
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Grammatical Framework on the iPhone
using a C++ PGF parser
Master of Science Thesis in Automation and Mechatronics

EMIL DJUPFELDT

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2013

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Grammatical Framework on the iPhone using a C++ PGF parser

EMIL A. F. DJUPFELDT

c© EMIL A. F. DJUPFELDT, September 2013.

Examiner: AARNE RANTA

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden September 2013

Abstract

This thesis introduces a domain specific grammar for Grammatical Framework, as well
as an iPhone application utilising the grammar and a C++ library to make parsing of the
grammar possible on systems that does not easily include support for Java or Haskell.

The grammar covers phrases and words related to mountainering. It is based on and
extends the Phrasebook grammar from the Grammatical Framework.

The C++ library is a port of the existing Java parser and retains a similar API and
structure, with allowances for differences in the two languages.

The iPhone application provides a graphical user interface for the C++ library and
utilises the mountaineering grammar, allowing the user to easily input phrases and
browse translations.

Acknowledgements

I would like to thank my supervisor Professor Aarne Ranta for his insightful comments
during the course of this work.

Emil Djupfeldt, Gothenburg 2013-09-11

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Structure . 2

2 Background 3

3 GF and PGF 4
3.1 Grammatical Framework . 4

3.1.1 Abstract syntax . 4
3.1.2 Concrete syntax . 4
3.1.3 Inheritance . 4

3.2 Portable Grammar Format . 5

4 PGF in C++ 6
4.1 libpgf . 6
4.2 JPGF . 6
4.3 libpgf+ . 6

4.3.1 Memory handling . 7
4.3.2 Exceptions . 7
4.3.3 PGF . 8
4.3.4 Reader . 10
4.3.5 Parse tree . 10

5 Mountaineering phrasebook 12
5.1 Phrasebook . 12
5.2 Mountaineering . 12

5.2.1 Words . 13
5.2.2 Phrases . 13
5.2.3 Professions . 13

i

CONTENTS

6 The iPhone application 17
6.1 PhraseDroid . 17
6.2 iPhrase . 17

6.2.1 Grammarian . 17
6.2.2 User interface . 18
6.2.3 Reusability . 21

7 Results 23
7.1 Results . 23

7.1.1 Mountaineering phrasebook . 23
7.1.2 libpgf+ . 23
7.1.3 iPhone application . 23

7.2 Evaluation . 24
7.2.1 Mountaineering phrasebook . 24
7.2.2 libpgf+ . 24
7.2.3 iPhone application . 24

7.3 Future work . 25
7.3.1 Mountaineering phrasebook . 25
7.3.2 libpgf+ . 25
7.3.3 The iPhone application . 25

8 Conclusion 26
8.1 Source code . 26

Bibliography 28

ii

1
Introduction

T
he goal is to create an iPhone application that can automatically translate
phrases related to trekking and climbing.

Climbers often find themselves in foreign countries since the mountains are located
where they are, and it is not always the case that the climber knows the native tongue.
Using English to communicate and ask for help is not always an option even if both
parties of the conversation can speak it to some degree. This is due to the fact that
climbing and trekking, like many other special areas of interest, involves quite a bit of
jargon that both parties would need to know not only in their native tongue but now
also in English and preferably the other party’s native tongue.

To solve this, a phrasebook application would be useful. With a grammar containing
jargon for this specific domain as well as some more common words and phrases it could
be used to bridge some of the language gap between speakers, as well as help a climber
understand climbing and trekking route descriptions in foreign languages.

There are multiple approaches to translating text. This work will concentrate on
grammatically aware translation using Grammatical Framework (GF), a programming
language for multilingual grammar applications. This is different from some other sys-
tems, e.g. Google Translate, that instead use statistical models to create translations.

1.1 Goals

During the course of this project there are a few tasks that need to be addressed:

• A sufficient amount of domain specific jargon in the target languages needs to be
gathered. The jargon should consist of words and phrases that the GF resource
grammar library does not cover already.

• A domain lexicon will be created to cover the jargon. The lexicon should have
instances for at least Swedish, English and German.

1

1.2. STRUCTURE CHAPTER 1. INTRODUCTION

• An application that uses the domain lexicon will be developed. The application
should be an iPhone app based on the existing GF Android application. Due to
differences in the two platforms the existing code most likely cannot be reused, and
instead only used as a guideline. The new application should be easy to repurpose
to use other lexicons so that it can be reused or extended for other projects.

• Translations generated by the system need to be validated to ensure that the system
works as intended.

