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Abstract

This working paper proposes an algorithm to simplify auttama such
a way that compositional synthesis results are preservesery possible
context. It relaxes some requirements of synthesis obenvequivalence
from previous work, so that better abstractions can be obthi The paper
describes the algorithm, adapted from known bisimulatiuiv@lence algo-
rithms, for the improved abstraction method. The algoritrams been imple-
mented in the DES software tool Supremica and has been usmaiipute
modular supervisors for several large benchmark exampiessiccessfully
computes modular supervisors for systems with more tifd#A reachable
states.



1 Introduction

Compositional methods are of great interessupervisory control theoryl5],
firstly in order to find more comprehensible supervisor representationssec-
ondly to overcome the problem efate-space explosidior systems with a large
number of components.

Compositional synthes[g, 10, 12] computes a supervisor for a large discrete
event system by repeatetbstraction Individual system components are replaced
by simpler versions obtained from abstraction, and synchronous cdtiopds
computed step-by-step on abstracted components. At each step, pgeialisors
are computed, which in the end give a modular supervisor for the origistdrs.

In this way, state-space explosion is mitigated, making synthesis possiblerjor v
large systems.

Several methods of compositional synthesis exist that differ in how abstra
tions are computedNatural projectionis easy to compute, but it is restrictive
and additional conditions must be imposed to ensure synthesis of leattirastr
nonblocking supervisors [5, 16Conflict-preservingbstractions andbservation
equivalenceare adequate for the synthesis of nonblocking supervisors, but least
restrictiveness is only guaranteed if all observable events are retairibd ab-
straction [9, 17].

More recently, a stronger version of observation equivalence kresynthe-
sis observation equivalentas been proposed [14]. Synthesis observation equiva-
lence is adequate for compositional synthesis of least restrictive sspexvit has
been combined with other abstraction methods and used to compute sugervisor
for practical applications [12].

This working paper proposes a relaxation of synthesis observatiovaéence,
calledweak synthesis observation equivalgnghich achieves better abstraction.
A polynomial complexity algorithm to compute the abstraction is presented.

This working paper is an extended version of [13]. After the preliminaries
in section 2, weak synthesis observation equivalence is defined in s8ctibime
algorithm to compute it is given in section 4, followed by experimental results in
section 5, and concluding remarks in section 6. Proofs of the techn@dtsean
be found in the appendix.

2 Preliminaries and Notation

2.1 Events and Languages

Discrete event systems are modelled using events and languages [#8}s Bve
taken from a finite alphabet, which is partitioned into two disjoint subsets, the



setY. of controllableevents and the sét,, of uncontrollableevents. The special
eventw € Y. denotegermination

The set of all finitetracesof elements of:, including theempty traces, is
denoted by:*. A subsetl C »* is called alanguage The concatenation of two
tracess,t € X* is written asst. A traces € X* is called aprefixof t € X*,
written s C ¢, if ¢t = su for someu € ¥*. ForQ C ¥, the natural projection
Pqo: ¥* — Q* is the operation that removes from traces X* all events not
in Q.

2.2 Nondeterministic Automata

System behaviours are typically modelled by deterministic automata, but nonde-
terministic automata may arise as intermediate results during abstraction.

Definition 1 A (nondeterministic) finite-state automaton is a tuple= (3, Q,
—,Q°), whereX is a finite set of eventg) is a finite set ofstates - C @ x
3} x @ is thestate transition relationand@° C @ is the set ofnitial states G is
deterministigif |Q°| < 1 andz % y; andz % y, always impliegy; = y».

The transition relation is written in infix notatian % y, and is extended to
traces inS* by lettingz = z forall z € Q, andz 2% z if 2 > y andy > z for
somey € Q. Furthermorez > meanst > y for somey € Q, andz — y means
z = y for somes € ¥*. These notations also apply to state sets and to automata:
X 3 v for X,Y C Q meanst > y for somez € X andy € Y, andG = means
Q° >, etc. Theaccepted languagef automatorG is £(G) = {s € ¥* | G > }.

The termination event marks the completion of tasks. It is required to be in
the alphabet of every automaton, and states reachedchynot have any outgoing
transitions. That is, i — y theny - does not hold for any € X. Thus,w only
occurs as the final event of traces accepted by an automaton. The traldsed of
marked states i“ = {z € Q | z >} in this notation. For graphical simplicity,
states inQ“ are shaded in the figures of this working paper instead of explicitly
showingw-transitions.

When automata are brought together to interact, synchronisation oacurs o
shared events occurring synchronously or not at all. This is modellesyby
chronous compositiof8].

Definition 2 Let G; = (X1,Qq, —1, Q) and Gy = (X9, Q,, —5, QS) be two
automata. Theynchronous compositiaf G; andGs is defined as

Gl || G2 - <El U 22)@1 X Q27_>a Q(l) X Q§> (1)



where

(x1,22) 2 (y1,92) if 0 € D1 N g, 21 31 Y1, T2 22 ya; (2
(z1,22) > (y1,22) if 0 € X1\ Xo, 21 51 ya; (3)
(z1,22) > (z1,92) if 0 € T\ X1, 20 Do o 4)

Another common automaton operation is thetientmodulo an equivalence
relation on the state set.

Definition 3 LetG = (¥, Q, —,Q°) be an automaton and let C @ x @) be an
equivalence relation. Thguotient automatonf G modulo~ is

G/N = <27Q/N7_>/N’QO> ) (5)

where—/~ = {[z] 3 [y] | = 2 y}and@° = {[z°] | z° € Q°}. Here,
[x] = {2’ € Q| z ~ 2/} denotes thequivalence clasef = € Q, andQ/~ =
{[z] | = € Q } is the set of all equivalence classes modulo

2.3 Supervisory Control Theory

Given aplant automatonz and aspecificatiorautomaton/’, supervisory control
theory[15] provides a method to synthesise a supervisor that restricts theibehav
of the plant such that the specification is always fulfilled. Two common requir
ments for the supervisor acentrollability andnonblocking

Definition 4 Let G and K be two automata using the same alphabetK is
controllablewith respect taG if, for every traces € X*, every stater of K, and
every uncontrollable event € X, such thatkX' = 2 andG 3, it holds thatz =
in K.

Definition 5 An automaton? = (X, @, —, Q°) is nonblocking if for every state
z € Q and every trace € (X \ {w})* such thaiG > x there exists € X* such

thatz 2.

For a deterministic plan€, it is well-known [15] that there exists a supre-
mal controllable and nonblocking sublanguag&¢f), which represents tHeast
restrictivefeasible supervisor. Algorithmically, it is more convenient to perform
synthesis on the automatas instead of this language, or more precisely on the
lattice of subautomataf G [4]. This approach also works for nondeterministic
automata.



Definition 6 [7] G1 = (£, Q,, —, Q) is asubautomatonf G2 = (X, Q,, —,
Q5), written G C G, if Q1 € Q2, =1 € —9, andQs C Q5.

Theorem 1 [7] Every deterministic automatad has a supremal controllable and
nonblocking subautomaton,

supCN (G) = sup{ K C G | K is controllable with respect t&' and non- (6)
blocking} .

