
Technical Report Series
ISSN 1403-266X

SYNTHESIS EQUIVALENCE OF TRIPLES

Sahar Mohajerani, Robi Malik, Martin Fabian

Technical Report: R004/2013
January 20, 2014

c©Sahar Mohajerani, Robi Malik, Martin Fabian



SYNTHESIS EQUIVALENCE OF TRIPLES

Sahar Mohajerani
Department of Signals and Systems
Chalmers University of Technology
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Abstract

This working paper describes a framework forcompositional supervisor
synthesis, which is applicable to all discrete event systems modelledas a
set of deterministic automata. Compositional synthesis exploits the modular
structure of the input model, and therefore works best for models consisting
of a large number of small automata. The state-space explosion is mitigated
by the use of abstraction to simplify individual components, and the property
of synthesis equivalenceguarantees that the final synthesis result is the same
as it would have been for the non-abstracted model. The working paper de-
scribes synthesis equivalent abstractions and shows theiruse in an algorithm
to efficiently compute supervisors. The algorithm has been implemented in
the DES software tool Supremica and successfully computes nonblocking
modular supervisors, even for systems with more than10

14 reachable states,
in less than 30 seconds.
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1 Introduction

Thesupervisory control theory[28, 37] provides a general framework for the syn-
thesis of reactive control functions. Given a model of the system, theplant, to be
controlled, and aspecificationof the desired behaviour, it is possible to automati-
cally compute, i.e.synthesise, asupervisorthat restricts the plant behaviour while
satisfying the specification.

Commonly, a supervisor is required to becontrollableandnonblocking, i.e., it
should not disable uncontrollable events, and the controlled system shouldalways
be able to complete some desired task [28]. In addition, it is typically required of
a supervisor to achieve some minimum functionality. Most synthesis algorithms
ensure this by producing theleast restrictivesupervisor, which restricts the system
as little as possible while still being controllable and nonblocking [28]. Alterna-
tives to least restrictiveness have been investigated [17,34,35]. They require addi-
tional analysis to guarantee minimum functionality, particularly when supervisors
are synthesised automatically.

It is known [28] that for a given plant and specification, a unique leastrestric-
tive, controllable, and nonblocking supervisor exists. Straightforward synthesis
algorithms explore the completemonolithicstate space of the considered system,
and are therefore limited by the well-knownstate-space explosionproblem. The
sheer size of the supervisor also makes it humanly incomprehensible, whichhin-
ders acceptance of the synthesis approach in industrial settings.

Various approaches formodularandcompositionalsynthesis have been pro-
posed to overcome these problems. Some of these approaches [32, 35] rely on
structure provided by users and hence are hard to automate. Other earlymeth-
ods [1,5] only consider the synthesis of a least restrictive controllable supervisors,
ignoring nonblocking.Supervisor reduction[33] andsupervisor localisation[7]
greatly help to reduce synthesised supervisors in size, yet rely on a supervisor to
be constructed first and thus remain limited by its size.

Compositionalmethods [12] useabstractionto remove states and transitions
that are superfluous for the purpose of synthesis. The most common abstraction
method isnatural projectionwhich, when combined with theobserver property,
produces a nonblocking but not necessarily least restrictive supervisor [35]. If out-
put control consistencyis added as an additional requirement, least restrictiveness
can be ensured [10]. Output control consistency can be replaced bya weaker con-
dition calledlocal control consistency[30].

Conflict-preservingabstractions [17] andweak observation equivalence[34]
can be used as abstractions for the synthesis of nonblocking supervisors. In these
works it is assumed that, when an event is abstracted, supervisor components syn-
thesised at a later stage cannot observe or disable that event. This makesabstracted
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eventsunobservableand removes some possibilities of control.
Halfway synthesis[13] and local supervisors[34] are different strategies to

avoid uncontrollable transitions to blocking states. Local supervisors [34] remove
the source states of these transitions by disabling some controllable events. This
may cause unnecessary disablements as it may be discovered later that someun-
controllable transitions are disabled by other plants. Halfway synthesis [13] defers
the decision to remove states and retains uncontrollable transitions until it is clear
that they cannot be disabled by any other component.

In [13, 18, 34], synthesis is considered in a nondeterministic setting, which
leads to some problems when interpreting results and ensuring least restrictive-
ness. These problems are overcome to some extent bysynthesis abstraction[20,
21,24,25]. Several compositional synthesis methods require all automataand their
abstraction results to be deterministic, which makes some desirable abstractions
impossible. Following ideas from [3, 31, 36],renamingis used in [20] to avoid
nondeterminism after abstraction.

This working paper presents a compositional synthesis approach with abstrac-
tion methods that guarantee the preservation of the final synthesis result. Adata
structure calledsynthesis tripleis introduced to combine abstraction methods [13,
20, 21, 24, 25] together with renaming. This is a general framework intended for
use with a variety of present and future means of abstraction. The implementation
presented in this paper uses halfway synthesis, which is adapted from [13] and
observation equivalence-based abstractions [21,25], which have higher abstraction
potential than methods based on natural projection [25]. These methods allow for
the abstraction of observable events in such a way that abstracted eventscan still
be used by supervisor components synthesised at a later stage. Nondeterminism
after abstraction is avoided using renaming [3,31,36] as proposed in [20].

These results are combined in a general framework for compositional synthe-
sis, and an algorithm is proposed to compute modular supervisors that are least
restrictive, controllable, and nonblocking. This is a completely automatic synthe-
sis method, applicable to general discrete event systems, provided that they are
represented as a set of deterministic finite-state automata. The algorithm has been
implemented in the DES software tool Supremica [2] and applied to compute mod-
ular supervisors for several large industrial models. It successfullycomputes mod-
ular supervisors, even for systems with more than1014 reachable states, within
30 seconds and using no more than 640 MB of memory.

In the following, section 2 briefly introduces the background of supervisory
control theory, and section 3 gives a motivating example to informally illustrate
compositional synthesis and abstraction. Next, Sect. 4 explains compositional
synthesis and the idea of synthesis equivalence underlying the compositional al-
gorithm. Then, section 5 presents different ways of computing abstractions that
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preserve synthesis equivalence. The algorithm for the proposed compositional syn-
thesis procedure is described in section 6, and section 7 applies the algorithm to
several benchmark examples. Some concluding remarks are drawn in section 8.
Formal proofs of technical results can be found in the appendix.

2 Preliminaries

2.1 Events and Languages

The behaviour of discrete event systems can be described using eventsand lan-
guages.Eventsrepresent incidents that cause transitions from one state to another
and are taken from a finite alphabetΣ. For the purpose of supervisory control,
this alphabet is partitioned into two disjoint subsets, the setΣc of controllable
events and the setΣu of uncontrollableevents. Controllable events can be disabled
by a supervisor, while uncontrollable events may not be disabled by a supervi-
sor. In addition, the specialtermination eventω /∈ Σ is used, with the notation
Σω = Σ ∪ {ω}.

Σ∗ is the set of all finite traces of events fromΣ, including theempty traceε.
A subsetL ⊆ Σ∗ is called alanguage. The concatenation of two tracess, t ∈ Σ∗

is written asst. A traces ∈ Σ∗ is called aprefix of t ∈ Σ∗, written s ⊑ t, if
t = su for someu ∈ Σ∗. ForΩ ⊆ Σ, thenatural projectionPΩ : Σ∗ → Ω∗ is the
operation that removes from tracess ∈ Σ∗ all events not inΩ.

2.2 Finite-State Automata

Discrete system behaviours are typically modelled by deterministic automata, but
in this paper nondeterministic automata may arise as intermediate results during
abstraction.

Definition 1 A finite-state automaton is a tupleG = 〈Σ, Q,→, Q◦〉, whereΣ is
a finite set of events,Q is a finite set of states,→ ⊆ Q × Σω × Q is thestate
transition relation, andQ◦ ⊆ Q is the set ofinitial states. G is deterministic, if
|Q◦| ≤ 1, andx

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2.

The transition relation is written in infix notationx
σ
→ y, and is extended to

traces inΣ∗
ω by lettingx

ε
→ x for all x ∈ Q, andx

sσ
→ z if x

s
→ y andy

σ
→ z

for somey ∈ Q. Furthermore,x
s
→ means thatx

s
→ y for somey ∈ Q, and

x → y means thatx
s
→ y for somes ∈ Σ∗

ω, andx 6
σ
→ meansx

σ
→ does not hold.

These notations also apply to state sets,X
s
→ for X ⊆ Q means thatx

s
→ for

somex ∈ X, and to automata,G
s
→ means thatQ◦ s

→, etc. Thelanguageof an
automatonG isL(G) = { s ∈ Σ∗ | G

s
→}.
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The termination eventω /∈ Σ denotes completion of a task and does not appear
anywhere else but to mark such completions. It is required that states reached byω
do not have any outgoing transitions, i.e., ifx

ω
→ y then there does not existσ ∈ Σω

such thaty
σ
→. This ensures that the termination event, if it occurs, is always the

final event of any trace. The traditional set of marked states isQω = {x ∈ Q |
x

ω
→} in this notation. For graphical simplicity, states inQω are shown shaded in

the figures of this paper instead of explicitly showingω-transitions.
When two or more automata are brought together to interact, lock-step syn-

chronisation in the style of [15] is used.

Definition 2 Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 andG2 = 〈Σ2, Q2,→2, Q

◦
2〉 be two

automata. Thesynchronous compositionof G1 andG2 is defined as

G1 ‖G2 = 〈Σ1 ∪ Σ2, Q1 ×Q2,→, Q◦
1 ×Q◦

2〉 (1)

where

(x1, x2)
σ
→ (y1, y2) if σ ∈ (Σ1 ∩ Σ2) ∪ {ω}, x1

σ
→1 y1, x2

σ
→2 y2 ;

(x1, x2)
σ
→ (y1, x2) if σ ∈ Σ1 \ Σ2, x1

σ
→1 y1 ;

(x1, x2)
σ
→ (x1, y2) if σ ∈ Σ2 \ Σ1, x2

σ
→2 y2 .

Synchronous composition is associative, that is,G1‖(G2‖G3) = (G1‖G2)‖G3 =
G1 ‖G2 ‖G3.

Another common automaton operation is thequotientmodulo an equivalence
relation on the state set.

Definition 3 Let X be a set. A relation∼ ⊆ X × X is called anequivalence
relation on X if it is reflexive, symmetric, and transitive. Given an equivalence
relation∼ onX, theequivalence classof x ∈ X is [x] = {x′ ∈ Q | x ∼ x′ }, and
X/∼ = { [x] | x ∈ X } is the set of all equivalence classes modulo∼.

Definition 4 Let G = 〈Σ, Q,→, Q◦〉 be an automaton and let∼ ⊆ Q ×Q be an
equivalence relation. Thequotient automatonof G modulo∼ is

G/∼ = 〈Σ, Q/∼,→/∼, Q̃◦〉 , (2)

where→/∼ = { ([x], σ, [y]) | x
σ
→ y } andQ̃◦ = { [x◦] | x◦ ∈ Q◦ }.

2.3 Supervisory Control Theory

Given aplant automatonG and aspecificationautomatonK, a supervisoris a
controlling agent that restricts the behaviour of the plant such that the specification
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is always fulfilled.Supervisory control theory[28] provides a method to synthesise
a supervisor. Two common requirements for the supervisor arecontrollability and
nonblocking.

Definition 5 Let G andK be two automata using the same alphabetΣ, and let
Γ ⊆ Σ. ThenK is said to beΓ-controllablewith respect toG if, for every trace
s ∈ Σ∗, every statex of K, and every eventγ ∈ Γ such thatK

s
→ x andG

sγ
→, it

holds thatx
γ
→ in K.

WhenΓ = Σu thenK is simply said to becontrollablewith respect toG.

Definition 6 An automatonG = 〈Σ, Q,→, Q◦〉 is nonblocking, if for every state

x ∈ Q and every traces ∈ Σ∗ such thatG
s
→ x there existst ∈ Σ∗ such thatx

tω
→.

For a deterministic plantG, it is well-known [28] that there exists a supre-
mal controllable and nonblocking sublanguage ofL(G), which represents theleast
restrictive feasible supervisor. Algorithmically, it is more convenient to perform
synthesis on the automatonG instead of this language, or more precisely on the
lattice ofsubautomataof G [8].

Definition 7 [18] G1 = 〈Σ, Q1,→1, Q
◦
1〉 is a subautomatonof G2 = 〈Σ, Q2,

→2, Q
◦
2〉, writtenG1 ⊆ G2, if Q1 ⊆ Q2,→1 ⊆ →2, andQ◦

1 ⊆ Q◦
2.

Theorem 1 [13] Let G = 〈Σ, Q,→, Q◦〉 be a deterministic automaton andΓ ⊆
Σ. Then there exists a supremalΓ-controllable and nonblocking subautomaton,

supCΓ(G) = sup{G′ ⊆ G | G′ is Γ-controllable with respect toG and
nonblocking} .

(3)

Again, the subscriptΓ is omitted whenΓ = Σu, i.e.,supC(G) = supCΣu(G).

The supremal element is defined based on the subautomaton relationship (def-
inition 7). The result is equivalent to that of traditional supervisory control the-
ory [28]. That is,supC(G) represents the behaviour of the least restrictive super-
visor that disables only controllable events inG such that nonblocking is ensured.

The supervisor can be represented as a mapΦ: Σ∗ → 2Σ that assigns to each
traces ∈ Σ∗ a control decisionΦ(s) such thatΣu ⊆ Φ(s) ⊆ Σ, consisting
of the events to be enabled after observing the traces. A supervisor can only
disable controllable events and leaves all uncontrollable events enabled [28, 31].
An automatonS can also implement a supervisor map, using

ΦS(s) = Σu ∪ {σ ∈ Σc | sσ ∈ L(S) } . (4)
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If S = supC(G), then controllability and nonblocking are ensured.
The synthesis resultsupC(G) can be computed by removing blocking and un-

controllable states from the plant, until a fixpoint is reached, and restrictingthe
original automatonG to these states.

Definition 8 [18] Therestrictionof G = 〈Σ, Q,→, Q◦〉 toX ⊆ Q is

G|X = 〈Σ, Q,→|X , Q◦ ∩X〉 , (5)

where→|X = { (x, σ, y) ∈ → | x, y ∈ X } ∪ { (x, ω, y) ∈ → | x ∈ X }.

Note that restriction does not directly remove any states, and transitions with
the termination eventω are retained even if their successor state is not contained
in X. Typically, some states become unreachable after restriction, and these states
can be removed, but this is not considered further in this working paper.

Definition 9 [18] Thesynthesis step operatorΘG : 2Q → 2Q for G = 〈Σ, Q,→,
Q◦〉 is defined asΘG,Γ(X) = Θcont

G,Γ (X) ∩Θnonb
G (X), where

Θcont
G,Γ (X) = {x ∈ X | For allγ ∈ Γ such thatx

γ
→ y it holds thaty ∈ X } ;

Θnonb
G (X) = {x ∈ X | x

tω
→|X for somet ∈ Σ∗ } .

Again it is defined thatΘG = ΘG,Σu andΘcont
G = Θcont

G,Σu
.

Θcont
G captures controllability, andΘnonb

G captures nonblocking. The synthesis
result forG is obtained by restrictingG to the greatest fixpoint ofΘG.

