
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 89, 011303(R) (2014)

Microscopic description of translationally invariant core + N + N overlap functions
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We derive expressions for core +N + N overlap integrals starting from microscopic wave functions obtained
in the ab initio no-core shell model. These overlap integrals correspond to three-body channel form factors and
can be used to investigate the clustering of many-body systems into a core plus two nucleons. We consider the
case when the composite system and the core are described in Slater determinant, harmonic oscillator bases, and
we show how to remove spurious center-of-mass components exactly in order to derive translationally invariant
overlap integrals. We study in particular the Borromean 6He nucleus using realistic chiral nuclear interactions,
and we demonstrate that the observed clusterization in this system is a Pauli focusing effect. The inclusion of
three-body forces has a small effect on this structure. In addition, we discuss the issue of absolute normalization
for spectroscopic factors, which we show is larger than one. As part of this study we also perform extrapolations of
ground-state observables and investigate the dependence of these results on the resolution scale of the interaction.
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Introduction. The structure of light nuclei is a very rich
subject. A particularly interesting phenomenon is the impor-
tance of clusterization. Cluster structures appear frequently
around reaction thresholds and are manifested, e.g., in large
cluster form factors [1]. It is often modeled by assuming that
intrinsic cluster degrees of freedom are frozen, thus reducing
the full many-body problem to an effective few-body one.
However, the appearance of clusterization from a microscopic
perspective remains to be elucidated [2–4]. It is not clear
how strong short-range correlations, induced by realistic
nuclear forces, propagate to longer-range cluster structures.
In addition, given the fermionic nature of nucleons we can
be sure that antisymmetrization at the many-body level will
always play an important role.

For light nuclei we have seen major progress in the
development of ab initio approaches [5–7]. The state-of-the-art
methods are based on controlled approximations and the
underlying computational schemes account for successive
many-body corrections in a systematic way [8]. Recently,
the application of chiral effective field theory (EFT) [9–12]
and renormalization-group techniques [13] has resulted in a
systematic approach to the nuclear interaction.

Even more recently, ab initio approaches began to bridge
the gap from nuclear structure to reactions [14–17]. Direct
reactions, such as stripping and pickup of a single nucleon,
constitute a current frontier for these methods. In contrast,
there exists a rather standard approximation to treat such
reactions within phenomenological models [18] that uses
spectroscopic factors as input parameters [1,19,20]. The
spectroscopic factor corresponds to the integrated norm of
the cluster form factor. From a microscopic perspective it
is a purely theoretical construct that is defined from wave
function overlaps. It is expected that a correct treatment of
translational invariance will be important for this quantity.
The particular case of three-body channels in 6He was studied
by Timofeyuk [21], who found a significant increase of
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the normalization when using a translation-invariant shell
model. This observation was verified by Brida and Nunes [22]
using a microscopic Monte Carlo approach with schematic
interactions.

In this Rapid Communication we derive algebraic expres-
sions for calculating translationally invariant cluster form
factors from no-core shell-model (NCSM) wave functions.
We restrict ourselves to three-body core +N + N channels,
and we will apply our formalism to study 4He + n + n cluster
structures in the Borromean system 6He [23]. Despite its
short β-decay lifetime, a series of precision measurements on
6He ground-state properties have recently been performed. Its
binding energy was measured using the TITAN Penning trap
mass spectrometer [24], and its charge radius was determined
from laser spectroscopy [25,26]. In addition, there are several
theoretical studies of 6He in the literature, ranging from from
inert cluster models [23,27] and microscopic methods [22,28–
30] with phenomenological or semirealistic interactions to
ab initio approaches [31–34] using high-precision nuclear
interactions.

The structure of this Rapid Communication is as follows.
First we give a brief introduction to the NCSM and we present
the derivation of algebraic expressions for core +N + N
channel form factors. Then we present our results for ground-
state properties of 6He using chiral interactions. Then we turn
to the overlap of 6He with 4He + n + n. We plot the correlation
density and decompose the cluster form factor into different
components of a hyperspherical harmonics expansion. Finally,
we present a discussion of our results and also give an outlook.