Here, the supremal element is defined based on the subautomaton reiptionsh
(definition 6). The result is equivalent to that of traditional supervismtrol
theory [15]. That issupCN (G) represents the behaviour of the least restrictive
supervisor that disables only controllable eventgiirsuch that nonblocking is
ensured.

The synthesis resulipCN (G) can be computed by removing blocking and
uncontrollable states from the plant, until a fixpoint is reached, and réstrihe
original automatort- to these states.

Definition 7 [10] Therestrictionof G = (3, Q,—,Q°)to X C Q is

G\X = <EaQ7—>|X>QOmX>a (7)
where— x = {(z,0,y) € = |,y € X }U{(z,w,y) € = |z € X }.

Note that restriction only removes transitions, not states. Moreoverittcanss
with the termination event are retained even if their successor state is not con-
tained inX. Typically, some states become unreachable after restriction, and these
states can be removed, but this is not considered further in this workpeg.pa

Definition 8 [10] Thesynthesis step operat@: 29 — 29 for G = (%, Q, —,
Q°) is defined a®(X) = O™ (X) N O (X), where

O (X)={zec X |forallc € ¥,, 2 % yimpliesy € X } ;

o (X)={zeX |z t—“i‘x for somet € ¥* } .

O%™ captures controllability, an@g‘mb captures nonblocking. The synthesis
result forG is obtained by restricting to the greatest fixpoint dd.

Theorem2 [10] Let G = (%,Q,—,Q°) be a deterministic automaton. The
synthesis step operaté has a greatest fixpoifpOs = O¢ C Q, such that
G|@G is the greatest subautomaton@®@that is both controllable with respect o
and nonblocking, i.e.,

supCN (G) = Glo, - (8)
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If the state set)) is finite, the sequenc&® = Q, X**! = ©4(X?) reaches this
fixpoint in a finite number of steps, i.&s = X" for somen > 0.

2.4 Compositional Synthesis

Most discrete event systems ar®dularand consist of several interacting com-
ponents. Then the synthesis problem is to find a least restrictive, cohteotiad
nonblocking supervisor for the synchronous composition of a set nfgla

G=1{G1,Ga,...,Gn}. 9

Compositional methods seek to build the synchronous composition incrementally,

replacing individual components; by simplerabstractionsG’. Such simplifica-

tion typically exploits a sel’ C X of local events. These events are used only in

the automaton being abstracted and contribute substantially to its simplification.
The abstraction relation must ensure that the results obtained from the ab-

stracted model are the same as for the original model. An appropriate canditio

that works for compositional synthesissgnthesis abstraction

Definition 9 [14] Let G and H be deterministic automata with alphab&tThen
H is asynthesis abstractioof G' with respect to' C X, written G Seyntn, v H, if
for every deterministic automatdf = (X, Q, =, QF) such thatr N Y = ()
the following holds,

L(G || supCN(H || T)) = L(G || supCN (G [| T)) - (10)

Synthesis abstraction requires that the supervisor synthesised froabthe
stracted automato#/, in combination with every possible rest of the systé&m
yields the same language when controlling the system, as would the supervisor
synthesised from the original automatGrtogether withT".

3 Synthesis Observation Equivalence

Synthesis abstraction describes, in a general way, the kind of abstréedisible

for compositional synthesis. This section presents a concrete method to gimplif
a given automaton such that synthesis abstraction is satisfied, and therfgllow
section presents an algorithm to implement this method.

The proposed method is based lisimulationand observation equivalence
which are standard examples of branching equivalences [11]. Fasthtes to be
equivalent, they must have the same nondeterministic future. This requireanen
described using an equivalence relation thatablewith respect to certain transi-
tion relations.
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Figure 1: Example Automata. Uncontrollable events are prefixed!wéhd local
events have parentheses around them.

Definition 10 Let — C X x X be arelation on a sef. An equivalence relation
~ C X x X is stablewith respect to—, if for all z1, x2,y1 € X such thatr; ~ xo
andz; — y; there existg, € X such thateo — yo andy; ~ yo.

Definition 11 LetG = (X, Q, —, Q°) be an automaton. An equivalence relation
~ C @ x Qs called abisimulationon G, if ~ is stable with respect t8> for all
o e .

Definition 12 Let G = (%, Q,—,Q°) be an automaton withl = Q U Y. An
equivalence relation- C @ x Q@ is called anobservation equivalenaoegn G with

respect taY, if ~ is stable with respect té> for all o € ¥, wherez = y if and
t1Pa(o)t2

only if 1 ———— y for somet;,to € T*.

Unlike bisimulation, observation equivalence takes local events into atcoun
ProjectionP, is used in the definition of to ensure that it covers both shared
eventss € ) and local events € T.

Bisimulation and observation equivalence preserve all temporal logic prope
ties [3]. Once an equivalence on G is found, the quotient automatar/~ can
be considered as an abstraction. For bisimulation this results in a synthetsésab
tion, but it does not for observation equivalence [14].

Example 1 [14] Consider automaté&; andT; in figure 1, whereéY = {«a, 8}
andX, = {!u,!v}. Statesyy andq; are observation equivalent and merging them
results inG;/~. However,G/~ || T} does not have the same least restrictive



supervisor as7; || 71. A supervisor forG; || 71 can disablex to prevent block-
ing via lv, but after mergingyy andq;, disablinga is not enough to prevent the
dangerous uncontrollable event

While observation equivalence does not lead to synthesis abstractiamaragje
it can be strengthened [14] such that it does.

Definition 13 Let G = (%, Q, —,Q°) be an automaton with. = Q U Y. An
equivalence relatiorr C @Q x @ is asynthesis observation equivalerareG with

respect tdr, if ~ is stable with respect tésoe, t0 =4, for eacho € . NQ, and
to =, for eachv € %, defined as follows.

oz .. yif there exists a path: = 20 = --- 5 2, = y such that
T1,..., 7 € T, andr; € X. impliesz ~ z; or j = k.

o & 2. yif there exists a path: = 2z = --- 5 2z, 5 y such that
T1,-.., Tk € T,andr; € X, impliesz ~ z;.

o =, yifz REUCLN y for somety, ty € (3, N Y)*.

Definition 13 modifies observation equivalence based on event typesnkn
trollable events are treated by, in the same way as in observation equivalence,
except that the local events on the path must all be uncontrollable. Conliollab
events can be preceded by local events according-4Q, provided that states
reached by controllable local events are equivalent to the start state jpéti.

Example 2 Consider automato&'s in figure 1, where all events are controllable
andY = {8}. The equivalence relation with ¢; ~ g2 ~ g3 is a synthesis

observation equivalence. For example, the transifiof> ¢4 is matched by ﬂ
g3 = qu where stateys, reached by the local controllable evehtis equivalent
to ¢2. Merging the equivalent states results in the synthesis observatiorakiv
abstraction?s /~ shown in figure 1.

The definition of=,. does not allow any local evenésdter the controllable
evento. This is not necessary, and the condition can be relaxed as follows.

Definition 14 Let G = (%,Q,—,Q°) be an automaton with: = Q U Y. An
equivalence relation C @ x @Q is aweak synthesis observation equivalence

on G with respect toY, if ~ is stable with respect tg;wsoe, t0 =00 fOr €ach
o€ Y. N, and to=, for eachv € X,,.