1.2 Structure

This work is divided into several sections. First an introduction of the Grammatical
Framework is given. Thereafter follows three chapters describing the c++ library, the
grammar and the iPhone application. Finally the results are presented and conclusions
are drawn.

2

2
Background

C
urrent translation applications for the iPhone are usually based in some way
on Google translate. This gives them a very large vocabulary, but it can also
lead to invalid translations in cases where the models used by Google translate
are lacking in data. This becomes more obvious when translating phrases to

and from languages that are less prevalent on the internet which is Google main source
of data, or when the phrase includes jargon from a specific domain.

There is currently no other translation applications based on the Grammatical Frame-
work for the iPhone, though one exists for Android [1].

3

3
GF and PGF

I
n order to fully understand this work some basic understanding of the Gram-
matical Framework and the Portable Grammar format is needed.

3.1 Grammatical Framework

The Grammatical Framework (GF) is a type-theoretic grammar formalism based on
Martin-Löf theory [2]. It can be used to write grammars for both natural and formal
languages. A grammar for GF is made up of an abstract syntax common for all languages,
and a set of concrete syntaxes, one for each supported language. Once a grammar is
written it can be used for both parsing and linearisation of text in any of the grammar’s
supported languages.

3.1.1 Abstract syntax

The abstract syntax describes the sementical structure of the grammar. It declares the
categories and functions of the grammar.[3]

3.1.2 Concrete syntax

A concrete syntax is a language specific implementation of the abstract syntax. It defines
linearisations for the categories and functions declared in the abstract syntax. [3]

3.1.3 Inheritance

A very useful feature of GF is the ability for syntaxes to inherit from other syntaxes [3].
This makes it possible to make specialisations of already written grammars. For instance,
the Mountaineering grammar discussed later extends the Phrasebook grammar that is
part of the standard GF distribution. The inheritance in GF is a bit more advanced

4

3.2. PORTABLE GRAMMAR FORMAT CHAPTER 3. GF AND PGF

than in i.e. Java or C++. Unlike Java (but like C++) it allows multiple inheritance
[4] [5]. In addition to this it also allows negative inheritance [3]. That is, the ability to
choose not to inherit some parts of the base grammar(s). This is similar to overriding in
object oriented programming languages, the difference beeing the ability to completely
remove a feature instead of just replacing it.

Allowing multiple inheritance can lead to situations where a grammar inherits from
another grammar along to different paths, known as the diamond problem [6]. This is
not a problem in GF though, as everything inherited are constants and the compiler can
recognise if two contants come from the same source[3].

Negative inheritance would lead to some issues in object oriented programming lan-
guages. If the static type of a variable defines a method but the dynamic type does not,
this would most likely lead to a runtime error. However, when inheriting from another
grammar in GF the sub-grammar does not inherit the type of the base grammar [3].
The closest thing to a base type for a concrete grammar is instead its abstract grammar.
And the abstract grammar in turn has no base type. Thus the problem with the static
type declaring a feature not present in the dynamic type does not arise.

3.2 Portable Grammar Format

When parsing using a GF grammar, it is most suitably represented by a Parallel Multiple
Context-Free Grammar (PMCFG) [7] [8]. This grammar can be written to file using the
Portable Grammar Format (PGF) [9].

There are some differences between PMCFG and GF abstract and concrete syntaxes.
PCMFG does not allow parameters or nested records and tables, which are both used
in the concrete syntaxes of GF. The lack of parameters is addressed by instantiating all
parameter variables with all values they can possibly receive when compiling a PGF file.
The nested records and tables are by simply flattening them.

Another step that is performed when compiling a PGF file is to replace all lineari-
sation rules with concrete functions. One linearisation rule will be replaced with one or
more concrete functions. A simple example is a linearisation for a category generating
one singular and one plural concrete function. This expansion then propagates, so if
another linearisation depends on the one from the previous example it will also generate
both a singular and a plural concrete function.

5

4
PGF in C++

T
his chapter describes the C++ library for reading pgf files and using the
contained grammar to parse and linearise text. It is based largely on the
existing Java library JPGF that is used in the Android application.

4.1 libpgf

There already exists a C library to work with PGF files [10]. However, at the start of this
work it did not support predicting the next possible tokens given a sequence of previous
tokens. As this was a rather prominent feature of the Android aplication, not providing
it in the iPhone application was not an alternative which meant that this existing library
unfortunately could not be used.

4.2 JPGF

The Android application uses the JPGF library [1]. It uses ... to parse the input and is
thus able to predict possible continuations of the current token sequence.

The JPGF library is divided into four major parts: The PGF file reader, the lin-
eariser, the parser, and finally the parse tree represenatation. These will be discussed
further in the next section.

