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Abstract

This paper presents a survey and evaluation of the ef-
ficiency of polynomial diagnosability algorithms for sys-
tems modeled by Petri nets and automata. A modified ver-
ification algorithm that reduces the state space by exploit-
ing symmetry and abstracting unobservable transitions is
also proposed. We show the importance of minimal ex-
planations on the performance of diagnosability verifiers.
Different verifiers are compared in terms of state space
and elapsed time. It is shown that the minimal expla-
nation notion involved in the modified basis reachability
graph, a graph presented by Cabasino et al. [3] for di-
agnosability analysis of Petri nets, has great impact also
on automata-based diagnosability methods. The evalua-
tion often shows improved computation times of a factor
1000 or more when the concept of minimal explanation is
included in the computation.

1. Introduction

The ability to deduce about previously occurred fail-
ures in a system within a limited number of observations is
called diagnosability [10]. In the past decades there have
been many works in this field of research for both Petri
nets (PNs) and automata models.

In [10], where the diagnosability notion, and necessary
and sufficient conditions for diagnosability are introduced,
a diagnoser is constructed for diagnosability verification
which has exponential complexity. Later many polyno-
mial automata-based diagnosability approaches have been
proposed. A polynomial diagnosability test that abstracts
away all unobservable transitions is proposed in [6]. In
[11], a different synchronization rule is defined for un-
observable and failure transitions, which has less worst
case complexity with respect to (wrt) [6]. In the two
mentioned approaches it is assumed that there is no cy-
cle of unobservable transitions in the system and the gen-
erated language is live. The assumptions on liveness and
non-existence of unobservable cycles are removed in [9].
To construct the verifier, the model is then split into co-
accessible states from failure states and non-failure parts,
so that only the traces that lead to violation of diagnosabil-

ity are searched. The approach in [9] is claimed to have
the lowest complexity compared to all existing methods
found.

In some recent works, e.g., [1, 3, 4], the smallest se-
quence of unobservable transitions that must have been
fired to explain an observation is considered. It is called
minimal explanation and has a great impact on the com-
plexity reduction of diagnosability analysis. Its main ad-
vantage is that it does not require the exhaustive enumera-
tion of the state space. In [7], this notion is explained and
combined with the diagnosability test in [11], where the
constructed verifier includes both observable and failure
transitions. Since based on [7] there is a close connection
between minimal explanation notion and automata, in this
paper we evaluate the automata-based diagnosability ap-
proaches mentioned above both for PNs and automata.

This paper presents a survey and evaluation of the
efficiency of polynomial algorithms for diagnosability,
showing the importance of minimal explanation and basis
marking notions. Basis markings are determined through
minimal explanations firing and are a subset of the reach-
ability set. The contribution of this work is a system-
atic evaluation on how complexity increases based on the
number of sequences and tokens in PNs. Furthermore,
we show that the theoretical complexity analysis, which
is based on the worst case scenario, does not necessarily
give the correct picture from a practical point of view and
does not always lead to selecting an appropriate diagnos-
ability algorithm. We also show the importance of consid-
ering modular automata as PNs, implying that the mini-
mal explanation notion can be used for both modeling for-
malisms. We evaluate different polynomial diagnosabil-
ity verifiers for both the reachability graph (RG) and the
modified basis reachability graph (MBRG) [3] of a PN. A
modified version of a recent diagnosability method, which
has a state space with a smaller cardinality, is also intro-
duced. The conclusion is that significantly larger systems
can be analyzed when the most efficient automata-based
diagnosability algorithms are combined with minimal ex-
planations. For systems where the RG can be used, the
improved computation time using the MBRG is often a
factor 1000 or more.

The rest of the paper is organized as follows. Section
II presents preliminary concepts on PNs, while Section III



gives the definition of diagnosability. In Section IV, the
notion of the minimal explanations is presented. Section
V summarizes different polynomial verifiers that can be
used for analysis of diagnosability. In Section VI an eval-
uation and comparison of the different verifiers is made
with and without considering the minimal explanations.
Finally, conclusions are drawn in Section VII.