Theorem 2 [18] Let G = 〈Σ, Q,→, Q◦〉 be a deterministic automaton, and let
Γ ⊆ Σ. The synthesis step operatorΘG,Γ has a greatest fixpointgfpΘG = Θ̂G,Γ ⊆
Q, such thatG|Θ̂G,Γ

is the greatest subautomaton ofG that is bothΓ-controllable
in G and nonblocking, i.e.,

supCΓ(G) = G|Θ̂G,Γ
. (6)

If the state setQ is finite, the sequenceX0 = Q, Xi+1 = ΘG,Γ(X
i) reaches this

fixpoint in a finite number of steps, i.e.,̂ΘG,Γ = Xn for somen ≥ 0.

In this working paper, the supervisor has a modular structure,S = {S1, . . . , Sn},
consisting of a set of supervisor automata. The combined global supervisor can be
constructed by applying the formal definition of synchronous composition,

‖S =
n
∥

∥

i = 1

Si . (7)
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!f1
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B1

B2

W1

W2

Figure 1: Manufacturing system overview.

In practice, the supervisor can be represented in its modular form, and synchronisa-
tion is performed on-line, tracking the component states as the system evolves. In
this way, explicit synchronous product computation and state-space explosion are
avoided. Based on this, supervisors are identified with automata or sets of automata
in the following.

The operatorsupC only defines the synthesis result for a plant automatonG. In
order to apply this synthesis to control problems that also involve specifications, the
transformation proposed in [13] is used. Specification automata are transformed
into plants by adding, for every uncontrollable event that is not enabled ina state,
a transition to a new blocking state⊥. This essentially transforms all potential
controllability problems into potential blocking problems.

Definition 10 [13] LetK = 〈Σ, Q,→, Q◦〉 be a specification. Thecomplete plant
automatonK⊥ for K is

K⊥ = 〈Σ, Q ∪ {⊥},→⊥, Q◦〉 (8)

where⊥ /∈ Q is a new state and

→⊥ = → ∪ { (x, υ,⊥) | υ ∈ Σu andK
s
→ x 6

υ
→ for somes ∈ Σ∗ } . (9)

In general, synthesis of the least restrictive nonblocking and controllable be-
haviour allowed by a specificationK with respect to a plantG is achieved by
computingsupC(G ‖K⊥) [13].

3 Motivating example

This section demonstrates compositional synthesis using the example of a simple
manufacturing system shown in Figure 1. Two machinesM1 andM2 are linked by
two buffersB1 andB2 that can store one workpiece each. The first machineM1

takes workpieces from outside the system (events1), processes them, and puts
them intoB1 (event!f1). M1 also takes workpieces fromB2 (events3), processes
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!f1
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M2 q0

q1

s2 !f2

B1 q0
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s2!f1

B2 q0
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s3!f2

W1q0

q1

s1

sus1 res1

W2q0

q1

s2

s2

sus2 res2

q2

B⊥
1 q0

q1

s2!f1

!f1
⊥

B⊥
2 q0

q1

s3!f2

!f2
⊥

Figure 2: Automata models of the manufacturing system.

them, and outputs them from the system (event!o). MachineM2 takes workpieces
from B1 (events2), processes them, and puts them intoB2 (event !f2). Using
switchesW1 andW2, the user can suspend (eventsusi) and resume (eventresi)
production ofM1 orM2, respectively.

Figure 2 shows an automata model of the system. All events are observable,
and uncontrollable events are prefixed by an exclamation mark (!). AutomataM1,
M2, W1, andW2 are plants. For illustration, the two switches are not identical.
W2 models a requirement for the synthesised supervisor to prevent starting of M2

in suspend mode, whileW1 models a plant where it is physically impossible to
startM1 in suspend mode. AutomataB1 andB2 are specifications to avoid buf-
fer overflow and underflow, which are transformed into complete plant automata
B⊥

1 andB⊥
2 (definition 10). To satisfy these specifications, a supervisor must be

synthesised for the system.
The compositional synthesis procedure is a sequence of small steps. At each

step, automata are simplified and replaced by abstracted versions such thatthe su-
pervisor synthesised from the abstracted system yields the same languagewhen
controlling the system as would the supervisor synthesised from the original sys-
tem. Synchronous composition is computed step by step on the abstracted au-
tomata. In addition to synchronisation and abstractions, a supervisor component
may also be produced at each step. In the end, the procedure results in asingle
abstracted automaton, which is simpler than the original system, and standard syn-
thesis is applied to this abstracted automaton.

Initially, the system isG0 = {W1,W2,M1,M2, B
⊥
1 , B

⊥
2 }. In the first step

of compositional synthesis, individual automata are abstracted if possible.Events
sus1 andres1 only appear in automatonW1, and such events are referred to aslocal
events. Exploiting local events, statesq0 andq1 in W1 can be merged, as synthesis
will always remove either none or both of these states. AutomatonW1 can then be
replaced by asynthesis equivalentautomatonW̃1 shown in figure 3. Automaton
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W̃1 q01 s1
sus1
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q01

q2
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sus2
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D
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q1 q2

s21
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sus2 res2
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s22

sus2
res2

W ′′
2
q01
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s21

s22

M ′
2 q0

q1

s21
s22

!f2

B′
1 q0

q1

s21
s22!f1

!f1
⊥

Figure 3: Abstraction results for switches in the manufacturing system example.

M̃1

q02 q1s1

s3

!f1!o M ′
1

q02 q1s1

s3

!f1

Figure 4: Abstracted automata ofM1.

W̃1 is a selfloop-only automaton that always enables all its events, so it can be
disregarded in the synthesis.

Similarly, eventssus2 andres2 are local to automatonW2, so the same abstrac-
tion method can be applied. However, an attempt to compute an abstraction as
before results in the nondeterministic automatonW̃2 shown in figure 3. A correct
supervisor needs to be aware of the states ofW2 in order to decide whether or not
to enable controllable events2, and it is not straightforward to construct such a
supervisor only from the abstractioñW2.

To solve the nondeterminism problem, events2 in W̃2 is replaced by two new
eventss21 ands22. This procedure is referred to asrenaming. AutomatonW̃2

is replaced by the renamed deterministic automatonW ′
2 shown in Figure 3, and

automatonD, which is the renamed version ofW2, is stored as adistinguisherin
a setS of collected supervisors. It is the first component of the supervisor to be
computed in the end.

Having replaceds2 in W2, automataM2 andB⊥
1 need to be modified to use

the new eventss21 ands22. Therefore,M2 andB⊥
1 are replaced byM ′

2 andB′
1

shown in figure 3. These automata are constructed by replacing thes2-transitions
in M2 andB⊥

1 by transitions labelleds21 ands22.
After this, eventssus2 andres2 only appear in selfloops in the entire system,

and as a result no state change is possible by executing these events. Thus, the self-
loops associated with these events can be removed, which results in the abstracted
automatonW ′′

2 shown in Figure 3.
Next, events!o ands1 are local events inM1. Statesq0 andq2 can be merged.
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M ′
1 ‖ B′

1 MB
H

1 MB1 MB
′
1

q0

q1

q2

q3

⊥

s1

s1
s21

s21

s22

s22

s3

s3 !f1

!f1

q0

q1

q2

s1

s21
s22

s3

s3

!f1

q0

q12

s1
s21
s22

s3

s3

!f1

q0

q12

s1
s21
s22

Figure 5:M ′
1 ‖B

′
1 and its abstraction result.

M ′
2 ‖ B⊥

2 MB
H

2 MB2 MB
′
2

q0

q1

q2

q3

⊥

s21

s21
s22

s22
s3

s3

!f2

!f2
q0

q1

q2

s21
s22

s3

!f2

q0

q12

s21
s22

s3

!f2

q0

q12

s21
s22

s3

Figure 6:M ′
2 ‖B

⊥
2 and its abstraction result.

However, since!f1 is not a local event,q0 andq1 can not be merged sinceq1 can
be a blocking state if!f1 is disabled by other components. Figure 4 shows the
abstracted automatoñM1. Furthermore, event!o now only appears in a selfloop in
the entire system and thus, the selfloop associated with this event can be removed
from M̃1, resulting in the abstracted automatonM ′

1 shown in figure 4.
At this point, the system has been simplified toG = {W ′′

2 ,M
′
1,M

′
2, B

′
1, B

⊥
2 }.

None of these automata can be simplified further, so the next step is to compose
some of them. Figure 5 shows the composition ofM ′

1 andB′
1, which causes!f1 to

become a local event. Clearly, the blocking state⊥ in M ′
1‖B

′
1 must be avoided, and

since the uncontrollable event!f1 only appears in this automaton, this means that
stateq3 also must be avoided. Then controllable events1 must be disabled inq2.
Therefore, automatonM ′

1 ‖ B
′
1 is replaced by the synthesis equivalent abstraction

MBH
1 shown in figure 5. This is a special case ofhalfway synthesis[13], explained

in more detail in Sect. 5.2. The abstracted automatonMBH
1 is added to the setS

of collected supervisors to enable the final supervisor to make the controldecision
for s1. Furthermore, since!f1 is a local uncontrollable event, statesq1 andq2 in
MBH

1 can be merged, which results in the synthesis equivalent automatonMB1

shown in figure 5. Then eventss3 is always enabled inMB1, and only appears on
selfloop transitions, and!f1 only appears on selfloops in the entire model. Thus,
these events can be removed, resulting inMB ′

1 shown in figure 5.
A similar procedure is applied toM ′

2 ‖ B
⊥
2 . Exploiting the local event!f2

results in the abstracted automataMBH
2 , MB2, andMB ′

2 shown in figure 6.
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‖G̃ q0

q1

q2

q3

q4

q5

q6

q7

s1

s1

s1s1

s21

s22

s3

s3

s3

s3

S1 q0

q1 q2

q3

s1

s1

s21

s3

s3

Figure 7: The final abstracted system and the calculated supervisor for‖G̃.

After all these abstractions, the uncontrolled plant model isG̃ = {W ′′
2 ,MB ′

1,
MB ′

2}, and the collected supervisor set isS = {D,MBH
1 ,MBH

2 }. The last two
steps are to compose the automata inG̃, resulting in the 8-state automaton shown
in Figure 7, and to calculate a supervisor for this automaton. This supervisor is
S1 in Figure 7 and has 4 states. Adding it to the setS results in the nonblocking
modular supervisor

S = {D,MBH
1 ,MBH

2 , S1} , (10)

which is the least restrictive, controllable and nonblocking supervisor, and pro-
duces the exact same controlled behaviour as would a monolithic supervisorcalcu-
lated for the original systemG. The largest component of the modular supervisor
is S1 with 4 states, and it has been computed by exploring the state space of‖G̃
with 8 states. In contrast, standard monolithic synthesis explores a state space of
138 states and produces a single supervisor with 52 states.

The example demonstrates how compositional synthesis works. In the sequel,
section 4 explains the concepts formally and shows how the renamed supervisor
can control the unrenamed plant, and section 5 describes the individual abstraction
methods.

4 Compositional Synthesis

This section describes the compositional synthesis framework. The data struc-
ture ofsynthesis triplesis introduced, which represents partially solved synthesis
problems in the algorithm. Based on this, acontrol architectureis presented to
implement the computed supervisors after renamings.

4.1 Basic Idea

The input to compositional synthesis is an arbitrary set of deterministic automata
representing the plant to be controlled,

G = {G1, G2, . . . , Gn} . (11)
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The objective is to calculate a supervisor that constrains the behaviour ofG to its
least restrictive nonblocking sub-behaviour, by disabling only controllable events.

Compositional synthesis works by repeated abstraction of system components
Gi based onlocal events; events that appear inGi and in no other automataGj

with j 6= i arelocal toGi, and they are crucial to abstraction. In the following, the
set of local events is denoted byΥ, andΩ = Σ \Υ denotes the set of non-local or
sharedevents.

Using abstraction, some componentsGi in (11) are replaced by simpler ver-
sionsG′

i. If this is no longer possible, some components in (11) are selected and
composed, i.e., replaced by their synchronous composition. This typically leads to
new local events, making further abstraction possible.

When an abstractionG′
i is computed, this may lead to the discovery of new

supervisor decisions. For example, ifGi contains a controllable transition leading
to a blocking state, it is clear that this transition must be disabled by every supervi-
sor. Therefore, abstraction may produce a supervisor componentSi in addition to
the abstracted automatonG′

i. The algorithm collects these supervisor components
in a setS, called the set ofcollected supervisors. Abstraction may also result in
nondeterminism, which is avoided by applying a renaming.

Thus, compositional synthesis starts with the set of plant automata (11), no
collected supervisors, and no renaming. At each step, plant automata arereplaced
by the result of abstraction or synchronous composition, supervisors are added
to S, and the renaming is modified. Eventually, only one plant automaton is left,
which is removed fromG and used to calculate the final supervisor to be added
to S. ThenG becomes empty and the collected supervisorsS, together with the
renamingρ, form a least restrictive supervisor for the original synthesis problem.

4.2 Renaming

Nondeterminism is avoided in the compositional synthesis algorithm, because it is
not straightforward to compute supervisors from nondeterministic abstractions. If
an abstraction step results in a nondeterministic automaton, arenamingis applied
first, introducing new events to disambiguate nondeterministic branching.

The use of renaming to disambiguate abstractions is proposed in [36]. In the
following, a renaming is a map that relates the events of the current abstracted
systemG to the events in the original plant, which works in the reverse direction
compared to [36].

Definition 11 Let Σ1 andΣ2 be two sets of events. Arenamingρ : Σ2 → Σ1 is
a controllability-preserving map, i.e., a map such thatρ(σ) is controllable if and
only if σ is controllable.
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For example, when events2 is disambiguated intos21 ands22 in automatonW̃2

in figure 3 in the introductory example, the renamingρ is such thatρ(s21) =
ρ(s22) = s2 andρ(σ) = σ for all other events.

The definition ofρ is extended to cover the termination event by lettingρ(ω) =
ω. Renamings are extended to tracess ∈ Σ∗

2 by applying them to each event, and
to languagesL ⊆ Σ∗

2 by applying them to all traces. They are also extended to

automata with alphabetΣ2 by replacing all transitionsx
σ
→ y with x

ρ(σ)
−−→ y.

When new events are introduced, the compositional synthesis algorithm con-
tinues to operate using the new events and thus produces a supervisor based on an
alphabet different from that of the original plant. To communicate correctly with
the original plant, the supervisor needs to determine which of the new events(s21
or s22) is to be executed when the plant generates one of its original events (s2).
This is achieved by adding a so-calleddistinguisher[3] to the synthesis result.

Definition 12 An automatonG = 〈Σ, Q,→, Q◦〉 differentiateseventγ1 from γ2,
if γ1 /∈ Σ andγ2 ∈ Σ or there exists a transitionx

γ1
→ y such thatx

γ2
→ y does

not hold.G differentiatesbetweenγ1 andγ2, if G differentiatesγ1 from γ2 or G
differentiatesγ2 from γ1.

Definition 13 Let ρ : Σ2 → Σ1 be a renaming. An automatonG2 with alphabet
Σ2 is aρ-distinguisherif, for all tracess, t ∈ L(G2) such thatρ(s) = ρ(t), it holds
thats = t.

Based on definition 13, a distinguisher differentiates between the renamed
events. Furthermore, two traces accepted by a distinguisher never differ only in
the renamed events. This guarantees that only one of the renamed events isen-
abled at each state. In the introductory example, automatonD in figure 3 is aρ-
distinguisher that differentiatess21 from s22. This is becauseD enables at most
one of the eventss21 ands22 in each state, so it can always make a choice between
these two events.

Another operation is necessary in combination with renaming. After applying
a renaming to an automatonGi in a systemG = {G1, . . . , Gn}, the remaining
automataGj with j 6= i and the collected supervisors,S, need to be modified to
use the new events.