T Y T
& X = ysoe U If X =g00 2 = y fOr somez € Q.
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a . a T
& X = yeoe Y If T =50 2 = y fOr somez € Q.

°o §>C y if there exists apath = zy = --- 5 2z, = y such thatr, ..., 7 €
T, andz; & Y foru e (Xy NY)* impliesz’ ~ z; for some0 < i < k, and
zj =y 2 forv € ¥, N Q impliesy =, 2" for somez” ~ 2/

The modified relation=s.. allows for a path of local events after a control-
lable event, if local uncontrollable transitions outgoing from the path leadtate s
equivalent to a state on the path, and shared uncontrollable transitioa¢sare
possible in the end state of the path.

Example 3 Consider automatotvs in figure 1, with all events controllable and
T = {B}. An equivalence relation with; ~ ¢ ~ g3 andgy ~ g7 is a weak
synthesis observation equivalence. For example, transjtiof ¢ is matched

by g1 = g7 LA ge, and statey; has no uncontrollable transitions outgoing. Note
that states;; and ¢, are not synthesis observation equivalent, because the path

= qr N g6 does not satisfy the conditions fé...

As shown in appendix B, every synthesis observation equivalencesabso
weak synthesis observation equivalence. Therefore, the followswdtreonfirms
that both methods are feasible for compositional synthesis.

Theorem 3 Let G = (2,Q,—,Q°) be a deterministic automaton with C ¥,
and let~ be a weak synthesis observation equivalencé& evith respect tdr" such
thatG/~ is deterministic. Thelr Seyntnxr G/~.

The proof follows from proposition 4 and proposition 6 in appendix A.

4  Algorithm

Given an automator = (X, Q,—,Q°) and a sefl’ of local events, a coarsest
weak synthesis observation equivalence relation can be computed titempa
refinement algorithm similar to [6]. This algorithm represents an equivalesc
lation as apartition, i.e., a set ofequivalence classesach representing a set of
equivalent states. The algorithm starts withimitial partition consisting of a sin-
gle equivalence class, which is iteratively refined until a stable partitiorached.
At each step, aplit is performed on each known equivalence cl@s®r each re-
lation = for which stability is required, separating statesith x = C from other
states. This principle is shown in algorithm 1.



Algorithm 1 Weak Synthesis Observation Equivalence
input G = (£,Q,—,Q°)

2: partition < {Q}

3: repeat

4. forall C € partition do
5: forall o € ¥ do
6

7

8

9

=

SplitOn(partition, C, o)
end for
end for
. until there has been no further split
10: return partition

The bisimulation algorithm [6] performs clever bookkeeping when clasges a
split, which reduces the need to check whether further splits are negcassben-
sures an overall time complexity 6f(|]—|log |Q|). For observation equivalence,
thetransitive closureof the local event transitions needs to be computed, and this
transitive closure computation dominates complexity. A partition based on-obser
vation equivalence can be computedfQ|?) time complexity [2].

The partition refinement algorithm uses several data structures to faciligate th
splitting of classes [6]. Each equivalence class is an object containinigod trse
states in the class, and each state has a reference back to the clas$npittdim
addition, each equivalence class hapkht list containing states to be split off from
it.

The SplitOnalgorithm (algorithm 2) performs the splitting for paths leading to
a target clas¢’, called asplitter. States with a path to theplitter based on each
relation =5, and=-, in definition 14 are separated from states without such a
path. This is done by visiting each statedin thesplitter and searching backwards
for all statessrc with appropriate paths tend These states are put in the split list
of their class. After exploring the predecessors okalll states, the split lists are
checked in lines 12-16. Classes with an empty split list or a split list containing
all states in the class are left unchanged, other classes are split éawbcepy two
new classes.

For uncontrollable events, the source states=fqr are found by a standard
backwards search (lines 2-6), whereas for controllable eventscakpeoce-
dureBSis used to follow the paths generated-y,s.. (lines 8-10).

The procedurdS (algorithm 3) performs a backward search for a given con-
trollable eventr andendstate to find paths =4, 2z = end. It uses aqueueof
search record&urrent, part, startclass), each containing eurrentstate, whether
the search is in the firs&,.) or second£.) part of the path, and thetartclass

10



Algorithm 2 SplitOn(partition C 29, splitter CQ, o €X)
1: if 0 € X, then
2. forall end € splitter do

3: for all sre 2, end do

4 movesrcto split list in [src]
5: end for

6: end for

7. else

8: forall end € splitter do

o: BS(o, end)

10:  end for

11: end if

12: for all class € partition do
13:  if classhas a non-trivial split listhen

14 split classand updatgpartition
15:  end if
16: end for

(class of the yet unknown start statpof the path. The search starts with ted
state, in the second part of the path, and with an unassigjaedlass so the queue
is initialised with the search recofdnd, 2, none) in line 1.

When exploring aurrent state in the first part of the path, it is first checked
whether this state can be the start of a path generatedhy. This is possible if
it belongs to thestartclass or if the startclassis unassigned, and in this case the
currentstate is marked as a candidate to be split off from its class (lines 5-7).

Afterwards the loop in lines 8-14 scans all local transitions leading touhe
rent state. If the event is uncontrollable, a new search record with the peeviou
startclassis created in line 10. If the event is controllable, then based on defini-
tion 13 thecurrentstate must be equivalent to the yet unknown start atatethe
path. If thestartclasds unassigned or the same as the classuofent, thencurrent
can potentially ber, so its class is used to form a new search record in line 12.

If the algorithm is in the second part of the path, it checks for possible pre
decessors according te.. This is only needed for weak synthesis observation
equivalence; synthesis observation equivalence is checked byrtteeadgorithm
if ines 16—32 are deleted froBS These lines check, for each local transition lead-
ing to thecurrent state, whether the source state is controllable This is done
by exploring all states reachable by traces of local uncontrollable evéntse of
these states is not equivalent to #re current, or endstate, or has a shared uncon-
trollable outgoing transition to a state with no matching state reachable from the

11



Algorithm 3 Backward SearclBS (o € X, end € Q)

1: queue < {(end,2,none)}
2: while queue # () do

3 remove(current, part, startclass) from queue
4: if part = 1then
5: if startclass € {[current], none} then
6: movecurrentto split list in [current]
7 end if
8 for all transitionssrc — current with v € Y do
o: if v e X, then
10: add(src, 1, startclass) to queue
11: else if startclass € {[current], none} then
12: add(src, 1, [current]) to queue
13: end if
14: end for
15: else
16: for all transitionssrc = current with v € T do
17: controllable < true
18: forall src = succ with u € (X, N Y)* do
19: if suce ¢ [src] U [current] U [end] then
20: controllable < false
21: else
22: for all succ 2 succ’ withy € £, N do
23: if not [end] =, [succ’] then
24: controllable < false
25: end if
26: end for
27: end if
28: end for
29: if controllablethen
30: add(src, 2, none) to queue
31 end if
32 end for
33: if o € T then
34: add{current, 1, none) to queue
35: else
36: for all transitionssrc = current do
37 add(src, 1, none) to queue
38: end for
39: end if
40: end if
41: end while

12



endclass, then therc state is notontrollable Otherwise, a new search record is
created in line 30. The condition checked here is strongerthaim definition 14,
which allows the target states of uncontrollable local transitions to be amgwhe
along the second part of the path. The algorithm still results in a weak synthe
sis observation equivalence relation, but not necessarily a coarsgsas shown

in appendix C. An exact implementation ef. requires search records to store
complete paths, making the algorithm exponential.

