Technical Report Series
ISSN 1403-266X

SYNTHESIS EQUIVALENCE OF TRIPLES

Sahar Mohajerani, Robi Malik, Martin Fabian

Technical Report: R004/2013
January 20, 2014

(©Sahar Mohajerani, Robi Malik, Martin Fabian



SYNTHESIS EQUIVALENCE OF TRIPLES

Sahar Mohajerani
Department of Signals and Systems
Chalmers University of Technology

Goteborg, Sweden

mohajera@chalmers.se

Robi Malik
Department of Computer Science
The University of Waikato
Hamilton, New Zealand
robi@waikato.ac.nz

Martin Fabian
Department of Signals and Systems
Chalmers University of Technology

Goteborg, Sweden
fabian@chalmers.se

January 20, 2014

Abstract

This working paper describes a framework émmpositional supervisor
synthesiswhich is applicable to all discrete event systems modediec
set of deterministic automata. Compositional synthegioits the modular
structure of the input model, and therefore works best fodetoconsisting
of a large number of small automata. The state-space erpl@simitigated
by the use of abstraction to simplify individual componeatwd the property
of synthesis equivalengriarantees that the final synthesis result is the same
as it would have been for the non-abstracted model. The wonkaper de-
scribes synthesis equivalent abstractions and showsusein an algorithm
to efficiently compute supervisors. The algorithm has begmiémented in
the DES software tool Supremica and successfully computablocking
modular supervisors, even for systems with more th@tf reachable states,
in less than 30 seconds.



1 Introduction

The supervisory control theorj28, 37] provides a general framework for the syn-
thesis of reactive control functions. Given a model of the systenpltrd, to be
controlled, and &pecificatiorof the desired behaviour, it is possible to automati-
cally compute, i.esynthesisgasupervisorthat restricts the plant behaviour while
satisfying the specification.

Commonly, a supervisor is required to tentrollableandnonblockingi.e., it
should not disable uncontrollable events, and the controlled system siloalgs
be able to complete some desired task [28]. In addition, it is typically requfred o
a supervisor to achieve some minimum functionality. Most synthesis algorithms
ensure this by producing theast restrictivesupervisor, which restricts the system
as little as possible while still being controllable and nonblocking [28]. Alterna-
tives to least restrictiveness have been investigated [17, 34, 35].r&haire addi-
tional analysis to guarantee minimum functionality, particularly when supesviso
are synthesised automatically.

It is known [28] that for a given plant and specification, a unique lesstic-
tive, controllable, and nonblocking supervisor exists. Straightforwgnthesis
algorithms explore the completaonolithicstate space of the considered system,
and are therefore limited by the well-knowgtate-space explosigmroblem. The
sheer size of the supervisor also makes it humanly incomprehensible, ihich
ders acceptance of the synthesis approach in industrial settings.

Various approaches fonodular and compositionalsynthesis have been pro-
posed to overcome these problems. Some of these approaches [3@y36ihr
structure provided by users and hence are hard to automate. Othemedhly
ods [1, 5] only consider the synthesis of a least restrictive controllaiplersisors,
ignoring nonblocking.Supervisor reductiofi33] and supervisor localisation7]
greatly help to reduce synthesised supervisors in size, yet rely oneaviaqy to
be constructed first and thus remain limited by its size.

Compositionalmethods [12] usabstractionto remove states and transitions
that are superfluous for the purpose of synthesis. The most commiraciion
method isnatural projectionwhich, when combined with thebserver property
produces a nonblocking but not necessarily least restrictive sspef@5]. If out-
put control consistencis added as an additional requirement, least restrictiveness
can be ensured [10]. Output control consistency can be replacadvepker con-
dition calledlocal control consistencfB0].

Conflict-preservingabstractions [17] an@veak observation equivalen§g4]
can be used as abstractions for the synthesis of nonblocking supsnlisdhese
works it is assumed that, when an event is abstracted, supervisor centpegn-
thesised at a later stage cannot observe or disable that event. Thisahakested



eventsunobservableand removes some possibilities of control.

Halfway synthesi$13] andlocal supervisord34] are different strategies to
avoid uncontrollable transitions to blocking states. Local supervisoigéBdove
the source states of these transitions by disabling some controllable eveids. T
may cause unnecessary disablements as it may be discovered later thamnsome
controllable transitions are disabled by other plants. Halfway synthegid¢i&s
the decision to remove states and retains uncontrollable transitions until it is clear
that they cannot be disabled by any other component.

In [13, 18, 34], synthesis is considered in a nondeterministic setting, which
leads to some problems when interpreting results and ensuring least restricti
ness. These problems are overcome to some extesyrihesis abstractiof20,
21,24,25]. Several compositional synthesis methods require all autanthtaeir
abstraction results to be deterministic, which makes some desirable abstractions
impossible. Following ideas from [3, 31, 3Ggnamingis used in [20] to avoid
nondeterminism after abstraction.

This working paper presents a compositional synthesis approach wita@bs
tion methods that guarantee the preservation of the final synthesis resditaA
structure calledynthesis triplaés introduced to combine abstraction methods [13,
20, 21, 24, 25] together with renaming. This is a general framework ietkifor
use with a variety of present and future means of abstraction. The impldinanta
presented in this paper uses halfway synthesis, which is adapted f&rarjd
observation equivalence-based abstractions [21, 25], which ligiverlabstraction
potential than methods based on natural projection [25]. These methogddailo
the abstraction of observable events in such a way that abstracted eaerstll
be used by supervisor components synthesised at a later stage. Mariista
after abstraction is avoided using renaming [3, 31, 36] as propose@]in [2

These results are combined in a general framework for compositiondesyn
sis, and an algorithm is proposed to compute modular supervisors thatate le
restrictive, controllable, and nonblocking. This is a completely automatic eynth
sis method, applicable to general discrete event systems, provided thatréhe
represented as a set of deterministic finite-state automata. The algorithreemas b
implemented in the DES software tool Supremica [2] and applied to compute mod-
ular supervisors for several large industrial models. It successfoittyputes mod-
ular supervisors, even for systems with more that reachable states, within
30 seconds and using no more than 640 MB of memory.

In the following, section 2 briefly introduces the background of superyis
control theory, and section 3 gives a motivating example to informally illustrate
compositional synthesis and abstraction. Next, Sect. 4 explains compositional
synthesis and the idea of synthesis equivalence underlying the compalsition
gorithm. Then, section 5 presents different ways of computing abstradtia

3



preserve synthesis equivalence. The algorithm for the proposedsitiopal syn-
thesis procedure is described in section 6, and section 7 applies the afgtwith
several benchmark examples. Some concluding remarks are drawrtionsgc
Formal proofs of technical results can be found in the appendix.

2 Preliminaries

2.1 Events and Languages

The behaviour of discrete event systems can be described using awnenlzn-
guagesEventsrepresent incidents that cause transitions from one state to another
and are taken from a finite alphab®t For the purpose of supervisory control,
this alphabet is partitioned into two disjoint subsets, theXsebf controllable
events and the sét, of uncontrollableevents. Controllable events can be disabled
by a supervisor, while uncontrollable events may not be disabled by avsupe
sor. In addition, the speciaérmination eventv ¢ 3 is used, with the notation
Y =2 U{w}.

¥* is the set of all finite traces of events fro including theempty traces.
A subsetl, C >* is called alanguage The concatenation of two tracest € ¥*
is written asst. A traces € Y* is called aprefixof ¢ € X*, written s C ¢, if
t = su for someu € ¥*. ForQ) C 3, thenatural projectionPg: >* — Q* is the
operation that removes from traces Y.* all events not if2.

2.2 Finite-State Automata

Discrete system behaviours are typically modelled by deterministic automata, but
in this paper nondeterministic automata may arise as intermediate results during
abstraction.

Definition 1 A finite-state automaton is a tuplé = (3, Q, —, Q°), whereX is
a finite set of eventsy) is a finite set of states» C @ x X, x Q is thestate
transition relation andQ° C (@ is the set ofinitial states G is deterministig if
|Q°| < 1, andz % y; andz 2 3, always impliesy; = ».

The transition relation is written in infix notation = y, and is extended to
traces inX¥ by lettingz 5 z forallz € Q, andz 2% zif 2 5 yandy 2 2
for somey € Q. Furthermorez = means that: = y for somey € @, and
x — y means that > y for somes € ©*, andz % meansr % does not hold.
These notations also apply to state séfs;>> for X C @Q means that: > for
somez € X, and to automatai - means that)° 5, etc. Thelanguageof an
automatorG is £(G) = {s € ¥* | G 3 }.

4



The termination event ¢ 3 denotes completion of a task and does not appear
anywhere else but to mark such completions. It is required that statdmcelhg.
do not have any outgoing transitions, i.ez if> y then there does not existe %,
such thaty 7. This ensures that the termination event, if it occurs, is always the
final event of any trace. The traditional set of marked statég“is= {z € Q |
z %} in this notation. For graphical simplicity, states@¥ are shown shaded in
the figures of this paper instead of explicitly showingransitions.

When two or more automata are brought together to interact, lock-step syn-
chronisation in the style of [15] is used.

Definition 2 Let G; = (¥1,Q,—,Q3) andGy = (32, Qy, —4, Q3) be two
automata. Theynchronous compositiaf G; andG- is defined as

G| G2 = (31U, Q1 x Q2,—,Q7 X Q3) (1)
where

(z1,72) > (y1,92) if 0 € (21N X2) U{w}, 21 31 41, T2 22 yo;
(z1,22) 2 (y1,22) if 0 € X1\ Xo, 21 D1 915
(z1,22) > (21,92) if 0 € X\ By, 22 Do yo.

g
—

g
—

Synchronous composition is associative, thatig|| (G2 ||G3) = (G1||G2)||G3 =
G| G2 | Gs.

Another common automaton operation is thwtientmodulo an equivalence
relation on the state set.

Definition 3 Let X be a set. A relatiom C X x X is called anequivalence
relation on X if it is reflexive, symmetric, and transitive. Given an equivalence
relation~ on X, theequivalence classfz € X is[z] = {2’ € Q | z ~ 2’ }, and
X/~ ={]z] | x € X } is the set of all equivalence classes modulo

Definition 4 LetG = (¥, Q, —,Q°) be an automaton and let C @ x @) be an
equivalence relation. Thguotient automatonf G modulo~ is

G/N = <27Q/N7_>/N7 QO> ) (2)
where— /~ = { ([z],0,[y]) | = % y} andQ® = {[+°] | 2° € Q° }.

2.3 Supervisory Control Theory

Given aplant automatonG and aspecificationautomatonk’, a supervisoris a
controlling agent that restricts the behaviour of the plant such that tle#fispgon

5



is always fulfilled.Supervisory control theofi28] provides a method to synthesise
a supervisor. Two common requirements for the supervisoc@r&ollability and
nonblocking

Definition 5 Let G and K be two automata using the same alphabeand let
I' C 3. ThenK is said to bel-controllablewith respect taG if, for every trace
s € X*, every stater of K, and every event € I such thatk’ > z andG 2, it
holds thatr - in K.

WhenT" = ¥, then K is simply said to beontrollablewith respect tas.

Definition 6 An automatorz = (X, @, —, Q°) is nonblocking if for every state
z € (Q and every trace € ¥* such thati > z there exists € ©* such that: .

For a deterministic plan€, it is well-known [28] that there exists a supre-
mal controllable and nonblocking sublanguag&¢fr), which represents tHeast
restrictivefeasible supervisor. Algorithmically, it is more convenient to perform
synthesis on the automatas instead of this language, or more precisely on the
lattice of subautomataf G [8].

Definition 7 [18] G; = (¥,Q,, —;,QY) is asubautomatorof G2 = (X, Q,,
—>2,Q§>, WrittenG1 - GQ, if Ql - QQ, —1 € —o, ande’ - QS

Theorem 1 [13] LetG = (3, Q,—,Q°) be a deterministic automaton ahdC
Y. Then there exists a supreniatontrollable and nonblocking subautomaton,

supCr(G) = sup{ G’ C G | G’ is T’-controllable with respect t&: and (3)
nonblocking} .

Again, the subscripk' is omitted wherl™ = ¥, i.e.,supC(G) = supCs, (G).

The supremal element is defined based on the subautomaton relation$hip (de
inition 7). The result is equivalent to that of traditional supervisory curitre-
ory [28]. That is,supC(G) represents the behaviour of the least restrictive super-
visor that disables only controllable eventgirsuch that nonblocking is ensured.
The supervisor can be represented as a fhap* — 2> that assigns to each
traces € X* a control decision®(s) such that:, C ®(s) C ¥, consisting
of the events to be enabled after observing the tracé\ supervisor can only
disable controllable events and leaves all uncontrollable events enalBlegil]2
An automatonS can also implement a supervisor map, using

Bg(s) = SaU o€ |s0€L(S))}. )



If S = supC(G), then controllability and nonblocking are ensured.

The synthesis resuipC(G) can be computed by removing blocking and un-
controllable states from the plant, until a fixpoint is reached, and restrittimg
original automatort- to these states.

Definition 8 [18] Therestrictionof G = (£,Q,—,Q°)to X C Qis

G‘X = <E,Q,—>|X7QOQX>, (5)
where— x = {(z,0,y) € = |z,y € X }U{(z,w,y) € = |z € X }.

Note that restriction does not directly remove any states, and transitions with
the termination event are retained even if their successor state is not contained
in X. Typically, some states become unreachable after restriction, and thiese sta
can be removed, but this is not considered further in this working paper.

Definition 9 [18] Thesynthesis step operat@: 29 — 29 for G = (%, Q, —,
Q°) is defined a®¢ r(X) = OFF(X) N OF (X)), where
OFI(X) = {z € X | Forally € I' such that: - y it holds thaty € X } ;
O™ (X) = {z € X |z x forsomet € £*} .
Again itis defined tha®g = O¢ x, andOF™ = OFY, .

