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Exchange effects in plasmas: The case of low-frequency dynamics
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Recently, there has been a surge of interest in nonequilibrium collective quantum models, where particle
dispersion and spin are examples of effects taken into account. Here, we derive a kinetic plasma model containing
fermion exchange effects. Exchange interactions are of great importance in many systems and have no classical
analogy. Our model therefore constitutes a possible probe of collective quantum phenomena in other regimes.
As an example, we consider the influence of the exchange effect on low-frequency dynamics, in particular ion-
acoustic waves. Comparisons to related computational techniques are given and the differences are highlighted.
Furthermore, we discuss the applicability of our model, its limitations, and possible extensions.
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I. INTRODUCTION

Quantum plasma physics is currently a field of intense
study. One reason for this is the potential applications in, for
example, laser-produced plasmas [1–4], ultrasmall electronic
devices, and dense astrophysical systems [5–7]. Different
aspects of quantum plasmas have been studied such as quantum
dispersion and Fermi pressure [5–7], the magnetic dipole force
and the spin dynamics [8–17], quantum relativistic effects, and
nonlinear dynamics [14–16,18,19]. Typically, quantum effects
are important for systems with high density and low tempera-
ture. That said, it is important to distinguish between the quan-
tum effects related to thermodynamic equilibrium properties
and to dynamical properties of the system. Exchange effects
due to particle statistics have been successfully included in the
density functional theory (DFT) [20,21]. Applications of DFT
include, for example, ground-state properties of atoms and
equilibrium properties of many-particle systems [20,21]. The
effects of exchange on dynamics have also been studied in the
setting of kinetic theory [8,22–28], as well as in studying, e.g.,
the thermodynamic properties of plasmas [24,25]. It has also
been studied using fluid theory [28]. Furthermore, many papers
deal with how quantum mechanics affects the low-frequency
long-scale dynamics, as, for example, quantum ion-acoustic
waves [29–33].

In Sec. II, we derive the Wigner equation for electrons
within the Hartree-Fock approximation. We simplify the
equation by assuming that the plasma is not spin polarized
and by focusing on length scales much longer than the
thermal de Broglie wavelength. In Sec. III, we consider the
impact on ion-acoustic waves by treating the exchange effects
perturbatively within the linear approximation and, finally, in
Sec. V, we discuss our result.

II. MODEL

Here we consider a completely ionized electron-ion plasma
with the particles interacting through a mean-field scalar
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potential. Quantum effects for the ions will be completely
neglected, while for the electrons we will take into account a
dynamic correction due to the Pauli exclusion principle. Also,
we will not consider effects due to the self-energy and particle
correlations [25]. Here we give an outline of the derivation of
a kinetic theory with exchange effects.

The state of the N electrons is described by the density
operator ρ1...N (see, for example, Ref. [25]) and the dynamics
is given by the von Neumann equation with the Hamiltonian

Ĥ1...N =
N∑

i=1

p̂2
i

2me

+ e2

4πε0

∑
i<j

1

|x̂i − x̂j | + e

N∑
i=1

ϕ(x̂i). (1)

Here me is the electron mass, e is the electron charge (e < 0),
and ε0 is the permittivity of vacuum. The last term accounts for
the interaction with the electric potential created by the ions.
We now introduce the reduced density operators according to

ρ̂1...i = niTri+1...N ρ̂1...N �̂1...i , (2)

where Tri+1...N denotes the trace over particles i + 1 to N

(i.e., integrating over the position degree of freedom and
summing over the spins), n is the mean density, and �̂1...i

is the antisymmetrization operator that takes an i-particle state
and makes it completely antisymmetric [34]. We will only need
to know that �̂12 = 1 − P̂12 where P̂12 interchanges particle
1 and 2, i.e., P̂12ψ(x1,x2) = ψ(x2,x1) (see, e.g., Ref. [25]
for further details). The evolution for the one-particle density
operator is given by

ih̄∂t ρ̂1 = [ĥ1,ρ̂1] + nTr2[V̂12,ρ̂12�̂12], (3)

where ĥ1 = p̂2/(2me) and V̂12 = V (x̂1 − x̂2) =
e2/(4πε0|x̂1 − x̂2|), and ρ̂12 is the two-particle density
operator. The effects of two-particle correlations ĝ12 can be
separated out of the two-particle density operator by writing
it in the form