Definition 14 Let G = 〈Σ1, Q,→, Q◦〉 be an automaton, and letρ : Σ2 → Σ1 be
a renaming. Thenρ−1(G) = 〈Σ2, Q, ρ−1(→), Q◦〉 whereρ−1(→) = { (x, σ, y) |

x
ρ(σ)
−−→ y }.

Automatonρ−1(G) is obtained by replacing transitions labelled with the orig-
inal event by new transitions labelled with each of the new events. For example,
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{ γi | ρ(γi) = γ }

γ′

Φ′(t′γ′) ⊆ ΣS

Φ(tγ) ⊆ Σ

Supervisor

SD S \ SD

G

Figure 8: Control architecture.G is the original plant,S are the computed modular
supervisors, andSD ⊆ S are the distinguishers.

figure 3 in the introductory example showsM ′
2 = ρ−1(M2) andB′

1 = ρ−1(B⊥
1 ),

which replace the original plantsM2 andB⊥
1 after the renaming. When a renaming

is applied, the distinguisher is the only automaton that differentiates between the
renamed events, all others are transformed byρ−1.

The compositional synthesis algorithm proposed in the following repeatedly
applies renamings and eventually produces a supervisorS using a modified al-
phabetΣS , and a renamingρ : ΣS → Σ that maps the renamed events back to
the events of the original plant. The control architecture in figure 8 enablesthe
renamed supervisorS to interact with the original unrenamed plantG.

Assume that, after execution of a tracet, an eventγ occurs in the plant, and
γ has been renamed and replaced byγ1 andγ2. Being unaware of the renaming,
the plant will just communicate the occurrence ofγ to the supervisor. When this
happens, first the functionρ−1 replacesγ by the set{γ1, γ2}, sending both possi-
bilities to the distinguisherSD, which is part of the setS of collected supervisors.
Following definition 13,SD enables only one ofγ1 or γ2. The selected eventγ′,
eitherγ1 or γ2, is passed to the remaining components of the supervisor,S \ SD,
to update their states and issue a new control decisionΦ′(t′γ′) ⊆ ΣS . Here,t′

is the renamed version of the historyt. The control decision is based on the re-
named model and therefore contains renamed events, so the renamingρ is applied
to translate it back to a control decisionΦ(tγ) ⊆ Σ using the original plant events.

4.3 Synthesis Triples

The compositional synthesis algorithm keeps track of three pieces of information:

• a setG = {G1, . . . , Gn} of uncontrolled plant automata;

• a setS = {S1, . . . , Sm} of collected supervisor automata;
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• a renamingρ that maps the events of the automata inG ∪ S back to events
of the original plant.

This information is combined in asynthesis triple, which is the main data struc-
ture manipulated by the compositional synthesis algorithm.

Definition 15 A synthesis tripleis a triple(G;S; ρ), whereG andS are sets of
deterministic automata andρ is a renaming, such that

(i) L(S) ⊆ L(G);

(ii) S is aρ-distinguisher;

(iii) for all eventsγ1, γ2 such thatρ(γ1) = ρ(γ2), there exists at most one au-
tomatonGj ∈ G that differentiatesγ1 from γ2.

Here and in the following, setsG andS are also used to denote the synchronous
composition of their elements, like‖G = G1 ‖ · · · ‖ Gn. WhenG = ∅ then‖G is
the universal automaton that accepts the languageΣ∗.

A synthesis triple represents a partially solved control problem at an intermedi-
ate step of compositional synthesis. The setG contains an abstracted plant model,
andS contains the supervisors collected so far, which must constrain the behaviour
of the plant (i). The renamingρ maps the events found in the abstracted plant or
collected supervisors back to events in the original plant. The synchronous compo-
sition of the supervisors is required to have the distinguisher property (ii) toensure
that it can be used with the control architecture in figure 8. Furthermore, iftwo
eventsγ1 andγ2 are renamed to the same event, then there can be at most one
automaton in the setG that differentiates between these events (iii).

The following notation associates with each synthesis triple a behaviour and a
synthesis result.

Definition 16 Let (G;S; ρ) be a synthesis triple. Then

(i) L(G;S; ρ) = L(ρ(G ‖ S));

(ii) supC(G;S; ρ) = ρ(supC(G) ‖ S).

The behaviour of a synthesis triple is the behaviour of its plant and supervisor
automata, after renaming it back to the original plant alphabet (i). Furthermore (ii)
defines a synthesis result for the partially solved control problem(G;S; ρ). It is
obtained by composing the monolithic supervisor for the remaining plants with the
supervisors collected so far, and afterwards renaming.
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Example 1 At the final step of the compositional synthesis in section 3, the ab-
stracted uncontrolled system is̃G = {W ′′

2 ,MB ′
1,MB ′

2}, the collected supervi-
sor set isS = {D,MBH

1 ,MBH
2 }, and the renamingρ is such thatρ(s21) =

ρ(s22) = s2 and ρ(σ) = σ for σ /∈ {s21, s22}. This is represented by the
synthesis triple(G̃;S; ρ) = ({W ′′

2 ,MB ′
1,MB ′

2}; {D,MBH
1 ,MBH

2 }; ρ). The lan-
guage of the synthesis triple according to definition 16 is equal toL(G̃;S; ρ) =
L(ρ(W ′′

2 ‖ MB ′
1 ‖ MB ′

2 ‖ D ‖MBH
1 ‖MBH

2 )).The synthesis result for the syn-
thesis triple is obtained by calculating a monolithic supervisor for the abstracted
uncontrolled plant,S1 = supC(W ′′

2 ‖ MB ′
1 ‖ MB ′

2), which is added to the su-
pervisor set,S; and afterwards all components are renamed back. This gives
supC(G̃;S; ρ) = ρ(S1 ‖ D ‖ MBH

1 ‖ MBH
2 ). As explained in section 4.2, the

synchronous composition never has to be computed explicitly as it can be repre-
sented in its modular form.

While manipulating synthesis triples, the compositional synthesis algorithm
maintains the invariant that all generated triples have the same synthesis result,
which is equivalent to the least restrictive solution of the original control problem.
Every abstraction step must ensure that the synthesis result is the same as itwould
have been for the non-abstracted components. This property is calledsynthesis
equivalence[20].

Definition 17 Two triples (G1;S1; ρ1) and (G2;S2; ρ2) are said to besynthesis
equivalent, written(G1;S1; ρ1) ≃synth (G2;S2; ρ2), if

L(supC(G1;S1; ρ1)) = L(supC(G2;S2; ρ2)) . (12)

The compositional synthesis algorithm calculates a modular supervisor for a
modular systemG = G0. Initially no renaming has been applied and no supervisor
or distinguisher has been collected. Thus, this input is converted to the initial
synthesis triple(G;G; id), whereid : Σ → Σ is the identity map, i.e.,id(σ) = σ
for all σ ∈ Σ. Afterwards, the initial triple is abstracted repeatedly such that
synthesis equivalence is preserved,

(G;G; id) = (G0;S0; ρ0) ≃synth (G1;S1; ρ1) ≃synth · · · ≃synth (Gk;Sk; ρk) .
(13)

Some of these steps replace an automaton inGk by an abstraction, others reduce
the number of automata inGk by synchronous composition or by replacing an
automaton inGk with a supervisor inSk+1. The algorithm terminates whenGk = ∅,
at which pointSk together withρk forms the modular supervisor. The following
result, which follows directly from definition 16 and 17, confirms that this approach
gives the same supervised behaviour as a monolithic supervisor for the original
system.
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Theorem 3 Let G = {G1, . . . , Gn} be a set of automata, and let(G;G; id) ≃synth

(∅;S; ρ). ThenL(ρ(S)) = L(supC(∅;S; ρ)) = L(supC(G)).

Proof. It follows directly from definitions 16 and 17 thatL(ρ(S)) = L(ρ(∅‖S)) =
L(ρ(supC(∅) ‖ S)) = L(supC(∅;S; ρ)) = L(supC(G;G; id)) = L(id(supC(G)) ‖
G)) = L(supC(G)). �

5 Synthesis Triple Abstraction Operations

The idea of compositional synthesis is to continuously rewrite synthesis triples
such that synthesis equivalence is preserved. This section gives an overview of
different ways to simplify automata that can be used in the framework of this pa-
per. Sect. 5.1 and 5.2 present abstraction methods from [13, 28], whichhere are
adapted to synthesis triples, and section 5.3 and 5.4 describe methods proposed
by the authors in [20, 25]. Further details and formal proofs of correctness can be
found in [22].

5.1 Basic Rewrite Operations

The simplest methods to rewrite synthesis triples aresynchronous compositionand
monolithic synthesis. It is always possible to compose two automata in the setG
of uncontrolled plants, or to place their monolithic synthesis result into the setS
of supervisors. These basic methods are included here for the sake ofcomplete-
ness. They do not contribute to simplification, and are only needed when noother
abstraction is possible.

Theorem 4 Let G1 = {G1, . . . , Gn} andG2 = {G1 ‖G2, G3, . . . , Gn}, let ρ be a
renaming, and letS be aρ-distinguisher. Then(G1;S; ρ) ≃synth (G2;S; ρ).

Proof. By definition 16, it holds that

L(supC(G1;S; ρ)) = L(ρ(supC(G1) ‖ S))

= L(ρ(supC(G1 ‖ · · · ‖Gn) ‖ S))

= L(ρ(supC(G2) ‖ S))

= L(supC(G2;S; ρ)) , (14)

so the claim follows from definition 17. �

Theorem 5 Let (G;S; ρ) be a synthesis triple. Then(G;S; ρ) ≃synth (∅;S ∪
{supC(G)}, ρ).
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Figure 9: Example of halfway synthesis. Uncontrollable events are prefixed with!,
and local events have parentheses around them.

Proof. Clearly by definition 16 (ii),L(supC(G;S; ρ)) = L(ρ(supC(G) ‖ S)) =
L(ρ(supC(∅) ‖ supC(G) ‖ S)) = L(supC(∅;S ∪ {supC(G)}; ρ). �

5.2 Halfway Synthesis

Halfway synthesisis an abstraction method that works well in compositional syn-
thesis [13]. Sometimes it is clear that certain states in an automaton must be re-
moved in synthesis, no matter what the behaviour of the rest of the system is.
Clearly, blocking states can never become nonblocking. Moreover, local uncon-
trollable transitions to blocking states must be removed, because no other compo-
nent nor the supervisor can disable a local uncontrollable transition.

Definition 18 Let G = 〈Σ, Q,→, Q◦〉 andΓ ⊆ Σu. Thehalfway synthesis result
for G with respect toΓ is

hsupCΓ(G) = 〈Σ, Q ∪ {⊥},→hsup, Q
◦〉 , (15)

wheresupCΓ(G) = 〈Σ, Q,→sup, Q
◦〉,⊥ /∈ Q, and

→hsup =→sup ∪ { (x, σ,⊥) | σ ∈ Σu \ Γ, x
σ
→, andx 6

σ
→sup , } . (16)

Halfway synthesis is calculated like ordinary synthesis, but considering only
local events as uncontrollable. Shared uncontrollable transitions to blocking states
do not necessarily cause blocking, as some other plant component may yetdis-
able them. Therefore, these transitions are retained and redirected to the blocking
state⊥ instead.

Example 2 Consider automatonG in figure 9 withΣu = {!λ, !µ, !υ} andΥ =
{γ, !λ}. Stateq3 is blocking, soq2 is also considered as unsafe, because the local
uncontrollable!λ-transition cannot be disabled by the supervisor nor by any other
plant component. Every nonblocking supervisor can and will disable the control-

lable transitionsq1
γ
→ q3 andq1

β
→ q2. Stateq0 may still be safe, because some
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other plant component may disable the shared events!µ and !υ. The blocking
state⊥ is added and the!µ- and!υ-transitions are redirected to⊥ in the halfway
synthesis resulthsupC{!λ}(G), see Figure 9. This ensures that later synthesis is
aware of the potential problem regarding!µ or !υ.

The following theorem extends a result about halfway synthesis for supervision
equivalence using state labels [13] to the more general framework of synthesis
triples. The proof can be found in appendix C.

Theorem 6 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, and let
Υ ⊆ Σ1 such that(Σ2 ∪ · · · ∪ Σn) ∩Υ = ∅. Then

(G;S; ρ) ≃synth ({hsupCΥ∩Σu(G1), G2, . . . , Gn}; {hsupCΥ∩Σu(G1)} ∪ S; ρ) .

Complexity. Halfway synthesis can be achieved using a standard synthesis al-
gorithm [28] and runs in time complexityO(|Q||→|), where|Q| and|→| are the
numbers of states and transitions of the input automaton.

5.3 Renaming and Selfloop Removal

Another way of rewriting a synthesis triple is by renaming. As explained in sec-
tion 4, an automatonG1 can be rewritten intoH1 using a renamingρ such that
ρ(H1) = G1 andH1 is a ρ-distinguisher. ThenH1 is added to the setS of su-
pervisors as a distinguisher, and the renamingρ is composed with the previous
renamings. The proof of the following result can be found in appendix A.

Theorem 7 Let (G1;S; ρ1) be a synthesis triple withG1 = {G1, . . . , Gn}, let ρ
be a renaming, and letH1 be aρ-distinguisher such thatρ(H1) = G1 andG2 =
{H1, ρ

−1(G2), . . . , ρ
−1(Gn)}. Then

(G1;S; ρ1) ≃synth (G2; {H1} ∪ ρ−1(S); ρ1 ◦ ρ) .

In compositional verification, events used in only one automaton can immedi-
ately be removed from the model [12]. This is not always possible in compositional
synthesis. Even if no other automata use an event, the synthesised supervisor may
still need to use it for control decisions that are not yet apparent. Therefore, events
can only be removed if it is clear that no further supervisor decision depends on
them.

An eventλ can be removed from a synthesis triple, if it causes no state change,
which means that it appears only on selfloop transitions in the automata model. In
this case,λ can be removed from all automata. This step is calledselfloop removal
and formally described in theorem 8. The proof can be found in appendixA.
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Definition 19 An automatonG = 〈Σ, Q,→, Q◦〉, is selfloop-onlyfor λ ∈ Σ if

x
λ
→ y impliesx = y. AutomatonG is selfloop-only forΛ ⊆ Σ if G is selfloop-

only for eachλ ∈ Λ.

Definition 20 The restriction of G = 〈Σ, Q,→, Q◦〉 to Ξ ⊆ Σ is G|Ξ = 〈Ξ,
Q,→|Ξ, Q

◦〉 where→|Ξ = { (x, σ, y) ∈ → | σ ∈ Ξ ∪ {ω} }. The restriction of
G = {G1, . . . , Gn} toΞ is G|Ξ = {G1|Ξ, . . . , Gn|Ξ}.

Theorem 8 Let (G;S; ρ) be a synthesis triple such thatG is selfloop-only for
Λ ⊆ Σ. Then(G;S; ρ) ≃synth (G|Σ\Λ;S; ρ).

5.4 Abstraction Based on Observation Equivalence

This section gives an overview of previous results on observation equivalence-
based abstractions for synthesis purposes.Bisimulationandobservation equiva-
lence [19] provide well-known abstraction methods that work well in composi-
tional verification [12]. Both can be implemented efficiently [11]. They are known
to preserve all temporal logic properties [6], but unfortunately this doesnot help for
synthesis [25]. Synthesis equivalence is preserved when an automatonis replaced
by a bisimilar automaton, while observation equivalence must be strengthenedto
achieve the same result. This can be achieved bysynthesis observation equiva-
lence[25] andweak synthesis observation equivalence[21].