0% captures controllability, an@g‘mb captures nonblocking. The synthesis
result forG is obtained by restricting: to the greatest fixpoint 8.

Theorem 2 [18] Let G = (X, Q,—, Q°) be a deterministic automaton, and let
I' C ¥. The synthesis step operatof; r has a greatest fixpoigtpOg = (Q)G,p -

@, such thaGléa,r is the greatest subautomaton@fthat is bothI’-controllable

in G and nonblocking, i.e.,

supCr(G) = G\éc,r . (6)

If the state sef) is finite, the sequenc&® = Q, X! = O (X?) reaches this
fixpoint in a finite number of steps, i.éf-),g,p = X" for somen > 0.

In this working paper, the supervisor has a modular structire { S, ..., S, },
consisting of a set of supervisor automata. The combined global supecais be
constructed by applying the formal definition of synchronous composition,

Is=]s:. @)

=1

7



My

-« Ml
lo
S3 'f2

Figure 1: Manufacturing system overview.

In practice, the supervisor can be represented in its modular form, andreyisa-
tion is performed on-line, tracking the component states as the systemsvislve
this way, explicit synchronous product computation and state-spatesexpare
avoided. Based on this, supervisors are identified with automata or seteofata
in the following.

The operatosupC only defines the synthesis result for a plant automé&tom
order to apply this synthesis to control problems that also involve specificatioe
transformation proposed in [13] is used. Specification automata aredraresf
into plants by adding, for every uncontrollable event that is not enabladsiate,
a transition to a new blocking state. This essentially transforms all potential
controllability problems into potential blocking problems.

Definition 10 [13]Let K = (3, Q, —, Q°) be a specification. Theomplete plant
automatonk * for K is

Kt = (2,Qu{l},~".Q) (8)
where L ¢ @ is a new state and
-t = 5 U{(z,v,L) |veX,andK 5z A forsomese *}.  (9)

In general, synthesis of the least restrictive nonblocking and contieltzs
haviour allowed by a specificatioR” with respect to a plant is achieved by
computingsupC(G || K+) [13].

3 Motivating example

This section demonstrates compositional synthesis using the example of a simple
manufacturing system shown in Figure 1. Two machihgsand M- are linked by

two buffers B; and B; that can store one workpiece each. The first machifhe

takes workpieces from outside the system (evwaht processes them, and puts
them intoB; (event! f1). M, also takes workpieces frof, (eventss), processes

8



Figure 2: Automata models of the manufacturing system.

them, and outputs them from the system (eventMachineM, takes workpieces
from By (eventssy), processes them, and puts them iitg (event!f,). Using
switchesWW; and W5, the user can suspend (evens;) and resume (evenmnts;)
production ofM; or M, respectively.

Figure 2 shows an automata model of the system. All events are observable,
and uncontrollable events are prefixed by an exclamation niarRitomatai/;,

M, W1, andW5 are plants. For illustration, the two switches are not identical.
W5 models a requirement for the synthesised supervisor to prevent stdfrtidg o

in suspend mode, whil&@; models a plant where it is physically impossible to
start M7 in suspend mode. Automafa, andB; are specifications to avoid buf-
fer overflow and underflow, which are transformed into complete plaiinsata

Bi and Bs- (definition 10). To satisfy these specifications, a supervisor must be
synthesised for the system.

The compositional synthesis procedure is a sequence of small stepaclit e
step, automata are simplified and replaced by abstracted versions sutie that
pervisor synthesised from the abstracted system yields the same langlage
controlling the system as would the supervisor synthesised from the driyisia
tem. Synchronous composition is computed step by step on the abstracted au-
tomata. In addition to synchronisation and abstractions, a supervisor ocempo
may also be produced at each step. In the end, the procedure resuksgiea
abstracted automaton, which is simpler than the original system, and stapdard s
thesis is applied to this abstracted automaton.

Initially, the system isGy = {Wy, Wa, My, M2, Bi-, By }. In the first step
of compositional synthesis, individual automata are abstracted if posEibéats
sus; andres; only appear in automatdi;, and such events are referred tda=l
events Exploiting local events, stateg andg; in W can be merged, as synthesis
will always remove either none or both of these states. Automidtpnan then be
replaced by @ynthesis equivalersutomatori?; shown in figure 3. Automaton



W~1 W~2 52 D S
dor R ¢, qo1 susy qo 2
susy ress res
resq S9 Susz 2

D'g5574

W2 g%t
2
P19 Yes, 821 521
5929 522
Q1 'f di

g2

Figure 3: Abstraction results for switches in the manufacturing system dg&amp

M, lo f1 M’ Lf1
53

qo2 S1

Figure 4: Abstracted automata bf; .

W, is a selfloop-only automaton that always enables all its events, so it can be
disregarded in the synthesis.

Similarly, eventsus, andres; are local to automatoi/,, so the same abstrac-
tion method can be applied. However, an attempt to compute an abstraction as
before results in the nondeterministic automakBn shown in figure 3. A correct
supervisor needs to be aware of the stateld’ein order to decide whether or not
to enable controllable evenrt, and it is not straightforward to construct such a
supervisor only from the abstractidf,.

To solve the nondeterminism problem, evepin W, is replaced by two new
eventsss; andsgo. This procedure is referred to asnaming Automaton™V,
is replaced by the renamed deterministic automaignshown in Figure 3, and
automatonD, which is the renamed version s, is stored as distinguisherin
a setS of collected supervisorslt is the first component of the supervisor to be
computed in the end.

Having replaced:- in W5, automatal/, and BlL need to be modified to use
the new eventsy; andsy,. Therefore, M, and Bi- are replaced by, and B}
shown in figure 3. These automata are constructed by replacing-tihensitions
in My and By by transitions labelledy; andsas.

After this, eventsuss andres; only appear in selfloops in the entire system,
and as a result no state change is possible by executing these evestghétaelf-
loops associated with these events can be removed, which results in treetzostr
automatoriVy’ shown in Figure 3.

Next, eventdo ands; are local events id/;. Statesy; andg, can be merged.

10



M| B, MBH MB, MB),

q1 S3 qo
qo S91
s so1 1\ 4522
| 1
fa 522 q12

@ f1i)ya?

Figure 5: M || B} and its abstraction result.

MBE Bs MB;,
821
522 53 52
[}[‘ Qo qi12
2 S21 U fo
522 g3

Figure 6:M} || Bs- and its abstraction result.

However, since f; is not a local eventyy andg; can not be merged singg can

be a blocking state iff; is disabled by other components. Figure 4 shows the
abstracted automataly;. Furthermore, everib now only appears in a selfloop in
the entire system and thus, the selfloop associated with this event can beedemo
from My, resulting in the abstracted automatbff shown in figure 4.

At this point, the system has been simplifiedite= {W', M, M}, B}, By }.
None of these automata can be simplified further, so the next step is to compose
some of them. Figure 5 shows the compositiodff and B}, which causesf; to
become alocal event. Clearly, the blocking state 1/} || B} must be avoided, and
since the uncontrollable evehf; only appears in this automaton, this means that
stategs also must be avoided. Then controllable evenmust be disabled igs.
Therefore, automaton/] || B} is replaced by the synthesis equivalent abstraction
MBI shown in figure 5. This is a special casenaffway synthesifl 3], explained
in more detail in Sect. 5.2. The abstracted automatt®¥! is added to the sef
of collected supervisors to enable the final supervisor to make the cdetision
for s;. Furthermore, sincéf; is a local uncontrollable event, statgsandq, in
MB1 can be merged, which results in the synthesis equivalent automéibn
shown in figure 5. Then events is always enabled id/B, and only appears on
selfloop transitions, antlf; only appears on selfloops in the entire model. Thus,
these events can be removed, resulting/i; shown in figure 5.

A similar procedure is applied ta7} | Bs-. Exploiting the local eventf,
results in the abstracted automata?!, MB,, and MB’, shown in figure 6.

11



S1 9
S1
q1 q2
S3
q3

S1

Figure 7: The final abstracted system and the calculated supervisﬂﬁ.for

After all these abstractions, the uncontrolled plant modél is {WZ, MB/,
MB}}, and the collected supervisor setSs= {D, MBH MBE}. The last two
steps are to compose the automatg jmesulting in the 8-state automaton shown
in Figure 7, and to calculate a supervisor for this automaton. This supeigiso
S1 in Figure 7 and has 4 states. Adding it to the Saesults in the nonblocking
modular supervisor

S ={D, MBI MBI s}, (10)

which is the least restrictive, controllable and nonblocking supervisat, pgio-
duces the exact same controlled behaviour as would a monolithic suparaisor
lated for the original systeréi. The largest component of the modular supervisor
is S1 with 4 states, and it has been computed by exploring the state spéce of
with 8 states. In contrast, standard monolithic synthesis explores a statedpac
138 states and produces a single supervisor with 52 states.

The example demonstrates how compositional synthesis works. In thd,seque
section 4 explains the concepts formally and shows how the renamed isoperv
can control the unrenamed plant, and section 5 describes the indivizhied&tion
methods.

4 Compositional Synthesis

This section describes the compositional synthesis framework. The data str
ture of synthesis tripless introduced, which represents partially solved synthesis
problems in the algorithm. Based on thisc@ntrol architectureis presented to
implement the computed supervisors after renamings.

4.1 Basicldea

The input to compositional synthesis is an arbitrary set of deterministic automata
representing the plant to be controlled,

G ={G1,Ga,....Gn}. (11)

12



The objective is to calculate a supervisor that constrains the behavigutooits
least restrictive nonblocking sub-behaviour, by disabling only contritdlavents.

Compositional synthesis works by repeated abstraction of system contpone
G; based orlocal events events that appear i&; and in no other automata;
with j # i arelocal to GG;, and they are crucial to abstraction. In the following, the
set of local events is denoted By and(2 = ¥ \ T denotes the set of non-local or
sharedevents.

Using abstraction, some componenisin (11) are replaced by simpler ver-
sionsG,. If this is no longer possible, some components in (11) are selected and
composed, i.e., replaced by their synchronous composition. This typically tea
new local events, making further abstraction possible.

When an abstractioti; is computed, this may lead to the discovery of new
supervisor decisions. For exampleddf contains a controllable transition leading
to a blocking state, it is clear that this transition must be disabled by everpsupe
sor. Therefore, abstraction may produce a supervisor compéhémaddition to
the abstracted automat6#f. The algorithm collects these supervisor components
in a setS, called the set otollected supervisorsAbstraction may also result in
nondeterminism, which is avoided by applying a renaming.

Thus, compositional synthesis starts with the set of plant automata (11), no
collected supervisors, and no renaming. At each step, plant automatgpkeed
by the result of abstraction or synchronous composition, superviseradded
to S, and the renaming is modified. Eventually, only one plant automaton is left,
which is removed fronG and used to calculate the final supervisor to be added
to S. ThenG becomes empty and the collected supervisgiriogether with the
renamingp, form a least restrictive supervisor for the original synthesis problem.

4.2 Renaming

Nondeterminism is avoided in the compositional synthesis algorithm, because it is
not straightforward to compute supervisors from nondeterministic akistnac If

an abstraction step results in a nondeterministic automat@maaningis applied

first, introducing new events to disambiguate nondeterministic branching.

The use of renaming to disambiguate abstractions is proposed in [36]. In the
following, a renaming is a map that relates the events of the current abdtracte
systemG to the events in the original plant, which works in the reverse direction
compared to [36].

Definition 11 Let ¥; andXs be two sets of events. fenamingp: 3o — X1 iS

a controllability-preserving map, i.e., a map such th@t) is controllable if and
only if o is controllable.

13



For example, when evesj is disambiguated intgy; andsss in automatoriVs,
in figure 3 in the introductory example, the renamings such thatp(s2;) =
p(s22) = so andp(o) = o for all other events.

The definition ofp is extended to cover the termination event by letjig) =
w. Renamings are extended to trases X5 by applying them to each event, and
to languaged. C X3 by applying them to all traces. They are also extended to

automata with alphabét, by replacing all transitions = y with & Y

When new events are introduced, the compositional synthesis algorithm con
tinues to operate using the new events and thus produces a supergsdopaan
alphabet different from that of the original plant. To communicate ctyr&dth
the original plant, the supervisor needs to determine which of the new gents
Or s99) is to be executed when the plant generates one of its original evgits (
This is achieved by adding a so-calldidtinguishel{3] to the synthesis result.

Definition 12 An automatorG = (X, @, —, Q°) differentiateseventy; from o,
if v, ¢ ¥ andy, € X or there exists a transition = y such thatz 2 y does
not hold. G differentiatesbetweeny; and~., if G differentiatesy; from v, or G
differentiatesy, from ~;.

Definition 13 Let p: X5 — ¥ be a renaming. An automatdr, with alphabet
Y is ap-distinguisheif, for all tracess, t € £(G2) such thap(s) = p(¢), it holds
thats = t.

Based on definition 13, a distinguisher differentiates between the renamed
events. Furthermore, two traces accepted by a distinguisher neverafiffein
the renamed events. This guarantees that only one of the renamed evemts is
abled at each state. In the introductory example, autom@tamfigure 3 is ap-
distinguisher that differentiates; from so5. This is becausé enables at most
one of the events,; andss, in each state, so it can always make a choice between
these two events.

Another operation is necessary in combination with renaming. After applying
a renaming to an automatd®; in a systemg = {Gi,...,G,}, the remaining
automata; with 5 # ¢ and the collected supervisokS, need to be modified to
use the new events.

