

Chalmers University of Technology

University of Gothenburg
Department of Computer Science and Engineering

Göteborg, Sweden, April 2012

Approximating ray traced reflections using screen-

space data
Master of Science Thesis in the Programme Computer Science: Algorithms, Languages

and Logic

MATTIAS JOHNSSON

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Approximating ray traced reflections using screen-space data

Mattias Johnsson

© Mattias Johnsson, April 2012.

Examiner: Ulf Assarsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden April 2012

3

1 Abstract
At Spark Vision, independent component images, each containing a part of the

rendered geometry, are layered to create complete images. Due to the

assumption of independence; reflections cannot be accurately rendered. A

screen-space method for adding reflections to a rendered image using buffers for

geometry and surface properties is proposed. Reflections are traced using an

approximation of ray tracing. The goal is to allow for the continued use of

component images with reflections added as a post-processing effect in real time.

The method outlined allows for perfect and glossy reflections comparable to the

quality of commercial ray tracers for optimal scenes. However, it fails to capture

reflections of objects that are not visible from the camera view-point except for

cases in which these are part of a pre-defined surrounding environment. The

method itself allows for dynamic scenes, camera settings and surface properties

including BRDFs if used as an off-line renderer.

Due to demands of image quality, time constraints and the lack of GPU support a

method for caching the rays is proposed based on assumption of a static

geometry. The caching method allows for arbitrary variations in lighting, textures

and reflection strength as well as limited variations of normal mapping and

surface shininess. This method achieves acceptable running times for the

intended application.

4

2 Sammanfattning
På Spark Vision används oberoende komponentbilder, varje innehållande en del

av den renderade geometrin, för att sammanställa färdiga bilder. På grund av

antagandet om oberoende kan reflektioner inte renderas precist. En metod i

screen-space för att i efterhand lägga till reflektioner genom att använda buffrar

för geometri och ytegenskaper föreslås. Reflektioner bestäms genom att

approximera ray tracing.

Metoden tillåter perfekt reflektiva ytor och suddiga ytor med kvalitet som är

jämförbar med kommersiella renderare för optimala scener. Den misslyckas dock

med att fånga reflektioner av föremål som inte är synliga från den virtuella

kameran med undantag för fall då dessa föremål är del av en fördefinierad

kringliggande geometri. Metoden kan hantera dynamiska scener,

kamerainställningar och ytegenskaper, inklusive varierande BRDF, om den inte

används i realtid.

På grund av krav på kvalitet, renderingstid och bristen på grafikkort föreslås en

metod för att kalkylera och spara reflektionsträffar som bygger på ett antagande

om statisk geometri. Uppsnabbningstekniken tillåter godtyckliga variationer i

ljussättning, texturer och reflektionsstyrka samt begränsade variationer i Bump

Mapping och klarhet. Med sparade reflektionsträffar uppnås acceptabla tider för

den avsedda applikationen.

5

3 Acknowledgements
I would like to thank my examiner Ulf Assarsson at Chalmers University of

Technology.

I would also like to thank Spark Vision for giving me the opportunity to work on

my master thesis. In particular, I would like to thank my supervisors Johan Nilsson

and Arash Ohadi as well as Malin Bjelle and Herman Carlsson for their help with

the company process and 3D Studio Max and V-Ray usage.

6

4 Table of Contents
1 Abstract ... 3

2 Sammanfattning .. 4

3 Acknowledgements ... 5

5 Introduction .. 8

5.1 Background ... 8

5.2 Problem Statement and Purpose .. 8

5.3 Limitations... 9

6 Theory and Previous Work .. 10

6.1 Reflections in real-time rendering .. 10

6.2 Reflections in ray tracing... 11

6.2.1 Importance sampling the Phong BRDF ... 12

6.2.2 Importance sampling the Blinn BRDF ... 14

7 Analysis ... 16

7.1 Overview ... 16

7.1.1 Buffers ... 16

7.1.2 Strength of reflections .. 16

7.1.3 Original render settings .. 17

7.2 Screen-space sampling .. 17

7.2.1 Collision testing ... 18

7.3 Handling misses in screen-space... 21

7.3.1 Ray-quad intersection test .. 21

7.3.2 Creating textures for boundaries .. 22

7.3.3 Texture Completion .. 23

7.3.4 Using the boundary textures .. 27

7.4 Achieving higher reflection depth... 27

7.5 Glossy Effects .. 28

7.5.1 Importance Sampling .. 28

7.5.2 Adaptive blur ... 30

7.6 Speed-up techniques .. 31

7

7.6.1 Reflection Caching... 31

7.6.2 Glossy Reflections and Bump Mapping with Reflection Caching ... 32

8 Results ... 35

8.1 Image Quality .. 35

8.1.1 Perfect Reflections .. 35

8.1.2 Glossy Reflections ... 37

8.1.3 Varying shininess and normal vectors for glossy reflections using

reflection caching .. 41

8.1.4 Real Life Example .. 45

8.2 Performance ... 46

9 Discussion .. 47

10 Conclusion ... 50

11 Appendix A: Buffers .. 52

12 Appendix B: Perspective Projection Matrices ... 58

13 References .. 59

8

5 Introduction

5.1 Background
Spark Vision produces product configurators that allow customers to customize

products with different features and receive instant visual feedback. These

customer requirements can then be used to generate cost estimates for the

customer and product specifications for the companies. The visual feedback can,

for example, be produced by individually pre-rendering every possible

combination of features, through real-time 3D rendering or by composing layers

of component images. This thesis work focuses on the latter approach. This

approach is used at Spark Vision because real-time rendering does not meet the

standards of photorealism needed and rendering every combination of features

separately results in an exponentially growing number of images as the number of

different features increases.

The component images contain parts of the final image and are rendered

individually. Different component images are chosen, based on user input, and

are layered to produce the final image. The purpose of this approach is to reduce

the number of images that need to be rendered and stored by allowing the same

component to be used in various different combinations.

A problem with combining component images is that global illumination effects

such as reflections and color bleeding cannot be captured accurately as these

effects are dependent on other components in the final image. Inaccurate or

missing reflections in particular are very noticeable when using a product

configurator for indoor tiles as the surface properties of such tiles result in strong

reflections. To circumvent this, component images were previously either

rendered with incorrect neutral, often greyscale, surrounding geometry which

lessened the effect of the incorrect reflections or by using one specific set of

surface properties for the surrounding environment resulting in correct reflections

for that particular setup but incorrect reflections for all other setups.

5.2 Problem Statement and Purpose
While the problem originally arose from the need to render images component-

wise in such a way that no pair of geometry and surface properties would need to

be rendered more than once the problem being addressed is more general than

that. The aim of this thesis work is to find a way to add reflections to a rendered

image, given auxiliary data, in a way that captures the surface properties of the

rendered image and is coherent with the techniques and parameters used when

rendering the original image. The approach used is to add reflections as a post

9

processing effect by approximating ray tracing using screen space data and solve

the following problems:

 Identify the auxiliary data needed

 Find a way to approximate the ray collision of ray tracing with screen

space sampling

 Handling misses in screen space

 Handling glossy effects

 Identify and remove or alleviate artifacts

 Find applicable speed-up techniques

Maximum running time was never explicitly stated. Thus, acceptable running time

is based on interpretation of the implicit statement of real-time with respect to a

post-processor and set to 300ms.

5.3 Limitations
The engine used to combine and show the images is run on both web servers and

as a standalone application on both PCs and handheld devices. Because of this no

GPU implementation will be explored.

Evaluation of image quality will not be based on either user tests or any formal

methods. Instead, images will be compared to ground truth images rendered

using V-Ray.

There are several global illumination effects that cannot be accurately rendered

when using component images. For this thesis work only reflections will be

explored.

10

6 Theory and Previous Work

6.1 Reflections in real-time rendering
Planar reflections are rendered using a multi-pass approach. The first pass renders

the scene from the camera, excluding the mirrored surface. This mirrored surface

is rendered to create a stencil mask. In the second pass the scene is rendered

again from the reflected view-point, drawing over the masked bits. Reflections of

higher depth can be accomplished by rendering the scene from the transformed

view-point of each reflector and recursively transforming the view-point and

rendering again for each reflective surface visible until some given maximum

depth is reached. [1]

This technique can be extended to approximate curved reflectors by rendering a

distorted projection as seen from the transformed view-point. [2]

Planar reflections are computationally expensive because if more than one

reflector is present the scene must be rendered once for each reflector and then

again for each visible reflector in each step of the recursion. This is problematic

for scenes with many polygons. Furthermore, it requires full knowledge of the

scene primitives being rendered and thus cannot be used as a post-processing

technique. [3]

Another approach to real-time reflections is environment mapping. Environment

mapping was first proposed by Blinn and Newell in 1976. They use a sphere map

around the reflective object onto which the surrounding scene is projected using a

single parameterization. This sphere map is then sampled during rendering. A

common alternative is to use cube maps in which the surrounding scene is

projected onto one of six cube faces. [4] [5]

One problem with classic environment mapping as proposed by Blinn and Newell

is that it is based on the assumption of an infinitely distant environment. When

this assumption is broken the reflections are inaccurate. Furthermore, the

assumption means that classic environment mapping cannot represent parallax.

Classic environment mapping also fails to capture local reflections as the reflector

itself is omitted during the construction of the environment map.

