-section of a conventional (left) and an inverted (right) device 

2.5.1. Conventional device architecture  

This type is commonly employed for lab-scale solar cell evaluation. For the 

conventional type, ITO works as the anode. This is deposited on a transparent 

substrates, such as glass or poly(ethylene terephtalate) (PET) foil. On top of the 

ITO, a thin layer of poly(3,4-ethylenedioxythiophene):poly( styrenesulfonate) 

(PEDOT:PSS, Table 2.1) is spin-coated to lower the work function of the 

Al/LiF  
electrode 

Active  
layer 

PEDOT:PSS 

ITO 

Al  
electrode 

Substrate Interlayer

TiO
x 
 

Conductive  
PEDOT:PSS 

Active  
layer 

Transparent  
substrate 



Polymer Solar Cells 

 

-16- 

electrode49 and in addition to make the electrode surface smoother. This material is 

the most common choice of interlayer, but other compounds have been used 

successfully, for example molybdenum trioxide (MoO3).
50,51   

On top of the PEDOT:PSS layer the active layer is deposited. For lab-scale 

devices, this is usually done by spin-coating due to the simplicity of this method. 

Other alternatives, such as blade coating, have been implemented since those are 

more comparable to processes that will be used for large-area, high-throughput 

printing.  

Finally, the cathode is evaporated on top of the active layer. For the devices that 

are presented in this study the cathode consists of two layers, first a very thin 

lithium fluoride (LiF) layer, acting as a hole-blocking layer, followed by an 

aluminium layer. In addition, LiF lowers the work-function of the metal52 and it 

can act as a protecting layer during evaporation. 

2.5.2. Inverted device architecture  

For inverted devices, the bottom electrode can likewise be ITO on top of a 

transparent substrate, but here it functions as the cathode. For the devices prepared 

for paper I, ITO was replaced with an aluminium electrode. The electrode is 

covered with a metal oxide, e.g. titanium oxide (TiOx) before the active layer is 

deposited. In addition, an interlayer polymer can be used between the metal oxide 

and the active layer to increase the efficiency of these solar cells.53 Finally, the 

electrode is deposited which can be either modified PEDOT:PSS with a high 

conductivity or un-modified PEDOT:PSS with a metal electrode on top. Often, a 

good conductor like silver, arranged in “fingers” to minimise shadowing of the 

active layer, is used for this purpose. 
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2.7 Working principle of polymer solar cells 

This section describes the general working principle of PSCs (Figure 2.7). Within 

the active layer, part of the incident light is absorbed, mainly by the polymer, if the 

photon energy is larger than the polymer’s band gap. The thickness of the polymer 

film affects the amount of light that is absorbed; this can be described by the Beer-

Lambert law. According to this law, a TQ1 film will need to be ~ 80 nm thick to 

absorb 50 % of the incident light and ~ 270 nm to absorb 90 % (see Figure 2.8). 

      

 

 

 

 

Figure 2.7: Working principle of a polymer solar cell 

Upon absorption, an electron is excited from the HOMO to the LUMO of the 

polymer and a so-called exciton is formed. An exciton is a tightly bound electron-

hole pair consisting of an excited electron in LUMO and a hole in HOMO. The 

exciton diffuses in the polymer-rich phase until it reaches a donor/acceptor 

interface. The distance that an exciton can diffuse before recombination occurs is 

usually considered approximately 5-8 nm,54-56 which means that a donor-acceptor 

interface should ideally be very close to the molecule where the excitation 

occurred. This is one reason for the success of the BHJ architecture since the 

typical dimensions are on the desired length scale. In a well-mixed blend, the 

donor and the acceptor material are in molecular contact with each other and 

therefore no diffusion is needed.  
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Figure 2.8:  Calculated values (dashed line) as well as experimental data (circles) of the transmittance 

at λ = 618 nm as a function of film thickness. Calculations were done using the Beer-Lambert law 

When this interface is reached, electron transfer occurs and a CT-state is formed 

consisting of an electron in the LUMO of the acceptor and a hole in the HOMO of 

the donor. The CT-state subsequently separates into free charges (charge 

separation), which are transported to the electrodes (charge transport) where 

collection of charges occurs. The driving force for the electron transfer is the 

difference between the LUMO of the donor material and the LUMO of the 

acceptor material. The later has to be the lower otherwise it would not be 

energetically favourable for the electron to leave the donor. Normally a LUMO-

LUMO difference of ~ 0.3 eV is required for charge separation, but it has been 

shown that in some cases an even smaller energy difference is sufficient to achieve 

high performance solar cells.57 The charge transport determines the photocurrent, 

which occurs because of the difference in work function between the two 

electrodes.  
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Figure 2.9: Schematic of IV-curves during illumination (solid) and in the dark (dashed) 

2.8 IV-characteristics 

The most common way to evaluate PSCs is to illuminate the device with a solar 

simulator lamp providing an air-mass (AM) 1.5G spectrum, which resembles the 

sun spectrum at an inclination angle of 48.2°. This is the incident angle that the 

sun light has in northern Europe. The lamp intensity that is usually used is called 1 

SUN (1000 W m-2) and it corresponds to the intensity of sunlight during a bright 

day (no cloud coverage) at zero altitude on Earth. 

Upon light absorption, a photocurrent is generated. For evaluation of the devices, 

this photocurrent is normalised with respect to the device area (I) and then plotted 

against the voltage (V), i.e. the IV-curve (Figure 2.9). Four different parameters 

are extracted from this curve and used for device evaluation:  

i) Short circuit current (JSC) - the photocurrent that is achieved when no 

voltage is applied across the device. 

 

ii) Open circuit voltage (VOC) - the voltage achieved when the photocurrent 

is zero. The maximum value is related to the difference between the 

HOMO of the donor and the LUMO of the acceptor and it can be directly 

correlated to the energy of the CT-state.58 
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iii) Fill factor (FF) - this is given by the dividing maximum power point 

(MPP) with the product of JSC and VOC. 

