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Electromobility studies based on convex

optimization

Bo Egardt, Nikolce Murgovski, Mitra Pourabdollah, Lars Johannesson

November 29, 2013

The electrification of road transport is accelerating globally, propelled by a mix of

environmental concerns, legislative mandates, and business opportunities. Relying to a larger

extent on electricity in the transportation sector provides new opportunities to reduce CO2

emissions, fossil fuel consumption, and local air pollution by improving energy efficiency and

employing renewable energy. As part of this development, leading vehicle manufacturers are

currently making a substantial effort to provide Hybrid Electric Vehicles (HEVs), Plug-in Hybrid

Electric Vehicles (PHEVs), and pure Electric Vehicles (EVs) to the market.

This potentially major change in the transportation system entails significant challenges,

[1], [2]. The technology in several vital areas, such as components for electric energy storage

and electric drives, needs to be developed further. Effective control design tools are also needed

to master the increased complexity of the new powertrains. This increased complexity concerns

both design and operation of vehicles, and the interplay between vehicles and the infrastructure,

such as the electric grid and systems for navigation and traffic information.

There are several interesting control design issues related to vehicle electrification. In

this article, we will focus on some of these issues for two common powertrain configurations,

known as series and parallel, respectively; see “Hybrid Electric Powertrains” for an introductory

description. The two configurations share a common characteristic, namely the additional degree

of freedom compared to a conventional powertrain. In response to the driver’s power demand,

as expressed by the accelerator command, there is a need for the control system to arbitrate
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between the two power sources; in the parallel configuration the combustion engine and the

electric machine, in the series configuration the engine/generator unit and the electric storage

system. This control task, which can also be seen as the task to control the energy buffer, most

often a battery, is referred to as energy management. The energy management problem has been

investigated thoroughly and the literature on the topic is rich. A survey with many references

is found in [3] and the book [4] gives an introduction to the area. The energy management

problem can be approached in many different ways, but in addition to purely ad hoc solutions,

some type of optimal control formulation is the dominant approach; dynamic programming

(DP) and solutions based on the Pontryagin principle are often used. The basic formulations are

based on exact knowledge of the driving mission, and the solutions provide the optimal energy

management over the defined mission. The ideal solutions are used for benchmarking and can

also be used to find approximate, sub-optimal control strategies for on-line use in the vehicle.

One of the most used strategies, Equivalent Consumption Minimization Strategy (ECMS), can

be seen as an approximation of an optimal control formulation [4].

In addition to the energy management problem, an important design task is related to the

sizing of driveline components. This statement applies to conventional drivelines as well, but the

increased complexity of an electrified powertrain makes design of the powertrain a challenging

task. One reason is that the battery is a major bottleneck in the electrified powertrain and

needs to be sized with care. Indeed, many studies have been performed on how to optimally

size the driveline components, in particular the battery. These studies rely on assessing both

component costs and energy (fuel and electricity) consumption over a collection of driving

missions. An optimization algorithm is used to find the best design compromise in terms of

component sizing/scaling parameters. Examples of such studies are found in [5], [6], [7].

The two basic design tasks mentioned above, the energy management and the component

sizing, are actually strongly coupled. The energy management strategy depends on the component

properties, and the optimal sizing depends on how the energy management works. The latter

problem is often handled by decoupling the plant and controller, and then optimizing them

sequentially or iteratively, [5], [6], [7], [8], [9]. Sequential and iterative strategies, however,

generally fail to achieve global optimality [10]. An alternative is to apply a nested plant/control
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optimization strategy [8]. The strategy comprises two nested loops: an outer loop where the

system objective is optimized over the set of feasible plants and an inner loop that generates

optimal controls for plants chosen by the outer loop. While this approach delivers the globally

optimal solution, it either incurs a heavy computational burden (when for example dynamic

programming is used to optimize the energy management) or requires substantial modeling

approximations [11], [12], [13]. In contrast, the objective of this article is to present a design

approach that offers the possibility to optimize simultaneously the energy management strategy

and the component sizing. The key element of this approach is to find modeling approximations

that allow convex optimization techniques to be applied. The intention of this work is to exploit

the computational efficiency offered by convex solvers in order to facilitate studies during the

early design phase. The approach can be used, for example, over very long driving missions or

to perform many optimizations in comprehensive feasibility studies.

The application of convex optimization to the design and operation of electrified

powertrains is not new. The potential of using convex optimization in this context was pointed

out already in the late 90s in [14], and more recently [15], [16], [17], [18], [19]. In these studies,

convex optimization was used to compute the optimal energy management, either over an entire

driving cycle or, as an ingredient of a predictive control scheme, over a limited time horizon.

The possibility to use convex optimization to combine the computation of an optimal energy

management with optimal component sizing was introduced in [20], [21], where the charging

infrastructure was also included into the problem.

The aim of this article is to give an overview of the approach for the combined optimal

design and operation of electrified vehicles, based on convex optimization. The presentation is

based on a slight reformulation of the problem, as compared with the references given above.

The main purpose of this reformulation is to describe the driveline components in a unified

manner in terms of energy and power variables. This approach allows a simple and accessible

description of the main ideas. To illustrate how the method can be used, two case studies are

briefly presented. These studies are described in more detail in the references given.

The article is organized as follows. The next section describes a design example in order

to give an introduction to the type of problems addressed. The following section describes the
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convex modeling of the powertrain components, and how these models can be used to formulate

and solve a convex optimization problem. To illustrate the potential of the method, two case

studies are then presented. Finally, some extensions of the method are discussed and references

are given for further reading.

A design example: sizing the buffer of a city bus

The task of sizing the buffer of an electrified city bus is a typical example of the type

of problems adressed and will be used to introduce some of the ideas. The bus is a PHEV

with a series powertrain configuration based on a combined engine-generator unit (EGU) and

an electrical motor; for details, see “Hybrid Electric Powertrains”. In this example, the electric

buffer could be either a battery or a supercapacitor, or a combination of both.

In addition to following a time schedule, the bus must also follow a certain veloc-

ity/acceleration trajectory in order to comply with traffic limitations, driveability, and passengers’

comfort requirements. Then, a bus line can be fully described by the desired velocity profile,

road altitude, and information about average stand-still intervals at bus stops or traffic stops. In

this case, the bus line, depicted in Figure 1, starts and ends at the same bus stop. Fast-charge

docking stations are installed at seven bus stops along the bus line, and a tight duty schedule is

considered that prevents charging for longer than 10 s while standing still at these bus stops. By

design, the circular bus line conserves the vehicle’s kinetic and potential energy at the beginning

and the end of the line. Furthermore, to study the operational efficiency of the PHEV, there is

an additional condition that the initial and final energy in the buffer should be the same.

The operational cost of this vehicle depends mainly on the quantities of diesel fuel and

electricity consumed along the bus route. Then, when designing a vehicle based on minimizing

the operational cost, it is beneficial to increase the usage of electric energy. The reasons for this

are twofold: the electricity price per unit energy is generally lower than that of diesel fuel with

the price difference expected to increase in coming years [22] and electric components typically

operate with much higher efficiency than that of the internal combustion engine (ICE) [4].