Theoretical formalism. In the NCSM we consider a system
of A pointlike nonrelativistic nucleons. The many-body basis
is constructed from Slater determinants (SD) of harmonic
oscillator (HO) single-particle states. A basis truncation is
introduced by including all HO configurations up to a certain
energy cutoff (defined by the parameter Nmax). This particular
choice of basis truncation guarantees translational invariance
as all eigenstates will factorize into a product of a state
depending on intrinsic coordinates and a state depending
only on the center-of-mass (CM) coordinate. Eigensolutions
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with spurious CM excitations can then be shifted up in
the spectrum by adding a Lawson projection term [35] to
the Hamiltonian. The NCSM Hamiltonian contains realistic
two- and three-body nuclear interactions, and the resolution
scale of the Hamiltonian matrix is usually lowered with
similarity transformations. See, e.g., Ref. [5] for a more
detailed description of the NCSM method.

Since we want to compute a translationally invariant cluster
form factor, but still work with wave functions expressed in the
NCSM basis with single-particle coordinates, we need to take
special care to remove spurious CM components. A framework
for performing this was introduced in [36] and is here
generalized to the case of three-body core +N + N channels.

We define the following set of Jacobi coordinates for an
A-nucleon system, adopting the notation of [36], where �ξ0

is the A-body CM coordinate and ξ is the set of normalized

Jacobi coordinates for the A − 2 particles in the core. The
relative coordinates for the clusters are defined as

�η =
√

2(A − 2)

A

[
1

A − 2

A−2∑
i=1

�ri − 1

2
(�rA−1 + �rA)

]
, (1a)

�ν =
√

1

2
[�rA−1 − �rA], (1b)

which correspond to the normalized “T-coordinate” system of
core +N + N . Using this set of Jacobi coordinates we define
cluster-separated A-nucleon wave functions, which will be
equivalent to a basis set in the continuous variables (η,ν).
Each basis function corresponds to a set of frozen relative
distances, which is reflected by two Dirac δ functions

〈
ξη′ �ην ′�νστ

∣∣�AJMT MT

αMα
; δηδν

〉 =
∑

(lηmηlνmν |LML)(I2M2I3M3|I23M23)(I1M1I23M23|SMS)(LMLSMS |JM)

× (
T2MT2T3MT3

∣∣T23MT23

)(
T1MT1T23MT23

∣∣T MT

)δ(η − η′)
ηη′

δ(ν − ν ′)
νν ′ Ylηmη

(η̂)Ylνmν
(ν̂)

× 〈
σA−1τA−1

∣∣ I2M2T2MT2

〉 〈
ξ ,σ1 . . . σA−2,τ1 . . . τA−2

∣∣ (A − 2)α1I1M1T1MT1

〉
, (2)

where σ = σ1, . . . ,σA and τ = τ1, . . . ,τA are the spin and isospin coordinates of the A nucleons, and α ≡ {α1I1T1,I2T2,I3T3; LS}
denotes the three-body channel in LS coupling with the corresponding projection quantum numbers Mα . The core, with A − 2
nucleons, has total angular momentum I1 and isospin T1, while α1 correspond to additional quantum numbers needed to
characterize the eigenstate. Particles 2 and 3 are single nucleons, so I2 = I3 = T2 = T3 = 1/2. The A-body system has a total
angular momentum J and a total isospin T with projections M and MT , respectively.

The core +N + N three-body channel form factor for an A-body state λJT , with λ denoting additional quantum numbers
necessary to characterize the state, can be defined as the overlap integral

uAλJT
α (η,ν) = 〈

AλJT
∣∣AA−2,1,1�

AJT
α ; δηδν

〉 =
∑
nη,nν

√
A!