2. Preliminaries

A Place/Transition net (P/T net) is a structureN =
(P, T, Pre, Post), whereP is a set ofnP places;T is
a set ofnT transitions;Pre : P × T → N andPost :
P × T → N are the pre and post incidence functions that
specify the arcs; the incidence matrix isC = Post−Pre.

The marking vectorM : P → N assigns to each place
of a P/T net a nonnegative integer number of tokens. The
marking of placep is denotedM(p). A P/T system or net
system〈N,M0〉 is a netN with an initial markingM0. A
transitiont is enabled atM if M ≥ Pre(·, t) and may fire
yielding the markingM ′ =M+C(·, t). We writeM [σ〉
to denote that the sequence of transitionsσ = tj1 · · · tjk is
enabled atM , andM [σ〉M ′ represents that the firing of
σ yieldsM ′.

Given a sequenceσ ∈ T ∗, π : T ∗ → NnT is called the
function that associates withσ a vectory ∈ NnT , named
the firing vector ofσ. Particularly,y = π(σ), is such that
y(t) = h if the transitiont is containedh times inσ.

A markingM is reachable in〈N,M0〉 if there exists
a firing sequenceσ such thatM0 [σ〉M . The set of all
markings reachable fromM0 defines the reachability set
of 〈N,M0〉 and is denotedR (N,M0).

A net system〈N,M0〉 is bounded if there exists a posi-
tive constantc such that,∀M ∈ R(N,M0),M(p) ≤ c. A
labeling functionL : T → L ∪ {ε} assigns to each tran-
sition t ∈ T either a symbol from a given alphabetL or
the empty stringε . We call labeled PN system the triple
〈N,M0,L〉.

The set of transitions is partitioned into the set of ob-
servable transitionsTo and set of unobservable transitions
Tu, T = To∪̇Tu. The set of fault transitionsTf is a sub-
set ofTu, Tf ⊆ Tu. If there arer different fault classes,
Tf can be partitioned intor different subsetsT i

f , where
i = 1, · · · , r.

The PN depicted in Fig. 1, hask similar sequences
from t1 to t5, (including e.g.,t11, t12 andt13), which for
number of tokensn = 1 can also be considered as the
synchronization ofk local automataGi, one for each se-
quence, and the complete system isG1‖ · · · ‖Gk. In Fig. 1
only transitionst1 and t5 are observable. In the follow-
ing the RG of a bounded PN is defined as an automaton,
which is used in the rest of paper.

Definition 1 The RG automaton is a tupleGRG =
〈

XRG, ERG,→RG, x
RG
0

〉

where,XRG ∈ R(N,M0) and
xRG
0 = M0. ERG = T is the set of transitions, and

→RG ⊆ XRG ×ERG ×XRG denotes the transition rela-
tion whereM [ t〉 Ḿ means that(M, t, Ḿ) ∈ →RG. �

Consider the transition setT . Generally, some transi-
tionsTa ⊆ T in a PN can be abstracted. In Section IV
this will be done by the concept of minimal explanations.
The remaining transitions in the abstracted model are then
denotedTr, meaning thatT = Tr∪̇Ta.

The RG includes all transitions inT , both the observ-
able To and the unobservableTu. Hence, for the RG,
Tr = To ∪ Tu andTa = ∅. The alphabet of the RG is the
set of transitions of the corresponding PN. Considering
the RG automaton for PNs, the diagnosability definition
of automata is presented in the following section.

3. Diagnosability of Discrete Event Systems

Definition 2 (Event Observation Projection) The event
observation projection [5], is a mapping from the original
event setE to a smaller observable event setEo ⊆ E, i.e.,
P : E → Eo∪{ε} that can be extended toE∗, so we have
s ∈ E∗, σ ∈ E: P (sσ) = P (s)P (σ), with P (ε) = ε
andP (σ) = ε for all σ ∈ Eu. Here,Eu denotes the
unobservable event set, andE∗ the set of all event traces
generated fromE. �

Definition 3 (Failure Assignment Function) Failure as-
signment function is a mapping from the original event
setE to either 0 orF . ψ : E → F ∪ {0}, where
F = {T i

f , i = 1, . . . , r}. It means that ifσ ∈ E is not a
failure event it is projected to 0. Otherwise it is projected
to theT i

f type failure set where it belongs to [6]. �

AssumeG is live, without any cycle of unobservable
events. Consider a traceσ ∈ L(G) ending with aT i

f

type failure, and a sufficiently long tracem obtained by
extendingσ. The systemG is thendiagnosableif every
tracew whose observation is equivalent tom also contains
a failure classT i

f . Formally, diagnosability is defined as
follows.

