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Abstract

3D models of physical objects are used in an ever-growing number
of areas to help visualize and simulate digital environments. Appli-
cations must often simulate complex processes involving physical phe-
nomena such as forces, velocities and physical interactions between
objects. In such environments, it is crucial to be able to effectively
determine proximity between objects by using collision- and distance
tests. As the number and complexity of 3D models increases, together
with an increasing demand for simulation precision and realism, heavy
demands are placed on the performance of the proximity tests that are
used.

This thesis investigates the possibilities of increasing proximity test
performance by combining Bounding Volume Hierarchies, which are
common data structures for accelerating proximity tests, with a cer-
tain method for parallel computation called SIMD. Some SIMD-based
construction strategies are presented and shown to increase proximity
test speed by up to 50% and reducing BVH memory footprint by up
60%.
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1 Introduction

1
Introduction

3D modeling of physical environments is used in an ever growing number of
areas to help digitize and automate complex simulation calculations. This
allows approximations of physical processes to be described and analyzed
efficiently by computers. Notable areas where 3D models are used in this
way include automation of industrial production processes, path planning,
computer vision and digital entertainment.

One of the core usages of 3D modeling is to simulate how different moving
objects interact physically with each other and with a static environment.
Proximity queries such as distance and collision tests between the objects are
often necessary to do this. To determine how the objects themselves behave,
the interactions of their respective geometric primitives must be studied. For
example, two objects each consisting of a triangular mesh collide if and only
if some of their triangles are in physical contact with each other.

New applications demand greater and greater precision and realism,
which increases the demand for more detailed models with better primi-
tive resolution. Increasing the number of primitives has the drawback of
making queries such as collision detection and distance tests more compu-
tationally expensive. To mitigate this effect, special algorithms and data
structures such as Bounding Volume Hierarchies are used avoid many of the
unnecessary primitive tests. Improving performance of BVHs can be done in
multiple ways, for example by tuning the algorithms used, making the mem-
ory access more coherent to improve cache coherency, adding parallelism or
using more efficient types of bounding volumes.

One way of adding parallelism to a program is to utilize special hard-
ware called SIMD units that are present in modern processors. SIMD is an
acronym for Single Instruction Multiple Data, and is based on the concept
of running a single processor instruction on more than one piece of simi-
lar data simultaneously. SIMD instructions are particularly well suited for
3D applications where collision and distance tests need to be performed be-
tween multiple geometric primitives. A similar concept to SIMD is GPGPU,
where a Graphics Processing Unit (GPU) is used instead of the CPU to per-
form simple computations on large sets of data. While both SIMD [1] and
GPGPU [2] have been used to improve the performance of collision detec-
tion, there is still a need for improvement for other queries such as distance
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1.1 Purpose 1 Introduction

tests.

1.1 Purpose

The primary goal of this thesis is to explore the possibilities of increasing
computation speed of BVH-based distance queries in a proximity query li-
brary by using SIMD routines. A secondary goal is to investigate a compiler
for a C++-like language that automatically utilizes SIMD, and determine
its viability for optimizing proximity queries. The purpose of this investiga-
tion is to determine whether sequential C++-based BVH algorithms can be
easily, almost directly translated to SIMD-optimized, parallel versions while
obtaining the same performance as that of hand-written SIMD-optimized
algorithms. Other secondary goals include increasing the speed of collision
queries, keeping BVH construction time low, and producing more memory-
efficient BVHs. In this thesis, the following questions are answered:

• Can regular, sequential primitives query routines be easily ported to
a programming language that automatically utilizes SIMD? Does the
performance match that of handwritten SIMD algorithm packages?

• What problems can be expected when using SIMD in conjunction with
BVHs?

• How does the structure of a BVH affect the efficiency and number of
required SIMD proximity routine calls?

• Is there a good build strategy that produces BVHs that are well-
optimized for SIMD enhanced collision and distance queries?

1.2 Method

This section provides the research steps performed to produce the results of
this thesis:

• Investigation of the usability and performance of the compiler ISPC
by Intel [3], and its programming language that can describe SIMD-
optimized code using syntax similar to regular C++.

• Modification of preexisting SIMD routines for collision and distance
tests between triangles to make them useable for BVHs with up to
four triangles in each leaf node.

• Testing different strategies for constructing BVH leaf nodes and de-
termining whether they lead to improved performance, less memory
usage or other benefits.
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1.3 Delimitations 1 Introduction

• Testing different strategies for constructing the rest of the BVH in
order to make the RSS tests become as fast as possible and to group
the input triangles to the leaf node build step as good as possible.

• Investigation of the performance and memory tradeoffs of having more
triangles in each leaf node, thereby reducing the efficiency of the BVH,
versus having less triangles and therefore less SIMD utilization in the
triangle tests.

1.3 Delimitations

There are a multitude of different processor architectures out on the modern
market, and not all of them use the same instruction sets. For practical
reasons, this thesis only considers the SIMD instruction set SSE from Intel.

It is possible to create BVHs with different types of geometric bound-
ing volumes, all with different properties, pros and cons. This thesis only
considers a type of volume called Rectangle Swept Spheres (RSS). RSS hi-
erarchies are fast for many types of proximity queries, particularly distance
queries [4], but can be slightly slower to construct than some other volumes
such as AABBs. As such, RSSs may not be the best choice for applications
where the scene changes and the BVH has to be rebuilt quickly.

Writing programs that utilizes SIMD is a difficult problem that this thesis
addresses, and tools exist that automate parts of the process. This thesis
investigates only one such tool, namely the compiler ISPC. While ISPC is
relatively easy to use, it is not suitable for all applications.

A lot of research has previously been conducted in the subjects of ray
tracing and collision detection, and many of the properties of these problems
have been proven both analytically and empirically. The subject of distance
tests has been studied to a much smaller extent, and therefore lacks the
scientific foundation that exists for collision detection. The main purpose
of this thesis is to empirically explore optimizations of distance queries, and
because of the lack of theoretical foundation in the subject many of the
choices made are instead based on heuristics and theory that works well for
collision detection. An argument for why much of the theory of collision
detection should also apply to distance calculation is done in section 4.2.1.

1.4 Outline of the thesis

In order to fully understand the topics that are covered in the thesis, the
reader needs some basic knowledge of the central concepts. Chapter 2 is
meant to help the reader by introducing SIMD and a special type of bound-
ing volume called RSS that will be discussed throughout the rest of the
paper.

Chapter 3 gives an overview of the work previously done within the fields
of BVH construction, proximity queries, and SIMD optimization.
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1.4 Outline of the thesis 1 Introduction

Chapter 4 provides an in-depth description of the tools, benchmarks and
theories used to conduct the study. It also connects results and conclusions
from relevant research previously done within the field, and presents the
most important factors that affect the performance of the type of BVHs that
are used in the thesis. Finally, it presents the BVH construction strategies
that were developed.

Chapter 5 shows the results of the benchmarking process, and points out
the most important observations.

Chapter 6 interprets the results from chapter 5. It also summarizes
the contents of the thesis and the most important conclusions. Finally,
some ideas are presented for future research within the field and possible
extensions to the study made in this thesis.
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2 Theory

2
Theory

This chapter gives some theoretical background for RSSs and SIMD, which
are two of the most central concepts explored in this thesis. Note that
the reader is assumed to be familiar with the basics of bounding volume
hierarchies, which is the third central concept.