 

ܨܨ ൌ
ܲܲܯ
ௌܬ ைܸ

 

 

iv) Maximum power point (MPP) or solar cell efficiency (ߟ) - this is the 

maximum power that is achieved ( ୫ܲୟ୶	) divided by the power of the 

incident light ( ܲ). Sometimes MPP is used instead of ߟ to distinguish 

between lab measurements and certified efficiency measurements. 

 

ܲܲܯ ൌ ߟ ൌ 	 ܲ௫

ܲ
ൌ
ܨܨ ∗ ௌܬ ∗ ܸ

ܲ
 

2.8 Lifetime and stability of devices 

The stability of PSCs has to be ensured before commercialisation becomes 

feasible. All layers in the sandwich structure can be degraded either physically or 

chemically. Degradation of the components in the active layer will be discussed 

from a photo-oxidative perspective in Chapter 3 and from a thermal perspective in 

Chapter 4. Examples of different degradation mechanisms that are relevant for 

different components of PSCs (excepted from the active layer) can be degraded are 

listed below: 

o ITO electrode - this layer is sensitive to acidic compounds, which will 

etch the ITO, releasing indium atoms that can diffuse into other layers.59 

For future large scale production the goal is to produce ITO-free devices 

to remove some of these problems60 and also to lower the overall cost. 

 

o PEDOT:PSS - since this layer is hydroscopic the degradation depends 

strongly on the humidity.61 After uptake of water, the PEDOT:PSS 
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becomes acidic, which is problematic for the ITO electrode as mentioned 

above. 

 

o Metal electrode - the main problem is formation of metal oxides. For 

example, if aluminium is used then Al2O3 can form and act as an isolating 

layer.62 For inverted devices, this is not relevant since usually silver is 

used and that less sensitive to water and oxygen. 

The sandwich structure of PSCs provides a risk for delamination,63 leading to a 

poor contact between the layers. In addition, open edges make it easier for both 

oxygen and water to enter the device. One way to increase the device stability is 

encapsulation, which has been proven a very efficient way to protect the device 

from intrusion of both water and oxygen.62,64 

2.9 Processing techniques for large scale devices 

The polymers and fullerene derivatives used for PSCs are soluble in organic 

solvents. This is one of the biggest advantages with this technology since 

continuous, high-throughput printing processes can be applied for solar cell 

fabrication.65,66  

Compared to preparation of lab-scale devices, large scale production is normally 

carried out in ambient conditions.66 In laboratories, device fabrication can be done 

under an inert atmosphere where neither moisture nor oxygen is present. In 

addition, the light illumination can be controlled. Moreover, roll-to-roll processes 

with a high throughput demand an increased thermal stability of the materials that 

make up the solar cell. To ensure rapid solvent removal, one or several heating 

steps are necessary. Usually, temperatures around 140 °C are mentioned when 

printing on PET foil.60,62 As will be discussed later in this thesis, these 

temperatures will normally induce crystallisation as well as phase separation of the 

BHJ blend. For large scale devices the inverted type has been shown to be the 

most promising architecture,60,67 mainly because it does not require any 
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evaporation steps (e.g. for electrode evaporation) and it provides a higher device 

stability.
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Chapter 3 

PHOTO-INDUCED DEGRADATION 
 

Photo-induced degradation is one of the most prominent degradation mechanisms 

of the active layer materials. Although not required for all degradation reactions, 

the presence of oxygen and moisture tends to accelerate this process.68-70 This 

chapter will provide a general introduction of the photo-oxidative stability of the 

active layer components as well as the results from Paper I. 

3.1 Degradation of the donor polymer 

Several factors connected to the chemical structure of the polymer influence its 

stability. One important aspect is the positions of the HOMO and LUMO 

levels.71,72 Energy levels close to vacuum result in a polymer that is less stable 

towards photo-oxidation. Anthopoulos et al. have reported that a LUMO level 

higher than -4 eV is required for a semi-conductor to be stable against redox 

reactions.72  

Apart from the chemical structure of the polymer backbone, it has been shown that 

the side-chain content with respect to the total molar mass of the polymer plays an 

important role for the stability of the material.73 For instance, Ong et al. have 

shown that a higher side-chain content in poly(thiophenes) gives a less stable 

polymer under ambient conditions.74 In addition, the stability depends on the 

chemical structure of the polymer side chains,75 and the side-chain architecture 

affects solid-state ordering of the polymer chains and thus diffusion of moisture 

and oxygen.  

Both the backbone and side chains of a polymer can be subjected to degradation. 

Two of the most widely studied polymers, P3HT and poly(2-methoxy-5-(3′,7′-

dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV), show two separate 

degradation mechanisms, where both parts of the polymer are degraded, 

originating from the excited state of the polymer.69  
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One of the most noticeable effects of polymer degradation is bleaching, which 

decreases the amount of absorbed photons and, ultimately, the device efficiency. 

Bleaching as well as the associated blue-shift in the absorption spectrum70,76 

permit to monitor degradation with a UV-Vis spectrometer.75,77,78 The absorption 

spectra of several conjugated polymers, including TQ1, feature two peaks.  The 

peaks are referred to as the high- and the low-energy peak, respectively. The ratio 

between these peaks (ܣ௫,ି௬	 ⁄	௫,௪ି௬ܣ ) depends on the 

polymer molecular weight (for TQ1, see Figure 3.1).21,79 By comparing the 

absorption spectra during degradation it can be seen that this ratio increases upon 

bleaching, which indicates a reduction in the polymer molecular weight, most 

likely due to chain scission. 