However, higher utilization of electric energy requires a larger buffer, which leads to increased
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TABLE I

OPTIMIZATION PROBLEM FOR OPTIMAL DESIGN OF ELECTRIFIED VEHICLES WITH ACCESS

TO PREDICTIVE INFORMATION.

Minimize:

Operational + component cost;

Subject to:

Driving cycle and environmental constraints,

Energy conversion and balance constraints,

Performance requirements,

Powertrain dynamics,

...

(For all time instances along the driving cycle).

component costs of the vehicle. Thus the optimal buffer size – in terms of power rating and

energy capacity – is the one that provides the optimal tradeoff between component cost and

operational cost within the lifetime of the vehicle. Without now going into mathematical details,

the optimal buffer sizing problem can be formulated as an optimization problem (see Table I)

with two weighted objectives and several constraints.

The discussion of this design example is resumed towards the end of the article, when

the needed tools have been provided. It is used as one of the case studies to illustrate how the

optimization problem is formulated and solved, thus providing insights about the properties of

the stated design problem.

Modeling of energy and cost

To study energy efficiency aspects of powertrains, it is necessary to have a clear picture of

the power flows in the driveline. It turns out that a simple and basic representation of the driveline

components, based on these power flows, is sufficient for the intended studies. The starting point
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is to represent the powertrains, as depicted in Figures S1 and S2, in a block diagram form, as

seen in Figure 2. Here, the two primary power sources, namely fuel Pf and electric power Pe (in

the case of a plug-in hybrid), are shown at the left. Then it is seen how power is transformed and

combined to finally propel the vehicle. Note that the arrows indicate positive power flow, where

power may sometimes flow in the opposite direction between components, for example during

braking. Based on this description of the powertrains, the design procedure can be formulated

as three steps.

1) Define models for each of the standard component types depicted in Figure 2. Models

describing the components’ power flows, cost and weight as functions of size are needed.

2) Define an overall powertrain model based on the component models, as well as information

about the powertrain configuration (the interconnections of components).

3) Based on the powertrain model, state an optimization problem that includes both energy

management and sizing.

Each of these steps is described in detail below, and the necessary model approximations are

clarified.

Component models

Because the optimization is stated in terms of power flows and stored energy, the generic

component model X is stated in terms of input/output powers (PX1 and PX2), power dissipation

(PXd), and stored energy (EX) with corresponding power flow (PXs). For notational convenience,

the time argument t of the power and energy variables are omitted). The model is shown

graphically in Figure 3, together with the fundamental energy and power balances. Once again,

it is noted that the direction of the arrows indicate positive power flow. Within this general

model class, specific details are provided for each component. First, the dissipative power is

approximated as a convex function of the other component variables. Second, in order to allow the

study of sizing problems, a linear scaling with respect to component size is performed on power

flows and stored energy. Finally, convex inequality constraints are used to express component

limitations during operation. Below follows a description of how component models can be
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defined according to these principles, along with motivations for these modeling assumptions.

Cost and weight modeling

The scaling of components affects not only power and energy. It is also assumed that

the size of the component affects both weight and cost in a linear fashion similarly as in, for

example, [23]; for rotating machines, it is shown later how also moment of inertia is scaled.

Hence, for component X , the weight mX and the cost cX depend on the size scaling factor sX

mX = mX(sX), (1)

cX = cX(sX), (2)

where mX and cX are affine in sX . It is clear that the assumption of linearity in both weight

and cost as a function of size is quite strong. If more accurate models are available at an early

design stage, it is straightforward to relinearize these models and repeat the optimization step

to obtain more accurate estimates of the optimal solution. Details on cost modeling are given in

the case studies involving, for example, calculation of depreciation over a specified lifetime.

Machine model

The models for the combustion engine, electrical motor/generator, transmission, and the

combined engine/generator unit (used in series type powertrains), are similar. The model for the

electrical machine (M) is shown first. The generic model depicted in Figure 3 specializes to the

following model

PMe = PMm + PMd − PMs, (3)

ĖM = −PMs, (4)

where the subscripts e and m refer to electrical and mechanical power respectively.

In order to address the sizing problem, it is assumed that the power flows and the energy

scale linearly with component size. Hence, the dissipation power PMd and the stored energy

EM are defined in two steps: first for a nominal machine model, then for a scaled version. The
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nominal model is defined by the generic model equations and the following expressions for PMd

and EM

PMd = fωM
M (PMm), (5)

where fωM
M is nonnegative and convex, and

EM =
1

2
J0
Mω

2
M . (6)

The rotational energy is given in terms of the moment of inertia J0
M and the machine speed

ωM . The essential step here is to find an approximation that permits the dissipative power to

be described by the convex function fωM
M , often parameterized in angular speed ωM , which is

indicated by the superscript. The description of input power (or torque) as an affine, speed-

dependent function of output power (torque) (referred to as Willans lines), is a special case of

the model considered here. More accurate models describing the losses as quadratic functions

are also covered by the convex loss model. There are ample examples of this type of models

for both electric machines and combustion engines; see [4] and references therein.

The scaled model is derived from the nominal model by allowing both power and energy

to scale linearly with respect to the component size sM , which is equal to 1 for the nominal

model

PMd = sM · fωM
M (

PMm

sM
), (7)

EM =
1

2
JM(sM)ω2

M , (8)

with JM affine in sM . The new dissipation function sMf
ωM
M (PMm

sM
) is convex since it is the

perspective function of the convex function fωM
M [24]. The interpretation of (7) is that the

dissipation characteristics are valid for the normalized power quantities (divide both sides of

(7) by sM to see this). This means that nominal, nonlinear efficiency maps in the speed–torque

plane, often used to describe electrical machines and combustion engines, are applied to scaled

components by stretching or compressing the maps in the torque dimension (see Case study 2

for an illustration of this).

Linear scaling can provide good estimates if the sizes are not too far from the nominal

values; this has already been shown in previous work on component sizing, see for example [13],
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[25], [26], [27], [11]. However, if the optimization gives a size which is far from the nominal

value, a new nominal model can be generated and the optimization can be repeated, as in [5].

In addition to the model equations given above, the models are subject to constraints

during operation. For the machine model, the following (speed dependent) constraints concern

the allowed power levels

P ωM
M,min(sM) ≤ PMm ≤ P ωM

M,max(sM), (9)

where P ωM
M,min and P ωM

M,max are affine in sM . In summary, the electrical machine model is given by

equations (3), (4), (7)-(9), in combination with the mass and cost models (1), (2) with X = M .