2.1 Rectangle Swept Spheres (RSSs)

The Rectangle Swept Sphere (RSS) is one member of a family of bounding
volumes called Swept Sphere Volumes [4]. A swept sphere volume can be
created from a simple base geometric shape such as a point, line or rectangle
by growing it outward in all directions by some offset r. Mathematically,
this corresonds to a convolution between the base shape and a sphere with
radius r. Figure 1 shows a point, line and rectangle with offsets added.
Figure 2 shows their 3D representations.

Figure 1: A point, line and rectangle grown outward by a radius r to create
three swept sphere volumes.
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2.2 Single Instruction Multiple Data (SIMD) 2 Theory

Figure 2: The point swept sphere is a sphere with radius r, the line swept
sphere resembles a medical pill, and the rectangle swept sphere resembles a
very fluffy pillow.

One of the greatest benefits of swept sphere volumes compared to other
shapes such as bounding boxes is that distance calculations become very
efficient. The problem of measuring distance between two swept sphere
volumes is as simple as calculating the distance between their base shapes
and then subtracting their radii. Different kinds of swept sphere geometries
can be used within the same hierarchy as long as the distance tests between
their base shapes are easy to calculate. Collision detection between two
swept sphere volumes can be handled by determining whether or not their
distance is zero. Little space is required to store sphere swept volumes since
they can be defined comletely by their simple base shape and the radius.

When used as BVs around arbitrary 3D objects, rectangle swept spheres
provide a tighter fit around the underlying geometry than point- or line
swept spheres, and is therefore more efficient overall [4] . In this thesis, all
BVHs consist of RSSs only.

2.2 Single Instruction Multiple Data (SIMD)

SIMD stands for Single Instruction, Multiple Data, and is one of the four
modes of parallelism described in Flynn’s taxonomy [5]. In a SIMD archi-
tecture, a single instruction is executed by several processing units simul-
taneously, each on its own set of data. Figure 3 shows an illustration of
this. One of the better-known modern examples of SIMD architecture is the
graphical processing unit (GPU), that can run shader programs to calculate
the colors of thousands of screen pixels at once, or utilize general-purpose
gpu programming (GPGPU) tools such as NVIDIA’s CUDA [6] to solve
massively parallel computation problems.
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2.2 Single Instruction Multiple Data (SIMD) 2 Theory

Figure 3: An illustration of the SIMD model in Flynn’s taxonomy. A single
instruction is executed by many processing units at once, each on its own
data.

One of the main disadvantages of SIMD structures is the problem of
not being able to use normal control-flow structures. Branching statements
such as if-then-else clauses and conditional expressions cause problems in a
SIMD environment, where different data that are being processed need to
take different routes through the control flow. SIMD can only be utilized
optimally when no control-flow structures are present, which greatly reduces
the number of possible algorithms that can be used.

When an instruction is to be performed on a piece of data, that data must
first be fetched from memory, then returned to its destination afterwards.
What this means for SIMD is that in order to run a single instruction, many
pieces of data need to be moved before and after its execution. This can
slow down the execution process unless all the data can be moved simulta-
neously. The typical way that systems can do this is by performing vector
load and store operations, where a piece of contiguous memory is copied
and transferred at once. In order to maximize the benefit of SIMD, the user
must therefore be careful with data layout and use continous memory data
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2.2 Single Instruction Multiple Data (SIMD) 2 Theory

structures such as arrays in favor of pointer-based structures such as linked
lists.

Intrinsics, SSE and AVX

Modern CPUs for personal computers include SIMD units that programmers
can use to accelerate processing by calling certain instruction sets. The
instructions can either be called directly using assembly code, or by a special
set of functions called intrinsics that are built into modern compilers. The
two most widely used SIMD instruction sets for personal computers are SSE
and AVX by Intel. SSE performs operations on 128-bit registers, each of
which can hold an amount of data equivalent to four single-precision or two
double-precision floating point numbers at once. Under optimal conditions,
calculations that utilize SSE can therefore run up to four times faster than
their purely sequential counterparts. AVX is an instruction set for newer
processors that uses 256-bit registers, which can hold the equivalent of eight
single precision floating point numbers, giving a potential speedup of up to
eight times.

In this thesis, all SIMD-optimized proximity tests were programmed or
configured to utilize the SSE instruction set.
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3
Related work

This chapter contains short descriptions of previous work related to SIMD,
ISPC, BVHs, RSSs and proximity queries.

Investigation of ISPC performance

Smith’s master thesis covers the usage of SIMD for 3D applications [7]. A
large part of the thesis discusses ISPC, its performance, and its usability.
While most of Smith’s conclusions are consistent with those made in this
paper, there are some notable differences. Section 7.1 in this paper briefly
discusses those differences.

Parallelising proximity queries

SIMD is only one way of parallelizing software. Many other parallel meth-
ods and algorithms for faster proximity queries have been studied. Ruipu
et. al.’s paper [1] is a compilation of some of the most sucessful parallel
optimizations for collision detection, and it even contains a benchmark to
compare their performance.

Chen Tang’s paper introduces a very efficient method for CPU-based
continuous collision detection using SIMD [8]. Min Tang has also developed
an approach for continuous collisiondetection, but this one uses the GPU
instead of CPU. Tang claims that the approach may even have potential for
improving distance- and other types of proximity queries [2].

BVH construction

Ingo Wald’s paper [9] investigates the problem of increasing construction
speed of BVHs, while keeping the traversal speed of the resulting BVHs
high. The paper borrows concepts from kd-tree construction and applies
them to BVHs with great results. It also explains the concept of tree con-
struction using surface area heuristics (SAH), which is claimed to be the best
algorithm currently known for maximizing the traversal efficiency of BVHs
and kd-trees. Several CPU-based algorithms are presented, all of which are
faster than traditional SAH when constructing BVHs, and some of which
use parallelization of different kinds.

9



3 Related work

Lauterbach et. al. took the task of parallelization a step further, and de-
veloped two algorithms for constructing BVHs using GPUs [10]. One of the
algorithms uses top-down surface area heuristics similar to those described
by Ingo Wald, and a comparison to Wald’s results are included in the paper.

Swept Sphere Volumes

In their paper, Larsen et. al. introduced the concept of swept sphere volumes
to the subject of BVs [4]. The paper gives a brief explanation of general
BVHs and how proximity tests are typically performed between them. It
proceeds to explain the benefits of using SSVs instead of traditional BVs for
proximity tests, and provides methods for how to construct BVHs of three
different kinds of SSV. They conclude that among the three SSVs presented,
RSSs are the most tightly fitting and by far the fastest.
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4
Procedure

This chapter describes the languages and libraries that were used during the
thesis work and justifies the decisions that were made. The most important
problems that have to be solved for efficient BVH construction are discussed,
and the construction strategies are introduced. The chapter also describes
the benchmarking procedure used in the thesis.

4.1 Software and tools

This section contains descriptions of the software used in the thesis, and
motivates why they were used.

4.1.1 ISPC

Many libraries exist that act as frameworks for SIMD utilization for mod-
ern programming languages, but they often require the user to have some
level of understanding of how SIMD works, how to best utilize it and what
programming styles should be embraced or avoided in order to reach max-
imum performance. Intel’s ISPC [3] is a good option for abstracting away
the technical details as much as possible. ISPC is short for Intel SPDM Pro-
gram Compiler and works under the Single Program Multiple Data (SPDM)
model where program code is written in a sequential manner, but the pro-
gram then executes on more than one piece of input data in parallel.

ISPC compiles a special language that closely resembles a lightweight
version of C++, with control flow statements such as loops and if-statements
that are usually not easy to use efficiently in a SIMD environment. The first
main benefit of this is that many sequential algorithms that are difficult to
express with assembly code or intrinsics can be SIMDoptimized by moving
the code to an ISPC kernel. The second benefit is that that the resulting
code becomes more readable and maintainable than if low-level intrinsics or
assembly had been used.