4.3 libpgf+

The C++ library retains most of the structure and api of the Java library. Some addi-
tions were necesarry to account for the fact that C++ does not provide garbage collec-
tion, automatic reference counting or any other form of automatic memory management

6

4.3. LIBPGF+ CHAPTER 4. PGF IN C++

Pros Cons

Reference counting No external dependencies.
Easy to implement.

Requires the programmer to
always release acquired refer-
ences by hand.

Internal GC No external dependencies.
Easy to use, the programmer
does not need to do any man-
ual release of references when
they are no longer needed.

Very large project to imple-
ment. Outside the scope of
this thesis.

External GC Easy to use, the programmer
does not need to do any man-
ual release of references when
they are no longer needed.

Adds external dependencies to
the library.

Table 4.1: Comparison of memory management alternatives.

except on the stack [5]. Also, some changes were made in cases where there were dupli-
cate methods with different names or where methods did not follow the general naming
convention used in JPGF.

4.3.1 Memory handling

As C++ does not provide automatic memory management and JPGF relies on the
garbage collector in Java taking care of all allocated objects that it no longer needs,
something was needed to take care of this in the new implementation. There were some
alternatives. One was to implement reference counting in the api. Another alternative
would have been to implement garbage collection (GC) [11] or rely on an external library
to provide it. A comparison of the three alternatives can be seen in table 4.1.

From these three alternatives, reference counting was chosen. The implementation
uses a base class which provides methods for counting references that is then inherited
either directly or indirectly by all other classes in the library. The interface for the
reference counting class can be seen in listing 4.1.

The reference counting implementation also provides a convenience function to si-
multaenously release a reference and clear the pointer to prevent lingering references.
This function can be seen in listing 4.2.

4.3.2 Exceptions

There are a number of different things that can go wrong when handling a grammar.
First of all, it might not be possible to read it from the PGF file for some reason. Other
failures may arise in the parser or lineariser. JPGF indicates these failures with Java
exceptions, which can fairly easy be translated to C++ exceptions.

7

4.3. LIBPGF+ CHAPTER 4. PGF IN C++

class RefBase {
private :

int r e f e r enceCounte r ;

public :
RefBase () ;
virtual ˜RefBase () ;

virtual void addReference () ;
virtual void r e l e a s e () ;

virtual std : : s t r i n g to S t r i ng () const ;
} ;

Listing 4.1: Base class for all reference counted classes.

template<class T> stat ic inl ine void r e l e a s e (T∗& ptr) {
i f (ptr != NULL) {

ptr−>r e l e a s e () ;
ptr = NULL;

}
}

Listing 4.2: Convenience method to release and clear references.

To further simplify this, all exceptions thrown by the library were given a common
base class shown in listing 4.3. Unlike most other classes in the library, this does not
inherit from the reference counting base class. The reason for this is how C++ exception
handling works. When an exception is thrown it is first constructed on the stack, and
then copied into a buffer provided by the system. This buffer is then the responsibility
of the system and will be automatically deallocated once the exception has been caught.

4.3.3 PGF

This is the main class representing the grammar loaded from a PGF file. The interfaces
is almost identical to the corresponding class in JPGF and can be seen in listing 4.4.
It provides methods to retrieve the abstract syntax of the grammar, to retrieve any of
the concrete syntaxes available in the grammar and also to enumerate all of them. In
addition it provides methods for getting the version information of the PGF file that it
represents.

8

4.3. LIBPGF+ CHAPTER 4. PGF IN C++

class Exception : public std : : except ion {
private :

s td : : s t r i n g message ;

public :
Exception () ;
Exception (const std : : s t r i n g& message) ;
virtual ˜ Exception () throw () ;

virtual const std : : s t r i n g& getMessage () const ;

virtual std : : s t r i n g to S t r i ng () const ;

virtual const char∗ what () const throw () ;
} ;

Listing 4.3: Base class for all exceptions thrown in the library.

class PGF : public RefBase {
public :

virtual std : : set<std : : s t r i ng> getConcreteNames () const ;
virtual g f : : r eader : : Concrete ∗ getConcrete (const std : :

s t r i n g& name) const ;
virtual u in t32 t getMajorVers ion () const ;
virtual u in t32 t getMinorVers ion () const ;
virtual g f : : r eader : : Abstract ∗ getAbstract () const ;
virtual bool hasConcrete (const std : : s t r i n g& name) const

;
virtual std : : s t r i n g to S t r i ng () const ;

} ;

Listing 4.4: Main class representing the grammar.