Definition 4 (Diagnosability) With respect to the event
observation projection introduced in Definition 2 and the
failure assignment functionψ : E → F ∪ {0}, a system
G is diagnosable if

(∀T i
f ∈ F)(∃ni ∈ N)(∀s ∈ L, ψ(sf ) = T i

f )

(∀m = st ∈ L, ‖t‖ ≥ ni) ⇒
(∀w ∈ L, P (w) = P (m))(∃l ∈ pr({w}), ψ(lf ) = T i

f )

σf andlf are the last events in tracesσ andl, respectively,
andpr({w}) is the set of all prefixes ofw [6]. �

For the sake of simplicity, here one fault type is con-
sidered. Necessary and sufficient conditions for diagnos-
ability of PNs are introduced under the following assump-
tions. The net system〈N,M0〉 is bounded and has no
deadlock, i.e., at least one transition fires at each reach-
able marking. The unobservable subnet is acyclic, i.e,
∀σ ∈ T ∗, σ is not an unobservable trace and∀M if
M [σ〉M ⇒ σ /∈ T ∗

u . The assumptions are also often
considered for automata models. Moreover minimal ex-
planations are introduced based on these assumptions.



Ni

P1

P11

P12

P13

Pk1

Pk2

Pk3

t1(a)

t11(ε1)

t12(εf1) t13(ε1)

t5(b)

tk1(εk)

tk2(εfk ) tk3(εk)

. . .

Figure 1 PN with k sequences, and generallyn initial tokens
in placeP1 (heren = 1).

4. Generation of Minimal Explanation

There are many diagnosability algorithms for au-
tomata, while for PNs it is still an open problem to find
a computationally efficient analysis and there are few ap-
proaches. A straightforward diagnosability test for PNs
is to construct the RG(PN), which for bounded PNs is an
automaton, and then apply one of the automata-based di-
agnosability tests. This is a non-efficient approach, since
constructing RG(PN) is exponentially complex wrt the
number of tokens and places. PN is a more compact rep-
resentation than an automaton for a system, so a small
increase in the number of tokens or places often results in
a huge increase of the number of states of the RG.

To solve this problem, a basic idea is to abstract away
unobservable transitions, which do not convey any infor-
mation about the system and its failures. In this way, a PN
still reproduces all words generated by the labeled observ-
able transitions. Based on this idea, a non-deterministic
observer considering all observable and failure transitions
(OF) with a smaller state space than the RG is constructed
in [7], wheret ∈ Tr = To∪̇Tf . In the OF,t is defined at
stateM and reachesM ′ iff in the PN there is an accessible
traceτ = σt that connectsM to M ′, whereσ indicates
the finite number of non-failure unobservable transitions.

In most cases, the OF is a smaller automaton compared
to RG. However, as shown in Table 1 for Fig. 1, where
k = 2, the size of the OF for the number of tokensn = 2,
even gets more transitions compared to RG. In Table 1,
ns is the number of states, andnt is the number of tran-
sitions. Although forn = 1 the OF size is smaller than
the RG, we still need further reduction of the PN. This is
obtained based on theminimal explanationnotion as in
[2], andstrictly minimal explanationas in [8]. These no-
tions represent the reachability space in a compact form
and hence, do not require the exhaustive enumeration of
the state space. Based on [8], for PNs with acyclic unob-
servable sub-nets, both definitions on minimal explanation
and strictly minimal explanation are equivalent.

Table 1 Number of states and transitions of the RG, OF and
MBRG of the PN in Fig. 1 fork = 2.