 Several possible solutions have been proposed. One approach is to use several

view-dependent radiance environment maps each of which is correct only for a

single view-point. These radiance environment maps are then sampled depending

on the view-point to achieve view-dependence and parallax. Similarly, multiple

location and view-dependent environment maps can be used to create

11

Parameterized Environment Maps. Another proposed approach is to use 4D light

fields in place of 2D environment maps where a light field can be viewed as 2D

array of images. Each reflected ray is indexed based on its view-point. [6][7][8]

Environment mapping has also been extended to glossy reflections. One approach

is to pre-filter the environment maps based on the surface’s Bidirectional

Reflectance Distribution Function (BRDF). The BRDF is sampled at a set of viewing

directions to create lobes.These are used to filter the environment map resulting

in a three-dimensional environment map where one dimension is the viewing

direction. [9]

Another approach is to use importance sampling. Importance sampling uses the

surface’s BRDF to determine a set of sampling directions used to sample the

environment map. The results of these samples are then summed to determine

the final reflection color. In order to avoid having to handle random numbers on

the GPU deterministic importance sampling is used instead which causes aliasing.

To circumvent this, samples are filtered by sampling from a certain mipmap-level

of the environment map depending on the probability of the sample. Importance

sampling will be covered in detail in the next chapter. [10]

In order to generate an environment map full knowledge of the scene is required

which makes approaches using environment mapping a poor alternative as a post-

processing technique.

For this application both environment maps and planar reflections could be

generated offline and stored. They could then be used after the layering of

component images to add reflection. However, the number of environment maps

or planar reflection maps needed to create accurate reflections would depend on

the number of possible combinations of features which is what the thesis work is

attempting to avoid. Thus, a better alternative would be the naïve approach of

rendering every possible combination of features to begin with.

6.2 Reflections in ray tracing
The general recursive ray tracing algorithm used in classic ray tracing, outlined by

Whitted in 1977, traces a ray for each pixel from the camera view-point. The

closest collision is used to shade the pixel. From the collision point a shadow ray

for each light source is traced to determine whether or not the surface is occluded

as seen from that light source. For every un-occluded light source the surface

properties are used to shade the pixel. If the surface is specular a reflection ray is

traced recursively in the reflection direction. Thus, reflections are part of the

rendering algorithm for ray tracing. A transmission (or refraction) ray is traced

12

recursively for refractive materials in the refraction direction determined by the

index of refraction of the two media and Fresnel’s law of refraction. Refraction

will not be covered in any detail as it is not the focus of the thesis work. [11]

Classic ray tracing is good at capturing reflections of perfectly specular surfaces.

However, it cannot properly render glossy reflections. To handle glossy reflections

distributed ray tracing or distribution ray tracing is used instead. In distributed ray

tracing several rays are traced per pixel, using some sub-sampling scheme. An

important variant of distribution ray tracing is Monte-Carlo ray tracing. Monte-

Carlo methods in general are computational algorithms that use repeated random

sampling to reach a result. Basic Monte-Carlo eye ray tracing, i.e. ray tracing in

which rays start from the eye or camera and propagate towards the light, can be

summarized as follows:

1) Choose a ray

2) Find the closest point of intersection

3) Randomly choose either

a) Emission

i) Calculate emitted light times sample weight

b) Reflection

i) Randomly scatter the ray according to the BRDF with updated sample

weight

ii) Go to 2

[12]

The interesting part here is 3b in which the glossy reflection of the surface is

determined. A naïve approach to this problem is to scatter the ray in a uniformly

distributed random direction in the hemisphere and use the value of the BRDF as

weight for the given incoming and outgoing directions. However, a better way is

importance sampling, i.e. sampling in the directions where the BRDF is greater. If

the probability distribution used to sample hemisphere correspond to the surface

BRDF no weighing of samples is needed.

6.2.1 Importance sampling the Phong BRDF

The sampling direction is defined in a coordinate system in which the specular

direction is the z-axis (0, 0, 1). The specular direction is the perfect reflection of

the incoming direction about the surface normal. The sampling direction is

defined using the two spherical coordinates θ and 𝜙. θ is the angle between the

specular direction and the sample direction and 𝜙 is the rotation of the sample

direction about the specular direction.

13

The Phong BRDF assumes that the reflected light is based on a cosine falloff from

the specular direction. Thus, the density d of the sampled reflected rays is defined

as

𝑑 = cos θ n

Where n is the shininess of the material and θ is the angle between the perfect

specular reflection and the sample direction. In order to use this cosine lobe as a

PDF (probability distribution function) p it needs to be normalized to integrate to

1 over the hemisphere. Since spherical coordinates are used the BRDF is written

as

cos θ n sin⁡(θ)

Therefore the integral over the hemisphere is

 cos θ n sin θ dθ
𝜋/2

0

=
−cos(𝜃)𝑛+1

𝑛 + 1

0

𝜋/2

=
−cos(𝜋/2)𝑛+1 + cos(0)𝑛+1

𝑛 + 1

=
1

𝑛 + 1

 cos θ n sin θ dθdϕ
𝜋/2

0

2𝜋

0

=
1

𝑛 + 1
=

𝜙

𝑛 + 1

0

2𝜋

=
2𝜋

𝑛 + 1

2𝜋

0

Dividing the BRDF with this integral yields

p θ, ϕ =
cos θ n sin(θ)

 cos θ n sin θ dθdϕ
𝜋/2

0

2𝜋

0

=
(𝑛 + 1)

2𝜋
cos 𝜃 n sin(θ)

In order to sample the PDF it is transformed into a CDF (Cumulative Distribution

Function) by integration over the angular range. This CDF is then inverted in order

to map from uniform samples to direction angles. The two direction angles are

first separated into different PDFs. The PDF of 𝜃is determined by marginalizing

out 𝜙 by integrating over the whole range of 𝜙

𝑝 𝜃 = 𝑝 𝜃, 𝜙 𝑑𝜙 = (𝑛 + 1) cos 𝜃 𝑛 sin(𝜃)
2𝜋

0

The PDF of 𝜙 can now be defined as the conditional probability given the value of

𝜃

𝑝 𝜙 𝜃 =
𝑝(𝜃, 𝜙)

𝑝(𝜃)
=

1

2𝜋

14

Converting the two PDFs into CDFs and inverting them results in

𝑃 𝜃 = 𝑛 + 1 cos(𝜃)nsin(𝜃)
𝜃

0

= −cos(𝜃)𝑛+1 + cos(0)n+1 = 1 − cos(𝜃)𝑛+1

Defining a uniform random variable 𝜉 between 0 and 1 and 𝑃 𝜃 = 𝜉

𝜉 = 1 − cos(𝜃)n+1 → cos−1(1 − 𝜉𝑛+1) = θ

If 𝜉 is random variable between 0 and 1 then so is 𝜉1 = 1 − 𝜉 so the expression

can be simplified to

θ = cos−1(𝜉1
𝑛 +1

)

Analogously

𝜉2 = 𝑃 𝜙 =
1

2𝜋

𝜙

0

=
𝜙

2𝜋

𝜙 = 2𝜋𝜉2

These results are fairly intuitive. Since the Phong BRDF is isotropic the rotation of

the sample vector about the reflection vector is uniformly distributed as expected.

Furthermore, the angle between the sample vector and the reflection vector

depends only on the shininess of the surface. [10][12]

6.2.2 Importance sampling the Blinn BRDF

The Blinn BRDF is based on a microfacet distribution function, i.e. a distribution of

normal vectors about the surface normal. Such BRDFs are the product of three

terms; normal distribution (NDF), geometry and Fresnel reflectance which are

divided by two cosine terms. Because the NDF accounts for most of the variation

it can be sampled directly with good results.

The NDF of the Blinn BRDF is a cosine falloff from the surface normal. This cosine

falloff is identical to the Phong BRDF and as such the previous derivation would be

identical with the only difference being that the coordinate system has the normal

vector as the z direction (0, 0, 1). Thus, rather than deriving a new sample

reflection direction directly an importance sampled half vector is derived instead.

θH = cos−1(𝜉1
𝑛+1)

𝜙𝐻 = 2𝜋𝜉2

15

Here θH is the angle between the half vector and the surface normal and 𝜙𝐻 is

the rotation of the half vector about the surface normal. The sample direction is

then determined by reflecting the incoming direction about the half vector. [14]

16

7 Analysis

7.1 Overview

7.1.1 Buffers

In order to trace reflections in screen-space some additional data is needed

besides the original image. These data are stored in buffers output by the original

renderer. For this thesis work these buffers are rendered using ray tracing and

stored on the hard drive. However, the techniques outlined have no limitations in

terms of the original renderer and should be applicable even to real-time GPU

based renders such as game graphics engines. Depending on which techniques

outlined are used some of these buffers are not needed. For sake of clarity all of

them are listed below.