Next it is checked whether it is possible to move from the second part of the
path to the first. This is possible if the eventinder consideration is local (line 34),
or if there is as-transition to thecurrentstate (lines 36-38).

The algorithm terminates when tlggeueof search records is empty. To pre-
vent duplicates, thqueues linked to a hash set to ensure that search records that
have been enqueued once are never added tpuingecagain. The hash set is reset
for each split operation, i.e., before line 8 in Algorithm 2.

Complexity. In the worst case, the main loop in line 3 of algorithm 1 is executed
once for each state, giving up lQ| iterations. Inside the loop, a split on each class
is performed. This causes each state to be processed once for eathusing
either the loop in lines 2—6 or 8-10 of algorithm 2. The bodies of these laaps a
executedX||@| times in total during each iteration of the main loop of algorithm 1.
The splitting of classes after line 12 can be executed in lower complexity usng th
data structures outlined above.

The loop in lines 2—6 of algorithm 2 can be execute@{HQ|?) time, assuming
the transition relations,, has been computed in advance. This is dominated by the
loop in lines 8-10 which calls algorithBS

In the worst case, algorithBSvisits two search records for each combination
of a state and class, i.e., up2{Y|? search records. Each time, it executes either
the loop in lines 8-14 or 16-32. The loop in lines 8-14 visits all local incoming
transitions to a state, up t@| operations if the local transitions are appropriately
stored in advance. The loop in lines 16—32 also processes|@) kocal predeces-
sor states, however each time the loop in lines 18-28 must be executedigbigten
increasing complexity. Fortunately, this can be avoided by caching. =fhe
successors of thendclass can be computed in advance, and it can be checked for
each statsrc whether it has exactly one successor class reachable by local uncon-
trollable events that is different from the classsof and from theendclass, and
that also passes the test in lines 22—-26. By caching this successoititagessi-
ble to execute the loop in lines 18—-28 only once for each state during thetiexec
of the algorithm 3. With this caching, the complexity of algoritB8is O(|Q|?).

Therefore, the execution of algorithm 1 involv@$|(Q)|) iterations of the main
loop, each performing@(|X||Q|) search operations with @ (|Q|3) complexity.

13



Table 1: Experimental Results

SOE WSOE
Model Aut States | Time States | Time States
agv 16 2.6107 |17.8s 10774718.2s 106169
agvb 17 2.3107 |11.7s 8357711.5s 82353
aipOalps 35 3.0108 09s 867 0.9s 867
fencaiwon09b 31 8.9107 0.1s 73| 0.1s 73
fms_2003 31 1.4107 |83.6s 67386869.7s 444922
koordwsp_b 24 1.210° | 0.5s 756 0.4s 743
tbed_noderailb 84 3.110'%| 57s 18134 4.4s 18134
tbed_uncont 84 3.610'?| 50s 9148 4.4s 9148

The worst-case time complexity to calculate a coarsest synthesis obseegition
alence or a weak synthesis observation equivalence relation using thitatyis

o(I=[1QP).

5 Experimental results

The synthesis observation equivalence and weak synthesis obsepa@tivalence
algorithms have been implemented in the DES software $amremicg1] and
used within a compositional supervisor synthesis algorithm that computedanodu
supervisors [12].

This program has been used to compute synthesis abstractions for & set o
benchmark examples that include complex industrial models and case studies ta
from various application areas such as manufacturing systems and awbauty
electronics. The automata in each example are iteratively composed and simplifie
until a final abstraction is obtained and passed on to standard synthdisisst
were run on a standard desktop PC using a single core 2.66 GHz micespooc

Table 1 shows for each test case the number of automata (Aut) in the model
and the size of the reachable state space (States). It also shows tharibtaér
of compositional synthesis (Time) and the number of states in the final aistrac
passed on to standard synthesis (States), when using synthesisatbbaesguiva-
lence (SOE) or weak synthesis observation equivalence (WSOE).

Supervisors can be calculated for all models in less than two minutes, with
memory usage of no more than 600 MB. The size of the models is substantially
reduced compared to the size of the original systems. Weak synthesigailuser
equivalence gives slightly less states than synthesis observation leqavavith
about the same computational cost.

All examples are too large for supervisors to be computed by standaitksys

14



alone, and abstraction using only bisimulation results in a final abstraction with a
least2 - 10 states for all test cases.

6 Conclusions

Weak synthesis observation equivalence has been introduced assaohabstrac-

tion for compositional synthesis algorithms. Weak synthesis observatiamaequ
lence allows for better abstraction than previously possible with syntheses-ob
vation equivalence. A polynomial complexity algorithm for synthesis observa
equivalence and weak synthesis observation equivalence has imgmsgd and
implemented in the DES software tool Supremica. The experimental results show
that the algorithm can compute abstractions of automata with several thousand
states, making it possible to construct modular supervisors for systems wigh mo
than10'? reachable states.
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A Weak Synthesis Observation Equivalence

This appendix contains a proof of theorem 3, which states that weakesysith
observation equivalence implies synthesis abstraction. Following the lirlglpf [
this is done by proving that weak synthesis observation equivalence irspiies
wise synthesis equivalence

Definition 15 [14] Let G = (X,Q,—,Q°) be an automaton. An equivalence
relation~ C @ x @ is astate-wise synthesis equivalerme G with respect to
T C %, ifforall z € Q, all deterministic automatd = (¥, Q,, =, Q%) such
that>Xy C T, and for all states € Q7 the following relations hold:

(i) if (z,27) € Og|r. then([z], 27) € Oc/yr:
(i) if ([z],27) € OG 1, then(z, z1) € Ogyr.

State-wise synthesis equivalence means that for every equivalessé,dgn-
thesis must remove either all or none of the statés in every possible conte4t.
It is a known result [14] that this is a sufficient condition for synthesigrabton.

Proposition 4 [14] Let G = (X,Q,—,Q°) be deterministic, and let be a
state-wise synthesis equivalence @rwith respect toY C ¥ such thatG/~ is
deterministic. Therty Sgynth,x G/~.

Proof. It must be shown that for any deterministic automéfos: (X, Q,, =,
Q%) suchthattr N'Y = (, equation (10) holds.