Definition 14 LetG = (¥1,Q,—,Q°) be an automaton, and It ¥ — ¥, be
arenaming. Thep 1(G) = (32, Q, p~1(—), Q°) wherep= (=) = { (z,0,v) |

Automatonp—!(G) is obtained by replacing transitions labelled with the orig-
inal event by new transitions labelled with each of the new events. For é&amp

14



Supervisor

!
Sp . S\'Sp

{vilp(vi) =~} P'(t'y") C s

) )
. @@(tw) cx

Figure 8: Control architecturé; is the original plantS are the computed modular
supervisors, andp C S are the distinguishers.

figure 3 in the introductory example shows, = p~1(M) andB| = p~1(B{),

which replace the original planfe, and Bi- after the renaming. When a renaming

is applied, the distinguisher is the only automaton that differentiates between the
renamed events, all others are transformeg by,

The compositional synthesis algorithm proposed in the following repeatedly
applies renamings and eventually produces a superfisasing a modified al-
phabetXs, and a renaming: ¥s — X that maps the renamed events back to
the events of the original plant. The control architecture in figure 8 endides
renamed supervisd to interact with the original unrenamed plaht

Assume that, after execution of a tragean eventy occurs in the plant, and
~ has been renamed and replacecybyand~,. Being unaware of the renaming,
the plant will just communicate the occurrenceyofo the supervisor. When this
happens, first the functiop! replacesy by the set{~, 2}, sending both possi-
bilities to the distinguishefp, which is part of the sef of collected supervisors.
Following definition 13,5 enables only one of; or v». The selected event,
either~; or 2, is passed to the remaining components of the supen&sosp,
to update their states and issue a new control deciigtly’) C Xs. Here,t
is the renamed version of the histary The control decision is based on the re-
named model and therefore contains renamed events, so the renainimgplied
to translate it back to a control decisidity) C X using the original plant events.

4.3 Synthesis Triples
The compositional synthesis algorithm keeps track of three pieces ofriafmm:
e asetlg = {Gy,...,G,} of uncontrolled plant automata;

e asetS = {951,...,5,} of collected supervisor automata,

15



e a renaming that maps the events of the automata&jiov S back to events
of the original plant.

This information is combined insynthesis triplewhich is the main data struc-
ture manipulated by the compositional synthesis algorithm.

Definition 15 A synthesis triplas a triple (G; S; p), whereG and S are sets of
deterministic automata andis a renaming, such that

(i) L£(S) € L(9);
(ii) Sis ap-distinguisher;

(iii) for all events~;,~2 such thatp(y1) = p(72), there exists at most one au-
tomatonG; € G that differentiates; from ..

Here and in the following, sei@ andS are also used to denote the synchronous
composition of their elements, likEg = G4 || - - - | G- Wheng = 0 then||G is
the universal automaton that accepts the languazge

A synthesis triple represents a partially solved control problem at an intierme
ate step of compositional synthesis. The@ebntains an abstracted plant model,
andS contains the supervisors collected so far, which must constrain theibahav
of the plant (i). The renaming maps the events found in the abstracted plant or
collected supervisors back to events in the original plant. The synchsawmpo-
sition of the supervisors is required to have the distinguisher property éigare
that it can be used with the control architecture in figure 8. Furthermote/pif
eventsy; and~, are renamed to the same event, then there can be at most one
automaton in the séf that differentiates between these events (iii).

The following notation associates with each synthesis triple a behaviour and a
synthesis result.

Definition 16 Let (G;S; p) be a synthesis triple. Then
(i) L£(G;S;p) =L(p(G || S));
(i) supC(G;S;p) = p(supC(G) || S).

The behaviour of a synthesis triple is the behaviour of its plant and sigperv
automata, after renaming it back to the original plant alphabet (i). Furthrer(ip
defines a synthesis result for the partially solved control prolléns; p). It is
obtained by composing the monolithic supervisor for the remaining plants with the
supervisors collected so far, and afterwards renaming.

16



Example 1 At the final step of the compositional synthesis in section 3, the ab-
stracted uncontrolled system & = {W}, MB’, MB}}, the collected supervi-
sor set isS = {D, MBI, MBI}, and the renaming is such thatp(sy;) =
p(s22) = sz andp(o) = o for o ¢ {s91,s22}. This is represented by the
synthesis tripl€G; S; p) = ({WY, MB',, MBY}; {D, MB MBI}; p). The lan-
guage of the synthesis triple according to definition 16 is equaﬂ(@x S;p) =
L(p(Wy || MBY || MBS || D || MBY || MB%)).The synthesis result for the syn-
thesis triple is obtained by calculating a monolithic supervisor for the abstracted
uncontrolled plantS; = supC(WJ || MB' || MBY), which is added to the su-
pervisor set,S; and afterwards all components are renamed back. This gives
supC(G;S;p) = p(S1 || D || MBY || MBI). As explained in section 4.2, the
synchronous composition never has to be computed explicitly as it can tee rep
sented in its modular form.

While manipulating synthesis triples, the compositional synthesis algorithm
maintains the invariant that all generated triples have the same synthedis resu
which is equivalent to the least restrictive solution of the original contraiblem.
Every abstraction step must ensure that the synthesis result is the samwealsl it
have been for the non-abstracted components. This property is cgiitldesis
equivalencg20].

Definition 17 Two triples (G1; S1; p1) and (G2; Sa; p2) are said to besynthesis
equivalenlwritten (gl; 81; pl) gynth (gg; 82; pg), if

L(supC(G1; S1; p1)) = L(supC(Ga; S2; p2)) - (12)

The compositional synthesis algorithm calculates a modular supervisor for a
modular systeny = Gy. Initially no renaming has been applied and no supervisor
or distinguisher has been collected. Thus, this input is converted to the initial
synthesis tripl€G; G; id), whereid: ¥ — X is the identity map, i.eid(c) = o
for all 0 € 3. Afterwards, the initial triple is abstracted repeatedly such that
synthesis equivalence is preserved,

(g; g; ld) = (g0§ So; pO) Ssynth (gl; S1; Pl) synth *°* synth (gk; Sk; Pk) .

(13)
Some of these steps replace an automatayiby an abstraction, others reduce
the number of automata iff, by synchronous composition or by replacing an
automaton irfj; with a supervisor i, 1. The algorithm terminates wheéh = 0,
at which pointS;. together withp,, forms the modular supervisor. The following
result, which follows directly from definition 16 and 17, confirms that thisrapph
gives the same supervised behaviour as a monolithic supervisor foritieabr
system.

17



Theorem 3 LetG = {G,...,G\} be a set of automata, and (&f; G; id) ~eyntn
(0;8; p). ThenL(p(S)) = L(supC(V; S; p)) = L(supC(G)).

Proof. It follows directly from definitions 16 and 17 th&{p(S)) = L(p(0]|S))
L(p(supC(0) || S)) = L(supC(0; S; p)) = L(supC(G; G;id)) = L(id(supC(G))
G)) = L(supC(G)).

O= Il

5 Synthesis Triple Abstraction Operations

The idea of compositional synthesis is to continuously rewrite synthesis triples
such that synthesis equivalence is preserved. This section givegeanew of
different ways to simplify automata that can be used in the framework of this pa
per. Sect. 5.1 and 5.2 present abstraction methods from [13, 28], \Wwhrehare
adapted to synthesis triples, and section 5.3 and 5.4 describe methodsgaropo
by the authors in [20, 25]. Further details and formal proofs of ctmess can be
found in [22].

5.1 Basic Rewrite Operations

The simplest methods to rewrite synthesis triplessgreehronous compositiand
monolithic synthesislt is always possible to compose two automata in thejset
of uncontrolled plants, or to place their monolithic synthesis result into th& set
of supervisors. These basic methods are included here for the sakenpfete-
ness. They do not contribute to simplification, and are only needed whethapo
abstraction is possible.

Theorem 4 LetG, = {G1,...,G,} andGs = {G; || G2, Gs,...,G,}, letpbe a
renaming, and le§ be ap-distinguisher. TheG:; S; p) ~symth (G2; S; p).

Proof. By definition 16, it holds that

L(supC(G1;S;p)) = L(p(supC(G1) || S))
= L(p(supC(G1 || -+ [| Gn) | S))
= L(p(supC(G2) || S))
= L(supC(G2; S; p)) , (14)
so the claim follows from definition 17. O

Theorem 5 Let (G;S; p) be a synthesis triple. The{@;S;p) ~gynen (0;S U
{supC(G)}, p).

18



hsupCyizy (G) @
o
0

q1

Figure 9: Example of halfway synthesis. Uncontrollable events are pdefixh!,
and local events have parentheses around them.

Proof. Clearly by definition 16 (ii),L(supC(G; S; p)) = L(p(supC(G) || S)) =
L(p(supC(0) || supC(G) || §)) = L(supC(d; S U {supC(G)}; p). O

5.2 Halfway Synthesis

Halfway synthesigs an abstraction method that works well in compositional syn-
thesis [13]. Sometimes it is clear that certain states in an automaton must be re-
moved in synthesis, no matter what the behaviour of the rest of the system is.
Clearly, blocking states can never become nonblocking. Moreovel, locan-
trollable transitions to blocking states must be removed, because no othep-comp
nent nor the supervisor can disable a local uncontrollable transition.

Definition 18 LetG = (X, Q,—,Q°) andI’ C X,,. Thehalfway synthesis result
for G with respect td" is

hSUpCF(G) = <E’ Q U {J—}a _)hsupa QO> ) (15)
wheresupCr(G) = (2, Q, —sup, Q°), L ¢ Q, and
—hsup = ~sup U1 (z,0, L) o€ B\ T, o 5. andz %sup ) (16)

Halfway synthesis is calculated like ordinary synthesis, but considenihg o
local events as uncontrollable. Shared uncontrollable transitions to bipstites
do not necessarily cause blocking, as some other plant component mdigyet
able them. Therefore, these transitions are retained and redirected todkiadp
statel instead.

Example 2 Consider automatot in figure 9 with3, = {I\, !y, lv} andT =
{v,!A\}. Stategs is blocking, sog, is also considered as unsafe, because the local
uncontrollable A-transition cannot be disabled by the supervisor nor by any other
plant component. Every nonblocking supervisor can and will disabledheal-

lable transitions;; - ¢3 andg; LA q2. Stategy may still be safe, because some

19



other plant component may disable the shared evientnd!v. The blocking
state | is added and th&u- and!v-transitions are redirected to in the halfway
synthesis resulbsupCy»y(G), see Figure 9. This ensures that later synthesis is
aware of the potential problem regardingor !v.

The following theorem extends a result about halfway synthesis f@rsigon
equivalence using state labels [13] to the more general framework tiiesia
triples. The proof can be found in appendix C.

Theorem 6 Let (G;S;p) be a synthesis triple with = {G1,...,G,}, and let
T C ¥y suchtha(3XsU---UX,)NY = (. Then

(G5 S5 p) ~synth ({hsupCynsx, (G1), G2, ..., Gn}; {hsupCrnx, (G1)} U S;p) .

Complexity. Halfway synthesis can be achieved using a standard synthesis al-
gorithm [28] and runs in time complexitY(|Q||—|), where|Q| and|—| are the
numbers of states and transitions of the input automaton.

5.3 Renaming and Selfloop Removal

Another way of rewriting a synthesis triple is by renaming. As explained in sec
tion 4, an automatoii’; can be rewritten intdd; using a renaming such that
p(H1) = G; and H is ap-distinguisher. Therf{; is added to the sef of su-
pervisors as a distinguisher, and the renaminig composed with the previous
renamings. The proof of the following result can be found in appendix A.

Theorem 7 Let (G1;S; p1) be a synthesis triple with; = {G1,...,G,}, letp
be a renaming, and lef; be ap-distinguisher such that(H,) = G; andGs =
{Hy, p~Y(G2),...,p 1 (Gy)}. Then

(G1;8; p1) ~eynth (Go; {H1}Up H(S);p10p) .

In compositional verification, events used in only one automaton can immedi-
ately be removed from the model [12]. This is not always possible in coitrqoe
synthesis. Even if no other automata use an event, the synthesisedsupeay
still need to use it for control decisions that are not yet apparent.eldrer;, events
can only be removed if it is clear that no further supervisor decisionriipen
them.

An event\ can be removed from a synthesis triple, if it causes no state change,
which means that it appears only on selfloop transitions in the automata model. In
this case\ can be removed from all automata. This step is caldfioop removal
and formally described in theorem 8. The proof can be found in appéndix

20



Definition 19 An automatonG = (3, Q, —, Q°), is selfloop-onlyfor A € ¥ if

z y impliesz = y. AutomatonG is selfloop-only forA C X if G is selfloop-
only for each\ € A.

Definition 20 Therestrictionof G = (X,Q,—,Q°) 10 = C X is Gz = (E,
Q, =, Q°) where—z = {(z,0,y) € = | 0 € EU{w} }. The restriction of
g - {Gl, ey Gn} tO E iS g|5 - {GllE, ey GTL|E}

Theorem 8 Let (G;S;p) be a synthesis triple such th&tis selfloop-only for
A C X, Then(G; S5 p) ~synth (Gs\a; S; p)-

5.4 Abstraction Based on Observation Equivalence

This section gives an overview of previous results on observatiorvaguce-
based abstractions for synthesis purpodgisimulationand observation equiva-
lence[19] provide well-known abstraction methods that work well in composi-
tional verification [12]. Both can be implemented efficiently [11]. They arevin

to preserve all temporal logic properties [6], but unfortunately this doekelp for
synthesis [25]. Synthesis equivalence is preserved when an autoimatmiaced

by a bisimilar automaton, while observation equivalence must be strengttened
achieve the same result. This can be achievedymghesis observation equiva-
lence[25] andweak synthesis observation equivalefH.

Definition 21 [19] Let G = (%, Q, —,Q°) be an automaton. An equivalence
relation~ C @ x @ is called abisimulationon G, if the following holds for all
x1,To € Q such thatr; ~ zo: if z; = y; for somes € ¥, then there exists
Yo € Q such thatry > vy andy; ~ ys.