Definition 21 [19] Let G = 〈Σ, Q,→, Q◦〉 be an automaton. An equivalence
relation∼ ⊆ Q × Q is called abisimulationon G, if the following holds for all
x1, x2 ∈ Q such thatx1 ∼ x2: if x1

σ
→ y1 for someσ ∈ Σω, then there exists

y2 ∈ Q such thatx2
σ
→ y2 andy1 ∼ y2.

Theorem 9 [25] Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, let
∼ be a bisimulation onG1, and letG̃ = {G1/∼, G2, . . . , Gn}. Then it holds that
(G;S; ρ) ≃synth (G̃;S; ρ).

Bisimulation is the strongest of the branching process equivalences. Twostates
are treated as equivalent if they have exactly the same outgoing transitions tothe
same or equivalent states. Theorem 9 confirms that it is possible to merge bisimilar
states in a plant automaton in a synthesis triple while preserving synthesis equiva-
lence.

Bisimulation does not consider local events for abstraction. However, better ab-
straction can be achieved by differentiating between local and shared events. This
is the idea of observation equivalence, which considers two states as equivalent if
they can reach equivalent states by the same sequences of shared events.
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Figure 10: Example to demonstrate observation equivalence.

Definition 22 [19] Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ.
An equivalence relation∼ ⊆ Q × Q is called anobservation equivalenceon G
with respect toΥ, if the following holds for allx1, x2 ∈ Q such thatx1 ∼ x2:
if x1

s1→ y1 for somes1 ∈ Σ∗
ω, then there existy2 ∈ Q ands2 ∈ Σ∗

ω such that
PΩ∪{ω}(s1) = PΩ∪{ω}(s2), x2

s2→ y2, andy1 ∼ y2.

Example 3 In automatonG in figure 10, statesq0 andq1 can be considered as
observation equivalent with respect toΥ = {α, β}. Merging these states results
in G̃, also shown in figure 10.

Unfortunately, observation equivalence in general does not imply synthesis
equivalence, so theorem 9 cannot be generalised for observation equivalence [25].

Example 4 Consider again the observation equivalent automata in figure 10, with
Σc = {α, β} andΣu = {!υ}. The triples({G}; {G}; id) and({G̃}; {G}; id) are
not synthesis equivalent. WithG, a supervisor can disable the local controllable
eventα to prevent entering stateq1 and thus the occurrence of the undesirable
uncontrollable!υ, but this is not possible with̃G. It holds thatω ∈ L(supC(G))
whileL(supC(G̃)) = ∅.

There are different ways to restrict observation equivalence so thatit can be
used in compositional synthesis. The problem in example 4 does not arise if the
local eventsα and β are uncontrollable. In fact, a result similar to theorem 9
holds if observation equivalence is restricted to uncontrollable events [25]. With
controllable events, abstraction is also possible, but two other issues must be taken
into account.

Example 5 Consider automatonG in figure 11 withΣu = {!µ, !υ} andΥ =
{β, γ, !µ, !υ}. Merging of observation equivalent states results inG̃, but statesq1
and q2 should not be merged for synthesis purposes. Although both states can
reach the same states via the controllable eventα, possibly preceded and followed
by the local event!µ, the transitionq4

α
→ q6 must always be disabled to prevent

blocking via the local uncontrollable event!υ, while the transitionq1
α
→ q8 may

be enabled. When used in a system that requiresα to occur for correct behaviour,
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Figure 11: Observation equivalent automata that are not synthesis equivalent.
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Figure 12: Observation equivalent automata that are not synthesis equivalent.

such asT in figure 11, stateq1 is retained in synthesis whileq2 is removed. The
triplesT = ({G, T}; {G, T}; id) andT̃ = ({G̃, T}; {G, T}; id) are not synthesis
equivalent asL(supC(T )) = ∅ but !υ ∈ L(supC(T̃ )).

Example 6 Consider automatonG in figure 12 withΣu = {!υ, !µ} andΥ =
{α, β}. Merging of observation equivalent states results inG̃, but statesq1 andq2
should not be merged for synthesis purposes. InG, statesq3 and q4 should be
avoided to prevent blocking in stateq5 via the local uncontrollable event!υ. Thus,
α should be disabled inq1 andq2, makingq2 a blocking state, whileq1 remains

nonblocking due to the transitionq1
β
→ q6. The triplesT = ({G}; {G}; id) and

T̃ = ({G̃}; {G}; id) are not synthesis equivalent asL(supC(T )) = ∅ but !µ ∈
L(supC(T̃ )).

The problem in example 5 is caused by considering the pathq2
!µα!µ
−−−→ q9 as

equivalent toq1
α
→ q8 to justify statesq1 andq2 to be merged. However, the path

q2
!µα!µ
−−−→ q9 passes through the unsafe stateq6, while q1

α
→ q8 does not pass

through any unsafe states. This situation can be avoided by only allowing local
events before a controllable event. That is, forx1

σ
→ y1 andx1 ∼ x2 it is required

that there existst ∈ Υ∗ such thatx2
tσ
→ y2 andy1 ∼ y2. In example 5, the local

events int are all uncontrollable. Controllable events can lead to the problem in
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example 6. They can be allowed under the additional condition that their target
states are equivalent to the start state of the path.

Imposing such conditions on observation equivalence results insynthesis ob-
servation equivalence, which preserves synthesis results in a way similar to theo-
rem 9 [25].

Definition 23 [25] LetG = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇Υ. An
equivalence relation∼ ⊆ Q×Q is asynthesis observation equivalenceonG with
respect toΥ, if the following conditions hold for allx1, x2 ∈ Q such thatx1 ∼ x2:

(i) if x1
σ
→ y1 for σ ∈ Σc ∪ {ω}, then there exists a pathx2 = x02

τ1→ · · ·
τn→

xn2
PΩ∪{ω}(σ)
−−−−−−→ y2 such thaty1 ∼ y2 andτ1, . . . , τn ∈ Υ, and ifτi ∈ Σc then

x1 ∼ xi2;

(ii) if x1
υ
→ y1 for υ ∈ Σu, then there existt2, u2 ∈ (Υ ∩ Σu)

∗ such that

x2
t2PΩ(υ)u2
−−−−−−→ y2 andy1 ∼ y2.

Condition (i) allows for a statex1 with an outgoing controllable event to be
equivalent to another statex2, if that state allows the same controllable event, pos-
sibly after a sequence of local events. If that sequence includes a controllable tran-
sitionxi−1

2 → xi2, its target statexi2 must be equivalent to the start statesx1 ∼ x2.
Condition (ii) is similar to observation equivalence, but restricted to uncontrollable
events. The projectionPΩ is used in the definition to ensure that the conditions (i)
and (ii) apply to both local and shared events.

Example 7 Consider automatonG in figure 13, with all events controllable and
Υ = {β}. An equivalence relation withq1 ∼ q3 andq4 ∼ q7 is a synthesis obser-
vation equivalence onG. Merging the equivalent states results in the deterministic
automatonG′ shown in figure 13. Note thatq1 andq2 in G are not synthesis ob-

servation equivalent, becauseq2
α
→ q6 but q1

α
→ q7

β
→ q6, and the local eventβ

occurs after the shared eventα on the path.

Synthesis observation equivalence does not allow local eventsafter a control-
lable event. This condition can be further relaxed, allowing local events after con-
trollable events, provided that it can be guaranteed that the states reached by the
local transitions after a controllable event are all present in the synthesisresult.

Definition 24 [21] Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ.
An equivalence relation∼ ⊆ Q × Q is aweak synthesis observation equivalence
onG with respect toΥ, if the following conditions hold for allx1, x2 ∈ Q.
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Figure 13: Example of synthesis observation equivalence and weak synthesis ob-
servation equivalence.

(i) If x1
σ
→ y1 for σ ∈ Σc ∪ {ω}, then there exists a pathx2 = x02

τ1→ · · ·
τn→

xn2
PΩ∪{ω}(σ)
−−−−−−→ yn+1

2

τn+1
−−−→ · · ·

τm→ ym+1
2 = y2 such thaty1 ∼ y2 and

τ1, . . . , τm ∈ Υ and,

a) if τi ∈ Σc for somei ≤ n, thenx1 ∼ xi2;

b) if yi2
u
→ z for someu ∈ (Σu ∩Υ)∗, thenz ∼ yj2 for somen+1 ≤ j ≤

m+ 1;

c) if yi2
u
→ z for someu ∈ Σ∗

u such thatPΩ(u) ∈ Σu \Υ, then there exists

u′ ∈ Σ∗
u such thatPΩ(u) = PΩ(u

′) andy2
u′

→ z′ for somez′ ∼ z.

(ii) If x1
υ
→ y1 for υ ∈ Σu, then there existt2, u2 ∈ (Υ ∩ Σu)

∗ such that

x2
t2PΩ(υ)u2
−−−−−−→ y2 andy1 ∼ y2.

Condition (i) weakens the condition in definition 23 for controllable events in
that it allows for a path of local events after a controllable event, if local uncontrol-
lable transitions outgoing from the path lead to a state equivalent to a state on the
path, and shared uncontrollable transitions are possible in the end state of the path.
Condition (ii) is the same as for synthesis observation equivalence.

Example 8 Consider again automatonG in figure 13, with all events controllable
andΥ = {β}. An equivalence relation withq1 ∼ q2 ∼ q3 andq4 ∼ q7 is a weak
synthesis observation equivalence onG, producing the abstractioñG = G/∼. For

example, statesq1 and q2 can be equivalent asq2
α
→ q6 and q1

α
→ q7

β
→ q6,

with no uncontrollable transitions from these paths. The nondeterminism inG̃ can
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be avoided using a renamingρ : {α1, α2, β, γ} → {α, β, γ}, which leads to the
deterministic automatoñG′ in figure 13.

Both synthesis observation equivalence and weak synthesis observation equiv-
alence can be used for abstraction steps in compositional synthesis. Aftercom-
puting an appropriate equivalence relation∼ on a renamed automatonρ(G1), the
automatonG1 can be replaced by its quotientG1/∼.

Theorem 10 [21] Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn} and
Gi = 〈Σi, Qi,→i, Q

◦
i 〉. LetΥ ⊆ Σ1 such that(Σ2 ∪ · · · ∪Σn)∩Υ = ∅. Let∼ be

a synthesis observation equivalence or a weak synthesis observation equivalence
relation onρ(G1) with respect toΥ such thatG1/∼ is deterministic, and let̃G =
{G1/∼, G2, . . . , Gn}. Then(G;S; ρ) ≃synth (G̃;S; ρ).

Complexity. Observation equivalence-based abstractions can be computed in
polynomial time. The time complexity to compute a bisimulation isO(|→| log |Q|)
[11]. Synthesis observation equivalence and weak synthesis observation equiva-
lence are computed by a modified version of the same algorithm inO(|→||Q|4)
andO(|→||Q|5) time, respectively [21].

6 Compositional Synthesis Algorithm

Given a set of plant automataG, the compositional synthesis algorithm repeatedly
composes automata and applies abstraction rules. While doing so, it modifies a
synthesis triple(G;S; ρ), collecting supervisors inS and updating the renamingρ,
and continues until only one automaton that cannot be further abstracted isleft.
Then a standard synthesis algorithm is used to compute a final supervisor from the
remaining automaton. This principle, which is justified by Theorems 3 and 5, is
shown in Algorithm 1.

During each iteration of the main loop, a series of steps is applied to simplify
the setG of plant automata. First, line 4 applies selfloop removal to the entire
plantG according to theorem 8. This quick operation improves the performance of
the following steps.

The next step is to choose a subsystem ofG for simplification. If no automaton
can be simplified individually, a group of automata is selected for composition.
TheselectSubSystem() method in line 5 selects an appropriate subsystem, which
is then removed fromG and composed. Different methods to select this subsystem
are available in the implementation.

After identification and composition of a subsystem, the setΥ of local events is
formed in line 8, which contains the events used only in the subsystem to be simpli-
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Algorithm 1 Compositional synthesis
1: input G = {G1, G2, . . . , Gn}
2: S ← G, ρ← id
3: while |G| > 1 do
4: G ← selfloopRemoval(G)
5: subsys ← selectSubSystem(G)
6: G ← G \ subsys
7: A← synchronousComposition(subsys)
8: Υ← ΣA \ ΣG

9: A← hsupCΥ∩Σu(A)
10: S ← S ∪ {A}
11: A← bisimulation(A)
12: Ã←WSOEΥ(A)
13: if Ã is deterministicthen
14: G ← G ∪ {Ã}
15: else
16: 〈ρD, D̃,D〉 ← makeDistinguisher(Ã, A)
17: G ← ρ−1

D (G) ∪ {D̃}, S ← ρ−1
D (S) ∪ {D}, ρ← ρ ◦ ρD

18: end if
19: end while
20: S ← S ∪ {supC(G)}
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fied. Based on the local events, the abstraction rules given in Theorems 6, 9, and 10
are applied in lines 9–12. Rules of lower complexity are applied first, so halfway
synthesis is followed by bisimulation and weak synthesis observation equivalence,
which are implemented according to [11] and [21], respectively. If halfway syn-
thesis produces a new supervisor, it is added to the setS of supervisors. If weak
synthesis observation equivalence results in a deterministic abstracted automaton,
this automaton is added back into the setG of uncontrolled plants.

Weak synthesis observation equivalence may also result in nondeterminism,
if some states in an equivalence class have successor states reached bythe same
event, but belonging to different equivalence classes. In this case, arenaming
is introduced. ThemakeDistinguisher() method in line 16 replaces the events
of any transitions causing nondeterminism in the abstracted automatonÃ by new
events and records the target states of these transitions. Using the recorded target
states, the same modification to the corresponding transitions is applied to the orig-
inal automatonA. ThemakeDistinguisher() method returns a renaming mapρD,
the deterministic abstracted automatonD̃, and an appropriate distinguisherD. In
line 17, the inverse renamingρ−1

D is applied to the entire systemG and the collected
supervisorsS, the abstracted automatoñD and the distinguisherD are added to the
resultant automata sets, and the renamingρ is updated to includeρD. This is equiv-
alent to the application of theorem 7 followed by theorem 10.

The loop terminates when the setG of uncontrolled plants contains only a sin-
gle automaton, which is passed to standard synthesis [28] in line 20. According
to theorem 5, the result is added to the setS, which in combination with the final
renamingρ gives the least restrictive, controllable, and nonblocking supervisor for
the original systemG.

7 Experimental Results

The compositional synthesis algorithm has been implemented in the DES software
tool Supremica[2]. The algorithm is completely automatic and does not use any
prior knowledge about the structure of the system. The implementation has suc-
cessfully computed supervisors for several large discrete event systems models.
The test cases include the following complex industrial models and case studies,
which are taken from different application areas such as manufacturingsystems
and automotive body electronics:

agv Automated guided vehicle coordination based on the Petri net model in [27].
To make the example blocking in addition to uncontrollable, there is also a
variant,agvb, with an additional zone added at the input station.
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aip Automated manufacturing system of the Atelier Inter-établissement de Pro-
ductique [4].

fencaiwon09 Model of a production cell in a metal-processing plant from [9].

tbed Model of a toy railroad system based on [16]. Two versions present different
control objectives.

verriegel Models of the central locking system of a BMW car. There are two
variants, a three-door modelverriegel3, and a four-door modelverrie-
gel4. These models are derived from the KORSYS project [29].

6link Models of a cluster tool for wafer processing previously studied for synthe-
sis in [34].

tline Parametrised model of a manufacturing transfer line [37] with different num-
bers of serially connected cells.