The modeling carried out above for the electrical motor can be repeated with minor

changes for the other rotational components. The important step is to find a convex, approximate

loss model for each component as discussed further in the case studies. To avoid too much

repetition at this stage, the models thus obtained are summarized in Figure 4. Note that the stored

rotational energies in the models are not “pure” states, as they represent mechanically coupled

inertias that are related to the vehicle dynamics. The power flow Ps is, in fact, determined by

“differential causality” from the pre-determined velocity trajectory. Since the dominating inertia

is the vehicle itself, it is common to neglect the machine inertias. However, the storage term

has been kept in the models to show the connection with the buffer model to come next, and to

allow treatment of other problem setups, as discussed at the end of the article.

Finally, note that as a consequence of the required convexity of the dissipation functions,

the machine models are assumed to describe the components in operation, implying that the

models include idle losses of the machines. To allow switching off the machines, giving zero

losses, a separate mechanism is needed, as discussed later.
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Energy buffer model

The energy buffer model, covering both battery and supercapacitor storage, is based on

the same generic model as the rotational machines. The basic equations are thus given by

PBc = PBt + PBd − PBs, (10)

ĖB = −PBs, (11)

where subscripts c for charging, t for terminal have been used, and the standard sign convention

that the battery/capacitor power PBs is positive when discharging has been adopted. Looking at

the modeling details, the fundamental assumption is that the buffer is built from cells that are

described by an open circuit voltage (OCV) in series with an internal resistance R. The OCV u

is assumed to vary linearly with the charge q, so that the cell is described by the equations

u = u0 +
1

C
q, (12)

q̇ = −i, (13)

where i is the cell current. With this cell model, common special cases can be treated in a

unified manner: with u0 = 0, the model describes a supercapacitor; with C =∞, a battery with

constant OCV can be modeled.

The nominal model is obtained by aggregating n0 cells (the particular arrangement in

series/parallel is irrelevant from a power perspective). The model is described by the following

equations for the stored energy and the dissipation power

EB = n0 ·
∫ q

0

u(q′)dq′ = n0(u0q +
1

2C
q2) = n0

1

2
C(u2 − u20), (14)

ĖB =
dEB
dq
· q̇ = −n0 · u · i = −PBs, (15)

PBd = n0Ri
2 = R

P 2
Bs

n0u2
= R

P 2
Bs

n0u20 + 2
C
EB

, fB(PBs, EB). (16)

The function fB is quadratic-over-linear and therefore has the required convexity property (see

[24]).

The scaled model is needed to model a battery/capacitor that is larger or smaller than

the nominal one. Therefore, define a (real) scaling factor sB and replace n0 with sB · n0 in the
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model

EB = sB · n0 ·
∫ q

0

u(q′)dq′ = sB · n0
1

2
C(u2 − u20), (17)

PBd = R
P 2
Bs

sBn0u20 + 2
C
EB

= sBR
(PBs/sB)2

n0u20 + 2
C

(EB/sB)
= sB · fB(

PBs
sB

,
EB
sB

). (18)

The function sBfB(PBs

sB
, EB

sB
) is convex, seen either directly from the quadratic-over-linear

expression, or from the fact that it is the perspective function of the convex function fB(·, ·).

Finally, the energy buffer has constraints on both power losses and energy (or charge);

both scale linearly with size. In addition, there are constraints on charging

PBd ≤ sB · n0Ri
2
max, (19)

sB · n0emin ≤ EB ≤ sB · n0emax, (20)

PB,min ≤ PBc ≤ PB,max. (21)

Here, [emin, emax] is the allowed range of stored energy per cell, and imax is the maximum

allowed current magnitude. If the maximum magnitude of charging and discharging currents are

different, then the constraint (19) can be replaced by the inequalities

n0imin

√
sB
(2EB
n0C

+ sBu20
)
≤ PBs ≤ n0imax

√
sB
(2EB
n0C

+ sBu20
)
. (22)

Here, the lower limit is convex and the upper limit is concave due to the fact that the geometric

mean is a concave function of its arguments (and imin < 0). The lower bound on PBc in (21)

would normally be zero but could be negative in studies where power delivery to the grid is

allowed. The model is depicted in Figure 5.

Vehicle model

So far, the models described all motivate the term “component models”. The model of

the vehicle’s power use, to be described next, is not really a component model, since the scaling

parameters of the powertrain components affect the overall vehicle model. Despite this, it is

convenient to describe the vehicle model in an analogous way to the components, thus adhering

to the general framework. Hence, the vehicle model is a special case of the generic model in
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Figure 3

PV = PV d − PV s, (23)

ĖV = −PV s, (24)

where the subscript V stands for vehicle.

The nominal model is obtained by specifying the dissipative terms due to air resistance,

rolling resistance, and braking; the energy is comprised of kinetic and potential energy

PV d = (F a
v +m0

V ar) · v + PV b, (25)

EV =
1

2
m0
V v

2 +m0
V gh. (26)

Here F a
v is the aerodynamic drag, ar = cr cosα is the retardation due to rolling resistance (α

is the road inclination), and PV b is the braking power. The second equation contains the kinetic

energy expressed in mass m0
V and speed v, and potential energy depending on altitude h.

The scaled model for the vehicle depends on the scaled components with their weight

models

PV d = (F a
v +mV (s)ar) · v + PV b, (27)

EV =
1

2
mV (s)v2 +mV (s)gh, (28)

where mV (s) is affine in s = (sE, sG, sB, sM , sT ). It would also be possible to include an

additional scaling factor for a part of the vehicle that does not depend directly on powertrain

components, such as the mass of the chassis. This idea is not pursued further here, however.

Finally, the only constraint applicable for the vehicle model is the sign of the braking

power

PV b ≥ 0. (29)

Powertrain modeling

The modeling of a vehicle powertrain is done by combining component models in a

power flow diagram. The overall model is then defined by all component models (equations
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+ constraints), plus the interconnections. The driving mission is defined by a velocity profile,

which combined with a gear switching sequence define the angular speeds of all mechanically

connected machines. This constraint is depicted as in the series powertrain example shown in

Figure 6: the components that are mechanically connected are marked by the dashed lines as

“coupled”. In this figure, the gear switching sequence r(·) is indicated as an external signal; the

meaning is that the gear switching is assumed to be predetermined from the driving profile and

not included in the optimization problem.

Figure 6 also includes two binary on/off signals σC and σG. These external signals control

whether charging is allowed (the charger block marked with C is trivial, containing only the on/off

switch and possibly a constant efficiency), and whether the engine/generator unit is operating

or not. If σX = 1, the component equations are included in the overall model. If, on the other

hand, σX = 0, the component equations are excluded and the connecting power flows are set

to 0. The on/off signals provide the mechanism referred to previously, which takes care of the

cases when there is a need to switch off a component, for example the ICE. The convex models

are formulated only for the case when the machine(s) are in operation. The disadvantage is that

the switching decisions have to made beforehand, based on the driving cycle specification. This

limitation is discussed further towards the end of the article.

The third step in the 3-step procedure outlined at the beginning of this section is to state

the optimization problem in terms of the powertrain model compiled. This step is addressed in

the next section.

Optimization

The powertrain model forms a set of constraints to be fulfilled during optimization.