(A − 2)!
Rnηlη (η)Rnνlν (ν)

〈
AλJT

∣∣�AJT
α ; nηlη,nνlν

〉
, (3)

where AA−2,1,1 is a cluster antisymmetrizer. It permutes particles between the clusters and gives a simple combinatorial factor
when acting on the fully antisymmetrized bra state. In this expression we have expanded the Dirac δ functions in terms of radial
HO functions, Rnl , defined with the HO length parameter b = √

�/m�, with m the nucleon mass and � the HO frequency. The
new basis functions 〈ξ �η�νστ |�AJMT MT

αMα
; nηlη,nνlν〉 are identical to Eq. (2), but with the delta functions replaced by HO functions

Rnηlη (η)Rnνlν (ν). The spectroscopic factor is the norm of the overlap integral.
The relationship between an A-nucleon wave function expressed in the SD basis, with 0S CM motion as guaranteed by the

Lawson projection, and the corresponding state in Jacobi coordinates is

〈�r1 . . . �rAστ | AλJMT MT 〉SD = 〈ξ �η�νστ | AλJMT MT 〉 ψ000(�ξ0). (4)

By applying this relationship to the composite and cluster states it is possible to relate the overlap in Jacobi coordinates with an
overlap expressed in an SD basis,

〈
AλJT

∣∣ AA−2,1,1�
AJT
α ; nηlη,nνlν

〉 = SD
〈
AλJT

∣∣ AA−2,1,1�
AJT
α ; nηlη,nνlν

〉
SD〈

nηlη00lη
∣∣ 00nηlηlη

〉
2

A−2

, (5)

where the denominator is the general HO bracket [37] that results from a Talmi-Moshinksky transformation. A second
transformation takes us from η and ν to single-particle coordinates (subscripts a and b) for the two nucleons outside the
core. Finally, recoupling spins and integrating over the intrinsic coordinates we arrive at an expression for the form factor

011303-2



RAPID COMMUNICATIONS

MICROSCOPIC DESCRIPTION OF TRANSLATIONALLY . . . PHYSICAL REVIEW C 89, 011303(R) (2014)

expressed in terms of double-reduced matrix elements between SD eigenstates,

uAλJT
α (η,ν) =

∑
nηlη
nν lν

...

Rnηlη (η)Rnνlν (ν)

〈nηlη00lη|00nηlηlη〉 2
A−2

(−1)3I1+I23+Jab−T23−S+L〈nalanblbL|nηlηnνlνL〉1

× L̂ŜĴ 2
abĵa ĵb

Ĵ T̂

{
L I23 Jab

I1 J S

}⎧⎪⎨
⎪⎩

la lb L

I3 I2 I23

ja jb Jab

⎫⎪⎬
⎪⎭SD〈AλJT |∥∥[

a
†
nalaja ta

a
†
nblbjbtb

]JabTab
∥∥|(A − 2)α1I1T1〉SD, (6)

where Jab (Tab) is the coupled total spin (isospin) of the two
nucleons. The a†a† matrix elements are calculable by using a
special version of our transition density code [36].

Results. We will start this section with a presentation
of our results for 6He ground-state observables. We will
then extract the three-body channel form factors and the
corresponding spectroscopic factors. Our calculations are
performed in the NCSM for model spaces up to Nmax = 16,
corresponding to a basis dimension of 3.6 × 108. Unless
otherwise stated, we employ the Idaho chiral NN interaction at
next-to-next-to-next-to-leading order (N3LO) with a 500-MeV
regularization cutoff [11]. The interaction is evolved in the
two-body free space using the Similarity Renormalization
Group (SRG) flow equation [13] in order to compute a
phase-shift equivalent, effective two-body interaction. We note
that the truncation of the evolution at two-body level will
impose a violation of formal unitarity for the transformation
in the many-body space. A specific aim of this study is
therefore to investigate the dependence of our results on
the SRG flow parameter �SRG. We will use a physically
motivated range of resolution scales, corresponding to �SRG =
1.8–2.2 fm−1.