RG OF ROF/MBRG

n = 1

ns 10 7 5
nt 20 17 9

n = 2

ns 46 46 14
nt 146 546 36

The advantage of using minimal explanation is also
presented in [4], where the basis reachability graph (BRG)
is introduced, whereTr = To andTa = Tu. For diagnos-
ability test the information provided by the BRG is how-
ever not enough, due to the fact that the BRG does not
include enough information on all failure transitions [2].
Hence, a modified version of the BRG, called MBRG, is
introduced where the failure events are not abstracted, and
thereforeTr = To∪̇Tf andTa = Tu\Tf . The size of the
MBRG of Fig. 1 forn = 1, 2, is shown in Table 1. More-
over in [2], a diagnoser called basis reachability diagnoser
(BRD) is defined using the MBRG.

In [7], a reduced version of OF, called ROF, is also
constructed based on a backward search for the computa-
tion of minimal explanations. Both OF and ROF are non-
deterministic automata, while all polynomial diagnosabil-
ity algorithms considered in this paper assume that the
original system is deterministic. Since the MBRG in [3]
can be considered as a deterministic automaton, our pre-
sentation of minimal explanations for PNs is based on the
MBRG formulation. We consider the definition of min-
imal explanation as in [3], where a tabular search algo-
rithm to compute the set of minimal explanations is im-
plemented. An explanation is then defined as minimal if
its firing vector is component-wise minimal.

4.1. Minimal Explanation Notion
A transition t ∈ Tr = To ∪ Tf fires at markingM

yieldingḾ iff in the PN 〈N,M〉 the relationM [σ〉 Ḿ is
verified, whereτ = σt exists,σ is a minimal explanation
of t, andσ ∈ T ∗

a (Ta = Tu\Tf ).

Example 1 Consider the PN in Fig. 1 fork = 1. t12
is a failure transition, which is considered as an observ-
able transition in the MBRG generation. The procedure
for finding minimal explanations and basis markings is
as follows. Starting fromM0 there is only one transi-
tion t1 ∈ Tr. Hence, t1 connects the basis marking
M0 = [1, 0, 0, 0] to M1 = [0, 1, 0, 0] with no e-vector.
FromM1 there are two possible transitions belonging to
Tr, t12 and t5. For t12 the minimal explanation ist11,
e1 = [1, 0] and the next basis marking isM2 = [0, 0, 0, 1].
Transitiont5 is in the outgoing traces of both basis mark-
ingsM1 andM2, and the minimal explanations aret11t13,
i.e., e2 = [1, 1] andε, respectively. The MBRG automa-
ton is depicted in Fig. 2. �

The formal definition of minimal explanation for a mark-
ingM and a transitiont ∈ Tr is as follows.
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Figure 2 The MBRG automaton of Fig. 1 fork = 1.

Definition 5 [3] Given a markingM and a transitiont ∈
Tr, we define

Σ(M, t) = {σ ∈ T ∗

a |M [σ〉 Ḿ, Ḿ ≥ Pre(·, t)}

as the set of explanations oft at M , and Y (M, t) =
π(Σ(M, t)) the corresponding set of e-vectors (or expla-
nation vectors), i.e., firing vectors associated with the ex-
planations. �

Thus,Σ(M, t) is the set of unobservable sequences whose
firing at M enablest. Among the above sequences we
want to select those whose firing vectors are minimal.

Definition 6 [3] Given a markingM and a transitiont ∈
Tr, we define

Σmin(M, t) =

{σ ∈ Σ(M, t) | ∄σ1 ∈ Σ(M, t) : π(σ1) � π(σ)}

as the set of minimal explanations oft at M , and
Ymin(M, t) = π(Σmin(M, t)) the corresponding set of
minimal e-vectors. �

4.2. Modified Basis Reachability Graph Automaton
In this section the MBRG automaton is defined based

on minimal explanations and basis markings. The MBRG
is here marginally modified compared to the MBRG in
[3], where the authors did not consider it as an automaton.
In the sequel, the basis marking and the MBRG automaton
are defined.