Theorem 9 [25] Let (G; S; p) be a synthesis triple with = {G1,...,G,}, let
~ be a bisimulatipn oft71, and letG = {G1/~,Gs,...,G,}. Then it holds that
(g; S; P) synth (g7 8; p)

Bisimulation is the strongest of the branching process equivalencesstaes
are treated as equivalent if they have exactly the same outgoing transitithes to
same or equivalent states. Theorem 9 confirms that it is possible to meirgedvis
states in a plant automaton in a synthesis triple while preserving synthesia-equi
lence.

Bisimulation does not consider local events for abstraction. Howevibey lado-
straction can be achieved by differentiating between local and shagatseV his
is the idea of observation equivalence, which considers two states iaalequif
they can reach equivalent states by the same sequences of shantsd eve

21



G (o) G

qo1
!’U J_ J_
QOO% O (o, B) v

(8)

Figure 10: Example to demonstrate observation equivalence.

Definition 22 [19] Let G = (X, Q, —, Q°) be an automaton withl = Q U T.
An equivalence relatiorr C @ x Q is called anobservation equivalencen G
with respect toY, if the following holds for allz1,z5 € @Q such thatz; ~ xo:
if 21 25 y; for somes; € Y5, then there exisyz € Q andsy € X}, such that
Pauget(s1) = Paugey(s2), 22 =3 y2, andyy ~ 1.

Example 3 In automaton in figure 10, stateg, andq; can be considered as
observation equivalent with respect1o= {a, B}. Merging these states results
in G, also shown in figure 10.

Unfortunately, observation equivalence in general does not imply sgisth
equivalence, so theorem 9 cannot be generalised for observatimalegce [25].

Example 4 Consider again the observation equivalent automata in figure 10, with
Y. = {a, 8} and%, = {lwv}. The triples({G}; {G};id) and ({G}; {G};id) are

not synthesis equivalent. Witf¥, a supervisor can disable the local controllable
eventa to prevent entering statg and thus the occurrence of the undesirable
uncontrollablelv, but this is not possible witlsy. It holds thats € £(supC(G))
while £(supC(G)) = 0.

There are different ways to restrict observation equivalence sdttbah be
used in compositional synthesis. The problem in example 4 does not arige if th
local eventsae and 5 are uncontrollable. In fact, a result similar to theorem 9
holds if observation equivalence is restricted to uncontrollable events Y¥ih
controllable events, abstraction is also possible, but two other issues enadien
into account.

Example 5 Consider automatory in figure 11 with¥:, = {!g,lv} andT =
{B,~,!u,lv}. Merging of observation equivalent states result&/jrbut stategy;

and ¢ should not be merged for synthesis purposes. Although both states can
reach the same states via the controllable esepbssibly preceded and followed

by the local eventy, the transition, — gg must always be disabled to prevent
blocking via the local uncontrollable eveht, while the transition;; = gg may

be enabled. When used in a system that requiresoccur for correct behaviour,

22



Figure 12: Observation equivalent automata that are not synthesisksii

such asl" in figure 11, statey; is retained in synthesis whilg is removed. The
triples7 = ({G, T} {G,T};id) andT = ({G,T}; {G,T};1d) are not synthesis
equivalent ag(supC(7)) = 0 but!v € L(supC(T)).

Example 6 Consider automatofy in figure 12 with3, = {lv,!lu} andT =
{a, 5}. Merging of observation equivalent states result§'jrbut states; andg,
should not be merged for synthesis purposesGJrstatesgs and ¢4 should be
avoided to prevent blocking in stage via the local uncontrollable eveht. Thus,
« should be disabled ip; andq,, makingg, a blocking state, whilg; remains

nonblocking due to the transition LA g6. The triplesT = ({G};{G};id) and
T = ({G};{G};id) are not synthesis equivalent 4¢supC(7)) = 0 but!y €
L(supC(T)).

The problem in example 5 is caused by considering the @ﬁtﬁ% q9 as
equivalent tag; = ¢s to justify statesy; andg, to be merged. However, the path
q2 M g9 passes through the unsafe stage while ¢; = ¢ does not pass
through any unsafe states. This situation can be avoided by only allowiay loc
events before a controllable event. That is,#or> y; andz; ~ z it is required
that there exists € YT* such thatc, kit yo andy; ~ ys. In example 5, the local

events int are all uncontrollable. Controllable events can lead to the problem in

23



example 6. They can be allowed under the additional condition that theit targe
states are equivalent to the start state of the path.

Imposing such conditions on observation equivalence resuligrithesis ob-
servation equivalengavhich preserves synthesis results in a way similar to theo-
rem 9 [25].

Definition 23 [25] LetG = (2, Q, —, Q°) be an automaton with = QUY. An
equivalence relatiorr C @ x @ is asynthesis observation equivalerareG with
respect tor, if the following conditions hold for alk1, o € Q such thate; ~ xo:

() if 21 5 y) for o € B, U {w}, then there exists a path, = 23 = --- %

Pougor (o .
xh M yo such thaty; ~ 4o andry,..., 7, € T, and ifr; € X then

Ty ~ T,

(i) if 21 = y; for v € X, then there existy, us € (T N X,)* such that
t2 Pa(v)u2
———— y2 andy; ~ yo.

Condition (i) allows for a state:; with an outgoing controllable event to be
equivalent to another statg, if that state allows the same controllable event, pos-
sibly after a sequence of local events. If that sequence includesraltaivlie tran-
sition2b 1 — %, its target state, must be equivalent to the start staigs~ 5.
Condition (i) is similar to observation equivalence, but restricted to unchaite
events. The projectiof, is used in the definition to ensure that the conditions (i)
and (ii) apply to both local and shared events.

Example 7 Consider automatodr in figure 13, with all events controllable and
T = {B}. An equivalence relation with; ~ g3 andq, ~ g7 is a synthesis obser-
vation equivalence ofv. Merging the equivalent states results in the deterministic
automaton’ shown in figure 13. Note thag andgs in G are not synthesis ob-

servation equivalent, becauge = ¢ butg; = ¢7 L ge, and the local event
occurs after the shared evenbn the path.

Synthesis observation equivalence does not allow local eaftetsa control-
lable event. This condition can be further relaxed, allowing local evetsds @in-
trollable events, provided that it can be guaranteed that the states ddacliee
local transitions after a controllable event are all present in the synttessik.

Definition 24 [21] Let G = (X, Q, —,Q°) be an automaton withl = Q U T.
An equivalence relatior- C @ x @ is aweak synthesis observation equivalence
on G with respect tdY, if the following conditions hold for alk, z5 € Q.

24



Figure 13: Example of synthesis observation equivalence and weé#kesysob-
servation equivalence.

(i) If 21 2 gy, for o € ¥, U {w}, then there exists a path, = 23 = --- 2

Pougwy () Tn
xy RLECIAN y;”rl ot I3 ygnﬂ = y, such thaty; ~ y2 and
T, ..., Tm € T and,

a) if ; € X for somei < n, thenz, ~ x%;

b) if 4 % = for someu e (X, N Y)*, thenz ~ i for somen 4+ 1 < j <
m+ 1;

c) if 4 = = for someu € ¥ such thatPo(u) € £, \ T, then there exists
u’ € 3% such thatPp (u) = Po(u') andys “ o/ for somez’ ~ z.

(i) If 21 = y; for v € X, then there existy, up € (Y N X,)* such that
t2 Po(v)u2
0

Yo andy; ~ yo.

Condition (i) weakens the condition in definition 23 for controllable events in
that it allows for a path of local events after a controllable event, if locabatrol-
lable transitions outgoing from the path lead to a state equivalent to a state on the
path, and shared uncontrollable transitions are possible in the end stadepatibh
Condition (i) is the same as for synthesis observation equivalence.

Example 8 Consider again automatan in figure 13, with all events controllable
andY = {3}. An equivalence relation with; ~ g» ~ g3 andgy ~ g7 is a weak
synthesis observation equivalence®@nproducing the abstractiod = G//~. For

example, stateg, and ¢, can be equivalent ag — ¢s andgq, — g7 2N 6,
with no uncontrollable transitions from these paths. The nondeterminigircam

25



be avoided using a renaming {a1,a2,8,7} — {a, 8,7}, which leads to the
deterministic automato@” in figure 13.

Both synthesis observation equivalence and weak synthesis obse®qiiv-
alence can be used for abstraction steps in compositional synthesis.céifter
puting an appropriate equivalence relatioron a renamed automataiiGG; ), the
automatonz; can be replaced by its quotie@t; /~.

Theorem 10 [21] Let (G;S; p) be a synthesis triple witg = {G1,...,G,} and
Gi=(%,,Q;,—;, Q7). LetY C ¥; suchtha(3,U---UX,)NT = (. Let~ be
a synthesis observation equivalence or a weak synthesis observativalence
relation onp(G1) with respect toY" such that; /~ is deterministic, and lef =

{G1/~,G2,...,G,}. Then(G; S; p) ~eymen (G;S;p).

Complexity. Observation equivalence-based abstractions can be computed in
polynomial time. The time complexity to compute a bisimulatio@{$— | log |Q|)

[11]. Synthesis observation equivalence and weak synthesis aliserequiva-
lence are computed by a modified version of the same algorith@(jns||Q[*)
andO(|—|Q|°) time, respectively [21].

6 Compositional Synthesis Algorithm

Given a set of plant automags the compositional synthesis algorithm repeatedly
composes automata and applies abstraction rules. While doing so, it modifies a
synthesis tripléG; S; p), collecting supervisors i§ and updating the renaming

and continues until only one automaton that cannot be further abstradftl is
Then a standard synthesis algorithm is used to compute a final supereisothie
remaining automaton. This principle, which is justified by Theorems 3 and 5, is
shown in Algorithm 1.

During each iteration of the main loop, a series of steps is applied to simplify
the setG of plant automata. First, line 4 applies selfloop removal to the entire
plantG according to theorem 8. This quick operation improves the performance of
the following steps.

The next step is to choose a subsyster§ &r simplification. If no automaton
can be simplified individually, a group of automata is selected for composition.
TheselectSubSystem() method in line 5 selects an appropriate subsystem, which
is then removed frong and composed. Different methods to select this subsystem
are available in the implementation.

After identification and composition of a subsystem, thélset local events is
formed in line 8, which contains the events used only in the subsystem to be simpli-

26



Algorithm 1 Compositional synthesis

1: input G = {G1,Go,...,G,}

228+ G, p+id

3: while |G| > 1do

G < selfloopRemoval(G)

subsys < selectSubSystem(G)

G < G\ subsys

A + synchronousComposition(subsys)

T ZA \ Zg

A < hsupCrny, (A)

10 S+ SU{A}

11: A < bisimulation(A)

122 A+ WSOEy(A)

13:  if Ais deterministichen

14: G+ GU{A}

15: else

16: (pp, D, D) + makeDistinguisher(A, A)
17 G pp'(G)U{D}, S + pp'(S)U{D}, p +popp
18:  end if

19: end while

20: S «+— S U {supC(G)}

© 0N gk

27



fied. Based on the local events, the abstraction rules given in Theoré&yarél 10
are applied in lines 9-12. Rules of lower complexity are applied first, so hglfw
synthesis is followed by bisimulation and weak synthesis observation éepuiea
which are implemented according to [11] and [21], respectively. If hajfayn-
thesis produces a new supervisor, it is added to thé sétsupervisors. If weak
synthesis observation equivalence results in a deterministic abstractetasaro
this automaton is added back into the Gedf uncontrolled plants.

Weak synthesis observation equivalence may also result in nondeterminism,
if some states in an equivalence class have successor states reachedséme
event, but belonging to different equivalence classes. In this cassaming
is introduced. ThemnakeDistinguisher() method in line 16 replaces the events
of any transitions causing nondeterminism in the abstracted autordalbyrmew
events and records the target states of these transitions. Using theecktanget
states, the same modification to the corresponding transitions is applied to the orig
inal automatorA. ThemakeDistinguisher() method returns a renaming map,
the deterministic abstracted automatonand an appropriate distinguishBr In
line 17, the inverse renamir,rg1 is applied to the entire systeghand the collected
supervisorss, the abstracted automatdhand the distinguishel are added to the
resultant automata sets, and the renamirsgupdated to includgp. This is equiv-
alent to the application of theorem 7 followed by theorem 10.

The loop terminates when the sebf uncontrolled plants contains only a sin-
gle automaton, which is passed to standard synthesis [28] in line 20. Acgordin
to theorem 5, the result is added to the Setvhich in combination with the final
renamingp gives the least restrictive, controllable, and nonblocking supervisor f
the original systeng.

7 Experimental Results

The compositional synthesis algorithm has been implemented in the DES software
tool Supremicd?2]. The algorithm is completely automatic and does not use any
prior knowledge about the structure of the system. The implementation has suc
cessfully computed supervisors for several large discrete evetansysnodels.

The test cases include the following complex industrial models and casesstudie
which are taken from different application areas such as manufactsystgms

and automotive body electronics:

agv Automated guided vehicle coordination based on the Petri net model in [27].

To make the example blocking in addition to uncontrollable, there is also a
variant,agvb, with an additional zone added at the input station.

28



aip Automated manufacturing system of the Atelier Inégsblissement de Pro-
ductique [4].

fencaiwon09 Model of a production cell in a metal-processing plant from [9].

tbed Model of atoy railroad system based on [16]. Two versions prestaieht
control objectives.

verriegel Models of the central locking system of a BMW car. There are two
variants, a three-door modekrriegel3, and a four-door modelerrie-
gel4. These models are derived from the KSys project [29].