Table 1. Buffers

𝐶𝑓 Color buffer for the front side of objects

𝐶𝑏 Color buffer for the back side of objects

𝑃𝑓 Position buffer for the front side of objects

𝑃𝑏 Position buffer for the back side of objects

𝑁𝑓 Normal buffer for the front side of objects

𝑁𝑏 Normal buffer for the back side of objects

𝐹𝑓 Reflection Filter buffer for the front side of objects

𝐹𝑏 Reflection Filter buffer for the back side of objects

𝑅 Reflection Vector buffer for the initial bounce of mirror reflectors

𝑆𝑓 Shininess buffer for the front side of objects

𝑆𝑏 Shininess buffer for the back side of objects

𝐶𝑜𝑢𝑡 Not an input buffer, the color output by the post-processor

𝑅𝑟𝑎𝑤 Not an input buffer, the raw reflection output by the post-
processor

The renderer used for this thesis work is not able to output shininess. Thus, the

images output from the post-processor use either uniform shininess or shininess

is set arbitrarily over the image. The buffers are listed here despite this for clarity.

For example buffers see Appendix A.

7.1.2 Strength of reflections

There are many different ways of determining the strength of reflections based on

surface properties and the angle between of incoming ray and the normal vector

of the surface. For this thesis work different surfaces use different techniques for

determining this strength. Some surfaces use the common Fresnel reflection

17

technique while for others the strength is user defined, either by a value

independent on the angle or by using an ad hoc curve. Therefore, different

techniques are not covered in detail as regardless of the underlying technique

each pixel in the image will correspond to one set of surface properties with one

incoming angle. Thus, each pixel will have a corresponding number between 0 and

1 which is a factor determining the strength of the reflection. These values are

stored in the reflection filter buffers 𝐹𝑓and 𝐹𝑏 . The difference between these two

buffers is detailed in the chapter on screen-space sampling. Thus the final color of

a pixel (𝑥, 𝑦) is determined by

𝐶𝑜𝑢𝑡 (𝑥,𝑦)
= 𝑚𝑖𝑛(1, 𝐶𝑓 (𝑥,𝑦)

+ 𝑐𝑟(𝑥,𝑦)
𝐹𝑓(𝑥 ,𝑦)

)

where 𝑐𝑟(𝑥 ,𝑦)
 is the color of the raw reflection of the pixel and 𝐶𝑓 𝑥,𝑦

 is the color

of the front color buffer. The reflection filter is thus considered an additional input

to the post processor and no calculations of these values are done during the post

processing. Thus, the problem is reduced to determining the value of 𝑐𝑟 for each

pixel given a set of surface properties.

Since the strength of reflections usually depends on the angle of the incoming ray

it is incorrect to use the same buffer for secondary bounces as these values are

output given the incoming angle as seen from the camera. Despite this, these

values are used as an approximation for this thesis work. A more general

approach would be to determine these values in the post-processor, requiring

additional buffers for IOR values, curves and constant values. This will not be

explored.

7.1.3 Original render settings

When creating the buffers not all render settings will give good results. In

particular, heavy use of anti-aliasing will result in the color of certain pixels to be

averaged from different surfaces. This is noticeable as the position and normal

vector of the pixel needs to be determined from only one surface. Thus, if anti-

aliasing is used before the reflection post-processing these averaged colors will

show in the reflections when the color of only one of the surfaces should be used.

It is therefore best to postpone anti-aliasing until after the post-processor is used

or to not use anti-aliasing.

7.2 Screen-space sampling
As described in the overview the strength of the reflection of a pixel is stored in

the buffer 𝐹𝑓 . Thus, on the right hand side of the equation

𝐶𝑜𝑢𝑡 (𝑥,𝑦)
= 𝑚𝑖𝑛(1, 𝐶𝑓 (𝑥,𝑦)

+ 𝑐𝑟(𝑥,𝑦)
𝐹𝑓(𝑥 ,𝑦)

)

18

only the raw reflection 𝑐𝑟 is unknown. To determine the value of 𝑐𝑟 from screen-

space data the normal and position of the pixel, stored in 𝑁𝑓 𝑥,𝑦
and 𝑃𝑓 𝑥 ,𝑦

respectively, are used to determine its reflection vector 𝒓 𝒙,𝒚 . Both normal and

position are given in view-space, i.e. a coordinate system in which the camera is

situated at the origin looking in the z-direction. For the purpose of this text, the

camera is assumed to be oriented to look in the negative z-direction. Thus, the

incidence vector of the pixel (𝑥, 𝑦) from the camera is equal to its position in

view-space.

𝒊(𝒙,𝒚) = 𝑃𝑓 𝑥 ,𝑦
− 𝒑𝒄 = 𝑃𝑓 𝑥,𝑦

 , 𝒑𝒄 = 0,0,0

where 𝒊 𝒙,𝒚 is the incidence vector and 𝒑𝒄 is the position of the camera.The

following formula is then used to calculate the reflection vector:

𝒓 =
(𝒊 − 2(𝒏 ∗ 𝒊) ∗ 𝒏)

|(𝒊 − 2(𝒏 ∗ 𝒊) ∗ 𝒏)|

𝒓 𝒙,𝒚 =
(𝑷𝒇 𝒙,𝒚

− 𝟐 𝑁𝑓 𝑥,𝑦
∗ 𝑷𝒇 𝒙,𝒚

 𝑁𝑓 𝑥,𝑦
)

|(𝑷𝒇 𝒙,𝒚
− 𝟐 𝑁𝑓 𝑥,𝑦

∗ 𝑷𝒇 𝒙,𝒚
 𝑁𝑓 𝑥,𝑦

)|

Alternatively, the reflection vector itself can be output by the original renderer

and stored in the buffer R, in which case 𝒓 𝑥,𝑦 = 𝑅(𝑥,𝑦). Note that this buffer is

only relevant for the first bounce. To avoid self reflections the position should be

offset by some 𝜖 in the normal direction.

𝒑𝑣𝑖𝑒𝑤 = 𝑃𝑓 𝑥 ,𝑦
+ 𝜖𝑁𝑓 𝑥,𝑦

A sample position in view-space 𝒑𝒔 𝒙,𝒚
 for the pixel (𝑥, 𝑦) following the reflection

vector 𝒓 𝒙,𝒚 from view-space position 𝒑𝑣𝑖𝑒𝑤 is thus a position adhering to the

following equation:

𝒑𝒔 𝒙,𝒚
= 𝒑𝑣𝑖𝑒𝑤 + 𝒓 𝒙,𝒚 ∗ 𝑡 , 𝑡 > 0

where t is a real number. t is then iteratively increased linearly by some delta

𝑑 > 0. The choice of 𝑑 depends on the scene being rendered. Every sample

position 𝒑𝒔 is then tested for collision.

7.2.1 Collision testing

In order to test for collision the projection parameters used to render the original

image are needed. These parameters are used to project the sampled view-space

19

position 𝒑𝒔 to screen-space. This projection is for the purpose of this chapter

considered a function

𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ∶ ℝ3 → ℕ2

which maps a view-space position to a screen-space texture coordinate. The

screen-space position given by the project function is thus where the sampled

screen-space position would have ended up in the final image were it rendered.

The details of the projections used are covered in Appendix B.

In order to un-project, i.e. go from screen-space coordinates to view-space

position the depth value, i.e. the projected Z-axis, of the pixel is also needed

which is not known. However, since the view-space position of the closest

rendered object for each pixel is stored in the front position buffer

𝑃𝑓 un-projection is simplified to a texture look-up.

For every sample view-space position 𝒑𝒔 the following values can be calculated:

𝒄𝒐𝒐𝒓𝒅𝒔 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝒑𝒔

𝒑𝒇𝒓𝒐𝒏𝒕 = 𝑃𝑓𝒄𝒐𝒐𝒓𝒅𝒔

To test for collision all that is left to do is to check if 𝑝𝑓𝑟𝑜𝑛𝑡 is in front of 𝒑𝒔 as seen

from the camera.

𝒑𝒔. 𝑧 < 𝒑𝒇𝒓𝒐𝒏𝒕. 𝑧

The raw reflection color 𝑐𝑟(𝑥,𝑦)
 is then the color of 𝐶𝑓 at coordinate 𝒄𝒐𝒐𝒓𝒅𝒔.

𝑐𝑟(𝑥,𝑦)
= 𝐶𝑓𝒄𝒐𝒐𝒓𝒅𝒔

This approach works under the assumption that each pixel extends infinitely

behind the area it covers, as seen from the camera, as it does not take into

account the distance between 𝒑𝒔 and 𝒑𝒇𝒓𝒐𝒏𝒕 nor the angle between 𝒓 𝒙,𝒚 and

𝑁𝑓𝑐𝑜𝑜𝑟 𝑑𝑠
. Thus, a ray entirely behind an object will still be considered as colliding

with that object, leading to incorrect reflections. An ad hoc solution is to assign a

global thickness parameter which is then used for collision testing. The

comparison

𝒑𝒔. 𝑧 < 𝒑𝒇𝒓𝒐𝒏𝒕. 𝑧

would then instead be

𝒑𝒔. 𝑧 < 𝒑𝒇𝒓𝒐𝒏𝒕. 𝑧 ⋀ 𝒑𝒔. 𝑧 > 𝒑𝒇𝒓𝒐𝒏𝒕. 𝑧 − 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠

20

While an improvement, there is no way of defining a global thickness parameter in

such a way that it would not lead to artifacts for some surfaces.

Another problem is that a ray considered colliding, even correctly, with the back

side of an object would still return the color value of the front side of the object.