ρ̂12 = ρ̂1ρ̂2 + ĝ12; (4)

see, e.g., Ref. [35]. We are interested in the collisionless
limit where a mean-field approximation will suffice. This
approximation is obtained by neglecting the correlation ĝ12.
Utilizing this in Eq. (2), we obtain

ih̄∂t ρ̂1 = [ĥ1,ρ̂1] + [V̄1,ρ̂1], (5)
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where V̄1 = Tr2V̂12ρ̂2�̂12 is the Hartree-Fock potential op-
erator. This is a closed system for the one-particle density
operator.

To obtain a connection to the classical kinetic theory, we
utilize the Wigner representation [36] of this equation. Using
the complete set of states |x,α〉, where x is the position and α =
1,2 is the spin along the axis of quantization, this representation

is obtained as

f (x,p,α,β) = n

(2πh̄)3

∫
d3y eiy·p/h̄ρ

(
x + y

2
,α; x − y

2
,β

)
,

(6)

where ρ(x,α; y,β) = 〈x,α|ρ̂1|y,β〉 is the density matrix. Writ-
ing Eq. (5) first in the position representation and Wigner
transforming the result, we obtain

∂tf (x,p,α,β) + 1

m
p · ∇xf (x,p,α,β) + ie

h̄

∫
d3yd3p′

(2πh̄)3
eiy·(p−p′)/h̄

[
φ

(
x + y

2

)
− φ

(
x − y

2

)]
f (x,p′,α,β)

= i

h̄(2πh̄)3

2∑
γ=1

∫
d3p′d3p′′d3yd3reip·y/h̄e−ip′ ·(x+y/2−r)/h̄e−ip′′ ·(r−x+y/2)/h̄

×
[
V

(
x + y

2
− r

)
− V

(
x − y

2
− r

)]
f

(
x + r

2
+ y

4
,p′,α,γ

)
f

(
x + r

2
− y

4
,p′′,γ,β

)
, (7)

where

φ(x) = en

4πε0

2∑
γ=1

∫
d3z

ρ(z,γ ; z,γ )

|x − z| + ϕ(x) (8)

is the total (mean-field and the ionic field) potential and

V (x) = e2

4πε0|x| (9)

is the Coulomb potential. The left-hand side of Eq. (7) represents the quantum Vlasov equation, while the right-hand side is the
correction due to exchange effects. This term is nonlocal in phase space and nonlinear in the distribution function.

The matrix equation can be transformed into a scalar equation by taking the spin transformation [12]

f (x,p,s,t) = 1

4π

2∑
α,β=1

[δα,β + s · σ α,β ]f (x,p,β,α), (10)

where s is a vector on the unit sphere. Applying this to Eq. (7), we obtain

∂tf (x,p,s) + 1

m
p · ∇xf (x,p,s) + ie

h̄

∫
d3y d3p′

(2πh̄)3
eiy·(p−p′)/h̄

[
φ

(
x + y

2

)
− φ

(
x − y

2

)]
f (x,p′,s)

= i

h̄

∫
d3p′ d3p′′ d3y d3r

(2πh̄)3
eip·y/h̄e−ip′ ·(x+y/2−r)/h̄e−ip′′ ·(r−x+y/2)/h̄

∫
d2s ′d2s ′′

8π
[1 + 9s′ · s′′ + 3s · (s′ + s′′) + 9is · (s′ × s′′)]