9

4.3. LIBPGF+ CHAPTER 4. PGF IN C++

class PGFReader {
public :

PGFReader (FILE∗ inputStream) ;
PGFReader (FILE∗ inputStream , const std : : set<std : : s t r i ng

>& languages) ;
virtual PGF∗ readPGF () throw(g f : : IOException , g f : :

UnknownLanguageException) ;
} ;

Listing 4.5: Base class for all exceptions thrown in the library.

Lambda . Tree : := ”\\ ” Ident ”−>” Tree ;
Var iab le . Tree : := ”$ ” Integer ;
App l i ca t ion . Tree : := ”(” Tree Tree ”) ” ;
L i t e r a l . Tree : := Li t ;
MetaVariable . Tree : := ”META ” Integer ;
Function . Tree : := Ident ;

I n t L i t e r a l . L i t : := Integer ;
F l o a t L i t e r a l . L i t : := Double ;
S t r i n g L i t e r a l . L i t : := String ;

Listing 4.6: BNF grammar used to generate the classes modelling the parse tree.

4.3.4 Reader

The reader consists of two parts. The first part is the PGFReader class that does the
actual parsing of the PGF file. Its public api can be seen in listing 4.5. It consists only
of two constructors and a method to read the PGF file and create a PGF object. Both
constructors take a c stream as argument that will be used when reading the file. The
second constructor also accepts a set of language names that will be used to filter which
concrete syntaxes are loaded from the file.

The second part is the set of classes modelling the grammar that was read from the
file. There are classes corresponding to each type in the PGF file format [9]. The model
is the same as the one used in JPGF and can be seen in figure 4.1.

4.3.5 Parse tree

The classes modelling the parse tree are automatically generated from the BNF grammar
shown in listing 4.6 using bnfc [12]. This grammar is identical to the one used in JPGF
and theoretically a tree parsed with libpgf+ could be converted to a string using this
grammar and then read from the string with JPGF and linearised there, or vice versa.

10

4.3. LIBPGF+ CHAPTER 4. PGF IN C++

Figure 4.1: Class diagram of the grammar model.
11

5
Mountaineering phrasebook

I
n mountaineering, like in all special areas of interest, there is a certain jargon.
It includes some words and phrases which are uncommon or even has a differ-
ent meaning when used without this context. However, a large amount of words
and expressions are still common with plain language. (Otherwise it wouldn’t be

considered the same language any more.)
In GF there is already a tourist phrasebook grammar [13]. This can be used as a

basis for the Mountaineering grammar so that only the jargon has to be added.

5.1 Phrasebook

The phrasebook grammar in the GF distribution provides several forms of useful ques-
tions and phrases. Some examples include:

• Where is the airport?

• Can you buy an apple?

• I can swim.

• This Italian pizza is good.

5.2 Mountaineering

The words and phrases present in mountaineering jargon varies from language to lan-
guage. Some languages, like Norwegian, has a very rich vocabulary for this area. Others,
like Swedish, mostly use loan words. English and German fall somewhere in between,
with German being on the richer side of the spectrum while English borrows some from
German but not as much as Swedish does from English.

12

5.2. MOUNTAINEERING CHAPTER 5. MOUNTAINEERING PHRASEBOOK

5.2.1 Words

When deciding what words to include a few categories where identified, namely actions,
exclamations, gear, holds, knots, places and people. Some of these could be placed in
existing categories from the Phrasebook grammar, while other where given their own
categories.

The main sources for words were climbing and mountaineering dictionaries on the
internet [14] [15] [16].

The words where categorised as follows:

VerbPhrase Actions like like abseil, climb, fall or stem.

Greeting Exclamations like ”belay on”, ”falling!” or ”rock!”.

Kind Gear like carabiner, harness or rope.

HoldKind Holds like bucket, pocket or sloper.

KnotKind Knots like bowline, fisherman’s knot or munter hitch.

PlaceKind Places like belay station, glacier or summit.

Profession People like belayer, climber or physician.

VerbPhrase, Kind and PlaceKind are inherited from the Phrasebook grammar, while the
other four are new.

Profession is probably the most interesting category as it is used in the replacement
of certain phrases from the Phrasebook grammar, discussed below.

5.2.2 Phrases

The Phrasebook grammar provides most of the phrases needed to use the added words.
Some phrases were added though:

ADoVerbPhraseDirection Someone walks/climbs/etc to somewhere: ”I walk to the
hotel.”

AModVerbPhraseDirection Someone can/can’t do the above: ”I can walk to the
hotel.”

IsAProfession Someone is a climber/physician/etc: ”I am a climber.”