First, lets € £(G || supCN (G || T)). This means’ || supCN (G | T) >
(g, ya, ), and sinceG is deterministictg = yg. Lets = o1 ---0,, then
(z§, 28 gléGHT (zf,2T) g\écw a—'ﬁléGHT (2%, 2l) = (zg,z7) such
that (2§, 27) € Ogyr or oy = wfor k = 0,...,n. By definition 15 (i),

(2], 2F) € ©g/myr O o) = wfork = 0,...,n, and thug[z§], 2 9>|ég/~“T

17



([2§], 2T) B L 3 ([2&],2T) = ([zg], zT). Therefore,G ||

19¢/~ |1 1OG/~r M DTm
supCN (G/~|T) > (zg, [zg), 2T), which means € L(G || supCN (G/~ || T)).
Conversely, les € L(G||supCN (G/~||T)). SinceG andG/~ are determin-
istic, this meanQHsupCN(G/NHT) Bo(2§, [2F],2T) B - B (29, [2G], 2T),
wheres = oy---0,. Since([z§],2f) € Og/r for k = 0,...,n by def-
inition 15 (ii), (xk,q:k) € éGHT or o, = wfork = 0,...,n. Therefore,
i

G || supCN(G | T) & (2F, 2§, 2T) B - B (2G,2C T) and thus it can

Ly Ly s

be concluded that € £(G || supCN (G || T)). O

Proposition 6 below establishes the crucial result that every weak symthe
observation equivalence is a state-wise synthesis equivalenceeBaditrlemma 5
establishes an auxiliary result about the paths in a quotient automaton mgsultin
from weak synthesis observation equivalence.

Lemma5 LetG = (£,Q,—,Q°) andT = (X,, Qp, =, Q7) be two automata
with X UXr = QU Y andY Nt = (), and let~ be a weak synthesis observation
equivalence orG with respect toY. Let X C @ x Qr such that([z],zr) €
@G/NHT always impliesz, z7) € X. Furthermore, letz,,z7) % (x,,27) such
that([z,],2T) > ([x5], #3)). Then for all stateg; € Q such thatc; ~ 1,
t1Po(o)t2
I

96/~
there existt;,t, € T* andys € Q such that(y,, z1)
Ty ~ Y2.

1x (¥2, 75 3) and

Proof. Letzy,z2,y1 € Qandz], 2 € Qr ando € YUYy suchtha(z,,2T) %

(29, 21), ([24], 2T) i‘éG/NHT ([zo]), 21), andx; ~ y1. Consider three cases.
() If o ¢ ¥, thens # wando € 7\ ¥ C Qandz; = zp andz] %
xd. Given ([z],2T) g‘éG/~HT ([x5], 23, it follows that ([y,], 2T) =

([xq],27) € éG/NHT and([y;],23) = ([z1],23) = ([z,].2]) € Og)yrs
and therefore(yl,xl) (y;,#%) € X by assumption. This implies that

Py (o)
(yy,x]) —>|X (y1,x3).

(i) If 0 € 2N Xy, thenz; =, z2, and sincer; ~ y; and~ is stable with re-

spect to>,, there exists; € Q such that; =, y2. Thus,y; t1Po(0)ts "

for somet;,to € (Y NX,)*. Letr C ¢ Po(o)ts such thaty, % 2. Then
[z1] = 1] = [2], and sinceXr N Y = 0, it follows that ([z,], z]) =
([],2]) for somed € {1,2}. Sincer € =} and([z],27) € Og |1,

it follows that ([z], 2] € @G/NHT. This implies(z,z%) € X by assump-
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tion. This argument holds for all prefixes C ¢, Po(o)t2, and therefore

T t1PQ(0')t2 T
(Y1, 21) — 7|x (Y2, 73 ).
(i) If 0 € 2N e, thenz; Zpee T2 OF 1 —wsoe 2, and sincer; ~

and ~ is stable with respect to these relations, there exjists- x5 such

thaty; =wsoe ¥2 OF Y1 g>wsoe Y. That is, there exists a path = zo —

Pq(o T TI—
. l 2k M 241 ﬂ> L) 21 = Y2 such thatzy ~ Y2 and

T,...,71—1 € Y. The first part of this path satisfies the conditions for
20 =soe Zg+1 OF 29 g>soe zi+1 in definition 13, and the second part sat-

isfies the conditions fogy ;C z; in definition 14. Since,..., 711 € YT
andXr N Y = 0, it holds that

7 Pa(o)
(91,x1T) = (zo,x{) ALY ijxlT) Palo),
(Zk+17xg) & s i} (Zl7$g) = (yz’xg) (11)

It follows that

(2o aT) B -+ T8 ([, 2T) 222
([zpa)s 23) 25 - 55 (2], 23) (12)

It is shown in the following that this path also exists in the restriction of
G/N H T to ®G/~||T-

For the first part of the path (12), itis shown by induction dimat([2,], 21 e
O/~ 1 fori=0,...,kif o € Q,andfori =0,...,k - 1if o € T.
Base caseFori = 0, it follows by assumption thdfzo), z7) = ([y1],27) =
([z1],2T) € O )y7-

Inductive step Assume the claim holds for somie> 0, i.e., ([z,],27) €

é)G/N||T. It must be shown that[z; ,],27) € éG/NHT- There are two
possibilities forr;,.; € T:

. . a T
a) 7i+1 € Xc. Inthis case, it follows fronty =soe 2x+1 OF 20 = s0e Zk+1
by definition 13 that; 1 ~ z1, and thus([z, ], z7) = ([z,],27) €
O/~ | by assumption.

b) Tit1 € Su. As (z,]) = (2,4, 27), it holds that([z], =T) =

([z41],2T), and([z,],2T) € O/ by inductive assumption. Then
([241], 2T) € O/ becausey; € 5.
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If o = w, the second part of the path (12) is empty and the claim follows.
Otherwise note that by assumption,

([zo),23) € O i1 - (13)

Itis shown tha([z,],23) € O/ r fork < i <. LetYL ==, N(S7\X)
and

T={yT e Qr |2t S1 yT for someu e (YT)*} . (14)
Aszl € YT, itis enough to show thdfz;], y7) € O/ forally” € YT.
Itis shown by induction om > 0 that for allk < </ and for ally’ e y?
it holds that([z;], y") € X" = 6%, 7(Q/~ x Qr).

Base casen = 0. Clearly ([z;],y") € Q/~ x Qr = 0%, 1(Q/~ x
Qr) =X

Inductive step.Let k < i < [ andy” € Y”. It must be shown that
([zi,97) € X" = O r(X™) = O (X™) N 91&7%()(”)

To see that[z],y") € @‘g?ﬁ%(X”) letv € By and ([zi],y7) Samr
([2], 27). Consider three cases.

a)v € XN 7Y. Inthis casey’” = 27 and[z] > [2], so there exist
2l ~ z andz' ~ z such that! % 2’ and thusz, =, 2. Asz, ~ 2/
and ~ is stable with respect te>,, there exists:” ~ 2z’ such that
2 =y 2. Asv € ¥, N T, this means; = 2" for someu € (X, N
T) As z; is on a pathz ¢ £>C 21, it follows from definition 14 that
2" ~ zj forsomek < j < I. If j <, then by inductive assumption
([ZLZT) = ([¢1,2") = ([¢"],2") = (5, 2") € X" If j = I, then
note that([z,], 23) = ([z,], 27) for someu € (T])* asz" =y
Y7, and given (13) it follows that[y,], 2*) = ([22],27) € Og |1
Then([z],2") = ([],2z") = ([z"],2") = ([a],z") = ([e],2") €
Oc/~r € X"

b) v € X N Q. In this casdz;] = [2], so there exist, ~ z; andz’ ~ z
such that! = 2/, and thusz, =, 2’. Asz, ~ z, and~ is stable
with respect to=, there exists” ~ 2’ such thatz; =, z”’. As z;
is on a pathzy; %C z1 = ys ~ xa, it follows from definition 14
thatz, =, 24 for somezj ~ 2" ~ 2/ ~ z. Then sincey” € YT
and by definition of=, there existu € (Y1)* anduy,us € (Zy N
T)* such thaf([z,], 23 ) —>G/~HT (ER %G/NHT ([5], 7).
Given (13), it follows that[z], z7) = ([24], 2T) € @G/NHT cC X"
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c) v ¢ ¥. Inthiscasep € Yy \ T and[z] = [z] andy” S 27
Then clearlyz" € YT and([z], 2T) = ([z], 2T) € X™ by inductive
assumption.