The compiler produces C++ object files, which can be linked to regular
C++ files in the usual manner. This means that a C++ program can
directly call functions from and share data with an ISPC program without
additional formatting or other overhead, and vice versa. The resulting object
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4.1.2 Embree 4 Procedure

files automatically utilize the hardware’s SIMD instruction sets. Switching
to a different target architecture or instruction set can be done easily by
changing the compiler’s options, without need to change the code itself.

The first reason for investigating ISPC in this thesis is to determine
whether or not automatic SIMD code generating tools can produce programs
that match the efficiency of specialized libraries that directly use assembly or
intrinsics code. The second reason is to make a case study in the usability
of ISPC, to determine just how easy it can be to add SIMD support to
programs by moving existing sequential algorithms into ISPC kernels. In
this thesis, ISPC was configured to run the SSE instruction set.

4.1.2 Embree

Embree [11] is a library of kernels designed for ray tracing. It includes SSE-
and AVX-based routines that offer the user a higher level of abstraction
than pure intrinsics code. In this thesis, Embree was used to develop the
proximity routines that served as baselines with which to test the perfor-
mance of the ISPC routines. The Embree routines were later used for the
primitives tests between BVHs. All SIMD-optimized routines used in this
thesis except those developed with ISPC use Embree as an interface to the
SIMD instruction sets. The Embree routines were all configured to use SSE.

4.1.3 PQP

PQP (Proximity Query Package) is a library for proximity queries using
bounding volume hierarchies of rectangle swept spheres [12]. It has methods
for constructing BVHs by recursively splitting a set of triangles into two
parts using a splitting axis and a coordinate on that axis. The triangles
whose centroid is located to the left of the splitting coordinate are placed in
the left subtree and vice versa. RSSs are then created for each of the two
parts. When BVHs have been constructed for two objects, proximity queries
can be called to determine whether or not they collide and their minimum
distance to each other.

A heavily modified version of PQP was used during this thesis in numer-
ous ways. First, it provided a baseline implementation with which to bench-
mark the ISPC and Embree proximity routines and also the construction
strategies developed in the thesis. The code for all of the BVH construction
strategies presented in section 4.2 was based on routines from the modified
PQP. The construction strategies were tested by running them from PQP
during the BVH construction phases, and comparing their performance to
the original PQP construction.

12



4.2 Construction strategies for RSS hierarchies 4 Procedure

4.2 Construction strategies for RSS hierarchies

This section describes some of the most important problems that have to be
considered in order to construct good SIMD-optimized BVHs for collision-
and distance queries. Section 4.2.1 motivates why much of the theory of
collision tests and solutions to collision detection problems should also apply
to distance tests. Sections 4.2.2–4.2.7 describe the different factors that have
proven to affect the efficiency of traditional BVHs, and presents some similar
factors for the SIMD-optimized variant. Based on these factors, the final
heuristics that were developed and used to construct BVHs in this thesis
are presented in section 4.2.8.

4.2.1 Applying RSS-based Collision test theory to distance tests

Distance tests are very closely related to collision tests, especially so when
RSSs are used [4], which means that some of the analytical observations
regarding collision detection can be applied to distance tests as well.

To illustrate the close relation between distance- and collision tests, con-
sider a function RSS that describes two RSSs by their rectangles R, R′ and
radii r, r′ in the following way: RSS(R, r) and RSS(R′, r′), and a function
Dist(X,Y ) that describes the signed distance between two RSSs X and Y .
The expression

Dist(RSS(R, r), RSS(R′, r′)) = d

is equivalent to

Dist(RSS(R, (r + d/2)), RSS(R′, (r′ + d/2))) = 0

i.e. the radii of the RSSs can be grown by d/2 each so that they just barely
collide. See Figure 4 for an illustration. The problem of determining whether
any two RSSs are a particular distance apart can thus be solved by a collision
test after their radii have been grown half that distance. Many collision tests
can likewise be expressed as distance tests by shrinking the RSS radii. Larsen
et. al. [4] argued that the logic and arithmetic for RSS-based distance- and
collision tests are the same, and that the analytical properties of collision
tests also hold for distance tests. In the rest of this chapter, unless otherwise
noted, any observations regarding the efficiency of collision tests are assumed
to also hold for distance tests.

13



4.2.2 Factors affecting the number of proximity tests between BVs4 Procedure

Figure 4: Illustration of two RSSs before and after their radii have been
grown by d/2

4.2.2 Factors affecting the number of proximity tests between
BVs

To make BVHs as efficient as possible when performing distance queries, the
number of tests between both the triangles themselves and their bounding
volumes should be kept low. In particular, during a test where the current
closest distance found is d, it is wasteful to test bounding volumes whose
triangles are a distance > d apart. Minimizing the ratio of the number
of bounding volumes with a distance > d between them and the number
of triangles with distance < d should be a good idea. Zachmann claims
that the performance of BVH collision detection depends on two properties
of the BVs: their tightness of fit around the triangles, which affects the
number of BV collisions, and their simplicity, which affects the efficiency
of the overlap tests [13]. RSSs are both tight-fitting and easy to test for
overlap and minimum distance [4], and are therefore perfect candidates for
proximity testing in BVHs. Section 4.2.5 discusses the topic of tightness
further.

Suri et al.proved that in hierarchies of axis-aligned bounding boxes, the
ratio between the number of collisions between the BVs and the number
of collisions between the objects inside are bounded by two factors: Aspect
Ratio and Scale Factor [14]. Scale factor was proven to be the less important
of the two, and is defined as the size difference between the largest and the
smallest of the objects enclosed by AABBs in the BVH. Aspect ratio is a
measure of the elongatedness of the objects. In their paper, Suri et. al.
chose to define the three-dimensional aspect ratio of an object as the size
difference between the smallest axis-aligned cube that can contain the object
and the largest axis-aligned cube that fits inside it. The aspect ratio for the
entire BVH is equal to the maximum aspect ratio among the objects inside.

The aspect ratios of objects inside the BVs of a BVH are important
indicators of its efficiency. It is impractical to directly calculate aspect ratios
as defined by Suri, however, since that would require calculating the sizes
of the biggest axis-aligned cubes that fit inside the objects. Also, when
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4.2.3 Measuring elongatedness 4 Procedure

a BVH is constructed, the objects inside are repeatedly split into smaller
pieces. Since the final shapes and sizes of the objects are unknown until the
construction is finished, it seems difficult to measure and make intelligent
decisions based on aspect ratios during the construction process. Because of
these problems, other ways of measuring elongatedness were used during the
thesis work. Section 4.2.3 describes the most important of those methods.

4.2.3 Measuring elongatedness

Elongatedness can be described as a relation between the length and size of
an object. There are multiple ways of measuring length and size, and their
relation to each other. This section describes the different measurements
used in this thesis.

A simple way of measuring length is to calculate the maximum distance
between two points within the object. The objects can be of arbitrary
shape, which complicates the task of finding two such points in the objects
themselves. It is, however, simple to calculate the length of the surrounding
bounding volumes. The maximum distance in any sphere-swept geometry
can be calculated by determining the maximum distance in the geometry
and adding the diameter of the sphere. For an RSS the following holds:

MaxDist =
√
l2 ∗ w2 + 2 ∗ r

r, l, and w denote the sphere radius, rectangle length and rectangle width,
respectively. Figure 5 shows a two-dimensional illustration of the maximum
distance inside an RSS.
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4.2.3 Measuring elongatedness 4 Procedure

Figure 5: The maximum distance between points in an RSS is equal to twice
the radius plus the length of the rectangle’s diagonal.