5.2.3 Professions

In the Phrasebook grammar there is a group of Actions on the form ”I am a student.”
However, these are not very flexible and does not allow the profession to be reused in
other phrases were a person is needed. I.e. ”The student walks to the hotel.”. This is
somewhat limiting as being able to say ”The leader climbs to the belay station.” can be
rather useful.

13

5.2. MOUNTAINEERING CHAPTER 5. MOUNTAINEERING PHRASEBOOK

cat
P r o f e s s i o n ;

fun
ThisPro fe s s ion , ThatProfess ion : P r o f e s s i o n −> Person ;

−− t h i s teacher , t h a t t eacher
ThesePro fes s ions , ThosePro fe s s i ons : P r o f e s s i o n −> Person ;

−− t h e s e teachers , t hose t eache r s
TheProfess ion , ThePro fe s s ions : P r o f e s s i o n −> Person ;

−− the teacher , the t eache r s
I sAPro f e s s i on : Person −> P r o f e s s i o n −> Action ;

Listing 5.1: New abstract syntax for Professions.

To address this, the old professions were excluded when inheriting from the Phrase-
book grammar, and instead a new system to express both the old phrases and the new
were designed.

First, a new category Profession as described in section 5.2.1 were added. Then
functions to use professions as persons were created. Finally the function IsAProfession
was added to replicate the ”I am a student.” type of phrases. The abstract and concrete
syntax for this is shown in listings 5.1, 5.2 and 5.3. This can be compared with the old
functions from Phrasebook in listings 5.4 and 5.5. The new way makes the grammar a
bit more complex, but in return adding more professions is easier and the ways they can
be used are more flexible.

14

5.2. MOUNTAINEERING CHAPTER 5. MOUNTAINEERING PHRASEBOOK

l incat
P r o f e s s i o n = N;

l in
Thi sPro f e s s i on pro = {name = mkNP this Quant pro ; i sPron =

False ; poss = this Quant } ;
ThatPro fess ion pro = {name = mkNP that Quant pro ; i sPron =

False ; poss = that Quant } ;
ThesePro f e s s i ons pro = {name = mkNP this Quant plNum pro ;

i sPron = False ; poss = this Quant } ;
ThosePro fe s s ions pro = {name = mkNP that Quant plNum pro ;

i sPron = False ; poss = that Quant } ;
TheProfess ion pro = {name = mkNP the Quant pro ; i sPron =

False ; poss = the Quant } ;
ThePro fe s s ions pro = {name = mkNP the Quant plNum pro ;

i sPron = False ; poss = the Quant } ;
ProTeacherMale , ProTeacherFemale = teacher N ;
ProPhysicianMale , ProPhysicianFemale = doctor N ;

Listing 5.2: New shared concrete syntax for Professions.

l in
I sAPro f e s s i on p pro = mkProfess ion pro p ;
ProBelayerMale , ProBelayerFemale = mkN ”be laye r ” ;
ProClimberMale , ProClimberFemale = mkN ”c l imber ” ;
ProLeaderMale , ProLeaderFemale = mkN ”l e a d e r ” ;
ProSecondMale , ProSecondFemale = mkN ”second ” ;

Listing 5.3: New english concrete syntax for Professions.

fun
ADoctor : Person −> Action ;
AProfessor : Person −> Action ;
ALawyer : Person −> Action ;
AEngineer : Person −> Action ;
ATeacher : Person −> Action ;
ACook : Person −> Action ;
AStudent : Person −> Action ;
ABusinessman : Person −> Action ;

Listing 5.4: Old abstract syntax for Professions.

15

5.2. MOUNTAINEERING CHAPTER 5. MOUNTAINEERING PHRASEBOOK

l in
ADoctor = mkProfess ion (mkN ”doctor ”) ;
AProfessor = mkProfess ion (mkN ” p r o f e s s o r ”) ;
ALawyer = mkProfess ion (mkN ”lawyer ”) ;
AEngineer = mkProfess ion (mkN ”eng inee r ”) ;
ATeacher = mkProfess ion (mkN ”teacher ”) ;
ACook = mkProfess ion (mkN ”cook ”) ;
AStudent = mkProfess ion (mkN ”student ”) ;
ABusinessman = mkProfess ion (mkN ”businessman ” ”businessmen

”) ;

oper
mkProfess ion : N −> NPPerson −> Cl = \n , p −> mkCl p . name n

;

Listing 5.5: Old english concrete syntax for Professions.

16

6
The iPhone application

H
ere an introduction of the Android application is given, after which follows
a more in-depth description of the structure of the iPhone application.

