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A hierarchy of dynamic equations for solid

isotropic circular cylinders

Hossein Abadikhah, Peter D. Folkow ∗,

Department of Applied Mechanics, Chalmers University of Technology, SE-412 96

Göteborg, Sweden

Abstract

This work considers homogeneous isotropic circular cylinders adopting a power se-
ries expansion method in the radial coordinate. Equations of motion together with
consistent sets of end boundary conditions are derived in a systematic fashion up to
arbitrary order using a generalized Hamilton’s principle. Time domain partial differ-
ential equations are obtained for longitudinal, torsional, and flexural modes, where
these equations are asymptotically correct to all studied orders. Numerical examples
are presented for different sorts of problems, using exact theory, the present series
expansion theories of different order, and various classical theories. These results
cover dispersion curves, eigenfrequencies and the corresponding displacement and
stress distributions, as well as fix frequency motion due to prescribed end displace-
ment or lateral distributed forces. The results illustrate that the present approach
may render benchmark solutions provided higher order truncations are used, and
act as engineering cylinder equations using low order truncation.

Key words: beam, torsion, series expansion, asymptotic, eigenfrequency

1 Introduction

Dynamic equations of circular cylinders have been studied extensively by many authors;
from the full three dimensional geometry to simple one-dimensional models. Exact solutions
to the three dimensional equations were derived by Pochhammer [1] and Chree [2] for
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infinitely long cylinders, resulting in the well-known transcendental frequency equations.
Further investigations of these frequency equations have been carried out for the various
mode families (longitudinal, torsional, flexural). Studies of the corresponding dispersion
curves have been investigated in detail [3, 4, 5] where results have been presented for the
modes that are of most importance to the present work: the transverse lowest flexural modes
and the higher order flexural mode families. Considering semi-infinite and finite cylinders,
analytical transient solutions have been developed for the flexural modes in the special
case of mixed boundary conditions [6, 7]. Due to the complexity of the three dimensional
theory of elastodynamics in general, and dealing with other end boundary conditions in
particular (e.g. Dirichlet or Neumann), various approximate methods of solutions have
been developed. There exists on one hand analytical solutions based on expansion in terms
of Bessel functions [8, 9] where part of the boundary conditions are satisfied approximately,
and on the other hand numerical solutions such as the Ritz method [10, 11, 12, 13] or the
finite element method [14]. These works using approximate methods concentrate mainly
on eigenfrequency analyzes.

However, the bulk of analysis on flexural problems has been directed towards the lowest
transverse flexural mode family using simplified one-dimensional beam theories. In these
simplified theories, both the dynamic equations and the boundary conditions are often
derived using various kinds of simplifying kinematic assumptions. The most used approx-
imate theory is the simple Euler–Bernoulli equation, where shear and rotary inertia are
neglected. This leads to a differential equation that has the undesired feature of being
non-hyperbolic. However, if the beam radius is much smaller than both the beam length
and the wavelengths, this approximation is known to yield accurate results. The next level
of models include shear and rotary inertia described by Timoshenko [15], resulting in a
hyperbolic equation of motion. There are several other more advanced beam theories in
use. Some of these concern only rectangular cross sections [16, 17, 18, 19, 20, 21, 22, 23],
while others are applicable for circular cross sections [24, 25, 26, 27, 28, 29].

The present paper aims at systematically develop a hierarchy of approximate equations
for solid isotropic circular cylinders. To this end power series expansions in the radial
coordinate are adopted in the three dimensional equations of motion. Using generalized
Hamilton’s principle, time domain equations of motions together with general lateral and
end boundary conditions are stated in a systematic manner. Sets of cylinder equations may
hereby be derived to an (in principle) arbitrary order for the various displacement families
(longitudinal, torsional, flexural), where each studied truncated order is asymptotically
correct. Higher order sets of time domain equations may be used for benchmark solutions
to various three dimensional cylinder problems, while lower order sets may be used as
alternative engineering equations. As the longitudinal axisymmetric motion is investigated
in a separate paper by Folkow and Mauritsson [30], the main contribution here concerns
torsional and the more involved flexural motions. Especially the lowest flexural transverse
modes are studied in some detail.
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Other higher order power series expansion flexural theories are presented in the literature
[24, 25, 26, 28, 20]. Here, Martin [28] uses an approach on cylindrically anisotropic cylin-
ders that in many respects is similar to the present method. The other cited works use
approaches that are different from the present one concerning the series expansion method,
the use of recursion relations, the procedure when collecting terms or the truncation process
as a whole. Consequently, the resulting flexural theories (equations of motion, boundary
conditions) are all different, even for the lowest truncation order. Besides solid cylinders,
the present method has been adopted on shells and plates [31, 32, 33, 34, 35, 36].

Sections 2-6 illustrate the fundamentals of the method in question. Adopting the three
dimensional equations of motion and a series expansion assumption, a hierarchy of varia-
tionally consistent approximate equations of motion and pertinent boundary conditions are
derived from Hamilton’s principle. The issue whether these sets of equations are asymp-
totically correct or not are illustrated and discussed in Section 7. The rest of the paper
concentrates mainly on the flexural motion. Section 8 presents and discusses the differ-
ential equation for the present transverse beam theory using the lowest truncation order,
together with equations for other beam theories given in the literature. Numerical results
are given in Section 9, covering dispersion curves, eigenfrequencies, mode shapes, motion
due to prescribed end displacement and a static deflection case. For the present theory,
these examples illustrate both the benchmark property of the higher order truncations,
and the efficiency of the lower order engineering equations.

2 Hamilton’s principle

Consider a circular cylinder with length L and radius a. The cylinder is homogeneous,
isotropic and linearly elastic with density ρ and Lamé parameters λ and µ. Cylindrical
coordinates are used with radial coordinate r, circumferential coordinate θ and axial co-
ordinate z. The corresponding radial, circumferential and longitudinal displacement fields
are denoted by u, v and w.

A generalized Hamilton’s principle is to be used to derive variationally consistent sets of
differential equations describing the motion of the cylinder together with the corresponding
boundary conditions. Hereby, the governing sets of cylinder equations are treated in a
unified manner. Simultaneous and independent variations of displacements and stresses
are adopted such that displacement and stress boundary conditions are treated similarly
[30, 37, 38]. The Hamilton’s principle thus results in the variational expressions

∫ t1

t0

(∫

V
(∇ · σ + ρf − ρü) · δu dV +

∫

St

(

t̂ − n · σ
)

· δu dS +
∫

Su
(û − u) · δt dS

)

dt = 0.