Thus ([2],27) € X can be shown for alb € %, and it follows that
([ y7) € ©FL p(X™).

Next, it is shown thaf[zi],y") € O (X™). AS7h41,...,m € T and
Y7 NYT = 0, it holds by inductive assumption that,

([2r1, y") =5 50 - Bz ()97 - (15)

U

Sincey? € YT, there existsu € (TI)* such thatzl = y?, and this

implies ([z,], 1) = ([z],23) S¢/~yr ([21],y7). Sinceu € 3, it fol-

lows by (13) that([z;],y”) € éG/NHT- Then there exists € ¥* such that
T\ tw .

([z1)sv") 101" Thus

([5,97) =5 g0 - By (3] Y7) B0 (16)

This implies([zi], y") € OF 1 (X™).

It has been shown that all statés,], z}) on the path (12) are i@G/N”T, ex-
cept for the last state when = w. This implies by assumptiotz;, z2) € X
for all states on the path (11), except for the last state when w. Therefore,

t1Pq (o)t
(yhffrip) #ﬂx (y27$g)' O

Proposition 6 Let ~ be a weak synthesis observation equivalencé&ea (3, @,
—,Q°) with respect tol' C X.. Then~ is a state-wise synthesis equivalence®n
with respect tor'.

Proof. LetT = (X,,Qp, =4, Q) WithX7rNT =0 andX Uy = QUTY. The
conditions of state-wise synthesis equivalence in definition 15 must beroexfir

(i) Itis shown by induction om > 0 that(z, z7) € @G”T implies ([z], z7) €
X" = QE/NHT(Q/N X Qr).
Base case([z], a7) € Q/~ x Qr = O, 1(Q/~ x Qr) = X°.

Inductive step Assume the claim holds for some> 0, i.e., if (z,z7) €
Ogr then([z], xr) € X™. Now let(z, x1) € Ogyr. It must be shown that

([z], 27) € X! = O mr(X™) = OF, 1 (X™) N O 1 (X™).
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To see that[z], z7) € OF", (X"), letv € Sy and([z], 21) = ([y], yr).
Consider two cases.

a) v ¢ ¥. Inthis casefz] = [y] and(z, z7) 5 (z,yr), and it follows
from (z,27) € O¢gr andv € %, that (z,yr) € Ogr. Then by
inductive assumptioffy], yr) = ([z],yr) € X™.

b) v € . In this case, there exist € [z] andy’ € [y] such that’ = /.

Thusz’ =, ¢/, and since~ is stable with respect té>,,, there exists

t1 P t
y" ~ 3 such thatr =, y”. Then(z,z7) RECIOUN (y", yr) for

somet, t; € (T NX,)*. Since(z, zr) € Og)r andt; Po(v)ts € X,
it follows that (v”, yr) € G)GHT. Therefore by inductive assumption
(llyr) = (W] yr) = (W'],yr) € X

Thus ([y], yr) € X’”~ can be shown for alb € X, and it follows that
([z],z7) € @%?/HLHT(X”)-

Next, it is shown that[z], z7) € Y p(X™). Since(z, 1) € Ogyr,
there exists a path

(@, 27) = (20:25) 60, Hogyr TrTh) 65, @rits Thi) -
Then(xl,xlT) € (Q)GHT for{ =0,..., k. By inductive assumption, it follows
that ([z;], z]) € X" forl =0,...,k. Thus,

([, o1) = (ol 20) P yn - P n () 25) 50 ([@ra) 741

which implies([z], z1) € O 7(X™).

Thus, it has been shown thétr], z7) € O (X™) N OFL (X") =
Xt

(i) Now it is shown by induction om > 0 that ([z], z7) € ég/NHT implies
(x,z7) € X" = @g”T(Q X Qr).
Base case(z,z7) € Q x Qr = @OG”T(Q x Qr) = XY,

Inductive step Assume the statement holds fer> 0, i.e, if ([z], z1) €

O¢/~r then(z,zr) € X". Let([z],xr) € Og/~r- It must be shown
that(z, z7) € X" = Ogp(X™) = OF(X™) N OZIR(X™).

To see thatz, z7) € OFH.(X"), letv € By and(z, z7) = (y, yr). This

implies ([z], z7) = ([y],yr). Since([z],z1) € Og/vyr andv € Xy, it
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follows that([y], yr) € (Q)G/N”T. Then by inductive assumptioiy, yr) €

X", and thugz, z7) € @CGO|I|1}(X”)

Next it is shown tha(z, z7) € O (X"). Since([z],xr) € Og/myr,
there exists a path

_— T g A~ .. g A
([], 27) = ([wo],20) 6, 1r " 60 ur
([z4), 27) iﬂéc/NHT ([mkﬂ]vﬂ?;{ﬂ) : (17)
Consider the first transition in (17). Singey] ~>7% [x1], there exists

Px (o L.
x| € [x,] andz) € [z] such thatz, Lolon), x. The conditions of lemma 5

apply to this transition: by inductive assumptial,” can be used as the
setX in the lemma, and(z(], z{) = ([zg].z{) € Og/uyr, ([#1],2]) =
([z4),2T) € @0/N||T oro; = w, (ac{),xg) LAY (o, 2T), andz{, ~ .

i t1Po(o
So there exist;, u; € T* andz € Q such that(zy, ) 2220,

(2], 2T) andx} ~ 2.
Sincex] € [¢}] = [z,], the same logic also applies to the second tran-

sition in (17). Therefore, there exist,us € T* andz € @ such that
(x,l,7 T) toPo(o2)u2

rd > |xn (24, 21) andzy ~ o), ~ 4. By induction, it fol-
lows that there existy, w1, . .., t, u, tp41 € T*andzf, ..., z} € Q such
that

7\ t1Pa(o1)ur T\ t2Pa(o2)uz
(z,27) = (29, 7)) ——— X7 (27, x7) —|xn
P
LePaloou, xn (2f, 7)) T, IXn - (18)

Therefore,(x, z7) € O (X™).
Thus, it has been shown tht, z7) € OFIL(X™) N @gﬁ?(Xn) = X",

O

B Synthesis Observation Equivalence

This appendix contains a proof that synthesis observation equivakeacspecial
case of weak synthesis observation equivalence, so all resultsvabakisynthesis
observation equivalence shown in appendix A also apply to synthesisvahiea
equivalence. Theorem 8 shows the main result of this section, which #tatewv-
ery weak synthesis observation equivalence also is a synthesis atimequiva-
lence. The proof uses a lemma about the uncontrollable transitions outgoing fr

states along a path ;SOQ V.
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Lemma7 LetG = (X,Q, —,Q°) be an automaton, and letC @ x @ be stable
with respect to=, for all v € ¥,. Furthermore, lefr C ¥ andz ésoe y. For

every state: on this path, ifz =, 2’ for somev € X, then there exists” € Q

such that: =, 2" andz’ ~ 2.