 

 

 

 

 

 

 

Figure 3.1: The ratio between the high- and low-energy absorption peak as a function Mn  for TQ1 thin 

films. Red line is a guide to the eye 

Reese et al. have shown that the decrease in photo-current occurs more rapidly 

than the decrease in absorbance, which indicates that factors other than bleaching 

contribute to the loss in solar cell performance.69 The authors reported a decrease 

in the yield-mobility products (the product of the yield of free carrier generation 

per absorbed photon and the sum of the free carrier mobility), which can be 
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explained with chemical changes of the polymer backbone but also with traps 

formed due to the oxidation of PCBM.69  

3.2 Degradation of PCBM 

The photo-degradation of PCBM is less explored than that of the polymer. 

Chambon et al. have performed a detailed IR study, which indicated that light-

induced oxidation predominantly involves the C60-cage and not the functionalising 

side-chain.80 Reese et al. have shown that PCBM oxidation can result in the 

formation of up to eight distinct products.69 PCBM degrades more rapidly than the 

un-substituted C60-buckyball, which indicates that modification of the carbon cage 

decreases its stability, as reported by Anselmo et  al.81 

3.3 Stability enhancement  

3.3.1. PCBM 

Compared to the neat polymer, polymer:PCBM blends show superior stability 

towards photo-oxidative degradation.69,80 The presence of PCBM quenches the 

excited state, formed upon light irradiation, and therefore the rate of degradation 

decreases. In addition, PCBM hinders the degradation that occurs without any 

light. Reese et al. have suggested two explanations: (i) formation of a charge-

transfer complex in the ground state and/or (ii) less rapid penetration of oxygen 

and moisture into more dense active layer films, since the density of PCBM is 

higher than the density of the polymer.69 The thermo-oxidative stability of 

polymers such as MDMO-PPV is also increased when mixed with PCBM due to 

the radical scavenging properties of the fullerene acceptor.80 

3.3.2. Polymers with thermo-cleavable side chains 

Most donor polymers comprise long side chains to increase the solubility in 

organic solvents, which facilitates solution-processing of devices. However, side 

chains have a negative effect on the photo-oxidative stability of the polymer.73,75-77 

Polymers with thermo-cleavable side chains benefit from good solubility during 
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processing as well as improved stability in the solid state. After deposition of the 

active layer, the side chains are removed by thermal cleavage, which results in a 

material that is more resistant towards photo-oxidative degradation.75,82  

3.3.3. UV-stabilisers 

UV-stabilisers are commonly used to increase the resistance of polymeric 

materials against UV-irradiation.83,84 This type of stabilisers consists of UV-

absorbing molecules that limit degradation reactions catalysed by UV-light. 

Although not yet widely employed for PSCs, this kind of UV-stabilizer can 

potentially be used to increase the photo-stability of the active layer materials.85 

3.3.4. Encapsulation and protecting layers 

There are two main pathways for oxygen and moisture to enter the device: (i) they 

are introduced during fabrication or (ii) they enter the device during storage and/or 

operation. Both, pinholes in, e.g., the metal top electrode as well as unprotected 

interfaces between partially delaminated device components enable diffusion of 

oxygen and moisture into the device. Here, appropriate encapsulation can offer 

good environmental protection and, at the same time, may act as a UV-blocking 

filter.62  

Commonly used encapsulation solutions include (i) a top sheet of glass glued to 

the back substrate or (ii) lamination with different types of plastic foils. In both 

cases, good sealing of glued/laminated seams is critical.64 Certainly, lamination is 

particularly suitable for large-scale production since it can be implemented in a 

roll-to-roll process.62  

3.4 Photo-oxidative stability of TQ1 

As mentioned above, several factors influence the stability, such as the chemical 

structure of the polymer and the solid-state nanostructure. In addition 

environmental parameters, e.g. temperature and humidity, are critical. Within this 

thesis and presented in Paper I, bleaching was monitored with a UV-Vis 



Photo-Induced Degradation 

 

-27- 

spectrometer to study the influence of three different parameters on the photo-

oxidative stability of TQ1:  

(i) incorporation of a thiophene-hexylthiophene unit  

(ii) molecular weight  

(iii) film thickness. 

Carlé et al. have reported that the stability of TQ1 is superior compared to other 

commonly used donor polymers such as P3HT, which was explained by the fact 

that the thiophene donor unit in TQ1 is not substituted.73 Replacement of 

thiophene with a fused thiophene unit resulted in a further improvement in stability 

due to the high stability of polycyclic structures.  

In Paper I the remaining peak absorbance (ܣ௫,) was used as a measure 

for the rate of degradation: 

௫,ܣ										                            ൌ
ೌೣ

ೌೣ,ೞೌೝ	
ൈ 100  

where ܣ௫ is the peak absorbance at any given time and ܣ୫ୟ୶,௦௧௧ is the peak 

absorbance of the pristine, undegraded sample.  

3.4.1 Incorporation of thiophene-hexylthiophene units  

It is desirable that the donor polymer strongly absorbs photons at all wavelengths 

above the band gap, which would result in a black appearance. The absorption 

spectrum can be modified by incorporation of an additional monomer unit in the 

backbone,22 which, however, is likely to influence the stability. In paper I, the 

photo-oxidative stability of co-polymers comprising a thiophene-hexylthiophene 

unit in addition to a TQ1 or thiophene-pyrido pyrazine (TQN) motif was studied 

(Figure 3.2a and 3.2b).  
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Figure 3.2: Chemical structure of the co-polymers based on (a) quinoxaline (m=0 gives TQ1) and (b) 

pyrido pyrazine (m=0 gives TQN), n=0 gives THT (c) Normalised absorbance  spectra of TQ1 (blue), 

TQN (red) and THT (black) 

 Oligothiophenes absorb light wavelengths at which TQ1 and TQN lack in 

absorption (Figure 3.2c). Therefore, the incorporation of a thiophene-

hexylthiophene unit is likely to result in a more black appearance. However, the 

inferior stability of hexylthiophene-based polymers, as reported by for instance 

Carlé et al.,73 demands a thorough investigation of the rate of photo-oxidative 

degradation of TQTHT and TQNTHT.  