For any choice of realistic interaction, the ground-state
energy of a many-body system calculated in a truncated space
shows a dependence on the basis parameters Nmax and ��. By
construction, our results should be independent of �� in the
limit of infinite model space. We will now discuss extrapola-
tions of our 6He finite-space results. Our oscillator basis trun-
cation can be translated into corresponding infrared (IR) and
ultraviolet (UV) cutoffs [38–40]. Following Refs. [39,40], we
define the UV momentum cutoff �UV = √

2(N + 3/2)�/b,
where N is the truncation in the single-particle basis (N =
Nmax + 1 for p-shell nuclei). For the IR parameter we use
�IR = 1/L, with L = L2 ≡ √

2(N + 3/2 + 2)b as suggested
in Ref. [40]. Working in very large model spaces, we are able
to capture the UV physics of the softened interaction. As a
consequence, the IR correction will be the most important one
and we use the IR dependence of the energy that was derived
in Ref. [39],

EL = E∞ + Ae−2k∞L, (7)

where k∞ should be related to the binding momentum, but
in practice will be used as a free fit parameter together with
A and the desired E∞. In addition, we use the suggested IR
correction formula for the point-proton radius [39],

〈r2〉L ≈ 〈r2〉∞[1 − (c0β
3 + c1β)e−β ], (8)

where β ≡ 2k∞L. We use c0, c1, and 〈r2〉∞ as fit parameters,
but we keep k∞ fixed from the energy fit. Our calculated data
for these two ground-state observables are presented in Fig. 1
together with the extrapolation curves.

In practice, we want to test the performance of the
extrapolation procedure as a function of the model space
truncation. We start by imposing a rather small Nmax truncation
and collect the results computed at the largest values of �UV

into one data set of five points that is used for the curve
fit. The error bar reflects the variance from the least-squares
fit. It does not include an estimate of the systematic error
from the extrapolation. This procedure is then repeated for
increasing Nmax, i.e., including more data, until we finally use
the unrestricted data set. The evolution of the extrapolated
result with error bars from Nmax � 10–16 is shown in Fig. 1.
While we find a consistent set of results for the energies, we
note that there is a trend of increasing point-proton radius
that calls for further investigation. Final results, obtained with
the unrestricted data set Nmax � 16, are presented in Table I
for three different SRG parameters. The fact that the unitarity
of the transformation is only approximate leads to binding
and separation energy variations of a few hundred keV but
is hardly noticeable within error bars of the extrapolated
radius.

Next we turn to the computation of three-body channel
form factors from our microscopic wave functions. We employ
Eq. (6) with NCSM wave functions up to Nmax = 14. In
Fig. 2 we show the main (L = S = 0) component of the
〈6He(0+)|4He(0+) + n + n〉 overlap and the much smaller
L = S = 1 component. Our microscopic calculation provides
a beautiful confirmation of the two-peak structure of this
form factor, as reported in earlier phenomenological cluster
model studies [23,27,42], and within a microscopic model with
schematic interactions [22]. It is clear that the small L = S = 1
component does not show any signs of a similar structure.

Now we are uniquely positioned to analyze this form
factor behavior and to understand the origin of the observed
clustering. To begin with, we note that the so called dineutron
configuration has the largest peak probability. This is expected
since it contributes to a shift of the position of the charged
core with respect to the total center of mass, and therefore to an
increased charge radius, which is consistent with experimental
findings. Note, however, that the average distance between
the two neutrons is not very small (∼2 fm), and it can be
expected that the influence on the charge radius will diminish
when adding additional neutrons. Indeed, it has been shown
experimentally that the charge radius increases for 6He, but
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FIG. 1. (Color online) Extrapolation of 6He binding energy (a) and point-proton radius (b) as a function of the IR cutoff parameter. Results
are obtained with the NCSM using an SRG-evolved chiral two-body interaction (�SRG = 2.0 fm−1). See text for details on the extrapolation
procedure.

it decreases again in 8He [24]. Gamow shell-model calcula-
tions [27], which incorporate continuum structures explicitly,
confirm that the amplitude of the dineutron configuration is
reduced when going from 6He to 8He.

We claim that the origin for the observed cluster structure
in 6He is the Pauli principle. To substantiate this statement we
show in Fig. 3 a sequence of contour plots obtained at Nmax =
2, 8, and 14. The same structure is clearly seen in all three
panels, although the former ones represent calculations that
are far from converged; i.e., the model space is much too small
to accommodate the correlations induced by the interaction.
However, what is present already at the smallest model spaces
is the correct antisymmetrization. The importance of a proper
treatment of antisymmetrization was stressed in previous
microscopic studies (see, e.g., Ref. [22]). Obviously, this
feature remains a very weak point in models with inert clusters.
The wave function obtained with a three-body Hamiltonian
(SRG-evolved chiral two- plus three-nucleon forces (NN +
3NF) [43]) exhibits the same clusterization structure, as can
be observed in the lower right panel of Fig. 3.