A solution to both these problems is to render the entire scene twice. Once using

the original render settings and once with front face culling enabled and back face

culling disabled. Another approach, if front face culling is not available to the

renderer, is to invert all the normal vectors in the scene and render with back face

culling enabled. Both these approaches will result in the colors, view space

positions, normal vectors, reflection filter and (potentially) shininess of the back

side of the closest objects. These are stored in the buffers 𝐶𝑏 , 𝑃𝑏 , 𝑁𝑏 , 𝐹𝑏 and 𝑆𝑏

respectively.

With these buffers, in addition to buffers of the original rendering settings, the

comparison can then be replaced with

|𝒑𝒔. 𝑧| > 𝒑𝒇𝒓𝒐𝒏𝒕. 𝑧 ⋀ |𝒑𝒔. 𝑧| < |𝒑𝒃𝒂𝒄𝒌. 𝑧|

where

𝒑𝒃𝒂𝒄𝒌 = 𝑃𝑏𝒄𝒐𝒐𝒓𝒅𝒔

To determine whether 𝒓 𝒙,𝒚 collides with the back side of the object the relative

distance from 𝒑𝒔 to 𝒑𝒇𝒓𝒐𝒏𝒕 and 𝒑𝒃𝒂𝒄𝒌 are used together with the angle between

𝒓 𝒙,𝒚 and 𝑁𝑏𝑐𝑜𝑜𝑟 𝑑𝑠
. Thus, 𝒓 𝒙,𝒚 is considered colliding with the back side if

 𝒑𝒔. 𝑧 − 𝒑𝒇𝒓𝒐𝒏𝒕. 𝑧 > 𝒑𝒔. 𝑧 − 𝒑𝒃𝒂𝒄𝒌. 𝑧

and

−𝒓 𝑥,𝑦 ∗ 𝑁𝑏𝑐𝑜𝑜𝑟 𝑑𝑠
> 0

The raw reflection color 𝑐𝑟(𝑥,𝑦)
 is thus

𝑐𝑟 𝑥 ,𝑦
= 𝐶𝑏𝒄𝒐𝒐𝒓𝒅𝒔

 , 𝒑𝒔. 𝑧 − 𝒑𝒇𝒓𝒐𝒏𝒕. 𝑧 > 𝒑𝒔. 𝑧 − 𝒑𝒃𝒂𝒄𝒌. 𝑧 ∧ −𝒓 𝑥,𝑦 ∗ 𝑁𝑏𝑐𝑜𝑜𝑟 𝑑𝑠
> 0

𝑐𝑟 𝑥 ,𝑦
= 𝐶𝑓𝒄𝒐𝒐𝒓𝒅𝒔

 , 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

Colloquially, a ray hits the back side of an object if it is closer to the back side and

collision with the back side is possible given its normal. The sampling stops when

the projected coordinates 𝑐𝑜𝑜𝑟𝑑𝑠 is outside of the image or when some threshold

21

has been reached in terms of the number of samples. A different approach is

outlined in the next chapter.

7.3 Handling misses in screen-space
A problem with any screen-space solution is that only screen-space data exists. In

the case of reflections some reflected rays will not hit any of the pixels in the

original image. These rays could be ignored, but that leads to abrupt changes

between hits and misses in screen-space. In order to handle this problem a

solution based on a simplifying assumption is proposed. The assumption being

that the scene being rendered is bounded by a box. This assumption might seem

naïve, but in the case of the application in question the scenes being rendered are

indoor scenes with a single room. Thus, the bounding box is the walls, floor and

ceiling of said room. Using this assumption a representation of the scene's

boundary can be created and used for rays that miss in screen-space. Thus, classic

ray tracing using a significantly simplified scene takes over when screen-space

sampling fails.

In order to determine whether or not a pixel is part of a scene boundary the

coordinates of the corners of these boundaries must be known. These coordinates

could be given in view-space directly, thus requiring no additional input. To

simplify the extraction of these values however, they are instead given in world-

space as for the scenes in this application, the boundary box forms an axis-aligned

box in world-space and can thus be represented using six real numbers: min and

max for each axis. With the boundary coordinates given in world-space they need

to be transformed to view-space thus requiring the camera position, camera

target and camera up-vector in order to create a view-matrix. View-matrices are

covered in detail in plenty of computer graphics resources and will not be covered

again here.

7.3.1 Ray-quad intersection test

With a quad for each boundary defined in view-space a way to determine where a

ray collides with the quad is needed. Ray-quad intersection testing is done by an

adaptation of the ray-triangle method presented in [16]. For this ray-triangle

intersection test method a triangle is represented by three points: 𝑉0, 𝑉1 and 𝑉2

and a point on the triangle is defined as

𝑃 𝑢, 𝑣 = 1 − 𝑢 − 𝑣 𝑉0 + 𝑢𝑉1 + 𝑣𝑉2

𝑢 ≥ 0, 𝑣 ≥ 0

𝑢 + 𝑣 ≤ 1

22

where 𝑉0, 𝑉1 and 𝑉2 are the three corners of the triangle and u and v are the two-

dimensional texture coordinates. A ray is defined as a starting point 𝒐 and a

direction vector 𝒅. Testing a ray against a triangle results in the distance 𝑡 and the

texture coordinates 𝑢 and 𝑣. Thus, the test can be used for texturing. To adapt

this solution to quads the definition is replaced with

𝑃 𝑢, 𝑣 = 1 − 𝑢 − 𝑣 𝑉0 + 𝑢𝑉1 + 𝑣𝑉2

𝑢 ≥ 0 ≤ 1, 𝑣 ≥ 0 ≤ 1

Where 𝑉0, 𝑉1 and 𝑉2 form a right triangle and 𝑉1 + 𝑉2 − 𝑉0 = 𝑉3 with 𝑉3 being the

fourth point in the quad. The normal of the boundary can then be calculated as

the cross product of 𝑉1 − 𝑉0 and 𝑉2 − 𝑉0.

7.3.2 Creating textures for boundaries

Both this chapter and the chapter on Texture Completion are based on the idea of

creating the boundary textures from screen-space data. This is not necessary for

the technique of using screen-space boundaries in and of itself. Using pre-

rendered textures instead might prove to give more accurate results.

Furthermore, the techniques outlined are tailored for the given application and

may not work for surfaces that do not conform to the assumptions stated. An

overview of the technique is outlined despite this for completeness.

For each boundary a texture can be created and filled. Consider a single boundary

quad with points 𝑉0, 𝑉1 and 𝑉2, normal 𝑁𝑄 and texture 𝑇 as well as a pixel (𝑥, 𝑦) in

the original image with color 𝐶𝑓 𝑥,𝑦
, normal 𝑁𝑓 𝑥 ,𝑦

 and view-space position 𝑃𝑓 𝑥,𝑦
.

𝑇𝑢0𝑣0
 = 𝐶𝑓 𝑥,𝑦

 if

 A ray-quad collision test with the ray o = 𝑃𝑓 𝑥,𝑦
, d =𝑁𝑓 𝑥 ,𝑦

and the quad

associated with 𝑇 with corners 𝑉0, 𝑉1 and 𝑉2 results in u = 𝑢0 and v = 𝑣0

 𝑡 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑

 cos−1(𝑁𝑓 𝑥 ,𝑦
∗ 𝑁𝑄) < 𝑎𝑛𝑔𝑙𝑒_𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑

Iterating over the pixels in the original image and testing them against all six

boundaries will result in an orthogonal projection of each boundary. The values of

the thresholds depend on the scene and projection parameters.

Some boundaries will, ignoring cases with extreme values of field of view, not

have any pixels projected to their respective texture as they are not visible from

the camera. For such boundaries some assumption needs to be made as there is

no data available. For the images presented in this thesis work they are assumed

23

to be completely non-reflective and black, thus not contributing at all to the raw

reflection.

7.3.3 Texture Completion

After creating the orthogonal projections of the boundaries the corresponding

textures still contain only the data present in the original front color buffer.

Before using the boundary textures they must be completed. The texture

completion used applies Canny Edge Detection to each projection and then uses

the heuristic outlined in [15] to determine the horizontal and vertical shift, 𝑕𝑠 and

𝑣𝑠 respectively. Using only vertical and horizontal shift is based on the assumption

that significant tiles of indoor scenes are vertically and horizontally aligned. These

values are used to determine, for each empty pixel, which pixel to use when filling

said empty pixel.

Canny Edge Detection usually applies Gaussian blur to the image before finding

the gradients. This turned out to achieve worse results for this application when

applying the heuristic. Instead, Gaussian blur is only applied to empty pixels

surrounded by non-empty pixels to improve edge detection. Empty pixel to which

Gaussian blur has been applied are still filled like any other. Canny Edge Detection

is outlined in numerous resources and will not be outlined again here.

Texture completion is done using the following steps:

 Apply Canny Edge Detection

o Apply Gaussian blur to empty pixels

o Find the gradients

o Apply non-maximum suppression, ignoring diagonal edges

 Approximate 𝑕𝑠 and 𝑣𝑠 using the heuristic

 Fill the unknown pixels with respect to the values identified

 Pixels left unfilled are taken from the closest horizontal or vertical pixel

This technique works well for some surfaces and fails for others, usually if the

structure of the surface lacks pattern, the lighting is significantly different in

different areas or where some noise in the image is difficult to separate from

actual pattern. The following images show an example in which the wall to the

right is projected and completed.