The volume and surface area of the enclosing BV are perhaps the most
straightforward ways of measuring an object’s size. Surface area can in
many cases also be used as a measurement of length since longer convex
objects generally have bigger surfaces than more compact ones. Both these
properties can be easily calculated for an RSS by splitting it into different
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parts and analyzing each part separately. The 3D volume defined by an
RSS can be split into three subparts: a central cuboid B, two pairs of half-
cylinders X1, X2, Y1, Y2 at the sides, and four parts C1, C2, C3, C4 of a
sphere in the corners. Figure 6 shows a 2D representation of this concept.

Figure 6: An RSS defined by its rectangle and radius to the left, and the
volume of the RSS split into its subparts to the right. The subparts are a
central cuboid B, two pairs of halfcylinders X1, X2, Y1, Y2, and four parts
of a sphere C1, C2, C3, C4.

The properties of the subparts of an RSS can be used to calculate the
volume and surface area of the RSS itself. Equations 1 and 2 describe the
volume VRSS and surface area ARSS of an RSS expressed in terms of the
properties of its subparts, which in turn are expressed in terms of the RSS’s
radius and rectangle width and length, r, w, l. Note that in equation 2,
only the surfaces of the subparts that belong to the surface of the RSS are
included, e.g. only the top and bottom faces of the cuboid, not the sides.

V RSS = V Sphere + V Cuboid + V Cylinder
X + V Cylinder

Y

=
4πr3

3
+ 2rlw + πr2l + πr2w

(1)

ARSS = ASphere +ACuboid +ACylinder
X +ACylinder

Y

= 4πr2 + 2lw + 2πrl + 2πrw
(2)
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4.2.4 Reducing elongatedness of RSSs

To reduce elongatedness of an RSS, the parameters r, l and w can be tweaked
to decrease MaxDist or increase the volume. Consider an RSS with a fixed
volume. The most efficient way to decrease MaxDist while keeping the
volume unaffected would be to slightly increase r while greatly decreasing l
and/or w. The reason is that the RSS volume is proportional to r3, l and
w. A small increase in r would require a large decrease in l or w to keep
the volume fixed. Meanwhile, MaxDist is proportional to r, w and l, which
means that the small increase in r combined with the large decrease in w
and/or l would greatly reduce MaxDist. Reducing the size of the RSSs
rectangle and increasing its radius should therefore be an efficient way of
making it less elongated. In the extreme case where the length and width
of the rectangle is reduced to 0, the resulting RSS is a perfect sphere.

Since all points on the surface of a sphere are a constant distance from
the center, they are the geometric shapes with minimal length for a given
volume. Spheres are therefore the shapes with the least amount of elonga-
tion.

4.2.5 BV tightness and surface areas

When used as BVs, spheres do not always fit the enclosed object tightly
enough [4, 15]. According to Wald and Zachmann, tighter fitting BVs are
more efficient [9, 13], so to build efficient BVHs, tightness should be con-
sidered as well as elongation and size factor. The best known method for
producing tight-fitting bounding volumes and kd-tree nodes is to use surface
area heuristics (SAH) [9]. The basic idea behind SAH is to recursively sep-
arate a 3D volume into two subvolumes by splitting the primitives in such
a way as to minimize some cost function based on the subvolumes’ surface
areas. Wald provides such a cost function in his paper:

Cost(V → {L,R}) = KT +KI(
SA(VL)

SA(V )
NL +

SA(VR)

SA(V )
NR)

Here, Cost(V → L,R) denotes the cost of dividing the volume V into a
right and a left half R and L. KT is the cost of one traversal step through
the hierarchy. KI is the cost of one primitive proximity test. SA(V ) is the
surface area of V , and NL and NR are the number of primitives in the left
and right halves, respectively.

4.2.6 Sampling splitting locations

Popov and Hunt both conducted studies that investigated how to best split
scenes to produce efficient kd-trees [16, 17]. They used sampling algorithms
to produce a number of possible partitions of the triangles in the scene
and cost approximation functions that predicted which partitions would be
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the most effective. In the context of RSS-based BVHs, it would likewise be
good to have a sampling algorithm and cost function to make more informed
splitting decisions.

BVH construction is a more complicated process than kd-tree splitting
[10]. In each level of a kd-tree the triangles are separated by a splitting
plane that is defined by two out of the three fixed axes, but in a BVH the
triangles can be separated in an arbitrary way, which makes the task of
sampling different partitions more complex. In the BVH case it is also hard
to make a cost function that can accurately approximate the efficiency of
partitions unless their BVs are first constructed and analysed, which requires
additional processing.

Despite the fact that sampling is more difficult in a BVH than in kd-
trees, some of the results of Popov and Hunt can still be used as general
guidelines for RSS hierarchy splitting. Although not explicitly mentioned in
their papers, the efficiency of their partitions tends to be better when the
splits are made close to the middle of the groups of triangles. The splitting
heuristics used in this thesis were developed with this observation in mind.

4.2.7 Grouping triangles for efficient SIMD utilization

Since the hierarchies used in this thesis can have multiple triangles in each
leaf node, and can utilize SIMD to test many triangles in a leaf at once, there
is a need to construct the hierarchies in such a way that many triangles are
grouped together in leaf nodes so that they can be tested simultaneously. To
provide the BVH with ample opportunities to use SIMD, it appears to be a
good idea to try to avoid creating nodes with only a single triangle, or more
generally to try to have as many triangles in each leaf as possible. There
are complications with such a direct approach, however. Grouping many
triangles in leaves means that if one of them needs to be tested, the others
are forced to be tested as well. This can lead to extra work if many of the
triangles are tested unnecessarily. The main point of using BVHs is to avoid
those unnecessary tests by splitting dissimilar triangles that are unlikely to
be tested together into different BVs. A balance must be struck between
packing lots of triangles into a small number of leaves, thereby making good
use of SIMD, and splitting leaves with groups of dissimilar triangles into
many smaller leaves, to increase the BVHs pruning ability. The solution
is to find a heuristic that decides whether or not a group of triangles are
sufficiently likely to be tested together to justify not splitting them.

The likelihood of a group of triangles being tested together depends on
their respective shapes and positions, but also on the shapes and positions
of the triangles they are supposed to be tested against. Therefore, even if
a certain grouping of triangles in an object is optimal for testing against a
grouping of triangles in a second object, it may not be optimal when testing
against other groupings, or against a third object. Also, if the objects are
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allowed to move, the grouping may no longer be optimal after one of the
involved objects changes position or orientation. For simplicity, this thesis
focuses on optimizing for the general case, when the exact properties of the
objects involved and the proximity tests to be performed are unknown.

When a triangle is involved in a collision or distance test against an-
other object, it means that the triangle is considered a likely candidate for
containing the closest point to that object. Intuitively, when a triangle has
a high probability to contain a certain point, other triangles that are far
away from that triangle are less likely to contain that point. It appears to
be wasteful to group triangles that are scattered far away from each other
into the same leaf node. The construction strategies developed and tested
in the thesis use several heuristics for determining whether or not a group
of triangles are close enough to each other to be put into the same leaf.