In order to analyze the cluster form factors further we have
performed a projection on hyperspherical harmonics (HH)
basis functions. The hypercoordinates (ρ,θ,η̂,ν̂) are related
to the Jacobi coordinates (�η,�ν) via η = ρ cos θ , ν = ρ sin θ .
The cluster form factor from Eq. (6), expressed in (ρ,θ )
coordinates, can be projected onto the HH basis

uAλJT
α (θ,ρ) = 1

ρ5/2

∑
K,lη,lν

χAλJT
α,Klηlν

(ρ)ψ
lη,lν
K (θ ), (9a)

where

χAλJT
α,Klηlν

(ρ) = ρ5/2
∫ π

2

0
dθ ′ sin2 θ ′ cos2 θ ′ψlη,lν∗

K (θ ′)

×
∑
nη,nν

CAλJT
α,nηlη,nν lν

Rnηlη (θ ′,ρ)Rnνlν (θ ′,ρ), (9b)

and where ψ
lη,lν
K (θ ) is the hyperangular basis function [44],

and the last row is a compact formulation of the right-hand
side of Eq. (6).

TABLE I. Extrapolated results for the 6He binding energy, two-neutron separation energy, and point-proton radius. Results are obtained with
the NCSM using an SRG-evolved chiral two-body interaction with three different SRG flow parameters. The last column shows theoretical results
from Bacca et al. [32] using the hyperspherical-harmonics approach with the same chiral interaction, but employing the Vlow k renormalization
technique.

Experiment [24] This work Bacca et al. [32,41]

�SRG = 1.8 �SRG = 2.0 �SRG = 2.2 Vlow k (� = 2.0 fm−1)

Egs (MeV) 29.269 29.67(3) 29.20(11) 28.61(22) 29.47(3)
S2n (MeV) 0.975 1.22(2) 0.95(10) 0.68(22) 0.82(4)
rpt-p (fm) 1.938(23) 1.820(4) 1.820(4) 1.815(8) 1.804(9)
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FIG. 2. (Color online) Contour plots of the translationally in-
variant three-body channel form factor 〈6He(0+)|4He(0+) + n + n〉
calculated from NCSM wave functions. The two allowed channels
for this overlap, L = S = 0 and L = S = 1, are shown in panels (a)
and (b), respectively.

In Fig. 4 we show the hyperradial functions for the three
most important terms of this basis expansion. We focus in
particular on the sensitivities to variations in the model space
(panel a) and HO frequency (panel b). The interior part of
the overlap is very well converged. However, we can observe
that the expected exponential tail [23] is not reproduced.
Increasing Nmax we find that the tail builds up slowly. A similar
behavior is found when varying the HO frequency, as can be
seen from the hatched bands in Fig. 4(b). Small frequencies
correspond to large oscillator lengths and therefore reproduce
longer tails. However, a proper treatment of the continuum and
long-range asymptotics is needed to describe this region more
accurately. Such work is ongoing in the framework of the
NCSM/Resonating Group Method (RGM) [34]. Note that the
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FIG. 3. (Color online) Model-space dependence of the three-
body channel form factor 〈6He(0+)|4He(0+) + n + n〉. The main
L = S = 0 channel is shown for a sequence of calculations with
increasing Nmax performed with �SRG = 2.0 fm−1 and �� =
16 MeV. The lower right panel shows the same contour plot using an
SRG-evolved chiral NN + 3NF interaction [43].
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FIG. 4. (Color online) Hyperradial functions obtained from
NCSM three-body channel form factors calculated with an SRG-
evolved chiral two-body interaction (�SRG = 2.0 fm−1). (a) Nmax

dependence for a fixed frequency, �� = 20 MeV. Thick lines
correspond to Nmax = 14 results, while dotted ones are Nmax = 12.
(b) A fixed model space (Nmax = 14, shaded bands) and a range of
HO frequencies, �� = [16,22].