(1)
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Here σ is the stress, f is the volume force and n is the unit normal vector. A prescribed
traction t̂ acts on a subsurface denoted by St and a prescribed displacement û acts on
the complementary surfaces Su. Since the virtual displacement components in δu and the
virtual traction components δt are independent, equation (1) reduces to separate equations
for each variational term. For sake of clarity, each equation is written below on component
form. The equations of motion contained in the volume integrals are thus

∫

V

(

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

∂σrz

∂z
+

σrr − σθθ

r
+ ρfr − ρ

∂2u

∂t2

)

δu rdrdθdz = 0, (2)

∫

V

(

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

∂σθz

∂z
+ 2

σrθ

r
+ ρfθ − ρ

∂2v

∂t2

)

δv rdrdθdz = 0, (3)

∫

V

(

∂σrz

∂r
+

1

r

∂σθz

∂θ
+

∂σzz

∂z
+

σrz

r
+ ρfz − ρ

∂2w

∂t2

)

δw rdrdθdz = 0. (4)

The surface integrals at the lateral surface r = a become

∫

St
a,r

(

t̂r − σrr

)

δu dθdz =
∫

St
a,θ

(

t̂θ − σrθ

)

δv dθdz =
∫

St
a,z

(

t̂z − σrz

)

δw dθdz = 0, (5)

∫

Su
a,r

(û− u) δtr dθdz =
∫

Su
a,θ

(v̂ − v) δtθ dθdz =
∫

Su
a,z

(ŵ − w) δtw dθdz = 0, (6)

where t̂r is prescribed on St
a,r etc. The surface integrals on the end surfaces z = {0, L} are

written

∫

St
{0,L},r

(

t̂r ± σrz

)

δu rdrdθ =
∫

St
{0,L},θ

(

t̂θ ± σθz

)

δv rdrdθ =
∫

St
{0,L},z

(

t̂z ± σzz

)

δw rdrdθ = 0,

(7)
∫

Su
{0,L},r

(û− u) δtr rdrdθ =
∫

Su
{0,L},θ

(v̂ − v) δtθ rdrdθ =
∫

Su
{0,L},z

(ŵ − w) δtw rdrdθ = 0,

(8)

where t̂r is prescribed on St
{0,L},r etc. The notation ± in (7) refers to the left/right end.

These set of three dimensional equations with pertinent boundary conditions constitute
the base in order to systematically develop approximate cylinder equations. As will be
described below (2)–(4) results in recursion formulas, (5)–(6) results in a hierarchy of
equations of motion while (7)–(8) results in a hierarchy of end boundary conditions.
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3 Series expansion

In order to derive sets of approximate cylinder equations, the displacement fields are to be
expanded in power series in the radial coordinate r [30, 31]

u = u0(θ, z, t) + ru1(θ, z, t) + r2u2(θ, z, t) + . . . ,

v = v0(θ, z, t) + rv1(θ, z, t) + r2v2(θ, z, t) + . . . ,

w = w0(θ, z, t) + rw1(θ, z, t) + r2w2(θ, z, t) + . . . .

(9)

By using this ansatz in the stress–displacement relations

σrr = λ

[

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z

]

+ 2µ
∂u

∂r
,

σθθ = λ

[

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z

]

+ 2µ

[

u

r
+

1

r

∂v

∂θ

]

,

σzz = λ

[

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z

]

+ 2µ
∂w

∂z
,

σrθ = µ

[

1

r

∂u

∂θ
+

∂v

∂r
−

v

r

]

, σrz = µ

[

∂u

∂z
+

∂w

∂r

]

, σθz = µ

[

∂v

∂z
+

1

r

∂w

∂θ

]

,

(10)

the stress expressions are also written on series form

σij = r−1σij,−1(θ, z, t) + σij,0(θ, z, t) + rσij,1(θ, z, t) + . . . , (11)

which thus may be used in (2)–(4). Considering (2), the expression in the parenthesis is
readily written as Fr = r−2Fr,−2(θ, z, t)+ r−1Fr,−1(θ, z, t)+ . . .. This implies that (2) holds
provided that

∫ a

0

(

r−2Fr,−2 + r−1Fr,−1 + . . .
)

(δu0 + rδu1 + . . .) rdr = 0. (12)

By performing the radial integrations, and using that the virtual displacements δuk are
independent, a unique solution is obtained when Fr,k−2 = 0 for k = 0, 1, 2, . . .. Similar
arguments hold for Fθ and Fz in (3) and (4). In the case of no volume forces f = 0 , these
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relations are explicitly given as

Fr,k−2 = (k2 − 1)(λ+ 2µ)uk + µ
∂2uk

∂θ2
+
(

(k − 1)λ+ (k − 3)µ
)∂vk
∂θ

+ (k − 1)(λ+ µ)
∂wk−1

∂z
+ µ

∂2uk−2

∂z2
− ρ

∂2uk−2

∂t2
= 0,

(13)

Fθ,k−2 = (k2 − 1)µvk + (λ+ 2µ)
∂2vk
∂θ2

+
(

(k + 1)λ+ (k + 3)µ
)∂uk

∂θ

+ (λ+ µ)
∂2wk−1

∂θ∂z
+ µ

∂2vk−2

∂z2
− ρ

∂2vk−2

∂t2
= 0,

(14)

Fz,k−2 = k2µwk + µ
∂2wk

∂θ2
+ k(λ+ µ)

∂uk−1

∂z

+ (λ+ µ)
∂2vk−1

∂θ∂z
+ (λ+ 2µ)

∂2wk−2

∂z2
− ρ

∂2wk−2

∂t2
= 0,

(15)

for k = 0, 1, 2, . . .. Here {uk, vk, wk} ≡ 0 for k < 0. These equations are recursion formulas,
that are exact provided that the displacement fields may be expanded in an infinite power
series (9). Similar results are presented by Hägglund and Folkow [33] for shells using a
more direct method not based on Hamilton’s principle, where (13)–(15) may be obtained
as the limit when the shell radius tends to zero (there are a few sign typos in [33]). Con-
trary to the rod, plate, and shell cases [31, 32, 33], the highest order fields {uk, vk, wk} in
(13)–(15) may not directly be extracted and expressed on non-derivative form in terms of
the lower order recursion fields {uk−1, vk−1, . . .} due to the derivatives with respect to the
circumferential coordinate in the highest order terms. In order to resolve this matter, the
traditional method of expanding the fields in Fourier series with respect to the circumfer-
ential coordinate is introduced. Hereby the recursion relations, the boundary conditions
etc. may all be handled separately for each Fourier mode.

4 Fourier expansion

Each term in the radial series ansatz (9) are expanded in Fourier series according to

uk =
∞
∑

m=0

uk,m(z, t) cosmθ, vk =
∞
∑

m=0

vk,m(z, t) sinmθ, wk =
∞
∑

m=0

wk,m(z, t) cosmθ. (16)

Here the angle θ is measured from a vertical axis in a plane through the cross section of
the cylinder with a horizontal axis, as defined in [39]. Hereby, the case m = 1 correspond
to the flexural motion in the vertical direction. The axisymmetric case m = 0 is for a rod
with radial and longitudinal motion, treated in [30, 31]. The torsional case obtained by
interchanging cosmθ and sinmθ in (16) for m = 0 is studied separately in Section 6.

Adopting (16) in the recursion relations (13)–(15) results in separate equations for each
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Fourier mode m. By studying these equations systematically for each k starting from the
lowest circumferential mode, it appears that uk,m and vk,m are zero when k andm are either
both even or both odd, respectively. The opposite situation holds for wk,m. Moreover,

uk,m = vk,m = wk,m−1 ≡ 0, k < m− 1. (17)

Hence, the upper limit for the sums in (16) are hereby finite. In other words, the radial
expansion for each higher circumferential mode starts from a higher radial power. Hereby,
equation (16) inserted in (9) can be collected as

u =
∞
∑

m=0

ũm(r, z, t) cosmθ, v =
∞
∑

m=0

ṽm(r, z, t) sinmθ, w =
∞
∑

m=0

w̃m(r, z, t) cosmθ, (18)

where

ũm = rm−1um−1,m + rm+1um+1,m + rm+3um+3,m + . . . ,

ṽm = rm−1vm−1,m + rm+1vm+1,m + rm+3vm+3,m + . . . ,

w̃m = rmwm,m + rm+2wm+2,m + rm+4wm+4,m + . . . .