Definition 7 The initial marking of a PN is also the initial
basis marking,X0

BM =M0. Starting fromX0
BM , the rest

of basis markings are generated based on the following
iteration untilXi+1

BM = Xi
BM .

Xi+1

BM = Xi
BM ∪ {Ḿ |M ∈ Xi

BM ∧ t ∈ Tr ∧

σ ∈ Σmin(M, t) ∧M [σt〉 Ḿ}

The set of basis markings for MBRG isXMBRG = Xi
BM .
�

Definition 8 The MBRG is an automatonGMBRG =
〈

XMBRG, EMBRG,→MBRG, x
MBRG
0

〉

, where
XMBRG ⊆ XRG, EMBRG=Tr×Ymin(M, t), and
→MBRG⊆XMBRG×EMBRG×XMBRG denotes the
transition relation whereM [σt〉 Ḿ , andσ ∈ Σmin(M, t)
means that(M, (t, e), Ḿ) ∈ →MBRG. �

Proposition 1 [3] GMBRG is deterministic. �

Proposition 2 [7] L(GRG) is diagnosable wrtF iff
L(GMBRG) is diagnosable wrtF . �

SinceGMBRG is deterministic according to Proposi-
tion 1, any automata-based verifier can be used to verify
diagnosability of a PN by investigatingGMBRG instead
of GRG, according to Proposition 2.

5. Different Verifier Automata

Here, three known verifiers are presented. A modified
version of the first verifier, [6], is also introduced. To get a
more fair comparison between the best known verifier, [9],
and the concept used in [6], our modified version reduces
the complexity of [6] in the same spirit as in [9].

5.1. V1 Verifier
In [6] a verifier is introduced that abstracts away all un-

observable and failure transitions by first constructing an
observable automaton,Go, whose definition is presented
in Algorithm 1 in Subsection 5.4. ThenGd = Go‖Go.
This verifier (V1) is checked for the existence of possible
indeterminate cycles by identifying the uncertain states in
Gd. All other states and their associated transitions are
then deleted. If the remaining graph contains at least one
cycle the system is not diagnosable. This verifier was the
first proposed polynomial algorithm with the worst case
complexityO(n4snT ).

5.2. V2 Verifier
In [11] a different synchronization rule for unobserv-

able transitions compared to V1 is defined. The computa-
tional complexity isO(n2snT ). Thus, in worst case it has
lower computational complexity than the V1 algorithm.
In practice however, when there are a significant number
of unobservable events in the system, V1 is often more ef-
ficient, due to the abstraction of unobservable transitions.

5.3. V3 Verifier
The algorithm in [9] starts with the construction of the

non-failure automaton,GN , the co-accessible states from
faulty states,GF , and parallel synchronizationGN‖GF .
The algorithm efficiency is due to the fact that in the
synchronization step, only the traces that lead to the
violation of diagnosability are searched. In the algo-
rithm, the assumptions of liveness and non-existence of
unobservable cycles are removed and its complexity is
O(n2s(nT − nTf

)), wherenTf
represents the number of

failure transitions. It is claimed that this verifier has lower
complexity than all other methods found in the literature.
Note that, since verifier V3 has a more efficient formu-
lation than verifier V2, in comparisons we only consider
V3.



Table 2 Number of states and transitions of the verifier for the PN in Fig. 1.

RG V1 V3 V4
n k ns nt ns nt ts tcd ns nt ts tcd ns nt ts tcd

1 1 5 5 8 13 0.11 0.005 20 34 0.19 0.01 4 5 0.08 0.005
1 2 10 20 8 13 0.11 0.005 116 344 0.60 0.02 4 5 0.08 0.005
1 3 28 83 8 13 0.11 0.004 884 4086 4.33 0.09 4 5 0.08 0.006

2 1 10 20 76 889 0.21 0.008 92 248 0.47 0.02 38 335 0.14 0.008
2 2 46 146 652 66265 80.53 0.09 1772 8270 9.45 0.21 326 22907 5.66 0.07
2 3 244 1109 * * * * 47972 336762 3130 246.20 2918 1716797 44193 52.62