total norms of the hyperradial functions are determined mainly
by the amplitude in the internal region, where the dependence
on Nmax and �� is small. The relative weights of the five main
components, as well as the total sum (i.e., the spectroscopic
factor), are presented in Table II. The calculations are
performed in the Nmax = 14 model space for various SRG
parameters and HO frequencies. We find that the sensitivity
to variations in HO frequency and Nmax is �1%. We note that
we have very small variations around a total spectroscopic
factor of ∼1.3. The wave function obtained using a chiral
NN + 3NF Hamiltonian [43] displays an HH expansion
that is qualitatively very similar. We have also computed the
overlap with an excited core, 〈6He(0+)|4He(2+) + n + n〉.
This channel corresponds to the first excited 2+ state in the
NCSM, situated just below the 2n + 2p threshold but with
slow energy convergence. Using �SRG = 2.0 [fm]−1, we find
the total spectroscopic factor 0.30(4).

Conclusion and discussion. In this Rapid Communication
we have derived expressions for translationally invariant
core +N + N overlap integrals starting from microscopic
wave functions. We have used these overlap integrals to
perform a microscopic investigation of the clustering of 6He
into 4He + n + n. Large-scale ab initio NCSM calculations
were performed with realistic nuclear interactions obtained
from chiral perturbation theory. In addition, we used an SRG
evolution to lower the resolution scale of the many-body
Hamiltonian. We generated a series of such interactions,
labeled by the SRG flow parameter, connected to each
other by (approximately) unitary transformations. All of them
reproduce the same two-nucleon, low-energy observables, but
they have different high-momentum properties. This implies
a resolution-scale dependence in the short-ranged part of the
wave function. Therefore, we stress that the overlap integrals
(and their norms, the spectroscopic factors) are not physical
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TABLE II. Relative weights (in percent) of the HH expansion terms for the three-body channel form factor 〈6He(0+)|4He(0+) + n + n〉
calculated from NCSM wave functions. The last row shows the total spectroscopic factor.

Three-body channel This work [�SRG (fm−1), �� (MeV)] With 3NF Ref. [23] Ref. [22]

K lη = lν L = S (1.8,20) (2.0,16) (2.0,20) (2.0,22) (2.2,20) (2.0,16) (cluster) (microscopic)

0 0 0 4.2 4.4 4.3 4.2 4.3 4.1 4.2 4.0
2 0 0 92.0 91.7 91.9 92.1 92.0 91.3 82.1 79.9
2 1 1 2.1 2.1 2.2 2.2 2.2 3.0 11.2 13.3
6 2 0 1.1 1.2 1.1 1.0 1.0 1.0 1.7 1.9
6 3 1 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.8

Spectroscopic factor: 1.3441 1.3263 1.3340 1.3391 1.3278 1.3284 0.9851 1.3957

observables [45,46]. In this work we have computed spectro-
scopic factors, as well as ground-state observables, using our
series of Hamiltonians connected by SRG transformations.

In particular, we have studied the ground-state energy,
two-neutron separation energy, and point-proton radius of
6He. We employed published extrapolation schemes [39,40]
to correct for the finite HO model space that were used in the
computations, and we found a very consistent set of results for
the energy while the extrapolation behavior of the radius calls
for further studies.

Concerning the cluster structure of the 6He ground
state we have found that the total spectroscopic factor for
〈6He(0+)|4He(0+) + n + n〉 is significantly larger than one.
In contrast, in phenomenological cluster models one assumes
that this quantity is normalized to unity (see, e.g., the results
of Ref. [23] in Table II). Our result is consistent with the
translation-invariant shell-model upper limit of 25/16 ≈ 1.56
by Timofeyuk [21]. Furthermore, we have studied the Nmax

dependence of the overlap and could conclude that the
clusterization is clearly driven by the Pauli principle. By
performing an HH expansion of our three-body channel
form factor, we found a strong dominance of the K = 2,
L = S = 0 channel, which drives a two-peak structure in the
T system of Jacobi coordinates. Furthermore, we can note that
phenomenological approaches predict a significantly enhanced

L = S = 1 channel as compared to our NCSM results with
realistic, chiral interactions. We also find a non-negligible
overlap with an excited core 4He(2+).