Table 3.1: HOMO and LUMO levels determined by square-wave voltammetry for TQ1 and TQN as 
well as TQTHT and TPPTHT 

 

  

Polymer HOMO (eV) LUMO (eV) 
THT -5.4 -3.0 
TQ1 -5.8 -3.4 
TQTHT (்݂ ு் = 30 mol%) -5.6 -3.3 
TQTHT (்݂ ு் = 50 mol%) -5.5 -3.2 
TQTHT (்݂ ு் = 80 mol%) -5.5 -3.3 
TQN -6.0 -3.7 
TQNTHT (்݂ ு் = 30 mol%) -5.9 -3.6 
TQNTHT (்݂ ு் = 50 mol%) -5.6 -3.5 
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The stability study presented in this thesis comprised neat TQ1 and TQN, 

TQTHTs and TQNTHTs with different fractions of the thiophene-hexylthiophene 

unit (்݂ ு்), as well as a thiophene-hexylthiophene polymer (THT, Table 2.1). The 

decrease of ܣ௫, with time suggests that for TQTHTs the stability 

decreased with increasing ்݂ ு் but is unaffected in case of TQNTHTs (Figure 

3.3). Moreover, the bleaching rate of TQN (as well as TQNTHTs) is significantly 

lower than for TQ1 and TQTHT. This can be explained with the difference in 

energy levels (Table 3.1), which indicates that the former is likely to be less stable 

towards oxidation reactions.71,72  

 

 

 

 

 

 

Figure 3.3: Amax,remaining  as a function of time for (a) TQTHT and (b) TQNTHT with fTHT = 0 mol% 

(stars), 30 mol% (diamonds), 50 mol% (triangles), 80 mol% (pentagons) and 100 mol% (circles) 

3.4.2. Influence of molecular weight 

The polymer molecular weight can influence the device performance. Usually, a 

higher molecular weight gives rise to a higher power conversion efficiency.20 The 

impact of molecular weight on the photo-oxidative stability is less explored. In 

Paper I, different molecular weights of TQ1 were tested, but no variation in the 

stability of this donor polymer was observed. 
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3.4.3. Influence of film thickness 

A thicker film consists of more material compared to a thinner film. Thus, it takes 

a longer time for the thicker film to bleach completely. Accordingly, ܣ௫of 

thicker TQ1 films, decreases more slowly with time (Figure 3.4a). If the absolute 

absorbance is used instead of 	ܣ௫, (Figure 3.4b), it can be seen that the 

five different curves (corresponding to the five investigated thicknesses) have a 

similar slope. This indicates that the decrease in absorbance occurs at the same 

rate, independent of thickness. By calculating the absorbance with the Beer-

Lambert law, it is possible to obtain a fair comparison between films of different 

thickness. 

  

 

 

 

 

 

Figure 3.4: (a) Amax,remaining  as a function of time for TQ1 films with different thickness. (b) Absolute 

value of the absorbance of the low energy peak as a function of time. Linear fits of data points are 

shown as dotted lines. In both (a) and (b) the thickness of the films is 70 nm (stars), 110 nm (triangles), 

160 nm (diamonds), 190 nm (pentagons) and 290 nm (circles)
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Chapter 4 

THERMAL STABILITY OF THE BULK-
HETEROJUNCTION BLEND 

 

PSCs are subjected to increased temperatures during production and operation. 

Depending on the type of BHJ blend, thermal treatment can either improve45,86 or 

worsen their photovoltaic performance.31-33 Generally, the nanostructure of BHJs 

is relatively stable up to the glass transition temperature of the blend ( ܶ
ௗ) but 

tends to deteriorate if exposed to higher temperatures. Thus, if the processing 

and/or operating temperature exceed		 ܶௗ, the thermal stability of the 

nanostructure has to be improved. The following chapter discusses the thermal 

stability of BHJ blends as well as several means to improve their temperature 

resistance.  

4.1 Background  

BHJ blends must be able to withstand elevated temperatures. International 

standard ASTM E 1171 as well as the ISOS-3 standard87 proposed by the organic 

photovoltaics community, demand testing temperatures up to 85 °C for stability 

measurements of solar cells, which is also a typical operating temperature. In 

addition, to realise a high throughput production of PSCs, one or several heating 

steps will be necessary in order to ensure rapid solvent removal.62 If PET foil 

substrates are used, the processing temperature is limited to 140 °C. An ITO-

covered PET substrate makes up ~ 40-50 % of the total device cost, in contrast to 

only ~ 20-30 % for the active layer.88 Thus, alternative but more expensive 

substrates, such a poly(ethylene naphtalate) (PEN),60 which can tolerate higher 

annealing temperatures, would significantly increase the overall cost of the device. 

Many BHJ blends are not compatible with elevated production and operation 

temperatures. Phase separation and crystallisation occur once the blend is heated 
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above its glass transition temperature. In many cases, this leads to a detrimental 

decrease in device performance.  

4.1.1 Thermal transitions  

The thermal behaviour of  BHJ nanostructures is governed by material-specific 

transition temperatures, which for example depend on the chemical structure, 

polymer molecular weight,46,47 and thermal history.89 For the here discussed 

organic semiconductors the following transition temperatures must be considered: 

o Glass transition temperature ( ܶ) - At this temperature the transition from 

the glassy state, where the material is ‘frozen in’, to the rubbery state, 

where long-range motion becomes possible, occurs. Only amorphous 

material displays a		 ܶ. For polymers, just below		 ܶ local segmental 

motion can occur, which is referred to as physical ageing. In addition, 

minor sub-glass transitions (sub- ܶݏ) can occur below the main ܶ. 

o Melting temperature ( ܶ) – During heating crystalline material melts at 

ܶ.  

o Liquid-crystalline to isotropic transition temperature ( ܶ) – Some 

materials including many donor polymers enters a liquid-crystalline state 

at higher temperatures, which becomes isotropic at ܶ.  

o Crystallisation temperature ( ܶ) – When cooled from the melt amorphous 

(or liquid-crystalline) material crystallises at		 ܶ.  