3 1 20 50 328 11604 1.88 0.02 292 974 1.33 0.03 164 4308 0.51 0.03
3 2 146 578 * * * * 14052 81306 224 10.54 5348 3279134 158066.74 164.78
3 3 1244 6941 * * * * * * * * * * * *

5.4. V4 Verifier
We present V4 as an alternative strategy, which intu-

itively can give better performance than V3 due to smaller
state space, particularly when there are a significant num-
ber of unobservable transitions. Increasing the number of
unobservable transitions results in an obvious increase in
the size of V3, while it does not change the number of
states in V4. The proposed V4 verifier is based on V1,
but exploits the symmetry of the states inGd = Go‖Go

similar to V3. In V4 two parts of theGo are generated:
GN

o , the non-failure part, andGF
o , the co-accessible part

of Go from failure states. The resulting verifierGN
o ‖GF

o

has less states, but typically more transitions than V3.
Algorithm 1: For a given systemG = (X,E,→, x0),

the following algorithm constructs the V4 verifier:

1. Augment each state ofG with failure labels (N,F ),
based on the failure assignment function.

2. Obtain a non-deterministic automaton
Go = (Xo, Eo,→o, x

o
0), where Xo =

{(x, f) |x ∈ X1 ∪ {x0} , f ⊆ F} and X1 =
{x ∈ X|∃ (x′, σ, x) ∈→ with P (σ) 6= ε}.

3. ComputeGN
o that represents the non-faulty behavior

of Go. Construct theGF
o by marking all states ofGo

that have labelF , denoted as̄GF
o , then start fromḠF

o

and constructGF
o = CoAcc(ḠF

o ).

4. Compute the verifier automaton,GV = GN
o ‖ GF

o .

Proposition 3 SystemG is diagnosable according to ver-
ifier V4 iff it is diagnosable according to verifier V1.

Proof: SinceGd = Go‖Go, Gd includes all differ-
ent combinations of failure labels, i.e.,(x1, N, x2, N),
(x1, N, x2, F ), (x1, F, x2, N), and(x1, F, x2, F ). A sys-
tem is not diagnosable if there exists at least one loop
among the uncertain states inGd. Assuming the existence
of failure,Go includes both failure labels. Thus, to avoid
symmetry, we only perform strict composition ofGo with
its GN

o , which results in half of the number of uncertain
states. To get all states that may lead to failure transitions,
we calculate the co-accessible part of the states with label
F , denoted asGF

o . Hence, all uncertain states inGd of
type(x1, N, x2, F ) are included inGV . �

6. Comparisons

The non-diagnosable PN in Fig. 1 is evaluated for dif-
ferent number of initial markingsn and sequencesk. The
cycle detection timetcd is the elapsed time until the algo-
rithm finds a cycle in the graph.ts and te are the veri-
fier construction and total elapsed times, respectively. All
tests have been run on a PC Intel with a clock of 3.10 GHz,
RAM 16 GB. Computation times are in seconds.

6.1 Comparing Verifiers Based on RG
Here, the verifiers are constructed based on the RG.

The ∗ sign in Table 2 shows thatts > 15 hours. V4
is more efficient than V1, and V3 is often better than
V4, especially for large systems. However, increasing the
number of unobservable transitions in each sequence, by
the factorβ and described in more details in Example 2,
shows in Table 3 that V4 is more efficient than V3.

Example 2 Consider the PN in Fig. 1 withn = 1 and
k = 3. Replace the transitiontk3 with an observable one
with a distinct label. The PN is diagnosable. Letβ be the
number of unobservable transitions fromPi1 to Pi2 (the
same number for alli = 1, . . . , k). Table 3 shows the
results for V3 and V4. This example is a counterexample,
where for large systems V4 has better results than V3.�

As already observed, V3 is often better for large sys-
tems. Althoughns is less in V4 than V3,nt in V4 of-
ten increases dramatically for large systems. The reason
is that abstracting away all unobservable transitions typi-
cally generates a number of non-deterministic transitions.
In the synchronization inGV this generates a huge num-
ber of transitions for large systems. However, in Example
2 the number of unobservable transitions in V3 dominates,
which results in the opposite behavior where V4 is more
efficient, avoiding all the unobservable transitions.