(19)

Note again that um−1,m = vm−1,m ≡ 0 for m = 0. The explicit expressions for the nonzero
terms in the recursion relations become from (13)–(15)

(k + 1)(k + 3)
[

(k + 1)(k + 3) + 4m(k + 2) + 4m2
]

µ(λ+ 2µ) um+k+2,m =
[

(m+ k + 1)(m+ k + 3)µ−m2(λ+ 2µ)
] (

ρüm+k,m − µu′′
m+k,m

)

− [m(m+ k + 1)(λ+ µ)− 2mµ]
(

ρv̈m+k,m − µv′′m+k,m

)

− (k + 1)(m+ k + 3)(2m+ k + 1)µ(λ+ µ)w′
m+k+1,m, k = 1, 3, . . . ,

(20)

(k + 1)(k + 3)
[

(k + 1)(k + 3) + 4m(k + 2) + 4m2
]

µ(λ+ 2µ) vm+k+2,m =
[

(m+ k + 1)(m+ k + 3)(λ+ 2µ)−m2µ
] (

ρv̈m+k,m − µv′′m+k,m

)

+ [m(m+ k + 3)(λ+ µ) + 2mµ]
(

ρüm+k,m − µu′′
m+k,m

)

+m(k + 1)(2m+ k + 1)µ(λ+ µ)w′
m+k+1,m, k = 1, 3, . . . ,

(21)

[

(m+ k + 2)2 −m2
]

µwm+k+2,m = ρẅm+k,m − (λ+ 2µ)w′′
m+k,m

− (m+ k + 2)(λ+ µ)u′
m+k+1,m −m(λ+ µ)v′m+k+1,m, k = 0, 2, . . . .

(22)

Here a prime denotes a z-derivative. Equations (20) and (21) are obtained by a combination
of (13) and (14). Two further equations are also be obtained by combining the recursion

7



relations for negative k values

um−1,m + vm−1,m = 0,
(23)

[

m(m+ 2)(λ+ 2µ)−m2µ
]

um+1,m +
[

m2(λ+ µ)− 2mµ
]

vm+1,m

= ρüm−1,m − µu′′
m−1,m −m(λ + µ)w′

m,m.
(24)

Equations (23) and (24) provide constraint relations between um−1,m and vm−1,m, as well as
between um+1,m, vm+1,m and wm,m, respectively. The recursion formulas (20)–(22) together
with (23) and (24) allow for expressing higher order index terms in the mutually indepen-
dent lowest order index terms. This is to be used in the derivation process for obtaining
a hierarchy of approximate cylinder equations with pertinent boundary conditions. The
natural choice would be to use the lowest index non-zero terms in line with earlier work
[31, 32, 33]; that is um−1,m, vm−1,m and wm,m for m > 0. However, due to the constraint
(23) another set must be opted for which here is set to be um−1,m, vm+1,m and wm,m for
m > 0. In the special case m = 0, the fields are expressed in u1,0, v1,0, and w0,0 as there is
no constraint in that case.

The expressions for the stresses follow directly from (11) using (18). Hereby {σrr, σθθ, σzz, σrz}
are expanded in cosmθ and {σrθ, σθz} are expanded in sinmθ. The stresses may be written

σij =
∞
∑

m=0

σ̃ij,m(r, z, t){cosmθ; sinmθ}, (25)

using either cosmθ or sinmθ according to above. The Fourier modes are

σ̃ab,m = rm−2σab,{m−2,m} + rmσab,{m,m} + rm+2σab,{m+2,m} + . . . ,

σ̃cd,m = rm−1σcd,{m−1,m} + rm+1σcd,{m+1,m} + rm+3σcd,{m+3,m} + . . . ,
(26)

where ab is for {rr, θθ, zz, rθ} and cd is for {rz, θz}. Each stress term is expressed as

σrr,{k,m}(z, t) = [(k + 2)(λ+ 2µ)− 2µ]uk+1,m +mλvk+1,m + λw′
k,m, (27)

σθθ,{k,m}(z, t) = [(k + 2)λ+ 2µ]uk+1,m +m(λ+ 2µ)vk+1,m + λw′
k,m, (28)

σzz,{k,m}(z, t) = (k + 2)λuk+1,m +mλvk+1,m + (λ+ 2µ)w′
k,m, (29)

σrθ,{k,m}(z, t) = µ [kvk+1,m −muk+1,m] , (30)

σrz,{k,m}(z, t) = µ
[

u′
k,m + (k + 1)wk+1,m

]

, (31)

σθz,{k,m}(z, t) = µ
[

v′k,m −mwk+1,m

]

. (32)

Note from (29) that σzz,{m−2,m} = 0 due to (17) and (23). Similarly, σrr,{m−2,m} = σθθ,{m−2,m} =
σrθ,{m−2,m} = 0 for the special cases m = 0 and m = 1, while σrz,{m−1,m} = σθz,{m−1,m} = 0
for m = 0. Hereby no negative powers of r appear in the stresses (26).
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5 Boundary conditions

5.1 Lateral boundary conditions; Equations of motion

The lateral boundary conditions (BCs) at r = a are obtained through (5) and (6). Consider
the first relation in (5) for a prescribed traction t̂r given on a circular ring at fixed z0. Using
(18) and (25) gives

∫ 2π

0

(

t̂r(θ, z0, t)−
∞
∑

m=0

σ̃rr,m(a, z0, t) cosmθ

)(

∞
∑

n=0

δũn(a, z0, t) cosnθ

)

dθ = 0. (33)

Since (33) should hold for each virtual displacement δũn, orthogonality effects imply the
expected result that the equation is fulfilled provided that σ̃rr,m(a, z0, t) = t̂r,m(z0, t) where

t̂r(θ, z0, t) =
∞
∑

m=0

t̂r,m(z0, t) cosmθ. (34)

Similar arguments hold for the other relations in (5) and (6). The Fourier modes of pre-
scribed lateral tractions are then equal to the corresponding stress modes (26) using (27),
(30) or (31). Similarly, the Fourier modes of prescribed lateral displacements are equal to
the corresponding displacement modes (19). The latter case with prescribed displacements
becomes

am−1um−1,m + am+1um+1,m + am+3um+3,m + . . . = ûm, (35)

am−1vm−1,m + am+1vm+1,m + am+3vm+3,m + . . . = v̂m, (36)

amwm,m + am+2wm+2,m + am+4wm+4,m + . . . = ŵm, (37)

while the former case with prescribed tractions results in

am−2 [(m(λ+ 2µ)− 2µ)um−1,m +mλvm−1,m] +

am
[

((m+ 2)(λ+ 2µ)− 2µ)um+1,m +mλvm+1,m + λw′
m,m

]

+ . . . = t̂r,m,
(38)

am−2µ [(m− 2)vm−1,m −mum−1,m] + amµ [mvm+1,m −mum+1,m] + . . . = t̂θ,m (39)

am−1µ
[

u′
m−1,m +mwm,m

]

+ am+1µ
[

u′
m+1,m + (m+ 2)wm+2,m

]

+ . . . = t̂z,m. (40)

These lateral BCs (35)–(40) constitute the sought set of approximate cylinder equations of
motion. Hence, by stating one of the fields for each of the three pairs {t̂r, û}, {t̂θ, v̂}, {t̂z, ŵ}
along the lateral surface, a set of three equations forming a hierarchy of approximate
cylinder equations is obtained. This system may be truncated to any order. Adopting
the recursion relations (20)–(22) together with (23) and (24), these cylinder equations are
expressed as a set of hyperbolic partial differential equations in terms of the mutually
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independent lowest order index terms. As noted before, the independent terms for m = 0
are u1,0, v1,0, and w0,0. Here, the longitudinal case adopts u1,0 and w0,0 in the appropriate
pair of equations from (35), (37), (38), and (40), while the torsional case uses v1,0 in either
(36) or (39). For the flexural modesm > 0 one has um−1,m, vm+1,m and wm,m as independent
terms, using the full set of three equations. Since the longitudinal case has been studied
previously [30, 31], the torsional and flexural motions are here of most interest.