Continuing to use the example depicted in Figure 6 to illustrate the basic ideas, the objective to

minimize has two components:

• The operational or energy cost is comprised of the costs for electric energy and fuel,

cop =

∫ tf

0

(
ρePe(t) + ρfPf (t)

)
dt, (30)
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where ρe and ρf are price parameters (currency/W) and the driving mission lasts for tf s.

• The capital or component cost is the size dependent part of the cost for the powertrain

components,

ccap =
∑
X

cX(sX), (31)

where the summation is over all driveline components that have been included in the model

with sizing parameters.

By discretizing the variables in (30) with a discretization interval ∆t, the integral is approximated

as a sum, and the optimization problem can formally be stated as

minimize c = cop + ccap =

kf∑
k=1

(
ρePe(k) + ρfPf (k)

)
∆t+

∑
X

cX(sX)

subject to


component equations and inequalities,

connection equations,

vehicle requirements,

(32)

where the constraints could include, for example, performance requirements or conditions on

sustained battery charge over the entire drive cycle. This point is illustrated in the case studies.

The minimization is with respect to the variables in the problem, reflecting both the arbitration

of the power flows and the component sizing. There is an important difference between the two

types of variables: the component sizes {sX} express properties of the powertrain to hold over

the entire driving mission, whereas the power and energy variables depend on time. Therefore,

each such variable gives rise to a vector of optimization variables, with the number of entries

kf = tf/∆t depending on both discretization interval and the total time tf of the driving mission.

The statement of the optimization problem in (32) is too general to be useful, and therefore

requires a more detailed discussion. In particular, it is shown in the next section how the problem

can indeed be formulated as a convex optimization problem. See “Convex Optimization” for an

introduction.
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Convexification

The optimization problem (32) makes reference to the powertrain model, including

equations for components and their interconnections, as well as component constraints. For

the series PHEV shown in Figure 6, adding the component models, as shown in Figure 7, gives

a model suitable for optimization. For brevity, the gear switching signal has been omitted from

the figure, and the external binary signals σC and σG have been included in the connecting power

flows.

With reference to Figure 7, it will now be shown how the optimization problem can be

formulated as a standard convex problem. The essential step is to provide a systematic way to

handle the originally nonaffine (but convex) equality constraints, arising from the dissipation

terms. The procedure consists of the following two steps

1) First it can be noticed that the power balance equation for the engine/generator unit,

σGPf = σG(PGd + PGe) = σG
(
sGfG(

PGe
sG

) + PGe
)
, (33)

is valid only when the EGU is on (σG = 1). Equation (33) can thus be used to replace Pf

in the objective function by the right hand side expression, giving

c = ρe
∑

σC(k)=1

Pe(k)∆t+ ρf
∑

σG(k)=1

(
sGfG(

PGe(k)

sG
) + PGe(k)

)
∆t+

∑
X

cX(sX), (34)

where the power summations are carried out over time intervals when σC = 1 and σG = 1,

respectively. From the assumptions, it follows that the objective is convex in the sizing

variables and the (vector) variables Pe, PGe. The same procedure would be applied to

replace Pe, if a dissipation model for the charger had been included.

2) The second step amounts to compiling equality constraints from the power balances for

all remaining components, and then to relax the dissipation equalities to inequalities. In
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the example, this results in

σCPe = PBd − PBs + PBt ≥ sBfB(
−δEB
sB

,
EB
sB

) + δEB + PBt, (35)

PBt + σGPGe = PMe = PMd − PMs + PMm ≥ sMf
ωM
M (

PMm

sM
)− PMs + PMm, (36)

PMm = PTd − PTs + PT2 ≥ sTf
ωT
T (

PT2
sT

)− PTs + PT2, (37)

PT2 = PV d − PV s ≥ (F a
v +mV (s)ar)v − PV s. (38)

Here, the notation −PBs = δEB(k) = (EB(k) − EB(k − 1))/∆t has been used in

(35), and the equalities for PBd, PMd, PTd and PV b, respectively, have been relaxed (the

latter implying that the braking power PV b has been removed from the problem). Due to

the characteristics of the dissipation functions for the machine models in both objective

and constraints and the “nested” structure of the inequality constraints, it can be shown

that these relaxations do not change the properties of the optimal solution. This can be

understood intuitively by the fact that energy would otherwise be wasted. See “Constraints

Relaxation” for a more rigorous argument.

After having carried out the transformations in the two steps described above, the objective

in (32) is expressed as a convex function of the optimization variables, and the constraints are

given by the convex inequalities in (35)-(38). It now only remains to describe how to incorporate

the specified driving cycle.

The driving mission

As has been mentioned already, the storage terms for the components that are mechan-

ically connected to the wheels of the vehicle are not state variables in the usual sense. The

reason is that it is assumed that the vehicle follows the driving profile exactly, and the way

this is implemented is by “differential causality”, meaning that the required tractive power is

calculated by differentiating the speed (referred to as “backward simulation” [4]). In addition, and

as indicated in the powertrain schematic, there are implicit constraints that couple mechanically

connected machines.

In the example, there are three mechanically coupled storage variables, namely PMs, PTs,
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and PV s. Each of them is defined by differentiating the respective energy variable

PMs = JM(sM)ωM ω̇M ,

PTs = JT (sT )ωT ω̇T ,

PV s = mV (s)vv̇ +mV (s)gḣ = mV (s)vv̇ +mV (s)gv sinα.

(39)

All these expressions are affine with respect to the sizing parameters, assuming the velocity

profile v and the gear sequence r are known. By inserting discretized versions of them into the

inequalities (35)-(38), the optimization problem is completely defined.

Solving the optimization problem

The final statement of the optimization problem will be formulated in terms of full vector

variables, written in bold face and defined as, for example, PBt = (PBt(1), · · · , PBt(kf )). The

definitions of Pe and PGe are sparse due to the on/off signals: Pe has entries σC(k)Pe(k) and

PGe has entries σG(k)PGe(k). The optimization problem can now be stated as

minimize c = ρe∆t 1
TPe + ρf∆t 1

T
(
σGsGfG(

PGe
sG

) + PGe
)

+
∑
X

cX(sX) (40)

subject to Pe ≥ sBfB(
−δEB

sB
,
EB

sB
) + δEB + PBt, (41)

PBt + PGe ≥ sMf
ωM
M (

PMm

sM
) + JM(sM)ωM δωM + PMm, (42)

PMm ≥ sTf
ωT
T (

PT2
sT

) + JT (sT )ωT δωT + PT2, (43)

PT2 ≥ (F a
v +mV (s)ar)v +mV (s)v δv +mV (s)gv sinα, (44)

component inequality constraints,

vehicle requirements,

where 1 is a vector of 1’s, σG has entries σG(k), and multiplication of the vector variables is

interpreted component-wise. From this formulation it is seen that the problem is a standard convex

optimization problem. The optimization variables are the scaling parameters s = (sB, sG, sM , sT )

and the power/energy vector variables Pe,PBt,PGe,PMm,PT2,EB. Notice once again that the
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binary signals σG and σC are assigned outside the optimization, thus determining both the variable

σG and the sparseness patterns of Pe and PGe.