All the test cases considered have at least107 reachable states in their syn-
chronous composition and are either uncontrollable, blocking, or both. Algo-
rithm 1 has been used to compute supervisors for each of these models. The algo-
rithm is controlled by a state limit of 5000 states: if the synchronous composition
of a subsystem in line 7 of Algorithm 1 exceeds 5000 states, that subsystemis dis-
carded and another subsystem is chosen instead. All experiments have been run on
a standard desktop PC using a single 2.66 GHz microprocessor.

The results of the experiments are shown in Table 1. For each model, the ta-
ble shows the number of automata (Aut), the number of reachable states (Size),
and whether the model is nonblocking (Nonb.) or controllable (Cont.). Next,the
table shows the size of the largest synchronous composition encounteredduring
abstraction (Peak States), the total runtime (Time), the total amount of memory
used (Mem.), the number of modular supervisors computed (Num.), and the num-
ber of states of the largest supervisor automaton (Largest). The table furthermore
shows the number of events replaced by renaming (Ren.) and the number ofevents
removed by selfloop removal (SR), and finally the number of states removedby
halfway synthesis (HS), bisimulation (Bis.), and weak synthesis observation equiv-
alence (WSOE).

All examples have been solved successfully in a few seconds or minutes, never
using more than 1 GB of memory.

To select a subsystem in line 5 of Algorithm 1, a strategy known asMustL [12]
is used, which facilitates the exploitation of local events. For each eventσ, a sub-
system is formed by considering all automata withσ in the alphabet, soσ becomes
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Table 1: Experimental results

Peak Time Mem. Supervisor Events Abstraction
Model Aut Size Nonb. Cont. States [s] [MB] Num. Largest Ren. SR HS Bis. WSOE

agv 16 2.6·107 true false 856 3.11 27.9 6 12339 0 30 208 0 671
agvb 17 2.3·107 false false 562 0.81 61.3 7 9380 0 30 187 0 464
aip0alps 35 3.0·108 false true 502 0.43 84.3 3 17 2 53 3 8 576
fencaiwon09b 29 8.9·107 false true 182 0.27 118.4 6 917 4 56 57 3 328
fencaiwon09s 29 2.9·108 false false 525 0.44 150.2 11 436 5 59 186 2 500
tbed-noderailb 84 3.1·1012 false true 4989 6.22 265.2 17 4982 0 12 158 112 1086
tbed-uncont 84 3.6·1012 true false 4479 5.34 491.6 10 19737 1 1 190 73 189
verriegel3b 52 1.3·109 false true 1367 1.80 218.2 1 4 77 64 1 390 1796
verriegel4b 64 6.2·1010 false true 1382 4.86 250.5 1 4 21 71 189 622 950
6linka 53 2.4·1014 false true 3614 19.52 515.3 13 2073 15 48 1754 0 2103
6linki 53 2.7·1014 false true 2925 13.72 635.4 12 4017 12 49 1205 0 1897
6linkp 48 4.2·1014 false true 3614 26.62 538.3 17 2073 25 45 1731 0 2107
6linkre 59 6.2·1014 false true 240 1.01 584.9 19 375 10 51 221 0 279

tline100 401 6.5·10150 true false 50 3.44 252.4 201 79 0 495 1192 0 4126
tline1000 4001 2.8·101505 true false 50 336.46 864.1 2001 79 0 4995 11992 0 41926
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Figure 14: Share of states removed and runtime for different abstractionrules.

a local event after composing the subsystem. This gives several candidate sub-
systems, one for each event, so a second step applies a strategy calledMinSync,
which chooses the subsystem with the smallest number of states in its synchronous
composition. It is worth mentioning that other methods [12, 14] for selecting sub-
systems give smaller supervisors for theagv, tbed, andtline examples. However,
persistently good results can be achieved for all the examples in this test with the
MustL /MinSync strategy.

Figure 14 shows some data concerning the performance of the abstractionrules.
For each example, it shows the ratio of the number of states removed by eachrule
over the total number of states removed, and the ratio of the runtime consumed
by each rule over the total runtime of all abstraction rules. Thetline bars show
the average of these ratios for models with 100–1000 cells. Particularly forlarge
models, halfway synthesis and bisimulation run much faster than weak synthesis
observation equivalence, as is expected from the higher complexity class. How-
ever, weak synthesis observation equivalence also has the highest percentage of
states removed and typically contributes most of the states removed by abstraction.
The data suggests a correlation between the percentage of runtime and the percent-
age of states removed by each rule. By this measure, the three abstraction rules
have similar performance in practice.

Figure 15 shows the runtimes and supervisor sizes for instances of thetrans-
fer line example [37] with 100–1000 serially connected cells. Although the state
space for these models grows exponentially, the cells are identical and the practi-
cal complexity of the system is small. Even with no knowledge of the symmetry
of the model, the compositional synthesis algorithm successfully computes modu-
lar supervisors for transfer lines with up to 1000 serially connected cells.Table 1
shows that the algorithm never constructs a supervisor component with morethan
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Figure 15: Experimental results for transfer line example.

79 states. Figure 15 shows a linear relation between the number of connected
cells and the total number of supervisor states. Moreover, the relation between the
number of cells and the execution time is quadratic. This behaviour is due to the
complexity of evaluating and choosing subsystems from growing lists. This exper-
iment shows that the compositional synthesis algorithm automatically discovers
that the cells are identical and produces identical supervisors accordingly.

8 Conclusions

A general framework for compositional synthesis in supervisory control has been
presented, which supports the synthesis of least restrictive, controllable, and non-
blocking supervisors for large models consisting of several automata thatsynchro-
nise in lock-step synchronisation. The framework supports compositionalreason-
ing using different kinds of abstractions that are guaranteed to preserve the final
synthesis result, even when applied to individual components. Nondeterminism is
avoided by renaming, which solves problems in previous related work. Thecom-
puted supervisor has a modular structure in that it consists of several interacting
components, which makes it easy to understand and implement. The algorithm
has been implemented, and experimental results show that the method successfully
computes nonblocking modular supervisors for a set of large industrial models.

In future work, the authors would like to extend the compositional synthesis
algorithm to use the symmetric structure of parametrised system automatically in
such a way that an abstraction computed for a single module can be reused.Fur-
thermore, finite-state machines augmented with bounded discrete variables show
good modelling potential, and it is of interest to adapt the described compositional
synthesis approach to work directly with this type of modelling formalism.
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A Proofs for Renaming and Selfloop Removal

This appendix contains proofs for theorem 7 and theorem 8 in section 5.1.As a
prerequisite for theorem 7, it is first confirmed that every renaming step

(G1;S; ρ1) ≃synth (G2; {H1} ∪ ρ−1(S); ρ1 ◦ ρ) (17)

produces a proper synthesis triple.

Lemma 11 Let (G1;S; ρ1) be a synthesis triple withG1 = {G1, . . . , Gn}, let ρ
be a renaming, and letH1 be aρ-distinguisher such thatρ(H1) = G1 andG2 =
{H1, ρ

−1(G2), . . . , ρ
−1(Gn)}. Then(G2; {H1} ∪ ρ−1(S); ρ1 ◦ ρ) is a synthesis

triple.
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Proof. It is necessary to prove properties (i), (ii), and (iii) in definition 15.

(i) As (G1;S; ρ1) is a synthesis triple, it holds thatL(S) ⊆ L(G1). Then it
follows thatL({H1} ∪ ρ−1(S)) = L(H1 ‖ ρ

−1(S)) ⊆ L(H1 ‖ ρ
−1(G1)) =

L(H1 ‖ ρ
−1(G1) ‖ · · · ‖ ρ

−1(Gn)) = L(G2).

(ii) It needs to be shown thatH1 ‖ ρ
−1(S) is a(ρ1 ◦ ρ)-distinguisher. Lets, t ∈

L(H1 ‖ ρ
−1(S)) such thatρ1(ρ(s)) = ρ1(ρ(t)). Thens, t ∈ L(ρ−1(S)) =

ρ−1(L(S)), and thusρ(s), ρ(t) ∈ ρ(ρ−1(L(S))) = L(S). Sinceρ1(ρ(s)) =
ρ1(ρ(t)) andS is a ρ1-distinguisher, it follows thatρ(s) = ρ(t). Further,
since alsos, t ∈ L(H1) andH1 is aρ-distinguisher, it follows thats = t.
Sinces, t were chosen arbitrarily, it follows by definition 13 thatH1‖ρ

−1(S)
is a(ρ1 ◦ ρ)-distinguisher.

(iii) Let γ1, γ2 such that(ρ1 ◦ ρ)(γ1) = (ρ1 ◦ ρ)(γ2). It needs to be shown
that there exists at most one automaton inG2 that differentiates between
γ1 andγ2. This is clear whenγ1 = γ2, so assume thatγ1 6= γ2. Since
(G1;S; ρ1) is a synthesis triple andρ1(ρ(γ1)) = ρ1(ρ(γ2)), there exists at
most one automatonGi ∈ G1 that differentiates betweenρ(γ1) andρ(γ2).
Write Hj = ρ−1(Gj) for j = 2, . . . , n, so thatG2 = {H1, . . . , Hn}. It
is shown that the automataHj with j 6= i do not differentiate betweenγ1
andγ2.

First consider the casej = 1, so assume thatG1 does not differentiate be-
tweenρ(γ1) andρ(γ2). Then the following are equivalent. It holds that

x
γ1
→ y in H1, if and only if x

ρ(γ1)
−−−→ y in G1 = ρ(H1), if and only if

x
ρ(γ2)
−−−→ y in G1 asG1 does not differentiate betweenρ(γ1) andρ(γ2), if

and only ifx
γ2
→ y in H1 asγ1 6= γ2 andH1 is a ρ-distinguisher. This is

enough to show thatH1 does not differentiate betweenγ1 andγ2.

Second, letj ≥ 1 such thatGj does not differentiate betweenρ(γ1) andρ(γ2).

Then the following are equivalent. It holds thatx
γ1
→ y in Hj = ρ−1(Gj), if

and only ifx
ρ(γ1)
−−−→ y inGj , if and only ifx

ρ(γ2)
−−−→ y inGj asGj does not dif-

ferentiate betweenρ(γ1) andρ(γ2), if and only ifx
γ2
→ y in ρ−1(Gj) = Hj .

This is enough to show thatHj does not differentiate betweenγ1 andγ2. �

The following two lemmas are used in the proof of theorem 7.

Lemma 12 Let ρ : Σ′ → Σ be a renaming, letA′ be an automaton with al-
phabetΣA ⊆ Σ′, and letB be an automaton with alphabetΣB ⊆ Σ. Then
ρ(A′) ‖B = ρ(A′ ‖ ρ−1(B)).
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Proof. It is enough to show that the automataρ(A′) ‖B andρ(A′ ‖ ρ−1(B)) have
the same transition relations.

First let (xA, xB)
σ
→ρ(A′)‖B (yA, yB). Consider three cases. Ifσ ∈ Σρ(A′) ∩

ΣB thenxA
σ
→ρ(A′) yA andxB

σ
→B yB. This means that there existsσ′ ∈ Σ′

such thatρ(σ′) = σ andxA
σ′

→A′ yA. SincexB
σ
→B yB, by definition 14 it

holds thatxB
σ′

→ρ−1(B) yB which implies(xA, xB)
σ′

→A′‖ρ−1(B) (yA, yB). If σ ∈

Σρ(A′) \ ΣB thenxB = yB andxA
σ
→ρ(A′) yA. This means that there existsσ′ ∈

ΣA\ΣB such thatρ(σ′) = σ andxA
σ′

→A′ yA, which implies(xA, xB)
σ′

→A′‖ρ−1(B)

(yA, xB) = (yA, yB). If σ ∈ ΣB \ Σρ(A′) then xA = yA and xB
σ
→B yB.

This means that there existsσ′ ∈ Σρ−1(B) \ ΣA such thatρ(σ′) = σ, and by

definition 14 it holds thatxB
σ′

→ρ−1(B) yB, which implies(xA, xB)
σ′

→A′‖ρ−1(B)

(xA, yB) = (yA, yB). Thus, in all cases(xA, xB)
σ′

→A′‖ρ−1(B) (yA, yB). Then

it follows that (xA, xB)
ρ(σ′)
−−−→ρ(A′‖ρ−1(B)) (yA, yB), which furthermore implies

(xA, xB)
σ
→ρ(A′‖ρ−1(B)) (yA, yB).

Conversely, let(xA, xB)
σ
→ρ(A′‖ρ−1(B)) (yA, yB). Then there existsσ′ ∈ Σ′

such thatρ(σ′) = σ and(xA, xB)
σ′

→A′‖ρ−1(B) (yA, yB). There are three possibili-

ties. Ifσ′ ∈ ΣA ∩Σρ−1(B) thenxA
σ′

→A′ yA, which impliesxA
ρ(σ′)
−−−→ρ(A′) yA, and

alsoxB
σ′

→ρ−1(B) yB, which impliesxB
ρ(σ′)
−−−→B yB by definition 14. Therefore,

(xA, xB)
ρ(σ′)
−−−→ρ(A′)‖B (yA, yB). If σ′ ∈ ΣA\Σρ−1(B) thenxB = yB andxA

σ′

→A′

yA, which impliesxA
ρ(σ′)
−−−→ρ(A′) yA. Also ρ(σ′) /∈ ΣB asσ′ /∈ Σρ−1(B), and thus

(xA, xB)
ρ(σ′)
−−−→ρ(A′)‖B (yA, xB) = (yA, yB). If σ′ ∈ Σρ−1(B) \ ΣA thenxA = yA

andxB
σ′

→ρ−1(B) yB, which impliesxB
ρ(σ′)
−−−→B yB. Also ρ(σ′) /∈ Σρ(A′) as

σ′ /∈ ΣA, and thus(xA, xB)
ρ(σ′)
−−−→ρ(A′)‖B (xA, yB) = (yA, yB). Thus, in all cases

(xA, xB)
ρ(σ′)
−−−→ρ(A′)‖B (yA, yB), which implies(xA, xB)

σ
→ρ(A′)‖B (yA, yB). �

Lemma 13 Let G be an automaton with alphabetΣ, and letρ : Σ → Σ′ be a
renaming. Thenρ(supC(G)) = supC(ρ(G)).

Proof. Sinceρ preserves controllability, it follows from definition 9 thatΘG =
Θρ(G). Thus by theorem 2,

ρ(supC(G)) = ρ(G|Θ̂G
) = ρ(G|Θ̂ρ(G)

) = ρ(G)|Θ̂ρ(G)
= supC(ρ(G)) . �
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Theorem 7 Let (G1;S; ρ1) be a synthesis triple withG1 = {G1, . . . , Gn}, let ρ
be a renaming, and letH1 be aρ-distinguisher such thatρ(H1) = G1 andG2 =
{H1, ρ

−1(G2), . . . , ρ
−1(Gn)}. Then

(G1;S; ρ1) ≃synth (G2; {H1} ∪ ρ−1(S); ρ1 ◦ ρ) .