6link Models of a cluster tool for wafer processing previously studied fotteg-
sis in [34].

tline Parametrised model of a manufacturing transfer line [37] with differemt-nu
bers of serially connected cells.

All the test cases considered have at leigt reachable states in their syn-
chronous composition and are either uncontrollable, blocking, or both.o-Alg
rithm 1 has been used to compute supervisors for each of these modelalgdh
rithm is controlled by a state limit of 5000 states: if the synchronous composition
of a subsystem in line 7 of Algorithm 1 exceeds 5000 states, that subsigstisn
carded and another subsystem is chosen instead. All experimentsdeaveui on
a standard desktop PC using a single 2.66 GHz microprocessor.

The results of the experiments are shown in Table 1. For each model, the ta-
ble shows the number of automata (Aut), the number of reachable statey (Size
and whether the model is nonblocking (Nonb.) or controllable (Cont.). Neet,
table shows the size of the largest synchronous composition encoudtaiag
abstraction (Peak States), the total runtime (Time), the total amount of memory
used (Mem.), the number of modular supervisors computed (Num.), andrie nu
ber of states of the largest supervisor automaton (Largest). The tatilerfuore
shows the number of events replaced by renaming (Ren.) and the nunavents
removed by selfloop removal (SR), and finally the number of states remnyved
halfway synthesis (HS), bisimulation (Bis.), and weak synthesis obsemexjigiv-
alence (WSOE).

All examples have been solved successfully in a few seconds or minetes, n
using more than 1 GB of memory.

To select a subsystem in line 5 of Algorithm 1, a strategy knowastL [12]
is used, which facilitates the exploitation of local events. For each eyemsub-
system is formed by considering all automata witim the alphabet, s& becomes

29



Table 1: Experimental results

Peak Time Mem. Supervisor Events Abstraction

Model Aut Size Nonb. Cont.|States [s] [MB] Num. Largest Ren. SR HS Bis. WSOE

agv 16 2.6107 true false| 856 3.11 27.9 6 12339 0O 30 208 O 671
agvb 17 2.3107 false false| 562 0.81 61.3 7 9380 0O 30 187 O 464
aipOalps 35 3.010% false true| 502 043 84.3 3 17 2 53 3 8 576
fencaiwon09b 29 8.9107 false true| 182 0.27 1184 6 917 4 56 57 3 3p8
fencaiwonQ9s 29 2.9108 false false| 525 0.44 150.2 11 436 5 59 186 2 500
tbed-noderailb 84 3.110'> false true| 4989 6.22 265.2 17 4982 0 12 158 112 1086
tbed-uncont 84 3.610'2 true false| 4479 5.34 4916 10 19737 1 1 190 73 189
verriegel3b 52 1.310° false true| 1367 1.80 218.2 1 4 77 64 1 390 1796
verriegeldb 64 6.210'° false true| 1382 4.86 250.5 1 4 21 71 189 622 950
6linka 53 2.410* false true| 3614 19.52 515.3 13 2073 15 48 1754 0 2103
6linki 53 2.710'* false true| 2925 13.72 635.4 12 4017 12 49 1205 0 1897
6linkp 48 4.210'* false true| 3614 26.62 5383 17 2073 25 45 1731 0 2107
6linkre 59 6.210'4 false true| 240 1.01 584.9 19 375 10 51 221 O 279
tline100 401 6.510° true false 50 3.44 2524 201 79 0 495 1192 0 4126
tline1000 4001 2.810"% true false 50 336.46 864.1 2001 79 0 4995 11992 0 41926




[FEEER]
R0

NN
NN
EE S
EEERSSSSN]

i

>

100% - P 7]
90% 7
80% /
70%
60%
50%
40%
30%
20%
10%
0%
@03\ @@0 Qf&Q% Q@Q (\Qg \‘\6\2’
W 5 ;
&P & 6,\\0 Vavz;b &
RS A
HS Abstraction [J Bis. Abstraction ll WSOE Abstraction

|
HS Runtime Bis. Runtime W WSOE Runtime

Z
-
a*(‘.’\\‘)
&

O

H
%
6{9

$ & & &

\ée

6\\(\

Figure 14: Share of states removed and runtime for different abstraats

a local event after composing the subsystem. This gives several atadiab-
systems, one for each event, so a second step applies a strategyMiafehc,
which chooses the subsystem with the smallest number of states in its syomehiron
composition. It is worth mentioning that other methods [12, 14] for selectibg su
systems give smaller supervisors for Higv, tbed, andtline examples. However,
persistently good results can be achieved for all the examples in this test with th
MustL /MinSync strategy.

Figure 14 shows some data concerning the performance of the abstratgmn
For each example, it shows the ratio of the number of states removed byusach
over the total number of states removed, and the ratio of the runtime consumed
by each rule over the total runtime of all abstraction rules. flime bars show
the average of these ratios for models with 100-1000 cells. Particularsripe
models, halfway synthesis and bisimulation run much faster than weak signthes
observation equivalence, as is expected from the higher complexity dizsg-
ever, weak synthesis observation equivalence also has the higheshtage of
states removed and typically contributes most of the states removed by tibstrac
The data suggests a correlation between the percentage of runtime apdcérep
age of states removed by each rule. By this measure, the three abstratg®on r
have similar performance in practice.

Figure 15 shows the runtimes and supervisor sizes for instances watise
fer line example [37] with 100-1000 serially connected cells. Although the state
space for these models grows exponentially, the cells are identical andattie p
cal complexity of the system is small. Even with no knowledge of the symmetry
of the model, the compositional synthesis algorithm successfully computes modu
lar supervisors for transfer lines with up to 1000 serially connected cHllsle 1
shows that the algorithm never constructs a supervisor component withtimaore

31



400 T T T T 200, 000

—-s-Total supervisor states
-o-Runtime [s]

]
3001 4150, 000

2001 41100, 000

Runtime [s]
Total supervisor states

1001 150, 000

L I 0
600 800 1000

Number of cells

L
0 200 400

Figure 15: Experimental results for transfer line example.

79 states. Figure 15 shows a linear relation between the number of cahnecte
cells and the total number of supervisor states. Moreover, the relatioedetive
number of cells and the execution time is quadratic. This behaviour is due to the
complexity of evaluating and choosing subsystems from growing lists. Thirex
iment shows that the compositional synthesis algorithm automatically discovers
that the cells are identical and produces identical supervisors acglytdin

8 Conclusions

A general framework for compositional synthesis in supervisory cbhte been
presented, which supports the synthesis of least restrictive, contegléaid non-
blocking supervisors for large models consisting of several automatsytheliro-
nise in lock-step synchronisation. The framework supports compositieasbn-
ing using different kinds of abstractions that are guaranteed to peetiez final
synthesis result, even when applied to individual components. Nondetsmmis
avoided by renaming, which solves problems in previous related work caime
puted supervisor has a modular structure in that it consists of sevenadtibg
components, which makes it easy to understand and implement. The algorithm
has been implemented, and experimental results show that the method &uigcess
computes nonblocking modular supervisors for a set of large industriatisiod

In future work, the authors would like to extend the compositional synthesis
algorithm to use the symmetric structure of parametrised system automatically in
such a way that an abstraction computed for a single module can be réuged.
thermore, finite-state machines augmented with bounded discrete variatwes sh
good modelling potential, and it is of interest to adapt the described compasition
synthesis approach to work directly with this type of modelling formalism.

32



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Akesson, K., Flordal, H., Fabian, M.: Exploiting modularity for synthesis and
verification of supervisors. In: Proceedings of 15th IFAC World Gesg on
Automatic Control. Barcelona, Spain (2002)

,&kesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica—an integrated
environment for verification, synthesis and simulation of discrete event sy
tems. In: Proceedings of the 8th International Workshop on DiscretatEve
Systems, WODES’06. pp. 384—-385. Ann Arbor, MI, USA (Jul 2006)

Bouzon, G., de Queiroz, M.H., Cury, J.E.R.: Exploiting distinguishing sen
sors in supervisory control of DES. In: Proceedings of 7th InternatiGon-
ference on Control and Automation, ICCA’09. pp. 442—-447. Christdnu
New Zealand (Dec 2009)

Brandin, B., Charbonnier, F.: The supervisory control of the ausi®d man-
ufacturing system of the AIP. In: Proceedings of Rensselaer’s 4énna-
tional Conference on Computer Integrated Manufacturing and Automation
Technology. pp. 319-324. Troy, NY, USA (1994)

Brandin, B.A., Malik, R., Malik, P.: Incremental verification and synikes
of discrete-event systems guided by counter-examples. IEEE Ttemsaon
Control Systems Technology 12(3), 387—-401 (May 2004)

Brookes, S.D., Rounds, W.C.: Behavioural equivalence relatiahscied by
programming logics. In: Proceedings of 16th International Colloquium on
Automata, Languages, and Programming, ICALP'83. LNCS, vol. 154, pp
97-108. Springer-Verlag (1983)

Cai, K., Wonham, W.M.: Supervisor localization: A top-down approach to
distributed control of discrete-event systems. IEEE Transactions @o- Au
matic Control 55(3), 605-618 (Mar 2010)

Fabian, M.: On Object Oriented Nondeterministic Supervisory Con-
trol. Ph.D. thesis, Chalmers University of Technologypté&borg, Swe-
den (1995), https://publications.lib.chalmers.se/cpl/
record/index.xsql?pubid=1126

Feng, L., Cai, K., Wonham, W.M.: A structural approach to the nonibtar
supervisory control of discrete-event systems. International dbofnAd-
vanced Manufacturing Technology 41, 1152-1168 (2009)

33



[10] Feng, L., Wonham, W.M.: Supervisory control architecture formiteevent
systems. IEEE Transactions on Automatic Control 53(6), 1449-1461 (Ju
2008)

[11] Fernandez, J.C.: Animplementation of an efficient algorithm for bisimuiatio
equivalence. Science of Computer Programming 13, 219-236 (1990)

[12] Flordal, H., Malik, R.: Compositional verification in supervisory cohtro
SIAM Journal of Control and Optimization 48(3), 1914-1938 (2009)

[13] Flordal, H., Malik, R., Fabian, M.Akesson, K.: Compositional synthesis
of maximally permissive supervisors using supervision equivalencerddésc
Event Dynamic Systems: Theory and Applications 17(4), 475-504 {2007

[14] Francis, R.: An implementation of a compositional approach for vewfyin
generalised nonblocking. Working Paper 04/2011, Department of Cempu
Science, University of Waikato, Hamilton, New Zealand (20ttp://
hdl.handle.net/10289/5312

[15] Hoare, C.A.R.: Communicating Sequential Processes. Prentice198b)

[16] Leduc, R.J.: PLC Implementation of a DES Supervisor for a Manufactu
ing Testbed: An Implementation Perspective. Master’s thesis, Department
of Electrical Engineering, University of Toronto, Ontario, Canada9@)9
http://www.cas.mcmaster.ca/ ~leduc

[17] Malik, P., Malik, R., Streader, D., Reeves, S.: Modular synthesissuirete
controllers. In: Proceedings of 12th IEEE International ConferemcEngi-
neering of Complex Computer Systems, ICECCS’07. pp. 25-34. Auckland
New Zealand (2007)

[18] Malik, R., Flordal, H.: Yet another approach to compositional syrishefs
discrete event systems. In: Proceedings of the 9th International Wagrlan
Discrete Event Systems, WODES’'08. pp. 16-2btéborg, Sweden (May
2008)

[19] Milner, R.: Communication and concurrency. Series in Computer Sejenc
Prentice-Hall (1989)

[20] Mohajerani, S., Malik, R., Fabian, M.: Nondeterminism avoidance in @a@mp
sitional synthesis of discrete event systems. In: Proceedings of that@éth |
national Conference on Automation Science and Engineering, CASE 2011
pp. 19-24. Trieste, Italy (2011)

34



[21] Mohajerani, S., Malik, R., Fabian, M.: An algorithm for weak synthedis
servation equivalence for compositional supervisor synthesis. trreledings
of the 11th International Workshop on Discrete Event Systems, WODES'1
pp. 239-244. Guadalajara, Mexico (Oct 2012)

[22] Mohajerani, S., Malik, R., Fabian, M.: Synthesis equivalence of siple
Working Paper 04/2012, Department of Computer Science, University of
Waikato, Hamilton, New Zealand (2012)itp://hdl.handle.net/

10289/7162

[23] Mohajerani, S., Malik, R., Fabian, M.: Synthesis observation etprica
and weak synthesis observation equivalence. Working Paper 0326part-
ment of Computer Science, University of Waikato, Hamilton, New Zealand
(2012),http://hdl.handle.net/10289/6585

[24] Mohajerani, S., Malik, R., Ware, S., Fabian, M.: Compositional syimshes
of discrete event systems using synthesis abstraction. In: Proceeditings
23rd Chinese Control and Decision Conference, CCDC 2011. pp-1554.
Mianyang, China (2011)

[25] Mohajerani, S., Malik, R., Ware, S., Fabian, M.: On the use of olasienv
equivalence in synthesis abstraction. In: Proceedings of the 3rd \Wa&-
shop on Dependable Control of Discrete Systems, DCDS 2011. pp984-8
Saarbicken, Germany (2011)

[26] Mohajerani, S., Malik, R., Ware, S., Fabian, M.: Three variationshskova-
tion equivalence preserving synthesis abstraction. Working Pape®Xll,/2
Department of Computer Science, University of Waikato, Hamilton, New
Zealand (201 1)http://hdl.handle.net/10289/4974

[27] Moody, J.O., Antsaklis, P.J.: Supervisory Control of Discrete E@istems
Using Petri Nets. Kluwer Academic Publishers (1998)

[28] Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems
Proceedings of the IEEE 77(1), 81-98 (Jan 1989)

[29] KORSYs Project:http://www4.in.tum.de/proj/korsys/

[30] Schmidt, K., Breindl, C.: Maximally permissive hierarchical control ef d
centralized discrete event systems. IEEE Transactions on Automatic Contro
56(4), 723-737 (Apr 2011)

35



[31]

[32]

[33]

[34]

[35]

[36]

[37]

A

Schmidt, K., Moor, T.: Marked-string accepting observers for ikeanchical
and decentralized control of discrete event systems. In: Proceatfitigs8th
International Workshop on Discrete Event Systems, WODES'06. pp-41
418. Ann Arbor, MI, USA (Jul 2006)

Song, R., Leduc, R.J.: Symbolic synthesis and verification of hieiat
interface-based supervisory control. In: Proceedings of the 8tihattenal
Workshop on Discrete Event Systems, WODES’06. pp. 419-426. AbarAr
MI, USA (Jul 2006)

Su, R., Wonham, W.M.: Supervisor reduction for discrete-evestesys. Dis-
crete Event Dynamic Systems: Theory and Applications 14(1), 31-58 (Ja
2004)

Su, R., van Schuppen, J.H., Rooda, J.E.: Aggregative syntHefistbuted
supervisors based on automaton abstraction. IEEE Transactions an&igto
Control 55(7), 1267-1640 (Jul 2010)

Wong, K.C., Wonham, W.M.: Modular control and coordination of diter
event systems. Discrete Event Dynamic Systems: Theory and Applications
8(3), 247-297 (Oct 1998)

Wong, K.C., Wonham, W.M.: On the computation of observers in discrete-
event systems. Discrete Event Dynamic Systems: Theory and Applications
14(1), 55-107 (2004)

Wonham, W.M.: Supervisory control of discrete-event system®{R0
http://www.control.utoronto.edu/

Proofs for Renaming and Selfloop Removal

This appendix contains proofs for theorem 7 and theorem 8 in sectiorAs. &
prerequisite for theorem 7, it is first confirmed that every renaming step

(g1§8;p1) synth (QQ;{Hl} UP_1(5)§P1 Op) (17)

produces a proper synthesis triple.