For simplicity, consider the standard case of only prescribed tractions (38)–(40), noting
that the displacement based lateral boundary conditions (35)–(37) or mixed boundary
conditions may be treated in a similar manner. Now, the first terms with negative power
of a (for m = 0 and m = 1) are seen to be zero due to the power series ansatz (9) and the
constraint (23). Consider next the flexural case (m > 0) more in detail. For n terms in (38)
and (39) (including the zero terms), the highest power of a is m + 2n − 4 which involves
the terms um+2n−3,m and vm+2n−3,m. By using the recursion relation (20) and (23)–(24),
equation (38) involves 2n− 2 order time and spatial derivatives of the radial displacement
um−1,m. Similarly, the recursion relation (21) and (23)–(24) imply that (39) involves 2n−4
(n > 1) order time and spatial derivatives of the circumferential displacement vm+1,m. In
the same fashion when using n terms in (40), the highest power of a is m+ 2n− 3 which
involves the longitudinal displacement terms wm+2n−2,m. Adopting the recursion relations
(22) and (23)–(24) give that (40) involves 2n−2 order time and spatial derivatives of wm,m.

So, the resulting hyperbolic equations for flexural motion (m > 0) using nr terms in (38),
nθ terms in (39) and nz terms in (40) are of total differential order 2(nr + nθ + nz) − 8
in both space and time. This is readily seen by eliminating within the set of equations,
so as to obtain one equation in one of the fields, say um−1,m. Due to the same differential
terms appearing in both (38) and (39), it is natural to set nθ = nr. As for (40), the level
of higher order derivatives implies that one should choose nz = nr or nz = nr − 1. For
nontrivial solutions, (38)–(40) are solved using ni > 1. For the flexural case m = 1, the
first a−1 terms in (38) and (39) are zero which calls for nr > 2 and nθ > 2.

5.2 End boundary conditions

The end BCs at z = {0, L} are obtained through (7) and (8). Consider for example the last
generalized force equilibrium relation in (7) for a prescribed traction t̂z given on z = L.
For the circumferential coordinate, similar relations as in (33) are obtained, resulting in
σ̃zz,m(r, L, t) = t̂z,m(r, t) where t̂z,m(r, t) is the Fourier expansion mode of the prescribed
traction as in (34). As for the radial dependence for fixed m, (7) becomes from the expan-
sions (19) and (26)

∫ a

0

(

t̂z,m(r, t)−
∞
∑

i=0

rm+2iσzz,{m+2i,m}(L, t)

)





∞
∑

j=0

rm+2jδwm+2j,m(L, t)



 r dr = 0, (41)
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noting that σzz,{m−2,m} = 0. By performing the radial integration for each virtual displace-
ment δwm+2j,m, the resulting equation system may be solved for every σzz,{m+2i,m} term.
In other words, assuming truncation order N gives

∫ a

0

(

t̂z,m(r, t)−
N
∑

i=0

rm+2iσzz,{m+2i,m}(L, t)

)

rm+1+2j dr = 0, j = 0, 1, · · · , N, (42)

where it is straightforward to derive the N + 1 fields σzz,{m+2i,m} from the N + 1 inte-
grals (42). The solution is seen to be equivalent to expanding the prescribed traction in
orthogonal Zernike polynomials Rm

m+2i(r/a) [40]

t̂z,m(r, t) ≈
N
∑

i=0

t̂zR,{2i,m}(t)R
m
m+2i(r/a) =

N
∑

i=0

t̂z,{2i,m}(t)r
m+2i, (43)

where thus σzz,{m+2i,m} = t̂z,{2i,m} for i = 0, 1, · · · , N . Note that the standard case t̂z,m(r, t) =
0 results in σzz,{m+2i,m} = 0 for all i. In a similar manner for prescribed shear tractions t̂r
and t̂θ given on z = L, the Zernike polynomials are used as

t̂j,0(r, t) =
∞
∑

i=0

t̂jR,{2i,0}(t)R
1
1+2i(r/a), t̂j,m(r, t) =

∞
∑

i=0

t̂jR,{2i,m}(t)R
m−1
m−1+2i(r/a), m > 0,

(44)

where j = {r, θ}. Prescribed displacements (8) are treated in an analogous way. Hence, for
each point at the end surfaces, one of the fields for each of the three pairs {t̂r, û}, {t̂θ, v̂}, {t̂z, ŵ}
is to be given.

For the truncated cylinder equation set of total differential order 2(nr + nθ + nz)− 8 dis-
cussed above when m > 0, there are nr+nθ+nz−4 boundary conditions at each end to be
stated for a fixed m. In line with the discussion on lateral BCs above, it is natural to assume
nr − 1 BCs in the radial direction and nθ − 1 BCs in the circumferential direction at each
end. Consequently, for prescribed shear stresses, the sets {σrz,{m−1,m}, . . . , σrz,{m+2nr−5,m}}
and {σθz,{m−1,m}, . . . , σθz,{m+2nθ−5,m}} from (26) and (31)–(32) are to be given by means of
Zernike expansion of t̂r,m(r, t) with nr − 1 terms and t̂θ,m(r, t) with nθ − 1 terms, respec-
tively. In the same fashion for prescribed displacements, the sets {um−1,m, . . . , um+2nr−5,m}
and {vm−1,m, . . . , vm+2nθ−5,m} from (19) are prescribed using Zernike polynomials. At first
sight this seems to result in an inadequate number of boundary conditions in the nor-
mal direction. However, due to the constraint (23) the first displacement terms um−1,m

and vm−1,m render the same BC as do the corresponding stress expressions for σrz,{m−1,m}

and σθz,{m−1,m}. Hereby the total number of shear BCs are reduced by one, resulting in
nr + nθ − 3 at each end. Consequently there are nz − 1 BCs at each end in the normal
direction as expected. For a prescribed stress using (26) and (29) this results in the set
{σzz,{m,m}, . . . , σzz,{m+2nz−4,m}}, while a prescribed displacement gives {wm,m, . . . , wm+2nz−4,m}
from (19).
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These sets of end boundary conditions may then be expressed in terms of the lowest
order expansion fields um−1,m, vm+1,m and wm,m adopting the recursion relations (20)–(24).
The highest spatial derivatives of the boundary expansion fields are hereby one order less
for the prescribed stress expressions, and two order less for the prescribed displacement
expressions, when compared to the various sets of equations of motion (35)–(40).

6 Torsional mode, m= 0

So far all equations are given on a quite general form, covering all mode families. Using
recursion equations it is possible to obtain explicit time domain partial differential cylinder
equations in terms of the lowest order displacement terms. This can (in principle) be done
to arbitrary order. Among the mode families (longitudinal, torsional, flexural), the torsional
case (m = 0) is the simplest to handle and is presented on a compact form below. The
longitudinal case (m = 0) has been studied previously [30] while the various flexural families
(m > 0) results in more extensive partial differential equations which may not easily be
written on a general form.