Proof. Write the pathx ésoe yasr = zy — ... K o = y. Letz; be a
state on the path such that =, # for somev € ¥,. We must show that there
existsz” such thatr =, 2” andz’ ~ z”. Leti, 0 < i < j, be the greatest
index such that = 0or7; € .. If i = 0thenz;, = 2g = z, and ifi > 1,
it follows from definition 13 thatz; ~ x. Thus,z; ~ z in both cases. Since
2 D B Y withn e S,nYfori+1 <1< jitfollows that
2 =, 2. Since~ is stable with respect te>, there exists:” ~ 2’ such that
T =, 2. O

Theorem 8 Let G = (£,Q,—,Q°) be an automaton and let be a synthe-
sis observation equivalence éhwith respect toX'. Then~ is a weak synthesis
observation equivalence @rwith respect tdr'.

Proof. Letxy,x2,y1 € Q such thatr; ~ x5 andxy éwsoe Y1 OF T1 =wsoe Y1
for somes € . N Q orx; = y1 for somev € X, It must be shown that there

EXiStSyQ such thatL'Q :U>WSO€ Yo OF T2 g;wsoe Y2 Or To %u Y2 andy1 ~ Y.
If ; =, y1 then sincer; ~ x5 and~ is stable with respect té>, it follows

that there existg, such thatey = vo.
T T T T
X1 éf>wsoe Y1 OI' T1 = wsoe Y1 MEANST ér>soe g1 =c Y1 O T1 =s0e 1 =c¢
y1 respectively, where g>c y1 is a pathgy = 2z = -+ 35 2z, = y; with

T,...,T% € Y. Sincex; ~ x2 and~ is stable with respect 6>, and ésoe,
there exists), such thatry =, g2 OF 2 ésoe g2 andgq; ~ ¢o. Itis first shown
by induction oni = 0, ..., k that there exists a path

Q=2y= 2= =2, =1y (19)

. . Ti+1 .
such thaty; ~ z; for all i, and eachy; = 2, is zj ==y 2z, if ;11 € ¥, and

Z; l;soe Zz{+1 if Ti+1 € Y.

Base caseFor: = 0, the claim clearly holds ag, = ¢, ~ ¢; = z,.

Inductive stepAssume the path up tg with z;, ~ z/ has been constructed for
somei. To obtainzl’,rl consider two cases. I € X, then sincev is stable

. w Ti . .
with respect to==, from z; —% z;11 it follows that there exustngrl such that
T3 . . .
2} =5 2 andzl, ~ 2. If 741 € S, then sincew is stable with respect
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{0 2o, from z; =% 2,1 it follows that there exists!, ; such that! 2 e 2
andzjy, ~ z.

Now it needs to be shown that ;&C y2. According to definition 14, the
following properties need to be shown for every staten the path (19).

(i) If z % 2/ for someu € (X, N T)* thenz’ ~ z for somez on the path (19).
(i) If z =, 2/ for somev € ¥,NQ then there existg, ~ 2’ such that, = 5.

Let z be such a state on the path (19) and assume it is on the sutjpathy; ;.
Then consider two cases. _

Case 1:z is on a subpath, =5, zi,1- Thenr ;€ ¥, N,

If = % 2 for someu € (X, N T)* then clearly, It Z. Since~ is

stable with respect t6=5,,, from z/ ~ z; it follows that there exists” such that

2 25 2" andz ~ 2. Sincez is on the pathg; §>C 11, it follows from
definition 14 that” ~ z; for somej. Thusz' ~ 2" ~ 2, ~ 2%, showing (i).
If 2 =, 2/ for somev € %, N Q, thenz, =, /. Since~ is stable with

respect to=,, from 2/ ~ z, it follows that there exists” such that; =, 2" and

2" ~ 2. Sincez; is on the pathy; §>C y1, by definition 14 there existg such that
y, = y; andz” ~ . Sincey; ~ yo and~ is stable with respect té>,, there
existsy, such thaty, =, y, andy) ~ y} ~ 2" ~ 2/, showing (ii).

Case 2:z is on a subpath; ésoe 21

If z % 2 for someu € (X, N T)*, then by lemma 7 there exist§ such that
2l %, 2" andz” ~ z'. Since~ is stable with respect t&,, from z; ~ z/ it follows
that there exists such that; =, z andz ~ z”. Sincez; is on the pathy; ;@C Y1,
it follows from definition 14 that ~ z; for somej. Thusz' ~ 2" ~ z ~ 2, ~ 27,
showing (i).

If z =, 2 for somev € ¥, N Q, then by lemma 7 there existé such that
2l 2, 2" andz’ ~ 2. Since~ is stable with respect t&, and since;; ~ z/, there
existsz such that; =, z andz ~ z”. Sincez; is on the pathy; ;C y1, it follows
from definition 14 that there existg such thaty, =, v} andz ~ ;. Since
y1 ~ y2 and~ is stable with respect t&-,,, there existg/, such that, =, y5 and
yh ~ vy ~z~ 2" ~ 2, showing (ii).

This completes the proof thas ;C Yo. O
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Figure 2: Synthesis observation equivalence does not imply 3-stateesigtib-
servation equivalence.

C Implemented Synthesis Observation Equivalence

This appendix discusses the properties of the implemented variation of wieak s
thesis observation equivalence used for the experiments in section 5im¥he
plementation differs from true weak synthesis observation equivald@mause
checking for equivalence to all states onr=a-path would make the Backward
Search (algorithm 3) exponential. To avoid this, the algorithm only compdtls

three states that are readily accessible at the time of testing. This results in the
following variation of synthesis observation equivalence.

Definition 16 Let G = (X,Q,—,Q°) be an automaton withl = Q U Y. An
equivalence relation- C @ x @ is a 3-state synthesis observation equivalence

on G with respect tdr', if ~ is stable with respect tégwsoeg, t0 = wsoe3 fOr €ach
o €Y. N, and to=, for eachv € X,,.

by e T T
® T =ysoe3 Y if T =500 2 =3 y fOr somez € Q.
o . o T
® T = ysoe3 Y If T =500 2 =3 y fOr somez € Q.
T . .
o 1 = yifthereexistsapath = zg = --- 5 z;, = ysuchthat, ..., 7, €

T, andz; = 2/ foru € (£, N Y)* impliesz’ ~ z; or 2’ ~ zj 1 or 2’ ~ y,
andz; =, 2/ forv € %, N Q impliesy =, 2" for somez” ~ 2/

Example 4 Consider automatot in figure 2 with¥, = T = {lv,!u}. An
equivalence relatior such thaty ~ ¢s is a synthesis observation equivalence and
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a weak synthesis observation equivalence, but not a 3-state synthesivation
equivalence relation.