This work clears the path for further investigations of three-
body clustering in light nuclei. Through the microscopically
extracted overlap integrals we have a natural interface with
reaction calculations that build on cluster degrees of freedom.
In addition, we can combine this work with the ongoing
development of the NCSM with continuum (NCSMC) [34].
The latter aims to couple NCSM A-body eigenstates with
ab initio cluster wave functions. The formalism presented
here will allow a detailed investigation of the resulting cluster
structures.
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[36] P. Navrátil, Phys. Rev. C 70, 054324 (2004).
[37] L. Trlifaj, Phys. Rev. C 5, 1534 (1972).
[38] S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck,

P. Maris, and J. P. Vary, Phys. Rev. C 86, 054002 (2012).
[39] R. J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C 86,

031301 (2012).
[40] S. N. More, A. Ekström, R. J. Furnstahl, G. Hagen, and T.

Papenbrock, Phys. Rev. C 87, 044326 (2013).
[41] S. Bacca, A. Schwenk, G. Hagen, and T. Papenbrock, Eur. Phys.

J. A 42, 553 (2009).
[42] V. I. Kukulin, V. M. Krasnopol’Sky, V. T. Voronchev, and P. B.

Sazonov, Nucl. Phys. A 453, 365 (1986).
[43] R. Roth (private communication).
[44] M. Fabre de la Ripelle, Ann. Phys. (NY) 147, 281 (1983).
[45] R. J. Furnstahl and H.-W. Hammer, Phys. Lett. B 531, 203

(2002).
[46] R. J. Furnstahl and A. Schwenk, J. Phys. G: Nucl. Part. Phys.

37, 064005 (2010).

