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 
Abstract—This paper describes a simple and low-loss 

microstrip-to-ridge gap waveguide transition with a very 
compact geometry. The transition transforms the EM fields from 
the microstrip mode to the air-filled ridge gap waveguide mode. 
This is achievable if the height of the air gap in the ridge gap 
waveguide is kept almost equal to the thickness of the substrate 
of the microstrip line. The transition has a pressure contact 
between the ridge and the microstrip line, so it works without 
soldering. This is advantageous in systems which require 
mechanically separable split-blocks or modules and need a lot of 
transitions. Experimental results of the manufactured back-to-
back transition show an insertion loss of 0.32 dB and a return 
loss of 14.15 dB over 55% relative bandwidth in Ka band. 
 

Index Terms—Microstrip transition, ridge gap waveguide, 
MMIC integration, antenna array. 
 

I. INTRODUCTION 

OW-LOSS planar antenna technology has gained a lot of 
interest very recently due to upcoming commercial 
applications at high frequency and millimeter-wave 

frequency ranges. Conventional waveguide slot array antennas 
are attractive candidates for high frequency applications 
requiring high gain [1-3]. However, waveguide slot arrays 
have typically very complex feed networks under the radiating 
slots, and manufacturing costs are large at high frequency 
because there must be good electrical contact between the 
slotted plate and the feed structure [4-5]. On the other hand, 
planar microstrip antenna solutions are cost effective, but 
unfortunately their distribution networks are lossy and suffer 
from unwanted leakage through surface-waves [6-7]. To 
address these issues, the gap waveguide technology 
introduced in [8-9] can be applied very successfully. 
Gapwaveguide structures do not have critical electric contact  
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requirement and suppress all surface waves or parallel plate 
modes. Unlike the waffle-iron structures described in [10], 
this technology uses the basic cut-off of a PEC-PMC parallel-
plate waveguide configuration to control and guide desired 
electromagnetic wave propagation between the two parallel 
plates. In the gap waveguide, the PMC condition must be 
emulated by an artificial magnetic conductor (AMC) in the 
form of a periodic structure such as metal pins or mushroom 
[11-12]. The AMC layer and  the top metal layer together 
create a stopband for parallel-plate (PP) modes. All global 
parallel-plate (PP) modes are in cutoff within this stopband. 
However, if the AMC layer incorporates a guiding structure 
such as ridge, groove or strip, EM waves can propagate along 
them without being leaked from the structure. In that case, 
such parallel-plate structures can be used as effective 
transmission lines [13]. Using the gap waveguide concept and 
metal pin surface as AMC, microwave components such as 
high Q bandpass filters and rat race hybrids have been 
designed [14-15].  Low loss gap waveguide technology can 
also have advantages for antenna applications. In particular, 
the distribution networks can be made with lower loss because 
gap waveguides do not require dielectric substrates. Apart 
from that, it is possible to increase the line dimensions 
(compared to microstrip case) considerably in a way that no 
surface waves will propagate and even the conductive losses 
will become smaller. Also, antennas can be made without any 
metal contact between the top metal plate with radiating slots 
and the bottom AMC plate containing the topology of the 
distribution network. Moreover, such split-block gap 
waveguide structures are quite suitable for assembly and 
packaging of millimeter-wave circuits. With these advantages 
in mind, some antennas based on gap waveguide technology 
have been designed and presented [16-18].  

Successful integration of antenna and MMIC based active 
RF circuit is also critical in designing microwave modules at 
millimetre wave frequencies. Therefore, good interfaces 
between different components are needed. Many high 
frequency TX/RX modules contain MMIC chips, and they 
have typically microstrip line both at input and output. 
Therefore, a good transition between microstrip line and ridge 
gap waveguide is a key element for good integration. Such 
transitions should be compact and should operate over as large 
bandwidth as possible. This can only be achieved by accurate 
impedance matching and mode transformation between these 
two different transmission lines. The purpose of this work is 
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to present a simple and compact transition between microstrip 
line and ridge gap waveguide. In the proposed design, the 
microstrip line is placed in line with the ridge section of the 
gap waveguide, thereby allowing a gradual mode 
transformation from the typical microstrip mode to the air-
filled ridge gap waveguide mode. The microstrip substrate 
height should be equal to the air gap size, but this usually falls 
within the range of normal microstrip substrate thicknesses in 
the appropriate frequency bands. Thus, the substrates can be 
selected with the thickness available from the manufacturer 
and it can have any dimension in lateral directions.  