Lemma 11 Let (Gi;S;p1) be a synthesis triple with, = {G1,...,Gy}, letp
be a renaming, and Igf; be ap-distinguisher such that(H,) = G; andG, =

{Hb

p Y Ga),...,p Y (Gr)}. Then(Go; {H1} U p~1(S);p1 o p) is a synthesis

triple.

36



Proof. Itis necessary to prove properties (i), (ii), and (iii) in definition 15.

(i) As (G1;S; p1) is a synthesis triple, it holds thal(S) € £(G:1). Then it
follows thatL({H1} U p=1(S)) = L(Hy || p71(S)) C L(Hy || p~1(G1)) =
LH || p~HG) ||+ [ p7H(GR)) = L(G2)-

(i) It needs to be shown thdf; || p~1(S) is a(p; o p)-distinguisher. Let, t €
L(Hy || p~(S)) such thaip: (p(s)) = p1(p(1)). Thens,t € L(p~'(S)) =
p~H(L(8)), and thusp(s), p(t) € p(p™ ' (L(S))) = L(S). Sinceps (p(s)) =
p1(p(t)) andS is a p;-distinguisher, it follows thap(s) = p(¢). Further,
since alsos,t € L(H;) and H; is a p-distinguisher, it follows that = ¢.
Sinces, t were chosen arbitrarily, it follows by definition 13 tht || p~1(S)
is a(p; o p)-distinguisher.

(i) Let 1,72 such that(p; o p)(71) = (p1 © p)(72). It needs to be shown
that there exists at most one automatorginthat differentiates between
~v1 and~y. This is clear wheny; = 9, so assume thay; # 2. Since
(G1;S; p1) is a synthesis triple angh (p(71)) = p1(p(y2)), there exists at
most one automato&; € G, that differentiates betweew(y;) and p(v2).
Write H; = p~1(G;) for j = 2,...,n, so thatGy = {Hy,..., H,}. It
is shown that the automatd; with j # ¢ do not differentiate betweem
and-~s.

First consider the casg= 1, so assume thd¥; does not differentiate be-
tweenp(v1) and p(vy2). Then the following are equivalent. It holds that

¢ yin Hy, ifand only if o “7% yin G1 = p(Hy), if and only if

T M y in G asG; does not differentiate betweerty;) and p(v2), if

and only ifz 3 y in H, asy, # 2 and H, is a p-distinguisher. This is
enough to show thatf; does not differentiate between and~s.
Second, lej > 1 such thati; does not differentiate betweefry; ) andp(~2).

Then the following are equivalent. It holds that’ y in H; = p~YGy), if

and only ifx M yin Gy, ifand only ifz M yin G asG; does not dif-

ferentiate betweep(v;) andp(v2), if and only ifz 3 y in p='(G;) = H;.
This is enough to show thaf; does not differentiate betwegfn andy,. 0O

The following two lemmas are used in the proof of theorem 7.

Lemmal2 Letp: ¥ — ¥ be a renaming, led’ be an automaton with al-
phabetyX, C Y/, and letB be an automaton with alphabEtz C Y. Then

p(A) | B = p(A" || p~H(B)).

37



Proof. Itis enough to show that the automatad’) || B andp(4’ || p~1(B)) have
the same transition relations.
First let (x4, zR) i>p(A,)HB (ya,yp). Consider three cases. dfe X, 4/ N

Spthenzy 5,4y ya andazp Sp yp. This means that there existé € ¥/
such thatp(o’) = o andz i;A/ ya. Sincezp Sp yg, by definition 14 it
holds thatrs %, 1) yp which implies(z.,25) S 4,15 (ya,y5). f o €
Yoy \ Xp thenzp = yp andx 4 ip(A/) y4. This means that there exists €
Y 4\Xp suchthap(c’) = o andz 4 1/>A/ ya, Whichimplies(z 4, z5) i;A,”pfl(B)

(ya,2B) = (ya,yp). If 0 € Lp\ Ty thenzy = ya andzp Sp yp.
This means that there exists € %,-1(p) \ Xa such thatp(¢’) = o, and by

definition 14 it holds thatris %,-1(s) y, which implies(z.1, 7)1z
(za,yB) = (ya,ys). Thus, in all case$z,zp) =4/ ,-1(p) (y4,yB). Then
it follows that (z 4,z ) MP(A,Hfrl(B)) (ya,yn), which furthermore implies

(@4:78) 2 p(arp-1(B)) (YA YB)-
Conversely, le{z 4, zp) i>p(A,||p71(B)) (ya,ys). Then there exists’ € ¥’

such thap(o’) = c and(z 4, 2 ) il)A/”p—l(B) (ya,yn). There are three possibili-
ties. Ifo’ € X4 NX,-1(p) thenz4 i;A/ y4, Which impliesz 4 MP(A/) yA, and
alsozp i;p—l(B) yB, Which impliesz g MB yp by definition 14. Therefore,
(xa,xB) Mp(A’)HB (ya,yp). If o’ € Ya\X,-1(p)ythenzp = yp andz 4 i;A/
y1, which impliesz 4 27 1) ya. Also p(o”) ¢ S aso’ ¢ 5,1, and thus
(xa,zB) Mp(A/)HB (ya,2B) = (Ya,yp). f o’ € ¥, 1(p) \ Ta thenzg =y
andzpg %/p_l(B) yg, Which implieszp p—(a—/)ﬂ; yp. Also p(o’) ¢ ¥, as
o' ¢ ¥4, and thugz 4, xp) MMA/)”B (za,yB) = (ya,yp). Thus, in all cases

(.%'A,QIB) Mp(A’)HB (yA,yB>, which implieS($A,$B) gp(A’)HB (yA,yB). O

Lemma 13 Let G be an automaton with alphabEt and letp: ¥ — Y’ be a
renaming. Thep(supC(G)) = supC(p(G)).

Proof. Sincep preserves controllability, it follows from definition 9 th&; =
O,(c)- Thus by theorem 2,

p(uC(G)) = p(Gio,) = (Gl ) = (G, =suC(p(G)) . D

38



Theorem 7 Let (G1;S; p1) be a synthesis triple with; = {G1,...,G,}, letp
be a renaming, and lef; be ap-distinguisher such that(H,) = G; andGs =
{Hy,p~YG2),...,p 1 (Gp)}. Then
(G158; p1) ~synth (Go2; {H1}Up H(S);p10p) .
Proof. By definition 16, it holds that
supC(G1; S; p1) = p1(supC(Gr) || S) = pr(supC(Gy || -+~ [| Gn) [| S) . (18)

By lemma 12 and 13, it holds that

supC(Gy || -+ - [| Gn) = supC(p(H) [| G2 || -+ - [| Gn)
= supC(p(Hy || p~H(G2) ||+ | p7H(G)))
= p(supC(Hy || p~ (G2) ||+ 1 p7(Gw))) - (19)

Combining these equations gives

L(supC(G1;S;p1))

L(p1(supC(G1 | -+ | Gn) | 5))

L(pi(p(supC(Hy | p~H(G2) |-+ | 0~ (G || S))

L(pi(p(supC(Hi || p~H(G2) ||~ 71 (G)) [1271(S)))) by lemma 12
£( (G2) |

L

pi(p(supC(Hy || oM (Ga) |-+ [l o~ (Gn)) [ Hi || p71(S))))
(supC(Ga; {H1} U p1 ' (S); p1 o p)) - (20)

Thus, the claim follows from definition 17. O

This completes the proof for the correctness of renaming. Next, comgider
selfloop removal, the proof for theorem 8 uses two lemmas that show the melatio
ship between selfloop removal and synthesis.

Lemma 15 Let automator: = (3,Q,—,Q°) with X = Q U A be selfloop-only
for A. ThenO¢g = @Gm'

Proof. In the following, let®|q = O¢,- First, it is shown by induction on > 0
that©g C X = GFQ(Q).
Base casen = 0. Clearly®s C Q = Ol (Q) = X
Inductive stepLetz € O¢ C XIQ by inductive assumption. It must be shown
thatz € X5 = O™ (X[g) N O™ (X[

39



To see that: € @Ts%m(XﬁLz)v letv € ¥, andx ﬁm y. Since every transition

in G| alsois inG, it holds thatz 2 y. Sincex € O, it follows by controllability
thaty € ©¢. By inductive assumption € Xl?l’ which impliesz ¢ @fgnt(X(g)).
Next it is shown that: € @T}g’“b(le;)). Sincex € O, there exists a path

w

g g g
TE 00 Do T oG T T 6g Th 6 Tht (21)

Consider the first transition in (21). #; € A thenzy = z; € ég. If o ¢ A
thenxg —Q 71 wherex; € O¢. In both casesy; € ©¢ C X(g) by inductive
assumption. By induction, it follows that

Po(o1) Pa(02) Po(ok) w,

Thus,z € O19" (X[3).

Conversely, it is shown by induction ean> 0 thatém C X" =0%(Q).

Base casen = 0. Clearly©, € Q = 0%(Q) = X°.

Inductive stepLetx € élﬂ C X" by inductive assumption. It must be shown
thatz € X1 = @%(X™) N e (X™).

To see thatr € ©X"(X"), letv € ¥, andz — y. If this transition is not
in Gq, it follows thatv € A andy = = € X™. If z %q y, sincez € Oq, it
follows by controllability thaty élﬂ- By inductive assumptiop € X", which
impliesz € ©%™(X™).

Next it is shown that: € ©2°"P(X™). Sincex € ém, there exists a path =

To =5 . Since every transition if¥|, also is inG and by inductive assumption,
O €2

\
it follows thatx = x¢ %Xn. Hencexr € ©%mP(X™), O

Lemma 16 LetG = (3, Q, —, Q°) with ¥ = QUA be a deterministic automaton
that is selfloop-only for\. ThensupC(G) = supC(G|q) || G-

Proof. By definition 19,G|q = (2, Q, — o, Q°) where— g = { (z,0,y) € — |
c€Q}. LetOg = O¢ q- The following proof exploits the fact that and thus
alsosupC(G) are deterministic, and shows that the automaigsC(G) contains
the transitionz = y if and only if the automatosupC(G|o) || G' contains the
transition(z, z) > (y,y).

First letz % y in supC(G), i.e.,x £>|®G yandz 5 yin G. If 0 € Q, then

Pq(o) = o andx Em y. Otherwises € A and Py (o) = ¢, andz = y sinceG

is selfloop-only forA. In both casesy Pﬂ—mm y. Givenz,y € O¢ = O by

40



lemma 15, it follows that: Lol), y in supC(G|q). This implies(z, x) % (y,y)

in supC(G)q) || G.
Conversely, le{z,z) % (y,y) in supC(Go) | G. This means: 2 y and

T PQ—(U)>|6|Q y, i.e.x Pﬂ—m>|éc y by lemma 15. This implies, y € ©¢ and thus

z 2 yinsupC(Q). O

Theorem 8 Let (G;S;p) be a synthesis triple such th&tis selfloop-only for
ACX. Then(g;s; P) Zsynth (g|Z\A;S;p)'

Proof. By definition 16 it follows that,

L(supC(G; S; p))
= L(p(supC(G) || S))
= L(p(supC(Gim\a) G| S))  bylemma 16
= L(p(supC(Gisn) || S)) asL(S) C £(G) by definition 15 (i)
= L(supC(Gx\a; S; ) - (23)

The claim follows from definition 17. O

B Proofs for Abstractions based on Observation Equiva-
lence

This appendix contains the proofs for theorem 9 and theorem 10 in séction
which state that bisimulation, synthesis observation equivalence, andsyetie-
sis observation equivalence preserve synthesis equivalence.offimean feature
of these abstractions is that they are obtained by merging equivalent statks
can be represented as an automaton quotient modulo an equivalence rdlatio
observation leads to the following state-based definition, which is a suffien
dition for abstractions preserving synthesis equivalence [26].

