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Abstract ity are searched. The approach in [9] is claimed to have
the lowest complexity compared to all existing methods
This paper presents a survey and evaluation of the ef-found.
ficiency of polynomial diagnosability algorithms for sys- In some recent works, e.g., [1, 3, 4], the smallest se-
tems modeled by Petri nets and automata. A modified ver-quence of unobservable transitions that must have been
ification algorithm that reduces the state space by exploit- fired to explain an observation is considered. It is called
ing symmetry and abstracting unobservable transitions is minimal explanation and has a great impact on the com-
also proposed. We show the importance of minimal ex- plexity reduction of diagnosability analysis. Its main ad-
planations on the performance of diagnosability verifiers. vantage is that it does not require the exhaustive enumera-
Different verifiers are compared in terms of state space tion of the state space. In [7], this notion is explained and
and elapsed time. It is shown that the minimal expla- combined with the diagnosability test in [11], where the
nation notion involved in the modified basis reachability constructed verifier includes both observable and failure
graph, a graph presented by Cabasino et al. [3] for di- transitions. Since based on [7] there is a close connection
agnosability analysis of Petri nets, has great impact also between minimal explanation notion and automata, in this
on automata-based diagnosability methods. The eva|ua-paper we evaluate the automata-based diagnosability ap-
tion often shows improved computation times of a factor proaches mentioned above both for PNs and automata.
1000 or more when the concept of minimal explanationis  This paper presents a survey and evaluation of the
included in the computation. efficiency of polynomial algorithms for diagnosability,
showing the importance of minimal explanation and basis
marking notions. Basis markings are determined through
1. Introduction minimal explanations firing and are a subset of the reach-
ability set. The contribution of this work is a system-
The ability to deduce about previously occurred fail- atic evaluation on how complexity increases based on the
ures in a system within a limited number of observations is number of sequences and tokens in PNs. Furthermore,
called diagnosability [10]. In the past decades there havewe show that the theoretical complexity analysis, which
been many works in this field of research for both Petri is based on the worst case scenario, does not necessarily
nets (PNs) and automata models. give the correct picture from a practical point of view and
In [10], where the diagnosability notion, and necessary does not always lead to selecting an appropriate diagnos-
and sufficient conditions for diagnosability are introdaice ~ ability algorithm. We also show the importance of consid-
a diagnoser is constructed for diagnosability verification €ring modular automata as PNs, implying that the mini-
which has exponential complexity. Later many polyno- mal explanation notion can be used for both modeling for-
mial automata-based diagnosability approaches have beefalisms. We evaluate different polynomial diagnosabil-
proposed. A polynomial diagnosability test that abstracts ity verifiers for both the reachability graph (RG) and the
away all unobservable transitions is proposed in [6]. In modified basis reachability graph (MBRG) [3] of a PN. A
[11], a different synchronization rule is defined for un- modified version of a recent diagnosability method, which
observable and failure transitions, which has less worsthas a state space with a smaller cardinality, is also intro-
case complexity with respect to (wrt) [6]. In the two duced. The conclusion is that significantly larger systems
mentioned approaches it is assumed that there is no cy<an be analyzed when the most efficient automata-based
cle of unobservable transitions in the system and the gen-diagnosability algorithms are combined with minimal ex-
erated language is live. The assumptions on liveness andlanations. For systems where the RG can be used, the
non-existence of unobservable cycles are removed in [9].improved computation time using the MBRG is often a
To construct the verifier, the model is then split into co- factor 1000 or more.
accessible states from failure states and non-failurespart  The rest of the paper is organized as follows. Section
so that only the traces that lead to violation of diagnosabil 1l presents preliminary concepts on PNs, while Section 1l



gives the definition of diagnosability. In Section IV, the

Consider the transition s@t. Generally, some transi-

notion of the minimal explanations is presented. Sectiontions7, C T in a PN can be abstracted. In Section IV

V summarizes different polynomial verifiers that can be
used for analysis of diagnosability. In Section VI an eval-
uation and comparison of the different verifiers is made
with and without considering the minimal explanations.
Finally, conclusions are drawn in Section VII.