Proof. By definition 16, it holds that

supC(G1;S; ρ1) = ρ1(supC(G1) ‖ S) = ρ1(supC(G1 ‖ · · · ‖Gn) ‖ S) . (18)

By lemma 12 and 13, it holds that

supC(G1 ‖ · · · ‖Gn) = supC(ρ(H1) ‖G2 ‖ · · · ‖Gn)

= supC(ρ(H1 ‖ ρ
−1(G2) ‖ · · · ‖ ρ

−1(Gn)))

= ρ(supC(H1 ‖ ρ
−1(G2) ‖ · · · ‖ ρ

−1(Gn))) . (19)

Combining these equations gives

L(supC(G1;S; ρ1))

= L(ρ1(supC(G1 ‖ · · · ‖Gn) ‖ S))

= L
(

ρ1
(

ρ(supC(H1 ‖ ρ
−1(G2) ‖ · · · ‖ ρ

−1(Gn))) ‖ S
))

= L
(

ρ1
(

ρ
(

supC(H1 ‖ ρ
−1(G2) ‖ · · · ‖ ρ

−1(Gn)) ‖ ρ
−1(S)

)))

by lemma 12

= L
(

ρ1
(

ρ
(

supC(H1 ‖ ρ
−1(G2) ‖ · · · ‖ ρ

−1(Gn)) ‖H1 ‖ ρ
−1(S)

)))

= L(supC(G2; {H1} ∪ ρ−1
1 (S); ρ1 ◦ ρ)) . (20)

Thus, the claim follows from definition 17. �

This completes the proof for the correctness of renaming. Next, considering
selfloop removal, the proof for theorem 8 uses two lemmas that show the relation-
ship between selfloop removal and synthesis.

Lemma 15 Let automatonG = 〈Σ, Q,→, Q◦〉 with Σ = Ω ∪̇ Λ be selfloop-only
for Λ. ThenΘ̂G = Θ̂G|Ω

.

Proof. In the following, letΘ|Ω = ΘG|Ω
. First, it is shown by induction onn ≥ 0

thatΘ̂G ⊆ Xn
|Ω = Θn

|Ω(Q).

Base case.n = 0. ClearlyΘ̂G ⊆ Q = Θ0
|Ω(Q) = X0

|Ω.

Inductive step.Let x ∈ Θ̂G ⊆ Xn
|Ω by inductive assumption. It must be shown

thatx ∈ Xn+1
|Ω = Θcont

|Ω (Xn
|Ω) ∩Θnonb

|Ω (Xn
|Ω).
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To see thatx ∈ Θcont
|Ω (Xn

|Ω), let υ ∈ Σu andx
υ
→|Ω y. Since every transition

in G|Ω also is inG, it holds thatx
υ
→ y. Sincex ∈ Θ̂G, it follows by controllability

thaty ∈ Θ̂G. By inductive assumptiony ∈ Xn
|Ω, which impliesx ∈ Θcont

|Ω (Xn
|Ω).

Next it is shown thatx ∈ Θnonb
|Ω (Xn

|Ω). Sincex ∈ Θ̂G, there exists a path

x = x0
σ1→|Θ̂G

x1
σ2→|Θ̂G

· · ·
σk→|Θ̂G

xk
ω
→|Θ̂G

xk+1 . (21)

Consider the first transition in (21). Ifσ1 ∈ Λ thenx0 = x1 ∈ Θ̂G. If σ1 /∈ Λ
thenx0 →|Ω x1 wherex1 ∈ Θ̂G. In both cases,x1 ∈ Θ̂G ⊆ Xn

|Ω by inductive
assumption. By induction, it follows that

x = x0
PΩ(σ1)
−−−−→|Xn

|Ω
x1

PΩ(σ2)
−−−−→|Xn

|Ω
· · ·

PΩ(σk)
−−−−→|Xn

|Ω
xk

ω
→|Xn

|Ω
xk+1 . (22)

Thus,x ∈ Θnonb
|Ω (Xn

|Ω).

Conversely, it is shown by induction onn ≥ 0 thatΘ̂|Ω ⊆ Xn = Θn
G(Q).

Base case.n = 0. ClearlyΘ̂|Ω ⊆ Q = Θ0
G(Q) = X0.

Inductive step.Let x ∈ Θ̂|Ω ⊆ Xn by inductive assumption. It must be shown
thatx ∈ Xn+1 = Θcont

G (Xn) ∩Θnonb
G (Xn).

To see thatx ∈ Θcont
G (Xn), let υ ∈ Σu andx

υ
→ y. If this transition is not

in G|Ω, it follows thatυ ∈ Λ andy = x ∈ Xn. If x
υ
→|Ω y, sincex ∈ Θ̂|Ω, it

follows by controllability thaty ∈ Θ̂|Ω. By inductive assumptiony ∈ Xn, which
impliesx ∈ Θcont

G (Xn).
Next it is shown thatx ∈ Θnonb

G (Xn). Sincex ∈ Θ̂|Ω, there exists a pathx =

x0
tω
→|Θ̂|Ω

. Since every transition inG|Ω also is inG and by inductive assumption,

it follows thatx = x0
tω
→|Xn . Hence,x ∈ Θnonb

G (Xn). �

Lemma 16 LetG = 〈Σ, Q,→, Q◦〉 with Σ = Ω∪̇Λ be a deterministic automaton
that is selfloop-only forΛ. ThensupC(G) = supC(G|Ω) ‖G.

Proof. By definition 19,G|Ω = 〈Ω, Q,→|Ω, Q
◦〉 where→|Ω = { (x, σ, y) ∈ → |

σ ∈ Ω }. Let Θ|Ω = ΘG|Ω
. The following proof exploits the fact thatG and thus

alsosupC(G) are deterministic, and shows that the automatonsupC(G) contains
the transitionx

σ
→ y if and only if the automatonsupC(G|Ω) ‖ G contains the

transition(x, x)
σ
→ (y, y).

First letx
σ
→ y in supC(G), i.e.,x

σ
→|Θ̂G

y andx
σ
→ y in G. If σ ∈ Ω, then

PΩ(σ) = σ andx
σ
→|Ω y. Otherwiseσ ∈ Λ andPΩ(σ) = ε, andx = y sinceG

is selfloop-only forΛ. In both cases,x
PΩ(σ)
−−−−→|Ω y. Givenx, y ∈ Θ̂G = Θ̂|Ω by
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lemma 15, it follows thatx
PΩ(σ)
−−−−→ y in supC(G|Ω). This implies(x, x)

σ
→ (y, y)

in supC(G|Ω) ‖G.

Conversely, let(x, x)
σ
→ (y, y) in supC(G|Ω) ‖ G. This meansx

σ
→ y and

x
PΩ(σ)
−−−−→|Θ̂|Ω

y, i.e.,x
PΩ(σ)
−−−−→|Θ̂G

y by lemma 15. This impliesx, y ∈ Θ̂G and thus

x
σ
→ y in supC(G). �

Theorem 8 Let (G;S; ρ) be a synthesis triple such thatG is selfloop-only for
Λ ⊆ Σ. Then(G;S; ρ) ≃synth (G|Σ\Λ;S; ρ).

Proof. By definition 16 it follows that,

L(supC(G;S; ρ))

= L(ρ(supC(G) ‖ S))

= L(ρ(supC(G|Σ\Λ) ‖ G ‖ S)) by lemma 16

= L(ρ(supC(G|Σ\Λ) ‖ S)) asL(S) ⊆ L(G) by definition 15 (i)

= L(supC(G|Σ\Λ;S; ρ)) . (23)

The claim follows from definition 17. �

B Proofs for Abstractions based on Observation Equiva-
lence

This appendix contains the proofs for theorem 9 and theorem 10 in section5.4,
which state that bisimulation, synthesis observation equivalence, and weaksynthe-
sis observation equivalence preserve synthesis equivalence. The common feature
of these abstractions is that they are obtained by merging equivalent states, and
can be represented as an automaton quotient modulo an equivalence relation. This
observation leads to the following state-based definition, which is a sufficient con-
dition for abstractions preserving synthesis equivalence [26].

Definition 25 Let G = 〈Σ, Q,→, Q◦〉 be an automaton. An equivalence relation
∼ ⊆ Q × Q is a state-wise synthesis equivalencerelation onG with respect to
Υ ⊆ Σ, if for all x ∈ Q, all deterministic automataT = 〈ΣT , QT ,→T , Q

◦
T 〉 such

thatΣT ∩Υ = ∅, and for all statesxT ∈ QT the following relations hold,

(i) if (x, xT ) ∈ Θ̂G‖T , then([x], xT ) ∈ Θ̂G/∼‖T ;

(ii) if ([x], xT ) ∈ Θ̂G/∼‖T , then(x, xT ) ∈ Θ̂G‖T .
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Lemma 18 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, and let
T = G2 ‖ · · · ‖Gn. Then it holds thatρ(G1 ‖ T ) = ρ(G1) ‖ ρ(T ).

Proof. It is enough to show thatρ(G1 ‖ T ) andρ(G1) ‖ ρ(T ) have the same
transition relations.

First, let(xG, xT )
γ
→ (yG, yT ) in ρ(G1 ‖ T ). Then there existsγ0 ∈ ρ−1(γ)

such that(xG, xT )
γ0
→ (yG, yT ) in G1 ‖ T , which implies

γ0
→ (yG, yT ) in G1 ‖ T .

There are three possibilities. Ifγ0 ∈ ΣG1 ∩ ΣT thenxG
γ0
→G1 yG andxT

γ0
→T yT ,

which impliesxG
γ
→ρ(G1) yG andxT

γ
→ρ(T ) yT , i.e., (xG, xT )

γ
→ (yG, yT ) in

ρ(G1 ‖ T ). If γ0 ∈ ΣT \ ΣG1 thenxG = yG andxT
γ0
→T yT , which implies

xT
γ
→ρ(T ) yT and thus(xG, xT )

γ
→ (xG, yT ) = (yG, yT ) in ρ(G1 ‖ T ). If γ0 ∈

ΣG1 \ ΣT thenxG
γ0
→G1 yG andxT = yT , which impliesxG

γ
→ρ(G1) yG and thus

(xG, xT )
γ
→ (yG, xT ) = (yG, yT ) in ρ(G1 ‖ T ). Thus in all cases,(xG, xT )

γ
→

(yG, yT ) in ρ(G1 ‖ T ).
Conversely, let(xG, xT )

γ
→ (yG, yT ) in ρ(G1) ‖ ρ(T ). There are three cases.

If γ ∈ Σρ(G1) ∩ Σρ(T ) thenxG
γ
→ yG in ρ(G1) andxT

γ
→ yT in ρ(T ). Then

there existγG, γT ∈ ΣG1 ∩ΣT such thatρ(γG) = ρ(γT ) = γ andxG
γG→G1 yG and

xT
γT→T yT . By definition 15 (iii), at most one ofG1 orT differentiates betweenγG

andγT . Thus, it holds thatxG
γT→G1 yG or xT

γG→T yT . It follows that(xG, xT )
γ0
→

(yG, yT ) in G1 ‖ T , whereγ0 = γG or γ0 = γT , and thus(xG, xT )
γ
→ (yG, yT ) in

ρ(G1 ‖ T ). If γ ∈ Σρ(G1) \ Σρ(T ) thenxT = yT , and there existsγG ∈ ΣG1 such

thatρ(γG) = γ andxG
γG→G1 yG. Also γG /∈ ΣT asρ(γG) = γ /∈ Σρ(T ), and thus

(xG, xT )
γG→ (yG, xT ) = (yG, yT ) in G1 ‖T . If γ ∈ Σρ(T ) \Σρ(G1) thenxG = yG,

and there existsγT ∈ ΣT such thatρ(γT ) = γ andxT
γT→T yT . Also γT /∈ ΣG1 as

ρ(γT ) = γ /∈ Σρ(G1), and thus(xG, xT )
γT→ (yG, xT ) = (yG, yT ) in G1 ‖ T . Thus,

in all cases(xG, xT )
γ
→ (xG, yT ) = (yG, yT ) in ρ(G1 ‖ T ). �

Proposition 19 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn} and
Gi = 〈Σi, Qi,→i, Q

◦
i 〉. Let Υ ⊆ Σ1 such that(Σ2 ∪ · · · ∪ Σn) ∩ Υ = ∅. Let∼

be a state-wise synthesis equivalence relation onρ(G1) with respect toΥ such that
G1/∼ is deterministic, and let̃G = {G1/∼, G2, . . . , Gn}. Then(G;S; ρ) ≃synth

(G̃;S; ρ).

Proof. Let T = G2 ‖ · · · ‖Gn. First it is shown that

L(G1 ‖ supC(G1 ‖ T )) = L(G1 ‖ supC((G1/∼) ‖ T )) . (24)
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Let s ∈ L(G1‖supC(G1‖T )). This meansG1‖supC(G1‖T )
s
→ (yG, yG, yT ).

Let s = σ1 · · ·σn. Then there exists a path

(yG0 , y
T
0 )

σ1→|Θ̂G1‖T
· · ·

σn→|Θ̂G1‖T
(yGn , y

T
n ) = (yG, yT ) (25)

with (yGk , y
T
k ) ∈ Θ̂G1‖T or σk = ω for k = 0, ..., n. Sinceρ preserves control-

lability, it follows from definition 9 thatΘG1‖T = Θρ(G1‖T ), and by lemma 18
Θρ(G1‖T ) = Θρ(G1)‖ρ(T ). Thus,

(yG0 , y
T
0 )

ρ(σ1)
−−−→|Θ̂ρ(G1)‖ρ(T )

· · ·
ρ(σn)
−−−→|Θ̂ρ(G1)‖ρ(T )

(yGn , y
T
n ) . (26)

By definition 25 (i), it holds that([yGk ], y
T
k ) ∈ Θ̂ρ(G1)/∼‖ρ(T ) or σk = ω for k =

0, . . . , n, and thus

([yG0 ], y
T
0 )

ρ(σ1)
−−−→|Θ̂ρ(G1)/∼‖ρ(T )

· · ·
ρ(σn)
−−−→|Θ̂ρ(G1)/∼‖ρ(T )

([yGn ], y
T
n ) . (27)

Note thatρ(G1)/∼ = ρ(G1/∼) and thusρ(G1)/∼ ‖ T = ρ(G1/∼) ‖ T =
ρ(G1/∼ ‖ T ) by lemma 18. Given (25), it follows that

([yG0 ], y
T
0 )

σ1→|Θ̂G1/∼‖T
· · ·

σn→|Θ̂G1/∼‖T
([yGn ], y

T
n ) = ([yG], yT ) . (28)

Therefore,G1 ‖ supC(G1/∼‖T )
s
→ (yG, [yG], yT ), which means thats ∈ L(G1 ‖

supC(G1/∼ ‖ T )).
Conversely, lets ∈ L(G1 ‖ supC(G1/∼ ‖ T )). SinceG1 andG1/∼ are

deterministic, there exists a pathG1 ‖ supC(G1/∼ ‖ T )
σ1→ (xG1 , [x

G
1 ], x

T
1 )

σ2→

· · ·
σn→ (xGn , [x

G
n ], x

T
n ) wheres = σ1 · · ·σn and([xGk ], x

T
k ) ∈ Θ̂G1/∼‖T or σk = ω

for k = 0, . . . , n. Sinceρ preserves controllability, it follows from definition 9
and lemma 18 thatΘG1/∼‖T = Θρ(G1/∼‖T ) = Θρ(G1/∼)‖ρ(T ) = Θρ(G1)/∼‖ρ(T ),

which implies([xGk ], x
T
k ) ∈ Θ̂ρ(G1)/∼‖ρ(T ). By definition 25 (ii), it follows that

(xGk , x
T
k ) ∈ Θ̂ρ(G1)‖ρ(T ). This means(xGk , x

T
k ) ∈ Θ̂G1‖T or σk = ω for k =

0, . . . , n. Therefore,G1 ‖ supC(G1 ‖ T )
σ1→ (xG1 , x

G
1 , x

T
1 )

σ2→ · · ·
σn→ (xGn , x

G
n , x

T
n ),

and thuss ∈ L(G1 ‖ supC(G1 ‖ T )).
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Given (24), it follows from definition 16 that

L(supC(G;S; ρ)) = L(ρ(supC(G) ‖ S))

= ρ(L(supC(G1 ‖ T )) ∩ L(S))

= ρ(L(G1 ‖ supC(G1 ‖ T )) ∩ L(S))

= ρ(L(G1 ‖ supC((G1/∼) ‖ T )) ∩ L(S))

= ρ(L(G1 ‖ T ‖ supC((G1/∼) ‖ T )) ∩ L(S))

= ρ(L(supC((G1/∼) ‖ T )) ∩ L(G1 ‖ T ) ∩ L(S))

= ρ(L(supC((G1/∼) ‖ T )) ∩ L(S))

(asL(S) ⊆ L(G) = L(G1 ‖ T ) by definition 15 (i))

= ρ(L(supC(G̃)) ∩ L(S))

= L(ρ(supC(G̃) ‖ S))

= L(supC(G̃;S; ρ)) , (29)

so the claim follows from definition 17. �

To prove the main results of this section, theorems 9 and 10, it is now enough
to show that every bisimulation relation, every synthesis observation equivalence
relation, and every weak synthesis observation equivalence relation is astate-wise
synthesis equivalence relation.