Statesy; andge are synthesis observation equivalent: stateg, andgs are
reachable from both; andg, by exactly the same relatioasg,. and=-,, and in
addition it holds that;; =goe g1 @andgs =c0e g2 With g1 ~ go.

Also note that; 2w g5 becausa; % g1 % g3 8 g4 2% g5 and the statey

reached byy Y q4 is on this path. Since alsp =soe g5, Statesy; andgs can
be weakly synthesis observation equivalent.

However,q1 =wsoe3 g5 does not hold, because the stafés not equivalent to
q1, g3, Or g5. As on the other hangh = y<c3 g5, Statesy; andgs cannot be 3-state
synthesis observation equivalent.

The example shows that 3-state synthesis observation equivalenceeis diff
ent from both synthesis observation equivalence and weak synthesissation
equivalence. Most importantly, synthesis observation equivalenceramemply
3-state synthesis observation equivalence, although the experimegtsstitat
3-state synthesis observation equivalence usually is coarser in practice

On the other hand, it is true that 3-state synthesis observation equisahenc
plies weak synthesis observation equivalence, so by theorem 3, Fgtdkesis
observation equivalence also produces correct abstractions.

Theorem 9 LetG = (X, Q, —, Q°) be an automaton and let be a 3-state syn-
thesis observation equivalence @Grwith respect to'. Then~ is a weak synthesis
observation equivalence @nwith respect toY .

Proof. Let r1,T2,Y1 € Q such thatr; ~ =9 andx; g;Wsoe Y1 Or 1 éwsoe Y1
for somes € ¥, N Q or z; =, y; for somev € . It must be shown that there

. o T )
existsy, such thatrs = ysoe Y2 OF T2 = wsoe Y2 OF To =y Y2 @ndy; ~ yo.
If 21 =, 1 then sincer; ~ x and~ is stable with respect té>,, it follows
that there existg, such thatey, =, vo.

21 Ssoe Y1 OF T1 Zeoe Y1 MEANSTT Soe @1 = Y1 OF T1 00 @1 —c
y1 respectively, where; £>C yris a pathgy = zp = -+ 3B 2z, = y; with
T, 7k € T. Then alsor; 2 wsoes ¢1 OF 21 —weoes q1 by definition 16. Since
x1 ~ x and~ is stable with respect t& ywsoe3 and%wsoeg, there existg; such

thatzy = wsoes g2 OF 2 g>wsoeg g2 andg; ~ qo. Itis first shown by induction on
1 =0,...,kthat there exists a path

Q=2=21= =2 =1y (20)
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. . Ti+1 .
such thaty; ~ z; for all i, and eachy; = zj_, is z; ==y 2z, if 7,11 € ¥, and

Z; éwsoeg Zl{+1 if Ti+1 € Y-

Base caseFor: = 0, the claim clearly holds ag, = ¢2 ~ ¢1 = 2.

Inductive step.Assume the path up te/ with z; ~ 2/ has been constructed
for somei. To obtainz;, ; consider two cases. Ifi;; € X, then sincev is

stable with respect 6=, from z; ~% 2, it follows that there exists/, ,

such that] ==, 2/, andz/ | ~ 2z If 111 € X, then sincev is stable with
respect toéwsoe& from z; SIAEN zit1 it follows that there exists; 41 such that
z S socs Ziprandzi g~z

This shows the existence of the path (20). AS=wsoe3 G2 OF T2 :T>W5063 q2,

there exist®, such thatry =406 P2 g>03 qo OF T %soe D2 :T>C3 g2. Then the path
D2 ;@C3 g2 = Yo can be written as

;X / / / / /
P2=4qy =32 =~ Q1 =~ 21 = =, = 2 =12, (21)

/ Ti+1

/ _
i —u Qi1 = %

: , X
where each; = ¢j, | = z{, ISz i if 71 € By, andzj =gee

ng §>53 zgﬂ if 7,401 € Y¢. It remains to be shown that g>c y2. According

to definition 14, the following properties need to be shown for every statethe
path (21).

(i) If z % 2 for someu € (X, N Y)* thenz’ ~ z for somez on the path (21).
(i)) If z =, 2/ for somev € ¥,NQ then there existg, ~ 2’ such thay, =, 5.

Let z be a state on the path (21). Consider three cases.
Ti+1

Case 1:z is on a subpath; = ¢/ ; = zj,;. Thenr;y; € B, N T.

Ti . .
If 2 % 2 for someu € (X, N T)* then clearlyz, ==, 2. Since~ is

stable with respect t6=,,, from z/ ~ z; it follows that there exists” such that

2 25 2" andz” ~ 2. Sincez is on the pathg; ;C 11, it follows from
definition 14 that” ~ z; for somej. Thusz' ~ 2" ~ 2z, ~ 2%, showing (i).

If 2 =, 2/ for somev € ¥, N Q, thenz, =, 2. Since~ is stable with
respect to>, from 2z} ~ z; it follows that there exists” such that; 2. 7" and
2" ~ 2'. Sincez; is on the pathy; £>C y1, by definition 14 there existg such that
y, = y; andz” ~ . Sincey; ~ yo and~ is stable with respect té>,, there
existsy), such thaty, =, v4 andyb ~ 1/} ~ 2" ~ ', showing (ii).

Case 2:z is on a subpath; %soe Qi1
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If z % 2 for someu € (X, N T)*, then by lemma 7 there exist§ such that
zh 2, 2" andz’ ~ 2. Since~ is stable with respect t&,, from z; ~ z/ it follows
that there exists such that; =, z andz ~ 2. Sincez; is on the pathy; ;C Y1,
it follows from definition 14 that ~ z; for somej. Thusz' ~ 2" ~ 2z ~ 2, ~ 27,
showing (i).

If z =, 2/ for somev € £, N Q, then by lemma 7 there existé such that
2l 2, 2" andz’ ~ 2. Since~ is stable with respect t&, and sincey; ~ z/, there
existsz such that; =, z andz ~ z”. Sincez; is on the pathy; §>C 11, it follows
from definition 14 that there existg such thaty, =, v} andz ~ y. Since
y1 ~ 1o and~ is stable with respect t&,, there existg/, such thaty, =, v} and
yh ~y) ~z~ 2" ~ 2, showing (ii).

Case 3:z is on a subpatly; L 2.

If 2 % 2/ for someu € (3, NY)*, then by definition 16 it holds that ~ z for
somez on the pathy; :T>C3 z;. This statez clearly is on the path (21), showing (i).

If z =, 2/ for somev € ¥, N Q, then by definition 16 there existd ~ 2’
such that:! =, 2”. Since~ is stable with respect té>, and sincez; ~ 2/, there
existsz such that; =, z andz ~ z”. Sincez; is on the pathy; §>C 11, it follows
from definition 14 that there existg such thaty, =, v} andz ~ ;. Since
y1 ~ 1o and~ is stable with respect t&,, there existg/, such thaty, =, v and
yh ~ vy ~z~ 2" ~ 2, showing (ii).

This completes the proof thag g>c Yo. 0
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