2. Preliminaries

A Place/Transition net (P/T net) is a structuke =
(P, T, Pre, Post), whereP is a set ofnp places;T is
a set ofny transitions;Pre : P x T' — N and Post :
P x T — N are the pre and post incidence functions that
specify the arcs; the incidence matrix(is= Post — Pre.
The marking vectod/ : P — N assigns to each place

this will be done by the concept of minimal explanations.
The remaining transitions in the abstracted model are then
denotedr;, meaning that” = 7,UT,.

The RG includes all transitions ifi, both the observ-
able T, and the unobservabl&,. Hence, for the RG,
T, =T,UT, andT, = (. The alphabet of the RG is the
set of transitions of the corresponding PN. Considering
the RG automaton for PNs, the diagnosability definition
of automata is presented in the following section.

3. Diagnosability of Discrete Event Systems

Definition 2 (Event Observation Projection) The event
observation projection [5], is a mapping from the original

of a P/T net a nonnegative integer number of tokens. Theevent seff to a smaller observable event$et C F, i.e.,

marking of placep is denotedV/ (p). A P/T system or net
system(N, M) is a netN with an initial markingMy. A
transitiont is enabled ab/ if M > Pre(-,t) and may fire
yielding the marking\f’ = M+ C(-,t). We write M [o)

to denote that the sequence of transitions ¢;, - - - ¢;, is
enabled af\/, andM [o) M’ represents that the firing of
o yields M.

Given a sequence € T*, 7w : T* — N"7 s called the
function that associates witha vectory € N7, named
the firing vector ofs. Particularly,y = 7 (o), is such that
y(t) = h if the transitiont is containech times ino.

A marking M is reachable inN, M,) if there exists
a firing sequence such thatM, [c) M. The set of all
markings reachable from/, defines the reachability set
of (N, My) and is denoted® (N, My).

A net system N, M) is bounded if there exists a posi-
tive constant such thatvM € R(N, My), M(p) < ec. A
labeling functionl : T — L U {e} assigns to each tran-
sitiont € T either a symbol from a given alphabgtor
the empty string . We call labeled PN system the triple
<N7 MO» ’C>

The set of transitions is partitioned into the set of ob-
servable transition, and set of unobservable transitions
T., T = T,UT,. The set of fault transition®} is a sub-
set of T, Ty C T,,. If there arer different fault classes,
Ty can be partitioned inte different subsetd’;, where
i=1,---,7.

The PN depicted in Fig.1, has similar sequences
from ¢, to ¢5, (including e.g.£11, t12 andty3), which for
number of tokens, = 1 can also be considered as the
synchronization of; local automataz;, one for each se-
guence, and the complete systertrig| - - - || Gx. In Fig. 1
only transitionst; andt; are observable. In the follow-
ing the RG of a bounded PN is defined as an automaton
which is used in the rest of paper.

Definition 1 The RG automaton is a tuplé/rc
<XRG,ERg, —>RG73752G> where, X g € R(N, ]\/[0) and
x{)""G = My. Erg = T is the set of transitions, and
—ra € Xgra X Era X Xra denotes the transition rela-
tion whereM [t) M means thatM, ¢, M) € —rg. O

P : E — E,U{e} that can be extended #6*, so we have
s € E*,0 € E: P(so) = P(s)P (o), with P(e) = ¢
andP (c) = e forall ¢ € E,. Here, E, denotes the
unobservable event set, aft the set of all event traces
generated fronk. |

Definition 3 (Failure Assignment Function) Failure as-
signment function is a mapping from the original event
set F to either O orF. ¢ : E — F U {0}, where
F={T},i=1,...,r}. ltmeans thatit € Eis nota
failure event it is projected to 0. Otherwise it is projected
to theT} type failure set where it belongs to [6]. |

Assumed is live, without any cycle of unobservable
events. Consider a trace € L(G) ending with aT}
type failure, and a sufficiently long traee obtained by
extendingo. The systent is thendiagnosablaf every
tracew whose observation is equivalentitoalso contains
a failure cIasST}. Formally, diagnosability is defined as
follows.