In order to solve this optimization problem, there are many open-source solvers to choose

from. Some examples are SeDuMi [28] and SDPT3 [29]. There are also Matlab-based packages,

like CVX [30], [31] and YALMIP [32], which can automatically transform the problem into, for

example, a sparse matrix form before passing it to the solver. The case studies to be described

next have been solved by using CVX, a package for specifying and solving convex programs.

CVX offers modeling support in the form of disciplined convex programming, which means that

the optimization problem entered is automatically checked to fulfill the conditions for a convex

optimization problem in standard form.

Applications

The preceding sections showed how the combined sizing and energy management problem

for hybrid electric powertrains can be formulated as convex optimization problems. This allows

many different types of comprehensive feasibility and concept studies to be conducted with

moderate computational demands. For example:

• Based on the fact that an optimal control strategy is computed as part of the solution, a

“fair” comparison can be made between competing vehicle designs.

• The tradeoff between component and operational costs can be studied for different prices

on fuel, electricity, batteries etc.

• The influence of performance requirements, other than energy efficiency, on optimal

component sizing and total cost can be studied.

• Optimal design to achieve minimum “total cost of ownership” can be computed for different

assumptions.

• The influence of driving patterns and charging possibilities on optimal powertrain configu-

ration can be analyzed.

• The optimal tradeoff between onboard storage and charging facilities can be calculated.
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It is possible to extend the models and methods outlined above in several ways, as

discussed in the final section. First, however, the method is illustrated by briefly presenting

two case studies. The first case study describes the sizing of two energy buffers: a battery and

a supercapacitor for a series hybrid powertrain on a city bus. The second case study is an

investigation of the influence of driving patterns on the optimal design of a parallel passenger

vehicle. More details on these and similar studies can be found in the references cited.

Case study 1

This case study concerns the optimal buffer sizing of an electrified city bus with a series

powertrain configuration, and was introduced in the beginning of the article. More specifically,

a double buffer system consisting of an energy-optimized battery and a supercapacitor is

investigated. As mentioned previously, the bus can charge for 10 s at seven bus stops. In order

to investigate the influence of charging infrastructure on the optimal buffer size, an additional

charging scenario is considered, in which the time schedule allows the bus to charge for 10 min

before starting the route. The magnitude of charging power is 200 kW for each charger. However,

in the second scenario, the possibility of downsizing the chargers is also investigated, such that

the magnitude of charging power is chosen in accordance with the optimal buffer size. It is

assumed that the chargers have a constant and identical efficiency of 92%.

Powertrain setup and modeling

The bus is equipped with a 150 kW diesel engine/generator unit (EGU) and a 200 kW

electrical machine (EM), as illustrated in Figure 8. The efficiency of the power electronics is

aggregated and reflected in the EM losses. Figure 9 depicts EM power loss as a function of

mechanical power. The loss is a convex function of the power. A second order polynomial

PMd = bωM
2 P 2

Mm + bωM
1 PMm + bωM

0 , (45)

with speed-dependent coefficients bωM
j is a good approximation for the losses [4]. The coefficients

are obtained for several discrete (gridded) values of the EM speed and linearly interpolated

between gridded values. The remaining EM modeling details are exactly as in (3, 4, 7-9), but
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with scaling parameter sM = 1. The EM is connected to the wheels through a differential gear,

without using a gearbox. The efficiency of the differential gear is assumed constant over different

speeds and torques.

The EGU’s power losses are modeled as quadratic in generator power

PGd = a2P
2
Ge + a1PGe + a0. (46)

Further details on the validity of the model can be found in [21]. Constraints are invoked on the

generator power, as depicted in Figure 4.

The battery pack is comprised of high energy lithium-ion cells, Saft VL 45E [33]. The

cell’s open circuit voltage (see Figure 10) is approximated as affine in state-of-charge (SOC),

which gives a reasonable fit within the operating SOC range. In order to prolong battery life, the

SOC range is limited between 20%-80%. The supercapacitor cell is a Maxwell BCAP2000 P270

[34] and the basic equations describing the cells are (10)-(21). A battery price of 500 EUR/kWh

and a supercapacitor price of 10000 EUR/kWh are assumed. The remaining vehicle details,

diesel fuel and electricity prices, and depreciation expenses are exactly as in [35].

Engine on/off control

To improve HEV efficiency it is recommended to turn the ICE off at low speeds and power

demands where the ICE is least efficient [4]. Based on this concept, a heuristic strategy, suggested

in [21], is applied. Being heuristic, this strategy does not guarantee global optimality. However,

it has been observed [21], [36] that for series PHEV powertrains this heuristic gives results that

are close to optimal. The strategy considers turning the engine on when the demanded power

of a baseline vehicle, where components are not scaled, exceeds a threshold Pon. The convex

problem (now including the scaling variables) is solved for several gridded power thresholds to

find the optimal threshold P ∗on. Expressed in mathematical terms the on/off control is defined as

σG =

1, PV (sB1 = 1, sB2 = 1) > P ∗on,

0, otherwise,
(47)

where sB1 and sB2 are supercapacitor and battery scales.
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TABLE II

OPTIMAL RESULTS FOR TWO DIFFERENT CHARGING SCENARIOS.

Charging scenario 7 chargers 1 charger

Supercapacitor energy 0.8 0.4 kWh

Available battery energy 2.4 15.6 kWh

Total cost 31.7 16.3 EUR/100km

Diesel fuel consumption 16.4 0 l/100km

Charging power 200 121 kW

Convex optimization problem

For a given engine on/off and charging sequence, the convex optimization problem is

very similar to (40)-(44) with only small differences which arise because of the double buffer

system. The buffer power, in this case, is the cumulative power from the two packs, and thus the

variable PBt becomes PBt1 +PBt2. Similarly, the grid power Pe is the sum of charging powers

of the two packs. This is reflected in the objective function by changing the operational cost for

electricity to

ρe
ηe

∆t (1TPe1 + 1TPe2), (48)

where the charger losses have been included by dividing by the efficiency ηe. There will be one

inequality constraint (41) for each of the packs and, similarly, there will be two sets of buffer

constraints (19)-(22).

Optimal results

The optimal results for the PHEV design for the two charging scenarios are in Table

II. The optimal buffer size depends strongly on the charging infrastructure. When the charging

durations are short, as in the scenario with seven chargers, it is optimal to include a larger

supercapacitor pack of about 0.8 kWh and a relatively small battery of about 2.4 kWh. The bus

then consumes 16.4 l/100km diesel fuel, with a total cost of 31.7 EUR/100km. In the second
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scenario, where charging duration is longer, it is optimal to include a supercapacitor pack of half

the size (about 0.4 kWh) and a much larger battery (about 15.6 kWh). In this case, the bus can

drive entirely as electric vehicle at about half the cost (16.3 EUR/100km). For this infrastructure,

a charger that can provide 120 kW is sufficient.