Many polymer:fullerene blends display partial miscibility. As a result, the blend 

transition temperatures can strongly differ from those of the neat components.40  
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4.1.2. Phase separation and fullerene crystallisation in BHJ blends 

Above		 ܶ, phase separation occurs which can be driven by (i) liquid-liquid 

demixing into larger polymer- and PCBM-rich domains and (ii) crystallisation of 

either component. For some semi-crystalline polymers such as P3HT, annealing 

above ܶ can be used to improve the solar cell efficiency45,86 and in addition, 

crystallisation of the polymer tends to improve the thermal stability of the blend.90 

For non-crystalline polymers liquid-liquid demixing is the most prominent phase-

separation mechanism.  

At temperatures higher than		 ܶௗ, PCBM starts to crystallise. These crystals can 

reach a size of up to several micrometres, which is detrimental for the device 

performance.31,32 PC61BM crystals can be formed in blends with semi-

crystalline45,91,92 as well as amorphous polymers.38, 40 Neat PCBM crystals are 

hexagonal93,94 but within a polymer matrix the crystals adopt a disc- or needle-like 

shape.31,38,41 Typically, a depletion zone, which consists of more polymer-rich 

material, surrounds the fullerene crystals.31,95 Moreover, fullerene crystals tend to 

protrude from the film surface and can achieve a height of several hundred 

nanometres even though the film thickness is usually ~ 100 nm.39   

The thermal stability can be improved by limiting the growth of fullerene crystals. 

For instance, this can be achieved by (i) using donor polymers with a 

higher		 ܶ
௬,96 (ii) crosslinking of the polymer97,98 (iii) addition of a 

functionalised monomer99 and (iv) light-soaking, which causes dimerization of 

PCBM.70,100,101 Moreover, in complete devices the top electrode to some extent 

confines PCBM crystallisation.102 

4.1.3 Determination of thermal transitions 

A number of experimental techniques permit to investigate thermal transitions. 

Those can be divided into different families (examples of techniques are given in 

brackets): calorimetric (DSC and MTDSC), optical (temperature-variable optical 
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microscopy), X-ray (GIXS) mechanical (DTMA), spectroscopic (variable-

temperature ellipsometry) and electrical methods (DETA). Quoted thermal 

transitions strongly depend on the measurement technique as exemplified by the 

range of reported values for the glass transition of PC61BM,		 ܶெ ~ 110-150 °C 

(Table 4.1).  

Table 4.1: Methods for determination of thermal transition 

*Probably onset of PC61BM crystallisation 

In this thesis, DSC is the principal method that was employed to study the thermal 

behaviour of both neat materials and blends, due to its ease of use and versatility. 

4.1.4 Thermal transitions of materials encountered in this thesis 

The work presented in this thesis is based on the polymer TQ1, which features a 

high Tg ~ 100 °C (measured by variable-temperature ellipsometry) as reported by 

Kroon et al.107 TQ1 is a non-crystalline polymer but displays a liquid-crystalline 

transition ( ܶ	~ 300 °C)108 that can be detected with both with polarised optical 

microscopy and with DSC. 

PC61BM has a ܶ
లభெ~ 110-150 °C40,103,106 and a ܶ~ 290 °C.92  PC71BM shows 

a higher Tm ~ 320 °C92 which suggest that also the ܶ should be shifted to higher 

temperatures as compared to PC61BM. Often two melting peaks are observed with 

MTDSC for PC61BM,92,103 which most likely are due to different polymorphs of 

Method Full name ࢍࢀ of PC61BM (°C)  

DSC Differential Scanning Calorimetry  

MTDSC 
Modulated Temperature  

Differential Scanning Calorimetry 
131,103 118104 

DTMA 
Dynamic Thermal Mechanical 

Analysis 
154105,* 

DETA Dielectric Thermal Analysis  

 
Variable-Temperature 

Ellipsometry 
11140 

GIXS Grazing incidence X-ray scattering 148106,* 
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the material. An additional third peak has been observed and was assigned to 

solvent bound in crystalline PC61BM.104    

The PC61BM melting temperature of  1:1 TQ1:PCBM is reduced by only ∆ ܶ	~ 5 

°C compared to neat PC61BM.41 Other blends such as 1:1 P3HT:PCBM  and 1:1 

APFO-3:PC61BM show significantly higher melting point depressions of ∆ ܶ	~ 

80 °C92,103 and ∆ ܶ	~ 30 °C,40 respectively. This suggests that the miscibility of 

PC61BM in TQ1 is relatively low. Hence, this blend should in principle show 

two		 ܶs, which are, however, difficult to resolve since		 ܶ
లభெ~ ܶ

்ொଵ. 

The schematic thermometer displayed in Figure 4.1 summarises the thermal 

transitions of this blend with respect to the likely processing and operating 

temperatures of 85 °C and 140 °C. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 4.1: Thermometer correlating processing and operating temperatures to critical transition 
temperatures: maximum crystallisation rate of  PC61BM and 	 ܶௗ(cf. Paper IV), ܶ

లభெ (cf. ref. 
103), ܶ

்ொଵ (cf. ref. 107) and TQ1 red-shift (cf. Paper III) 

4.2 Using the onset of PC61BM crystallisation to determine the upper limit of 
the glass transition temperature 

Paper II presents a method based on UV-Vis spectroscopy that permits to 

determine the upper limit of ܶ
ௗ of TQ1:PC61BM films, which has not been 

possible to detect with ellipsometry or DSC. This technique exploits the fact that 

PCBM crystals, which only grow above ܶ
ௗ, scatter light.96 By monitoring the 
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amount of scattered light as a function of temperature, it is possible to measure the 

ܶ	for thin film geometries. The incident light (ܫ) is divided into scattered 

 when passing (௧ௗܫ) and reflected light (௧௦௧௧ௗܫ) transmitted ,(௦௧௧ௗܫ)

through a sample in a UV-Vis spectrometer (Figure 4.2).  