Definition 4 (Diagnosability) With respect to the event
observation projection introduced in Definition 2 and the
failure assignment functiott : £ — F U {0}, a system

G is diagnosable if

(VT} € F)(3n; e N)(Vs € L, ¢(sy) = T})
(Ym =st e L,|t]| >n;) = ‘
(Vw € L, P(w) = P(m))(3l € pr({w}), ¥(lf) = T})

oy andly are the last events in tracesind!, respectively,
andpr({w}) is the set of all prefixes af [6]. O

For the sake of simplicity, here one fault type is con-
sidered. Necessary and sufficient conditions for diagnos-
ability of PNs are introduced under the following assump-
tions. The net systemiN, M) is bounded and has no
deadlock, i.e., at least one transition fires at each reach-
able marking. The unobservable subnet is acyclic, i.e,
Yo € T*, o is not an unobservable trace awd/ if
Mo) M = o ¢ T;. The assumptions are also often
considered for automata models. Moreover minimal ex-
planations are introduced based on these assumptions.



Table 1 Number of states and transitions of the RG, OF and
P MBRG of the PN in Fig. 1 fok = 2.

[ [ RG | OF | ROFIMBRG ]

P n=1

ns || 10 | 7 ] 5

Ttkl(gk) n, || 20 | 17 | 9
n =2

Py ns || 46 | 46 | 14

ny || 146 | 546 | 36

tra(€ 3 tra(er)

Pres The advantage of using minimal explanation is also
presented in [4], where the basis reachability graph (BRG)
is introduced, wher&,. = T, andT, = T,,. For diagnos-
ability test the information provided by the BRG is how-
ever not enough, due to the fact that the BRG does not
include enough information on all failure transitions [2].

Figure 1 PN with k sequences, and generatlyinitial tokens Hence, a modified version of the BRG, called MBRG, is

in placeP; (heren = 1). introduced where the failure events are not abstracted, and
. o . thereforeT, = T,UTy andT, = T,,\Ty. The size of the
4. Generation of Minimal Explanation MBRG of Fig. 1 forn = 1,2, is shown in Table 1. More-

over in [2], a diagnoser called basis reachability diagnose

There are many diagnosability algorithms for au- (BRD) is defined using the MBRG.
tomata, while for PNs it is still an open problem to find In [7], a reduced version of OF, called ROF, is also
a computationally efficient analysis and there are few ap- constructed based on a backward search for the computa-
proaches. A straightforward diagnosability test for PNs tion of minimal explanations. Both OF and ROF are non-
is to construct the RG(PN), which for bounded PNs is an deterministic automata, while all polynomial diagnosabil
automaton, and then apply one of the automata-based diity algorithms considered in this paper assume that the
agnosability tests. This is a non-efficient approach, sinceoriginal system is deterministic. Since the MBRG in [3]
constructing RG(PN) is exponentially complex wrt the can be considered as a deterministic automaton, our pre-
number of tokens and places. PN is a more compact rep-sentation of minimal explanations for PNs is based on the
resentation than an automaton for a system, so a smalMBRG formulation. We consider the definition of min-
increase in the number of tokens or places often results inimal explanation as in [3], where a tabular search algo-
a huge increase of the number of states of the RG. rithm to compute the set of minimal explanations is im-