Consider the torsional mode where the fields v do not couple to u and w. By using (36)
for prescribed lateral displacement, or (39) for prescribed lateral traction, this gives for N
terms in each case

N−1
∑

k=0

a2k+1 v2k+1,0 +O(a2N+1) = v̂0,

N−1
∑

k=0

2µ(k + 1)a2(k+1) v2k+3,0 +O(a2(N+1)) = t̂θ,0.

(45)

The recursion formula (21) results in

vk+2,0 =
1

(k + 1)(k + 3)µ

(

ρv̈k,0 − µv′′k,0
)

, k = 1, 3, . . . . (46)

By using (46) repeatedly, the higher order terms may be expressed in v1,0 as

v2k+3,0 =
1

4k+1(k + 1)!(k + 2)!

(

1

c2T

∂2

∂t2
−

∂2

∂z2

)k+1

v1,0, k = 0, 1, 2, . . . , (47)

where c2T = µ/ρ. Consequently, by using (47) in (45) gives the final equations for the
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torsional mode in terms of the lowest order field

N−1
∑

k=0

a

k!(k + 1)!

[

a2

4

(

1

c2T

∂2

∂t2
−

∂2

∂z2

)]k

v1,0 +O(a2N+1) = v̂0, (48)

N−1
∑

k=0

2µ

k!(k + 2)!

[

a2

4

(

1

c2T

∂2

∂t2
−

∂2

∂z2

)]k+1

v1,0 +O(a2(N+1)) = t̂θ,0. (49)

Note that taking only the first term in (49) renders the classical wave equation, while
taking the first two terms in (48) renders the Klein-Gordon equation.

The end boundary conditions are obtained from truncation of (44). Hence, the prescribed
fields at the ends (both for traction t̂θ and displacement v̂) are to be expanded in Zernike
polynomials R1

2k+1(r/a). Hereby the series terms in (32) and (19) are readily obtained at
the boundaries. Note from (32) that for a free end v′2k+1,0 = 0 for all k, while from (19) a
fixed end gives v2k+1,0 = 0 for all k. The correct end boundary conditions for the simple
classical wave equation case, k = 0 in (49), thus corresponds to v′1,0 = 0 for a free end and
v1,0 = 0 for a fixed end as expected.

7 Asymptotic expansions

This part is to examine whether the proposed series expansion approach render equations
that are asymptotically correct. The object is to compare the frequency equations for the
present theory to the exact theory. As the longitudinal case (m = 0) has been discussed
previously [30], the torsional and flexural cases are studied here.

7.1 Torsional mode, m = 0

The torsional equation is rather straightforward to study, being only dependent on the
circumferential displacement. By assuming a harmonic wave v1,0 = ei(kzz−ωt) in (48)–(49),
this render in the limit the frequency equations

2a

qa

∞
∑

k=0

(−1)k

k!(k + 1)!

(

1

2
qa
)2k+1

= 0 ⇔ 2J1 (qa) /q = 0, (50)

2µ
∞
∑

k=0

(−1)k

k!(k + 2)!

(

1

2
qa
)2k+2

= 0, ⇔ 2µJ2 (qa) = 0, (51)

using q =
√

ω2/c2T − k2
z and Ji as the Bessel function of the first kind. The right hand

expressions involving Bessel functions are actually the solutions to the exact frequency
equations for a fixed lateral boundary (50) and a free lateral boundary (51) [39], noting that

13



J2 (qa) = (2J1(qa)− qaJ0(qa)) /qa. Hereby, each term using the present series expansion
approach is identical to the corresponding Maclaurin expansion term using the exact theory.
From this it is concluded that the present series expansion equations are asymptotically
correct to arbitrary order.

7.2 Flexural modes, m > 0

The analyzes for the cases m > 0 are considerably more involved than for the decoupled
torsional mode above. For the exact theory the harmonic displacement terms can be stated
as

u = U(r) cos(mθ)ei(kzz−ωt),

v = V (r) sin(mθ)ei(kzz−ωt),

w = W (r) cos(mθ)ei(kzz−ωt),

(52)

where the radial functions are [1, 39]

U(r) = A
∂

∂r
Jm(pr) +

B

r
Jm(qr) + ikzCJm+1(qr),

V (r) = −
A

r
Jm(pr)−B

∂

∂r
Jm(qr) + ikzCJm+1(qr),

W (r) = ikzAJm(pr)−
C

r

∂

∂r
[rJm+1(qr)]−

C

r
Jm+1(qr),

(53)

using that p =
√

ω2/c2L − k2
z and cL is the longitudinal phase velocity. In the usual manner,

equations (52)–(53) are inserted into a set of three homogeneous lateral boundary condi-
tions, from which the resulting solution constitutes the transcendental frequency equation.
By taking a Maclaurin expansion of this equation, it is possible to compare exact theory to
the frequency equation from the present series expansion theory. However, contrary to the
torsional case, it seems not feasible to obtain general expressions to arbitrary order for the
present theory. Studying only the first few terms for an arbitrary m > 0, the standard case
of a free lateral surface render identical terms using the expanded exact frequency equa-
tion as for the present theory adopting (38)–(40). The same thing holds for a fixed lateral
surface, using (35)–(37) for the present theory. This illustrates that the flexural equations
using the present approach is asymptotically correct for these low order terms, and thus
probably also to arbitrary order. Similar results are reported for longitudinal displacements
in rods [30] and for flexural plates [32, 41] when using a series expansion approach.

In addition to the relations between frequency equations, it is instructive to study a ra-
dial Maclaurin series expansion of the Bessel functions in (53). The resulting exact series
representation of the displacement fields (52) involve a similar set of non-zero power se-
ries terms as presented in (19) for each fixed m. Moreover, the recursion relations and
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constraints (20)–(24) also hold for each m.

8 Approximate beam theories, m= 1

The various sets of approximate equations for solid cylinders covered in the preceding
sections may be truncated to arbitrary order, where higher order sets can be used for
obtaining high accuracy solutions, while simpler lower order sets may be used as engineering
equations. This latter group of equations are naturally simpler to solve than the higher
order sets, and may thus be an alternative to traditional engineering theories. This is
especially of interest for the transverse flexural case m = 1, denoted a beam, where there
exist several theories of which the Euler–Bernoulli and the Timoshenko beam equations are
frequently used. This section aims at analytically compare the present beam equation to
other beam theories presented in the literature. Here only the traditional case of a laterally
free beam is studied.

The lowest order set of equations for the present theory that leads to an asymptotically
correct beam equation is to include terms of order a2 in (38)–(40), that is nr = nθ = 3 and
nz = 2. Written out explicitly, the truncated system may be expressed as

(3λ+ 4µ)u2,1 + λv2,1 + λw′
1,1 + a2

[

(5λ+ 8µ)u4,1 + λv4,1 + λw′
3,1

]

= 0,

v2,1 − u2,1 + a2 [3v4,1 − u4,1] = 0,

u′
0,1 + w1,1 + a2

[

u′
2,1 + 3w3,1

]

= 0.