6.1 PhraseDroid

PhraseDroid is an android application utilising the JPGF library to parse and translate
the user’s input. The application welcomes the user with a language selection page with
a flag for each language. After selecting a language the user can begin input by touching
one of the available tokens presented on the screen, similar to the fridge magnets GF
web service. There is also an option to change the target language.

Once a valid sentence is formed the user can touch a button to translate. The applica-
tion will then present the user with the available translations along with disambiguations.
If the target language is supported by the Android OS text-to-speech service, a button
is available for each translation to read the translation out loud.

6.2 iPhrase

The developed iPhone application can roughly be divided into two parts. There is the
user interface to provide interactivity and present results, and the Grammarian that
interfaces with libpgf+.

6.2.1 Grammarian

The Grammarian class is the glue between the C++ api of libpgf+ and the Objective C
code in the rest of the application. It provides methods to enumerate available languages,
to translate between three-letter languages codes and full language names, and most

17

6.2. IPHRASE CHAPTER 6. THE IPHONE APPLICATION

importantly to parse input, generate translations and predict continuations of the current
input. The public interface of the class is shown in listing 6.1.

The enumeration of available languages is done by querying libpgf+ for the list of
concrete syntaxes for the current grammar. These names are not very user friendly
though. Therefor a method to generate a human readable name is provided. This
method extracts the three letter code at the end of the concrete syntax name and looks
it up in a table with all the ISO 639 [17] language codes and their corresponding language
names.

Parsing is done by accepting one token at a time and passing it on to libpgf+, keeping
a reference to the current parser state in the grammarian. This state is then queried for
predictions which are cached until needed.

Translations are generated by asking the current parser state for all available parse
trees and then handing them over to the concrete syntax of the grammar corresponding
to the requested target language. The resulting linearisations are then returned to the
caller.

There are two methods to predict continuations. The first method uses simple prefix
matching on the list of cached predictions. The second method calculates the Dam-
erau–Levenshtein distance [18] between the supplied string and each token, and only
returns those tokens that either has the supplied string as a prefix or has an edit dis-
tance less than or equal to the supplied number.

6.2.2 User interface

The user interface of the application consists of five different views that can be accessed
through the flow shown in 6.1. The starting view is the input view. The main part
of this view is occupied by the token input and the keyboard. At the top of the view
are two buttons to transition to either the settings view or the translations view. The
translation button is only available if the current input can be parsed to a top level
production by the grammar.

Token input

Token input can be done in two ways. One way is to touch one of the token buttons
shown in the token input view. The other way is to enter text manually into the provided
text field.

The token input view shows the possible continuations of the current input. The list
of possible tokens is provided by the Grammarian as described in 6.2.1. A button is
created for each token. The buttons are then laid out to fit in the current width of the
token main input view as seen in figures 6.2 and 6.3. The height of the token input view
is then adjusted to fit all the buttons to enable scrolling in the parent view.

Touching a token will tell the advance the grammarian using the corresponding token,
after which the token input view will be updated to reflect the newly available predictions.

When the grammarian is advanced the new token will also be added to a list of
processed tokens along with a corresponding button visible at the top of the token input

18

6.2. IPHRASE CHAPTER 6. THE IPHONE APPLICATION

@interface Grammarian : NSObject
− (id) i n i t ;
− (id) initWithLanguage : (NSString ∗) language ;

+ (NSArray∗) languages ;
+ (BOOL) hasLanguage : (NSString ∗) language ;
+ (NSString ∗) codeForLanguage : (NSString ∗) language ;
+ (NSString ∗) languageForCode : (NSString ∗) code ;
+ (NSString ∗) humanReadableNameOfLanguageFromCode : (NSString ∗)

code ;
+ (NSString ∗) humanReadableNameOfLanguage : (NSString ∗) language ;

− (NSString ∗) sourceLanguage ;

− (NSArray∗) p r e d i c t : (NSString ∗) p r e f i x ;
− (NSArray∗) p r e d i c t : (NSString ∗) p r e f i x withEditDistance : (int)

d i s t anc e ;
− (NSArray∗) match : (NSString ∗) token withEditDistance : (int)

d i s t anc e ;
− (NSArray∗) matchIgnoringCase : (NSString ∗) token ;

− (BOOL) accept : (NSString ∗) token ;
− (void) r e s e t ;
− (int) acceptedTokenCount ;

− (NSArray∗) parseTrees ;
− (NSArray∗) t rans lat ionsForLanguage : (NSString ∗) language ;
@end

Listing 6.1: Public interface of the Grammarian class.

just left of the input text field.
If text is entered into the text field the entered text will be used as a prefix to limit

the list of tokens returned by the grammarian. If no tokens are returned, a second query
for tokens is performed but this time with an allowed maximum edit distance of one as
explained in 6.2.1. This is to make allowances for the user misspelling a token.