The proximity routines are all based on the SSE instruction set, and can
test up to four triangle pairs in parallel. This means that the queries are as
efficient as possible whenever the number of triangle tests to be performed
between two RSSs equal some factor of four. More specifically, the most
efficient cases for primitive tests are 1vs4, 2vs2, 2vs4, 3vs4 and 4vs4 triangles.
Note, however, that only tests with up to 1vs4 or 2vs2 triangles can be
performed in a single step by SSE-based routines. For example, testing two
leaves of four triangles each requires 16 triangle tests, which translates to
four SSE routine calls. In general, leaves with odd numbers of triangles
should be avoided if possible.

4.2.8 Splitting strategies

Based on some of the observations made in sections 4.2.1 4.2.7, two cat-
egories of heuristics for constructing RSS hierarchies for fast distance and
collision queries were developed. The first category of construction strategies
is responsible for splitting nodes with five or more triangles. Those strategies
work in similar ways as traditional construction methods, and they ensure
that the BVs are tight and that the BVHs pruning abilities are good. The
second category works solely on nodes with four or less triangles and special-
izes in optimizing the BVH leaves for SIMD-based primitive proximity tests.
The methods from the first category are called general splitting strategies,
and those from the second category are called leaf level splitting strategies.
During the construction of a BVH, exactly one general and one leaf level
strategy is used.

Leaf level strategies can only decide if and how the very small groups of
triangles in leaf nodes should be split. Their task is to determine whether the
benefits of grouping the triangles together, and utilizing SIMD to a greater
extent, outweighs the benefits of splitting them and improving the pruning
power of the BVH. Leaf level strategies can produce better results and more
useful triangle groupings when a larger portion of its input triangles are
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somewhat similar, i.e. not too spatially scattered. Therefore, it is also
important for the general strategies to gather similar triangles together into
the same nodes.

MeanSplit

This general splitting strategy finds the mean position of all triangles, and
splits in this position using a splitting plane. The plane is oriented approx-
imately in such a way as to split the objects longest side. The orientation
is defined by a vector that is constructed using the mean covariance of the
x-, y- and z-values of the vertices in all triangles. Figure 7 shows how a
splitting plane can be positioned and oriented. After splitting the object
into two smaller objects, RSSs are constructed and MeanSplit is called re-
cursively for each object. When the number of triangles in an object is small
enough, a leaf splitting strategy is called instead.

Figure 7: The dots represent the positions of triangles. The black arrow
is a vector that is defined by the covariance of the triangles’ positions, and
roughly shows the object’s ”longest side”. The blue splitting plane is placed
in the middle of the triangles, and is aligned according to the arrow.

The first motivation for this splitting strategy is that splitting the object
in the middle will produce two new objects of roughly equal size, which
keeps the scale factor low. The second motivation is that since the split is
performed through the longest side, the child objects will be elongated as
little as possible, and thus have a smaller aspect ratio. The third motivation
is that BVH construction time is kept relatively low by only selecting a
single splitting point and orientation of the splitting plane, instead of testing
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multiple samples for splitting positions and orientations, which would require
more computations. The remainder of this section describes the MeanSplit
strategy in greater detail.

Each triangle consists of three vertices, each of which is a vector of three
values that together define a point in 3D space. The covariance of the x-
, y- and z-dimensions of a vertex can be described using a 3x3 covariance
matrix, where each entry (i, j) is equal to the covariance between dimensions
i and j. The covariance of two dimensions i and j for a single vertex V is
calculated as:

cov(V, i, j) = ViVj −MiMj

Here, Vx denotes the value of dimension x in vertex V , and Mx denotes the
mean value of dimension x among all vertices in all triangles. The mean
covariance of two dimensions is simply the average of the covariances of
those dimensions among all vertices.

When the mean covariance matrix has been constructed, another 3x3
matrix which this thesis refers to as the axis matrix is built. Every column
of the matrix defines an axis that is a linear combination of x, y and z.
The first axis defines the direction where the mean covariance of x, y and z
is the greatest, i.e. the direction that best describes the longest side of the
object. The second axis is always perpendicular to the first axis, and defines
the direction with greatest xyz-covariance that fulfills this constraint. The
third axis is perpendicular to the first two. In MeanSplit, only the first axis
is used as the orientation of the splitting plane. The second and third axes
are ignored, but they are valuable for other strategies such as AxisSplit,
which is described below.

AxisSplit

Intuitively, using MeanSplit for splitting objects through their longest sides
should help reducing their elongatedness and aspect ratios. As mentioned in
section 4.2.5, reducing elongatedness may not always lead to tightly fitting
BVs, however, so it could be worthwhile to try additional ways of splitting in
order to produce more efficient BVHs. Figure 8 shows a case where splitting
through an object’s longest side is clearly not the optimal solution. AxisSplit
is a general splitting strategy that samples multiple ways of splitting the
triangles in an object, and uses a simplified surface area heuristic to try to
select the best candidate for maximizing the efficiency of the final BVH.
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Figure 8: Splitting along the object’s longest side using the blue splitting
plane will produce less elongated children than using the red plane, but their
BVs will not fit as tightly. In this case, MeanSplit is a very bad splitting
strategy.

AxisSplit is based on and resembles MeanSplit in most ways, but sac-
rifices some construction speed for tighter and more efficient BVHs. Both
strategies use splitting planes that are placed in the middle of objects, but
while MeanSplit always splits the objects through their longest sides, Axis-
Split samples multiple orientations of the splitting plane and imitates SAH
by selecting the one that would minimize the combined surface areas of the
RSSs of the child objects.

The previous section described MeanSplit, as well as the composition
of an axis matrix whose three columns represent axes that can be used as
orientations for splitting planes. The first axis describes the longest side of
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the object to be split, and the other two axes are perpendicular to the first.
AxisSplit places a splitting plane in the middle of the object, and samples
three different splits with the plane facing the directions defined by the three
axes from the matrix. RSSs are created for the child nodes produced by the
splits, and their surface areas are calculated. The split that produced the
RSSs whose sum of surface areas are the lowest is then chosen as the final
split. AxisSplit is called recursively for each child until their numbers of
triangles are small enough to be processed by a leaf level strategy.

ChainSplit

ChainSplit is a leaf level splitting strategy, and is therefore responsible for
determining whether a small set of triangles are close enough to each other
to be left in the same leaf node. The basic principle of ChainSplit is that
triangles are close enough if they share vertices with each other. If two
triangles share a vertex, they belong to the same chain, and are put in the
same leaf node. If there are two or more chains within the set of input
triangles, the triangles from the first chain are split away and put into their
own leaf. ChainSplit is then called recursively for the remaining chains.
Figure 9 shows an example of how a set of triangles are split by ChainSplit.

Figure 9: ChainSplit determines that there are two chains within this set
of four triangles. The blue triangles form a chain by sharing vertices with
each other. Even though the red triangle is very close to the rightmost
blue triangle, they do not share vertices, and are put in different chains and
different leaf nodes.

EdgeSplit

EdgeSplit is very similar to ChainSplit, and also works by separating trian-
gles into different chains. According to the EdgeSplit heuristics, two trian-
gles belong to the same chain if they share an edge, e.g. two vertices. This
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means that EdgeSplit produces many more, smaller chains than ChainSplit,
but the triangles that are put into the same EdgeSplit chain are always at
least as close, and most often closer to each other than those put into a
ChainSplit chain. Figure 10 shows a case where EdgeSplit will make differ-
ent decisions than ChainSplit.

Figure 10: The blue triangles share two vertices, and are put into the same
chain by both ChainSplit and EdgeSplit. The green and red triangles share
one vertex, and are put into the same chain by ChainSplit. Since they only
share one vertex, they are split into different chains by EdgeSplit.