×
[
V

(
x + y

2
− r

)
− V

(
x − y

2
− r

)]
f

(
x + r

2
+ y

4
,p′,s′

)
f

(
x + r

2
− y

4
,p′′,s′′

)
, (11)

where in the last term we see the exchange interaction in the Wigner form. The evolution equation (7) describes the evolution
of the electrons in the mean-field (Hartree-Fock) approximation for all scale lengths. We are interested in the semiclassical limit
where the potential φ and the distribution function f vary on a scale L much larger than the de Broglie scale length �dB and
we would like to keep only the lowest surviving correction in an expansion in �dB/L. For the potential term, the expansion is
straightforward; see, for example, Ref. [5]. For the exchange term, we expand the potential and the distribution function to second
order in y (with the assumptions that the characteristic length scale L is much larger than the thermal de Broglie wavelength
h̄/mvT , where vT is the thermal speed). We then perform the y integration and one of the momentum integrals.

Furthermore, we will for simplicity also assume that the distribution function is independent of the spin, i.e., f (x,p,s,t) =
f (x,p,t)/(4π ). Integrating over the spin, we obtain

∂tf (x,p,t) + p
m

· ∇xf (x,p,t) + eE(x,t) · ∇pf (x,p,t)

= 1

2
∂i
p

∫
d3rd3p′e−ir·p′/h̄[∂i

rV (r)
]
f

(
x − r

2
,p + p′

2
,t

)
f

(
x − r

2
,p − p′

2
,t

)

− ih̄

8
∂i
p∂j

p ·
∫

d3rd3p′e−ir·p′/h̄[∂i
rV (r)

] [
f

(
x − r

2
,p − p′

2
,t

) (←−
∂

j

x − −→
∂

j

x

)
f

(
x − r

2
,p + p′

2
,t

)]
, (12)
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where ∂i
x ≡ ∂/∂xi and analogously for ∂i

p, and an arrow above
an operator indicates in which direction it acts. We have also
used the summation convention so that a sum over indices
occurring twice in a term is understood.

Equation (12) is one of the main results of this work.
Unfortunately, the complexity of this equation limits the
practical applicability to some extent. The key advantage is
that it is derived from first principles using few assumptions
besides the perturbative approach. Theories that can be applied
in the regime of stronger exchange effects by necessity use
assumptions and/or approximations that need validation. In
some cases, justification can be done against experiments,
but comparison against theory based on first principles is
also much needed. Such comparisons need to be done in
the regime of weak exchange effects, as it is only here that
calculations based solely on first principles can be made.
However, since Eq. (12) can be used as a validation for other
calculation schemes (such as, e.g., density functional theory),
it has relevance beyond the regime of weak exchange effects.
The final section of the paper will elaborate on these issues.

III. DAMPING OF ION-ACOUSTIC WAVES

We now consider the effect of the exchange term on
electrostatic ion-acoustic waves in a plasma. We will use
Eq. (12) for the electrons and the classical Vlasov equation
for ions. To obtain the dispersion relation, we assume a

longitudinal oscillation f = f0(p) + f1(p) exp(−iωt + ikz)
and E = ẑEz exp(−iωt + ikz). We assume that the unper-
turbed electron distribution function is given by a Maxwell-
Boltzmann distribution [37],

f0(p) = n

(2πmkBTe)3/2
exp

(
−p2

⊥ + p2
z

2mkBTe

)
. (13)

Furthermore, assuming that the exchange terms are a small
correction to the distribution function, we may calculate
it by inserting the lowest-order solution for f1, i.e., f1 =
−ieEz/(ω − kpz/m)∂pz

f0, in the integrand. Introducing spa-
tial spherical coordinates, it is possible to solve all spatial
integrals in Eq. (12). Next, the integrand is expanded in terms
of h̄. The lowest-order term in the first integral vanishes due
to symmetry and we keep only the two first-order terms. In
the second integral, we already have an additional h̄, meaning
that we only retain the lowest-order term. Finally, it is possible
to solve the p′

z and ϕ′
p integrals. The remaining integrals are

solved numerically and doing so gives a solution for f1 in the
linear regime. Now, from the classical dispersion relation, we
have