To solve this problem, a basic idea is to abstract away plemented. An explanation is then defined as minimal if
unobservable transitions, which do not convey any infor- its firing vector is component-wise minimal.
mation about the system and its failures. In this way, a PN
still reproduces all words generated by the labeled observ-4.1. Minimal Explanation Notion
able transitions. Based on this idea, a non-deterministic A transitiont € T, = T, U T fires at markingM
observer considering all observable and failure transitio yielding M iff in the PN (N, M) the relationM [o) M is
(OF) with a smaller state space than the RG is constructedverified, wherer = ot exists,o is a minimal explanation
in [7], wheret € T,. = T,UT}. Inthe OFt is defined at  of ¢, ando € T (T, = T.,\T}).
stateM and reaches8/’ iff in the PN there is an accessible

tracer = ot that connects\/ to M’, whereo indicates . fail i i hich i dered b
the finite number of non-failure unobservable transitions. 'S & falluré transition, which Is considered as an observ-

. ble transition in the MBRG generation. The procedure
In most cases, the OF is a smaller automaton compareir finding minimal explanations and basis markings is
to RG. However, as shown in Table 1 for Fig. 1, where 9 P 9

k = 2. the size of the OF for the number of tokens- 2, as follows. Starting fromM/, there is only one transi-

. tion t; € T,.. Hence,t; connects the basis marking
even gets more transitions compared to RG. In Table 1, .
: ; M, = [1,0,0,0] to M; = [0,1,0,0] with no e-vector.
n, is the number of states, anmd is the number of tran- ] . .
e NI From M, there are two possible transitions belonging to
sitions. Although forn = 1 the OF size is smaller than T 415 andi-. Eor 15 the minimal explanation is
the RG, we still need further reduction of the PN. Thisis ~ ™ "2 > 12 b 11

obtained based on thminimal explanatiomotion as in a= [.1.’0] an_d Fhe next bas_ls markingd; = [O’O’Q’ 1]
[2], andstrictly minimal explanatioras in [8]. These no- Transitionts is in the outgoing traces of both basis mark-

tions represent the reachability space in a compact formingle and\M,, and the minimal explanations af?1s,
P Y sSP P i.e.,es = [1,1] ande, respectively. The MBRG automa-

and hence, do not require the exhaustive enumeration Oton is depicted in Fig. 2 0
the state space. Based on [8], for PNs with acyclic unob- o
servable sub-nets, both definitions on minimal explanation The formal definition of minimal explanation for a mark-
and strictly minimal explanation are equivalent. ing M and a transitiont € T.. is as follows.

Example 1 Consider the PN in Fig.1 fok = 1. t1



t5,0

Figure 2 The MBRG automaton of Fig. 1 fdr = 1.

Definition 5 [3] Given a markingM and a transition €
T,, we define

S(M,t) = {0 € T|M[c) M, M > Pre(-,t)}

as the set of explanations ofat M, and Y (M, t)
m(2(M,t)) the corresponding set of e-vectors (or expla-
nation vectors), i.e., firing vectors associated with the ex
planations. O

Proposition 1 [3] Gasra IS deterministic. O
Proposition 2 [7] L(Greg) is diagnosable wrtF iff
L(GyBRre) is diagnosable wrf. O

Since G gra is deterministic according to Proposi-
tion 1, any automata-based verifier can be used to verify
diagnosability of a PN by investigatinG,;sr¢ instead
of Grg, according to Proposition 2.

5. Different Verifier Automata

Here, three known verifiers are presented. A modified
version of the first verifier, [6], is also introduced. To geta
more fair comparison between the best known verifier, [9],
and the concept used in [6], our modified version reduces
the complexity of [6] in the same spirit as in [9].

Thus,X (M, t) is the set of unobservable sequences whose5.1. V1 Verifier

firing at M enablest. Among the above sequences we
want to select those whose firing vectors are minimal.

Definition 6 [3] Given a markingM and a transitiort €
T,, we define
Ymin(M,t) =

{o € S(M,t)|for € Z(M,t) : m(01) S 7(0)}

as the set of minimal explanations ofat M, and
Yiin(M,t) = 7(Zmin(M,t)) the corresponding set of
minimal e-vectors. O

4.2. Modified Basis Reachability Graph Automaton

In this section the MBRG automaton is defined based

In [6] a verifier is introduced that abstracts away all un-
observable and failure transitions by first constructing an
observable automatous,, whose definition is presented
in Algorithm 1 in Subsection 5.4. Thefi; = G, | G,.
This verifier (V1) is checked for the existence of possible
indeterminate cycles by identifying the uncertain states i
Gq4. All other states and their associated transitions are
then deleted. If the remaining graph contains at least one
cycle the system is not diagnosable. This verifier was the
first proposed polynomial algorithm with the worst case
complexityO(ninr).