24

 Figure 1: Example of a front color buffer.

Figure 2: Orthogonal Projection of one scene boundary based on the front color buffer.

25

Figure 3: Gradients acquired from an orthogonal projection using Canny Edge Detection.

Yellow means horizontal, blue means vertical and red and green means diagonal

depending on direction.

Figure 4: Gradients remaining from an orthogonal projection using Canny Edge Detection

after non-maximum suppression and ignoring diagonal edges.

26

Figure 5: The structure determined based on the random heuristic.

Figure 6: The orthogonal projection filled based on the structure determined.

Figure 7: The orthogonal projection filled again using the closest horizontal pixel.

27

7.3.4 Using the boundary textures

Boundary textures can be sampled using the same ray-quad intersection test

outlined previously. When screen-space sampling fails the ray is instead tested

against the six boundaries, resulting again in u and v values. These values are used

to perform a texture lookup in the boundary texture that was hit.

Given that the view-space limits of the scene are known when using this

technique, the screen-space sampling can stop when either the projected

coordinates 𝑐𝑜𝑜𝑟𝑑𝑠 are outside of the image or when the sampled view-space

coordinates 𝒑𝒔 are outside the scene.

7.4 Achieving higher reflection depth
To achieve higher reflection depth a new origin 𝒐𝑛𝑒𝑤 and direction vector 𝒅𝑛𝑒𝑤 of

a new reflection ray are computed from the previous origin 𝒐𝑝𝑟𝑒𝑣 and previous

direction 𝒅𝒑𝒓𝒆𝒗. 𝒅𝑛𝑒𝑤 can be computed using the same formula used for the

initial reflection direction vector

𝒅𝑛𝑒𝑤 = 𝒓 =
(𝒊 − 2(𝒏 ∗ 𝒊) ∗ 𝒏)

|(𝒊 − 2(𝒏 ∗ 𝒊) ∗ 𝒏)|

where 𝒏 is the normal of the collision position. For hits in screen-space at screen-

space position (𝑥, 𝑦) the normal of 𝑁𝑓 𝑥 ,𝑦
 or 𝑁𝑏 𝑥 ,𝑦

 is used depending on whether

or not the 𝒅𝒑𝒓𝒆𝒗 hits the front side or back side of the object. For misses in

screen-space the normal of the quad hit 𝑁𝑄 is used.

The new origin 𝒐𝑛𝑒𝑤 in screen-space can be determined by 𝑃𝑓 𝑥 ,𝑦
 or 𝑃𝑏 𝑥 ,𝑦

directly. However, because a pixel is not a single point in space but rather an area

this position, 𝒑𝑏𝑢𝑓𝑓𝑒𝑟 , does not necessarily adhere to the equation

𝒑𝑏𝑢𝑓𝑓𝑒𝑟 = 𝒐𝑝𝑟𝑒𝑣 + 𝒅𝑝𝑟𝑒𝑣 ∗ 𝑡 , 𝑡 > 0

Thus, using a position from the buffers directly will skew the reflections and can

result in self-reflections. Therefore, a ray-plane intersection test is performed to

determine 𝒐𝑛𝑒𝑤 . A plane is defined by the position and the normal of the relevant

buffers, again depending on whether or not the back side or front side is hit. With

the position 𝒑𝑏𝑢𝑓𝑓𝑒𝑟 and the normal 𝒏𝑏𝑢𝑓𝑓𝑒𝑟 from the buffers a plane is defined

by

𝒏𝑏𝑢𝑓𝑓𝑒𝑟 ∗ 𝒑𝑝𝑙𝑎𝑛𝑒 − 𝒑𝑏𝑢𝑓𝑓𝑒𝑟 = 0

Substituting 𝒑𝑝𝑙𝑎𝑛𝑒 with 𝒐𝑝𝑟𝑒𝑣 + 𝒅𝑝𝑟𝑒𝑣 ∗ 𝑡 and solving for t yields

28

𝑡 =
 𝒑𝑏𝑢𝑓𝑓𝑒𝑟 − 𝒅𝑝𝑟𝑒𝑣 ∗ 𝒏𝑏𝑢𝑓𝑓𝑒𝑟

𝒅𝑝𝑟𝑒𝑣 ∗ 𝒏𝑏𝑢𝑓𝑓𝑒𝑟

And the new origin can then be computed by

𝒐𝑛𝑒𝑤 = 𝒐𝑝𝑟𝑒𝑣 + 𝒅𝑝𝑟𝑒𝑣 ∗ 𝑡

For misses in screen-space the ray-quad intersection test determines the distance

t and the same formula can be used directly.

While a large improvement over using the buffers directly, this still results in self

reflections for both hits and misses in screen-space. This is partly due to rounding

errors and to the incorrect representation of pixels as points. To circumvent this

𝒐𝑛𝑒𝑤 is offset in the normal direction by some 𝜖.

𝒐𝑛𝑒𝑤 = (𝒐𝑝𝑟𝑒𝑣 + 𝒅𝑝𝑟𝑒𝑣 ∗ 𝑡) + 𝒏 ∗ 𝜖

If the ray tracing algorithm is defined in terms of view-space coordinates both hits

and misses can be treated identically by recursion until a diffuse surface is hit,

until some maximum depth is reached or until the cumulative weight, determined

by the reflection filter along the recursion, reaches some threshold.

7.5 Glossy Effects

7.5.1 Importance Sampling

The details of importance sampling of the Phong and Blinn BRDFs are covered in

the chapter Theory and Previous Work. Adapting these results to this thesis in

order to determine the raw reflection color 𝑐𝑟(𝑥 ,𝑦)
 of a pixel (𝑥, 𝑦) is done by

determining a set of sampling directions based on the BRDF and shininess of the

surface.

A single sampling direction 𝒅𝑠 is determined by generating two uniformly

distributed random variables 𝜉1 and 𝜉2 between 0 and 1. For Phong

θ = cos−1(𝜉1
𝑛 +1)

𝜙 = 2𝜋𝜉2

Where

𝑛 = 𝑆𝑓 (𝑥,𝑦)

29

yields the sampling direction in spherical coordinates in specular space i.e. where

the reflection vector 𝒓𝑠𝑝𝑒𝑐 𝑥,𝑦
 is the Z axis. 𝑟𝑠𝑝𝑒𝑐 𝑥,𝑦

 is either determined by

reflecting 𝑃𝑓 𝑥,𝑦
 about 𝑁𝑓 𝑥,𝑦

 or retrieved from 𝑅 𝑥,𝑦 directly. The Cartesian

coordinates in specular space 𝒅𝑠𝑝𝑒𝑐 = (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠) is given by

𝑥𝑠 = cos 𝜙𝑠 sin 𝜃𝑠

𝑦𝑠 = sin 𝜙𝑠 sin θs

𝑧𝑠 = cos(𝜃𝑠)

which is transformed to view-space by

𝒅𝑠 = 𝑥𝑠 ∗ 𝒖 + 𝑥𝑦 ∗ 𝒗 + 𝑥𝑧 ∗ 𝒘

where

𝒘 = 𝒓𝑠𝑝𝑒𝑐 𝑥,𝑦

𝒖 =
𝒂 × 𝒘

 𝒂 × 𝒘

𝒗 = 𝒖 × 𝒘

and 𝒂 is an arbitrary vector. An arbitrary vector can be used because only the

specular direction defines the space. [10][13]

For Blinn

θ = cos−1(𝜉1
𝑛 +1

)

𝜙 = 2𝜋𝜉2

where

𝑛 = 𝑆𝑓 𝑥,𝑦

yields the half vector 𝒉𝑛𝑜𝑟𝑚 𝑥,𝑦 in normal space i.e. where the normal vector

𝑁𝑓 𝑥,𝑦
 is the Z axis. The half vector in Cartesian view-space 𝒉 𝑥,𝑦 is determined in

the same way as the reflection vector for Phong except 𝒘 = 𝑁𝑓 𝑥,𝑦
. 𝒅𝑠 is

determined by reflecting 𝑃𝑓 𝑥,𝑦
 about 𝒉 𝑥,𝑦 . [14]

Using this sampling scheme will result in a set of sampling directions. Each of

these directions is then traced using the same algorithm detailed above and 𝑐𝑟(𝑥 ,𝑦)

is determined by calculating the mean of these samples. When using glossy

reflections of higher reflection depth secondary bounces do not generate

30

additional rays; one ray is traced for each original sample. Furthermore, the rays

should be skewed again for each bounce, based on the BRDF and shininess of the

surface hit.

7.5.2 Adaptive blur

For a sufficiently large number of samples the importance sampling scheme

converges to accurate results. However, in order to keep computation time down

the number of samples for this thesis can typically not be greater than 8, even

when using the speed-up pre-calculation detailed in the next chapter. With few

samples the raw reflection suffers from sampling artifacts. To alleviate this issue

the raw reflection is first rendered into its own buffer 𝑅𝑟𝑎𝑤 which is then blurred.

Standard techniques for blur such as Gaussian blur are not applicable as the size

of the filter is static. Thus, the filter will either blur too much in places where the

sampling spread is small or blur too little in places where the sampling spread is

large.

To handle this, the average distance traveled by the sampling rays and the

shininess of the pixel are used to determine the size of the filter for each pixel.