The optimal buffer SOC trajectories and operating points are detailed in Figure 11. The

supercapacitor is used at high power transients, where it is more efficient than the battery.

This behavior is particularly evident in the first charging scenario, where the grid charging

energy is almost entirely accumulated by the supercapacitor. Although used at high power, the

supercapacitor is still operated far from its power limits. Therefore, it can be concluded that

the supercapacitor is mainly sized by the driving cycle’s energy requirements. On the contrary,

the battery in the first charging scenario is sized by the power because the battery does not use

more than 50% of its available SOC range. It also indicates that an energy-optimized battery is

not a suitable choice for short, high-power charging intervals. The energy-optimized battery is

a better choice in the second charging scenario, where its entire available SOC range is used.

The supercapacitor, in this case, assists the battery when high power is demanded, beyond what

can be delivered by the battery alone.

For each charging scenario, the convex problem was solved 30 times to obtain the optimal

power threshold, which decides the engine on/off control. The computation time of the convex

problem is 1-2 minutes on a standard PC (2.67 Ghz Dual Core CPU and 4 GB RAM).

Case study 2

The second case study concerns optimal component sizing of a plug-in hybrid electric

passenger car with a parallel architecture. The components to be sized are the ICE, EM,

and battery, taking into account performance requirements. The optimization gives the optimal

component sizes and energy management for a certain driving cycle. To find component sizes,

which are optimal with respect to the entire vehicle lifetime, would require knowing the lifetime

driving pattern of the vehicle. However, since this is not possible, a long driving cycle that

reflects real-life driving patterns is used. Here, data from 712 km of real driving during a month
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in Gothenburg is used. It is assumed that the driver can charge the battery during any parking

time that lasts longer than 10 minutes. During the available parking periods, it is assumed that

the vehicle is charged with constant current and power. It is also assumed that the chargers have

a constant efficiency of 95%.

Powertrain setup and modeling

The baseline vehicle has a 65 kW ICE and a 35 kW EM. The EM is connected to the

wheels through a differential gear with a constant efficiency. The EM losses, including losses

from the power electronics, are approximated well with a second order polynomial, similar to

(45). The remaining EM modeling details are as described earlier, including the scaling parameter

sM .

The fuel power Pf of the ICE depends on engine torque and speed, and is investigated

by engine experiments at steady state. The fuel power at each engine speed is approximated

with a second-order polynomial in mechanical power as

Pf = cωE
2 P 2

Em + cωE
1 PEm + cωE

0 , (49)

where the coefficients cωE
j are functions of speed, and are calculated in a similar way as bωM

j

for the EM. It is assumed that losses are linearly related to the scaling parameter, resulting in a

model that is similar to the standard machine model. The speed-dependent constraints on power

for the EM and ICE model are shown in Figure 4.

A heuristic, similar to one used in case study 1, is used to switch the ICE on/off. Each time

the power of the baseline vehicle (where the components are not scaled) exceeds a threshold

Pon, the engine is turned on. The convex problem is solved for several values of the power

thresholds Pon to find the optimal value.

The battery pack used in this study is similar to the one used in case study 1, with the

SOC range restricted to be between 20% and 80%.
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Performance requirements

A long driving cycle can reflect real-life driving, but may not include situations that

require high performance. Since performance is considered an important vehicle attribute by

many drivers, it is desirable to include it in the component sizing problem. All electric

range (AER), charge sustaining top speed, and acceleration at different speeds are examples

of performance requirements that would be considered. Some examples of acceleration and

top speed requirements are illustrated in Figure 12 a. Different performance requirements are

obtained by scaling the baseline curve by αp and changing the top speed. The requirements on

acceleration at different speeds can be fulfilled by different combinations of ICE and EM sizes.

Therefore, to include this constraint in the problem, the acceleration requirement is converted

into a performance cycle, as illustrated in Figure 12 b, and is appended to the real-life driving

cycle. The performance cycle is simply the speed profile (from zero to top speed) obtained

by following the maximum acceleration curve for the considered αp value, assuming zero road

gradient. An alternative interpretation/representation of the performance cycle is also possible

by, for example, translating the requirement to ascent capability.

Gear selection

The engine is connected to the wheels through a 6 speed gearbox with a constant

efficiency of 97%. In general, gear shifting strategies that are functions of unknown optimization

variables, such as torque, may lead to a non convex problem. The alternative is to select the

gears outside the convex optimization from a speed-dependent hysteresis model applied to the

known driving profile. Since this strategy does not consider the engine peak power, it can highly

influence the optimal size of the ICE. Therefore, the strategy is modified so that, for high

acceleration demands, the gear shifting happens at higher speeds. The details of this strategy are

provided in [37].
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Optimal results

The optimal PHEV designs are presented here for different performance requirements,

with more details to be found in [37]. To see the effect of AER requirements on the component

sizing and cost, the optimization is solved with different fixed battery sizes. The acceleration

requirement is kept at the baseline αp = 1, and the top speed requirement is 120 km/h (≈ 33 m/s).

The results are presented in Figure 13, and show that the increased battery capacity decreases

the operational cost but increases the component costs linearly. The optimal battery size is 5.2

kWh, which is equivalent to approximately 20 km of AER. For larger battery sizes, the increase

in cost of components is higher than the gain in operational cost. However, the curve between

15 to 35 km AER is rather flat, indicating that in this range of AER the cost is not very sensitive

to the requirement on AER. As shown in Figure 14, a 30% reduction in battery price or 30%

more expensive fuel price increases the optimal AER about 50%.

The sizing problem can also be viewed as a multi objective optimization problem,

including the component cost and the operational cost. The weighting factor wcomp, used to

include the two objectives in the problem, is calculated for a fixed lifetime and yearly driving

length. However, in real-life, this value is different for different vehicles. By varying the

weighting factor, a Pareto front is obtained for the optimal operational cost vs. the optimal

component costs. This is shown in Figure 15 for different acceleration requirements and a

maximum speed of 120 km/h. As expected, component and operational costs can be seen to

be conflicting objectives. In other words, components that contribute to increased component

costs, mainly the battery and EM, can lower the operational cost. For a vehicle with a longer

lifetime driving distance, the value of the weighting factor is smaller, and therefore, it is optimal

to pay more for the components and get a lower operational cost, compared to a vehicle with a

shorter lifetime driving distance. Naturally, higher performance requirements increase both the

component and operational costs.
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Discussion and conclusions

This article presented a framework to study design tradeoffs in the search for electro-

mobility solutions based on approximate modeling of the power flows in the powertrain as a

function of component sizes. An important consequence of the modeling assumptions is that the

optimal energy management and component sizes can be computed simultaneously in a convex

program. This means that competing designs can be evaluated in an objective way, avoiding

the influence of a separate control system design. The fact that the optimization problem is

convex allows large problems to be solved with moderate computational resources, and this can

be exploited by, for example, running optimizations over very long driving cycles. The problem

formulation also admits design decisions for the charging infrastructure to be included in the

optimization.