ω ≈ (ωpI /ωpe)kvT e ≡ αkvT e, (14)

where vT e = √
kBTe/me is the electron thermal velocity and

ωp denotes the plasma frequency. The dispersion relation is
then given by

0 = 1 + ω2
pe

k2v2
T e

− ω2
pI

ω2
− h̄2ω4

pe

4πm2k2v6
T e

∫
dv

e−v2

(α − v)2

∫
du

[
v + u

α − (v + u)

] [(
u2 − u

α − v
− 1

2

)
Ei(−u2) + e−u2

]
, (15)

where the first three terms give the classical dispersion relation
for an ion-acoustic wave (Ei denotes the exponential integral).
Solving these integrals numerically gives the approximate
dispersion relation,

0 ≈ 1 + ω2
pe

k2v2
T e

(
1 + 2iγcl

kcs

)
− ω2

pI

ω2
− h̄2ω4

pe

m2k2v6
T e

(0.8 + 0.05i),

which, in the quasineutral limit ω2
pe � k2v2

T e, can be written

ω = kcs

(
1 + 0.8

h̄2ω2
pe

m2v4
T e

)
− iγcl

(
1 − 3

h̄2ω2
pe

m2v4
T e

)
, (16)

where cs = (me/mi)1/2 vT e is the classical ion-acoustic ve-
locity and we have introduced the classical electron Landau
damping, γcl = kcs

√
π/8

√
me/mi , in the cold ion limit [38].

IV. APPLICABILITY OF MODEL AND RESULTS

In deriving our model given by Eq. (12) and the result (16),
a series of approximations have been made and here we give a
brief recapitulation of these together with a discussion of their
implications for the applicability of the results.

In order to obtain a closure relation for the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, we have
neglected particle-particle correlations in Eq. (4), which means

disregarding the collisional influence. This approximation is
known to be particle and energy conserving [25]. A general
motivation for neglecting the collisions in our calculations
is that the effect of these have been much studied; see, e.g.,
[39–44]. Furthermore, since we are utilizing a perturbative
method, the two effects can be studied separately and added
together afterwards provided the collisions also are weak.
The relative magnitude of the collisional influence scales as
(see, e.g., [39]) (Ep/Ek)3/2, where Ep = q2n

1/3
0 /ε0 is the

characteristic potential energy between nearest neighbors and
Ek = kBTe = mev

2
T e/2 gives the average kinetic energy of an

electron. To check that the magnitude of exchange corrections
is not necessarily negligible compared to collisions, we rewrite
the parameter of the previous section as (h̄ωpe/mv2

T e)2 ∼
(Ep/Ek)(EF /Ek) [5], where EF is the Fermi energy. Thus
we find that the ratio R of exchange effects over collisions
scales as

R ∼ EF

E
1/2
k E

1/2
p

. (17)

From this, we find that we may indeed find a regime where
exchange effects dominate over collisions by choosing a
sufficiently high density so that EF � Ep and then keep the
temperature relatively modest such that Ek is not too much
larger than EF .
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In our calculations, we furthermore used a Maxwell-
Boltzmann background distribution function instead of a
Fermi-Dirac distribution. This was done mainly due to tech-
nical reasons, since it facilitates the solutions of some of the
integrals, but is a good approximation as long as EF /Ek is
small. We have also used the long-scale length limit, which
should be valid given that the de Broglie wavelength of the
particles is short enough compare to the scale lengths we are
interested in.