011303-7

http://dx.doi.org/10.1016/0370-1573(85)90132-2
http://dx.doi.org/10.1016/0370-1573(85)90132-2
http://dx.doi.org/10.1016/0370-1573(85)90132-2
http://dx.doi.org/10.1016/0370-1573(85)90132-2
http://dx.doi.org/10.1103/PhysRevC.63.054609
http://dx.doi.org/10.1103/PhysRevC.63.054609
http://dx.doi.org/10.1103/PhysRevC.63.054609
http://dx.doi.org/10.1103/PhysRevC.63.054609
http://dx.doi.org/10.1016/j.nuclphysa.2010.06.012
http://dx.doi.org/10.1016/j.nuclphysa.2010.06.012
http://dx.doi.org/10.1016/j.nuclphysa.2010.06.012
http://dx.doi.org/10.1016/j.nuclphysa.2010.06.012
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1103/PhysRevLett.108.052504
http://dx.doi.org/10.1103/PhysRevLett.108.052504
http://dx.doi.org/10.1103/PhysRevLett.108.052504
http://dx.doi.org/10.1103/PhysRevLett.108.052504
http://dx.doi.org/10.1103/PhysRevLett.93.142501
http://dx.doi.org/10.1103/PhysRevLett.93.142501
http://dx.doi.org/10.1103/PhysRevLett.93.142501
http://dx.doi.org/10.1103/PhysRevLett.93.142501
http://dx.doi.org/10.1103/PhysRevLett.99.252501
http://dx.doi.org/10.1103/PhysRevLett.99.252501
http://dx.doi.org/10.1103/PhysRevLett.99.252501
http://dx.doi.org/10.1103/PhysRevLett.99.252501
http://dx.doi.org/10.1103/PhysRevC.84.051304
http://dx.doi.org/10.1103/PhysRevC.84.051304
http://dx.doi.org/10.1103/PhysRevC.84.051304
http://dx.doi.org/10.1103/PhysRevC.84.051304
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.061
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.061
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.061
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.061
http://dx.doi.org/10.1143/ptp/91.2.271
http://dx.doi.org/10.1143/ptp/91.2.271
http://dx.doi.org/10.1143/ptp/91.2.271
http://dx.doi.org/10.1143/ptp/91.2.271
http://dx.doi.org/10.1016/j.nuclphysa.2004.05.013
http://dx.doi.org/10.1016/j.nuclphysa.2004.05.013
http://dx.doi.org/10.1016/j.nuclphysa.2004.05.013
http://dx.doi.org/10.1016/j.nuclphysa.2004.05.013
http://dx.doi.org/10.1103/PhysRevC.73.021302
http://dx.doi.org/10.1103/PhysRevC.73.021302
http://dx.doi.org/10.1103/PhysRevC.73.021302
http://dx.doi.org/10.1103/PhysRevC.73.021302
http://dx.doi.org/10.1103/PhysRevC.86.034321
http://dx.doi.org/10.1103/PhysRevC.86.034321
http://dx.doi.org/10.1103/PhysRevC.86.034321
http://dx.doi.org/10.1103/PhysRevC.86.034321
http://dx.doi.org/10.1103/PhysRevC.88.034320
http://dx.doi.org/10.1103/PhysRevC.88.034320
http://dx.doi.org/10.1103/PhysRevC.88.034320
http://dx.doi.org/10.1103/PhysRevC.88.034320
http://dx.doi.org/10.1016/0370-2693(74)90390-6
http://dx.doi.org/10.1016/0370-2693(74)90390-6
http://dx.doi.org/10.1016/0370-2693(74)90390-6
http://dx.doi.org/10.1016/0370-2693(74)90390-6
http://dx.doi.org/10.1103/PhysRevC.70.054324
http://dx.doi.org/10.1103/PhysRevC.70.054324
http://dx.doi.org/10.1103/PhysRevC.70.054324
http://dx.doi.org/10.1103/PhysRevC.70.054324
http://dx.doi.org/10.1103/PhysRevC.5.1534
http://dx.doi.org/10.1103/PhysRevC.5.1534
http://dx.doi.org/10.1103/PhysRevC.5.1534
http://dx.doi.org/10.1103/PhysRevC.5.1534
http://dx.doi.org/10.1103/PhysRevC.86.054002
http://dx.doi.org/10.1103/PhysRevC.86.054002
http://dx.doi.org/10.1103/PhysRevC.86.054002
http://dx.doi.org/10.1103/PhysRevC.86.054002
http://dx.doi.org/10.1103/PhysRevC.86.031301
http://dx.doi.org/10.1103/PhysRevC.86.031301
http://dx.doi.org/10.1103/PhysRevC.86.031301
http://dx.doi.org/10.1103/PhysRevC.86.031301
http://dx.doi.org/10.1103/PhysRevC.87.044326
http://dx.doi.org/10.1103/PhysRevC.87.044326
http://dx.doi.org/10.1103/PhysRevC.87.044326
http://dx.doi.org/10.1103/PhysRevC.87.044326
http://dx.doi.org/10.1140/epja/i2009-10815-5
http://dx.doi.org/10.1140/epja/i2009-10815-5
http://dx.doi.org/10.1140/epja/i2009-10815-5
http://dx.doi.org/10.1140/epja/i2009-10815-5
http://dx.doi.org/10.1016/0375-9474(86)90443-4
http://dx.doi.org/10.1016/0375-9474(86)90443-4
http://dx.doi.org/10.1016/0375-9474(86)90443-4
http://dx.doi.org/10.1016/0375-9474(86)90443-4
http://dx.doi.org/10.1016/0003-4916(83)90212-9
http://dx.doi.org/10.1016/0003-4916(83)90212-9
http://dx.doi.org/10.1016/0003-4916(83)90212-9
http://dx.doi.org/10.1016/0003-4916(83)90212-9
http://dx.doi.org/10.1016/S0370-2693(01)01504-0
http://dx.doi.org/10.1016/S0370-2693(01)01504-0
http://dx.doi.org/10.1016/S0370-2693(01)01504-0
http://dx.doi.org/10.1016/S0370-2693(01)01504-0
http://dx.doi.org/10.1088/0954-3899/37/6/064005
http://dx.doi.org/10.1088/0954-3899/37/6/064005
http://dx.doi.org/10.1088/0954-3899/37/6/064005
http://dx.doi.org/10.1088/0954-3899/37/6/064005