 

 

 

 

 

 

 

 
Figure 4.2: (a) Schematic of incident light (I0), reflected light (Ireflected), scattered light (Iscattered) and 

transmitted light (Itransmitted) during measurement of a UV-Vis transmittance spectrum (b) UV-Vis 

transmittance spectra of pristine, spin-coated (solid) and annealed (dashed) 1:1 TQ156k:PC61BM. 

Arrows mark the change in transmittance at 900 nm (c) transmittance at λ = 900 nm for TQ156k (open 

circles) and TQ156k:PC61BM (filled circles)  as a function of annealing temperature Tanneal. Dashed lines 

represent linear fits. Arrows mark the onset of PCBM crystallisation 

Formation of PC61BM crystals increases		ܫ௦௧௧ௗ	and thereby 	ܫ௧௦௧௧ௗ is 

decreased. This can be seen by comparing the transmittance spectra recorded 

before and after annealing of a 1:1 TQ1:PC61BM film (Figure 4.2b). By 

monitoring the transmittance as a function of temperature, it was possible to detect 

the onset of PC61BM crystallisation (figure 4.2c). This is done at a wavelength 

where TQ1 is transparent, e.g. λ = 900 nm, so that changes in the transmittance 
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spectra can be unambiguously assigned to light scattering from PC61BM crystals. 

The here proposed method is sensitive to light scattering from fullerene crystals 

that are at least ~ 0.5 µm large, which prevents studying the onset of the ܶ.  

The upper limit of ܶ was determined for TQ1:PC61BM blends based on two TQ1 

batches with different molecular weight (Mn ~ 12 or 56 kg mol-1). Similar to other 

conjugated polymers,21 the higher molecular-weight TQ1 displayed a 10 °C higher 

Tg (Table 4.2). In addition, the upper limit of the ܶ was determined for blends 

based on TQN, with a ܶ ~ 46 °C for the neat polymer (determined with 

temperature variable ellipsometry),51 which is low as compared to neat PC61BM, 

and for a semi-crystalline polymer, PTI-1 (for chemical structures see Table 2.1 

and for light scattering results see Table 4.2). 

Table 4.2: Onset of PC61BM crystallisation determined by UV-Vis  
 
 
 
 
 
 
 
 

 

4.3 Annealing of TQ1:PC61BM films below the glass transition temperature 

Solution-processed BHJs tend to adopt a nanostructure that is not in 

thermodynamic equilibrium, but can be preserved as long as the material is kept at 

temperatures much lower than		 ܶௗ. However, as discussed in Paper III, mild 

annealing of TQ1:PC61BM blends close to ܶ
ௗ can induce local conformational 

changes of the donor polymer. The associated changes in nanostructure cannot be 

detected with microscopic techniques, such as TEM and AFM, which indicates 

that they occur on a length scale much smaller than 10 nm (Figure 4.3).  

 

Blend ࢉࢀ
 (C°) ࡹࡼ

1:1 TQ112k:PC61BM 105 

1:1 TQ156k:PC61BM 115 

1:1 TQN:PC61BM 85 

1:1 PTI-1:PC61BM 145 
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Figure 4.3: AFM images (upper row), TEM images (lower row) and electron diffraction patterns 

(lower row, insets) of 1:1 TQ1:PC61BM thin films after annealing for 10 min at the indicated 

temperatures 

In contrast, UV-Vis absorption measurements indicate that local conformational 

changes do indeed occur during annealing at temperatures as much as 65 °C below 

	 ܶௗ (Figure 4.4). Upon annealing the absorbance, as well as the 

photoluminescence and electroluminescence spectra, of the blend redshift. This 

can be caused by (i) an increase in conjugation length and (ii) local aggregation of 

TQ1, which would require partial diffusion of PC61BM. 

Local conformational changes that occur upon mild annealing of TQ1:PC61BM 

blends could be correlated with the thermal behaviour of complete solar cells. Mild 

annealing below ܶ resulted in an increase in power conversion efficiency whereas 

annealing above ܶ was detrimental for the device performance (Figure 4.5). In 

addition, lateral variations in photocurrent decreased when the active layer was 

annealed at temperatures approaching		 ܶ. This is evidenced by a smaller standard 

deviation of the recorded device efficiencies, which are based on four cells on the 

same substrate (cf. ‘error bars’ in Figure 4.5). Hou et al. have reported that the 

device performance can vary by up to ~ 30 % across the same substrate, which 

was explained by lateral variations in the nanostructure.109 Hence, a smaller spread 

200 nm 

400 nm 

80 °C 100 °C 120 °C 20 °C 
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in device efficiencies suggests that the film has become more homogenous over 

the substrate area. 