5.2. V2 Verifier
In [11] a different synchronization rule for unobserv-

on minimal explanations and basis markings. The MBRG able transitions Compared to V1 is defined. The computa-

is here marginally modified compared to the MBRG in

tional complexity isO(n2nz). Thus, in worst case it has

[3], where the authors did not consider it as an automaton.lower computational complexity than the V1 algorithm.
In the sequel, the basis marking and the MBRG automatonn practice however, when there are a significant number

are defined.

Definition 7 The initial marking of a PN is also the initial
basis markingX%,, = M,. Starting fromX9,,,, the rest

of basis markings are generated based on the following

; ; Ayvitl oy
iteration untilX 5, = X5,

0 € Smin(M,t) A M [ot) M}

The set of basis markings for MBRGIy s rc = X5,

]
Definition 8 The MBRG is an automatof¥ ;;grc =
(XymBRG, EMBRG, = MBRG, 1) PRE), where

XuvBre € Xre, EmBre=T,xYnin(M,t), and
—mMBrRGCXMBrReXEMBRG*XMBRG denotes the
transition relation wherd/ [ot) M, ando € X, (M, t)

means that)M, (t,¢), M) € = v pre- O

of unobservable events in the system, V1 is often more ef-
ficient, due to the abstraction of unobservable transitions

5.3. V3 Verifier

The algorithm in [9] starts with the construction of the
non-failure automator( y, the co-accessible states from
faulty states(Gr, and parallel synchronizatiofi i ||G .

The algorithm efficiency is due to the fact that in the
synchronization step, only the traces that lead to the
violation of diagnosability are searched. In the algo-
rithm, the assumptions of liveness and non-existence of
unobservable cycles are removed and its complexity is
O(n2(ny — nr,)), whereny, represents the number of
failure transitions. It is claimed that this verifier has Ew
complexity than all other methods found in the literature.
Note that, since verifier V3 has a more efficient formu-
lation than verifier V2, in comparisons we only consider
V3.



Table 2 Number of states and transitions of the verifier for the PN in Fig. 1.

[ T T Re T vl I v3 I va \
[ n { k H Mg { (N H Ns { ne { ts { ted H Mg { Mt { ts { ted H Ng { [ { ts { ted \
1 1 5 5 8 13 0.11 0.005 20 34 0.19 0.01 4 5 0.08 0.005
1 2 10 20 8 13 0.11 0.005 116 344 0.60 0.02 4 5 0.08 0.005
1 3 28 83 8 13 0.11 0.004 884 4086 4.33 0.09 4 5 0.08 0.006
2 1 10 20 76 889 0.21 0.008 92 248 0.47 0.02 38 335 0.14 0.008
2 2 46 146 652 | 66265 | 80.53 0.09 1772 8270 9.45 0.21 326 22907 5.66 0.07
2 3 244 1109 * * * * 47972 | 336762 | 3130 | 246.20 || 2918 | 1716797 44193 52.62
3 1 20 50 328 | 11604 1.88 0.02 292 974 1.33 0.03 164 4308 0.51 0.03
3 2 146 578 * * * * 14052 | 81306 224 10.54 5348 | 3279134 | 158066.74 | 164.78