The most general of these relations is weak synthesis observation equivalence.
Therefore, lemma 21 below establishes the crucial result that every weaksyn-
thesis observation equivalence is a state-wise synthesis equivalence. Before that,
lemma 20 establishes an auxiliary result about the paths in a quotient automaton
resulting from weak synthesis observation equivalence.

Lemma 20 Let G = 〈Σ, Q,→, Q◦〉 andT = 〈ΣT , QT ,→T , Q
◦
T 〉 be two auto-

mata withΣ∪ΣT = Ω ∪̇Υ andΥ∩ΣT = ∅, and let∼ be a weak synthesis obser-
vation equivalence onG with respect toΥ. LetX ⊆ Q×QT such that([x], xT ) ∈
Θ̂G/∼‖T always implies(x, xT ) ∈ X. Furthermore, let(x1, x

T
1 )

σ
→ (x2, x

T
2 ) such

that([x1], x
T
1 )

σ
→|Θ̂G/∼‖T

([x2], x
T
2 ). Then for all statesy1 ∈ Q such thatx1 ∼ y1,

there existt1, t2 ∈ Υ∗ andy2 ∈ Q such that(y1, x
T
1 )

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2 ) and

x2 ∼ y2.

Proof. Let x1, x2, y1 ∈ Q and xT1 , x
T
2 ∈ QT and σ ∈ Σω ∪ ΣT such that

(x1, x
T
1 )

σ
→ (x2, x

T
2 ), ([x1], x

T
1 )

σ
→|Θ̂G/∼‖T

([x2], x
T
2 ), andx1 ∼ y1. Consider

three cases.
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(i) If σ /∈ Σω, thenσ ∈ ΣT \ Σ ⊆ Ω andx1 = x2 andxT1
σ
→ xT2 . Given

([x1], x
T
1 )

σ
→|Θ̂G/∼‖T

([x2], x
T
2 ), it follows that ([y1], x

T
1 ) = ([x1], x

T
1 ) ∈

Θ̂G/∼‖T and([y1], x
T
2 ) = ([x1], x

T
2 ) = ([x2], x

T
2 ) ∈ Θ̂G/∼‖T , and therefore

(y1, x
T
1 ), (y1, x

T
2 ) ∈ X by assumption. This implies that(y1, x

T
1 )

PΩ(σ)
−−−−→|X

(y1, x
T
2 ).

(ii) If σ ∈ Σ ∩ Σu, thenx1
σ
→ x2 andx1 ∼ y1, so by definition 24 (ii) there

exist t1, t2 ∈ (Υ ∩ Σu)
∗ andy2 ∈ Q such thaty1

t1PΩ(σ)t2
−−−−−−→ y2. Let r ⊑

t1PΩ(σ)t2 such thaty1
r
→ z. Then[x1] = [y1]

r
→ [z], and sinceΣT ∩ Υ =

∅, it follows that ([x1], x
T
1 )

r
→ ([z], xTd ) for somed ∈ {1, 2}. Sincer ∈

Σ∗
u and ([x1], x

T
1 ) ∈ Θ̂G/∼‖T , it follows that ([z], xTd ) ∈ Θ̂G/∼‖T . This

implies (z, xTd ) ∈ X by assumption. This argument holds for all prefixes

r ⊑ t1PΩ(σ)t2, and therefore(y1, x
T
1 )

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2 ).

(iii) If σ ∈ Σ ∩ Σc or σ = ω, thenx1
σ
→ x2 andx1 ∼ y1, so by definition 24 (i)

there exists a path

y1 = z0
τ1→ · · ·

τk→ zk
PΩ(σ)
−−−−→ zk+1

τk+1
−−−→ · · ·

τl−1
−−→ zl = y2 (30)

such thatx2 ∼ y2 andτ1, . . . , τl−1 ∈ Υ. The first part of this path satis-
fies (i)a) and the second part satisfies (i)b) and (i)c) in definition 24. Since
τ1, . . . , τl−1 ∈ Υ andΣT ∩Υ = ∅, it holds that

(y1, x
T
1 ) = (z0, x

T
1 )

τ1→ · · ·
τk→ (zk, x

T
1 )

PΩ(σ)
−−−−→

(zk+1, x
T
2 )

τk+1
−−−→ · · ·

τl−1
−−→ (zl, x

T
2 ) = (y2, x

T
2 ) (31)

It follows that

([z0], x
T
1 )

τ1→ · · ·
τk→ ([zk], x

T
1 )

PΩ(σ)
−−−−→

([zk+1], x
T
2 )

τk+1
−−−→ · · ·

τl−1
−−→ ([zl], x

T
2 ) . (32)

It is shown in the following that this path also exists in the restriction of
G/∼ ‖ T to Θ̂G/∼‖T .

For the first part of the path, it is shown by induction oni that ([zi], x
T
1 ) ∈

Θ̂G/∼‖T , for i = 0, . . . , k if σ ∈ Ω∪{ω}, and fori = 0, . . . , k−1 if σ ∈ Υ.

Base case.Fori = 0, it follows by assumption that([z0], x
T
1 ) = ([y1], x

T
1 ) =

([x1], x
T
1 ) ∈ Θ̂G/∼‖T .
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Inductive step. Assume the claim holds for somei ≥ 0, i.e., ([zi], x
T
1 ) ∈

Θ̂G/∼‖T . It must be shown that([zi+1], x
T
1 ) ∈ Θ̂G/∼‖T . There are two

possibilities forτi+1 ∈ Υ:

a) τi+1 ∈ Σc. In this case, it follows from definition 24 (i)a) thatzi+1 ∼
x1, and thus([zi+1], x

T
1 ) = ([x1], x

T
1 ) ∈ Θ̂G/∼‖T by assumption.

b) τi+1 ∈ Σu. As (zi, x
T
1 )

τi+1
−−→ (zi+1, x

T
1 ), it holds that([zi], x

T
1 )

τi+1
−−→

([zi+1], x
T
1 ), and([zi], x

T
1 ) ∈ Θ̂G/∼‖T by inductive assumption. Then

([zi+1], x
T
1 ) ∈ Θ̂G/∼‖T becauseτi+1 ∈ Σu.

If σ = ω, the second part of the path (32) is empty and the claim follows.
Otherwise note that by assumption,

([x2], x
T
2 ) ∈ Θ̂G/∼‖T . (33)

It is shown that([zi], x
T
2 ) ∈ Θ̂G/∼‖T for k < i < l. LetΥT

u = Σu∩(ΣT \Σ)
and

Y T = { yT ∈ QT | x
T
2

u
→T yT for someu ∈ (ΥT

u )
∗ } .

AsxT2 ∈ Y T , it is enough to show that([zi], yT ) ∈ Θ̂G/∼‖T for all yT ∈ Y T .
It is shown by induction onn ≥ 0 that for allk < i < l and for allyT ∈ Y T

it holds that([zi], yT ) ∈ X̃n = Θn
G/∼‖T (Q/∼×QT ).

Base case.n = 0. Clearly ([zi], yT ) ∈ Q/∼ × QT = Θ0
G/∼‖T (Q/∼ ×

QT ) = X̃0.

Inductive step. Let k < i < l and yT ∈ Y T . It must be shown that
([zi], y

T ) ∈ X̃n+1 = ΘG/∼‖T (X̃
n) = Θcont

G/∼‖T (X̃
n) ∩Θnonb

G/∼‖T (X̃
n).

To see that([zi], yT ) ∈ Θcont
G/∼‖T (X̃

n), let υ ∈ Σu and([zi], yT )
υ
→G/∼‖T

([z], zT ). Consider three cases.

a) υ ∈ Σ ∩Υ. In this caseyT = zT and[zi]
υ
→ [z], so there existz′i ∼ zi

andz′ ∼ z such thatz′i
υ
→ z′. By definition 24 (ii), there existu1, u2 ∈

(Σu ∩Υ)∗ andz′′ ∼ z′ such thatzi
u1u2−−−→ z′′. As zi is on the path (30),

it follows from definition 24 (i)b) thatz′′ ∼ zj for somek < j ≤ l. If
j < l, then([z], zT ) = ([z′], zT ) = ([z′′], zT ) = ([zj ], z

T ) ∈ X̃n by
inductive assumption. Ifj = l, then note that([x2], x

T
2 )

u
→ ([x2], z

T )
for someu ∈ (ΥT

u )
∗ aszT = yT ∈ Y T , and given (33) it follows

that([y2], zT ) = ([x2], z
T ) ∈ Θ̂G/∼‖T . Then([z], zT ) = ([z′], zT ) =

([z′′], zT ) = ([zl], z
T ) = ([y2], z

T ) ∈ Θ̂G/∼‖T ⊆ X̃n.
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b) υ ∈ Σ ∩ Ω. In this case[zi]
υ
→ [z], so there existz′i ∼ zi andz′ ∼ z

such thatz′i
υ
→ z′. By definition 24 (ii), there existu1, u2 ∈ (Σu ∩Υ)∗

andz′′ ∼ z′ such thatzi
u1υu2−−−−→ z′′. As zi is on the path (30), it follows

from definition 24 (i)c) that there existv1, v2 ∈ (Σu∩Υ)∗ andz′′2 ∼ z′′

such thaty2
v1υv2−−−→ z′′2 . Sincey2 ∼ x2, by definition 24 (ii) there exist

w1, w2 ∈ (Σu ∩ Υ)∗ andz′′′2 ∼ z′′2 such thatx2
w1υw2−−−−→ z′′′2 . Then

sinceyT ∈ Y T , there existsu ∈ (ΥT
u )

∗ such that([x2], x
T
2 )

u
→G/∼‖T

([x2], y
T )

w1υw2−−−−→G/∼‖T ([z′′′2 ], zT ). Givenz′′′2 ∼ z′′2 ∼ z′′ ∼ z′ ∼ z, it

follows from (33) that([z], zT ) = ([z′′′2 ], zT ) ∈ Θ̂G/∼‖T ⊆ X̃n.

c) υ /∈ Σ. In this case,υ ∈ ΣT \ Σ and [zi] = [z] andyT
υ
→T zT .

Then clearlyzT ∈ Y T and([z], zT ) = ([zi], z
T ) ∈ X̃n by inductive

assumption.

Thus ([z], zT ) ∈ X̃n can be shown for allυ ∈ Σu, and it follows that
([zi], y

T ) ∈ Θcont
G/∼‖T (X̃

n).

Next, it is shown that([zi], yT ) ∈ Θnonb
G/∼‖T (X̃

n). As τk+1, . . . , τl ∈ Υ and
ΣT ∩Υ = ∅, it holds by inductive assumption that,

([zk+1], y
T )

τk+1
−−−→|X̃n · · ·

τk→|X̃n ([zl], y
T ) . (34)

SinceyT ∈ Y T , there existsu ∈ (ΥT
u )

∗ such thatxT2
u
→T yT , and this

implies ([x2], x
T
2 ) = ([zl], x

T
2 )

u
→G/∼‖T ([zl], y

T ). Sinceu ∈ Σ∗
u, it fol-

lows by (33) that([zl], yT ) ∈ Θ̂G/∼‖T . Then there existst ∈ Σ∗ such that

([zl], y
T )

tω
→|Θ̂G/∼‖T

. Thus

([zi], y
T )

τi+1
−−→|X̃n · · ·

τk→|X̃n ([zl], y
T )

tω
→|X̃n . (35)

This implies([zi], yT ) ∈ Θnonb
G/∼‖T (X̃

n).

It has been shown that all states([zi], x
T
d ) on the path (32) are in̂ΘG/∼‖T , ex-

cept for the last state whenσ = ω. This implies by assumption(zi, x
T
d ) ∈ X

for all states on the path (31), except for the last state whenσ = ω. Therefore,

(y1, x
T
1 )

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2 ). �

Lemma 21 Let ∼ be a weak synthesis observation equivalence onG = 〈Σ, Q,
→, Q◦〉 with respect toΥ ⊆ Σ. Then∼ is a state-wise synthesis equivalence onG
with respect toΥ.
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Proof. Let T = 〈ΣT , QT ,→T , Q
◦
T 〉 with ΣT ∩Υ = ∅ andΣ∪ΣT = Ω ∪̇Υ. The

conditions of state-wise synthesis equivalence in definition 25 must be confirmed.

(i) It is shown by induction onn ≥ 0 that(x, xT ) ∈ Θ̂G‖T implies([x], xT ) ∈

X̃n = Θn
G/∼‖T (Q/∼×QT ).

Base case. ([x], xT ) ∈ Q/∼×QT = Θ0
G/∼‖T (Q/∼×QT ) = X̃0.

Inductive step. Assume the claim holds for somen ≥ 0, i.e., if (x, xT ) ∈
Θ̂G‖T then([x], xT ) ∈ X̃n. Now let(x, xT ) ∈ Θ̂G‖T . It must be shown that

([x], xT ) ∈ X̃n+1 = ΘG/∼‖T (X̃
n) = Θcont

G/∼‖T (X̃
n) ∩Θnonb

G/∼‖T (X̃
n).

To see that([x], xT ) ∈ Θcont
G/∼‖T (X̃

n), let υ ∈ Σu and([x], xT )
υ
→ ([y], yT ).

Consider two cases.

a) υ /∈ Σ. In this case,[x] = [y] and(x, xT )
υ
→ (x, yT ), and it follows

from (x, xT ) ∈ Θ̂G‖T andυ ∈ Σu that (x, yT ) ∈ Θ̂G‖T . Then by

inductive assumption([y], yT ) = ([x], yT ) ∈ X̃n.

b) υ ∈ Σ, In this case, there existx′ ∈ [x] and y′ ∈ [y] such that
x′

υ
→ y′. By definition 24 (ii), there existt1, t2 ∈ (Υ ∩ Σu)

∗ and

y′′ ∼ y′ such thatx
t1PΩ(υ)t2
−−−−−−→ y′′. As t1, t2 ∈ Υ∗, it follows that

(x, xT )
t1PΩ(υ)t2
−−−−−−→ (y′′, yT ). Since(x, xT ) ∈ Θ̂G‖T andt1PΩ(υ)t2 ∈

Σ∗
u, it follows that (y′′, yT ) ∈ Θ̂G‖T . Then by inductive assumption

([y], yT ) = ([y′], yT ) = ([y′′], yT ) ∈ X̃n.

Thus ([y], yT ) ∈ X̃n can be shown for allυ ∈ Σu, and it follows that
([x], xT ) ∈ Θcont

G/∼‖T (X̃
n).