V. DISCUSSION

From Eq. (16), we note that the effective ion-acoustic
velocity is increased, whereas the damping due to wave-
particle interaction is decreased due to the exchange effect.
As seen from (16), the relative magnitude of both of these
effects is of the order of H 2, where H = h̄ωpe/mv2

T e. As is
shown in, e.g., Ref. [5], plotting the line H = 1 in a log-log
density temperature diagram divides the parameter space in a
classical regime (H  1) and a strong quantum regime (H �
1). However, such plots are typically performed in order to
illustrate the relative importance of particle dispersive effects.
Within a kinetic formalism, particle dispersion is described by
the terms with higher-order momentum and spatial derivatives
in the Wigner equation [5]. For such terms to be important,
in addition to the parameter H not being too small, we also
require the scale lengths under study to be short. Specifically,
we need the scale lengths to approach the thermal de Broglie
wavelength or shorter. Thus if we exclude the regime of short
scale lengths, as we have done here, the quantum effect of
particle dispersion is guaranteed to be of little significance. By
contrast, we see that exchange effects may very well affect the
long-scale behavior of the low-frequency density dynamics.
Of particular interest is the change in the damping term. By
approaching the regime H ∼ 1, Eq. (16) suggests that we
may more or less completely suppress Landau damping of
ion-acoustic waves. Physically this makes sense, as classically
the particles that are resonantly accelerated for a long time are
rather well localized in phase space, which is then counteracted
by the exchange terms. Strictly, the regime H ∼ 1 does not fit
into the perturbation scheme that we have applied here, but
qualitatively we still expect this result to be valid.

Plasmas where exchange effects can be important occur
in, e.g., laser-plasma interaction experiments on solid targets,
such as in inertial confinement fusion schemes. After the
compression phase, but before the main part of the heating
has occurred we may have a plasma density of the order of
1032 m−3and a temperature of T = 4 × 106 K, in which case
the Debye length and the de Broglie length are comparable
and we have h̄ωp/kBT � 1. For these parameters, the plasma
is partially degenerate, and the Fermi temperature TF and the
thermodynamic temperature are comparable. Since we have
considered the case h̄ωp/kBT  1, however, a substantially
higher value of the electron temperature and the ordering
TF  T is consistent with our calculations.

An important result from this study is the general expression
for the exchange term, as given by Eq. (12). This term can
describe exchange modification of any type of processes, e.g.,
altering the coefficients for three-wave interaction [45,46],
adjusting the Zakharov equations [47,48], or modifying non-

linear wave-particle interaction processes [49,50]. The main
restriction is due to the assumption of electrostatic fields. The
complexity of the exchange interaction term in Eq. (12) in
practice forces one to do perturbative calculations. Since the
present formalism captures the full effect of a distribution
function which may be far from equilibrium, it provides
a valuable opportunity to evaluate approaches that rely on
other types of approximations. Specifically, in time-dependent
density functional theory (TDDFT) [51], the properties of the
system are derived from the electron density only (or are at
least limited to macroscopic quantities), in which case the
full dependence on the detailed momentum distribution is
disregarded. Due to the complexity of many nonlinear plasma
systems, such a drastic simplification may be needed, but at the
same time is it essential that the accuracy of the approach can
be evaluated. Results from DFT calculations have been used
to describe electrostatic waves in plasmas; see, e.g., Eq. (6)
of Ref. [52], where the further approximation of the adiabatic
local density approximation (ALDA) has been used. See also
Ref. [53] where the exchange effects on nonlinear ion-acoustic
waves have been studied. However, a difference with our
case is that the Fermi temperature was assumed to be higher
than the plasma temperature in these papers. In a very rough
sense, the previous results agree with ours, as the relative
importance of the exchange term scales as (h̄ωp/EK )2 in both
cases, noting that the characteristic kinetic energy Ek is the
thermal energy kBT in our case and the Fermi energy kBTF in
the case of Ref. [52]. However, in our case, the phase velocity
of the ion-acoustic waves is increased due to the exchange
interaction, whereas based on Eq. (6) of Ref. [52], the phase
velocity is decreased. Still, the interpretation of this fact can be
debated. One possibility is that the approximation of ALDA
to evaluate the exchange potential is too restrictive to capture
the ion-acoustic dynamics accurately. Another possibility is
that the results are indeed sensitive to the ordering of T and
TF , such that the sign of the exchange effect is reversed when
the ordering is changed. Regardless of this, is is clear that
DFT calculations in general cannot capture the effects of
wave-particle interaction, which is responsible for the wave
damping in our case.
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APPENDIX: LONG-SCALE LENGTH LIMIT
OF THE EXCHANGE TERM