II. TRANSITION CONCEPT  

A microstrip to ridge gap waveguide transition has been 
investigated recently in [19]. The concept was based on 
electromagnetic coupling where a microstrip patch had been 
used. The present transition operates over larger relative 
bandwidth and shows lower loss than the transition presented 
in [19]. It is based on the fact that the E- field of the dominant 
mode in a microstrip line can be easily transformed to a 
standard ridge waveguide mode [20]. It is even simpler for 
ridge gap waveguides, because their dominant mode is a 
quasi-TEM mode similar to that of a microstrip line. This is 
shown in fig.1.  

 

Fig. 1. E-field distributions of the dominant mode of microstrip line and ridge 
gap waveguide. 

Due to the similar field distribution, the only requirement 
for a good transition between these two different lines is 
essentially an interface for transforming E-fields in the 
dielectric to E-fields in the air. This can be done by tapering 
down the width of the ridge section (that is wider 50Ω line 
without dielectric) in steps to the same width as the 
microstrip line. In the proposed design, this is done with one 
step, and this extension of the ridge is placed above the end 
of the microstrip line, covering it. The extended tapered ridge 
section needs to be in electrical contact with the microstrip 
line on the substrate. This can be achieved by soldering, 
gluing or simply by pressing the ridge section down. In our 
work, the electric contact is achieved only by mechanical 
pressure contact. No soldering is used for achieving the metal 
contact between these two sections of the transition. This is 
desirable in many applications as it opens up opportunity for 
replacing or changing the faulty MMICs. Also, soldering of 
such transitions may sometime cause poor repeatability, 
longer assembly time and higher cost [21]. A back-to-back 
configuration of the designed transition between the 
microstrip line and the ridge gap waveguide is shown in fig.2. 
The single tapered section of the ridge is used for the gradual 
transition of the E-field from the microstrip mode in substrate 

to the quasi-TEM mode of the air-filled ridge gap waveguide. 
A standard Chebychev transformer based on several λg/4 
sections of different widths can also be employed to improve 
the transition. However, the main focus in this work is not 
only to design a good quality transition but also to design the 
transition in a compact form to make it suitable for MMIC 
integration. That is the main motivation for using a single 
step transition of the ridge. Usually, any kind of discontinuity 
or transition tends to radiate at high frequency. To tackle this 
problem, two pins with shorter heights are placed after the 
tapered ridge section just above the end of the microstrip line. 
These two pins will act as PMC packaging technique as 
described in [22] and will suppress any kind of radiation 
leakage around the discontinuity.   

 

 
Fig. 2. Drawing of two pieces of the the proposed transition W1 = 2.65 mm, 
W2 = 0.72 mm, x = y = 20 mm and b = 2.75 mm. Note that the top metal plate 
to which the pins are fastened is made transparent to reveal the details of the 
transition.  

III. SIMULATION RESULTS 

The ridge gap waveguide section used in this work is 
designed to operate in Ka band, from 26 to 40GHz. We have 
used periodic metal pins to design the required AMC surface. 
The dimensions of the periodic metal pin structure are chosen 
according to the guidelines given in [23]. For the pin 
dimensions given in Fig.3, the stopband ranges from 22 to 
46GHz. Here, the dispersion diagram is computed for a unit 
cell of the periodic pin surface, without any dielectric material 
present. Still, in a real situation, there will be a loading effect 
due to the presence of the substrate of the microstrip line. This 
loading effect will change the upper cutoff frequency of the 
parallel plate modes and will reduce the stop-band. However, 
this reduction will not be significant because the stop-band is 
already quite large. 

Two transitions are simulated together in a back-to-back 
configuration. The two substrates used for the input and 
output microstrip lines are Arlon CLTE-AT (εr = 3.0) with 
thickness t = 0.254 mm, and size of 20×20 mm2. These two 
substrates are glued on a common metal plate. The size of the 
substrate is chosen a bit bigger than needed to have a stable 
setup for measuring the back- to-back transition. The width of 
the 50Ω microstrip line has been chosen as 0.65 mm. The air 



 
 

3

gap height ‘h’ for the ridge gap waveguide section should be 
the same as substrate thickness ‘t’ for the microstrip. 
However, the thickness of the metal layer on the substrate and 
the added thickness due to glue are taken into account in the 
simulation, and therefore the value of ‘h’ is chosen to be 0.43 
mm. The chosen length of the ridge gap waveguide section is 
about 42 mm, which is approximately four wavelengths at 
30GHz. 
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Fig. 3. Dispersion diagram for unit-cell, a = 0.8 mm, h = 0.43 mm, d = 2.35 

mm. 