(54)

Using the recursion relations (20)–(22), this is seen to constitute a hyperbolic system of
equations. In order to make analytical comparisons to other approximate theories, this set
may be reduced to a single equation in terms of one of the fields. The resulting single
equation is of 8:th order, and contains all terms up to a2, when compared to the non-
truncated system. The higher order powers of a, that is a4 and a6, here contain only a part
of the total number of terms that would result by including more terms from (38)–(40).
So, the truncated single 1D beam equation of order a2 is asymptotically correct and reads
in terms of u0,1 (now denoted u0 for simplicity)

∂2u0

∂t2
+ a2

E

4ρ

(

∂4u0

∂z4
− α

ρ

E

∂4u0

∂z2∂t2
+ β

ρ2

E2

∂4u0

∂t4

)

+O(a4) = 0, (55)

where α = (29 + 8ν)/6 and β = (1 + ν)(16 − 21ν + 4ν2)/3(1− ν). Here E is the Young’s
modulus and ν is the Poisson’s ratio.

The present equation could be compared to various classical theories. For the Euler-
Bernoulli (EB) theory, the parameters as written in (55) become αEB = βEB = 0. Consid-
ering the Timoshenko (T) equation, the corresponding terms are αT = (2+ 2ν + κ)/κ and
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βT = 2(1 + ν)/κ, where κ is the shear correction factor. Of course, none of these two clas-
sical theories are truncated as no higher order power terms of a are present. Among more
recent higher order theories developed for circular cross sections, Silverman [29] presents
a set of beam equations that after elimination to a single equation may be rewritten as a
sixth order theory. The terms as in (55) are αS = (146+101ν)/45 and βS = 101(1+ν)/45,
where the a4 terms hereby are omitted. Another theory by Kosmatka [27] is applicable on
circular cross sections. Here, the general Kosmatka equations may be rewritten as a single
eight order equation (including a6 terms), while a simplified version turns to a sixth order
equation (including a4 terms). As the various parameters are only presented numerically
in [27] for ν = 0.333, it is here instructive to give the parameters α and β in (55) numeri-
cally for the various beam theories. Table 1 presents the results, where for the Timoshenko
theory κ = 6(1 + ν)2/(7 + 12ν + 4ν2) is used [42]. It is clear that the present theory ren-
ders higher parameter values than the other theories, especially for the β term where the
present theory result is roughly twice as big as for the other theories. A similar behavior
between different theories is seen for the axisymmetric case [30]. As is discussed in Section
7.2 the expressions for the parameters α and β using the present theory are identical to
the corresponding a2 terms from a series expansion of the exact frequency equation.

Parameters P T S GK SK

α 5.277 3.861 3.992 3.980 4.142

β 6.296 2.861 2.992 3.104 3.142

Table 1
The parameters in . (55) for present (P), Timoshenko (T), Silverman (S), general Kosmatka (GK)
and simplified Kosmatka (SK) theories, using ν = 0.333 and κ = 0.932.

9 Numerical results

This section concentrates on numerical results for flexural motion, especially for the low-
est transverse case m = 1. The object is to illustrate the accuracy of the present series
expansion approach; both the lower order engineering theories and the higher order sets.
The former case is mainly to be compared to traditional engineering theories, while the
latter case is to be compared to exact theory. The presented results are for dispersion
relation curves for an infinite cylinder, eigenfrequencies for a finite cylinder using three
sets of end boundary conditions, as well as mode shapes and stress distributions. These
dynamical problems are for laterally free cylinders. Moreover, fix frequency responses due
to a prescribed end displacement or a lateral distributed force are also illustrated. In all
cases Poisson’s ratio is set to ν = 0.3.
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9.1 Dispersion curves

In order to illustrate the effects from the number of terms adopted in (38)–(40), dispersion
relations are calculated for nr = nθ = n and nz = n− 1, where n = 3, 4, 5, 6. A normalized
frequency Ω = ωa/cE is introduced with c2E = E/ρ. Considering the flexural case m = 1,
Figure 1 shows the three lowest modes using both the series expansion theories (38)–(40)
and the exact theory involving (52)–(53). It is clear that higher accuracy is obtained as
more terms are used. Among the results, the lowest curve is accurately captured in the
lower frequency range for all theories. Note that the n = 5 curve for the second mode
virtually coincides with the exact curve, which is also the case for the first mode over
most of presented frequencies. Here the case n = 6 is not plotted as these three curves
are indistinguishable from the exact curves in the presented range. Consider next the case

0 1 2 3 4 5
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2.0
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3.0
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Fig. 1. Dispersion curves for m = 1: —— Exact, · · · n = 3, - · - n = 4, - - - n = 5.

with m = 2 where the two lowest modes are presented in Figure 2. Here the real part of
the second mode for n = 3 and n = 4 are plotted as these results are complex valued in
this wave number range, except for the interval 0.4 < ka < 4.0 in the n = 3 case. When
compared to the m = 1 case, the first mode is less accurately captured here for the lowest
theory n = 3. This is partly due to the higher frequencies, where the exact cut-off frequency
is at Ω = 1.456. Similar to the m = 1 case the n = 5 curves are close to the exact curves,
while the n = 6 curves (not plotted here) are indistinguishable from the exact curves. The
dispersion curves for higher m values could also be displayed in the same fashion, rendering
similar results where more terms imply higher accuracy. However, the higher m value the
more terms are needed for a specific accuracy.

The present theory of low order may also be compared to classical theories for flexural
motion m = 1. Figure 3 shows the two lowest modes using exact, low order series ex-

17



0 1 2 3 4 5

1.5

2.0

2.5

3.0

3.5

W

ka

Fig. 2. Dispersion curves for m = 2: —— Exact, · · · n = 3, - · - n = 4, - - - n = 5.

pansion, Euler-Bernoulli and Timoshenko theories. For the present theory, the truncated
single equation of order a2 in (55) is here used as an illustration instead of the original set
of equations (54) used in Figure 1. As expected the Euler-Bernoulli beam theory is only
acceptable at small wave numbers and it progressively deteriorates as the wave number is
increased. The Timoshenko beam theory approximates the first dispersion curve very accu-
rately, being virtually indistinguishable from the exact curve at the presented frequencies.
This is partly due to the choice of shear coefficient κ, which is here chosen as in Section 8
so as to render accurate results for long wave lengths [42]. For the second curve the Timo-
shenko theory behaves well at small wave numbers but the approximation is less accurate
as the wave number increases. The present a2 order beam theory approximates the first
dispersion curve well for small wave numbers, but the approximation deteriorates slightly
as the wave number is increased. The cut off frequency for the second dispersion curve is
here approximated less accurately than for the Timoshenko theory, although the behavior
at higher frequencies is more accurate in the present case. Note the slightly different curves
for n = 3 using (54) presented in Figure 1.

9.2 Eigenfrequencies

In this section, the eigenfrequencies for the flexural series expansions theories m = 1 are
compared with one another using different truncation orders. These expansions are also
compared to other classical theories as well as the exact theory. Three different end condi-
tions are considered here: simply supported, clamped and free ends. As for the dispersion
relations nr = nθ = n and nz = n − 1 are chosen. This results in 3n − 5 BCs at each
end according to Section 5.2. Of these 2n− 3 are shear BCs (divided between radial and
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Fig. 3. Dispersion curves for m = 1: —— Exact, · · · Euler–Bernoulli, - · - Timoshenko, - - - a2.

circumferential directions) while n− 2 are BCs in the normal direction.