There are, of course, limitations with the presented approach. Perhaps the most important

is that integer variables cannot be treated within the convex problem. For example, the decision

to turn on or off the combustion engine has to be decided outside the optimization. One way to

do this is to use a simple rule, parameterized in terms of a power threshold, and then search for

optimal parameters in an “outer optimization loop”. For some problems, this approach leads to

nearly optimal solutions [36]. Similarly, the gear switching has to be predetermined, based on a

characterization of the driving cycle and the baseline powertrain. One way to avoid this step is

to perform the optimization study with a continuously variable transmission (CVT), where the

choice of “gear” can be treated as part of the convex optimization problem.

A second potential limitation is the range over which the linear component scaling is

sufficiently accurate for optimal design decisions. However, if necessary, the scaling model can

be relinearized about a different component size and the optimization, which is convex, can

be solved repeatedly, until the simplified scaling model is in fact close to the optimum. This

iteration, described in the modeling section, is a feasible approach because the primary problem is

convex. A third potential limitation of the method is the accuracy of the convex loss models, but

since dissipation functions often are not required to be highly accurate to function appropriately

(for example, the Willans approximation [4]), this is not a great concern.
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The presented approach can be extended in various directions to treat more realistic, and

therefore more complex, problems. A few of these possibilities will be briefly described.

Continuously variable transmissions (CVT): As has been mentioned already, it is

possible to extend the method to also treat CVTs. The benefit of doing so is that the decision of

gear switching is replaced by the choice of the continuous speed ratio, which can be included

in the convex optimization. When including a CVT, the driveline is decoupled into two parts,

and the rotational energy of the part including the engine is now treated as a pure state variable.

As a consequence, the engine losses and constraints have to be expressed as convex functions

of the rotational energy (or square of angular speed). This approach is worked out in detail in

[38].

Thermal states: Limiting battery or supercapacitor temperature is an essential task

of the control system. It is possible to include a thermal state with simple dynamics driven by

the power dissipation PBd in the convex model. In this way, the optimal energy management can

be required to keep the buffer temperature below a certain maximum temperature. An example

study can be found in [35].

Battery wear: When sizing a battery for an HEV application, a relevant question

is whether to choose one large battery sized to survive the entire lifespan of the vehicle, or several

smaller replaceable batteries which could be operated at higher c-rates. Such studies necessitate

a battery wear model that describes battery aging as a function of several variables. A complete

wear model is still an ongoing research area, but variables that are typically considered important

include c-rate, temperature, depth of discharge and state of charge. A simple wear model based

on weighted c-rate has been studied in [39], while in [40] it has been shown that this model can

also be used in convex optimization.

There are other possible directions for further work based on the presented approach.

So far, fairly simple problems related to the charging infrastructure have been studied. Other

scenarios include, for example, more detailed charger models or the possibility to transfer stored

electrical energy in the vehicle back to the grid. Another area for further investigations is the

use of other types of driving cycles. An alternative to the exactly specified velocity profile is to

define a nominal velocity profile that allows some deviation in order to include an “intelligent
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driver” in the problem formulation.
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Sidebar 1: Hybrid Electric Powertrains

There are many ways to configure a hybrid electric powertrain. For the discussions in this

article, we will focus on two common and relatively simple configurations, namely the parallel

and the series hybrid powertrains. The principal layout of a simple hybrid electric powertrain

with a parallel configuration is shown in Figure S1. In this case, the two components providing

the motive force, the internal combustion engine (ICE) and the electric machine (EM), are both

mechanically coupled to the drive shaft of the vehicle. The total torque delivered is the sum

of the individual torques, providing an additional degree of freedom in the operation of the

vehicle compared to a conventional vehicle. In addition, the parallel hybrid powertrain offers the

possibility to run purely electrically in zero emission areas. In this case, the electric machine

works as a motor, and the combustion engine is decoupled from the driveline by a clutch. The

electric machine can also be operated as a generator in order to recuperate braking energy.

Depending on the operating mode of the powertrain, the energy buffer, usually a battery, is

charged or discharged.

In contrast to the parallel configuration, a series powertrain is characterized by the absence

of a mechanical connection between the internal combustion engine and the wheels, as illustrated

in Figure S2. Instead, the wheels are driven entirely by an electric machine without the need

for a transmission. The electric machine obtains electricity either from a generator, coupled to

the ICE, or the buffer. This powertrain gives a choice of the ICE’s speed and torque, regardless

of the vehicle speed. Thus, the engine can be operated at torque-speed points that minimize

emissions and combined losses of the ICE and the generator, [4]. For this reason, these two

components can be considered as a single unit, an engine-generator unit (EGU).
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Sidebar 2: Convex Optimization

A convex optimization problem in standard form is defined as follows

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

where x = (x1, . . . , xn) are the optimization variables, and it is required that the objective

function f and the constraint functions {gi} are convex, that is,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), 0 ≤ θ ≤ 1.

See Figure S3 for an illustration.

A convex optimization problem has two important properties that make it computationally

attractive. First, the feasible set, that is the set of all x that fulfill the constraints, is convex; this

means that for any two points x, y in the set the line segment between also lies in the set.

Second, the optimization problem has a unique global optimum. These characteristics of the

problem allow the construction of efficient numerical algorithms, implying that even very large

problems can be solved with moderate computational resources and time. A useful reference for

further reading is [24].
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Sidebar 3: Constraints Relaxation

The relaxation of the dissipation functions to inequalities is an important step to transform

the optimization problem into standard convex form. It can be understood intuitively that the

relaxation will not change the properties of the optimal solution, but a more rigorous argument

can also be provided, as will be shown. By defining the functions

gG(PGe, sG) = σGsGfG(
PGe
sG

) + PGe,

gB(PBt,EB, sB) = sBfB(
−δEB

sB
,
EB

sB
) + PBt,

gM(PMm, sM) = sMf
ωM
M (

PMm

sM
) + PMm,

gT (PT2, sT ) = sTf
ωT
T (

PT2
sT

) + PT2,

the optimization problem from (40)-(44) can be written as

minimize c = ρe∆t 1
TPe + ρf∆t 1

TgG(PGe, sG) +
∑
X

cX(sX),

subject to Pe ≥ gB(PBt,EB, sB) + δEB,

PBt + PGe ≥ gM(PMm, sM) + hM(sM),

PMm ≥ gT (PT2, sT ) + hT (sT ),

PT2 ≥ h(s),

where hM , hT , h are functions of the scaling parameters only, and constraints from component

limitations and vehicle requirements have been omitted to simplify the arguments (this implies,

in particular, that no mechanical braking power is needed). The functions {gX} are convex by

construction and are required to be strictly increasing in their first arguments. In terms of the

generic component model in Figure 3, this means that it is required that ∂P1

∂P2
> 0, that is, the

incremental input-output (or vice versa) gain is positive, which is a natural and mild condition.