 

 

 

 

 

Figure 4.4: (a) UV-Vis absorbance spectra of a spin-coated 1:1 TQ1:PC61BM thin film (black) that has 

been stepwise annealed  for 5 min every 5 °C up to 80 °C, 100 °C and 120 °C (red). Note the distinct 

red-shift upon annealing (black arrow) (b) UV-Vis absorbance at λ = 675 nm as a function of 

annealing temperature of a TQ1 (red circles) and 1:1 TQ1:PCBM thin film (blue diamonds) 

4.4 Annealing of TQ1:PC61BM films above glass transition 

temperature 

Annealing at temperatures higher than		 ܶௗ is detrimental for TQ1:PC61BM 

devices (Figure 4.5). This is probably due to both, rapid coarsening of the 

nanostructure as well as crystallisation of PC61BM, which occur upon annealing 

above		 ܶௗ. In order to achieve a better understanding of the crystallisation 

dynamics, the kinetics of PC61BM crystallisation were studied in more detail 

(Paper IV). Two processes, i.e. nucleation and growth, govern the crystallisation.  
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Figure 4.5: Solar cell device efficiency as a function of annealing temperature ܶ of the 

TQ1:PC61BM active layer. Error bars indicate the standard deviation of 4 devices on the same 

substrate. Red dashed lines are a guide to the eye 

Nucleation initiates crystallisation. In order for a crystal to start growing, a stable 

nucleus must form, which requires a critical nucleus size.110, 111 Nucleation can be 

either homogenous or heterogeneous. Homogenous nucleation occurs in very pure 

materials and does not involve foreign substances. Heterogeneous nucleation 

implies that nucleation initiates with help of a foreign substance, such as an 

impurity or a surface. Stable nuclei continue to grow, which can be either 

interface- or diffusion controlled.110,111 Provided that the composition around the 

crystals is unchanged during the growth process, the growth is governed by re-

organisation at the liquid-interface, i.e. it is interface controlled. In contrast, 

diffusion controlled growth is governed by the diffusion rate of the crystallising 

material since there is a composition gradient across the volume closest to the 

crystal growth front due to depletion.    
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Figure 4.6: Optical micrographs of 1:1 TQ1:PC61BM thin films spin-coated on glass, annealed 3 min 

at indicated temperatures 

In this thesis, crystallisation kinetics of PC61BM crystallisation were studied for 

1:1 (by weight) TQ1:PC61BM thin films by means of isothermal annealing at 

temperatures between ܶ	= 110 °C (~	 ܶௗ, determined by the light scattering 

method; cf. Section 4.2) and ܶ = 230 °C. Both, the size and amount of crystals was 

shown to be temperature dependent (Figure 4.6).  

 

 

 

 

 

 

 

 

 
 

Figure 4.7: Time-temperature-transformation (TTT), indicating the progress in nucleation (blue) and 

growth (red). Green arrow corresponds to isothermal annealing at 170 ºC 

Careful analysis of optical micrographs, recorded after discrete annealing steps at 

gradually increasing temperatures, permitted to determine growth- and nucleation 

rates. Since the crystal width reached a constant value already after the first 

annealing step, the growth rate was compared to changes in the crystal length. In 

addition, to ensure that no smaller crystals were present after annealing at lower 

temperatures, SEM and TEM were carried out. To illustrate the relative 

160 °C 170 °C 190 °C 150 °C As spin-cast 

 10µm 
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contribution from crystal nucleation and growth, we constructed a time-

temperature-transformation (TTT) diagram (see Figure 4.7). The TTT diagram 

suggests that low nucleation rate limits PCBM crystallisation, which inevitably 

results in the growth of micrometre-large PC61BM crystals. 

 

4.5 Improving the thermal stability of TQ1:PC61BM blends 

As mention above, several methods exist to permit to improve the thermal stability 

of the nanostructure. Paper V and VI introduce two additional routes that be used 

to prepare more stable BHJ blends. 

4.5.1 Nucleating agents 

Nucleating agents have been used in polymer technology for a long time since they 

are able to create desired properties for certain applications, for example to clarify 

isotactic polypropylene.112-114 Recently, nucleation agents have been explored also 

for conjugated polymers as well as other semi-conductors for organic electronics 

applications.115 In addition, Richards et al. reported that addition of the un-

substituted C60-fullerene affects the number and the size of PC61BM crystals in a 

P3HT matrix.116 

By introduction of a nucleating agent, a heterogeneous nucleation site is added, 

which initiates crystallisation. Since it was shown in Paper III that a low rate of 

nucleation limits PC61BM crystallisation, nucleating agents can help to 

significantly increase the nucleation rate and thereby strongly reduce the crystal 

size. 
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Table 4.3: Chemical structure of nucleating agents, increase in peak crystallisation temperature ∆ ܶ
௨ 

of TQ1:PC61BM containing 2 wt% nucleating agent with respect to PC61BM and nucleating efficiency 

NE. 

nucleating 
agent 

chemical structure 
 ࢉ࢛ࢉࢀ∆
 (°C) 

Nucleating 
Efficiency 

(%) 

C60 

 

 9 26 

C70 

 

 0, 6  0, 18 

SWNT 

 

0, 13, 24 0, 38, 71 

 
        NaBz 

  
0, 14, 33 

 
0, 41, 97 

 NaBz*  8, 17 24, 50 

DMDBS  7  21 

TBPMN  4  12 

BTA  1   3 
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A number of compounds were tested for their ability to nucleate PC61BM (see 

Table 4.3). To this end, ܶ
లభெ and ܶ

௫, which correspond to the PC61BM 

crystallisation temperature in the blend and the highest crystallisation temperature 

of optimally self-seeded neat PC61BM, respectively, were extracted from DSC 

cooling thermograms (Figure 4.8a). Based on these measurements, the nucleating 

efficiency of the investigated compounds could be calculated (cf. Paper IV), which 

was particularly high for Sodium Benzoate (NaBz) and single walled carbon 

nanotubes (SWNT) with 97 and 71 %, respectively. However, both compounds 

gave rise to several crystallisation exotherms, which indicate inhomogeneous 

mixtures. In contrast, from DSC measurements as well as optical microscopy it 

could be concluded that in particular un-substituted C60-fullerene is not only an 

efficient nucleating agent but also gives rise to homogeneous mixtures (see Figure 

4.8b). Therefore, the use of C60 as a nucleating agent was studied in more detail. 