Next, it is shown that([x], xT ) ∈ Θnonb
G/∼‖T (X̃

n). Since(x, xT ) ∈ Θ̂G‖T ,
there exists a path

(x, xT ) = (x0, x
T
0 )

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k )

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

Then(xl, x
T
l ) ∈ Θ̂G‖T for l = 0, . . . , k. By inductive assumption, it follows

that([xl], xTl ) ∈ X̃n for l = 0, . . . , k. Thus,

([x], xT ) = ([x0], x
T
0 )

σ1→|X̃n · · ·
σk→|X̃n ([xk], x

T
k )

ω
→|X̃n ([xk+1], x

T
k+1) ,

which implies([x], xT ) ∈ Θnonb
G/∼‖T (X̃

n).

Thus, it has been shown that([x], xT ) ∈ Θcont
G/∼‖T (X̃

n) ∩ Θnonb
G/∼‖T (X̃

n) =

X̃n+1.
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(ii) Now it is shown by induction onn ≥ 0 that ([x], xT ) ∈ Θ̂G/∼‖T implies
(x, xT ) ∈ Xn = Θn

G‖T (Q×QT ).

Base case. (x, xT ) ∈ Q×QT = Θ0
G‖T (Q×QT ) = X0.

Inductive step. Assume the statement holds forn ≥ 0, i.e, if ([x], xT ) ∈
Θ̂G/∼‖T then(x, xT ) ∈ Xn. Let ([x], xT ) ∈ Θ̂G/∼‖T . It must be shown
that(x, xT ) ∈ Xn+1 = ΘG‖T (X

n) = Θcont
G‖T (X

n) ∩Θnonb
G‖T (X

n).

To see that(x, xT ) ∈ Θcont
G‖T (X

n), let υ ∈ Σu and(x, xT )
υ
→ (y, yT ). This

implies ([x], xT )
υ
→ ([y], yT ). Since([x], xT ) ∈ Θ̂G/∼‖T andυ ∈ Σu, it

follows that([y], yT ) ∈ Θ̂G/∼‖T . Then by inductive assumption(y, yT ) ∈
Xn, and thus(x, xT ) ∈ Θcont

G‖T (X
n).

Next it is shown that(x, xT ) ∈ Θnonb
G‖T (X

n). Since([x], xT ) ∈ Θ̂G/∼‖T ,
there exists a path

([x], xT ) = ([x0], x
T
0 )

σ1→|Θ̂G/∼‖T
· · ·

σk→|Θ̂G/∼‖T

([xk], x
T
k )

ω
→|Θ̂G/∼‖T

([xk+1], x
T
k+1) . (36)

Consider the first transition in (36). Since[x0]
PΣ∪{ω}(σ1)
−−−−−−−→ [x1], there exists

x′0 ∈ [x0] and x′1 ∈ [x1] such thatx′0
PΣ∪{ω}(σ1)
−−−−−−−→ x′1. The conditions

of lemma 20 apply to this transition: by inductive assumption,Xn can be
used as the setX in the lemma, and([x′0], x

T
0 ) = ([x0], x

T
0 ) ∈ Θ̂G/∼‖T ,

([x′1], x
T
1 ) = ([x1], x

T
1 ) ∈ Θ̂G/∼‖T or σ1 = ω, (x′0, x

T
0 )

σ1→ (x′1, x
T
1 ), and

x′0 ∼ x0. So there existt1, u1 ∈ Υ∗ andx′′1 ∈ Q such that

(x0, x
T
0 )

t1PΩ∪{ω}(σ1)u1
−−−−−−−−−−→|Xn (x′′1, x

T
1 ) (37)

andx′1 ∼ x′′1. Sincex′′1 ∈ [x′1] = [x1], the same logic also applies to the
second transition in (36). Therefore, there existt2, u2 ∈ Υ∗ andx′′2 ∈ Q such

that(x′′1, x
T
1 )

t2PΩ∪{ω}(σ2)u2
−−−−−−−−−−→|Xn (x′′2, x

T
2 ) andx2 ∼ x′2 ∼ x′′2. By induction,

it follows that there existt1, u1, . . . , tk, uk, tk+1 ∈ Υ∗ andx′′1, . . . , x
′′
k ∈ Q

such that

(x, xT ) = (x0, x
T
0 )

t1PΩ∪{ω}(σ1)u1
−−−−−−−−−−→|Xn (x′′1, x

T
1 )

t2PΩ∪{ω}(σ2)u2
−−−−−−−−−−→|Xn · · ·

tkPΩ∪{ω}(σk)uk
−−−−−−−−−−→|Xn (x′′k, x

T
k )

tk+1ω
−−−→|Xn . (38)

Therefore,(x, xT ) ∈ Θnonb
G‖T (X

n).
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Thus, it has been shown that(x, xT ) ∈ Θcont
G‖T (X

n) ∩Θnonb
G‖T (X

n) = Xn+1.
�

Theorem 9 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, let ∼
be a bisimulation onG1, and letG̃ = {G1/∼, G2, . . . , Gn}. Then it holds that
(G;S; ρ) ≃synth (G̃;S; ρ).

Proof. Clearly, if ∼ is a bisimulation onG1, then∼ also is a weak synthesis
observation equivalence onG1 with respect toΩ = Σ. By lemma 21, it follows
that∼ is a state-wise synthesis equivalence onG1 with respect toΣ. Then the
claim follows from proposition 19. �

Theorem 10 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn} andGi =
〈Σi, Qi,→i, Q

◦
i 〉. Let Υ ⊆ Σ1 such that(Σ2 ∪ · · · ∪ Σn) ∩ Υ = ∅. Let ∼ be

a synthesis observation equivalence or a weak synthesis observation equivalence
relation onρ(G1) with respect toΥ such thatG1/∼ is deterministic, and let̃G =
{G1/∼, G2, . . . , Gn}. Then(G;S; ρ) ≃synth (G̃;S; ρ).

Proof. If ∼ is a weak synthesis observation equivalence onG1 with respect toΥ,
then it follows from lemma 21 that∼ is a state-wise synthesis equivalence onG1

with respect toΥ, so the claim follows from proposition 19.
If ∼ is a synthesis observation equivalence onG1 with respect toΥ, then it

is shown in [23] that∼ is a weak synthesis observation equivalence onG1 with
respect toΥ, and the claim follows as above. �

C Proof for Halfway Synthesis

This appendix contains a proof for theorem 6 in section 5.2. The proof is based
on two lemmas, which show how halfway synthesis preserves synthesis results in
synchronous composition.

Lemma 24 Let G = 〈Σ, Q,→, Q◦〉 andT = 〈ΣT , QT ,→T , Q
◦
T 〉, and letΥ ⊆

Σ ∩ Σu such thatΣT ∩ Υ = ∅. Then for allx ∈ Q andxT ∈ QT such that
(x, xT ) ∈ Θ̂G‖T , it holds thatx ∈ Θ̂G,Υ.

Proof. It is shown by induction onn ≥ 0 that(x, xT ) ∈ Θ̂G‖T impliesx ∈ Xn =
Θn

G,Υ(Q).
Base case. Clearlyx ∈ Q = Θ0

G,Υ(Q) = X0.
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Inductive step. Assume that(x, xT ) ∈ Θ̂G‖T impliesx ∈ Xn for somen ≥ 0,

and let(x, xT ) ∈ Θ̂G‖T . It is to be shown thatx ∈ Xn+1 = ΘG,Υ(X
n) =

Θcont
G,Υ(X

n) ∩Θnonb
G,Υ (Xn).

First, to see thatx ∈ Θcont
G,Υ(X

n), let υ ∈ Υ andx
υ
→ y. As ΣT ∩ Υ = ∅,

it follows that (x, xT )
υ
→G‖T (y, xT ). As (x, xT ) ∈ Θ̂G‖T andυ ∈ Υ ⊆ Σu,

it follows by controllability that(y, xT ) ∈ Θ̂G‖T , and theny ∈ Xn by inductive
assumption. Asυ ∈ Υ was chosen arbitrarily, it follows thatx ∈ Θcont

G,Υ(X
n).

Next it is shown thatx ∈ Θnonb
G,Υ (Xn). As (x, xT ) ∈ Θ̂G‖T , there exists a trace

t = σ1 · · ·σn such that

(x, xT ) = (x0, x
T
0 )

σ1→|Θ̂G‖T
· · ·

σn→|Θ̂G‖T
(xn, x

T
n )

ω
→|Θ̂G‖T

. (39)

Then by inductive assumptionx0, . . . , xn ∈ Xn, which impliesx
tω
→|Xn and there-

forex ∈ Θnonb
G,Υ (Xn). �

Lemma 25 Let G = 〈Σ, Q,→, Q◦〉 andT = 〈ΣT , QT ,→T , Q
◦
T 〉, and letΥ ⊆

Σ ∩ Σu such thatΣT ∩ Υ = ∅. Then supC(G ‖ T ) = supC(H ‖ T ) where
H = hsupCΥ(G).

Proof. By definition 18,H = 〈Σ, QH ,→hsup, Q
◦
H〉 whereQH = Q ∪ {⊥}. It is

enough to shoŵΘG‖T = Θ̂H‖T .

Let (x, xT ) ∈ Θ̂G‖T . It is shown by induction onn ≥ 0 thatΘ̂G‖T ⊆ Xn
H‖T =

Θn
H‖T (QH ×QT ).

Base case. By definition 18,Θ̂G‖T ⊆ QH×QT = Θ0
H‖T (QH×QT ) = X0

H‖T .

Inductive step. AssumeΘ̂G‖T ⊆ Xn
H‖T for somen ≥ 0, and let(x, xT ) ∈

Θ̂G‖T . It is to be shown that(x, xT ) ∈ Xn+1
H‖T = ΘH‖T (X

n
H‖T ) = Θcont

H‖T (X
n
H‖T )∩

Θnonb
H‖T (X

n
H‖T ).

First, to see that(x, xT ) ∈ Θcont
H‖T (X

n
H‖T ), let υ ∈ Σu and (x, xT )

υ
→H‖T

(y, yT ). It is next shown that(x, xT )
υ
→G‖T (y, yT ). Assume this is not the

case. Thenυ ∈ Σ, and by construction ofH = hsupCΥ(G) and definition 18
also y = ⊥, which again by definition 18 implies thatx

υ
→ does not hold in

supCΥ(G), andx
υ
→ y′ in G for somey′ ∈ Q. Then(x, xT )

υ
→G‖T (y′, yT ), and

given (x, xT ) ∈ Θ̂G‖T it follows that (y′, yT ) ∈ Θ̂G‖T . Thenx, y′ ∈ Θ̂G,Υ by

lemma 24, and thusx
υ
→ y′ in supCΥ(G). This contradicts the above statement

thatx
υ
→ does not hold insupCΥ(G). Therefore,(x, xT )

υ
→G‖T (y, yT ), and since

(x, xT ) ∈ Θ̂G‖T , it follows by controllability that(y, yT ) ∈ Θ̂G‖T . By inductive
assumption(y, yT ) ∈ Xn

H‖T , which implies(x, xT ) ∈ Θcont
H‖T (X

n
H‖T ).
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Next it is shown that(x, xT ) ∈ Θnonb
H‖T (X

n
H‖T ). Since(x, xT ) ∈ Θ̂G‖T , there

exists a path

(x, xT ) = (x0, x
T
0 )

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k )

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

Then (xl, x
T
l ) ∈ Θ̂G‖T for l = 0, . . . , k. By inductive assumption(xl, x

T
l ) ∈

Xn
H‖T for l = 0, . . . , k, and thus

(x, xT ) = (x0, x
T
0 )

σ1→|Xn
H‖T
· · ·

σk→|Xn
H‖T

(xk, x
T
k )

ω
→|Xn

H‖T
(xk+1, x

T
k+1) ,

which implies(x, xT ) ∈ Θnonb
H‖T (X

n
H‖T ).

Conversely, to show that̂ΘH‖T ⊆ Θ̂G‖T , it is shown by induction onn ≥ 0

thatΘ̂H‖T ⊆ Xn
G‖T = Θn

G‖T (Q×QT ).

Base case. Let (x, xT ) ∈ Θ̂H‖T . Clearlyx 6= ⊥, as(⊥, xT ) /∈ Θnonb
H‖T (QH ×

QT ). Therefore,(x, xT ) ∈ Q×QT = Θ0
G‖T (Q×QT ) = X0

G‖T .

Inductive step. AssumeΘ̂H‖T ⊆ Xn
G‖T for somen ≥ 0, and let(x, xT ) ∈

Θ̂H‖T . It must be shown that(x, xT ) ∈ Xn+1
G‖T = ΘG‖T (X

n
G‖T ) = Θcont

G‖T (X
n
G‖T )∩

Θnonb
G‖T (X

n
G‖T ).

First, to see that(x, xT ) ∈ Θcont
G‖T (X

n
G‖T ), let υ ∈ Σu such that(x, xT )

υ
→G‖T

(y, yT ). Then there are three possibilities forυ. If υ /∈ Σ then (x, xT )
υ
→H‖T

(x, yT ). If υ ∈ Ω then sinceυ ∈ Σu, eitherx
υ
→H y or x

υ
→H ⊥ by definition 18.

If υ /∈ Ω thenxT = yT and byΥ-controllability of H = hsupCΥ(G) it can be
concluded that(x, xT )

υ
→H‖T (y, xT ) = (y, yT ). In all cases, there existsy′ ∈ QH

such that(x, xT )
υ
→H‖T (y′, yT ). Sinceυ ∈ Σu, it follows by controllability of

supC(H ‖ T ) that (y′, yT ) ∈ Θ̂H‖T . By inductive assumption(y′, yT ) ∈ Xn
G‖T ,

which implies(x, xT ) ∈ Θcont
G‖T (X

n
G‖T ).

Next, it is shown that(x, xT ) ∈ Θnonb
G‖T (X

n
G‖T ). Since(x, xT ) ∈ Θ̂H‖T , there

exist a path

(x, xT ) = (x0, x
T
0 )

σ1→|Θ̂H‖T
· · ·

σk→|Θ̂H‖T
(xk, x

T
k )

ω
→|Θ̂H‖T

(xk+1, x
T
k+1) .

Then(xl, x
T
l ) ∈ Θ̂H‖T for l = 0, . . . , k. Thus, by inductive assumption(xl, x

T
l ) ∈

Xn
G‖T for l = 0, . . . , k. Therefore,

(x, xT ) = (x0, x
T
0 )

σ1→|Xn
G‖T
· · ·

σk→|Xn
G‖T

(xk, x
T
k )

ω
→|Xn

G‖T
(xk+1, x

T
k+1) ,

which implies(x, xT ) ∈ Θnonb
G‖T (X

n
G‖T ). �
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Theorem 6 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, and let
Υ ⊆ Σ1 such that(Σ2 ∪ · · · ∪ Σn) ∩Υ = ∅. Then

(G;S; ρ) ≃synth ({hsupCΥ∩Σu(G1), G2, . . . , Gn}; {hsupCΥ∩Σu(G1)} ∪ S; ρ) .

Proof. LetH1 = hsupCΥ(G1). By definition 16 and lemma 25, it holds that

L(supC(G;S; ρ)) = L(ρ(supC(G1 ‖G2 ‖ · · · ‖Gn) ‖ S))

= L(ρ(supC(H1 ‖G2 ‖ · · · ‖Gn) ‖ S))

= L(ρ(supC(H1 ‖G2 ‖ · · · ‖Gn) ‖H1 ‖ S))

= L(supC({H1, G2, . . . , Gn}; {H1} ∪ S; ρ)) .

UsingH1 = hsupCΥ(G1), the claim follows from definition 17. �
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