NoSplit

NoSplit is an extreme leaf level splitting strategy. It never splits its input
triangles, and always puts them in the same leaf node. For any given general
strategy run beforehand, NoSplit produces the mimimum number of leaf
nodes, all with the maximum number of triangles. Note that this does
not mean that all leaves will contain four triangles. See Figure 11 for an
illustration of a case where the leaves are created with two or three triangles.
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Figure 11: A set of triangles are to be split. Since the number of triangles
are greater than four, a general splitting strategy is used. After splitting
using the red splitting plane, the child nodes contain two and three triangles,
respectively. NoSplit is then run for each of the two children. None of the
triangles in the children are split, and the nodes are left as leaf nodes.

AllSplit

AllSplit is another extreme leaf level splitting strategy that is the complete
opposite of NoSplit. The input triangles are always split, until they all have
their own nodes, i.e. when the leaf nodes are all singular. AllSplit cannot
decide how the splitting is to be performed on its own. Instead, it keeps
calling the general splitting strategy to perform the actual splitting. For
example, if MeanSplit is used as the general strategy, the triangles will con-
tinue to be split based on their mean positions and the directon of highest
covariance, until only one triangle remains in each leaf. This corresponds to
construction of BVHs without SIMD-utilization, where no leaf level strate-
gies are necessary and the general strategies keep splitting until the leaves
are singular.

26



5 Benchmarks and hardware

5
Benchmarks and hardware

This section describes the benchmark suites and hardware used to test the
implemented ISPC routines and splitting strategies used in BVH construc-
tion.

All benchmarks conducted in this thesis were performed on a 32 bit 2.66
GHz Intel Core 2 Duo machine with 2 GB RAM. The machine supports the
SSE and SSE2 instruction sets, but not AVX.

Splitting strategy benchmark

The splitting strategies were tested by constructing BVHs of models and
running collision- and distance queries between those BVHs. Proximity
queries were conducted between two models at a time, one representing a
dynamic object and the other representing an environment with one or more
static objects. Each benchmark suite consists of the two models and a path
defining a number of orientations and positions for the dynamic object.

The benchmarks worked by first constructing a BVH for each model and
measuring construction times. The dynamic object was then translated and
rotated according to the predefined path. One proximity test was made
for each step along the path and the execution times of the queries were
measured.

There are three sets of pairs of models that were used in the bench-
marks: Cembox, LargeEnvironment and TunnelConsole. The models used
in the benchmarks are proprietary and consist of 30 000–150 000 triangles
for the moving objects and 300 000–1 700 000 triangles for the environment.
Approximately 10% of the steps in the path of the Cembox and LargeEn-
vironment suites and 75% of the steps in TunnelConsole result in collisions
between the objects. Figures 12, 13 and 14 show the objects in the Tunnel-
Console test suite.
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Figure 12: The static environment in TunnelConsole. The test suite models
a car being assembled.

Figure 13: The moving, dynamic object in TunnelConsole.
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Figure 14: The dynamic object moves and rotates through the static en-
vironment according to a predefined path. Distance and collision tests are
made between the objects at each step along the path. As can be seen in
the picture, the moving part just barely fits around the static parts, and
75% of the steps of the path result in collisions.

In the benchmarks for splitting strategies, Embree routines were used for
all primitives tests. Note that when two leaf nodes with only one triangle
each are to be tested against each other, the Embree routines behave exactly
like the C++ PQP routines, and runs the exact same piece of sequential
code. When at least one of the leaf nodes to be tested contains two or more
triangles, the Embree routines run SIMD-optimized code instead.

ISPC benchmark

The benchmarks of the ISPC routines used different test suites that worked
by selecting two equally large subsets of triangles from a dynamic and static
model, respectively, and testing all combinations of triangles from one sub-
set against the other. Distance queries were benchmarked using two non-
colliding objects, and collision queries with two colliding objects.
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6
Results

This chapter describes the results obtained from the benchmarks, most no-
tably the performance difference between sequential C++ code, Embree and
ISPC of different libraries and techniques.

6.1 Using ISPC for collision and distance queries

The code of one collision routine and three distance routines was trans-
lated from the C++ PQP code to ISPC code. The collision routine is
Triangle-Triangle, and the distance routines are Point-Triangle, Line-Line,
and Triangle-Triangle. Point-Line and Line-Line tests are performed in-
side the Triangle-Triangle distance routine, and they are not benchmarked
on their own. This section provides the results of benchmarking the ISPC
Triangle-Triangle collision and distance routines against their Embree and
original PQP counterparts.

The ISPC routines all work by taking two arrays A and B of primitives as
input and testing all primitives from A against all primitives of B. The sizes
of the input arrays can vary, but are capped at 1024 primitives. For example,
this means that if two arrays consisting of 2000 triangles each were to be
tested against each other, four calls would have to be made with 1024x1024,
1024x976, 976x1024, and 976x976 triangles as input. Figure 15 illustrates
this process. The C++ routines always test two primitives, and the Embree
routines always test two pairs of primitives against each other. Testing the
arrays A and B using the regular C++ routines or Embree routines would
therefore take 4 000 000 or 1 000 000 calls, respectively.
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Figure 15: An ISPC test where 2000 triangles from A is tested against 2000
triangles from B. The test is performed in four chunks of up to 1024 triangle
pairs at a time.

The execution times of the ISPC Triangle-Triangle collision- and dis-
tance routines were measured and compared against the execution times of
the original C++ routines from PQP as well as those of the corresponding
Embree routines. Unless otherwise noted, all ISPC routine calls were made
using the input size 1024.

The results of the collision and distance benchmarks are presented in
Tables 1 and 2, respectively.

3000 x 3000 tris 5000 x 5000 tris 10 000 x 10 000 tris

C++ PQP 1.03 s 2.86 s 11.39 s

Embree 0.22 s 0.59 s 2.34 s

ISPC 0.09 s 0.27 s 1.06 s

Table 1: Results from the Triangle-Triangle collision detection benchmark
tests, with ISPC input size 1024.

3000 x 3000 tris 5000 x 5000 tris 10 000 x 10 000 tris

C++ PQP 1.74 s 4.74 s 19.17 s

Embree 1.06 s 2.94 s 11.64 s

ISPC 1.38 s 3.63 s 14.45 s

Table 2: Results from the Triangle-Triangle distance detection benchmark
tests.

Additional tests were made with the ISPC Triangle-Triangle collision
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and distance routines, where the input size was set to different values. A
comparison of the results is shown in Tables 3 and 4. Of special interest are
input sizes 1 and 2, since they are equivalent to the input sizes of the C++
and Embree routines, respectively. Note also that the ISPC routines can be
recompiled for systems with AVX support in addition to SSE, which should
give faster running times for input sizes greater than 2.

Input size 3000 x 3000 tris 5000 x 5000 tris 10 000 x 10 000 tris

1 1.95 s 5.42 s 21.67 s

2 0.77 s 2.08 s 8.36 s

4 0.34 s 0.95 s 3.83 s

8 0.20 s 0.58 s 2.28 s

16 0.14 s 0.41 s 1.59 s

128 0.11 s 0.28 s 1.09 s

1024 0.09 s 0.27 s 1.06 s

Table 3: Running time of the ISPC Triangle-Triangle collision test, with
different input sizes.

Input size 3000 x 3000 tris 5000 x 5000 tris 10 000 x 10 000 tris

1 6.70 s 18.63 s 74.45 s

2 3.14 s 8.67 s 34.64 s

4 1.44 s 4.02 s 16.08 s

8 1.38 s 3.78 s 15.08 s

16 1.34 s 3.70 s 14.77 s

128 1.33 s 3.63 s 14.47 s

1024 1.33 s 3.63 s 14.45 s

Table 4: Running time of the ISPC Triangle-Triangle distance test, with
different input sizes.