Definition 25 LetG = (X, Q, —, Q°) be an automaton. An equivalence relation
~ C @ x @ is astate-wise synthesis equivalerredation onG with respect to
T C %, ifforall z € @, all deterministic automatd = (¥, Q,, =, Q%) such
thatXr N Y = (), and for all states; € Qr the following relations hold,

(i) if (z,27) € Og)r, then([z], 27) € Oyt

(II) if ([x],:cT) S ég/N”T, then(x,:cT) S éGHT'

41



Lemma 18 Let (G;S;p) be a synthesis triple with = {G4,...,G,}, and let
T =Gy -+ || Gn- Thenit holds thap(Gy || T) = p(G1) || p(T).

Proof. It is enough to show that(G; || T') and p(G1) || p(T") have the same
transition relations.

First, let(za, z7) = (ya, yr) in p(Gy || T). Then there existsy € p~(v)
such thatzq, z7) B (yg,yr) in Gy | T, which implies (yq,yr) in Gy || T.
There are three possibilities. 4 € S, N I thenzg Ba, ye andzr Z1 yr,
which impIieSxG l>p(G1) (el andzr l>p(T) yr, ie., (xg,acT) l) (yg,yT) in
p(G1 || T). f v € &7\ Z¢, thenzg = yg andzr 37 yr, which implies
T l>p(T) yr and thus(zg, z7) RN (xg,yr) = (Ye,yr) in p(G1 || T). If v €
S, \ Er thenzg B¢, yo ander = yr, which implieszg = ,q,) ye and thus
(za,z1) = (ya,zr) = (ya,yr) in p(Gy || T). Thus in all cases(zq, z7) —
(G, yr) in p(G1 || T).

Conversely, letzg, z7) = (ya,yr) in p(G1) || p(T). There are three cases.
If v € Sy N Epr) thenzg = ye in p(G1) andzy = yr in p(T). Then
there existye, y7 € X, NE7 such thap(ya) = p(y7) = v andzg Sa, ye and
xp B yr. By definition 15 (iii), at most one af; or T differentiates betweet
and~yz. Thus, it holds thato ¢, y¢ or xr 1 yr. It follows that (zg, 1) 23
(ye,yr) in Gy || T, whereyy = 4 or 4o = v, and thugzg, 27) = (ya, yr) in
p(G1 || T). If v € Epay) \ Bper) thenzr = yr, and there existsg € Y¢, such
thatp(v) = v andzg S¢, ya. Alsove ¢ Srasp(ye) = & S,y and thus
(6 27) 3% (Yo, ar) = (ya, yr) IN G1 || T. 1y € Sy \ By thenze = ye,
and there existsy € Xr such thap(yr) = v andxp =, yr. Alsoyr ¢ Y, as
p(yr) =7 & Xpcy), and thugzg, o) REN (ya,x1) = (ya,yr) in Gy || T. Thus,
in all casezq, 21) = (z¢, yr) = (Y, yr) in p(G1 || T). O

Proposition 19 Let (G;S; p) be a synthesis triple wity = {G4,...,G,} and
G = (%,,Q;,—;,Q?). LetT C ¥y suchthat®X, U---UX,)NT = . Let~

be a state-wise synthesis equivalence relatiop(6# ) with respect tdX" such that
G1/~ is deterministic, and le§ = {G1/~,Gs,...,Gy}. Then(G; S: p) ~gnin

(G; S5 p).

Proof. LetT = Gy || - - - || Gy. Firstitis shown that

L(Gy [[supC(Gy || T)) = L(G1 [| supC((G1/~) [ T)) - (24)

42



Lets € L(G1||supC(G1]|T)). This means+; ||supC(G1||T) =N (ya, ya, yr)-
Lets = oy -- - 0,,. Then there exists a path
W6 50) Pog, im0, W Un) = (e yr) (25)

with (yf,yg) € @GIHT oro, = wfork = 0,...,n. Sincep preserves control-
lability, it follows from definition 9 that®q, | = O, 1), and by lemma 18

OpculiT) = Op(cr)p(r)- Thus,

G 1Ty Plon) o plon) G T

(W6 90) 16,6100 T 1Opicpary YnrYn)- (26)
By definition 25 (i), it holds that[y$],yi) € ép(G1)/~Hp(T) orop = wfork =
0,...,n,andthus

Gy .1y Plo) o plon) Gy ., T
W0l %0) =16 600 om0ty Wl ) - 27)

Note thatp(G1)/~ = p(Gi/~) and thusp(G1)/~ || T = p(Gi/~) | T =
p(G1/~ || T) by lemma 18. Given (25), it follows that

(61 50) o, e 166, e (Wnlvn) = (vl yr) . (28)
Therefore G || supC(G1/~ || T) > (ya, [yc], yr), which means that € £(G ||
supC(G1/~ || T)).

Conversely, lets € L(G; || supC(G1/~ || T)). SinceG; and G/~ are
deterministic, there exists a patly || supC(Gyi/~ | T) & (2§, [z§],2T) B

8 (28, 28], 2T) wheres = o1 - -0, and([z$], 2T) € éGl/NHT orop = w

fork = 0,...,n. Sincep preserves controllability, it follows from definition 9
and lemma 18 tha®g, /|1 = Opc1/~T) = Op(r/~)lIo(m) = Op(cr)/~lp(T):
which implies([z{], 1) € O ,(Gy)/~|p(r)- BY definition 25 (ii), it follows that
(=5, 2L) € O Gy p(r)- This meansa§, z]) € O, r or o = w for k =
0,...,n. ThereforeG || supC(Gy | T) B (2§, 2§, 2T) B - 28 (2G, 2G 2T,
and thuss € L(G || supC(Gy || T)).

43



Given (24), it follows from definition 16 that

L(p(supC(9) [| 5))

(L(supC(G1 [ T)) N £(S))

(L(Gy [ supC(G1 || T)) N L(S))
(L(Gy [[supC((Gr/~) [ T)) N L(S))
(

(

(

L(supC(G; S; p))

L(G1 || T || supC((G1/~) [ T)) N L(S))
L(supC((G1/~) [| T)) NL(G1 || T) N L(S))
L(supC((G1/~) | T)) N L(S))

(asL(S) C L(G) = L(G1 || T) by definition 15 (i)

p(L(supC(G)) N L(S))
(

p
p
p
P
p
p

w0

= L(p(supC(G) || S))
= L(supC(G; S;p)) , (29)
so the claim follows from definition 17. O

To prove the main results of this section, theorems 9 and 10, it is now enough
to show that every bisimulation relation, every synthesis observationaquooe
relation, and every weak synthesis observation equivalence relatigstageawise
synthesis equivalence relation.

The most general of these relations is weak synthesis observatio@lemce.
Therefore, lemma 21 below establishes the crucial result that every syeak
thesis observation equivalence is a state-wise synthesis equivalegsitee Bat,
lemma 20 establishes an auxiliary result about the paths in a quotient automaton
resulting from weak synthesis observation equivalence.

Lemma20 LetG = (3,Q,—,Q°) andT = (X, Qp, =4, QF) be two auto-
mata withX UX7 = QUY andY N X7 = 0, and let~ be a weak synthesis obser-
vation equivalence o&' with respect tdf'. Let X C @ x Q7 such tha([ ) €
é)G/NHT always impliesz, z7) € X. Furthermore, letz,, z7) % (x,,27) such
that([z,], zT) %GG/NHT ([x5], #3). Then for all stateg; € Q such thate; ~ y1,
there existt1,t, € T* andys € Q such that(y,, z7) Mq (4,23 and

T ~ Ya.

Proof. Letxy,z2,91 € Q andz?, 2l € Qr ando € X, U Ir such that
(zy,27) 5 (25,20, ([2,],2T) 1>|@G/NHT ([zo], 2T), andxy ~ y;. Consider
three cases.

44



() If o ¢ %, theno € £r\ ¥ C Qandz; = o andz] % 27, Given
([z1], 2]) i>|@G/NHT ([zo), #3), it follows that ([y,], 1) = ([z,],27) €

Oc/~r and([y,], z8) = ([z,],2%) = ([x,),2%) € O/~ |7, and therefore

(yy, 2T, (y1,2L) € X by assumption. This implies thég,, x7') Pﬂ—w)qx

(yl’xg)'

(i) If 0 € 2N Xy, thenz; 5 29 andz; ~ 31, o by definition 24 (i) there
existty,ta € (Y N X,)* andy, € @ such thaty, M 0. Letr C
t1 Po(o)ty such thaty; = z. Then[z1] = [y1] — [2], and sinc&&r N Y =
0, it follows that ([z,],2T) 5 ([z],2T) for somed € {1,2}. Sincer €
Sk and ([z,],27) € Og/yr, it follows that([z],2]) € Og/yr. This
implies (z,xdT) € X by assumption. This argument holds for all prefixes
r C t1 Po(0)ts, and thereforgy,, »7) Mp( (o, 21).

(i) If 0 € XN 0ro =w, thenz; % x5 andz; ~ 31, so by definition 24 (i)
there exists a path

T P —
y12204“'32kﬂ>zm1Tk—+1>---n—1>zl:y2 (30)
such thatry ~ 4o andry,..., 7,1 € Y. The first part of this path satis-

fies (i)a) and the second part satisfies (i)b) and (i)c) in definition 24ceSin
Ti,...,71—1 € YT andX7 N'Y = (, it holds that

(yhxlT) = (za,a;lT) KENELY (ijxlT) Psz_@)>

(zepn2d) 25 T (ad) = (ge]) (3D
It follows that
T T) Pq (o)
(lzo)s 21) B - B ([ 2]) ——
([zpga) 23) =55 - 255 ([7),27) - (32)

It is shown in the following that this path also exists in the restriction of
G/N H T to GG/NHT-

For the first part of the path, it is shown by inductionotat ([2,], z7) €
O¢/~r fori=0,...,kif 0 € QU{w},andfori =0,...,k—-1ifo € T.

Base casefori = 0, it follows by assumption thd{z], 1) = ([y,], =1 ) =
([#1),2]) € Oy

45



Inductive step Assume the claim holds for sonie> 0, i.e., ([z,],21) €
Og/~|r- It must be shown thatz, ,],z{) € O/ 7. There are two
possibilities forr; 1, € Y:

a) 741 € Y. In this case, it follows from definition 24 (i)a) that,; ~
z1, and thug[z, ], #{) = ([z,], 21) € O/~ by assumption.

b) Tit1 € Bu. As (2, 27) 55 (244, 27), it holds that([z;], zT) ~*

([2i1) 21), and([z;],21) € @G/N”T by inductive assumption. Then
([zi1al; xrip) € ég/N”T because;;; € X,,.

If o = w, the second part of the path (32) is empty and the claim follows.
Otherwise note that by assumption,

([x5),23) € O |7 - (33)

Itis shown tha([z,],23) € O/ r fork < i < 1. LetTL = S,N(Z7\X)
and

YT ={y" € Qr | 2L %1 " for someu € (YI)*} .
Aszl € YT, itis enough to show thdfz], y7) € O, r forally” € YT
It is shown by inductionpmz > Othatforallk < i < landforally” ¢ YT
it holds that([z;], y") € X" = 0, 7(Q/~ x Qr).

Base casen = 0. Clearly ([z],y7) € Q/~ x Qr = @OG/NHT(Q/N X
Qr) = X°.

Inductive step.Let k& < i < I andy” € Y. It must be shown that
([2i,y") € X" = O myr(X™) = OF 7 (X™) N OFI 1 (X™).

To see that[z],y7) € @g’}{HT(X”), letv € Sy and([zi],y7) Sa/myr
([2], 21). Consider three cases.

a) v € XN Y. Inthis case/” = 27 and[z;] > [2], SO there exist!, ~ z;
andz’ ~ z such that! % 2’. By definition 24 (ii), there exisi;, ua €
(Z.NY)* andz” ~ 2’ such that; 2 2", As z; is on the path (30),
it follows from definition 24 (i)b) that” ~ z; for somek < j < . If
j < L then([z], z7) = (1], 27) = ("], 27) = (1z}), 27) € X" by
inductive assumption. If = I, then note that[x,), z2) % ([z,], 2T)
for someu € (T])* asz" = y" € Y7, and given (33) it follows
that ([ya], 27) = ([z2], 7) € Oy Then([z], 27) = (2], 27) =
(12", 27) = ([, 27) = (3], 27) € Oy € X™.

46



b) v € ¥ N Q. In this casdz;] = [2], so there exist, ~ z, andz’ ~ z

(%

such that] — 2’. By definition 24 (ii), there exist.;, us € (X, N7Y)*
ujvu

andz” ~ 2’/ such that; —— 2”. As z; is on the path (30), it follows
from definition 24 (i)c) that there exist, v, € (3, NY)* andz} ~ 2”

V1V 1

such thaty, — z5. Sincey, ~ x2, by definition 24 (ii) there exist

w1vw2 "

wi,wy € (X, NT)* andzy’ ~ 2z such thatz, —— zJ’. Then
sincey” € YT, there exists: € (TT)* such that([z,], z1) S /7

([5],yT) %GMT ([24], 27). Givenzy' ~ 28 ~ 2" ~ 2 ~ 2, it
follows from (33) that([2], z7) = ([24'], 2T) € Oz € X™

c) v ¢ . Inthis casep € X7\ ¥ and[z] = [2] andy” ¢ 2T,
Then clearlyz" € YT and([z], 2T) = ([zi],27) € X™ by inductive
assumption.