For a cylinder simply supported at both ends, mixed boundary conditions are stated as
û = v̂ = 0 and t̂zz = 0 at z = 0, L. This implies that the corresponding series expansion
terms are all zero. The three lowest eigenfrequencies for L/a = 10 and L/a = 2 are
presented for the bending dominant mode in Table 2 and the shear dominant mode in Table
3. It is clear from both tables that the series expansion results converge to the exact results
as the power series orders are increased. It is clear from Table 2 that more accurate results
are obtained for lower frequencies and slender cylinders. In the light of this statement,
it is quite surprising to see the high accuracy for the thick cylinder when compared to
the slender cylinder in Table 3. The Timoshenko theory is astonishingly accurate for the
bending mode Table 2, but considerably less so for the shearing mode Table 3. As noted
above in Section 9.1, this behavior relates to the choice of shear correction factor. The
results for the Euler-Bernoulli theory confirm the well known fact that this theory renders
reasonably accurate results for slender beams in the low frequency spectra.

Consider next the cases of clamped-clamped and free-free cylinders. Naturally, these end
boundary conditions correspond to zero series expansion displacement terms and zero series
expansion stress terms, respectively. The three lowest eigenfrequencies for L/a = 4 are
presented for the bending dominant mode in Table 4. Here the series expansion theory
also includes n = 7 due to the slower convergence in the clamped case. These results
show that the Euler-Bernoulli theory does not estimate these frequencies accurately due
to the low L/a value. As for the Timoshenko theory, the clamped-clamped case renders
very accurate results, while the discrepancy is more pronounced for the free-free case. The
opposite situation holds for the series expansion results, where the free-free case is superior
to the clamped-clamped case. The exact frequencies are taken from Liew and Hung [13]
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L/a Ω Exact EB T n = 3 n = 4 n = 5 n = 6

Ω1 0.047215 0.049348 0.047214 0.046910 0.047214 0.047215 0.047215

10 Ω2 0.16955 0.19739 0.16952 0.16619 0.16950 0.16955 0.16955

Ω3 0.33422 0.44413 0.33404 0.32308 0.33388 0.33422 0.33422

Ω1 0.71391 1.2337 0.71310 0.67335 0.71115 0.71381 0.71391

2 Ω2 1.7079 4.9348 1.7074 1.5053 1.6748 1.7040 1.7076

Ω3 2.6765 11.103 2.6864 2.1134 2.5227 2.6465 2.6717

Table 2
The eigenfrequencies for L/a = 10 and L/a = 2 using exact, Euler-Bernoulli (EB), Timoshenko
(T) and the series expansion theories of orders n = 3, 4, 5, 6 for the bending dominant mode in a
cylinder simply supported at z = 0, L.

L/a Ω Exact T n = 3 n = 4 n = 5 n = 6

Ω1 1.1901 1.2470 1.0606 1.2161 1.1888 1.1901

10 Ω2 1.3134 1.3892 1.1803 1.3461 1.3116 1.3135

Ω3 1.4726 1.5862 1.3300 1.5171 1.4701 1.4728

Ω1 1.7841 2.0640 1.6200 1.8551 1.7801 1.7843

2 Ω2 2.4584 3.4481 2.3433 2.5066 2.4559 2.4585

Ω3 3.2266 4.9311 3.1628 3.2551 3.2260 3.2267

Table 3
The eigenfrequencies for L/a = 10 and L/a = 2 using exact, Timoshenko (T) and the series
expansion theories of orders n = 3, 4, 5, 6 for the shearing dominant mode in a cylinder simply
supported at z = 0, L.

using the Ritz method. These agree in the free-free case with the results developed by
Hutchinson [9] and Leissa and So [12]. For the clamped-clamped case Buchanan and Chua
[14] obtained results that are slightly higher than in [13].

9.3 Mode shapes and stress distributions

In order to illustrate the differences between the lowest truncation of the current beam
theory (n = 3), classical theories and the exact theory for the case when m = 1, various
plots on mode shapes and stress distributions are compared for the fundamental frequency
for the lowest bending mode for a simply supported cylinder when L/a = 10. Here all
displacement and stress fields are transformed to a cylindrical coordinate system for the
classical theories. Note that the circumferential position θ is chosen so that the trigono-
metric dependencies {cos θ; sin θ} are set to unity in all the studied cases. Moreover, the
eigenmodes are normalized so that the maximum radial displacement u at r = a is equal
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BC Ω Exact EB T n = 3 n = 4 n = 5 n = 6 n = 7

Ω1 0.388 0.6992 0.3866 0.3498 0.3768 0.3819 0.3836 0.3844

CC Ω2 0.773 1.9273 0.7721 0.7008 0.7518 0.7649 0.7686 0.7701

Ω3 1.237 3.7782 1.2312 1.1129 1.2026 1.2241 1.2310 1.2335

Ω1 0.480 0.6992 0.4798 0.4700 0.4797 0.4797 0.4797 0.4797

FF Ω2 0.888 1.9273 0.8938 0.8288 0.8869 0.8875 0.8875 0.8875

Ω3 1.297 3.7782 1.3273 1.1831 1.2982 1.2957 1.2970 1.2970

Table 4
The eigenfrequencies for L/a = 4 using exact, Euler-Bernoulli (EB), Timoshenko (T) and the
series expansion theories of orders n = 3, 4, 5, 6, 7 for the bending dominant mode in a cylinder
either clamped or free at both ends.

to unity; that is at z = L/2 for the first eigenmode.

Figure 4(a) illustrates the radial displacement u as a function of the radius for z = 3L/4.
For the exact and the present beam theories the radial displacement coincides, while both
the Euler-Bernoulli and the Timoshenko theories describe a constant displacement field
lying on top of each other. Still the differences between theories are quite small, which
partly stem from the way the normalization is defined. The circumferential displacement
field v behaves in a similar fashion, not shown here. As for the longitudinal displacement
w, all theories show a linear behavior for varying r at a fixed z. Figure 4(b) displays w as a
function of z for r = a. Here the Timoshenko curve is almost on top of the coinciding exact
and present curves, while the maximum value using the Euler-Bernoulli theory differs from
these theories by about 10%.
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(a) Radial displacement u at z = 3L/4.
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(b) Longitudinal displacement w at r = a.

Fig. 4. Displacements for the lowest eigenfrequency. —— Exact, · · · Euler–Bernoulli, - · - Timo-
shenko, - - - n = 3.

Next, consider the stresses as functions of z for r = a in Figure 5. Figure 5(a) for σzz

illustrates clearly that both classical theories overestimate the longitudinal normal stress,
while the present series curve is virtually on top of the exact curve. Similar results are

21



obtained using the classical theories for σθθ and σrr, not shown here. In both these latter
cases the stresses using the present and exact theories are very small for σθθ and identical
to zero for σrr, while the maximum stress values at z = L/2 for the classical theories
are around half the corresponding longitudinal normal stress values. Note that the lateral
boundary conditions constitute the differential equations for the series expansion theories,
resulting in σrr ≡ 0 at r = a contrary to the classical theories. As for the shear stresses, the
magnitudes of these are much smaller than for the normal stresses. The shear stress σθz

is plotted in Figure 5(b). It is seen that the Timoshenko theory generates slightly smaller
stress magnitudes than for the present and exact theories, where the curves almost coincide.
The stress magnitudes from the Euler-Bernoulli theory are here zero. The classical theories
for σrz behave in similar manner as for σθz , while the σrθ stresses are zero for both classical
theories (not presented here). Note again that σrθ and σrz are both identical to zero for
the present and the exact theories at the lateral boundary.
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(a) Longitudinal normal stress σzz at r = a.
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(b) Shear stress σθz at r = a.