An illustration of the function gM(PMm, sM) is provided in Figure S4.

Consider now an optimal solution, with optimal values denoted by ∗, for which the relaxed
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constraints can be written as

P ∗e = gB(P ∗Bt,E
∗
B, s

∗
B) + δE∗B + γ1,

P ∗Bt + P ∗Ge = gM(P ∗Mm, s
∗
M) + hM(s∗M) + γ2,

P ∗Mm = gT (P ∗T2, s
∗
T ) + hT (s∗T ) + γ3,

P ∗T2 = h(s∗) + γ4,

where γj , j = 1, ..., 4 are nonnegative slack variables. Now, define a suboptimal feasible solution

from P ∗Bt,E
∗
B, s

∗ and the power variables P̃e, P̃Ge, P̃Mm, P̃T2, shifted from the optimal by

P̃T2 = P ∗T2 − γ4 ≤ P ∗T2,

P̃Mm = P ∗Mm − γ3 −∆gT ≤ P ∗Mm,

P̃Ge = P ∗Ge − γ2 −∆gM ≤ P ∗Ge,

P̃e = P ∗e − γ1 ≤ P ∗e ,

where the non-negativeness of the vectors

∆gT = gT (P ∗T2, s
∗
T )− gT (P̃T2, s

∗
T ),

∆gM = gM(P ∗Mm, s
∗
M)− gM(P̃Mm, s

∗
M),

∆gG = gG(P ∗Ge, s
∗
G)− gG(P̃Ge, s

∗
G),

follows from the monotonicity assumption. The cost of the suboptimal solution can now be

related to the optimal solution as follows

c̃ = ρe∆t 1
T P̃e + ρf∆t 1

TgG(P̃Ge, s
∗
G) +

∑
X

cX(s∗X)

= c∗ − ρe∆t 1Tγ1 − ρf∆t 1T∆gG ≤ c∗.

Since c∗ is the optimal cost, it follows that γ1 = 0 and ∆gG = 0, so that P̃e = P ∗e and

P̃Ge = P ∗Ge. From the non-negativeness of the ∆g vectors it follows that the other variables

are also equal, all slack variables are 0, and the optimal solution fulfils the constraints with

equality. The argument can be carried out for the case with component constraints, but the

notation becomes more involved.
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Lars Johannesson Mårdh received the M.Sc. degree in Automation and Mechatronics and the

Ph.D. degree in automatic control from Chalmers University of Technology, Sweden in 2004 and

2009, respectively. He has been with the Electromobility group at Viktoria Swedish ICT since

2011, working with research on powertrain control within the Chalmers Energy Initiative. His

main research interests are optimal control of hybrid and plug-in hybrid electric vehicles, control

of auxiliary systems in trucks, active cell balancing, and system studies of hybrid vehicles. He

is a member of the IEEE.

37



0

20

40

60

V
el

oc
ity

 [k
m

/h
]

 

 

0 2 4 6 8 10 12 14 16
0

20

40

60

A
lti

tu
de

 [m
]

Distance [km]

Fast−charge docking stations

Figure 1. Bus line described by demanded velocity and road altitude. The line is circular, that

is, it starts and ends at the same bus stop. The bus line is equipped with fast-charge docking

stations installed on seven bus stops.
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Figure 2. Power flows in parallel (above) and series (below) powertrains. The arbitration

between the two power sources is represented by the junction of two mechanical (parallel) and

electric (series) power flows, respectively. The primary power sources are fuel power Pf and

electric power Pe, the latter representing grid connection for a plug-in hybrid.
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Figure 3. Generic component model. The model expresses a power flow balance, including

a dissipation term PXd and a storage term PXs. The dissipation function f is assumed to be

convex.
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Figure 4. Models for the rotating machines. The figure summarizes the notations used

for, left to right, electrical motor (M), combustion engine (E), engine/generator unit (G), and

transmission/gearbox (T). Subscripts used are f for fuel, e for electrical, and m for mechanical.
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Figure 5. Energy buffer model. Subscripts c and t indicate charging and terminal, respectively.
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Figure 6. Model of the powertrain of a series plug-in vehicle. The component models are

complemented by external logical signals, controlling gear switching as well as when charging

from the grid is allowed, and when the engine/generator unit is turned on and off.
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Figure 7. Model of the series PHEV, suitable for optimization. The figure is based on Figure 6

with component models added. The charger is assumed to be ideal, and the storage term of the

engine/generator unit has been neglected.
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Figure 8. Model of engine generator unit (a) and electric machine (b).
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Figure 9. Electrical machine dissipative power vs. mechanical power at different speeds. The

losses of the original model are depicted by the thick lines. The thin lines show quadratic

approximation of the power losses.
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Figure 10. Battery cell open circuit voltage for the hybrid city bus considered in case study 1.

The open circuit voltage is approximated as affine function in state-of-charge (SOC). In order

to prolong battery life, the operational SOC range is restricted to be between 20% and 80%.
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Figure 11. Optimal results for case study 1 for two charging scenarios. The first row shows

results for the supercapacitor, and the second row for the battery. The plots to the left show the

optimal SOC trajectories vs. time, while the plots to the right show the optimal SOC points vs.

cell power. The shaded region in the right plots correspond to cell efficiency above 90%.
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Figure 12. Examples of acceleration and top speed requirements (a) and corresponding per-

formance cycles (b), appended to the real-life driving cycle. The different levels of performance

requirements are obtained by multiplying the baseline curve by αp and changing the top speed.

The plot (a) also illustrates the operating points of the real-life driving cycle.
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Figure 13. Optimal cost as function of all-electric-range (AER). The figure shows component,

operational and total costs. The minimal total cost is shown with a star.
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Figure 14. Optimal total cost as function of AER in different price scenarios. The scenarios

are based on present battery and fuel cost, 30% cheaper batteries, and 30% more expensive fuel.

The minimal costs are shown with stars.
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Figure 15. Set of Pareto points using different weighting factors between operational cost and

component costs.
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Figure S1. Parallel hybrid electric powertrain. The internal combustion engine (ICE) and the

electric machine (EM) are both propelling the vehicle. The electric machine is connected to the

battery (or supercapacitor), which acts as an energy buffer. The battery is discharged when the

electric machine is used as motor and charged when the machine is used as a generator.
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Figure S2. Series hybrid electric powertrain. The electric motor is propelling the vehicle. The

battery is charged by the engine/generator unit (EGU), which is mechanically decoupled from

the drive axle.
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Figure S3. A convex function. The function graph is below the linear interpolation between

any two points.
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Figure S4. An example of a strictly increasing function illustrating electrical vs. mechanical

EM power at 100 rpm. The function resides mainly in the first and third quadrant and it may

pass through the second quadrant when friction losses (or idling losses) are present (zero torque

and nonzero speed). The function can never reside in the shaded regions, where the upper region

is defined by the second quadrant shifted upwards by the idling losses and the lower region is

defined by the slope of unity passing through the idling losses.
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