Thus ([2], 27) € X"~can be shown for alb € %,, and it follows that
([z],97) € @gfiHT(X”)-

Next, it is shown that[z;],y") € O} (X"). AsTys1,..., 7 € T and
Y7 NY = (), it holds by inductive assumption that,

([z5+1) 9" Tk—HﬂXn B ([l ") - (34)

Sincey” € YT, there existau € (YT)* such thatzl %7 y”, and this
implies ([z,], 1) = ([z],23) S¢/~yr ([21],y7). Sinceu € 3, it fol-
lows by (33) that([z],yT) € éG/NHT. Then there exists € ¥* such that

t
([=],97) 6, e Thus

(2l y™) = n - Bygn (22 y") B2 (35)
This implies([zi], y") € OF 1 (X™).

It has been shown that all statéls,], =) on the path (32) are i®¢, |z, ex-
cept for the last state when = w. This implies by assumptioty;, z%) € X
for all states on the path (31), except for the last state when w. Therefore,

t1Po(0)t2
Iy 22272

(yy,21) |X (y2axg)' U

Lemma 21 Let ~ be a weak synthesis observation equivalencé&on (%, Q,
—,Q°) with respect tol' C X. Then~ is a state-wise synthesis equivalencebn
with respect tor'.

a7



Proof. LetT = (X,, Qp, =, QF) WithE7pNT =0 andX UXy = QUTY. The
conditions of state-wise synthesis equivalence in definition 25 must beroexfir

0] ItNis shown by induction om > 0 that(z, z7) € @G”T implies ([z], z7) €
X" = @Tcl;/NHT(Q/N X Qr).
Base case((z], 27) € Q/~ x Qr = 0%, +(Q/~ x Qr) = X°.
Inductive step Assume the claim holds for some> 0, i.e., if (z,27) €
O¢|r then([z], zr) € X". Now let(x, 1) € O . It must be shown that
([z],27) € X" = O r(X™) = O (X)) N O%FD . (X™).
To see that[z], z7) € OF", (X"), letv € Sy and([z], 21) = ([y], yr).
Consider two cases.

a) v ¢ X. In this case[z| = [y| and(z, z7) 5 (z,yr), and it follows
from (z,27) € Og)r andv € ¥, that (z,yr) € Ogr. Then by
inductive assumptiofiy], yr) = ([z], yr) € X™.

b) v € %, In this case, there exist € [z] andy’ € [y] such that

' 5 ¢/, By definition 24 (ii), there exist;,t, € (T N X,)* and

P .
y" ~ y such thatr 2222, n At 4y € T it follows that

(@, 27) 2L (1 40, Since(w, xr) € Ogyr andt Po(v)ts €
Y%, it follows that (y”,yr) € (Q)GHT. Then by inductive assumption
(Wl yr) = (W] yr) = (Y], yr) € X™

Thus ([y],yr) € f("~ can be shown for alb € X, and it follows that
([z],27) € G(é)/n:”T(Xn)-

Next, it i_s shown thaf[z], z7) € @g’/‘f”T(f(”). Since(x,zr) € @GHT,
there exists a path

(z,27) = (20, 20) g‘éGHT g\écw (), zF) gléch (Thy1s Thyr) -
Then(z;,z]) € éGHT forl =0,..., k. By inductive assumption, it follows
that ([z;], z]) € X" forl =0,...,k. Thus,

([2), 27) = ([xo], 20) B y2n - P 1n ([2a)s k) 20 ([Ega]s Thra) s
which implies([], z1) € O, 7 (X™).

Thus, it has been shown thetr], z7) € O (X™) N OFD 1 (X") =

XnJrl

48



(i) Now it is shown by induction om > 0 that ([z], z7) € ¢/~ implies
(z,27) € X" = Oy (@ X Q7).
Base case(z,z7) € Q X Qr = 90@||T(Q x Qr) = X°.
Inductive step Assume the statement holds for> 0, i.e, if ([z],z7) €
Og/~|r then(z,z7) € X" Let([z],z1) € Og/~|r- It must be shown
that(z, z7) € X" = O¢p(X") = OFIL(X™) N OFIR(X™).
To see thatz, z7) € OFH.(X"), letv € By and(z, z7) = (y, yr). This
implies ([z], z7) = ([y],yr). Since([z],z7) € ég/NHT andv € 3, it
follows that([y], yr) € ég/N”T. Then by inductive assumptidwy, yr) €
X", and thugz, 27) € OF(X").
Next it is shown tha{z, z7) € @g"llnj‘?(X”). Since([z],z1) € ég/NHT,
there exists a path

(l2),o1) = (ol 28) o, m " 60, pm
([ze) %) i\ég/NHT ([2ps1)s Thrn) - (36)

Psron (o .
Consider the first transition in (36). Sin¢a] M [x1], there exists

Psror (o ..
zy € [zy] anda) € [z,] such thatz M x. The conditions

of lemma 20 apply to this transition: by inductive assumptimj”, can be
used as the seX in the lemma, and[z(],z]) = ([z¢].z}) € Og/ur
([#4), 1) = ([#1),2]) € Ogyyr Or o1 = w, (24, 28) & (), =), and
x(y ~ xo. So there exist;, u; € T* andz] € @ such that

t1Pougwy(o1)u
(w0, 7 ) —————xn (a1, 2]) (37)
andz) ~ 2. Sincez! € [z]] = [z,], the same logic also applies to the

second transition in (36). Therefore, there ekisti; € T* andz, € @ such

t2 Pouwy (02)u2 . .
that(2/, zT) L)p(n (24, 21) andz, ~ 24, ~ 24. By induction,
it follows that there existy, u1, . .., tk, ug, tpr1 € Y andz?, ... 2} € Q
such that

t1Pou{wy(o1)ua ta Poyutwy (02)u2
T {«} n T {w}
(z,27) = (205 70 ) E— D (z7,77) E— D G
tkPQU{w}(Uk)uk n T tpyi1w
ixn (Th T) ——|xn - (38)

Therefore,(x, 27) € O (X™).

49



Thus, it has been shown thiat, w7) € OFF(X™) N OFIR(X™) = X”“D.

Theorem 9 Let (G;S;p) be a synthesis triple withy = {G1,...,G,}, let ~
be a bisimulation ortr1, and letG = {G1/~,Ga,...,Gyr}. Then it holds that
(g; S; P) synth (g7 S; p)

Proof. Clearly, if ~ is a bisimulation onz{, then~ also is a weak synthesis
observation equivalence d@r; with respect td2 = ¥. By lemma 21, it follows
that ~ is a state-wise synthesis equivalence@nwith respect to¥. Then the
claim follows from proposition 19. O

Theorem 10 Let (G; S; p) be a synthesis triple with = {G1,...,G,} andG; =

(3,,Q;,—,;, Q7). LetYT C ¥y suchthat(X, U---UX,)NT = (. Let~ be
a synthesis observation equivalence or a weak synthesis observgtivalence
relation onp(G1) with respect to' such thathl/N is deterministic, and lef =

{Gi/~,Ga,...,G,}. Then(G; S; p) ~eynen (G;S;p).

Proof. If ~ is a weak synthesis observation equivalencé&gmith respect toY,
then it follows from lemma 21 that is a state-wise synthesis equivalence(dn
with respect tdYr’, so the claim follows from proposition 19.

If ~ is a synthesis observation equivalence(@nwith respect toY, then it
is shown in [23] that~ is a weak synthesis observation equivalencesgnwith
respect tdr', and the claim follows as above. O

C Proof for Halfway Synthesis

This appendix contains a proof for theorem 6 in section 5.2. The proaised
on two lemmas, which show how halfway synthesis preserves synthesits ies
synchronous composition.

Lemma 24 LetG = (£,Q,—,Q°) andT = (¥,,Qp, —,QF), and letY C
XN Xy suAch thatbr N YT = 0. :I'hen forallx € Q andzr € Qr such that
(:E,.CIZT) S GG’HT’ it holds thatr € @GvT'

Proof. Itis shown by induction om > 0 that(x, z7) € éGHT impliesz € X" =

& (Q)-
Base caseClearlyz € Q = 0¢, (Q) = X°.

50



Inductive stepAssume thatz, z7) € (Q)GHT impliesxz € X™ for somen > 0,
and let(z,27) € Ogyr. Itis to be shown thar € X" = Ogy(X") =
OFH(X™) N O (X™).

First, to see that € OFY(X"), letv € T andz = y. AsSr N T = 0,
it follows that (z,27) “gr (y,27). As (z,27) € Ogr andv € T C X,
it follows by controllability that(y, xr) € ©¢r, and thery € X" by inductive
assumption. A® € T was chosen arbitrarily, it follows that ¢ @ggf%(X").

Next it is shown that: € @g‘ﬁb(}("). ASs (z,z7) € G)G”T, there exists a trace
t = o1 ---0, such that

T\ O o T\ W
(LL',ZET) = (x071:0) 4|é)GHT e _T$|é)G|\T (xnvxn> _>|©GHT : (39)
Then by inductive assumptiafy, . .., z, € X", which impliesz t—“>‘Xn and there-
forez € OFR(X™). O

Lemma 25 LetG = (£,Q,—,Q°) andT = (¥, Qp, —,QF), and letY C
¥ N %, such that¥y N YT = (. ThensupC(G | T) = supC(H || T') where
H = hsupCy (G).

Proof. By definition 18, H = (3, Qx, —hsup, @Yy) WhereQy = Q U {L}. Itis
enough to showgr = O 7.

Let(z,z7) € G)G”T. It is shown by induction on > 0 thatéGHT < Xpr =
@nHHT<QH X Qr).

Base caseBy definition 180 C QuxQr = % r(Qu*xQr) = Xppyp-

Inductive step Assume@GHT C X};”T for somen > 0, and let(x,z7) €
Oz Itisto be shown thatr, 1) € X[t = Opyr(XJy ) = O (X )N
ORI (X )

First, to see thatz, z7) € OI.(X} 1), letv € T, and (z,z7) S H|T
(y,yr). It is next shown thatz, z7) ﬂ>G”T (y,yr). Assume this is not the
case. Therv € 3, and by construction of = hsupCy(G) and definition 18
alsoy = L, which again by definition 18 implies that — does not hold in
supCy (G), andz = ¢/ in G for somey’ € Q. Then(z, z7) i>G||T (v',yr), and
given (z,z7) € Ogr it follows that (v, yr) € Og|r. Thenz,y' € O¢,x by
lemma 24, and thus = 3/ in supCy(G). This contradicts the above statement
thatz = does not hold isupCy (G). Therefore(z, z7) <7 (v, yr), and since

(z,27) € Ogyr, it follows by controllability that(y, yr) € Ogyr. By inductive
assumptiorty, yr) € X which implies(z, x1) € Gi}jﬁ%(X?[”T)-

51



Next it is shown thatz, z7) € @b (X7

exists a path

(.’E,J?T) = (xo,xg) g‘éGHT e g‘éG”T (J"k“/]:%) ﬁ)léGHT (wk+1,xz+1) .
Then (z;,27) € Ogyr for I = 0,...,k. By inductive assumptiotiz;, z7) €

X};HT forl =0,...,k, and thus

Ty @ g Ty T
(SU,.Z‘T) = (I‘O,LEO) 4|X?IHT Ce ﬁ‘XZ”T (xk,l‘k,) —)‘XZIHT (I‘k+1,$k+1) y

which implies(z, 1) € O (X7 7).

Cionversely, to show thad ;i C (i)G”T, it is shown by induction om > 0

Base caselet (z,z7) € éH”T. Clearlyx # L, as(L,zr) ¢ @;ﬁ?}?(@H X
Qr). Therefore(w, 27) € Q x Qr = 64 1(Q % Qr) = X1

Inductive step Assume@)HHT - Xg”T for somen > 0, and let(x,z7) €
A n+l _ n __ (con n
@HHZI;. It must be shown thdtr, z7) € Xg17 = Oc)r (X)) = @GH}(XGHT)D
Ocir (X r)-

First, to see thatz, z7) € @g)ﬁ(XguT)' letv € ¥, such that(z, z7) ﬁ>G”T
(y,yr). Then there are three possibilities for If v ¢ ¥ then (z,z7) 3>H||T

(z,yr). If v € Q then sincay € X, eitherz 5 y orz > L by definition 18.
If v ¢ Qthenzy = yr and byY-controllability of H = hsupCy(G) it can be
concluded thatz, z7) i>HHT (y,z7) = (y,yr). Inall cases, there exists € Q

such that(z,z7) g7 (¥, yr). Sincev € I, it follows by controllability of
supC(H || T) that (y',yr) € © . By inductive assumptiofy’, yr) € Xz ;.
which implies(z, z7) € GCGO\T%(XZHT)-

Next, it is shown thatz, z7) € OB (XY,

: ¢t (Xé&yr)- Since(z,zr) € O |7 there
exist a path

g

(2,27) = (29, 28) B O R T W

©Omr $|@H\|T

Then(z;,af) € Oy forl =0, ..., k. Thus, by inductive assumptidm,, =7') €
XgHT fori =0,...,k. Therefore,

AN ok Ty T
(z,27) = (70,70 _17|X8”T —k5|xgHT (kT3 X r (Ths1 Tht1)
which implies(z, z1) € @gﬁ(xgw). O

52



Theorem 6 Let (G;S;p) be a synthesis triple with = {G1,...,G,}, and let
T C ¥y suchtha(3XsU---UX,)NY = (. Then

(G;S; p) ~synen ({hsupCrsx, (G1), G2, - - -, Gu}; {hsupCrns, (G1)} U S; p) .

Proof. Let H; = hsupC~(G1). By definition 16 and lemma 25, it holds that

L(supC(G; S; p)) = L(p(supC(G1 || G2 || -+ [| Gn) [| S))
= L(p(supC(H1 || G2 || -+ [ Gn) | 5))
= L(p(supC(H1 || G2 || -+ | Go) || H1 || S))
= L(supC({H1, G, ..., Gp}; {H1} US;p)) .

Using H; = hsupC~(G1), the claim follows from definition 17. O

53