 

Fig. 4. Simulated performance of proposed single transition as well as back-
to-back transition. 

 CST microwave time-domain solver was used for the 
simulations. The result for both the single transition and the 
back-to-back transition is shown in fig.4. The periodic peaks 
in the S11 of the back-to-back transition are caused by the 
interference between the two transitions at both sides. 
Resonance peaks below 23GHz and after 43GHz are 
attributed to parallel- plate modes outside the designed stop-
band. As mentioned before, the upper frequency limit of the 
stop-band has been shifted from 46 GHz to around 43 GHz 
due to the loading effect of the dielectric substrate. 

IV. EXPERIMENTAL RESULTS 

In order to validate the concept of the transition, the 
simulated back-to-back transition with only one tapered 
section of the ridge was manufactured and measured. The 

machined ridge gap waveguide section with the pin structure 
was fabricated separately using a computer numerically 
controlled (CNC) milling machine. The other metal part is a 
smooth metal plate on which the two PCBs with the 
microstrip input and output ports are glued by epoxy resin.  
These two building blocks are held together with some 
screws and are mechanically pressed on top of each other by 
tightening the screws. The two building blocks can be 
separated from each other for maintenance or other purposes, 
and reassembled again.  

During measurements, the back-to-back transition was 
connected to Anritsu 36397C Vector Network Analyzer 
(VNA) via a universal test fixture (UTF) from Rosenberger 
for launching the signal for S-parameter measurements. 
Standard TRL calibration was done to remove the effects of 
the connectors and to move the measurement plane from the 
2.4 mm connectors to the microstrip plane. This also 
calibrates out the losses of the microstrip line sections at the 
input and output side. However, the conductor loss in the 
ridge gap waveguide section has not been calibrated out and 
this loss is visible in the measured responses. The measured 
responses for the back-to-back transition are shown in fig.5 
and the pictures of the manufactured prototype are shown in 
fig.6. 

 
Fig. 5.  Measured results for the proposed back-to-back transition, line length 

is approximately 2λ at 30GHz. 

As shown in fig.5, the measured S11 is -14.15 dB over 23-
43 GHz band, which means that a single transition will have 
even lower value of S11 over the entire Ka band of interest. 
The maximum insertion loss over the same 23-43 GHz band is 
found to be 0.32 dB for the back-to-back transition including 
the losses of the ridge gap waveguide section. This means a 
loss smaller than 0.16 dB per single transition over the entire 
Ka band. The measured S11 for the back-to-back transition is 
about 4.1 dB larger than the simulated value. The measured 
S21 is about 0.13 dB lower than the simulated S21. These 
differences originate from tolerances. In simulations, a perfect 
alignment and positioning between the two parts of the 
transition was used, whereas in practice, there is always 
tolerances and human error involved during measurements. 
Also, all kind of losses such as tanδ, surface imperfections etc. 
cannot be accurately accounted for in full-wave simulations.  
However, the return loss and insertion loss remain within 
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acceptable limits and are in reasonable agreement with the 
simulated results presented in fig.4.  For testing repeatability, 
different parts of the transition are dismounted and remounted 
several times, and each time the measured results were found 
very similar to that presented in fig.5.  

 

Fig. 6.  Prototype of proposed back-to-back transition: a) two separate sections 
of the transition; (b) Two sections screwed together and (c) launching probes 
of the UTF. 

V. CONCLUSION 

A simple transition from microstrip to ridge gap waveguide 
has been designed for integration of MMIC based RF circuits 
with gap waveguide-fed antennas. The microstrip mode is 
effectively transformed into the air-filled ridge gap waveguide 
mode by means of a narrow extended section of the ridge 
placed on top of the microstrip line. The height of the air-gap 
of the ridge gap waveguide section is kept close to the 
thickness of microstrip substrate. S-parameter measurements 
of the back-to-back transition are in good agreement with the 
simulated results. An additional feature of the proposed 
transition is that- there is no need for soldering or gluing. This 
can be of advantage in many applications where it is desirable 
to dismount or replace components. Though designed for 
MMIC and ridge gap waveguide antenna integration, this 
simple transition can be used in other cases such as for 
integrating diplexer filter with MMIC.  
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