Table 3 Number of states and transitions of two verifiers for
the PN in Fig. 1 forn = 1 andk = 3 and additional unobserv-
able transitionsβ according to Example 2.

V3 V4
β ns nt te ns nt te

1 344 1158 1.65 129 554 0.30
2 2198 9090 13.01 471 3701 1.11
3 9262 42276 95.32 1263 15650 5.16
4 29792 144060 666.35 2793 50027 37.32
5 76508 399258 4328.43 5421 132410 251.55



Table 4 Number of states and transitions of the verifier for the PN with MBRG instead of RG in Fig. 1.

RG MBRG V3 V4
n k ns nt ns nt tMBRG ns nt te ns nt te

1 1 4 5 3 4 0.09 5 7 0.16 4 5 0.08
1 2 10 20 5 9 0.09 7 13 0.18 4 5 0.08
1 3 28 83 9 21 0.13 11 26 0.19 4 5 0.08
1 4 82 326 17 49 0.36 19 55 0.21 4 5 0.08
1 5 244 1217 33 113 4.06 35 120 0.23 4 5 0.08

2 1 10 20 6 11 0.09 9 17 0.20 8 18 0.09
2 2 46 146 14 34 0.16 17 42 0.22 12 42 0.10
2 3 244 1109 36 110 2.85 39 120 0.29 20 120 0.11
2 4 1378 8264 98 362 170.74 101 374 0.48 36 390 0.14
2 5 8020 60023 276 1198 12826.11 279 1198 1.21 68 1368 0.22

3 1 20 50 10 21 0.10 14 30 0.21 13 40 0.10
3 2 146 578 30 83 0.69 34 95 0.28 27 170 0.13
3 3 1244 6941 100 345 101.42 104 360 0.55 67 964 0.23

4 1 35 100 15 34 0.11 20 46 0.22 19 73 0.11
4 2 371 1678 55 164 3.63 60 180 0.36 51 489 0.19
4 3 4619 29191 225 834 1908.13 230 854 1.08 169 4507 0.85

6 1 84 280 28 69 0.17 35 87 0.25 34 180 0.15
6 2 1596 8428 140 454 76.44 147 478 0.70 134 2382 0.56

10 1 286 1100 66 175 0.81 77 205 0.43 76 614 0.28
10 2 12298 75086 506 1770 6681.96 517 1810 3.01 496 20330 9.87

6.2 Comparing Verifiers Based on MBRG
The most efficient verifiers V3 and V4 are now con-

structed based on the MBRG. Using minimal explanation
reduction, V3 and V4 are similar except for the failure
abstraction case, which is not abstracted in the V3 gener-
ation. As shown in Table 4, except for the last row,te of
V4 is less than V3. For small and medium sized systems,
V4 in combination with minimal explanations has smaller
state space and the cost of increasingnt is not consid-
erable. Hence, V4 has better results than V3. For large
systems, although V4 has lessns, V3 performs better due
to the significant growth innt for V4.

A more important conclusion is that the introduction of
the MBRG improveste dramatically, often with a factor
1000 or more. Many systems that cannot be solved based
on RG are easily solved by first generating the MBRG.
The bottleneck is not the diagnosability verifier but the
calculation of the MBRG.

7. Conclusion

In this paper the efficiency of different polynomial di-
agnosability verifiers has been evaluated for PNs in terms
of ns, nt and te. A modified verification algorithm was
also proposed, which in the same way as other known ver-
ifiers, was constructed based on either the RG or MBRG.
The verifiers were compared in different aspects, and the
results showed that for small and medium sized systems
verifier V4 was better, while for very large systems ver-
ifier V3 was more efficient. Moreover, it is emphasized
that the verifier construction based on the reduced MBRG
is applicable both for PNs and synchronized automata.

The main conclusion is however that significantly
large systems can be analyzed when the most efficient
automata-based diagnosability algorithms are combined
with minimal explanations. For systems where the RG
can be used, the improvedte using MBRG is often 1000
times faster or even more.
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