The calculations leading from Eqs. (11) to (12) are some-
what complicated and here we show the steps in more detail.
Since the long-scale length limit of the left-hand side of (11) is
already known (see, e.g., [5]), we focus solely on the exchange
term on the right-hand side. The first step is to assume a spin-
independent distribution function and thereby solve the spin
integrals which are then trivial. We then expand the distribution
function and the potential V to second order in y and use the
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identity yj exp(ip · y/h̄) = −ih̄∂
j
p exp(ip · y/h̄) to get

I = −
∫

dp′dp′′dydz

2(2πh̄)3
eip·yh̄e−ip′ ·(x+y/2−z)/h̄e−ip′′ ·(z−x+y/2)/h̄( − ih̄

←−
∂

i

p

)[
∂i
xV (x − z)

]
×

[
f

(
x + z

2
,p′

)
f

(
x + z

2
,p′′

)
− ih̄

4
←−
∂

j

pf

(
x + z

2
,p′′

)
∂

j
x+z

2
f

(
x + z

2
,p′

)

+ ih̄

4
←−
∂

j

pf

(
x + z

2
,p′

)
∂

j
x+z

2
f

(
x + z

2
,p′′

) ]
, (A1)

where the arrow above the derivative signifies the direction in which the derivative acts. The next step is to perform the integration
over y, which is now straightforward as we only have

ih̄∂i
p

∫
dp′dp′′dz

2
δ

(
p − p′ + p′′

2

)
e−i(p′−p′′)·(x−z)/h̄

[
∂i
xV (x − z)

][
f

(
x + z

2
,p′

)
f

(
x + z

2
,p′′

)

− ih̄

4
←−
∂

j

pf

(
x + z

2
,p′′

)
∂

j
x+z

2
f

(
x + z

2
,p′

)
+ ih̄

4
←−
∂

j

pf

(
x + z

2
,p′

)
∂

j
x+z

2
f

(
x + z

2
,p′′

)]
. (A2)

In order to keep the result more symmetric, we make the substitution

p1 = p′ − p′′, (A3)

p2 = p′ + p′′

2
, (A4)

and then perform the integration over p2, which is easy due to the δ function. The result is

ih̄∂i
p

∫
dp1dz

2
e−ip1·(x−z)/h̄

[
∂i
xV (x − z)

] {
f

(
x + z

2
,p + p1

2

)
f

(
x + z

2
,p − p1

2

)
− ih̄

4

× ∂j
p

[
f

(
x + z

2
,p − p1

2

)
∂

j
x+z

2
f

(
x + z

2
,p + p1

2

)
− f

(
x + z

2
,p + p1

2

)
∂

j
x+z

2
f

(
x + z

2
,p − p1

2

)]}
, (A5)

where we have also factored out the momentum derivative on the last two terms. Finally, we make the variable substitution
z → x − z and obtain the required result:

= ih̄

2
∂i
p

∫
dp1dze−ip1·z/h̄[∂i

zV (z)
]
f

(
x − z

2
,p + p1

2

)
f

(
x − z

2
,p − p1

2

)
− h̄2

8
∂i
p∂j

p

∫
dp1dze−ip1·z/h̄[∂i

zV (z)
]

×
[
f

(
x − z

2
,p − p1

2

)
∂j
x f

(
x − z

2
,p + p1

2

)
− f

(
x − z

2
,p + p1

2

)
∂j
x f

(
x − z

2
,p − p1

2

)]
. (A6)
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