This blurring is not physically accurate and a larger sample size is to be preferred

when computation times allow for it. The filter is square and the size of the side

the filter of pixel (𝑥, 𝑦) is

𝑕 𝑥,𝑦 = 𝑤 𝑥,𝑦 = max(5, 2 d x,y tan(cos−1(0.5

1

1+S f x ,y)))

Where d x,y average distance travelled by each ray of the pixel (x,y). The

justification for the formula is that the expected value of a uniformly distributed

random value between 0 and 1 is 0.5. The average angle of the samples

cos−1(0.5

1

1+S f x ,y) is used to estimate the spread of the samples. Note that this is

an ad hoc solution as the distance is in view-space. However, it gives a good

approximation and most importantly, lessens blurring of pixels with little sampling

spread.

The main purpose of applying adaptive blur to the raw reflection is to alleviate

sampling artifacts while not blurring areas with little to no spread. Thus, a simpler

formula can be used for a particular scene.

𝑕 𝑥,𝑦 = 𝑤 𝑥,𝑦 = max(5, 𝑐
𝑑 𝑥,𝑦

𝑆𝑓 𝑥,𝑦

)

31

where 𝑐 is a scene specific constant. While not based on any physical law it gives

similar and faster results if 𝑐 is tuned to accommodate the scene.

7.6 Speed-up techniques
It quickly became apparent during the thesis work that performing all the steps of

the post-processor for every image would not be feasible given the time

constraint of 300ms, the quality demands and the lack of a GPU. Even ignoring

misses in screen-space, thus not requiring texture completion and using only

perfect reflectors, thus requiring only one reflection vector per pixel, images still

took several seconds to process. In order to process quickly enough the number of

sampled positions for each reflection vector needed to be reduced significantly

resulting in larger sampling steps. This leads to rays missing thin objects entirely

and patterns start to emerge. The effect of reduced sampling is shown below.

Figure 8: The effect of reduced sampling of reflection rays.

7.6.1 Reflection Caching

In order to accomplish the quality required while maintaining acceptable

computation time the traced rays can be pre-computed, which simplifies the

computations needed in real-time to mostly texture lookups and array indexing.

The caching is based on a simplifying assumption, namely that the geometry of

the scene does not change between frames. With this assumption the screen-

space collision position of each sample can be stored and reused for the next

frame. This assumption is far too restrictive for most applications. However,

product configurators, the ones relevant for this thesis work in particular,

generally only have one static scene with one static camera. What changes

between frames is not the geometry but the surface properties. For scenes with a

limited set of geometrical setups a cache for each of them can be pre-computed.

Geometry here refers to the positions of the pixels i.e. the buffers 𝑃𝑓 and 𝑃𝑏 . The

reflection cache is created using all the buffers, including 𝑁𝑓 , 𝑁𝑏 , 𝑅, 𝐶𝑓 , 𝐶𝑏 , 𝐹𝑓 , 𝐹𝑏 ,

𝑆𝑓 and 𝑆𝑏 . The rays are traced as before and the screen-space position hit is

stored. Because the texture completion used for this thesis work matches every

missing pixel of the boundary textures to exactly one pixel in screen-space the

32

caching is easily extended to handle misses in screen-space by treating misses as

hitting the pixel used during completion. The data stored is as summarized below.

 For every pixel (x,y)

o The average distance 𝑑 𝑥,𝑦 traveled by the samples

o For every glossiness sample 𝑔𝑠 𝑥 ,𝑦

 The direction vector of the sample 𝑟 𝑥,𝑦 𝑠

 The value of the PDF for the original shininess 𝑛1

𝑝 𝜃𝑔𝑠 𝑥 ,𝑦
 = 𝑛1 + 1 cos(𝜃𝑔𝑠 𝑥 ,𝑦

)n1

 For every recursion of secondary bounces

 The sampled screen-space collision position

 𝑥, 𝑦 𝑠 of the traced ray

 A Boolean 𝑓𝑟𝑜𝑛𝑡𝑠 signifying whether or not the

front side of the object was hit

The reflection cache is used by iterating over all the pixels of the new buffers. The

color of each glossiness sample is calculated by iterating over the secondary

bounces and adding 𝐶𝑓 𝑥,𝑦 𝑠
 or 𝐶𝑏 𝑥,𝑦 𝑠

 depending on the value of 𝑓𝑟𝑜𝑛𝑡𝑠

weighed by the cumulative reflection filter, determined by 𝐹𝑓 𝑥,𝑦 𝑠
or 𝐹𝑏 𝑥,𝑦 𝑠

,

along the samples. 𝑑 𝑥,𝑦 is used for adaptive blur.

If there is no bump mapping and the shininess and BRDF of the surfaces remain

constant then 𝑟 𝑥,𝑦 𝑠
 and 𝑝(𝜃𝑔𝑠 𝑥 ,𝑦

) are not needed as the value of the PDF will

be the same for each frame. The raw reflection color is then simply the average of

the samples.

7.6.2 Glossy Reflections and Bump Mapping with Reflection Caching

Reflection caching can accurately be used for perfect non-glossy reflections.

However, since perfect reflections are the result of infinite shininess with the

sampling PDF reaching a delta function only samples in the perfect specular

direction given the original bump map will be traced. Because of this no amount

of weighing of the samples will approximate a different bump map as the weight

of any sample not corresponding to the perfect reflection of a new bump map will

be 0. This is also why tracing more than one ray for perfect reflections is

superfluous as the result would be the same for each of them. Using reflection

caching for perfect reflections must therefore be handled as a special case where

one reflection cache for each possible bump map is created.

33

Glossy reflections sampled using the importance sampling scheme however will

result in sampling rays that are relevant even for different bump maps and

shininess levels. Using the additional data stored in the reflection cache the

following formula is used to determine the raw reflection color of a pixel the pixel

(𝑥, 𝑦).

𝑐𝑟 𝑥,𝑦 =

𝑐𝑠𝑖𝑝2(𝑟 𝑥 ,𝑦 𝑖

)

𝑝1(𝑟 𝑥,𝑦 𝑖
)

𝑚
𝑖=1

𝑝2(𝑟 𝑥,𝑦 𝑖

)

𝑝1(𝑟 𝑥,𝑦 𝑖
)

𝑚
𝑖=1

Where m is the number of samples, 𝑟 𝑥,𝑦 𝑖
 is the direction of sample 𝑖 and 𝑐𝑠𝑖

 is

the color of the sample retrieved by computing the weighted sum along the

reflection depth.

Colloquially, the glossiness sample is weighed by the probability of the sample

given the new shininess divided by the probability of the sample given the old

shininess and summed. This sum is divided by the total weight of the samples.

The value of the PDF for the original normal vectors and shininess are given by

reflection cache i.e. 𝑝1 𝑟 𝑥,𝑦 𝑖
 = 𝑝 𝜃𝑔𝑠 𝑥 ,𝑦

 . For a new bump map and

shininess value the computations depend on whether the surface uses Blinn or

Phong. For Phong the probability of the new sample is given by

𝑝2 𝑟 𝑥,𝑦 𝑖
 = 𝑛2 + 1 cos(𝑟 𝑥,𝑦 𝑠

∗ r x,y 𝑠𝑝𝑒𝑐
)n2

Where

r x,y 𝑠𝑝𝑒𝑐
=

(𝑃𝑓 𝑥,𝑦
− 2(𝑁𝑓 𝑥,𝑦

∗ 𝑃𝑓 𝑥,𝑦
) ∗ 𝑁𝑓 𝑥,𝑦

)

|(𝑃𝑓 𝑥,𝑦
 − 2(𝑁𝑓 𝑥,𝑦

∗ 𝑃𝑓 𝑥,𝑦
) ∗ 𝑁𝑓 𝑥,𝑦

)|

as before.

For Blinn, the probability is given by

𝑝2 𝑟 𝑥,𝑦 𝑖
 = 𝑛2 + 1 cos(𝑁𝑓 𝑥,𝑦

∗ 𝒉 𝑥,𝑦)n2

Where

34

𝒉 𝑥,𝑦 =

r x,y 𝑠𝑝𝑒𝑐
−

𝑃𝑓 𝑥 ,𝑦

|𝑃𝑓 𝑥 ,𝑦
|

|r x,y 𝑠𝑝𝑒𝑐
−

𝑃𝑓 𝑥,𝑦

 𝑃𝑓 𝑥,𝑦

|

35

8 Results
The images shown are rendered using the buffers in Appendix A.

8.1 Image Quality

8.1.1 Perfect Reflections

These images are rendered using no gloss, i.e. infinite shininess using one sample

per pixel which is independent of the underlying surface BRDF. The images to the

left are rendered using the post-processor and the images to the right are

rendered using V-Ray.

Figure 9: Perfect reflections with 1 bounce using screen-space method (left image) and V-

Ray (right image).

Figure 10: Perfect reflections with 2 bounces using screen-space method (left image) and

V-Ray (right image).

36

Figure 11: Perfect reflections with 3 bounces using screen-space method (left image) and

V-Ray (right image).

Figure 12: Perfect reflections with 8 bounces using screen-space method (left image) and

V-Ray (right image).

Figure 13: Perfect reflections with 1 bounce and bump mapping using screen-space

method (left image) and V-Ray (right image).