3 3 1244 | 6941 3 * 3 x * 3 3 * * x * x
5.4. V4 Verifier 6. Comparisons

We present V4 as an alternative strategy, which intu-
itively can give better performance than V3 due to smaller ~ The non-diagnosable PN in Fig. 1 is evaluated for dif-
state space, particularly when there are a significant num-ferent number of initial markings and sequences The
ber of unobservable transitions. Increasing the number of¢ycle detection time,, is the elapsed time until the algo-
unobservable transitions results in an obvious increase infithm finds a cycle in the grapht, andt. are the veri-
the size of V3, while it does not change the number of fier construction and total elapsed times, respectivelly. Al
states in V4. The proposed V4 verifier is based on V1, tests have beenrunon apC Intel with aclock of 3.10 GHz,
but exploits the symmetry of the statesGly = G, |G, RAM 16 GB. Computation times are in seconds.
similar to V3. In V4 two parts of thé7, are generated: . -
G, the non-failure part, an@’”, the co-accessible part 6-1 Comparing Verifiers Based on RG

of G, from failure states. The resulting verifi&rY || GF Here, the verifiers are constructed based on the RG.
has less states, but typically more transitions than V3.~ The * sign in Table 2 shows that > 15 hours. V4
Algorithm 1: For a given systent = (X, E, —, z) is more efficient than V1, and V3 is often better than
the following algorithm constructs the V4 verifier: V4, especially for large systems. However, increasing the
number of unobservable transitions in each sequence, by
1. Augment each state ¢ with failure labels (V, F), the factors and described in more details in Example 2,
based on the failure assignment function. shows in Table 3 that V4 is more efficient than V3.

Example 2 Consider the PN in Fig.1 with = 1 and

k = 3. Replace the transitiot),; with an observable one
with a distinct label. The PN is diagnosable. I&be the
number of unobservable transitions frafy to P, (the
same number for all = 1,...,k). Table 3 shows the
results for V3 and V4. This example is a counterexample,
where for large systems V4 has better results than M3.

2. Obtain a non-deterministic automaton
G, = (X, Eo,—0,28), where X, =
{(CC,f) |I€X1U{$0},f§f} and X, =
{z € X|3(2/,0,2) €= with P(o) # ¢}.

3. ComputeGY that represents the non-faulty behavior
of G,. Construct the!" by marking all states of7,,

that have labeF", denoted a&/}, then start fronG)’ As already observed, V3 is often better for large sys-
and construct} = CoAcc(GY). tems. Althoughn, is less in V4 than V3p, in V4 of-
ten increases dramatically for large systems. The reason
4. Compute the verifier automato;, = G || G£. is that abstracting away all unobservable transitions- typi

cally generates a number of non-deterministic transitions
Proposition 3 System( is diagnosable according to ver- In the synchronization 7y, this generates a huge num-

ifier V4 iff it is diagnosable according to verifier V1. ber of transitions for large systems. However, in Example
Proof: SinceG; = G,||G,, G4 includes all differ- 2 the number of unobservable transitions in V3 dominates,

ent combinations of failure labels, i.ez1, N, z2, N), which results in the opposite behavior where V4 is more

(x1,N,29, F), (x1, F, 22, N), and(z1, F, x2, F). A sys- efficient, avoiding all the unobservable transitions.

tem is not diagnosable if there exists at least one loop
among the uncertain states@y. Assuming the existence
of failure, G, includes both failure labels. Thus, to avoid Table 3 Number of states and transitions of two verifiers for
symmetry, we only perform strict composition @f, with the PN in Fig. 1 fom = 1 andk = 3 and additional unobserv-
its G, which results in half of the number of uncertain able transitiong according to Example 2.

states. To get all states that may lead to failure trangition T o I z |

we calculate the co-accessible part of the states with label [, T » [ & [ ne [ n [ & |

F, denoted a€7f". Hence, all uncertain states @, of 344 | 1158 1.65 129 | 554 0.30

- - 2198 | 9000 | 1301 || 471 | 3701 | 1.1L
type(z1, N, z2, I) are included irGy . 0 9262 | 42276 | 9532 || 1263 | 15650 | 5.16
29792 | 144060 | 666.35 || 2793 | 50027 | 37.32

76508 | 399258 | 4328.43 || 5421 | 132410 | 251.55

ol B w| N ||




Table 4 Number of states and transitions of the verifier for the PN with MBRG insté&Gain Fig. 1.