As can be seen in the tables, ISPC makes faster collision tests than PQP
and Embree when it uses a large input size. When only a few triangles
are tested at once, however, which is the case with input sizes 1, 2 and 4,
Embree is faster. With input sizes 1 and 2, even the original PQP routines
are faster than the SIMD-utilizing ISPC routines.

For distance tests, ISPC is faster than PQP but slower than Embree
even with maximum input size. Once again, at input sizes 1 and 2, even
PQP is faster than ISPC.

As shown in Table 2, Embree is always the fastest choice for distance
tests, and 60–65% faster than regular PQP. Since increased distance query
speed is the primary goal for this thesis, Embree should be considered the
best alternative.
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6.2 Performance of splitting strategies

This section shows the results of the splitting strategy benchmarks. Five
different measurements were done during the benchmarking process. Three
of them were gathered during the construction of the BVHs:

1. The number of triangles per leaf node of the BVHs

2. The total memory usage of the BVHs

3. BVH construction time

The last two measurements were made after the construction:

1. Number of collision queries per second

2. Number of distance queries per second

The results are split into two sections. In the first, the general strategies
are compared to each other. In the second, the leaf level strategies are com-
pared. Recall that there are three benchmark suites, two general splitting
strategies, and four leaf level strategies. Most of the possible combinations of
benchmark suites and splitting strategies are omitted in this thesis, and only
the most notable and important results are shown. AxisSplit is the overall
fastest general strategy, and ChainSplit is the fastest leaf level strategy for
distance- and collision queries. Because distance query speed is prioritized
in this thesis, the comparison of general strategies uses ChainSplit on leaf
level, and the leaf level comparison uses AxisSplit on the general level.

Comparison of general level splitting strategies

Cembox with ChainSplit

MeanSplit AxisSplit

Build time dynamic 0.23 s 0.39 s

Memory dynamic 2.5 MB 2.3 MB

Build time static 3.72 s 6.31 s

Memory static 41 MB 35 MB

Collision queries/s 1992.75 3841.68

Distance queries/s 205.03 595.13

Table 5: Comparison of general level splitting strategies for the Cembox
benchmarking suite. ChainSplit was used at leaf level. The table shows
build times and memory usage for the static and dynamic objects, as well
as the proximity query speed of the benchmarking.
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TunnelConsole with ChainSplit

MeanSplit AxisSplit

Build time dynamic 0.56 s 0.92 s

Memory dynamic 6.7 MB 5.7 MB

Build time static 2.42 s 4.05 s

Memory static 28 MB 24 MB

Collision queries/s 1229.61 2240.00

Distance queries/s 229.72 358.45

Table 6: Comparison of general level splitting strategies for the TunnelCon-
sole benchmarking suite.

LargeEnvironment with ChainSplit

MeanSplit AxisSplit

Build time dynamic 0.97 s 1.61 s

Memory dynamic 9.5 MB 8.6 MB

Build time static 14.61 s 25.97 s

Memory static 150 MB 128 MB

Collision queries/s 3004.93 16223.40

Distance queries/s 18.07 58.26

Table 7: Comparison of general level splitting strategies for the LargeEnvi-
ronment benchmarking suite.

Tables 5, 6 and 7 show that there is a notable difference in construction time
between MeanSplit and AxisSplit. The additional cost of sampling different
ways of splitting triangles, and calculating RSS surface areas of potential
new child nodes when making the splitting decision, seems to increase the
construction time by approximately 60–70%. AxisSplit is, however, about
10% more memory efficient, potentially because it produces better balanced
trees with fewer nodes, or because it allows ChainSplit to pack more triangles
together at leaf level. AxisSplit’s collision- and distance query performance
is also much better than that of MeanSplit. The speedup of collision queries
is between 80–400% in all three benchmarks, and distance queries are 50–
220% faster.
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Comparison of leaf level splitting strategies

TunnelConsole with AxisSplit

NoSplit ChainSplit EdgeSplit AllSplit

1-tri nodes dynamic 1104 7828 20136 73425

2-tri nodes dynamic 6248 9089 10066 0

3-tri nodes dynamic 9871 8657 6479 0

4-tri nodes dynamic 7553 5362 3430 0

1-tri nodes static 5469 36310 88144 300401

2-tri nodes static 25513 38221 40539 0

3-tri nodes static 41062 35639 26613 0

4-tri nodes static 30180 20183 12835 0

Table 8: Comparison of the final number of leaf nodes with one, two, three,
and four triangles for the leaf level splitting strategies, when used on the
dynamic and static objects in the TunnelConsole benchmarking suite. Axis-
Split was used as the general level splitting strategy.

As expected, table 8 shows that AllSplit only produces singular leaf nodes,
and cannot utilize SIMD at all. NoSplit has an average of ≈3 triangles per
leaf, which forces a large number of leaf leaf proximity tests to run more
than one SIMD primitives tests. The reason for this is that the SSE-based
routines in this thesis can only handle tests involving a maximum of 1vs4 or
2vs2 triangles in one step. If AVX or another technique with wider SIMD
registers are used, NoSplit might perform better. ChainSplit has an average
of about 2.3–2.5, and EdgeSplit about 1.8 triangles per leaf.

Cembox with AxisSplit

NoSplit ChainSplit EdgeSplit AllSplit

Build time dynamic 0.39 s 0.39 s 0.42 s 0.47 s

Memory dynamic 2.2 MB 2.3 MB 3.1 MB 5.0 MB

Build time static 6.17 s 6.31 s 6.42 s 7.28 s

Memory static 30 MB 35 MB 44 MB 70 MB

Collision queries/s 3841.68 3841.68 3841.68 3841.68

Distance queries/s 563.14 595.13 578.44 528.00

Table 9: Comparison of leaf level splitting strategies for the Cembox bench-
marking suite. AxisSplit was used at general level.
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TunnelConsole with AxisSplit

NoSplit ChainSplit EdgeSplit AllSplit

Build time dynamic 0.88 s 0.92 s 0.91 s 1.093 s

Memory dynamic 4.9 MB 5.7 MB 7.0 MB 11.4 MB

Build time static 3.94 s 4.05 s 4.13 s 4.75 s

Memory static 20 MB 24 MB 29 MB 47 MB

Collision queries/s 2240.00 2240.00 2199.78 2125.81

Distance queries/s 335.38 358.45 338.98 282.58

Table 10: Comparison of leaf level splitting strategies for the TunnelConsole
benchmarking suite.

LargeEnvironment with AxisSplit

NoSplit ChainSplit EdgeSplit AllSplit

Build time dynamic 1.53 s 1.61 s 1.63 s 1.91 s

Memory dynamic 7.9 MB 8.6 MB 10.4 MB 19.1 MB

Build time static 24.97 s 25.97 s 25.83 s 29.80 s

Memory static 111 MB 128 MB 160 MB 265 MB

Collision queries/s 3150.83 16223.4 16310.20 16310.20

Distance queries/s 35.80 58.26 37.89 38.66

Table 11: Comparison of leaf level splitting strategies for the LargeEnviron-
ment benchmarking suite.