These images can be considered proof of concept of the screen-space sampling

scheme used. The difference in brightness is due to failures of the texture

completion and incorrect lighting as the difference in incoming angle is ignored.

37

8.1.2 Glossy Reflections

These images are rendered using uniform BRDF and shininess values. All images

are rendered using 8 samples, both for V-Ray and the post-processor. The images

to the left are rendered using the post-processor and the images to the right are

rendered using V-Ray.

8.1.2.1 Glossiness using Phong BRDF:

Figure 14: Glossy reflections with 1 bounce using Phong BRDF with 8 samples and shininess

30 using screen-space method (left image) and V-Ray (right image).

Figure 15: Glossy reflections with 1 bounce using Phong BRDF with 8 samples and shininess

300 using screen-space method (left image) and V-Ray (right image).

38

Figure 16: Glossy reflections with 1 bounce using Phong BRDF with 8 samples and shininess

3000 using screen-space method (left image) and V-Ray (right image).

Figure 17: Glossy reflections with 1 bounce and Bump Mapping using Phong BRDF with 8

samples and shininess 300 using screen-space method (left image) and V-Ray (right

image).

39

8.1.2.2 Glossiness using Blinn BRDF:

Figure 18: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

30 using screen-space method (left image) and V-Ray (right image).

Figure 19: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

300 using screen-space method (left image) and V-Ray (right image).

Figure 20: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

3000 using screen-space method (left image) and V-Ray (right image).

40

Figure 21: Glossy reflections with 1 bounce and Bump Mapping using Blinn BRDF with 8

samples and shininess 300 using screen-space method (left image) and V-Ray (right

image).

41

8.1.3 Varying shininess and normal vectors for glossy reflections using

reflection caching

The following images are the results of the weighted sampling used to allow for

different glossiness values between frames. The images to the left are rendered

using the post-processor by first creating the reflection cache using shininess 1000

and then rendered by weighing the samples according to the new shininess. The

images to the right are rendered using the post-processor with correct shininess

directly. All the images use Blinn BRDF.

Figure 22: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

30 using screen-space method with reflection cache created with shininess 1000 (left

image) and screen-space method with correct shininess (right image).

Figure 23: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

300 using screen-space method with reflection cache created with shininess 1000 (left

image) and screen-space method with correct shininess (right image).

42

Figure 24: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

3000 using screen-space method with reflection cache created with shininess 1000 (left

image) and screen-space method with correct shininess (right image).

Figure 25: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

5000 using screen-space method with reflection cache created with shininess 1000 (left

image) and screen-space method with correct shininess (right image).

Figure 26: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

10000 using screen-space method with reflection cache created with shininess 1000 (left

image) and screen-space method with correct shininess (right image).

As can be seen in the first image the approximation fails when the difference in

shininess becomes too great. This is because the samples picked during the

construction of the reflection cache do not extend far enough outside of the

43

cosine lobe use to create the reflection cache to accurately be used for very low

shininess. The opposite effect can be seen in the last image. Pixels in which none

of the samples fall within the significant part of the cosine lobe are colored using

only low-weight samples, leading to pixel artifacts. Using extreme difference in

shininess results in even greater distortions as exemplified with the figures below.

Figure 27: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

10000 using screen-space method with reflection cache created with shininess 30 (left

image) and screen-space method using correct shininess directly (right image).

Figure 28: Glossy reflections with 1 bounce using Blinn BRDF with 8 samples and shininess

30 using screen-space method with reflection cache created with shininess 10000 (left

image) and screen-space method with correct shininess (right image).

In the following example the image to the left is rendered by tracing the

reflections using no bump mapping and rendering using the reflection cache with

bump mapping by weighing the samples. The image to the right is rendered using

V-Ray. The shininess remains unchanged at 300 between frames.

44

Figure 29: Glossy reflections with 1 bounce and Bump Mapping using Blinn BRDF with 8

samples and shininess 300 using screen-space method with reflection cache created

without Bump Mapping (left image) and V-Ray (right image).

45

8.1.4 Real Life Example

Finally, below is an image rendered using the post-processor with buffers from

the product configurator. The final image is shown together with the front color

buffer.

 Figure 30: Front Color Buffer 𝐶𝑓 of a composed image of a product configurator.

Figure 31: Image with reflections of a composed image of a product configurator.

46

8.2 Performance
The table below shows the performance of the post-processor.

Table 2. Performance based on renderings done using 8 GB of memory and two

Intel Xeon E5450 3GHz CPUs with 640*480 buffers. Running times are averaged

over 100 renderings.

Samples
per pixel

Reflection
Depth

Using
Gloss

Using
Blur

Using
Different
Shininess

Creating
reflection
cache
(ms)

Rendering
Reflection
(ms)

1 1 No No No 2387 18

1 2 No No No 4323 23

1 3 No No No 5187 24

8 1 Yes No No 15964 53

8 1 Yes Yes No 15964 87

8 1 Yes No Yes 15964 83

8 1 Yes Yes Yes 15964 117

47

9 Discussion
This thesis presents an approximation scheme for ray traced reflections using

screen-space data. Like any approximation the results are not entirely accurate.

Objects that are neither part of the scene boundary nor visible from the camera

cannot be captured in the reflections. Furthermore, the representation of the

surrounding environment as a bounding box works well for the specific

application but is difficult to apply to more general settings. Both of these issues

stem from the same cause; the data available in screen-space is limited and

reflected rays cannot always be traced. A more general method of handling

screen-space misses would be an interesting problem. Several ideas came up

during the thesis work. One approach would be to use screen-space sampling

together with depth-preserving environment maps. The rays would then be

sampled from the environment maps when screen-space sampling fails instead of

sampling the scene boundaries. The basic idea is the same but does not put any

restrictions on the type of scene being rendered while also capturing objects not

visible from the camera. The usage of bounding boxes was preferred because it

requires far less additional input and all the relevant scenes are bounded by

boxes.

The texture completion algorithm used is tailored for the given application and

any other application will undoubtedly need its own. Even for this application the

texture completion algorithm fails severely for boundaries with heavily shadowed

parts or varying structure. The technique was used in order to minimize the

amount of user data needed. However, for quality reasons the boundary textures

could instead be given as input buffers. This approach was attempted and

rejected as lighting differs with the new viewing angle and difference between

screen-space hits and misses becomes more obvious. The boundaries could be

rendered from a different position but still have the lighting computed using the

original camera position. Unfortunately, this is unavailable for the renderer used.

Alternatively, any ray that hits the boundaries, even in screen-space, could instead

be sampled from the pre-rendered textures. The reflection caching could be

trivially extended to separate textures by also storing which texture to sample

together with the coordinates. In addition to requiring more user-generated input

data these pre-rendered bounding textures would also need to be composed of

different component images, thus additionally increasing the running time.

The strength of reflections is not computed during the post-processing but

handled as a predetermined value. Thus, the same factors are used for every

bounce which ignores the dependence on incoming angle. The justification for this

inaccuracy is that as the number of bounces increases the contribution is

48

consequently reduced and it is thus most important to accurately capture the

strength of the first bounce. For this particular application this is further

complicated by the fact that different techniques are used for different surfaces

and sometimes several techniques are used in conjunction such as Fresnel

reflections together with arbitrary fall-off textures or curves. As can be seen in the

section Results this inaccuracy has minimal impact on the final color, even when

the number of bounces increases. Regardless, this approximation does mean that

the strength of additional bounces is arbitrary with respect to the physical

justification for the numbers. A more accurate method would be to supply the

surface properties used to determine the reflection strength as buffer input

instead and calculate the strength, for each bounce and with respect to the new

incoming angle, in real time.

Because the algorithm uses screen-space colors, any difference in lighting due

varying incoming angles of the reflected rays, even for the first bounce, cannot be

captured. This can be seen the section Results where the reflected color of the

back side of the box to the right is significantly brighter compared to the images

rendered by V-Ray. A more physically accurate and consistent method would be

to have the color buffer contain color without any contribution from angle-

dependent lighting and instead compute this lighting in the post-processor. This

approach was not attempted as even when ignoring these effects the application

is close to, if not at, the acceptable limit of running time. Furthermore, in order to

improve image quality as many effects as possible should be rendered using V-Ray

or some other commercial ray tracer.

An even more general approach to applying this technique would be to include it

in a real-time graphics engine. The most obvious approach would be to create an

engine using deferred shading as such engines already supply all of the buffers

needed. Assuming indoor scenes the bounding quads could be acquired by

rendering each of them using six pre-processing render calls. The geometry stage

of such calls would likely be very fast as only two triangles would need to be

rendered. These pre-processing steps could then supply the same buffers as the

camera pre-processing step and the lighting of additional bounces could be

handled identically to lighting of any other surface. With the use of a GPU and

tolerance for worse visual quality the technique could potentially be used for

games and other real-time applications.

The approximation scheme itself is capable of capturing local reflections of indoor

scenes with changing geometry, a moving camera and dynamic surface properties

but the reflection caching technique outlined puts severe limitations on frame-to-

frame coherency. Unchanging geometry and camera settings by themselves

49

eliminate many possible applications. Furthermore, while reflection caching can

handle arbitrary changes in reflection strength and color it performs best when

bump mapping and shininess remain constant. The approximation scheme

presented for handling changes of these values works well for small variations.