If a space is entered and the current text is a valid token or has a maximum edit
distance of one from one and only one valid token the grammarian is advaned as if the
corresponding token button had been touched.

If the text field is empty and a back space is entered, the previous input token will
be removed from the list of processed tokens and instead be placed in the text field.
This same effect can also be achieved by touching the button corresponding to the last
processed token.

19

6.2. IPHRASE CHAPTER 6. THE IPHONE APPLICATION

Figure 6.1: UI flow

Translations

The translations view shows a list of the generated translations for the given input
and also a using a disambiguation concrete syntax if the current grammar supports it.
Touching any of the translations will take the user to the translation details view. The
translations view, like the settings view, features a button to return to the input view.

Translation details

The translation details view shows the full text of the translation and below it the full
text of the disambiguation if available. There is also a back button to return to the
translations view.

Settings

The settings view shows a list of the available options in the application. Currently this
is the from and to languages for the translation. Touching one of these will take the user
to the language selection view. The settings view also features a button to return to the
input view.

Language selection

The language selection view dynamically creates a list of all the languages available in
the current grammar. The active language has a mark to indicate it is in use. Touching
any of the languages in the list will make that language active for the current setting

20

6.2. IPHRASE CHAPTER 6. THE IPHONE APPLICATION

Figure 6.2: Input view (portrait)

(to/from) and return to the settings view. There is also a back button to return to the
settings view without changing the active language.

6.2.3 Reusability

The grammar used in the application is loaded from a PGF file. This allows the grammar
to be replaced without having to change the whole application.

21

6.2. IPHRASE CHAPTER 6. THE IPHONE APPLICATION

Figure 6.3: Input view (landscape)

22

7
Results

T
his chapter presents the results of this work and discusses possible further
work.

7.1 Results

7.1.1 Mountaineering phrasebook

The mountaineering phrasebook extends the Phrasebook grammar with 78 new words
specific to this domain. It adds two new kinds of phrases, and replaces one old with a
new implementation. It also extends the Person category to include professions.

7.1.2 libpgf+

A comparison of the GF, JPGF, libpgf+ parsers can be seen in table 7.1. The comparison
was done using the Mountaineering grammar and a list of 1000 randomly generated
phrases supported by the grammar. Time measurements for GF were taken with the
unix time command while running GF in batch mode, and is the sum of both user and
system time (that is, total cpu time). The time measurements for JPGF were taken
using the Netbeans profiler while the measurements for libpgf+ were taken using the OS
X profiler (Instruments).

7.1.3 iPhone application

A comparison of the available features in the Android and the iPhone applications can
be seen in 7.2.

23

7.2. EVALUATION CHAPTER 7. RESULTS

PGF load time Average parse time

GF 171 ms 6.1 ms

JPGF 1129 ms 8.5 ms

libpgf+ 56 ms 17 ms

Table 7.1: Comparison of parsers.

Phrasedroid (Android) iPhrase (iPhone)

Load from PGF Yes Yes

Change input language Yes Yes

Change output language Yes Yes

Token touch input Yes Yes

Keyboard input No Yes

List all possible translations Yes Yes

Text-to-speach of translation Yes No

Table 7.2: Comparison of memory management alternatives.

7.2 Evaluation

7.2.1 Mountaineering phrasebook

The new words in the grammar relates mostly to climbing. While it is one important
aspect of mountaineering, there are other areas that would benefit from being covered
by the grammar as well.

7.2.2 libpgf+

The libpgf+ library has the same functionality as the JPGF library. This means that it
provides all the features necesarry to implement a working phrase translation application.

7.2.3 iPhone application

With the same feature set as the Android application except for text-to-speach, the
iPhone application should be considered a successful reimplementation. Also, the addi-
tion of the keyboard input is very useful when the number of possible continuations is
very large.

24

7.3. FUTURE WORK CHAPTER 7. RESULTS

7.3 Future work

7.3.1 Mountaineering phrasebook

The grammar can of course be extended with a larger vocabulary and more phrases.
Some examples include alpine flora and fauna, and phrases for asking for/giving direc-
tions to get from one place to another.

7.3.2 libpgf+

The api could be better documented. This would also benefit JPGF, since they share a
common api with the exception for memory handling. There might also be bugs in the
code that has not been found yet.

7.3.3 The iPhone application

There is always room for improvement in the user interface of an application. The input
interface works fairly well, but the presentation of results could need some improvement.
An additional setting to allow the user to choose between several different installed
grammars would also be useful.