 

 

Figure 4.8: (a) DSC cooling thermograms of 1:1 TQ1: PC61BM with 2 wt% of the indicated nucleating 

agents (3 wt% for SWNT) (b) micrographs of 1:1 TQ1: PC61BM with  2 wt% of the indicated nucleating 

agents 
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The effect of using C60 as a nucleating agent was studied by several 

complementary microscope techniques, i.e. optical microscopy, SEM and TEM. 

Both, the crystal amount and the size, could be controlled by adding different 

amounts of C60 to 1:1 TQ1:PC61BM blends. Remarkably, devices based on C60-

nucleated active layers revealed that addition of as small as 5 wt% of C60 

significantly improves the thermal stability of the blend nanostructure during 

annealing at 130 °C (see Figure 4.9). Evidently, careful nucleation of the fullerene 

acceptor material results in BHJ blends that are more resistant towards annealing 

above ܶ
ௗ. 

 

 

 

 

 

 

 

Figure 4.9: Efficiency as a function of C60 fraction for pristine (open symbols) and annealed at 130 ºC 

for 10 min (solid symbols) 1:1 TQ1:fullerene  devices 

4.5.2 Fullerene mixtures 

Fullerene derivatives such as bis-PCBM contain several isotopes, which strongly 

hinders crystallisation and results in a largely amorphous, glassy material.117 

Recently, fullerene mixtures have been shown to improve the thermal stability due 

to hindered crystallisation.118-120 In Paper VI, this tendency of fullerene mixtures to 

vitrify is exploited to improve the thermal stability of BHJ blends. The two most 
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widely studied fullerene derivatives, i.e. PC61BM and PC71BM, which itself can 

form several isotopes, are mixed and blended with TQ1.  

DSC analysis, optical microscopy and TEM were used to examine crystallisation 

of the PC61BM:PC71BM binary system. From these measurements, it was 

concluded that crystallisation is prevented in mixtures consisting of 80 wt% 

PC61BM and 20 wt% PC71BM. Solar cells based on 5:4:1 TQ1:PC61BM:PC71BM 

active layers displayed significantly improved thermal stability compared to 

TQ1:PC61BM reference devices.  

Table 4.4: Prices of different fullerenes and fullerene mixtures 

Type Price (€ g-1) 

C60 15 

C70 150 

PC61BM 150 

PC71BM 780 

Mixture of PC61BM/PC71BM 
(ratio 80/20) 

100 

Besides the good thermal stability that is achieved by using PCBM-mixtures a 

reduction in price of the fullerene material can be anticipated. This is because from 

the fullerene synthesis a mixture of predominantly C60 and C70 is obtained. Hence, 

by directly using the synthesised fullerene mixture, purification can be avoided 

which should result in a less expensive product (see prices from Solenne BV for 

various fullerenes and their derivatives in Table 4.4). 
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Chapter 5 

CONCLUDING REMARKS 
 

Polymer solar cells (PSCs) are a promising alternative to silicon-based solar cells 

since their ease of production, e.g. by large-area printing or coating techniques, 

offers the potential for low cost devices. However, high-throughput roll-to-roll 

processes demand thermally stable materials because such a process would require 

one or several heating steps. In addition, during operation the devices have to 

withstand chemical- and physical degradation. The photo-oxidative and thermal 

stability of the active layer materials have been the main subjects of this thesis. 

Most work presented in this thesis focuses on bulk-heterojunction blends of a 

thiophene-quinoxaline co-polymer (TQ1) and different fullerene derivatives. 

The first part of the thesis examined bleaching of TQ1 as well as a thiophene-

pyrido pyrrazine co-polymer (TQN) due to photo-oxidative degradation. Both 

copolymers were found to be considerably more stable than polythiophenes. 

Moreover, the effect of incorporation of a thiophene-hexylthiophene moiety into 

the TQ1 or TQN backbone was studied, which resulted in a more black polymer 

with good absorption at all visible wavelengths. The TQN-thiophene-

hexylthiophene copolymers displayed good stability against photo-oxidative 

degradation as well as an improved photovoltaic performance as compared to neat 

TQN. Finally, the rate of degradation of the investigated co-polymers was found to 

be independent of molecular weight or film thickness. 

Control of the nanostructure is crucial for the performance of polymer:fullerene 

solar cells. The nanostructure achieved after film deposition from solution is not at 

equilibrium and tends to change upon annealing. Therefore, it is essential to 

improve the thermal stability of the active layer blend in order to facilitate high-

speed printing processes. Two temperature regimes have to be considered. It was 

shown that mild heat treatment below the glass transition temperature of the blend 

resulted in local conformational changes of TQ1, which raised the power 



Concluding remarks 

 

-48- 

conversion efficiency of corresponding TQ1:PC61BM solar cells. In contrast, 

annealing above the glass transition temperature of the blend caused a detrimental 

decrease in device performance due to rapid coarsening of the blend nanostructure 

as well as the growth of micrometre-sized fullerene crystals. Careful examination 

of the PC61BM crystallisation kinetics in TQ1:PC61BM thin films revealed that the 

formation of large fullerene crystals was the result of insufficient nucleation. In 

this thesis, two routes were proposed that permit to improve the thermal stability 

of the blend nanostructure. Firstly, the PC61BM nucleation rate can be significantly 

increased through addition of unsubstituted C60-fullerene, which acts as a 

nucleating agent. Secondly, the use of fullerene mixtures effectively hinders 

crystallisation. Both approaches permit to strongly improve the photovoltaic 

performance of heat-treated TQ1:PC61BM active layers.  

It is anticipated that the findings presented in this thesis are applicable to a wide 

range of other polymer:fullerene systems and, hence, will prove valuable for the 

further development of PSCs.  During the last 10 years, the efficiency of PSCs has 

strongly increased, which together with improved thermal stability of the blend 

nanostructure may facilitate the large-scale production of PSCs. 
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