However, the approximation fails when the variations are too great. If the

hemisphere was sampled using uniform sampling rather than importance

sampling any variation of both bump mapping and shininess could be captured.

This would require significantly more samples however which is why it is not used.

50

10 Conclusion
Accurate rendering of local reflections in real-time is hard which is why most real-

time graphics engines use different approximation techniques or ignore

reflections altogether. Reflections can however be accurately captured using the

off-line rendering technique of ray tracing and distributed ray tracing for glossy

reflections. The method outlined is an attempt to approximate these techniques

by screen-space sampling, thus making the running time independent of the

complexity of the scene. To test for collision, a position is sampled at regular

intervals along each reflection ray and projected to screen-space. The values of

the position buffers at the projected position are then compared to the sampled

position. Misses in screen-space are handled by using to classic ray tracing with a

simplified scene, in this thesis work represented by a box with faces determined

from the original screen-space buffers.

The approximation fails to capture object that are neither part of the pre-

determined scene boundary nor visible from the camera and thus not present in

the screen-space buffers. Furthermore, any lighting effects dependent on the

incoming viewing angle are ignored. Reflection strength is given as input buffers

and any reflection strength dependent on incoming angle will be incorrect for

secondary reflection bounces. However, the method does not depend on this

limitation and as such other applications could instead supply the post-processor

with buffers containing the parameters needed to calculate the strength in real

time.

Even using screen-space approximation the running time used to trace reflections

in real time, especially for glossy reflections, was deemed too high. To circumvent

this, a method for caching the reflection rays given static geometry is outlined.

This caching can accurately be reused for any arbitrary change in lighting, diffuse

color and reflection strength. The approximation used for changes in normal

mapping and shininess however fails when these vary greatly between frames. No

theorizing about the mathematical limits is attempted but a caching of shininess

1000 can give decent approximations of shininess as low as 300 and as high as

5000.

Given the limitations the approximation accurately renders both perfect

reflections and glossy reflections with good visual quality. The reflection mapping

technique allows the post-processor to be run at below 200ms which is fast

enough for the intended application.

51

Based on the Problem Statement the following conclusions can thus be reached.

 Identify the auxiliary data needed

The projection parameters used to render the scene are needed to use the

technique at all. To use boundary textures, either determined from screen-space

data or given as input buffers, the view-matrix parameters are also needed if

these coordinates are given in world-space.

At the very minimum color, positions and normal vectors of the front-side of

objects are needed. If the strength of reflections is not constant over the scene a

reflection filter used for this thesis work or the parameters needed to determine

the strength are required as well. The color, position and normal vectors of the

back side of objects are needed to accurately achieve higher reflection depth and

correctly determining back side hits and reflection color of back side hits. In order

to use different shininess and BRDFs in the scene buffers for these values are

needed as well.

 Find a way to approximate the ray collision of ray tracing with screen

space sampling

Only one approach is outlined but produces accurate results given the inability to

capture reflections of objects not visible from the camera.

 Handling misses in screen space

The representation of the scene boundary as a box achieves a decent

approximation for the relevant scenes but is difficult to generalize. The texture

completion algorithm used fails even for some of the relevant surfaces.

 Handling glossy effects

Importance sampling can be used with good results similar to those of V-Ray for

optimal scenes.

 Identify and remove or alleviate artifacts

Sampling artifacts can be alleviated using adaptive blur and colors that spill over

can be handled by rendering the scene without anti-aliasing.

 Find applicable speed-up techniques

Reflection caching achieves running times below the interpreted maximum

running time but comes with severe restrictions on frame-to-frame coherency.

52

11 Appendix A: Buffers

 Figure A1: Front Color Buffer 𝐶𝑓

 Figure A2: Back Color Buffer 𝐶𝑏

53

 Figure A3: Front Position Buffer 𝑃𝑓

 Figure A4: Front Position Buffer factored with 0.01 (not used)

54

 Figure A5: Back Position Buffer 𝑃𝑏

 Figure A6: Back Position Buffer factored with 0.01 (not used)

55

 Figure A7: Front Normal Buffer 𝑁𝑓

Figure A8: Back Normal Buffer 𝑁𝑏 (Note that the normals are inverted in order to use the

renderer's back face culling to retrieve the back face data)

56

 Figure A9: Front Reflection Filter Buffer 𝐹𝑓

 Figure A10: Back Reflection Filter Buffer 𝐹𝑏

57

 Figure A11: Reflection Vector Buffer 𝑅

58

12 Appendix B: Perspective Projection Matrices
The projection matrix used here is based on the OpenGL perspective projection

matrix:

𝑀𝑃𝑂𝑝𝑒𝑛𝐺𝐿 =

𝑓

𝑎𝑠𝑝𝑒𝑐𝑡
0 0 0

0 𝑓 0 0

0 0
𝑧𝐹𝑎𝑟 + 𝑧𝑁𝑒𝑎𝑟

𝑧𝐹𝑎𝑟 − 𝑧𝑁𝑒𝑎𝑟

2 ∗ 𝑧𝐹𝑎𝑟 ∗ 𝑧𝑁𝑒𝑎𝑟

𝑧𝑁𝑒𝑎𝑟 − 𝑧𝐹𝑎𝑟

0 0 −1 0

Where

𝑓 = cotangent
𝑓𝑜𝑣𝑦

2

This is modified for three reasons. First, the field of view of the base renderer is

given horizontally rather than vertically. Secondly, the base renderer attempts to

mimic a physical camera. Two commonly used settings are vertical and horizontal

shift, these are introduces to the matrix. Lastly, the 𝑧𝐹𝑎𝑟 and 𝑧𝑁𝑒𝑎𝑟 parameters

are relevant for determining the size of the view frustum and to determine the

depth value of a pixel, neither is needed for this application nor are the

parameters themselves meaningful and as such these values are ignored.

𝑀𝑃 =

𝑓 ∗ 𝑕𝑠
2 + 1 0 0 0

0 𝑓 ∗ 𝑎𝑠𝑝𝑒𝑐𝑡 𝑣𝑠
2 + 1 0 0

0 0 0 0

−𝑕𝑠 −𝑣𝑠 −1 0

Where

𝑓 = 𝑐𝑜𝑡𝑎𝑛𝑔𝑒𝑛𝑡
𝑓𝑜𝑣𝑥

2

59

13 References
[1] Paul Joseph Diefenbach. Pipeline Rendering: Interaction and

 Realism Through Hardware-Based Multi-Pass Rendering.

 University of Pennsylvania, Department of Computer Science, Ph.D.

 dissertation, 1996.

[2] Kasper Høy Nielsen and NielsJørgen Christensen. Real-time

recursive specular reflections on planar and curved surfaces using

graphics hardware. University of We0073t Bohemia, Journal of

WSCG, volume 10, pp. 91–98, 2002.

[3] Rui Bastos and Wolfgang Stürzlinger. Forward Mapped Planar

 Mirror Reflections. University of North Carolina at Chapel Hill,

 Computer Science Technical Report TR98-026, 1998.

[4] James F. Blinn and Martin E. Newell. Texture and Reflection in

 Computer Generated Images. Communication of the ACM. Vol. 19

 no. 10, pp. 542-547, 1976.

[5] Ned Greene. Environment Mapping and Other Applications of W

 orld Projections, IEEE Computer Graphics and Applications,

 pp. 21-29, 1986.

[6] Brian Cabral, Marc Olano, and Philip Nemec. Reflection space

 image based rendering. SIGGRAPH ’99: Proceedings of the 26th

 annual conference on Computer graphics and interactive

 techniques, pp. 165–170. ACM Press, 1999.

[7] Ziyad S. Hakura, John M. Snyder, and Jerome E. Lengyel.

 Parameterized environment maps. SI3D ’01: Proceedings of the

 2001 symposium on Interactive 3D graphics, pp. 203–208. ACM

 Press, 2001.

[8] Jingyi Yu, Jason Yang and Leonard McMillan. Real-time reflection

 mapping with parallax. Proceedings of the 2005 symposium on

 Interactive 3D graphics and games, pp. 133-138, 2005.

[9] Jan Kauts and Michael D. McCool. Approximation of Glossy

 Reflection with Prefiltered Environment Maps. Graphics Interface

 2000, pp. 119-126, 2000.

60

[10] Mark Colbertand and Jaroslav Krǐvánek. GPU-Based Importance

 Sampling. GPU Gems 3 Chapter 20, pp 459-475, 2007.

[11] Turner Whitteed. An improved illumination model for shaded

 display. CACM 23, 6, pp. 343–349, 1980.

[12] Henrik Wann Jensen et al. Monte Carlo Ray Tracing. Siggraph 2003

 Course 44, 2003.

[13] Kevin Suffern. Ray Tracing from the Ground Up, Chapter 25, pp.

 529-542, 2007.

[14] Matt Pharr and Greg Humphreys. Physically Based Rendering, from

 theory to implementation. Chapter 15.5.1, pp. 681-684, 2004.

[15] Vadim Konushin and Vladimir Vezhnevets. Automatic building

 texture completion. GraphiCon, pp. 174-177, 2007.

[16] Tomas Möller and Ben Trumbore. Fast, Minimum Storage

 Ray/Triangle Intersection. ACM Siggraph 2005 Courses, 2005.