C T 1 RG MBRG T V3 i V4 ]
[n [ k][ ne [ me ng ne | tMBrG || ms | me | te || ms | me | te |
1 1 4 5 3 4 0.09 5 7 0.16 4 5 0.08
T2 10 20 5 9 0.09 7 I3 (018 4 5 | 008
T3 28 83 9 | 21 0.13 1T | 26 [ 019 4 5 | 008
T[4 82 326 || 17 | 49 0.36 10 | 55 [ 021 4 5 | 008
1 5 244 1217 33 113 4.06 35 120 0.23 4 5 0.08
2 [ 1 10 20 6 I 0.09 9 I7 [020] 8 18| 0.09
2 2 46 146 14 34 0.16 17 42 0.22 12 42 0.10
2 3 244 1109 36 110 2.85 39 120 0.29 20 120 0.11
2 4 1378 8264 98 362 170.74 101 374 0.48 36 390 0.14
2 5 8020 60023 276 | 1198 | 12826.11 | 279 | 1198 | 1.21 68 1368 0.22
3 1 20 50 10 21 0.10 14 30 0.21 13 40 0.10
3 2 146 578 30 83 0.69 34 95 0.28 27 170 0.13
3 3 1244 6941 100 345 101.42 104 360 0.55 67 964 0.23
4 1 35 100 15 34 0.11 20 46 0.22 19 73 0.11
4 2 371 1678 55 164 3.63 60 180 0.36 51 489 0.19
4 | 3 || 4619 | 29101 || 225 | 834 | 1908.13 || 230 | 854 | 1.08 || 169 | 4507 | 0.85
[6 [ 1] 84 | 280 28 | 69 [ 047 | 35 | 87 | 025] 34 | 180 [ 0.5 |
[ 6 | 2 || 1596 | 8428 || 140 | 454 | 76.44 || 147[ 478 | 0.70 || 134 | 2382 | 0.56 |
[T0] T ] 286 | 1100 || 66 | 175 | 0.81 | 77 | 205 | 0.43[] 76 | 614 [ 0.28 |
[0 | 2 || 12298 | 75086 || 506 | 1770 | 6681.96 || 517 | 1810 | 3.01 || 496 | 20330 | 9.87 |

6.2 Comparing Verifiers Based on MBRG References

The most efficient verifiers V3 and V4 are now con-
structed based on the MBRG. Using minimal explanation
reduction, V3 and V4 are similar except for the failure
abstraction case, which is not abstracted in the V3 gener-
ation. As shown in Table 4, except for the last rewpf

V4 is less than V3. For small and medium sized systems,
V4 in combination with minimal explanations has smaller
state space and the cost of increasingis not consid-
erable. Hence, V4 has better results than V3. For large
systems, although V4 has lesg, V3 performs better due

to the significant growth im, for V4.

A more important conclusion is that the introduction of
the MBRG improveg,. dramatically, often with a factor
1000 or more. Many systems that cannot be solved based
on RG are easily solved by first generating the MBRG.
The bottleneck is not the diagnosability verifier but the

calculation of the MBRG.

7. Conclusion

In this paper the efficiency of different polynomial di-
agnosability verifiers has been evaluated for PNs in terms

of ng, n; andt,.

A modified verification algorithm was
also proposed, which in the same way as other known ver- [

ifiers, was constructed based on either the RG or MBRG.
The verifiers were compared in different aspects, and the

results showed that for small and medium sized systems|,q

verifier V4 was better, while for very large systems ver-
ifier V3 was more efficient. Moreover, it is emphasized
that the verifier construction based on the reduced MBRG

is applicable both for PNs and synchronized automata.

The main conclusion is however that significantly
large systems can be analyzed when the most efficient
automata-based diagnosability algorithms are combined
with minimal explanations. For systems where the RG
can be used, the improved using MBRG is often 1000

times faster or even more.
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