Fig. 5. Stresses for the lowest eigenfrequency. —— Exact, · · · Euler–Bernoulli,
- · - Timoshenko, - - - n = 3.

Figure 6 shows the stresses as functions of r for z = 3L/4. The normal stress σzz in
Figure 6(a) illustrates that the classical theories overestimate this stress, using the present
normalization. As before, the exact and present curves are on top of each other. Similar
results are obtained using the classical theories for σθθ and σrr, while these stresses using
the present and exact theories are very small for all radii. The shear stress σrz is plotted
in Figure 6(b). It is seen that the Timoshenko theory generates a constant shear stress,
while the stress magnitudes from the Euler-Bernoulli theory are zero. Note that the shear
stress using the present theory is zero at the lateral boundary, as expected. The present
and exact theories for σθz and σrθ render stress levels that are similar to σrz. Both classical
theories show similar behavior for σθz as for the σrz case, while the σrθ stress is zero in
both theories.
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(a) Longitudinal normal stress σzz at z = 3L/4.

0.2 0.4 0.6 0.8 1.0

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

r/a
σrz/E

(b) Shear stress σrz at z = 3L/4.

Fig. 6. Stresses for the lowest eigenfrequency. —— Exact, · · · Euler–Bernoulli,
- · - Timoshenko, - - - n = 3.

9.4 Boundary value problems

In order to study the effects from non-homogeneous boundary conditions, consider fix
frequency problems for prescribed lateral and end boundary conditions, respectively.

For prescribed lateral boundary conditions, assume a transverse beam (m = 1) for given
tractions t̂i,1(z, t) in line with (38)–(40). Consider the case of a vertical distributed force
acting on a simply supported cylinder, where −t̂r,1(z, t) = t̂θ,1(z, t) = Q sin(πz/L) cos(ωt)
and t̂z,1(z, t) = 0 using the notation in (34). This loading results in a purely vertical traction
Q sin(πz/L) cos(ωt), resulting in the vertical force per cylinder length 2πaQ sin(πz/L) cos(ωt).
The vertical displacement for the line r = 0may thus be expressed d(z, t) = d sin(πz/L) cos(ωt)
for each theory. Solving the coupled equation system (38)–(40) for various truncation or-
ders, these results may be compared to the exact three dimensional theory and classical
engineering theories. Table 5 shows the quotient d/dEB (EB for Euler-Bernoulli) when
L/a = 10 and L/a = 4 in the static case (ω = 0) using Timoshenko, series expansion and
exact theories. It is seen that the Timoshenko theory is considerably more accurate than
the Euler-Bernoulli theory, especially for the shorter cylinder. Considering series expansion
theory, the results are seen to converge to the exact values. Accurate results are obtained
for n = 4 and higher. Similar solutions may also be obtained using the theory presented in
[26], resulting in displacements that are inferior to the Timoshenko theory (not presented
here). Note in this static case that the exact results may not be obtained directly from the
static counterpart of the dynamic solution presented in Section 7.2. Instead, the methods
presented in [43, 44] are to be used.

In the case of prescribed end boundary conditions, assume a torsional bar (m = 0) with
given displacements v̂0,0(r, t) at z = 0 and v̂0,L(r, t) at z = L. Consider the case where the
left end is fixed, v̂0,0(r, t) = 0, and the right end condition is v̂0,L(r, t) = vL sin(pr) cos(ωt).
The torsional equation of motion for a laterally free cylinder is given explicitly in (45) for
t̂θ,0 = 0. Only odd terms are to be used: v2k+3,0 for the equation of motion and v2k+1,0
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L/a Exact T n = 3 n = 4 n = 5 n = 6

10 1.0685 1.0693 1.0832 1.0686 1.0685 1.0685

4 1.4035 1.4334 1.4985 1.4060 1.4035 1.4035

Table 5
The vertical displacement d/dEB at r = 0 for L/a = 10 and L/a = 4 using exact, Timoshenko
(T) and the series expansion theories of orders n = 3, 4, 5, 6 in a cylinder simply supported at
z = 0, L.

for the end boundary conditions as outlined in Section 6. By expanding the v̂0,L(r, t) in
Zernike polynomials R1

2k+1(r/a) in line with (44), the end boundary condition for different
truncation orders are presented in Figure 7(a). The linear term k = 0 corresponds to
the result for elementary theory. Clearly v̂0,L(r, t) may in this case be modeled accurately
using a few terms. By solving (49) adopting the expanded end boundary conditions, the
radially series expanded fields v(r, z) cos(ωt) are obtained for different truncation orders.
Figure 7(b) presents the displacement at r = a/2 for L/a = 10 and ω = cE/a. Here the
exact results are obtained by a Fourier expansion in Bessel function J1. By increasing the
power series order k in the present theory, the behavior close to z = L is captured more
accurately. The result using k = 4 is virtually indistinguishable from the exact curve, and
thus not presented here. Note the decaying Saint-Venant edge effect, where the result using
the k = 0 solution render accurate results away from z = L.
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Fig. 7. Circumferential displacement for different truncation orders. —— Exact, · · · k = 0, - · -
k = 1, - - - k = 2.

10 Conclusions

This work presents time domain approximate cylinder equations and corresponding bound-
ary conditions to arbitrary order for different mode families. The method used is based on
a power series expansion approach, which together with a generalized Hamilton’s principle
result in variationally consistent equations that are asymptotically correct to all studied
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orders. Numerical results are presented for various truncation orders and compared to exact
and different classical beam theories. For the examples studied herein, a modest trunca-
tion order is mostly sufficient to render results that are of high accuracy. Although the
present work does not aim at presenting explicit benchmark solutions, it is likely that the
systematically developed cylinder equations are capable of rendering accurate solutions for
more involved cylinder problems. As for the present lower order truncation theory and the
traditional beam theories, these are all fairly adequate for calculating the lower eigenfre-
quencies, while the results deteriorate for higher eigenfrequencies, less slender cylinders
and higher circumferential mode numbers. The Timoshenko theory is very accurate for the
bending frequency analyzes, for which the present theory calls for additional series expan-
sion terms for equal accuracy. However, the present lowest order theories are superior to
the Timoshenko theory when it comes to mode shapes, the stress distributions and results
for higher mode families such as the shearing dominant mode. The differences are most
prominent for the stress distributions where it is somewhat surprising that the present
lowest order theory gives curves that in most cases are virtually indistinguishable from the
exact results.

One application of the new set of cylinder theories is to implement it in finite element
codes. Hereby one benefits from the accurate results using one of the present lower order
theories, and at the same time the number of elements can be heavily reduced compared
to using three dimensional elements. Another issue is to develop higher order theories for
more complicated material configurations, such as for functionally graded, porous or micro
materials. For such configurations, several different beam theories of both Euler-Bernoulli
and Timoshenko type have appeared, and the present systematic approach would render
equations that are variationally consistent and directly based on the three dimensional
theory of elastodynamics. Hereby equations of various truncation order may be derived
that render more accurate results than standard engineering theories. By increasing the
truncations to high order, three dimensional benchmark results may then be obtained [36].
Related work based on power series expansion and recursion relations have previously been
carried out on porous [45] and functionally graded [36] plates, and is currently directed
towards piezoelectric plates, micro plates and functionally graded cylinders.
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