25

8
Conclusion

S
uprisingly, the Java version of the parser was actually faster than the C++
version. This is most likely due to recursive nature of the algorithm and the fact
that the Java version is partly written in Scala which handles recursion better
than Java or C++. Another factor which might affect the result is the Java

just-in-time compiler which would further optimize the code at run time, compared to
the static optimizations done for the C++ code at compile time.

The grammar includes a little under 100 new words and a few new phrases relating
to climbing in three different languages. This is a great start for a climbing and trekking
grammar, but it can of course be extended.

Finally, the iPhone application works as intended and presents a user interface similar
to the Android application. The grammar in the application can easily be replaced by
another and thus the reusability requirements are met. Translations and prediction can
be a bit slow for very long sentences which is a result of the somewhat limited cpu in
the iPhone and the fact that the libpgf+ library is slower than the JPGF library.

8.1 Source code

The source code for the grammar, library and application can be found at the following
urls:
http://emil.djupfeldt.se/mscthesis/src/

http://emil.djupfeldt.se/mscthesis/git/

26

http://emil.djupfeldt.se/mscthesis/src/
http://emil.djupfeldt.se/mscthesis/git/

Bibliography

[1] R. Enache, G. Détrez, A framework for multilingual applications on the android
platform, SLTC, 2010.

[2] P. Martin-Löf, Intuitionistic type theory, Bibliopolis, 1984.

[3] A. Ranta, Grammatical Framework, CSLI Publications, 2011.

[4] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, The Java Language Specifica-
tion, Oracle, Java SE 7 Edition (2011).

[5] ISO/IEC JTC1/SC22/WG21, ISO/IEC 14882:2011 (2011).

[6] B. Stroustrup, Multiple inheritance for c++, The C/C++ Users Journal.

[7] P. Ljunglöf, Expressivity and complexity of the grammatical framework, Ph.D. the-
sis, Gothenburg University and Chalmers University of Technology (2004).

[8] H. Seki, T. Matsumura, M. Fujii, T. Kasami, On multiple context-free grammars,
Theoretical Computer Science.

[9] K. Angelov, The mechanics of the grammatical framework, Ph.D. thesis, Chalmers
University of Technology (2011).

[10] (December 2012).
URL http://www.grammaticalframework.org/libpgf/

[11] R. Jones, R. Lins, Garbage Collection: Algorithms for Automatic Dynamic Memory
Management, John Wiley and Sons, 1996.

[12] M. Forsberg, A. Ranta, The labelled bnf grammar formalism, Tech. rep., Chalmers
University of Technology and the University of Gothenburg (2005).

[13] K. Angelov, O. Caprotti, R. Enache, T. Hallgren, I. Listenmaa, A. Ranta, J. Saludes,
A. Slaski, Molto multilingual phrasebook, Tech. rep. (2010).

27

http://www.grammaticalframework.org/libpgf/

BIBLIOGRAPHY

[14] (December 2012).
URL http://www-dft.ts.infn.it/~esmargia/mountain/climbing_dict.html

[15] (December 2012).
URL http://www.stichel-frei.de/sicherung/index.shtml

[16] (December 2012).
URL http://www.klettern.de/service/lexikon/lexikon-der-

kletterbegriffe.155105.5.htm?skip=3

[17] ISO, ISO 639 Code for the representation of names of languages (1988).

[18] F. J. Damerau, A technique for computer detection and correction of spelling errors,
Communications of the ACM.

28

http://www-dft.ts.infn.it/~esmargia/mountain/climbing_dict.html
http://www.stichel-frei.de/sicherung/index.shtml
http://www.klettern.de/service/lexikon/lexikon-der-kletterbegriffe.155105.5.htm?skip=3
http://www.klettern.de/service/lexikon/lexikon-der-kletterbegriffe.155105.5.htm?skip=3

	Introduction
	Goals
	Structure

	Background
	GF and PGF
	Grammatical Framework
	Abstract syntax
	Concrete syntax
	Inheritance

	Portable Grammar Format

	PGF in C++
	libpgf
	JPGF
	libpgf+
	Memory handling
	Exceptions
	PGF
	Reader
	Parse tree

	Mountaineering phrasebook
	Phrasebook
	Mountaineering
	Words
	Phrases
	Professions

	The iPhone application
	PhraseDroid
	iPhrase
	Grammarian
	User interface
	Reusability

	Results
	Results
	Mountaineering phrasebook
	libpgf+
	iPhone application

	Evaluation
	Mountaineering phrasebook
	libpgf+
	iPhone application

	Future work
	Mountaineering phrasebook
	libpgf+
	The iPhone application

	Conclusion
	Source code

	 Bibliography