Tables 9, 10 and 11 indicate that compared to splitting at the general
level, leaf splitting takes less time in general. Changing from no splitting at
all to the maximum amount of splitting possible at leaf level by switching
from NoSplit to AllSplit increases total construction time by between 15–
30% only. The amount of memory that can be saved by packing triangles
together into a smaller number of leaf nodes can be very high when any leaf
level strategy except AllSplit is used. NoSplit only uses between 41–44%
of the memory that AllSplit requires. ChainSplit seems to be the overall
best leaf level strategy, with memory efficiency close to that of NoSplit, the
fastest distance tests in all test cases, and only marginally slower collision
tests in the LargeEnvironment benchmark. Switching from AllSplit, which
is equivalent to using traditional, sequential BVHs, to ChainSplit increases
distance test performance by 12–50%.
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Discussion

This chapter discusses the results of the thesis, and compares them to some
other previous work in the field. Conclusions are drawn regarding the usabil-
ity of ISPC, the possibility of improving proximity tests using SIMD, and
the efficiency of the developed splitting strategies. Finally, some ideas for
extending the work of the thesis and possible research that can be conducted
in similar areas are presented.

7.1 Analysis of ISPC and ISPC-based proximity routines

ISPC works well for both collision- and distance tests when a large number
of triangles from one object are to be tested simultaneously against a large
number of triangles from another object. However, that does not happen
in practice, since the BVH prunes away the unnecessary tests so that only
a very small number of triangles are tested at any one time. Because there
are at most four triangles in each leaf node when using an SSE-based BVH
implementation, the ISPC routines can only work with input sizes between
one and four. As was shown in chapter 5, ISPC’s distance tests are only
slightly faster than the original PQP routines when the input size is four,
and slower for smaller input sizes. Meanwhile, Embree is always faster than
both the PQP and ISPC routines and is clearly the superior choice when
fast distance tests is the primary goal.

For collision tests, ISPC is faster than PQP for input sizes two and up.
If the BVH construction strategy is good enough, so that most leaf nodes
contain at least two triangles, ISPC should be faster than PQP in most
cases, and could therefore be a reasonable way of gaining a slight speedup.
There is also potential for ISPC to be more efficient for collision detection
involving primitives other than triangles, such as lines and rays.

Compared to assembly- and intrinsics programming, ISPC code is ex-
tremely simple to write, and very similar to basic C/C++. The ISPC prox-
imity routines developed in this thesis were all quickly and easily translated
from the original PQP code, with only minor modifications to the way that
data was stored. The only potential difficulty that users of ISPC must face
when porting algorithms from C++ is to align their data into contiguous
blocks of memory to allow the system to move data using vector load and
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store instructions instead of so-called gathers and scatters.
It is relatively easy to configure an ISPC kernel for different architectures.

The ISPC routines used in this thesis were developed on an SSE-based 32-
bit system running Windows, but were easily adjusted to work on a 64-bit
Linux machine with AVX by changing the ISPC compiler’s command-line
arguments.

As was mentioned in chapter 3, Smith’s master thesis also investigated
the usability and performance of ISPC, but in the environment of 3D ap-
plications that are typically run on large sets of data using GPUs [7]. In
the results of that thesis, ISPC performed almost exactly as well as intrin-
sics code for all applications tested. This thesis shows that under certain
circumstances, ISPC performance can be worse than that of code based on
intrinsics, particularly when the input data set is very small. ISPC seems
to be better suited for applications where a greater amount of data needs to
be processed in parallel.

7.2 Analysis of BVH construction

Optimizing BVHs with SIMD for faster proximity queries seems to work
reasonably well. While collision detection does not seem to benefit much
from SIMD, distance tests can be accelerated by up to 50%. Note, however,
that other forms of optimization, such as those described in section 3, may
be even more beneficial than SIMD for accelerating proximity queries.

A very promising feature of SIMD-based BVHs is the amount of memory
that can be saved. BVHs built using NoSplit used almost 60% less memory
than the equivalent sequential BVHs built by AllSplit. Even ChainSplit
can save 50% memory or even more in some cases. In applications where
memory-efficiency is important, SIMD optimized BVHs seem like perfect
choices, and can even provide the additional benefit of a slight speed boost.

The popular method of sampling splitting locations and using the surface
area heuristic seems to work well for constructing SIMD optimized BVHs, as
was demonstrated by AxisSplit. The idea of making BVs as tight-fitting and
as small as possible naturally causes the enclosed triangles to be grouped
into small, tight shapes. As was mentioned in section 4.2.7, an important
requirement of general level strategies is to be able to make groups of trian-
gles that are close to each other, so that the leaf level strategies can avoid
splitting them. It may be possible to create a general level strategy that
is so good at grouping similar triangles together that no leaf level strat-
egy is needed at all. Neither MeanSplit nor AxisSplit are good enough for
this purpose, though, since ChainSplit clearly outperformed AllSplit in the
benchmarks.
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7.3 Summary and conclusion

This thesis investigated how CPU-based SIMD can be used to enhance per-
formance of proximity tests between BVHs. It was shown that Intel’s SPMD
compiler has great potential for improving computations involving lots of
data, but that more specialized, lower-level libraries such as Embree work
better when the amount of data is smaller, which is typically the case in
BVHs, where only a few triangles are tested for minimum distance or colli-
sions at once.

In this study, it was shown that SIMD can only be used effectively in
triangle-triangle proximity tests if the BVHs are constructed in certain ways.
The right balance must be struck between splitting the triangles as much as
possible to increase the BVH’s innate ability of pruning away unnecessary
tests, and grouping them together to increase the number of proximity tests
that can be performed in parallel using SIMD.

Many of the same principles that are used to produce good BVHs for se-
quential proximity tests can also be applied when building SIMD-optimized
hierarchies. The best general level splitting strategy investigated in this
thesis uses a simplified surface area heuristic to determine which one of a
number of sample splitting locations will produce the most efficient child
nodes.

Besides improving the speed of distance queries by up to 50%, the SIMD-
optimized BVHs that were presented in this thesis have another important
property. When leaf nodes are allowed to contain more than one triangle, a
smaller number of leaf nodes are needed overall. By not splitting nodes with
four or less triangles, the memory consumption of the BVHs in this thesis
could be lowered by up to 60%.

7.4 Future research

SIMD is a form of optimization and parallelism that can be relatively easily
combined with other optimizations. There may therefore be ways to add
SIMD-support for other BVH constrution methods than the basic ones used
in this thesis. Some of the principles used in the construction strategies
developed in the thesis are far from state-of-the-art, so it is likely that there
are other strategies, such as real SAH-based construction, that can benefit
from SIMD and improve performance even further. Since tightly grouped
triangles are a requirement for maximum SIMD utilization, tighter, more
well constructed BVHs should benefit more from SIMD support than badly
constructed ones. There seems to be great potential for the absolute best
among BVH construction methods to become even better by combining
them with SIMD.

There are a multitude of algorithms for BVH construction out there,
and only a handful of them were investigated extensively in this thesis.
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SIMD-BVHs have slightly different properties than traditional BVHs, so
there might also exist algorithms that do not work very well for BVHs in
general, but that work extremely well for the SIMD optimized variants.
Further investigation of splitting strategies designed specifically for SIMD-
BVHs could be an interesting research subject.

There is a clear lack of scientific theory regarding distance tests, when
compared to the vast amount of research that has been conducted for ray
tracing and collision detection. Larsen et. al. tried to unify the two fields by
reasoning about the equivalence of RSSs-based collision- and distance tests
[4]. It may be possible to unify the subjects even further.

The BVHs used in this thesis were all based on SSE. This placed a
natural limit on how many triangles could be packed into the same leaf
before performance started to drop. By using AVX or other technologies
where the SIMD-registers can hold a larger amount of data, it should be
possible to pack triangles even more tightly to increase performance further.
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